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Gromov-Witten theory Research motivation and previous results

In mathematics, enumerative geometry is the branch of algebraic geometry
concerned with counting numbers of solutions to geometric questions.
Example:

(1)How many lines pass between two points in the plane?

This is a vary simple example in enumerative geometry. The answer is one.
(2)More generally, If we have a manifold X the Gromov-Witten invariants is
going to count surfaces satisfying varies constraints. Such as pathing through
a point of a giving sub-manifold or being tangent to a sub-manifold. For
example the Gromov-Witten invariants could count the number of red spheres
that have a common point with following three blue curves with three green
points. (If the number is infinite, then the Gromov-Witten invariants is 0)

The Gromov-Witten invariants appears as correlator in topological string string
theory. physicists have made predictions about the Gromov-Witten invariants
and a large number of predictions are still open for mathematicians.
Reference:

https://arxiv.org/pdf/1407.1260.pdf
https://www.icts.res.in/program /JhGW2017

» Quantum Cohomology in Gromov-Witten theory gives us a Frobenius manifold structure.
Under the semi-simplicity condition the Frobenius structure determines all higher-genus
Gromov-Witten invariants. This was conjectured by Givental, who proved several special
cases using fixed point localization. Teleman proved Givental's conjecture in general. The
resulting theory is known as Givental-Teleman higher-genus reconstruction. The higher-genus
reconstruction can be defined for any semi-simple Frobenius manifold.

» Semi-simple Frobenius manifold has a set of vectors known as reflection vectors.

P Reflection vectors determine the monodromy group of the Frobenius manifold.
P Reflection vectors have applications in integrable systems.
P For Frobenius manifolds in singularity theory reflection vector is vanishing cycle.

» According to A. Bayer, if a smooth projective variety X has semi-simple quantum
cohomology, then the blow-up of X at any number of points also has semi-simple quantum
cohomology.

How the set of reflection vectors changes under the blow-up operation.

Every reflection vector decomposes into two parts: a cohomology class in H*(X) and a
cohomology class in H*(E), where E is the exceptional divisor. The second part is essentially
independent of X. In order to compute the reflection vectors, we work with the simplest
possible choice X = P".




Main result: Theorem 1.3

Suppose that Q; = e;*, Q2 = €™ where 71, 2 € R. Put V. (0) = e” A~ 2P2Y(0). If
z € Rco, then

[0 = @nF (2450, @.2)(-2)" (=) )¥-(O). ).
RSo

p is given by classical cup product multiplication by c1(T BI(P")). S(t, Q, z) is the calibra-
tion. 0 is the Hodge grading operator. ((C*)",f,w) is the Givental mirror for BI(P"). W is
the Iritani’s map. We will introduce these later.

About Theorem 1.3

Theorem 1.3 was proved also by Iritani[6]. We give a different proof which in some sense is
simpler and we believe that our argument can be generalized for non-Fano toric manifolds.
Using Theorem 1.3 we proved that WT(O) is a reflection vector, where O is the structure
sheaf of BI(P").

Future goal

We expect to find all of the reflection vectors. The key step is to find a cycle ;2 such
that the identity in Theorem 1.3 holds for R, replaced by [,12 and O replaced by Ok,
where Of is the structure sheaf of the exceptional divisor E.

Calibration

According to Givental, the calibration is an operator series S = 1+ 372, Sk(t)z™%, Sk €
End(H), such that the Dubrovin's connection has a fundamental solution near z = oo of
the form

S(t,2)2%27°,

where p € End(H) is a nilpotent operator, [#,p] = —p, and the following symplectic
condition holds

S(t,z)S(t,—z)" =1.

T denotes transposition with respect to the Frobenius pairing.

Second structure connection, period vectors and reflection vectors

Our main interest is in the 2nd structure connection
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where n in our case is an integer parameter. This is a connection on the trivial bundle
(M xC) xH— (MxC),

where (M x C) = {(t,\) | det(\ — Ee;) # 0}.

Let us fix a reference point (t°,A°) € (M x C)’ such that A\° is a sufficiently large real
number. The following functions provide a fundamental solution to the 2nd structure
connection

oo
102, 2) = ST (=1)*S(t)H ),
k=0
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Using the differential equations we extend 1) to a multi-valued analytic function on (M x
C)’. We define period vectors as the following multi-valued functions taking values in H:

I, N) == 1"(t,\)a, a€H, nez.
Using analytic continuation we get a representation
m1((M x €)', (t°,2°)) — GL(H)

called the monodromy representation of the Frobenius manifold. The image W of the
monodromy representation is called the monodromy group. The intersection pairing

(alb) := (180(£, 1), (A = Eo)I (£, 1))
is independent of t and .
Suppose now that v is a simple loop. Up to a sign there exists a unique a € H such
that (aJa) = 2 and the monodromy transformation of a along v is —a. The monodromy

transformation representing + is the reflection defined by the following formula:

wa(x) = x — (a|x)a.

—




Quantum Cohomology for BI(P")

Let us consider the following diagram:

X,k (é Pt
l J
P
. . . . . 1 ... 1 -1 0
where Xy, is a toric manifold with a 2 x (n+ 2) matrix M = 0 - 0 1 1 and
K =RZ%,. The maps mn_1, 7y, j are defined by
T—1(z, A1, X2) i=[z1: -+ : z3],
Tz, A1, A2) :=[A1z1 1 -+ 1 A1za : A2,
J(zr:--:z)) == (21, ,2zn,0,1).

Put E := j(P""!) C Xu k. We have

and
Xwm,k = Blig....0.1) (P").
Let us denote

pr=ci(mp_10e-1(1)),
P2 = Cl(‘fr:aw(l)):

the generators of H®*(BI(P"); Z), with pf =0, p2(p2 — p1) = 0. Let e := a class of line in
E, e := aclass of line in P” avoiding [0 : ---: 0: 1]. We have

Ha(BI(P"); Z) = Zey + Zes.

The novikov variables @ = (Q1, Q2), Q% := Q21 QP2 for d = die1 + dher = Di(e1 — &) +
Dre>. The quantum cup product eg

(P2 00 Db, &) = Z (B4, ®b, Pc)o,3,aQ%,
dEEFF(X)

where

evi" P, Uevy" dpUevs™ .

(Pa, Pp, Pchos = /

J [Mo 5(X, D))

is the number of spheres that have a common point with P.D.(®,), P.D.(®,) and
P.D.(®5). Note that if the number is infinite, then the value of the integral is zero.
For Fano toric manifold, by Givental[3], Iritani[6] and Brown[2] we have

S(0,@,2)7-1=5(0,Q,—2)t-1= %JX(O, Q,—2) = 1(Q, 2).

Let ®;; = pi~1pi~" be the basis of H* (BI (P")). Using the formula for the J-function for
Fano toric manifold we computed S™1. Then we get that the quantum product of blow-up
of P" is given by

1) pre®;; =i, wherei<n—-1,j=1,2,

2) ppe®;1 =5, where i <n,

3) ppe®in =112+ Q®i1, where i <n—1,

4) pre®no = QiQ®1,

5) pre®p1 = QP12 — Qid2,

6) ppe®yo=G@Qa®n1+ QP11
According to Givental, the mirror of BI(P") is given by the restriction of f(x) := x1 + -+ +
Xny2 to the complex torus x € (C*)"2 : [[77 x™ = Q; (i = 1,2). Since x1 -+ xaXyy =
Q1, Xn+1Xn42 = Q2. We have

f(x)=x1+-+x+

X1 Xp @QQ
Q ’

4
X1+ Xn

Put w = dx—’i‘ A+ A% Then ((C*)™?2, f,w) is a mirror model of BI(P") in the sense of
Givental.
For projective manifold X, let us introduce Iritani’'s map.

¥ : K°(X)/torsion — H*(X;C)
W(E) = (2r) 7 F(X) U (21)* ch(E),

where [(X) = [(TX) and for a vector bundle E, Chern roots x1, - - - .x, we denote by

F(E)=T]ra+x)

its [ — class. .
In our case the T'(BI(P")) = (1 + p1)"T(1 + p2)[(1 + p2 — p1) and V(O) =
(2r) " F(BI(P").




Proof of main result V. (O) is a reflection vector

Theorem 1.3 - . ) . , The function gr, r, (x) := f(x, 71, 72) = X1+ -+ xn + 5% + X?.‘.%" defines
/ e w=(2m) 7 (=2)2(5(0, Q, 2)(—2) (—2)"¥-(0), 1). a real-valued function on R%, with minimal value u(71,72). Put ay =
R7, {x € R2¢|gn,~(x) < A}. Forall me Q let us define Z™ (11,72, A) 1=
—f(x,71,7: ph
Proof: Using the formula for the J-function for Fano toric manifold [3][6][2] we have, fw %“-
0 . Lemma 3.8 If \ is sufficient close to u(71,72), then Morse lemma for f
(=2)"5(0,Q,2) " -1 applies
_ Q> - —m .
= Z =) 2 " (11, 72, A) = (A = u(m1,72) 2 T (colT1, T2) + T, T2)(A = u(T, ) ).

D, D, D,—D;
010220 [ (—zpy + mz)" ] (=zp2 + mz) [I (—2zp2 + zp1 + m2)
m=1 m=1 m=1 Lemma 3.9 We have

Therefore, / eél(f'")(ThTz,)\) d\ = (,Z)W% / e )w,
o 0o u(T1,72) %o
— n —PiT1—P2T2
RHS DIZZD DzZ:O Resp,——p, (Resp,—p, —p, + Resp,——p, )T (p1))"T(p2) (P2 — p1)e dp1dps. where 71, 72 € R, € Reo.
Let us denote I,E-_"'_l) = /™Y E. The period vectors for quantum coho-
For the LHS our key observation is that Fourier transformation of the oscillator integral w.r.t 7; = log Q; is mology.
a product of [-functions. Therefore, using inverse Fourier transformation, we get a Melin-Barnes integral, Lemma 3.10 Exists Eg € H*(X;C) independent of 71, 72 and \ such that
L\ T (U™ ,01)) = (=0,) 7 (=Y 1T, )
LHS = (£> / / e PP (po)M(p2 — p1)T(p1) " dp2dpr.
O S , where 7 = (11, 72), E = e P72 Ey and Q = (Q1, @) = (e™,e™).
- "i A By Theorem 1.3, Lemma 3:49 and Lemma 3.10, we get Lemma 3.11.
N Lemma 3.11 £, = (2#)%‘U(O)A
. Therefore, E is proportional to a reflection vector. Since E =
N | A 1 (27)"T W, (O), in order to prove that W, (O) is a reflection vector, we
e need only to check that (V-(O)|V-(0)) = 2.
7
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