Linghu FAN

Background: McKay correspondence

Crepant resolutions appear in the research of McKay correspondence, which is a bridge between representation theory and singularity theory. The classical McKay correspondence comes from McKay's observation [7] of two ways to construct the same ADE graph from a finite subgroup G of $\operatorname{SL}(2, \mathbb{C})$: one is to consider all non-trivial irreducible representations of G, and the other is to consider the dual graph of exceptional divisors for the minimal resolution of \mathbb{C}^{2} / G.
In higher dimensions, McKay correspondence is considered as a series of equalities between representation-theoretic invariant given by G and geometric invariant given by \mathbb{C}^{n} / G, where G is a finite subgroup of $\operatorname{SL}(n, \mathbb{C})$.
One famous generalized version of McKay correspondence over \mathbb{C} is Batyrev's theorem, in which we see crepant resolutions.

Definition

Let X be a normal algebraic variety and $f: Y \rightarrow X$ be a resolution of singularity. f is called crepant, if $K_{Y}=f^{*} K_{X}$.

Theorem (Batyrev[1],'99)

Let G be a finite subgroup of $\operatorname{SL}(n, \mathbb{C})$. If there exists a crepant resolution $f: Y \rightarrow \mathbb{C}^{n} / G$, then the topological Euler number of Y is equal to the number of conjugacy classes of G. That is, $e(Y)=\# \operatorname{Conj}(G)$.

In Batyrev's theorem, the Euler number $e(Y)$ comes from the quotient singularity \mathbb{C}^{n} / G, while the number of conjugacy classes is equal to the number of irreducible representations of G over \mathbb{C}. This theorem therefore becomes a bridge connecting representation theory with geometry.
In dimension 2, crepant resolutions exist as the minimal resolutions for all quotient singularities associated to finite subgroups of $\operatorname{SL}(2, \mathbb{C})$; in dimension 3 , G-Hilbert schemes give a standard construction of crepant resolutions[2]. For higher dimensions, there are examples with no crepant resolutions.

Question

How things change if we work over an algebraically closed field K of characteristic $p>0$ instead?

Since McKay correspondence describes relationship between representation theory and geometry, we first see how representation theory changes by considering in positive characteristic.

Theorem (Maschke)

Let G be a finite group such that Char $K \nmid \# G$. Then the group algebra $K[G]$ is semisimple.

This theorem inspires people to consider the following two cases of quotient singularities \mathbb{A}_{k}^{n} / G, where G is a finite subgroup of $\mathrm{SL}(n, K)$.

Two cases in positive characteristic

When the order of G cannot be divided by p, the case is called non-modular or tame.
When the order of G is divided by p, the case is called modular or wild.
In non-modular cases, both representation theory of G and the associated quotient singularity can be lifted to \mathbb{C}, and many similar results hold, such as the analogue statement of Batyrev's theorem. Compared with non-modular cases, the modular cases are usually with some worse properties.

Non-modular finite groups are similar to finite groups in characteristic 0 and therefore easier to be dealt with. In the right column of this page, we consider a generalized concept of non-modular finite groups and the associated quotient singularities, which is defined by focusing on semisimplicity that appears in Maschke's theorem.

Definition

An affine algebraic group scheme G over K is called linearly reductive, if any $K[G]$-module is semisimple.

- Non-modular finite groups are considered as constant linearly reductive finite group schemes.
- Over \mathbb{C}, linearly reductive finite group schemes are just all the (non-modular) finite groups. In positive characteristic, there exists non-constant linearly reductive finite group schemes.
- For a linearly reductive finite subgroup scheme of $\mathrm{SL}_{n, K}$, it has a linear action on \mathbb{A}_{K}^{n} or $\widetilde{\mathbb{A}_{k}^{n}}$, which gives a linearly reductive quotient (Irq, for short) singularity.

Observation

The classification of linearly reductive finite subgroup schemes of $\mathrm{SL}_{2, K}$ is similar to the counterpart of finite subgroups of SL($2, \mathbb{C}$)[4]; similar result holds for classification of linearly reductive finite subgroup schemes of $\mathrm{SL}_{3, k}[3]$.
In the thesis, we compute blow-ups for Irq singularities in dimension 2 and obtain their crepant resolutions with the same properties revealed by classical McKay correspondence.
This is an observation that Irq singularities are again similar to quotient singularities over \mathbb{C}, which leads to the following conjecture in dimension 3.

Conjecture (F)

Let K be an algebraically closed field of characteristic $p \geqslant 0$, and G be a linearly reductive finite subgroup scheme of $\mathrm{SL}_{3, k}$. Then $G-\operatorname{Hilb}\left(\mathbb{A}_{K}^{3}\right)$ is a crepant resolution of \mathbb{A}_{K}^{3} / G.

From this page, we discuss about modular cases, in which our main result lies. We start from two examples in Yasuda's p-cyclic McKay correspondence.

Theorem (Yasuda[8],'14)

(1) Let K be an algebraically closed field of characteristic 2, and C_{2} be a 2 -cyclic subgroup of $\operatorname{SL}(4, K)$ with no pesudo-reflections. Then $\mathbb{A}_{K}^{4} / C_{2}$ has a crepant resolution with Euler number 2.
(2) Let K be an algebraically closed field of characteristic 3, and C_{3} be a 3 -cyclic subgroup of $\operatorname{SL}(3, K)$ with no pesudo-reflections. Then $\mathbb{A}_{K}^{4} / C_{3}$ has a crepant resolution with Euler number 3.

It is furthermore known that for a cyclic quotient variety in positive characteristic, if its crepant resolution exists, then the Euler number of the resolution is equal to the order of the cyclic group - which coincides the analogue statement of Batyrev's theorem.
From these two examples, we can furthermore construct some crepant resolutions for quotient singularities associated to non-abelian modular groups.
Let $G=H \rtimes S$, where H is a non-modular abelian group consisting of diagonal matrices and S is a permutation group. In such cases, the quotient singularity given by H can be resolved by toric method and \mathbb{A}^{n} / G can be seen as $\mathbb{A}^{n} / H / S$. Hence if \mathbb{A}^{n} / H has a crepant S-equivariant resolution Y such that the action of S on Y can be locally seen as the permutation action on the affine space, then the crepant resolution can be given by the next diagram, according to Ito[5].

Construction of crepant resolution for $G=H \rtimes S$

Here are crepant resolutions that follow from Yasuda's first example and Ito's construction.

Corollary (F)

Let K be an algebraically closed field of characteristic 2. For each positive integer n not dividing 2 , let ζ_{n} be a primitive n-th root of unity in K. For integers $a_{1}, a_{2}, a_{3}, a_{4}$, denote the diagonal matrix $\operatorname{diag}\left(\zeta_{n}^{a_{1}}, \zeta_{n}^{a_{2}}, \zeta_{n}^{a_{3}}, \zeta_{n}^{a_{4}}\right)$ by $\frac{1}{n}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. Let S be a subgroup of $\operatorname{SL}(4, K)$ generated by the permutation element (12)(34). Let $H \subseteq \operatorname{SL}(4, K)$ be one of the following:
(1) $H=\left\langle\frac{1}{n}(1,0,0,-1), \frac{1}{n}(0,1,0,-1), \frac{1}{n}(0,0,1,-1)\right\rangle, 2 \nmid n$;
(2) $H=\left\langle\frac{1}{m}(1,-1,0,0), \frac{1}{n}(0,0,1,-1)\right\rangle, 2 \nmid m, n$.

Then $G=\langle H, S\rangle$ is a finite subgroup of $\operatorname{SL}(4, K)$ with no pesudo-reflections, and \mathbb{A}_{K}^{4} / G has a crepant resolution with Euler number equal to the number of conjugacy classes of G.

Similar construction can also be applied in characteristic 3 with Yasuda's second example. For the crepant resolutions above, they all agree with analogue statement of Batyrev's theorem. We will see a counterexample as our main result.

For main results of the thesis, we consider two quotient varieties in characteristic 2 such that the orders of the groups are divided by 2^{2}.
Using known results in modular invariant theory, we obtain the following defining equations by computation.

Proposition (F)

Let K be an algebraically closed field of characteristic 2, K_{4} be the group consisting of permutations of order 2 in $\operatorname{SL}(4, K)$, and A_{4} be the alternating group with permutation representation. Then
(1) $\mathbb{A}_{K}^{4} / K_{4} \cong V\left(A E+B C+C D+D B, B C D+E^{2}+A^{2} F\right)$.
(2) $\mathbb{A}_{K}^{4} / A_{4} \cong V\left(E^{2}+\left(A^{2} D+A B C+C^{2}\right) E+A^{4} D^{2}+\right.$ $\left.A^{3} C^{3}+A^{2} B^{3} D+B^{3} C^{2}+C^{4}\right)$.

Idea to deal with singularities

Our idea comes from Markushevich[6]. Assume that the singular locus is $C_{1} \cup C_{2}$, where C_{1} and C_{2} are both smooth. We first compute the blow-up along C_{1} and then repeatedly compute the blow-up along singular part in the exceptional divisor of the previous blow-up, until the singular locus is exactly the strict transform of C_{2}. Finally a series of blow-ups along singular locus can give resolution of singularity.
For $\mathbb{A}_{K}^{4} / K_{4}$, terminal singularity appears in computation, so it is impossible to obtain crepant resolution by this idea. For $\mathbb{A}_{K}^{4} / A_{4}$, we obtain a crepant resolution which has Euler number 10. Since A_{4} has 4 conjugacy classes, this is a new example of crepant resolution and a new counterexample to Batyrev's theorem in positive characteristic.

Theorem (F, main result)

Let K be an algebraically closed field of characteristic 2 and $X=\mathbb{A}_{K}^{4} / A_{4}$ be given by permutation action of alternating group A_{4} on \mathbb{A}_{K}^{4}. Then X has a crepant resolution \widetilde{X} with Euler number $e(\widetilde{X})=10$.

Further topics

- Further study on Irq singularities, such as the answer to the conjecture, and analogy of other methods in characteristic 0 .
- Conceptual (likely to be representation-theoretic) explanation of the Euler number 10 that appears in the main result, and generalization on more quotient singularities by the same approach to the main result.

References

[1] V. V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, Journal of the European Mathematical Society 1 (1999), no. 1, 5-33.
[2] T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived categories, Journal of the American Mathematical Society 14 (2001), no. 3, 535-554.
[3] Y. Z. Flicker, Linearly reductive finite subgroup schemes of SL(3), São Paulo Journal of Mathematical Sciences 14 (2020), no. 2, 437-442.
[4] M. Hashimoto, Classification of the linearly reductive finite subgroup schemes of $S L_{2}$, Acta Mathematica Vietnamica 40 (2015), no. 3, 527-534.
[5] Y. Ito, Crepant resolution of trihedral singularities and the orbifold Euler characteristics, International Journal of Mathematics 6 (1995), no. 1, 33-44.
[6] D. Markushevich, Resolution of \mathbb{C}^{3} / H_{168}, Mathematische Annalen 308 (1997), no. 2, 279-289.
[7] J. McKay, Graphs, singularities, and finite groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), 1980, pp. 183-186. MR604577
[8] T. Yasuda, The p-cyclic McKay correspondence via motivic integration, Compositio Mathematica 150 (2014), no. 7, 1125-1168.

