関澤太樹 1, 指導教員: 大泉匡史 1

1 東京大学大学院総合文化研究科広域科学専攻

脳の情報処理の速度

脳のダイナミクスを確率微分方程式でモデル化

本研究では、多次元の脳活動の時間変化 xt が線形 Langevin 方程式

$$dx_t = A_t x_t dt + \sqrt{2T} dB_t \tag{1}$$

に従うことを仮定する. T はノイズ強度で, dB_t は $\mathbb{E}[dB_t] = 0, \mathbb{E}[dB_t dB_s] = \delta(t-s)Idt$ を満たす標準 ブラウン運動である. この Langevin 方程式は, 次の Fokker-Planck 方程式と等価である.

$$\frac{\partial}{\partial t} p_t(x) = -\nabla \cdot [\nu_t(x)p_t(x)]$$
(2)
$$\nu_t(x) = A_t x - T\nabla \ln p_t(x)$$
(3)

Fokker-Planck 方程式は, Langevin 方程式での確率的 な軌道を, 確率分布の時間変化で表現し直したもので あり, 流体の連続の式に似たものである.

確率分布の変化速度の物理限界[3]

確率熱力学によると, 確率分布が時間変化する速度には, 熱力学的コスト (エントロピー生成) に基づいた速度限界がある. 確率分布が p_0 から p_{τ} まで変化するためにかかる遷移時間 τ は, 2 つの分布間の曲線距離 $\int_{t=0}^{t=\tau} W_2(p_t, p_{t+dt})$ とエントロピー生成 ΔS に基づいた 不等式

$$\tau \ge \frac{\frac{1}{T} \left[\int_{t=0}^{t=\tau} \mathcal{W}_2(p_t, p_{t+dt}) \right]^2}{\Delta S} \tag{4}$$

が存在する. この不等式は, 速度限界の不等式と呼ばれる [3]. ここで, $W_2(p_t, p_{t+dt})$ は確率分布間の L2-Wasserstein 距離

$$\frac{W_2(p_t, p_{t+dt})^2}{dt^2} = \min_{\nu_t \mid \dot{p}_t = -\nabla \cdot [\nu_t p_t]} \int \|\nu_t(x)\|^2 p_t(x) dx$$
(5)

である. エントロピー生成 ΔS は熱力学的なコストに対応する量で, Fokker–Planck 方程式の $\nu(x)$ を用いて

$$\Delta S = \int \sigma_t dt, \qquad \sigma_t = \frac{1}{T} \int \|\nu_t(x)\|^2 p(x) dx \tag{6}$$

と書ける.速度限界の不等式からは,例えば熱力学的コストであるエントロピー生成 Δ*S* を大量に投入するほど,確率分布の遷移にかかる時間 τ の下限は短くできることなどが分かる.

関澤太樹 1, 指導教員: 大泉匡史 1

1 東京大学大学院総合文化研究科広域科学専攻

本研究の目的: 脳の状態遷移の速度がどれほど物理限界に近いのかを遷移 効率 η として評価

本研究では, 脳の状態遷移が, 速度限界にどれほど近いのかを実データで検証する. 先ほ どの速度限界の不等式から, 0 から 1 の間の数値をとる遷移効率 η を, 次のように定義 する.

$$\eta = \frac{\frac{1}{T} \left[\int_{t=0}^{t=\tau} \mathcal{W}_2(p_t, p_{t+dt}) \right]^2}{\tau \Delta S}$$
(7)

この η が 1 に近いほど, 確率分布の遷移速度が速度限界に近いこと, あるいは, 費やされた熱力学的コスト ΔS が無駄なく遷移速度に変換されたこと, を表す. 本研究では, この遷移効率 η を脳の実データから計算し, 脳の状態遷移がどれほど限界に近いのかを調べることを目的とする.

用いたデータ

ECoG データセット [1] を用いた. ECoG とは、脳の表面に貼り付けた 電極から脳活動を記録したもので ある、視覚処理に関連する後頭葉か ら側頭葉にかけての 4060 電極を用 いた. 視覚タスクは, 400 ミリ秒の 待機時間ののち, 画像が 400 ミリ秒 提示される. という試行が 300 回繰 り返される. この 300 回の試行分 の時系列データから、脳活動の平均 と共分散行列の時間変化を得て,正 規分布の仮定のもとで確率分布の 時間変化を得た. ヒートマップは, 各電極での活動量の平均の時間変 化をプロットしたものである. 待機 時間中は活動量の変化が小さく,画 像提示中は活動量の変化が大きい 様子が見てとれる.

本研究では、視覚タスク中のヒト

関澤太樹¹, 指導教員: 大泉匡史¹

1 東京大学大学院総合文化研究科広域科学専攻

時変係数 AR モデル

本研究では、分布が時間変化する非定常のデータを解析する必要がある. 非定常時系列の 解析手法の1つである時変係数 AR モデルを用いた. 時変係数 AR モデルとは、AR モデル の係数 A を時間変化させることで、非定常性に対処したものである. データを時変係数 AR モデル

$$dx_t = A_t x_t dt + \sqrt{2T} dB_t \tag{8}$$

をフィットした. *A*t の時間変化を隠れ状態として推定する必要があるが, このままだと推定できないので, *A*t が1次のトレンドに従うことを仮定する.

$$\frac{d}{dt}A_t \sim \mathcal{N}(0, cIdt) \tag{9}$$

cは A_t の時間変化の平滑さを表すハイパーパラメータであり,本研究では交差検証で cの 値を決定した.式 (8)(9)は,式 (8)が観測方程式,式 (9)が状態方程式に対応する状態空間モ デルと考えることができ,隠れ変数 A_t の値はカルマンフィルタで求めることが可能であ る.このように求めた時変係数 A_t を用いて,エントロピー生成 ΔS や遷移効率 η を実デー タで求めた.

結果の予想

待機時間と画像提示中で脳活動を比 較すると,待機時間中は変化に乏し く定常に近いため,エントロピー生 成 ΔS は小さいと予想される.また, 確率分布が変化することなくコスト が支払われているとすると,効率 η も小さな値を取ると予想される. 方,画像提示中は脳活動の変化が大 きいため,エントロピー生成 ΔS と 効率 η は大きくなると予想される.

関澤太樹¹, 指導教員: 大泉匡史¹

1 東京大学大学院総合文化研究科 広域科学専攻

結果 1: 視覚入力でエントロピー生成 △S は増大する

結果 2: 視覚入力で効率 η は増大する

横軸に時間,縦軸に効率 η をプロットした. 画像提示中に効率 η が増大する様子が見てとれる. これは予想と一致する結果である.

本研究のまとめ

本研究では, 確率熱力学の速度限界の理論を用いて, 脳状態の確率分布が変化する速度 がどれほど限界に近いのかを効率 η として実データから算出する方法を整備した. 結 果, 視覚入力の前後で効率 η の値は変化し, 画像提示中に効率 η の値が増大することが 分かった.

References

- [1] Kai J Miller. A library of human electrocorticographic data and analyses. Nature human behaviour, 3(11):1225–1235, 2019.
- [2] Kai J Miller, Gerwin Schalk, Dora Hermes, Jeffrey G Ojemann, and Rajesh PN Rao. Spontaneous decoding of the timing and content of human object perception from cortical surface recordings reveals complementary information in the event-related potential and broadband spectral change. *PLoS computational biology*, 12(1):e1004660, 2016.
- [3] Muka Nakazato and Sosuke Ito. Geometrical aspects of entropy production in stochastic thermodynamics based on wasserstein distance. *Physical Review Research*, 3(4):043093, 2021.

Ethics statement:

Ethics statement: All patients participated in a purely voluntary manner, after providing informed written consent, under experimental protocols approved by the Institutional Review Board of the University of Washington (12193). All patient data was anonymized according to IRB protocol, in accordance with HIPAA mandate. These data originally appeared in the manuscript "Spontaneous Decoding of the Timing and Content of Human Object Perception from Cortical Surface Recordings Reveals Complementary Information in the Event-Related Potential and Broadband Spectral Change" published in PLoS Computational Biology in 2016 [2].