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Gromov-Witten theory

In mathematics, enumerative geometry is the branch of algebraic geometry

concerned with counting numbers of solutions to geometric questions.

Example:
(1)How many lines pass between two points in the plane?

This is a vary simple example in enumerative geometry. The answer is one.

(2)More generally, If we have a manifold X the Gromov-Witten invariants is

going to count surfaces satisfying varies constraints. Such as pathing through

a point of a giving sub-manifold or being tangent to a sub-manifold. For

example the Gromov-Witten invariants could count the number of red spheres

that have a common point with following three blue curves with three green

points. (If the number is infinite, then the Gromov-Witten invariants is 0)

The Gromov-Witten invariants appears as correlator in topological string string

theory. physicists have made predictions about the Gromov-Witten invariants

and a large number of predictions are still open for mathematicians.

Reference:
https://arxiv.org/pdf/1407.1260.pdf

https://www.icts.res.in/program/JhGW2017

Research motivation and previous results

◮ Quantum Cohomology in Gromov-Witten theory gives us a Frobenius manifold structure.
Under the semi-simplicity condition the Frobenius structure determines all higher-genus
Gromov-Witten invariants. This was conjectured by Givental, who proved several special
cases using fixed point localization. Teleman proved Givental’s conjecture in general. The
resulting theory is known as Givental-Teleman higher-genus reconstruction. The higher-genus
reconstruction can be defined for any semi-simple Frobenius manifold.

◮ Semi-simple Frobenius manifold has a set of vectors known as reflection vectors.
◮ Reflection vectors determine the monodromy group of the Frobenius manifold.
◮ Reflection vectors have applications in integrable systems.
◮ For Frobenius manifolds in singularity theory reflection vector is vanishing cycle.

◮ According to A. Bayer, if a smooth projective variety X has semi-simple quantum
cohomology, then the blow-up of X at any number of points also has semi-simple quantum
cohomology.

Question:

How the set of reflection vectors changes under the blow-up operation.

Every reflection vector decomposes into two parts: a cohomology class in H
∗(X ) and a

cohomology class in H
∗(E), where E is the exceptional divisor. The second part is essentially

independent of X. In order to compute the reflection vectors, we work with the simplest
possible choice X = Pn.
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Main result: Theorem 1.3

Suppose that Q1 = e
τ1
1 , Q2 = e

τ2 where τ1, τ2 ∈ R. Put Ψτ (O) = e
−τ1p1−τ2p2Ψ(O). If

z ∈ R<0, then

!

Rn
>0

e
f (x,τ)z−1

ω = (2π)
n−1
2 (−z)

n
2 (S(0,Q, z)(−z)θ(−z)ρ)Ψτ (O), 1).

ρ is given by classical cup product multiplication by c1(T Bl(Pn)). S(t,Q, z) is the calibra-
tion. θ is the Hodge grading operator. ((C∗)n,f ,ω) is the Givental mirror for Bl(Pn). Ψ is
the Iritani’s map. We will introduce these later.

About Theorem 1.3

Theorem 1.3 was proved also by Iritani[6]. We give a different proof which in some sense is
simpler and we believe that our argument can be generalized for non-Fano toric manifolds.
Using Theorem 1.3 we proved that Ψτ (O) is a reflection vector, where O is the structure
sheaf of Bl(Pn).

Future goal

We expect to find all of the reflection vectors. The key step is to find a cycle Γn+2 such
that the identity in Theorem 1.3 holds for Rn

>0 replaced by Γn+2 and O replaced by OE ,
where OE is the structure sheaf of the exceptional divisor E.

Calibration

According to Givental, the calibration is an operator series S = 1 +
"∞

k=1 Sk(t)z
−k , Sk ∈

End(H), such that the Dubrovin’s connection has a fundamental solution near z = ∞ of
the form

S(t, z)zθz−ρ,

where ρ ∈ End(H) is a nilpotent operator, [θ, ρ] = −ρ, and the following symplectic
condition holds

S(t, z)S(t,−z)T = 1.

T denotes transposition with respect to the Frobenius pairing.

Second structure connection, period vectors and reflection vectors

Our main interest is in the 2nd structure connection

∇(n)
∂/∂ti

=
∂

∂ti
+ (λ− E•t)

−1(φi•t)(θ − n − 1/2)

∇(n)
∂/∂λ =

∂

∂λ
− (λ− E•t)

−1(θ − n − 1/2),

where n in our case is an integer parameter. This is a connection on the trivial bundle

(M × C)′ × H → (M × C)′,

where (M × C)′ = {(t,λ) | det(λ− E•t) ∕= 0}.
Let us fix a reference point (t◦,λ◦) ∈ (M × C)′ such that λ◦ is a sufficiently large real
number. The following functions provide a fundamental solution to the 2nd structure
connection

I
(n)(t,λ) =

∞#

k=0

(−1)kSk(t)$I (n+k)(λ),

where

$I (m)(λ) = e
−ρ∂λ∂m

% λθ−m− 1
2

Γ(θ −m + 1
2 )

&
.

Using the differential equations we extend I
(n) to a multi-valued analytic function on (M ×

C)′. We define period vectors as the following multi-valued functions taking values in H:

I
(n)
a (t,λ) := I

(n)(t,λ) a, a ∈ H, n ∈ Z.

Using analytic continuation we get a representation

π1((M × C)′, (t◦,λ◦)) → GL(H)

called the monodromy representation of the Frobenius manifold. The image W of the
monodromy representation is called the monodromy group. The intersection pairing

(a|b) := (I (0)a (t,λ), (λ− E•)I
(0)
b (t,λ))

is independent of t and λ.
Suppose now that γ is a simple loop. Up to a sign there exists a unique a ∈ H such
that (a|a) = 2 and the monodromy transformation of a along γ is −a. The monodromy
transformation representing γ is the reflection defined by the following formula:

wa(x) = x − (a|x)a.



Quantum Cohomology for Bl(Pn)

Let us consider the following diagram:

XM,K

πn−1 !!

πn

""

Pn−1

j
##

Pn

,

where XM,K is a toric manifold with a 2× (n+2) matrix M =

'
1 · · · 1 −1 0
0 · · · 0 1 1

(
and

K = R2
>0. The maps πn−1, πn, j are defined by

πn−1(z ,λ1,λ2) := [z1 : · · · : zn],

πn(z ,λ1,λ2) := [λ1z1 : · · · : λ1zn : λ2],

j([z1 : · · · : zn]) := (z1, · · · , zn, 0, 1).

Put E := j(Pn−1) ⊂ XM,K . We have

πn(E) = [0 : · · · : 0 : 1]

and

XM,K = Bl[0:···:0:1](Pn).

Let us denote

p1 = c1(π
∗
n−1OPn−1(1)),

p2 = c1(π
∗
nOPn(1)),

the generators of H•(Bl(Pn);Z), with p
n
1 = 0, p2(p2 − p1) = 0. Let e1 := a class of line in

E , e2 := a class of line in Pn avoiding [0 : · · · : 0 : 1]. We have

H2(Bl(Pn);Z) = Ze1 + Ze2.

The novikov variables Q = (Q1,Q2), Q
d := Q

D1
1 Q

D2
2 , for d = d1e1 + d2e2 = D1(e1 − e2) +

D2e2. The quantum cup product •Q

(Φa •Q Φb,Φc) =
#

d∈EFF(X )

〈Φa,Φb,Φc〉0,3,dQd ,

where

〈Φa,Φb,Φc〉0,3 =
!

[M0,3(X ,D)]vir
ev1

∗ Φa ∪ ev2
∗ Φb ∪ ev3

∗ Φc

is the number of spheres that have a common point with P.D.(Φa), P.D.(Φb) and
P.D.(Φb). Note that if the number is infinite, then the value of the integral is zero.
For Fano toric manifold, by Givental[3], Iritani[6] and Brown[2] we have

S(0,Q, z)T · 1 = S(0,Q,−z)−1
· 1 =

1

z
JX (0,Q,−z) = I (Q, z).

Let Φi,j = p
i−1
1 p

j−1
2 be the basis of H• (Bl (Pn)). Using the formula for the J-function for

Fano toric manifold we computed S
−1. Then we get that the quantum product of blow-up

of Pn is given by

1) p1 • Φi,j = Φi+1,j , where i ≤ n − 1, j = 1, 2,

2) p2 • Φi,1 = Φi,2, where i ≤ n,

3) p2 • Φi,2 = Φi+1,2 + Q2Φi,1, where i ≤ n − 1,

4) p1 • Φn,2 = Q1Q2Φ1,1,

5) p1 • Φn,1 = Q1Φ1,2 − Q1Φ2,1,

6) p2 • Φn,2 = Q2Φn,1 + Q1Q2Φ1,1.

According to Givental, the mirror of Bl(Pn) is given by the restriction of f (x) := x1 + · · ·+
xn+2 to the complex torus x ∈ (C∗)n+2 :

)n+2
j=1 x

mij

j = Qi (i = 1, 2). Since x1 · · · xnx
−1
n+1 =

Q1, xn+1xn+2 = Q2. We have

f (x) = x1 + · · ·+ xn +
x1 · · · xn

Q1
+

Q1Q2

x1 · · · xn
.

Put ω = dx1
x1

∧ · · · ∧ dxn
xn
. Then

*
(C∗)n+2, f ,ω

+
is a mirror model of Bl(Pn) in the sense of

Givental.
For projective manifold X, let us introduce Iritani’s map.

Ψ : K◦(X )/torsion −→ H
•(X ;C)

Ψ(E) = (2π)
1−D
2 Γ̂(X ) ∪ (2πi)deg ch(E),

where Γ̂(X ) = Γ(TX ) and for a vector bundle E, Chern roots x1, · · · .xr we denote by

Γ(E) =
,

Γ(1 + xi )

its Γ− class.
In our case the Γ̂(Bl(Pn)) = Γ(1 + p1)

nΓ(1 + p2)Γ(1 + p2 − p1) and Ψ(O) =

(2π)
1−n
2 Γ̂(Bl(Pn)).



Proof of main result

Theorem 1.3 !

Rn
>0

e
f (x,τ)z−1

ω = (2π)
n−1
2 (−z)

n
2 (S(0,Q, z)(−z)θ(−z)ρΨτ (O), 1).

Proof: Using the formula for the J-function for Fano toric manifold [3][6][2] we have,

(−z)θS(0,Q, z)−1
· 1

=
#

D1,D2≥0

Q
D1
1 Q

D2
2

D1)
m=1

(−zp1 +mz)n
D2)
m=1

(−zp2 +mz)
D2−D1)
m=1

(−zp2 + zp1 +mz)

(−z)−
n
2 .

Therefore,

RHS =
∞#

D1=0

∞#

D2=0

Resp1=−D1
(Resp2=p1−D2

+Resp2=−D2
)Γ(p1))

nΓ(p2)Γ(p2 − p1)e
−p1τ1−p2τ2

dp1dp2.

For the LHS our key observation is that Fourier transformation of the oscillator integral w.r.t τi = logQi is
a product of Γ-functions. Therefore, using inverse Fourier transformation, we get a Melin-Barnes integral,

LHS =

'
1

2π

(2
ε1+i∞!

ε1−i∞

ε2+i∞!

ε2−i∞

e
−p2τ2−p1τ1Γ(p2)Γ(p2 − p1)Γ(p1)

n
dp2dp1.

We proved that the integral over red contour goes to 0 as N goes to +∞.

LHS =

'
1

2π

( ε1+i∞!

ε1−i∞

∞#

j=0

(−1)j

j!
e
−p1t1Γ(p1)

n
%
e
(−j+p1)t2Γ(−j + p1) + e

−jt2Γ(−j − p1)
&
dp1.

When Re p1 = ε1, for all j, we have

---e−p1t1Γ(p1)
n
%
e
(−j+p1)t2Γ(−j + p1) + e

−jt2Γ(−j − p1)
&--- ≤ O

'
e
−jt2

(j − 1)!

(
.

This means that the function of p1 in the integral is uniformly absolutely-convergent when Re p1 = ε1.
Therefore, the order of summation

"∞
j=0 and integration

. ε1+i∞
ε1−i∞ is interchangeable. By the similar way we

have done in first integral, we proved that the LHS equals to the same residue as the RHS.

Ψτ (O) is a reflection vector

The function gτ1,τ2(x) := f (x , τ1, τ2) = x1+ · · ·+xn+
x1···xn
Q1

+ Q1Q2

x1···xn defines
a real-valued function on Rn

>0 with minimal value u(τ1, τ2). Put αλ =
{x ∈ Rn

>0|gτ1,τ2(x) ≤ λ}. For all m ∈ Q let us define I
(−m)(τ1, τ2,λ) :=

.
αλ

(λ−f (x,τ1,τ2))
m+ 1

2

Γ(m+ 1
2 )

ω.

Lemma 3.8 If λ is sufficient close to u(τ1, τ2), then Morse lemma for f
applies

I(−m)(τ1, τ2,λ) = (λ − u(τ1, τ2))
n−1

2
+m (c0(τ1, τ2) + c1(τ1, τ2)(λ − u(τ1, τ2)) + · · · ).

Lemma 3.9 We have

! ∞

u(τ1,τ2)

e
λ
z I

(−m)(τ1, τ2,λ) dλ = (−z)m+ 1
2

!

Rn
>0

e
f (x,τ1,τ2)

z ω,

where τ1, τ2 ∈ R, z ∈ R<0.

Let us denote I
(−m−1)
E = I

(−m−1)
E . The period vectors for quantum coho-

mology.
Lemma 3.10 Exists E0 ∈ H

∗(X ;C) independent of τ1, τ2 and λ such that

(I
(−m−1)
E ,Φi,j) = (−∂τ1)

i−1(−∂τ2)
j−1

I
(−m−i−j+1+ n

2
)(τ,λ)

where τ = (τ1, τ2), E = e
−τ1p1−τ2p2E0 and Q = (Q1,Q2) = (eτ1 , eτ1).

By Theorem 1.3, Lemma 3.9 and Lemma 3.10, we get Lemma 3.11.

Lemma 3.11 E0 = (2π)
n−1
2 Ψ(O).

Therefore, E is proportional to a reflection vector. Since E =

(2π)
n−1
2 Ψτ (O), in order to prove that Ψτ (O) is a reflection vector, we

need only to check that (Ψτ (O)|Ψτ (O)) = 2.
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