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Mathematics is unreasonably effective for us physicists,
as Wigner famously mentioned.

But the usefulness depends on the subfields of math.

Ordinary/partial differential equations are obviously effective.

Group theory is also obviously effective to describe symmetry.

Differentiable manifolds are the basis of general relativity.

Algebraic geometry?  Only in string theory.
Number theory? Not much.
Mathematical logic?  Hmm...
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How about algebraic topology?

Some use have been made in the past.

Notably, homotopy groups were used
to understand topological solitons in 1970s.

Not much else has been used until late 1990s,
when string theorists started to use K-theory.

(We can debate whether string theory is physics, though.)

More recently, in the last 10 years,
physicists started to use algebraic topology more fully.
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Today | would like to review the relationship
between physics and algebraic topology.

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories

(math: 2000s, physics: 2020s)

We're trailing behind, but slowly catching up.
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Pre-history

up to 1970s
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Math side
Hopf invariant / fibration (1931)
§* = {(a,b) € C? | |a|* + b|* = 1}
— 8% = {(z,y,2) €R® | 2® +y? + 22 =1},

where
(a,b) — (2Reab,2Imab, |a|?® — |b|?)

(a,b) and €%®(a, b) map to the same point on S2.
S3 is an S* bundle over S? with c1 = 1.
S2

(If you download the slides, texts in purple are
linked to journal webpages etc.)
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https://doi.org/10.1007/BF01457962
https://en.wikipedia.org/wiki/Purple

Physics side

Dirac’s quantization condition (1931)
The magnetic charge of a magnetic monopole is
an integer multiple of a fixed constant.

Modern paraphrase of Dirac’s argument:
Wavefunction of an electron is a section of
a complex line bundle L over space.

Electromagnetic field is the U (1) connection of this line bundle,
and the magnetic field strength F' is its curvature . Therefore,

/S2271'_/ c1(L) € Z.
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https://doi.org/10.1098/rspa.1931.0130

Math side

Steady progress in algebraic topology.

Stiefel-Whitney / Pontryagin / Chern classes ('30s — "40s)
Eilenberg-Steenrod axiom for (co)homology (1945)
H*(G) := H*(BG) for finite G (Eilenberg-Mac Lane 1947)
Bordism groups (Pontryagin, Thom "50s)
Adams spectral sequence (1958)

K-theory (Atiyah-Hirzebruch 1959, 1961)
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Physics side

Not much happens in this area until 1970s,
when some concrete homotopy groups were used

to study topological solitons.
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What are topological solitons?

A G-symmetric system can come with a G-bundle.

n
(
a Hebund (o
G] -bund Kﬂ_, QNU\[M/’/\MQ
m locolined w&g\”mq dce

There are situations where having an H-bundle for H C G is
energetically more favorable.

G is said to be “spontaneously broken to H” in physics.
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which determines a class in

ﬂ'n_l(G/H).
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A topological soliton
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gives a class in
mn—1(G/H).
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Example 1

In a superconducting material,
the electromagnetic G = U (1) symmetry is broken to H = {%1}.

U (1)-bundle in the interior; {#1}-bundle outside.

Measured by n € 71 (U (1)/{£1}) = Z, which translates
to the magnetic flux

/ F n
= Cl — —.
D2 27 D2 2

Known as Abrikosov vortex (1957) in condensed matter physics
and Nielsen-Olsen vortex (1973) in high energy physics.
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https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1016/0550-3213(73)90350-7

Figure 1| Images of vortices in 200 nm thick YBCO film taken by
Scanning SQUID Microscopy after field cooling at 6.93 4T to 4 K. (b) is
taken after heating above T and re-cooling. The sample edge at the left
side of the images is used as a reference for scan location.

Wells, Pan, Wang, Fedoseev, Hilgenkamp (2015)

17/65


https://doi.org/10.1038/srep08677

Example 2

Taking G = SU(2) and H = U (1) C SU(2), you can consider

x
0 =6und (o

S0 - bund Lo everyuheas

w localined e U\/ezk{/

which is classified by
m2(SU(2)/U(1)) = 72(S?) = Z.

Known as the 't Hooft-Polyakov monopole (1974).
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https://doi.org/10.1016/0550-3213(74)90486-6
http://jetpletters.ru/ps/1789/article_27297.shtml

Example 3

The A-phase of the superfluid helium-3 (Osheroff-Richardson-Lee 1972)

is characterized by

G=S03)xSO0B)xU(1)~C*xC?
and
H = stabilizer at e1 ® (e2 + ie3)

so we have
vortices : w1 (G/H) = 7/4Z,
“monopoles” : wo(G/H) = Z.

Furthermore, 71 (G /H) acts nontrivially on w2 (G/H).

Volovik-Mineev (1976)
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https://doi.org/10.1103/PhysRevLett.28.885
http://jetpletters.ru/ps/1818/article_27785.shtml

Middle ages

1980s-2000s
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What you learn in high school:

o is called the conductivity.
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In a two-dimensional material, this can also happen:

9
|1

L = .V

om is called the Hall conductivity.
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Surprising discovery of von Klitzing, Dorda, Pepper (1980):

fe

9xe()
:,j§ |

6
MAGNETIC FIELD (T)

FIG. 14. Experimental curves for the Hall resistance Ry =p,
and the resistivity p., ~ R, of a heterostructure as a function of

the magnetic field at a fixed carrier density corresponding to a
gate voltage ¥, =0 V. The temperature is about 8 mK.

Figure is taken from a slightly later review, von Klitzing (1986)
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https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/RevModPhys.58.519

When the ordinary conductivity o vanishes, i.e. the system is gapped,
the Hall conductivity has the universal value

where e is the electric charge of the electron
and h is the Planck constant.

Called the integer quantum Hall effect.

This is now the accepted method to calibrate
the experimental apparatus against the declared value of e /h.
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Why is v an integer?

There are both microscopic understanding
and macroscopic understanding.

Microscopic understanding is briefly given in the appendix

Let us concentrate on the macroscopic understanding.
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Consider an idealized situation where the quantum Hall material
fills the entire 2 4 1 dimensional spacetime M.

M comes with a U (1) bundle £ with connection A describing the
electromagnetic field.

The integer quantum Hall material is gapped with unique ground state.
This means that the system determines the partition function

Z(M, A) € U(1).
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When the U (1) bundle is topologically trivial, A is a one-form.
The standard Kubo formula says that the coefficient v in

62

TH =V
appears in the partition function as
174
Z(M,A) = exp(’i/ AdA).
4

How do we know that v is an integer?

We use the fact that Ad A is not well-defined for a topologically
non-trivial U (1)-bundle L.
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Given

we have

.V .V . 2
i— AdA = i— FF = mwiv c1(L)=.
47 ) a7 Jw, Wi

(Note F = dA and ¢; = F/(27).)
The RHS makes sense for topologically nontrivial £,

but looks like it depends on Wjy.
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Let us compare the two different choices Wy and Wi:
5 g

exp(miv [y, c1 (£)?)

exp(miv fWi c1(£)?) = exp(n‘iu / C1(£)2)

The difference is
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So we need to ask:

@R

This seems to require v € 27,
but odd v has been experimentally observed.

C1 (ﬁ)

The resolution: ,
and therefore M3, Wy etc. require

The intersection form on a spin 4-manifold is ,
and therefore v € 7Z.
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This argument was implicitly known for a long time since late 80s,
but the crucial factor of two related to spin structure
was not appreciated very much until around 2000.

| think it is quite amazing that we see this fact experimentally in

T

MAGNETIC FIELD  (T)

FIG. 14. Experimental curves for the Hall resistance Ry =py,
and the resistivity py. ~R, of a heterostructure as a function of
the magnetic field at a fixed carrier density corresponding to a
gate voltage ¥, =0 V. The temperature is about 8 mK.

31/65



Aside: why is the intersection form even on a spin 4-manifold M?
It suffices to show that / x? =0¢€ Z/2forany x € H*(M,Z/2).
M

This is because

/:cz(é)/ qusc(i)/ 'vzm(z?))/ ('wz—i—'w%):c(é)o.
M M M M

(see e.g. Milnor-Stasheff (1974))

32/65


https://doi.org/10.1515/9781400881826

Modern times

2010s
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Integer quantum Hall system is an example of

(n 4+ 1)-dimensional quantum field theory (QFT)

with unique gapped ground state with G-symmetry.

Often called
SPT phases

and/or
invertible phases.

(SPT= symmetry protected topological)
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A more general (n + 1)-dimensional quantum field theory (QFT) Q
assigns a Hilbert space to a spatial manifold IN,,:

Ny — Hgo(Nn),

M

ZQ(Mny1) : HQ(Nn) — He(IV,).

and for

it assigns

The manifold can be equipped with various structures of your choice,
orientation, spin structure, G-bundle with connection, etc.,
giving rise to different flavors of QFTs.
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We assume Hg (@) = C, then

ZQ(®) : Ho(2) — Ho(2)

determines a complex number

ZQ( @) € C,

called the partition function.
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A QFT Q is SPT/invertible/with unique gapped ground state
< Hg(IN) is always 1-dimensional.

Integer quantum Hall material is a (2 + 1)-dimensional
spin invertible QFT with U (1) symmetry:

Zaf > : Ho(N) = Ho(N)

N, N’ are 2-dimensional; M is 3-dimensional;
they come with spin structure and U (1) bundle with connection,

and Hq(IN) is always 1-dimensional.
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A QFT Q is SPT/invertible/with unique gapped ground state
< Hg(IN) is always 1-dimensional.

Integer quantum Hall material is a (2 + 1)-dimensional
spin invertible QFT with U (1) symmetry:

they come with spin stiycture and U (1) bundle with connection,

and Hq(IN) is always 1-dimensional.
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We would like to understand

(n 4+ 1)-dim. invertible QFTs

Inv2tt = mo({ )
S,G with structure S and symmetry G

b

Here S can be spin structure, orientation only, etc.
As invertible QFTs form a group under tensor product

Haoxq (N) = Hq(N) @ Heo/ (N),
Zoxq' (M) = Zqg(M) ® Zg/ (M), etc,
n+1
G

Invg o will be an Abelian group.
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Dijkgraaf-Witten (1990)

|
Invy et BT H P (BG, 7)

Dependence on S not appreciated at that time.
Wrong if taken too literally.

Integer quantum Hall effect is the case n = 2, G = U(1). Then
H*(BU(1),Z) ~ 7Z

is generated by (¢1)?, but we need %(cl)2 as we saw,
for which the spin structure was crucial.
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https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-129/issue-2/Topological-gauge-theories-and-group-cohomology/cmp/1104180750.full

Chen-Gu-Liu-Wen (2011)

n+1 proposa[ 2
Invoriented,G Hn+ (BG Z)

An influential paper, which introduced
and popularized the notion of SPT phases.

(The terminology “invertible phases” originates
from Freed-Moore (2004).)

Now known to be wrong for n > 4.

How about the spin case?
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http://arxiv.org/abs/1106.4772
https://arxiv.org/abs/hep-th/0409135

Freed (2006), Gu-Wen (2012)

Inv™Ht prog)sal En+2(BG)

spin,G
where E< is a cohomology theory given by

da= 0, }

{(a, b) € C*3(X,2/2) x CHX,Z) | db=BoSq%a

EYX) =

certain equiv. relation

where
3 is the Bockstein for0 -+ Z — Z — Z/2 — 0 and
Sq? is the Steenrod square.

(Amazingly, Gu and Wen rediscovered
the cochain-level expression of Sq? by themselves! )
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https://arxiv.org/abs/hep-th/0607134
https://arxiv.org/abs/1201.2648

Schnyder-Ryu-Furusaki-Ludwig (2008), Kitaev (2009)
KO" 2(pt) — Invz’;’;‘,lpt
They classified spin invertible phases without additional symmetry.

They also considered structures related but not quite spin
(such as imposing time reversal, corresponding to considering pin=t)
so that the classification is KO™*(pt) for arbitrary 4 mod 8.

Called the of topological superconductors.

(see e.g. a nice lecture by Ryu)
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https://arxiv.org/abs/0803.2786
https://arxiv.org/abs/0901.2686
https://topocondmat.org/w8_general/classification.html

Kitaev (2015)
Invyy = Ext*(BG)

where Egs should be a generalized cohomology theory.
Kitaev only gave a talk and never wrote it up.

Fleshed out in Xiong, (2017) and Gaiotto, Johnson-Freyd (2017) etc.
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http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015
https://arxiv.org/abs/1701.00004
https://arxiv.org/abs/1712.07950

Kapustin-Thorngren-Turzillo-Wang (2014)
Freed-Hopkins (2016)

d
vz L (D)2 (BG)

where Q5 is the S-bordism homology and D is the Anderson dual.
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https://arxiv.org/abs/1406.7329
https://arxiv.org/abs/1604.06527

A generalized (co)homology theory h™(X), hy(X) satisfies
the Eilenberg-Steenrod axioms for the ordinary (co)homology
except the dimension axiom.

So hy(pt) = h™"(pt) can be nontrivial for n # 0.

Bordism group

s . S-structured manifold M, .
0(X) = { together with f : M,, — X / bordism

is an example, where

T
M

N

-

ML A o

X «—
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For a generalized homology theory h.(—),
there is the Anderson dual cohomology theory Dh*(—)
which satisfies the analogue of the universal coefficient theorem:

0— Eth(hd_l(X), Z)
— (Dh)*(X) —
Homz(hd(X),Z) —0
The universal coefficient theorem of H (—, Z) means that
DH(—,7) = H(—,Z).

Similarly, DK = K and DKO® = KO**™*.
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Classification of fermionic invertible phases

vl 2 (D 2(5G)

QP (pt) was determined in Anderson-Brown-Peterson (1967)
and the Anderson dual was introduced in Anderson (1969).

Physicists now need them!

That's why graduate students in condensed matter physics learn
the Atiyah-Hirzebruch spectral sequence and
the Adams spectral sequence to compute them.
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http://doi.org/10.2307/1970690
http://faculty.tcu.edu/gfriedman/notes/Anderson-UCT.pdf

Present

2020s
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The last topic of the talk is about physics and elliptic cohomology.
There are three types of complex curves with Abelian group law:
C, C*, elliptic curves.
Correspondingly, there are three types of cohomology theories:
H*(—,Z), K*(-), elliptic cohomologies.

They are all complex orientable: a complex n-fold Ma,, has
the fundamental class [May,] € E2pn(M).

All these cohomology theories have the 1st Chern class
c1(L) € E*(X) for complex line bundles £ — X.

The group law dictates how ¢1 (£ ® L') is expressed
in terms of ¢1(£) and ¢1 (L£).
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Today | would like to discuss their real analogues:

H*(—,Z), KO*(—), TMF*(-).

T M F is the topological modular form, constructed by Hopkins et al.
in late 1990s. (cf. Hopkins’ talk at ICM 2002)

| hear the construction uses a sheaf of Ex-ring specta
over the moduli stack of elliptic curves over Z.

| don’t understand any of the words in the last sentence.
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https://arxiv.org/abs/math/0212397

M,, has a fundamental class in H,, (M, Z)
if M is oriented. = the trivialization of w1 (T'M) is given.
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M,, has a fundamental class in H,, (M, Z)
if M is oriented. = the trivialization of w1 (T'M) is given.

M, has a fundamental class in KO,, (M)
if M is spin. = the trivialization of wo (T M) is given.

51/65



M,, has a fundamental class in H,, (M, Z)
if M is oriented. = the trivialization of w1 (T'M) is given.

M, has a fundamental class in KO,, (M)
if M is spin. = the trivialization of wo (T M) is given.

M, has a fundamental class in TM F,, (M)
if M is string. = the trivialization of p1 (T'M) is given.

Note that the first three nontrivial homotopy group of O is
m(0) =2/2, w1 (0)=1Z/2, m3(0)=L

and w1, wae, p1 are the corresponding obstruction classes.
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Adams spectral sequences computing them have the form

Ey" = Extlo) (H*(X,Z/2),Z/2) = Hi—s(X,Z);
Ey" = Ext’, (H*(X,Z/2),2/2) = kot—s(X)3

Ey" = Ext’, (H*(X,2/2),Z2/2) = tmf;—s(X),

where A(n) is the subalgebra of the Steenrod algebra
generated by Sqt, Sq?, ..., Sq*".

T MF is the natural next entry after H(—,7Z) and KO.
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KO is 8-periodic:

KO"™3(X) ~ KO™(X)

TMF is 24* = 576-periodic:

TMF"578(X) ~ TMF"(X)
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TMF is called the topological modular form since there is a
homomorphism
TMF, — MF,[A™!]

where
MF = Zcy,ce, A/ (c3 — c2 — 1728A).

is the ring of integral modular forms, with
c4=1+4+240q+ -+, cg=1—504q — ---
are the Eisenstein series and
A=gq—24¢> +---

is the modular disciminant.
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TMF, — MF,[A™'] is rationally isomorphic
TMF, @ Q~ MF,[A™']®Q,
and it is isomorphic at degree 0
TMF, = 7Z[J)

where J is the modular J-invariant,
but not surjective in general.

For example, kA is in the image only when 24 divides k.

TMF, — MF,[A™'] also has a lot of torsion.

55/65



KO™(X) has a geometric realization: forn = 0,
it is given by virtual differences of real vector bundles over X.

Is there a similarly nice realization of TM F™(X)?
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https://mathscinet.ams.org/mathscinet-getitem?mr=992209
https://doi.org/10.1017/CBO9780511526398.013
https://arxiv.org/abs/1108.0189

KO"(X) has a geometric realization: for n = 0,
it is given by virtual differences of real vector bundles over X.

Is there a similarly nice realization of TM F"™(X)?

Segal-Stolz-Teichner conjecture

2-dim’l QFT }

TMF™(X) = FO{ of degree n parameterized by X

Segal 1988, Stolz-Teichner 2002, 2011

This is a very difficult conjecture. The RHS isn’t even defined yet.
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https://mathscinet.ams.org/mathscinet-getitem?mr=992209
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https://arxiv.org/abs/1108.0189

An easier version is:

1-dim’| time-reversal invariant
KO™(X) = no{ QFT
of degree n parameterized by X

which was rigorously formulated and proved.

Roughly: a 1-dim’l supersymmetric QFT is just
a supersymmetric quantum mechanics, and
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An easier version is:

1-dim’| time-reversal invariant
KO™(X) = no{ QFT
of degree n parameterized by X

which was rigorously formulated and proved.

Roughly: a 1-dim’l supersymmetric QFT is just
a supersymmetric quantum mechanics, and

Time-reversal invariant means that
everything is defined over R instead of C.
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An easier version is:

1-dim’| time-reversal invariant
KO™(X) = no{ QFT
of degree n parameterized by X

which was rigorously formulated and proved.

Roughly: a 1-dim’l supersymmetric QFT is just
a supersymmetric quantum mechanics, and

Time-reversal invariant means that
everything is defined over R instead of C.

means that the Hilbert space ‘H is Z/2-graded,
and an odd self-adjoint operator Q is given,
called the supersymmetry generator.
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An easier version is:

1-dim’| time-reversal invariant
KO™(X) = no{ QFT
of degree n parameterized by X

which was rigorously formulated and proved.

Roughly: a 1-dim’l supersymmetric QFT is just
a supersymmetric quantum mechanics, and

Time-reversal invariant means that
everything is defined over R instead of C.

means that the Hilbert space ‘H is Z/2-graded,
and an odd self-adjoint operator Q is given,
called the supersymmetry generator.

Degree n means that there is an action of Cl(n, R).

571765



Therefore the statement becomes

family of Q
n k4 parameterized over X
KO™(X) = Tro{ onaZ/2 real Hilbert space H }

commuting with Cl(n,R) action

and the RHS is more or less the definition of KO in terms of Fredholm
operators.

(For a detailed proof, see e.g. Cheung 2008.)
In this description, the pushforward
m : KO°(M) — KO~ "(pt)
of [V] € KO°(M) for an n-dimensional M is given by

H=T(V®SR¥ ™™g TM)),
Q = Dirac operator on it.
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The TMF version is much harder:

TMF"(X) = Wo{ 2-dim’l supersymmetric QFT }

of degree n parameterized by X

The LHS involves sheaves of spectra over the moduli stack of elliptic
curves over Z.

The RHS involves QFTs, which seem to me a purely characteristic-0
phenomenon.

Still, nontrivial physics motivation and checks.
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For example, take
TMF;(pt) = Z/24,

which is naturally isomorphic to

anmed (pt) = 75 (pt) = lim 7,4 3S™.

In the standard math definition, the computation involves
elliptic curves in characteristic 2 and 3.

The same Z /24 also follows from an intricate construction in QFT.

Gaiotto, Johnson-Freyd 2019
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Historically, elliptic cohomologies / TMF came from two strands of ideas.

One is purely from within algebraic topology, called chromatic
phenomena, about which I have no clue.

Another is from Witten.

(This part of the story is nicely summarized in Landweber 1988.)

61/65


https://doi.org/10.1007/BFb0078036

In string theory we consider strings moving in a manifold:

M\

Gw b evct
S[)C\U’h‘w\_q

ma m’«}-oq-f J

This should be described by a 2-dim’l supersymmetric QFT on the
worldsheet of the string.

It gives rise to a sequence of Dirac operators acting on the spinor bundle
S M tensored with tensor powers of the tangent bundle T'M.
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In 1984, Witten asked the property of the index of these operators to
Landweber and Stong, who then informed Ochanine about the question.

By 1986, they realized that there is a generalization of the A genus

/ AecZ
M
which takes the values in modular forms

/M éw € MF.

Here, M needs to be spin (i.e. wa = 0) for the former
and string (i.e. p1 = 0) for the latter.

A was known to come from KO.
There should be some nice cohomology theory for ¢y .
It took about 15 years for mathematicians to construct TM F'.
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But physicists were almost completely detached from these
developments until very recently.

Only in November 2018 papers on this topic appeared (by Gaiotto,
Johnson-Freyd and Gukov-Pei-Putrov-Vafa), in which some physics
checks of the Segal-Stolz-Teichner conjecture were made.

Instead, , We can use
the known properties of TM F' to
of 2d supersymmetric QFTs and

| wrote a short letter about it a few months ago;
and | am trying to generalize it further,
with the help of Yamashita at RIMS.

But the details need to be left to some other time.
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Today | surveyed the interaction between physics and algebraic topology.

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories

(math: 2000s, physics: 2020s)

We're trailing behind, but slowly catching up.
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Back-up slides
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Excerpt from Wigner

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL.XIi, 001-14 (1960)

The Unreasonable Effectiveness of Mathematics
in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University,
May 11, 1959

EUGENE P. WIGNER

Princeton University

“and 1t is probable that there is some secret here
which remains to be discovered.” (C. S. Peirce)

There is a story about two friends, who were classmates in high school,
talking about their jobs. One of them became a statistician and was working
on population trends. He showed a reprint to his former classmate. The
reprint started, as usual, with the Gaussian distribution and the statistician
explained to his former classmate the meaning of the symbols for the actual
population, for the average population, and so on. His classmate was a
bit incredulous and was not quite sure whether the statistician was pulling
his leg. ""How can you know that?”’ was his query. “And what is this
symbol Here?”” “Oh,” said the statistician, “this is ="’ ‘“What is that?”
“The ratio of the circumference of the circle to its diameter.”” “Well, now
you are pushing your joke too far,” said the classmate, “surely the pop-
ulation has nothing to do with the circumference of the circle.”

https://doi.org/10.1002/cpa.3160130102
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Mathematical Logic and Physics?

This page is just to keep a paper | recently got to know.

There is a translation-invariant local Hamiltonian on a 1d lattice which is
gapless/gapped only when ZFC is inconsistent/consistent.

[Cubitt, 2105.09854]

The point is to combine two techniques:

® There is a known way to encode a Turing machine to a
translation-invariant local Hamiltonian on a 1d lattice so that it is
gapless/gapped only when the said Turing machine halts or not.

[Baush, Cubitt, Lucia, Perez-Garcia 1810.01858]
® There is a Turing machine which does not halt if and only if ZFC is
consistent. [Yedidia, Aaronson 1605.04343].

68/65


http://arxiv.org/abs/2105.09854
http://arxiv.org/abs/1810.01858
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Microscopic understanding of
integer quantum Hall effect

It starts from the lattice structure in two-dimensional material:

< < C N N

L ® * A e
7/T ~ L ¢ % ~

* % +* ~ x

—

L
Therefore
72 ~H

which allows us to decompose H in terms of the character
T? = Hom(Z?,U(1)).
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This means that # is the space of sections
Y:T? > H
of a trivial Hilbert space bundle
T? x H’
and the Hamiltonian H has the form

(Hy)(p) = h(p)(¥(p)) pe€T?

where h(p) : H' — H’ is a self-adjoint operator.
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The gapped condition says that the lowest eigenvalue of h(p) is
non-degenerate, which determines a one-dimensional subspace

L(p) CH.

It forms a line bundle £ — T2 which is a sub-bundle of T2 x #'.

A standard computation using the Kubo formula says that
the Hall conductivity is

&2
OH = - /T2 c1(L)

and therefore it is an integer multiple of e /h.

Thouless-Kohmoto-Nightingale-den Nijs (1982)
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Anomalies of heterotic string theories

What is an anomaly?

| said that an n-dim’l QFT Q assigns the partition function

ZQ(@) € C,

but the partition function of an anomalous QFT @ is instead given as

ZQ(@) € Ha(M)

where A is an (n 4+ 1)-dim’l invertible QFT and
H 4 is its Hilbert space which is one dimensional.
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There are many anomalous QFTs.
Notable examples are free massless fermions, for which
H.a(M) is the determinant line bundle of the Dirac operator.

A n-dim’l possibly-anomalous spin QFT Q has

A: a (n 4+ 1)-dim’l spin invertible QFT
as part of the data.
This is given by an element

A € InvlEl = (DQPin)n+2,

spin
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Now, there is a procedure called the second quantization
you learn in the basic QFT course.

This is a machinery which does

{time-reversal-invariant quantum mechanics of degree n — 2}

l
{possibly-anomalous n-dim’l spin QFT }

Applying the Stolz-Teichner for the source and the anomaly for the
target, we have a homomorphism

KOn—2 — (Dﬂspin)n—l—Z.
This is the Anderson dual to the spin orientation of the KO theory:
Q" — KO™

where we use DKO™ 4 = KO™.
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My interest is the anomaly of heterotic string theory, which is a
machinery which does

{2-dim’l supersymmetric QFT of degree n 4+ 22}
{

{possibly-anomalous n-dim’l quantum gravity with string structure }

Again applying the Stolz-Teichner for the source and the anomaly for the
target, we have a homomorphism

TMFn+22 — (Dﬂstring)n—l—z.

String theory is often non-anomalous from miraculous reasons.
So we would like to know whether this homomorphism is zero.
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TMFn+22 N (Dﬂstring)n+2

The seminal paper of Green and Schwarz (1984), which started
superstring theory as we know it,

showed that the image of a certain element of TM F*9122 is torsion.

The paper by Witten with an appendix by Strong (1986) proved that
the image of this particular element is actually zero.

Lerche-Nilsson-Schellekens-Warner (1988) showed that
the image in general is torsion.
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TMFn+22 N (Dﬂstring)n—i—Z

In my recent paper (2021), | showed that the map is trivial when n = 2,
for which

(D)™ = Hom(25™™, U (1)) = Zaa,
using a result of Hopkins 2002.

In an ongoing collaboration with Yamashita,
we show that the map is zero in general.
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