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Background: McKay correspondence
Crepant resolutions appear in the research of McKay
correspondence, which is a bridge between representation
theory and singularity theory. The classical McKay
correspondence comes from McKay’s observation [7] of two
ways to construct the same ADE graph from a finite subgroup
G of SL(2,C): one is to consider all non-trivial irreducible
representations of G , and the other is to consider the dual
graph of exceptional divisors for the minimal resolution of
C2/G .
In higher dimensions, McKay correspondence is considered as
a series of equalities between representation-theoretic invariant
given by G and geometric invariant given by Cn/G , where G
is a finite subgroup of SL(n,C).
One famous generalized version of McKay correspondence over
C is Batyrev’s theorem, in which we see crepant resolutions.

Definition
Let X be a normal algebraic variety and f : Y → X be a
resolution of singularity. f is called crepant, if KY = f ∗KX .

Theorem (Batyrev[1],’99)
Let G be a finite subgroup of SL(n,C). If there exists a
crepant resolution f : Y → Cn/G, then the topological Euler
number of Y is equal to the number of conjugacy classes of
G . That is, e(Y ) = #Conj(G ).

In Batyrev’s theorem, the Euler number e(Y ) comes from the
quotient singularity Cn/G , while the number of conjugacy
classes is equal to the number of irreducible representations of
G over C. This theorem therefore becomes a bridge
connecting representation theory with geometry.
In dimension 2, crepant resolutions exist as the minimal
resolutions for all quotient singularities associated to finite
subgroups of SL(2,C); in dimension 3, G -Hilbert schemes give
a standard construction of crepant resolutions[2]. For higher
dimensions, there are examples with no crepant resolutions.

Question
How things change if we work over an algebraically closed field
K of characteristic p > 0 instead?



Since McKay correspondence describes relationship between
representation theory and geometry, we first see how
representation theory changes by considering in positive
characteristic.

Theorem (Maschke)
Let G be a finite group such that CharK ∤ #G. Then the
group algebra K [G ] is semisimple.

This theorem inspires people to consider the following two
cases of quotient singularities An

K/G , where G is a finite
subgroup of SL(n,K ).

Two cases in positive characteristic
When the order of G cannot be divided by p, the case is
called non-modular or tame.
When the order of G is divided by p, the case is called
modular or wild.
In non-modular cases, both representation theory of G and
the associated quotient singularity can be lifted to C, and
many similar results hold, such as the analogue statement of
Batyrev’s theorem. Compared with non-modular cases, the
modular cases are usually with some worse properties.

Non-modular finite groups are similar to finite groups in
characteristic 0 and therefore easier to be dealt with. In the
right column of this page, we consider a generalized concept
of non-modular finite groups and the associated quotient
singularities, which is defined by focusing on semisimplicity
that appears in Maschke’s theorem.

Definition
An affine algebraic group scheme G over K is called linearly
reductive, if any K [G ]-module is semisimple.

Non-modular finite groups are considered as constant
linearly reductive finite group schemes.

Over C, linearly reductive finite group schemes are just all
the (non-modular) finite groups. In positive characteristic,
there exists non-constant linearly reductive finite group
schemes.

For a linearly reductive finite subgroup scheme of SLn,K ,

it has a linear action on An
K or Ãn

K , which gives a linearly
reductive quotient (lrq, for short) singularity.

Observation
The classification of linearly reductive finite subgroup schemes
of SL2,K is similar to the counterpart of finite subgroups of
SL(2,C)[4]; similar result holds for classification of linearly
reductive finite subgroup schemes of SL3,K [3].
In the thesis, we compute blow-ups for lrq singularities in
dimension 2 and obtain their crepant resolutions with the
same properties revealed by classical McKay correspondence.
This is an observation that lrq singularities are again similar to
quotient singularities over C, which leads to the following
conjecture in dimension 3.

Conjecture (F)
Let K be an algebraically closed field of characteristic p ⩾ 0,
and G be a linearly reductive finite subgroup scheme of SL3,K .
Then G-Hilb(A3

K ) is a crepant resolution of A3
K/G.



From this page, we discuss about modular cases, in which our
main result lies. We start from two examples in Yasuda’s
p-cyclic McKay correspondence.

Theorem (Yasuda[8],’14)
1 Let K be an algebraically closed field of characteristic 2,

and C2 be a 2-cyclic subgroup of SL(4,K ) with no
pesudo-reflections. Then A4

K/C2 has a crepant resolution
with Euler number 2.

2 Let K be an algebraically closed field of characteristic 3,
and C3 be a 3-cyclic subgroup of SL(3,K ) with no
pesudo-reflections. Then A4

K/C3 has a crepant resolution
with Euler number 3.

It is furthermore known that for a cyclic quotient variety in
positive characteristic, if its crepant resolution exists, then the
Euler number of the resolution is equal to the order of the
cyclic group - which coincides the analogue statement of
Batyrev’s theorem.
From these two examples, we can furthermore construct some
crepant resolutions for quotient singularities associated to
non-abelian modular groups.
Let G = H ⋊ S , where H is a non-modular abelian group
consisting of diagonal matrices and S is a permutation group.
In such cases, the quotient singularity given by H can be
resolved by toric method and An/G can be seen as An/H/S .
Hence if An/H has a crepant S-equivariant resolution Y such
that the action of S on Y can be locally seen as the
permutation action on the affine space, then the crepant
resolution can be given by the next diagram, according to
Ito[5].

Construction of crepant resolution for G = H ⋊ S

Ãn/Gy
Y

/S−−→ Y /Sy y
An /H−−→ An/H

/S−−→ An/G

Here are crepant resolutions that follow from Yasuda’s first
example and Ito’s construction.

Corollary (F)
Let K be an algebraically closed field of characteristic 2. For
each positive integer n not dividing 2, let ζn be a primitive
n-th root of unity in K. For integers a1, a2, a3, a4, denote the
diagonal matrix diag(ζa1n , ζa2n , ζa3n , ζa4n ) by 1

n(a1, a2, a3, a4). Let
S be a subgroup of SL(4,K ) generated by the permutation
element (12)(34). Let H ⊆ SL(4,K ) be one of the following:

1 H = ⟨1n(1, 0, 0,−1), 1n(0, 1, 0,−1), 1n(0, 0, 1,−1)⟩, 2 ∤ n;
2 H = ⟨ 1

m(1,−1, 0, 0), 1n(0, 0, 1,−1)⟩, 2 ∤ m, n.

Then G = ⟨H , S⟩ is a finite subgroup of SL(4,K ) with no
pesudo-reflections, and A4

K/G has a crepant resolution with
Euler number equal to the number of conjugacy classes of G .

Similar construction can also be applied in characteristic 3
with Yasuda’s second example. For the crepant resolutions
above, they all agree with analogue statement of Batyrev’s
theorem. We will see a counterexample as our main result.



For main results of the thesis, we consider two quotient
varieties in characteristic 2 such that the orders of the groups
are divided by 22.
Using known results in modular invariant theory, we obtain the
following defining equations by computation.

Proposition (F)
Let K be an algebraically closed field of characteristic 2, K4 be
the group consisting of permutations of order 2 in SL(4,K ),
and A4 be the alternating group with permutation
representation. Then

1 A4
K/K4

∼= V (AE + BC + CD + DB ,BCD + E 2 + A2F ).
2 A4

K/A4
∼= V (E 2 + (A2D + ABC + C 2)E + A4D2 +

A3C 3 + A2B3D + B3C 2 + C 4).

Idea to deal with singularities
Our idea comes from Markushevich[6]. Assume that the
singular locus is C1 ∪ C2, where C1 and C2 are both smooth.
We first compute the blow-up along C1 and then repeatedly
compute the blow-up along singular part in the exceptional
divisor of the previous blow-up, until the singular locus is
exactly the strict transform of C2. Finally a series of blow-ups
along singular locus can give resolution of singularity.

For A4
K/K4, terminal singularity appears in computation, so it

is impossible to obtain crepant resolution by this idea.
For A4

K/A4, we obtain a crepant resolution which has Euler
number 10. Since A4 has 4 conjugacy classes, this is a new
example of crepant resolution and a new counterexample to
Batyrev’s theorem in positive characteristic.

Theorem (F, main result)
Let K be an algebraically closed field of characteristic 2 and
X = A4

K/A4 be given by permutation action of alternating

group A4 on A4
K . Then X has a crepant resolution X̃ with

Euler number e(X̃ ) = 10.

Further topics
Further study on lrq singularities, such as the answer to
the conjecture, and analogy of other methods in
characteristic 0.

Conceptual (likely to be representation-theoretic)
explanation of the Euler number 10 that appears in the
main result, and generalization on more quotient
singularities by the same approach to the main result.
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