Jean-Pierre Puel 氏 (The University of Tokyo, Universite de Versailles Saint-Quentin)
『 Why to study controllability problems and the mathematical tools involved 』

We will give some examples of controllability problems and the underlying applications to practical situations. This includes vibrations of membranes or plates, motion of incompressible fluids or quantum systems occuring in quantum chemistry or in quantum logic information theory. These examples correspond to different types of partial differential equations for which specific analysis has to be done. Of course, at the moment, very few results are known and the domain is widely open. We will describe very briefly the mathematical tools used for each type of PDE, in particular microlocal analysis, global Carleman estimates or some specific real analysis estimates.These methods appear to be also useful to study some inverse problems and, if time permits, we will give a few elements on some examples.