Bo Berndtsson 氏 (Chalmers University of Technology)
『 Complex Brunn-Minkowski theory 』

The classical Brunn-Minkowski theory deals with the volume of convex sets.
It can be formulated as a statement about how the volume of slices of a convex set varies when the slice changes. Its complex counterpart deals with slices of pseudo convex sets, or more generally fibers of a complex fibration. It describes how $L^2$-norms of holomorphic functions, or sections of a line bundle, vary when the fibers change, and says essentially that a certain associated vector bundle has positive curvature. In the presence of enough symmetry this implies convexity properties of volumes; the real Brunn-Minkowski theorem corresponding to maximal symmetry. There are also applications and relations in other directions, like variations of Kahler metrics, variations of complex structures and the study of plurisubharmonic functions.