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These are lecture notes for a course I gave at the University of Tokyo in the winter term of
2007/2008. The title of the course was “Homological methods in Non-commutative geometry”,
by which I mean some assorted results about Hochschild and cyclic homology, on one hand, and
Hochschild cohomology and Kontsevich’s Formality Conjecture, on the other hand. The notes are
essentially identical to the hand-outs given out during the lectures – I did not attempt any serious
revision.

There were eleven lectures in total. Every lecture is preceeded by a brief abstract. The first
seven deal with the homological part of the story (cyclic homology, its various definitions, vari-
ous additional structures it possesses). Then there are four lecture centered around Hochschild
cohomology and the formality theorem. The course ends rather abruptly, mostly because of the
time constraints. One thing which I regret omitting is an introduction to the language of DG
algebras and DG categories according to B. Toën, including his beautiful recent finiteness theo-
rem arXiv:math/0611546. Further possible topics include, for instance, the homological structures
associated to Calabi-Yau algebras and Calabi-Yau categories, where we can identify Hochschild
homology and Hochschild cohomology, and consider the interplay between the Connes-Tsygan dif-
ferential on the former, and the Gerstenhaber algebra structure on the later. The resulting notions –
Batalin-Vilkovisky algebras, non-commutative calculus of Tsygan-Tamarkin, etc. – are very beau-
tiful and important, but I don’t feel ready to present them in introductory lectures. The same
goes for the more advanced parts of formality (for instance, complete proof of Deligne conjecture,
Etingof-Kazhdan quantization, recent work of Dolgushev-Tsygan-Tamarkin and Calaque-Van den
Bergh on G∞-formality) and for deformation theory of abelian categories.

So, in a nutshell, these lectures cover at most one third of a reasonable textbook on the subject,
and I cannot really extend them because the other two thirds are still under active investigation
by many mathematicians around the world.

In addition, there is no bibliography (some references are included in the text), and there are
far fewer exact attributions than I would like (which is due to my ignorance, and most certainly
should not be understood as claiming any original research).

Well, for what it’s worth.

Acknowledgement. These lectures became possible only because of the hospitality and encour-
agement of Prof. Yu. Kawamata, on whose invitation I spent time in Tokyo, and to whom I am
sincerely grateful. I am also grateful to the people who attended the course, and especially to
Prof. T. Terasoma, for following the lectures and making numerous comments and suggestions. I
should also mention that the University of Tokyo is one of the best places I know to be and do
mathematics, and I benefitted immensely from its superb infrastructure, great people and warm
atmosphere.
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Lecture 1.
The subject of Non-commutative geometry. Notions of a non-commutative
geometry. Dictionary between notions from calculus and homological in-
variants. Hochschild Homology and Cohomology. Hochschild-Kostant-
Rosenberg Theorem. Bar-resolution and the Hochschild complex. Cyclic
homology (explicit definition).

1.1 The subject of Non-commutative Geometry.

It is an empirical fact that the idea of “non-commutative geometry”, when seen for the first time,
is met with deep scepticism (at least, this was my personal reaction for 10 years or so). Let me
start these lectures with a short justification of the subject.

Back in the nineteenth century, and today in high school math, geometry was essentially set-
theoretic: the subject of geometry was points, lines (sets of points of special types), and so on.
This approach has been inherited by early algebraic geometry – instead of lines we maybe consider
curves of higher degree, or higher-dimensional algebraic varieties, but we still think of them as sets
of points with some additional structure.

However, starting from mid-twentieth century, and especially in the work of Grothendieck, a
new viewpoint appeared, which can be loosely termed “categorical”: one thinks of an algebraic
variety simply as an object of the category of algebraic varieties. The precise “inner structure” of
an algebraic variety is not so important anymore – what is important is how it behaves with respect
to other varieties, what maps to or from other varieties does it admit, and so on. “Set of points”
is just one functor on the category of algebraic varieties that we can use to study them; there are
other important functors, such as, for instance, various cohomology theories.

These two “dual” approaches to algebraic geometry are not mutually exclusive, but rather
complementary, and somewhat competing. To give you a non-trivial example, let us consider the
Minimal Model Program. Here two methods of studying an algebraic variety X proved to be
very successful. One is to study rational curves on X, their families, subvarieties they span etc.
The other is to treat X as a whole and obtain results by considering its cohomology with various
coefficients and using Vanishing Theorems. For example, the Cone Theorem claims that a certain
part of the ample cone of X is polyhedral, with faces dual to certain classes in H2(X) called
“extremal rays”. If X is smooth, the Theorem can be proved by the “bend-and-break” techniques;
extremal rays emerge as fundamental classes of certain rational curves on X. On the other hand, the
Cone Theorem can be proved essentially by using consistently the Kawamata-Viehweg Vanishing
Theorem; this only gives extremal rays as cohomology classes, with no generating rational curves,
but it works in larger generality (for instance, for a singular X).

Now, the idea of “non-commutative” geometry is, in a nutshell, to try to replace the notion
of an affine algebraic variety X = Spec A with something which would make sense for a non-
commutative ring A. The desire to do so came originally from physics – one of the ways to
interpret the formalism of quantum mechanic is to say that instead of the algebra of functions
on a symplectic manifold M (“the phase space”), we should consider a certain non-commutative
deformation of it. Mathematically, the procedure seems absurd. In order to define a spectrum
Spec A of a ring A, you need A to be commutative, otherwise you cannot even define “points”
of Spec A in any meaningful way. Thus the set-theoretic approach to non-commutative geometry
quickly leads nowhere.

However, and this is somewhat surprising, the categorical approach does work: much more
things can be generalized to the non-commutative setting than one had any right to expect before-
hand. Let us list some of these things.
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(i) Algebraic K-theory.

(ii) Differential forms and polyvector fields.

(iii) De Rham differential and de Rham cohomology, Lie bracket of vector fields, basic formalism
of differential calculus.

(iv) Hodge theory (in its algebraic form given by Deligne).

(v) Cartier isomorphisms and Frobenius action on cristalline cohomology in positive characteris-
tic.

Of these, the example of K-theory is the most obvious one: Quillen’s definition of the K-theory
of an algebraic variety X = Spec A involves only the abelian category A-mod of A-modules, and
it works for a non-commutative ring A without any changes whatsoever. Before giving the non-
commutative versions of the other notions on the list, however, we need to discuss more precisely
what we mean by “non-commutative setting”.

1.2 The notion of a non-commutative variety.

Actually, there are several levels of abstraction at which non-commutative geometry can be built.
Namely, we can take as our definition of a “non-commutative variety” one of the following four.

(1) An associative ring A.

(2) A differential graded (DG) algebra A
q
.

(3) An abelian category C.

(4) A triangulated category D “with some enhancement”.

The relation between these levels is not linear, but rather as follows:

(1.1)

(1) −−−→ (2)y y
(3) −−−→ (4).

Given an associative ring A, we can treat it as a DG algebra placed in degree 0 – this is the
correspondence (1) ⇒ (2). Or else, we can consider the category A-mod of left A-modules – this
is the correspondence (1) ⇒ (3). Given a DG algebra A

q
, we can construct the derived category

D(A
q
) of left DG A

q
-modules, and given an abelian category C, we can consider its derived category

D(C) – this is (2)⇒ (4) and (3)⇒ (4).
Of course, in any meaningful formalism, the usual notion of a (commutative) algebraic variety

has to be included as a particular case. In the list above, (1) is the level of an affine algebraic
variety X = Spec A. Passing from (1) to (3) gives the category of A-modules, or, equivalently, the
category of quasicoherent sheaves on X. This makes sense for an arbitrary, not necessarily affine
scheme X – thus on level (3), we can work with any scheme X by replacing it with its category of
quasicoherent sheaves. We can then pass to level (4), and take the derived category D(X).

What about (2)? As it turns out, an arbitrary scheme X also appears already on this level: the
derived category D(X) of quasicoherent sheaves on X is equivalent to the derived category D(A

q
)

of a certain (non-canonical) DG algebra A
q
. The rough slogan for this is that “every scheme is

derived-affine”.
Here are some other examples of non-commutative varieties that one would like to consider.
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(i) Given a scheme X, one can consider a coherent sheaf A of algebras on X and the category
of sheaves of A. This is only “slightly” non-commutative, in the sense that we have an
honest commutative scheme, and the non-commutative algebra sheaf is of finite rank over the
commutative sheaf OX (e.g. if X = Spec B is affine, then A comes from a non-commutative
algebra which has B lying its center, and is of finite rank over this center). However, there
are examples where this is useful. For instance, in the so-called non-commutative resolutions
introduced by M. Van den Bergh, X is usually singular; generically over X, A is a sheaf
of matrix algebras, so that its category of modules is equivalent to the category of coherent
sheaves on X, but near the singular locus of X, A is no longer a matrix algebra, and it is
“better behaved” than OX – e.g. it has finite homological dimension.

(ii) Many interesting categories come from representation theory – representation of a Lie algebra,
or of a quantum group, or versions of these in finite characteristic, and so on. These have
appeared prominently, for examples, in the recent works of R. Rouquier.

(iii) In sympletic geometry, there is the so-called Fukaya category and its versions (e.g. the
“Fukaya-Seidel category”). These only exist at level (4) above, and they are very hard to
handle; still, the fully developed theory should apply to these categories, too.

Let us also mention that even if one is only interested in the usual schemes X, looking at them
non-commutatively is still non-trivial, because there are more maps between schemes X, X ′ when
they are considered as non-commutative varieties. E.g. on level (4), a map between triangulated
categories is essentially a trinagulated functor, or maybe a pair of adjoint triangulated functors,
depending on the specific formalism used – but in any approach, a Fourier-Mukai transform, for
instance, gives a well-defined non-commutative map. Flips and flops in the Minimal Model Program
are also expected to give non-commutative maps.

Passing to a higher level of abstraction in (1.1), we lose some information. A single abelian
category can be equivalent to the category of modules for different rings A (this is known as
Morita equivalence – e.g. a commutative algebra A is Morita-equivalent to its matrix algebra
Mn(A), for any n ≥ 2). And a single triangulated category can appear as the derived category of
quasicoherent sheaves on different schemes (e.g. related by the Fourier-Mukai transform) and the
derived category of DG modules over different DG algebras (e.g. related by Koszul duality, the DG
version of Morita equivalence). However, it seems that the information lost is inessential; especially
if we think of various homological invariants of a non-commutative variety, they all are independent
of the specifics lost when passing to (4). While this is not a self-evident first principle but rather
an empirical observation, it seems to hold – again as a rough slogan, “non-commutative geometry
is derived Morita-invariant”. Thus it would be highly desirable to develop the theory directly on
level (4) and not bother with inrelevant data.

However, at present it is not possible to do this. The reason is the well-known fact that the
notion of triangulated category is “too weak”. Here are some instances of this.

(i) “Cones are not functorial”. Thus for a triangulated category D, the category of functors
Fun(I,D) for even the simplest diagrams I – e.g. the category of arrows in D – is not
triangulated.

(ii) Triangulated categories do not patch together well. For instance, if we are given two trian-
gulated categories D1, D2 equipped with triangulated functors to a triangulated category D,
the fibered product D1 ×D D2 is not triangulated.

(iii) Given two triangulated categories D1, D2, the category of triangulated functors Funtr(D1,D2)
is not triangulated.
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It is the consensus of all people working in the field that the correct notion is that of a triangulated
category with some additional structure, called “enhancement”; however, there is no consensus as
to what a convenient enhancement might be, exactly. Popular candidates are “DG-enhancement”,
“A∞-enhancement” and “derivator enhancement”. Within the framework of these lectures, let me
just say that the only sufficiently developed notion of enhancement seems to be the DG approach,
but using it is not much different from simply working in the context of DG algebras, that is, on
our level (2).

Thus is the present course, we will not attempt to work in the full generality of (4) – we will
start at (1), and then maybe go to (2) and/or (3).

However, it is important to keep in mind that (4) is the correct level. In particular, every-
thing should and will be “derived-Morita-invariant” – DG algebras or abelian categories that have
equivalent derived categories are indistinguishable from the non-commutative point of view.

1.3 A dictionary.

Let us now give a brief dictionary between some notions of algebraic geometry and their non-
commutative counterparts. We will only do it in the affine case (level (1)). For convenience, we
have summarized it in table form.

An affine scheme X = Spec A An associative algebra A
X is smooth A has finite homological dimension

Differential forms Ω
q
(X) Hochschild homology classes HH q(A)

Polyvector fields Λ
qT (X) Hochschild cohomology classes HH

q
(A)

De Rham differential d Connes’ differential B
De Rham cohomology H

q
DR(X) Cyclic homology HC q(A), HP q(A)

Schouten bracket Gerstenhaber bracket
Hodge-to-de Rham spectral sequence Hochschild-to-cyclic spectral sequence

Cartier isomorphisms A non-commutative version thereof

Here are some comments on the table.

(i) Polyvector fields are sections of the exterior algebra Λ
qT (X) generated by the tangent bundle

T (X), and Schouten bracket is a generalization of the Lie bracket of vector field to polyvector
fields. It seems that in non-commutative geometry, it is not possible to just consider vector
fields – all polyvector fields appear together as a package.

(ii) Similarly, multiplication in de Rham cohomology seems to be a purely commutative phe-
nomenon – in the general non-commutative setting, it does not exist.

(iii) The first line corresponds to a famous theorem of Serre which claims that the category of
coherent sheaves on a scheme X has finite homological dimension if and only if X is regular.
In the literature, some alternative notions of smoothness for non-commutative varieties are
discussed; however, we will not use them.

(iv) The last line takes place in positive characteristic, that is, for schemes and algebras defined
over a field k with p = char k > 0.

All the items in the left column are probably very familiar (expect for maybe the last line, which
we will explain in due course). The notions in the right column probably are not familiar. In the
first few lectures of this course, we will explain them. We start with Hochschild Homology and
Cohomology.
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1.4 Hochschild Homology and Cohomology.

Assume given an associative unital algebra A over a field k.

Definition 1.1. Hochschild homology HH q(A) of the algebra A is given by

(1.2) HH q(A) = TorAopp⊗Aq (A, A).

Hochschild cohomology HH
q
(A) of the algebra A is given by

(1.3) HH
q
(A) = Ext

q
Aopp⊗A(A, A).

Here Aopp is the opposite algebra to A – the same algebra with multiplication written in the
opposite direction (if A is commutative, then Aopp ∼= A, but in general they might be different).
Left modules over Aopp ⊗ A are the same as bimodules over A, and A has a natural structure of
A-bimodule, called the diagonal bimodule – this is the meaning of A in (1.3) and in the right-hand
side of Tor q(−,−) in (1.2). However, A also has a natural structure of a right module over Aopp⊗A
– and this is what we use in the left-hand side of Tor q(−,−) in (1.2).

We note that by definition HH
q
(A) is an algebra (take the composition of Ext

q
-s), and HH q(A)

has a natural structure of a right module over HH
q
(A). In general, neither of them has a structure

of an A-module.
Given an A-bimodule M , we can also define Hochschild homology and cohomology with coeffi-

cients in M by setting

HH q(A, M) = TorAopp⊗Aq (A, M), HH
q
(A, M) = Ext

q
Aopp⊗A(A, M).

In particular, HH q(A,−) is the derived functor of the left-exact functor A-bimod → k -Vect from
A-bimodules to k-vector spaces given by M 7→ A ⊗Aopp⊗A M . Equivalently, this functor can be
defined as follows:

M 7→M/{am−ma | a ∈ A, m ∈M}.
The reason Hochschild homology and cohomology is interesting – and indeed, the starting point for
the whole brand of non-commutative geometry which we discuss in these lecture – is the following
classic theorem.

Theorem 1.2 (Hochschild-Kostant-Rosenberg, 1962). Assume that A is commutative, and
that X = Spec A is a smooth algebraic variety of finite type over k. Then there exist isomorphisms

HH q(A) ∼= Ω
q
(X), HH

q
(A) ∼= Λ

qT (X),

where Ω
q
(A) are the spaces of differential forms on the affine variery X, and Λ

qT (A) are the spaces
of polyvector fields – the sections of the exterior powers of the tangent sheaf T (X).

Proof. To compute HH q(A) and HH
q
(A), we need to find a convenient projective resolution of the

diagonal bimodule A. Since A is commutative, we can identify A and Aopp, so that A-bimodules
are the same as A ⊗ A-modules. Let I ⊂ A ⊗ A be the kernel of the natural surjective map
m : A ⊗ A → A, m(a1 ⊗ a2) = a1a2. Then I is an ideal in A ⊗ A, and by definition, the module
Ω1(A) of 1-forms on A is equal to the quotient I/I2. Thus we have a canonical surjective map

η : I → Ω1(A).

Since X = Spec A is smooth of finite type, Ω1(A) is a projective A-module. Therefore, if consider
the A-bimodule I as an A-module by restriction to one of the factors in A ⊗ A – say the second
one – then the map η admits a splitting map Ω1(A)→ I, which extends to a map

s : A⊗ Ω1(A)→ I
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of A-bimodules. But the A-bimodule A ⊗ Ω1(A) is projective; thus we can let P0 = A ⊗ A,
P1 = A⊗ Ω1(A), and we have a start of a projective resolution

P1
s−−−→ P0

m−−−→ A

of the diagonal bimodule A. Extend it to a “Koszul complex” P q by setting Pi = Λi
A⊗A(P1), i ≥ 0,

and extending s to a derivation d : P q+1 → P q of this exterior algebra. This gives a certain complex
P q, and it well-know that

P q is a resolution of A outside of a certain Zariski-closed subset Z ⊂ X ×X which does
not intersect the diagonal.

Therefore the complex P q can be used to compute HH q(A) and HH
q
(A); doing this gives the

desired isomorphism. �

Exercise 1.1. Show that the isomorphisms in Theorem 1.2 are canonical.

We note that this proof does not need any assumptions on characteristic (the original proof of
Hochschild-Kostant-Rosenberg was slightly different, and it only worked in characteristic 0).

1.5 The bar resolution and the Hochschild complex.

The Koszul resolution is very convenient, but it only exists for a smooth commutative algebra A.
We will now introduce another resolution for the diagonal bimodule called the bar resulution which
is much bigger, but exists in full generality. This gives a certain large but canonical complex for
computing HH q(A) and HH

q
(A).

The bar resolution C q(A) starts with the same free A-bimodule C0(A) = A ⊗ A as the Koszul
resolution. Since we want the resolution to exist for any A, there is not much we can build upon
to proceed to higher degrees – we have to use A itself. Thus for any n ≥ 1, we let

Cn(A) = A⊗(n+2) = A⊗ A⊗n ⊗ A,

the free A-bimodule generated by the k-vector space A. The differential Cn+1(A) → Cn(A) is
denoted b′ for historical reasons, and it is given by

(1.4) b′ =
n+2∑
i=1

(−1)i id⊗i⊗m⊗ id⊗n+2−i,

where, as before, m : A ⊗ A → A is the multiplication map. We note that b′ is obviously an
A-bimodule map.

There is also a version with coefficients: assume given an A-bimodule M , and denote the A-
action maps A⊗M →M , M⊗A→M by the same letter m. Then we let Cn(A, M) = A⊗(n+1)⊗M ,
n ≥ 0, and we define the map b′ : Cn+1(A, M)→ Cn(A, M) by the same formula (1.4).

Lemma 1.3. For any A, M , the complex 〈C q(A, M), b′〉 is a resolution of the bimodule M .

Proof. The fact that b′ squares to 0 is a standard computation which we leave as an exersize (it also
has an explanation in terms of simplicial sets which we will give later). To prove that C q(A, M) is
a resolution, extend it to a complex C ′q(A, M) by shifting the degree by 1 and adding the term A
– that is, we let

C ′n(A, M) = A⊗n ⊗M
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for n ≥ 0, with the differential b′ given by the same formula (1.4). Then we have to prove that
C ′q(A, M) is acyclic. But indeed, the map h : C ′q(A, M)→ C ′q+1(A, M) given by

h(a0 ⊗ · · · ⊗ an) = 1⊗ a0 ⊗ · · · ⊗ an,

obviously satisfies h ◦ b′ + b′ ◦ h = id, thus gives a contracting homotopy for C ′q(A, M). �

Exercise 1.2. Show that for any A-bimodule M , the bimodule A⊗M is acyclic for the Hochschild
homology functor (that is, HHi(A, A⊗M) = 0 for i ≥ 1). Hint: compute HHi(A, A⊗M) by using
the bar resolution for the right Aopp ⊗ A-module A in the left-hand side of TorAopp⊗Aq (A, A⊗M).

By virtue of Exercise 1.2, the resolution C q(A, M) can be used for the computation of the
Hochschild homology groups HH q(A, M). This gives a complex whose terms are also given by
A⊗n ⊗M , n ≥ 0, but the differential is given by

(1.5) b = b′ + (−1)n+1t,

with the correction term t being equal to

t(a0 ⊗ · · · ⊗ an+1 ⊗m) = a1 ⊗ · · · ⊗ an+1 ⊗ma0

for any a0, . . . , an+1 ∈ A, m ∈M . This is known as the Hochschild homology complex.
Geometrically, one can think of the components a0, . . . , an−1, m of some tensor in A⊗n ⊗ M

as having been placed at n + 1 points on the unit interval [0, 1], including the egde points 0, 1 ∈
[0, 1]; then each of the terms in the differential b′ corresponds to contracting an interval between
two neighboring points and multiplying the components sitting at its endpoints. To visualize the
differential b in a similar way, one has to take n + 1 points placed on the unit circle S1 instead of
the unit interval, including the point 1 ∈ S1, where we put the component m.

1.6 Cyclic homology – explicit definition.

In the case M = A, the terms in the Hochschild homology complex are just A⊗n+1, n ≥ 0, and they
acquire an additional symmetry: we let τ : A⊗n+1 → A⊗n+1 to be the cyclic permutation multiplied
by (−1)n. Note that in spite of the sign change, we have τn+1 = id, so that it generates an action
of the cyclic group Z/(n + 1)Z on every A⊗n+1. The fundamental fact here is the following.

Lemma 1.4. For any n, we have

(id−τ) ◦ b′ = −b ◦ (id−τ),

(id +τ + · · ·+ τn−1) ◦ b = −b′ ◦ (id +τ + · · ·+ τn)

as maps from A⊗n+1 to A⊗n.

Proof. Denote mi = idi⊗m ⊗ idn−i : A⊗n+1 → A⊗n, 0 ≤ i ≤ n − 1, so that b′ = m0 −m1 + · · · +
(−1)n−1mn−1, and let mn = t = (−1)n(b− b′). Then we obviously have

mi+1 ◦ τ = τ ◦mi

for 0 ≤ i ≤ n− 1, and m0 ◦ τ = (−1)nmn. Formally applying these identities, we conclude that

(1.6)

∑
0≤i≤n

(−1)imi ◦ (id−τ) =
∑

0≤i≤n

(−1)imi −m0 −
∑

1≤i≤n

(−1)iτ ◦mi−1

= −(id−τ) ◦
∑

0≤i≤n−1

(−1)imi,
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(1.7)

b′ ◦ (id +τ + · · ·+ τn) =
∑

0≤i≤n−1

∑
0≤j≤n

(−1)imi ◦ τ j

=
∑

0≤j≤i≤n−1

(−1)iτ j ◦mi−j +
∑

1≤i≤j≤n

(−1)i+nτ j−1 ◦mn+i−j

= −(id +τ + · · ·+ τn−1) ◦ b,

which proves the claim. �

As a corollary, the following diagram is in fact a bicomplex.

(1.8)

. . . −−−→ A
id−−−→ A

0−−−→ Axb

xb′

xb

. . . −−−→ A⊗ A
id +τ−−−→ A⊗ A

id−τ−−−→ A⊗ Axb

xb′

xb

. . . . . . . . . . . .xb

xb′

xb

. . . −−−→ A⊗n id +τ+···+τn−1

−−−−−−−−−→ A⊗n id−τ−−−→ A⊗nxb

xb′

xb

Here it is understood that the whole thing extends indefinitely to the left, all the even-numbered
columns are the same, all odd-numbered columns are the same, and the bicomplex is invariant with
respect to the horizontal shift by 2 columns.

Definition 1.5. The total homology of the bicomplex (1.8) is called the cyclic homology of the
algebra A, and denoted by HC q(A).

We see right away that the first, the third, and so on column when counting from the right
is the Hochschild homology complex computing HH q(A), and the second, the fourth, and so on
column is the acyclic complex C ′q(A). (the top term is A, and the rest is the bar resolution for A).
Thus the spectral sequence for this bicomplex has the form

(1.9) HH q(A)[u−1]⇒ HC q(A),

where u is a formal parameter of cohomological degree 2, and HH q(A)[u−1] is shorthand for “poly-
nomials in u−1 with coefficients in HH q(A)”. This is known as Hochschild-to-cyclic, or Hodge-to-de
Rham spectral sequence (we will see in the next lecture that it reduces to the usual Hodge-to-de
Rham spectral sequence in the smooth commutative case).

Shifting (1.8) to the right by 2 columns gives the periodicity map u : HC q+2(A) → HC q(A),
which fits into an exact triangle

(1.10) HH q+2 −−−→ HC q+2(A) −−−→ HC q(A) −−−→ ,

known as the Connes’ exact sequence. One can also invert the periodicity map – in other words,
extend the bicomplex (1.8) not only to the left, but also to the right. This gives the periodic cyclic
homology HP q(A). Since the bicomplex for HP q(A) is infinite in both directions, there is a choice
involved in taking the total complex: we can take either the product, or the sum of the terms. We
take the product.
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Remark 1.6. The n-th row of the complex (1.8) is the standard complex which computes the
homology H q(Z/nZ, A⊗n) of the cyclic group Z/nZ. In the periodic version, we have the so-called
Tate homology instead of the usual homology. It is known that, Z/nZ being finite, Tate homology is
always trivial over a base field of characteristic 0. Were we to take the sum of terms of the periodic
bicomplex instead of the product in the definition of HP q(A), the corresponding spectral sequence
would have converged, and the resulting total complex would have been acyclic. This is the first
instance of an important feature of the theory of cyclic homology: convergence or non-convergence
of various spectral sequences is often not automatic, and, far from being just a technical nuissance,
has a real meaning.
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Lecture 2.
Second bicomplex for cyclic homology. Connes’ differential. Cyclic homol-
ogy and the de Rham cohomology in the HKR case. Homology of small
categories. Simplicial vector spaces and homology of the category ∆opp.

2.1 Second bicomplex for cyclic homology.

Recall that in the end of the last lecture, we have defined cyclic homology HC q(A) of an associative
unital algebra A over a field k as the homology of the total complex of a certain explicit bicomplex
(1.8) constructed from A and its tensor powers1. This definition is very ad hoc. Historically, it was
arrived at as a result of a certain computation of the homology of Lie algebras of matrices over A;
it is not clear at all what is the invariant meaning of this explicit bicomplex. Next several lectures
will be devoted mostly to various alternative definitions of cyclic homology. Unfortunately, all of
them are ad hoc to some degree, and none is completely satisfactory and should be regarded as
final. No really good explanation of what is going on exists to this day. But we can at least do
computations.

The first thing to do is to notice that not only we know that the even-numbered columns C ′q(A)
of the cyclic bicomplex (1.8) are acyclic, but we actually have a contracting homotopy h for them
given by h(a0 ⊗ · · · ⊗ an) = 1 ⊗ a0 ⊗ · · · ⊗ an. This can be used to remove these acyclic columns
entirely. The result is the second bicomplex for cyclic homology which has the form

(2.1)

Axb

A
B−−−→ A⊗2xb

xb

A
B−−−→ A⊗2 B−−−→ A⊗3xb

xb

xb

A
B−−−→ A⊗2 B−−−→ A⊗3 B−−−→ A⊗4,xb

xb

xb

xb

with the horizontal differential B : A⊗n → A⊗(n+1) given by

B = (id−τ) ◦ h ◦ (id +τ + · · ·+ τn−1).

This differential B is known as the Connes’ differential, or the Connes-Tsygan differential, or the
Rinehart differential. In the commutative case, it was discovered by G. Rinehart back in the 1960es;
then it was forgotten, and rediscovered independently by A. Connes and B. Tsygan in about 1982
(in the general associative case).

Lemma 2.1. The diagram (2.1) is a bicomplex whose total complex is quasiisomorphic to the total
complex of (1.8).

1By the way, a good reference for everything related to cyclic homology is J.-L. Loday’s book Cyclic homology,
Springer, 1998. Personally, I find also very useful an old overview article B. Feigin, B. Tsygan, Additive K-theory,
in Lecture Notes in Math, vol. 1289.
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Proof. This is a general fact from linear algebra which has nothing to do with the specifics of the
situation. Assume given a bicomplex K q, q with differentials d1,0, d0,1, and assume given a contracting
homotopy h for the complex 〈Ki, q, d0,1〉 for every odd i ≥ 1. Define the diagram 〈K ′q, q, d′1,0, d

′
0,1〉 by

K ′i,j = K2i,j−i, d′0,1 = d0,1, d′1,0 = d1,0 ◦ h ◦ d1,0.

Then d′1,0 ◦ d′1,0 = d1,0 ◦ h ◦ d2
1,0 ◦ h ◦ d1,0 = 0, and

d′1,0 ◦ d′0,1 + d′0,1 ◦ d′1,0 = d1,0 ◦ h ◦ d1,0 ◦ d0,1 + d0,1 ◦ d1,0 ◦ h ◦ d1,0

= −d1,0 ◦ h ◦ d0,1 ◦ d1,0 − d1,0 ◦ d0,1 ◦ h ◦ d1,0

= −d1,0 ◦ (h ◦ d0,1 + d0,1 ◦ h) ◦ d1,0 = −d1,0 ◦ d1,0 = 0,

so that K ′q, q is indeed a bicomplex, and one checks easily that the map⊕
i

(−1)i id⊕(−1)i+1(h ◦ d1,0) :
⊕

i

K ′i, q−i =
⊕

i

K2i, q−2i →
⊕

i

Ki, q−i

is a chain homotopy equivalence between the total complexes of K q, q and K ′q, q. �

Exercise 2.1. Check this.

2.2 Comparison with de Rham cohomology.

The main advantage of the complex (2.1) with respect to (1.8) is that it allows the comparison
with the usual de Rham cohomology in the commutative case.

Proposition 2.2. In the assumptions of the Hochschild-Kostant-Rosenberg Theorem, denote n =
dim Spec A, and assume that n! is invertible in the base field k (thus either char k = 0, or char k > n).
Then the HKR isomorphism HH q(A) ∼= Ω

q
A extends to a quasiisomorphism between the bicomplex

(2.1) and the bicomplex
Ax0

A
d−−−→ Ω2

Ax0

x0

A
d−−−→ Ω2

A
d−−−→ Ω3

Ax0

x0

x0

A
d−−−→ Ω2

A
d−−−→ Ω3

A
d−−−→ Ω4

A,x0

x0

x0

x0

where the vertical differential is 0, and the horizontal differential is the de Rham differential d.

Proof. First we show that under the additional assumption of the Proposition, the HKR isomor-
phism extends to a canonical quasiisomorphism P between the Hochschild complex and the complex
〈Ω q

A, 0〉. This quasiisomorphism P is given by

P (a0 ⊗ a1 ⊗ · · · ⊗ ai) =
1

i!
a0da1 ∧ · · · ∧ ai.



Homological methods in Non-commutative Geometry – Tokyo, 2007/2008 13

This is obviously a map of complexes: indeed, since d(a1a2) = a1da2 + a2da1 by the Leibnitz rule,
the expression for P (b(a0 ⊗ · · · ⊗ ai)) consists of terms of the form

a0ajda1 ∧ · · · ∧ daj−1 ∧ daj+1 ∧ · · · ∧ dai,

every such term appears exactly twice, and with opposite signs. Thus P induces a map p :
HH q(A)→ Ω

q
A. By HKR, both sides are isomorphic flat finitely generated A-modules; by Nakayama

Lemma, to prove that p an isomorphism, it suffices to prove that it is surjective. This is clear –
since A is commutative, the alternating sum∑

σ

sgn(σ)a0 ⊗ σ(a1 ⊗ · · · ⊗ ai)

over all the permutations σ of the indices 1, . . . , i is a Hochschild cycle for any a0, . . . , ai ∈ A, and
we have

P

(∑
σ

sgn(σ)a0 ⊗ σ(a1 ⊗ · · · ⊗ ai)

)
= a0da1 ∧ · · · ∧ ai.

So, p is an isomorphism, and P is indeed a quasiisomorphism. It remains to prove that it sends the
Connes-Tsygan differential B to the de Rham differential d – that is, we have P ◦B = d ◦ P . This
is also very easy to see. Indeed, every term in B(a0⊗ . . . ai) contains 1 as one of the factors. Since 1
is annihilated by the de Rham differential d, the only non-trivial contribution to P (B(a0 ⊗ . . . ai))
comes from the terms which contain 1 as the first factor, so that we have

P (B(a0 ⊗ . . . ai)) =
i−1∑
j=0

P (h(τ j(a0 ⊗ · · · ⊗ ai))) =
1

i!

i−1∑
j=0

τ j(da0 ∧ · · · ∧ dai)

=
1

(i− 1)!
da0 ∧ · · · ∧ dai,

which is exactly d(P (a0 ⊗ · · · ⊗ ai)). �

Corollary 2.3. In the assumptions of Proposition 2.2, we have a natural isomorphism

HP q(A) ∼= H
q

DR(Spec A)((u)).

Proof. Clear. �

Remark 2.4. For example, the Connes-Tsygan differential B in the lowest degree, B : A→ A⊗2,
is given by

B(a) = 1⊗ a + a⊗ 1,

which is very close to the formula a⊗1−1⊗a which gives the universal differential A→ Ω1(A) into
the module of Kähler differentials Ω1(A) for a commutative algebra A. The difference in the sign
is irrelevant because of the HKR identification of HH1(A) and Ω1(A) – if one works out explicitly
the identification given in Lecture 1, one checks that 1 ⊗ a goes to 0, so that it does not matter
with which sign we take it. The comparison map P in the lowest degree just sends a⊗ b to adb, so
that P (B(a)) = da.
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2.3 Generalities on small categories.

Our next goal is to give a slightly less ad hoc definition of cyclic homology also introduced by A.
Connes. This is based on the techniques of the so-called homology of small categories. Let us
describe it.

For any small category Γ and any base field k, the category Fun(Γ, k) of functors from Γ
to k-vector spaces is an abelian category, and the direct limit functor lim→

Γ
is right-exact. Its

derived functors are called homology functors of the category Γ and denoted by H q(Γ, E) for any
E ∈ Fun(Γ, k). For instance, if Γ is a groupoid with one object with automorphism group G,
then Fun(Γ, k) is the category of k-representations of the group G; the homology H q(Γ,−) is then
tautologically the same as the group homology H q(G,−). Analogously, the inverse limit functor
lim←

Γ
is left-exact, and its derived functors H

q
(Γ,−) are the cohomology functors of the category

Γ. In the group case, this corresponds to the usual cohomology of the group. By definition of the
inverse limit, we have

H
q
(Γ, E) = Ext

q
(kΓ, E),

where kΓ denotes the constant functor from Γ to k -Vect. In particular, H
q
(Γ, kΓ) = Ext

q
(kΓ, kΓ)

is an algebra, and the homology H q(Γ, kΓ) with constant coefficients is a module over this algebra.
In general, it is not easy to compute the homology of a small category Γ with arbitrary coef-

ficients E ∈ Fun(Γ, k). One way to do it is to use resolutions by the representable functors k[a],
[a] ∈ Γ – these are by definition given by

k[a]([b]) = k[Γ([a], [b])]

for any [b] ∈ Γ, where Γ([a], [b]) is the set of maps from [a] to [b] in Γ, and k[−] denotes the k-linear
span. By Yoneda Lemma, we have Hom(k[a], E

′) = E ′([a]) for any E ′ ∈ Fun(Γ, k); therefore k[a]

is a projective object in Fun(Γ, k), higher homology groups Hi(Γ, k[a]), i ≥ 1 vanish, and again by
Yoneda Lemma, we have

(2.2) Hom(lim
→
Γ

k[a], k) ∼= Hom(k[a], k
Γ) ∼= kΓ([a]) = k,

so that H0(Γ, k[a]) = k. Every functor E ∈ Fun(Γ, k) admits a resolution by sums of representable
functors — for example, we have a natural adjunction map⊕

[a]∈Γ

E([a])⊗ k[a] → E,

and this map is obviously surjective. Analogously, for cohomology, we can use co-representable
functors k[a] given by

k[a]([b]) = k[Γ([b], [a])]∗;

they are injective, H0(Γ, k[a]) ∼= k, and every E ∈ Fun(Γ, k) has a resolution by products of functors
of this type.

One can also think of functors in Fun(Γ, k) as “presheaves of k-vector spaces on Γopp”. This
is of course a very complicated name for a very simple thing, but it is useful because it brings to
mind familiar facts about sheaves on topological spaces or étale sheaves on schemes. Most of these
facts hold for functor categories as well, and the proofs are actually much easier. Specifically, it is
convenient to use a version of Grothendieck’s “formalism of six functors”. Namely, if we are given
two small categories Γ, Γ′, and a functor γ : Γ → Γ′, then we have an obvious restriction functor
γ∗ : Fun(Γ′, k) → Fun(Γ, k). This functor has a left-adjoint γ! and a right-adjoint f∗, called the
left and right Kan extensions. (If you cannot remember which is left and which is right, but are
familiar with sheaves, then the notation γ!, γ∗ will be helpful.)
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The direct and inverse limit over a small category Γ are special cases of this construction –
they are Kan extensions with respect to the projection Γ → pt onto the point category pt. The
representable and co-representable functors k[a], k[a] are obtained by Kan extensions with respect
to the embedding pt→ Γ of the object [a] ∈ Γ. Given three categories Γ, Γ′, Γ′′, and two functors
γ : Γ → Γ′, γ′ : Γ′ → Γ′′, we obviously have (γ′ ◦ γ)∗ ∼= γ∗ ◦ γ

′∗, which implies by adjunction
γ′! ◦ γ!

∼= (γ′ ◦ γ)! and γ′∗ ◦ γ∗ ∼= (γ′ ◦ γ)∗. In general, the Kan extensions γ!, γ∗ have derived
functors L

q
f!, R

q
f∗; just as in the case of homology and cohomology, one can compute them by

using resolutions by representable resp. corepresentable functors.

2.4 Homology of the category ∆opp.

Probably the first useful fact about homology of small categories is a description of the homology
of the category ∆opp, the opposite to the category ∆ of finite non-empty totally ordered sets. We
denote by [n] ∈ ∆opp the set of cardinality n. Objects E ∈ Fun(∆opp, k) are known as simplicial k-
vector spaces. Explicitly, such an object is given by k-vector spaces E([n]), n ≥ 1, and various maps
between them, among which one traditionally distinguishes the face maps di

n : E([n + 1]) → E[n],
0 ≤ i ≤ n – the face map di

n corresponds to the injective map [n]→ [n + 1] whose image does not
contain the (i + 1)-st element in [n + 1].

Lemma 2.5. For any simplicial vector space E ∈ Fun(∆opp, k), the homology H q(∆opp, E) can
be computed by the standard complex E q given by En = E([n + 1]), n ≥ 0, with differential
d : En → En−1, n ≥ 1, equal to

d =
∑

0≤i≤n

(−1)idi
n.

Proof. By definition, we have a map E0 = E([1])→ H0(∆
opp, E), which obviously factors through

the cokernel of the differential d, and this is functorial in E.
Denote by H ′q(∆opp, E) the homology groups of the standard complex E q. Then every short

exact sequence of simplicial vector spaces induces a long exact sequence of H ′q(∆opp,−), so that
H ′q(∆opp,−) form a δ-functor. Moreover, H ′0(∆

opp, E) is by definition the cokernel of the map
d = d0

1 − d1
1 : E([2])→ E([1]). This is the same as the direct limit of the diagram

E([2])
d0
1−→−→

d1
1

E([1])

of two k-vector spaces E([2]), E([1]) and two maps d0
1, d1

1 between them (a direct limit of this type
is called a coequalizer). Since this diagram has an obvious map to ∆opp, we have a natural map

H ′0(∆
opp, E)→ lim

∆opp
−→

E = H0(∆
opp, E),

and by the universal property of derived functors, it extends to a canonical map

(2.3) H ′q(∆opp, E)→ H q(∆opp, E)

of δ-functors. We have to prove that it is an isomorphism. Since every E ∈ Fun(∆opp, k) admits a
resolution by sums of representable functors k[n], [n] ∈ ∆opp, it suffices to prove that the map (2.3)
is an isomorphism for all E = k[n] (this is known as the method of acyclic models). This is clear:
Hi(∆

opp, k[n]) is k for i = 0 and 0 otherwise, and the left-hand side of (2.3) is the homology of the
standard complex of an n-simplex, which is also k in degree 0 and 0 in higher degrees. �

Exercise 2.2. Compute the cohomology H
q
(∆opp, E). Hint: compute k[1].
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Lecture 3.
Connes’ cyclic category Λ. Cyclic homology as homology of the category Λ.
Yet another bicomplex, and a definition of cyclic homology using arbitrary
resolutions.

3.1 Connes’ category Λ.

For applications to cyclic homology, A. Connes introduced a special small category known as the
cyclic category and denoted by Λ. Objects [n] of Λ are indexed by positive integers n, just as for
∆opp. Maps between [n] and [m] can be defined in various equivalent ways; we give two of them.

Topological description. The object [n] is thought of as a “wheel” – the circle S1 with n distinct
marked points, called vertices. A continuous map f : [n]→ [m] is good if it sends marked points to
marked points, has degree 1, and is monotonous in the following sense: for any connected interval
[a, b] ⊂ S1, the preimage f−1([a, b]) ⊂ S1 is connected. Morphisms from [n] to [m] in the category
Λ are homotopy classes of good maps f : [n]→ [m].

Combinatorial description. Consider the category Cycl of linearly ordered sets equipped with an
order-preserving endomorphism σ. Let [n] ∈ Cycl be the set Z with the natural linear order and
endomorphism σ : Z → Z, σ(a) = a + n. Let Λ∞ ⊂ Cycl be the full subcategory spanned by [n],
n ≥ 1 – in other words, for any n, m, let Λ∞([n], [m]) be the set of all maps f : Z→ Z such that

(3.1) f(a) ≤ f(b) whenever a ≤ b, f(a + n) = f(a) + m,

for any a, b ∈ Z. For any [n], [m] ∈ Λ∞, the set Λ∞([n], [m]) is acted upon by the endomorphism σ
(on the left, or on the right, by definition it does not matter). We define the set of maps Λ([n], [m])
in the category Λ by Λ([n], [m]) = Λ∞([n], [m])/σ.

Here is the correspondence between the two definitions. First of all, we note that homotopy
classes of continuous monotonous maps from R to itself whcih send integral points into integral
points are obviously in one-to-one correspondence with non-descreaing maps from Z to itself. Now,
in the topological description above, we may assume that if we consider S1 as the unit disc in the
complex plane C, then the marked points are placed at the roots of unity. Then the universal cover
of S1 is R, and after rescaling, we may assume that exactly the integral points are marked. Thus
any good map f : S1 → S1 induces a map R→ R which sends integral points into integral points,
or in other words, a non-decreasing map from Z to itself. Such a map R → R comes from a map
S1 → S1 if and only if the corresponding map Z→ Z commutes with σ.

There is also an explicit description of maps in Λ by generators and relations which we will not
need; an interested reader can find it, for instance, in Chapter 6 of Loday’s book.

Given an object [n] ∈ Λ, it will be convenient to denote by V ([n]) the set of vertices of the
wheel [n] (in the topological description), and it will be also convenient to denote by E([n]) the set
of edges of the wheel – that is, the clock-wise intervals (s, s′) ⊂ S1 between the two neighboring
vertices s, s′ ∈ V ([n]).

Lemma 3.1. The category Λ is self-dual: we have Λ ∼= Λopp.

Proof. In the combinatorial description, define a map Λ∞([m], [n]) → Λ∞([n], [m]) by f 7→ f o,
f o : Z→ Z given by

f o(a) = min{b ∈ Z|f(b) ≥ a}.

This is obviously compatible with compositions and bijective, so that we get an isomorphism
Λ∞ ∼= Λopp

∞ . Being compatible with σ, it descends to Λ.
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In the topological description, note that for any map f : [n] → [n] and any edge e = (s, s′) ∈
E([m]), the preimage f−1(e) ⊂ S1 with respect to the corresponding good map f : S1 → S1 lies
entirely within a single edge e′ ∈ E([m′]), Thus we get a natural map f o : E([m]) → E([n]). We
leave it to the reader to check that this extends to a duality functor Λ → Λo which interchanges
V ([n]) and E([n]). �

If we only consider those maps in (3.1) which send 0 ∈ Z to 0, then the resulting subcategory
in Λ∞ is equivalent to ∆opp.

Exercise 3.1. Check this. Hint: use the duality Λ ∼= Λo.

This gives a canonical embedding j : ∆opp → Λ∞, and consequently, an embedding j : ∆opp → Λ
(this is injective on maps). Functors in Fun(Λ, k) are called cyclic k-vector spaces. Any cyclic k-
vector space E defines by restriction a simplicial k-vector space j∗E ∈ Fun(∆opp, k).

3.2 Homology of the category Λ.

The category Λ conveniently encodes the maps mi and τ between various tensor powers A⊗n used
in the complex (1.8): mi corresponds to the map f ∈ Λ([n + 1], [n]) given by

f(a(n + 1) + b) =

{
an + b, b ≤ i,

an + b− 1, b > i,

where 0 ≤ b ≤ n, and τ is the map a 7→ a + 1, twisted by the sign (alternatively, one can say
that mi are obtained from face maps in ∆opp under the embedding ∆opp ⊂ Λp). The relations
mi+1 ◦ τ = τ ◦mi, 0 ≤ i ≤ n− 1, and m0 ◦ τ = (−1)nmn between these maps which we used in the
proof of Lemma 1.4 are encoded in the composition laws of the category Λ. Thus for any object
E ∈ Fun(Λ, k) – they are called cyclic vector spaces – one can form the bicomplex of the type (1.8):

(3.2)

. . . −−−→ E([1])
id−−−→ E([1])

id−τ−−−→ E([1])xb

xb′

xb

. . . −−−→ E([2])
id +τ−−−→ E([2])

id−τ−−−→ E([2])xb

xb′

xb

. . . . . . . . . . . .xb

xb′

xb

. . . −−−→ E([n])
id +τ+···+τn−1

−−−−−−−−−→ E([n])
id−τ−−−→ E([n])xb

xb′

xb

(where b and b′ are obtained from mi and τ by the same formulas as in (1.8)). We also have the
periodic version, the Connes’ exact sequence and the Hodge-to-de Rham spectral sequence (where
the role of Hochschild homology is played by the homology H q(∆opp, j∗E)).

Lemma 3.2. For any E ∈ Fun(Λ, k), the homology H q(Λ, E) can be computed by the bicomplex
(1.8).

Proof. As in Lemma 2.5, we use the method of acyclic models. We denote by H ′q(Λ, E) the
homology of the total complex of the bicomplex (3.2). Just as in Lemma 2.5, we have a natural
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map H ′0(Λ, E)→ H0(Λ, E), we obtain an induced functorial map

H ′q(Λ, E)→ H q(Λ, E),

and we have to prove that it is an isomorphism for E = k[n], [n] ∈ Λ. We know that for such E, in
the right-hand side we have k in degree 0 and 0 in higher degrees. On the other hand, the action of
the cyclic group Z/mZ generated by τ ∈ Λ([m], [m]) on Λ([n], [m]) is obviously free, and we have

Λ([n], [m])/τ ∼= ∆opp([n], [m])

– every f : Z → Z can be uniquely decomposed as f = τ j ◦ f0, where 0 ≤ j < m, and f0 sends 0
to 0. The rows of the complex (1.8) compute

H q(Z/mZ, k[n]([m])) ∼= k [∆opp([n], [m])] ,

and the first term in the corresponding spectral sequence is the standard complex for the simplicial
vector space k∆

[n] ∈ Fun(∆opp, k) represented by [n] ∈ ∆opp. Therefore this complex computes

H q(∆opp, k∆
[n]), and we are done by Lemma 2.5. �

There is one useful special case where the computation of H q(Λ, E) is even easier.

Definition 3.3. A cyclic vector space E ∈ Fun(Λ, k) is clean if for any [n] ∈ Λ, the homology
Hi(Z/nZ, E([n])) with respect to the Z/nZ-action on E([n]) given by τ is trivial for all i ≥ 1.

In practice, a cyclic vector space can be clean for two reasons. First, E([n]) might be a free
k[Z/nZ]-module for any n. Second, the base field k might have characteristic 0, so that finite groups
have no higher homology with any coeffients. In any case, for a clean E ∈ Fun(Λ, k), computing
the homology of the rows of the bicomplex (3.2) reduces to taking the coinvariants E([n])τ with
respect to the autmorphism τ , and the whole (3.2) reduces to a complex

(3.3) . . .
b−−−→ E([n])τ

b−−−→ . . .
b−−−→ E([2])τ

b−−−→ E([1])τ ,

with the differential induced by the differential b of (3.2). We note that the coinvariants E([n])τ ,
n ≥ 1, do not form a simplicial vector space; nevertheless, the differential b is well-defined.

3.3 The small category definition of cyclic homology.

Assume now again given an associative unital algebra A over a field k. To define cyclic homology
HC q(A) as homology of the cyclic category Λ, one constructs a cyclic k-vector space A# in the
following way: for any [n] ∈ Λ, A#([n]) = A⊗n, where we think of the factors A in the tensor
product as being numbered by vertices of the wheel [n], and for any map f : [n] → [m], the
corresponding map A#(f) : A⊗n → A⊗m is given by

(3.4) A#(f)

 ⊗
i∈V ([n])

ai

 =
⊗

j∈V ([m])

∏
i∈f−1(j)

ai,

where V ([n]), V ([m]) are the sets of vertices of the wheel [n], [m] ∈ Λ. We note that for any
j ∈ V ([m]), the finite set f−1(j) has a natural total order given by the clockwise order on the circle
S1. Thus, although A need not be commutative, the product in the right-hand side is well-defined.
If f−1(j) is empty for some j ∈ V ([m]), then the right-hand side involves a product numbered by
the empty set; this is defined to be the unity element 1 ∈ A.

As an immediate corollary of Lemma 3.2, we obtain the following.
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Proposition 3.4. We have a natural isomorphism HC q(A) ∼= H q(Λ, A#). �

This isomorphism is also obviously compatible with the periodicity, the Connes’ exact sequence,
and the Hodge-to-de Rham spectral sequence. In particular, the standard complex for the simplicial
k-vector space j∗A# is precisely the Hochschild homology complex, so that we have HH q(A) =
H q(∆opp, j∗A#).

Exercise 3.2. Show that the Hochschild homology complex which computes HH q(A, M) for an A-
bimodule M also is the standard complex for a simplicial k-vector space. Does it extend to a cyclic
vector space?

3.4 Example: yet another bicomplex for cyclic homology.

The definition of cyclic homology using small categories may seem too abstract at first, but this is
actually a very convenient technical tool: it allows to control the combinatorics of various complexes
in a quite efficient way. As an illustration of this, let me sketch, in char 0, yet one more description
of cyclic homology by an explicit complex (this definition has certain advantages explained in the
next subsection).

For any k-vector space V equipped with a non-zero covector η ∈ V ∗, η : V → k, contraction
with η defines a differential δ : Λ

q+1V → Λ
q
V on the exterior algebra Λ

q
V , and the complex 〈Λ q

V, δ〉
is acyclic, so that Λ≥1V is a resolution of k = Λ0V . This construction depends functorially on the
pair 〈V, η〉, so that it can be applied poinwise to the representable functor k[1] ∈ Fun(Λ, k) equipped
with the natural map η : k[1] → kΛ. The result is a resolution Λ

q
k[1] of the constant cyclic vector

space kΛ ∈ Fun(Λ, k).
Here is another description of the exterior powers Λ

q
k[1]. Consider a representable functor k[i]

for some i ≥ 1, and let k[i] ∈ Fun(Λ, k) be its quotient given by

k[i]([n]) = k [Λ([i], [n])] /{f ∈ Λ([i], [n]) | f not injective};

in other words, k[i]([n]) is spanned by injective maps from [i] to [n]. Then k[i] is acted upon by the

cyclic group Z/iZ of automorphisms of [i] ∈ Λ, this action descends to the quotient k[i], and we
have

Λik[i] =
(
k[i]

)
τ
,

where τ : k[i] → k[i] is the generator of Z/iZ twisted by (−1)i+1. The differential δ lifts to a

differential δ : k[i] → k[i−1] given by the alternating sum of the maps k[i] → k[i−1] induced by the i

injective maps [i−1]→ [i]. We note, however, that the complex k[ q] is no longer a resolution of kΛ.

Lemma 3.5. For any i ≥ 1, we have Hj(Λ, k[i]) = 0 if j 6= i − 1, and k if j = i − 1. The Z/iZ-

action on k = Hi−1(Λ, k[i]) by the Z/iZ-action on k[i] is given by the sign representation. Moreover,

for any E ∈ Fun(Λ, k), we have H q(Λ, k[i] ⊗ E) ∼= H q+i−1(∆
opp, E), with the sign action of Z/iZ.

Proof. The cyclic object k[i] ∈ Fun(Λ, k) is clean, and the corresponding complex (3.3) is the
quotient of the standard complex of the elementary (i− 1)-simplex by the subcomplex spanned by
all faces of dimension less than i − 1. In other words, H q(Λ, k[i]) is the reduced homology of the
(i− 1)-sphere. This proves the first claim. The second claim is obvious: the term of degree i− 1 in
the complex (3.3) is isomorphic to (k[Z/iZ])τ , and this is the sign representation by the definition
of τ . The third claim now follows immediately from the well-known Künneth formula, which says
that for any simplicial vector spaces V, W ∈ Fun(∆opp, k), the standard complex of the product
V ⊗W is naturally quasiisomorphic to the product of the standard complexes for V and W . �
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Now, for any cyclic k-vector space E ∈ Fun(Λ, k), and any [i] ∈ Λ, the product E ⊗ k[i] ∈
Fun(Λ, k) is clean, so that it makes sense to consider the complex (3.3). Then the differential
δ : k[i] → k[i− 1] induces a map between these complexes, and we can form a bicomplex K q, q(E)
given by

(3.5) Ki,j(E) =
(
ki([j + 1])⊗ E([j + 1])

)
τ
,

where the horizontal differential K q+1, q(E) → K q, q(E), henceforth denoted by B̃, is induced by δ,
and the vertical differential is the Hochschild differential b, as in (3.3).

Lemma 3.6. Assume that char k = 0. Then for any E ∈ Fun(Λ, k), the total complex of the
bicomplex (3.5) computes the homology H q(Λ, k).

Proof. Since char k = 0, every cyclic vector space is clean, and we can compute cyclic homology by
using the complex (3.3). Since 〈Λ≥1k[1], δ〉 is a resolution of the constant cyclic vector space kΛ, we
have

H q(Λ, E) ∼= H q(Λ, K q ⊗ E),

where K q ∼= Λ
q+1k[1], and the differential in K q ⊗ E is induced by δ. Applying (3.3) to the right-

hand side almost gives the bicomplex (3.5) – the difference is that we take Ki = (k[i+1])τ instead of

k[i+1]. Thus it suffices to prove that the natural map

H q(Λ, k[i] ⊗ E)→ H q (Λ,
(
k[i]

)
τ
⊗ E

)
is an isomorphism for any [i] ∈ Λ. But since char k = 0, the cyclic groups have no homology, so
that the right-hand side is isomorphic to

H q(Λ, k[i] ⊗ E)τ .

And by Lemma 3.5, τ on H q(Λ, k[i] ⊗ E) is the identity map. �

Assume now that E = A# for some associative unital A-algebra A. Then the bicomplex (3.5)
is similar to the second bicomplex (2.1) for cyclic homology in the following sense: for any i ≥ 0,
the column Ki, q(A#) of (3.5) computes the Hochschild homology HH q(A), with the same degree
shift as in (2.1).

What happens is the following. Recall that to obtain the Hochschild homology complex, one
uses the bar resolution C q(A). However, to compute the Hochschild homology HH q(A), any other
resolution would do. In particular, we can take any integer n ≥ 2, and consider the n-fold tensor
product

Cnq (A) = C q(A)⊗A C q(A)⊗A · · · ⊗A C q(A).

This is obviously a complex of free A-bimodules, and it is quasiisomorphic to A⊗AA⊗A· · ·⊗AA ∼= A,
so that it is a good resolution. Using this resolution to compute HH q(A), we obtain a complex
CHnq (A) whose l-th term CHn

l (A) is the sum of several copies of A⊗(n+l), and these copies are
numbered by elements in the set

Mn
l = Λinj([n], [l + n])/τ

of injective maps [n]→ [l + n] considered modulo the action of the cyclic permutation τ : [l + n]→
[l + n]. In other words, the terms of the complex CHnq (A) are numbered by wheels [n + m], m ≥ 0,
with n marked points considered modulo cyclic permutation. These n points cut the wheel into
n intervals of lengths l1, l2, . . . , ln with l1 + l2 + · · · + ln = m + n, and the corresponding term in
CHn

l (A) computes the summand

A⊗Aopp⊗A (Cl1−1(A)⊗A Cl2−1(A)⊗A · · · ⊗A Cl1−1(A))
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in
CHnq (A) = A⊗Aopp⊗A (C q(A)⊗A · · · ⊗A C q(A)) .

The differential b̃ : CHnq+1(A)→ CHnq (A) restricted to the term which corresponds to some injective
f : [n] → [n + l + 1] is the alternating sum of the maps mi corresponding to surjective maps
[n + l + 1] → [n + l] such that the composition [n] → [n + l + 1] → [n + l] is still injective – in
other words, we allow to contract edges of the marked wheel [n + l + 1] unless an edge connects

two marked points. Of course, CH1q (A) is the usual Hochschild homology complex, and b̃ = b is the
usual Hochschild differential (since there is only one marked point, every edge can be contracted).

We leave it to the reader to check that the complex CHnq (A) is precisely isomorphic to the
complex Kn, q+n(A#).

One can also show that the periodicity in HC q(A) corresponds to shifting the bicomplex (3.5)
by one column to the left, just as in (2.1), so that the Hodge filtration on HC q(A) is also induced by
the stupid filtration on (3.5) in the horizontal direction. Thus a postriori, (3.5) and (2.1) are even

quasiisomorphic as bicomplexes, and the horizontal differential B̃ in (3.5) can be identified with
the Connes-Tsygan differential B. However, this is not at all easy to see by a direct computation.

3.5 Cyclic homology computed by arbitrary resolution.

To show why (3.5) is useful, let me show how it can be modified so that the bar resolution C q(A)
is replaced with an arbitrary projective resolution P q of the diagonal bimodule S (I follow the
exposition in my paper Cyclic homology with coefficients, math.KT/0702068, which is based on
ideas of B. Tsygan).

For simplicity, I will only explain how to do this for the first two columns of (3.5). This gives

a resolution-independent description of the Connes-Tsygan differential B = B̃, but says nothing
about possible higher differentials in the Hodge-to-de Rham spectral sequence.

Fix a projective resolution P q with the augmentation map r : P q → A. Consider the resolution
P 2q = P q ⊗A P q of the same diagonal bimodule A. Note that the augmentation map r induces two
quasiisomorphisms r0, r1 : P 2q → P q given by

r0 = r ⊗A id, r1 = id⊗Ar.

In general, there is no reason why these two maps should be equal. However, being two maps
of projective resolutions of A which induce the same identity map on A itself, they should be
chain-homotopic. Choose a chain homotopy ι : P 2q → P q+1.

Now consider the complexes

P q = A⊗Aopp⊗A P q, P
2q = A⊗Aopp⊗A P 2q

which compute HH q(A), and the maps r0, r0, ι between them induces by r0, r1 and ι. Notice that

the complex P
2q has another description: we have

P
2q =

⊕
l, q−l

A⊗Aopp⊗A Pl ⊗A P q−l,

and for any two A-bimodules M , N , we have

A⊗Aopp⊗A (M ⊗A N) = M ⊗N/ {ma⊗ n−m⊗ an, am⊗ n−m⊗ na | a ∈ A, m ∈M, n ∈ N} ,

which is manifestly symmetric in m and n. Thus we have a natural involution τ : P
2q → P

2q. This
involution obviously interchanges r0 and r1, but there is no reason why it should be in any way
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compatible with the map ι – all we can say is that τ ◦ ι is another chain homotopy between r0 and
r1. Thus the map

B̃ = ι− τ ◦ ι : P
2q → P q+1

commutes with the differentials.

Lemma 3.7. The map B̃ induces the same map on the Hochschild homology HH q(A) as the
Connes-Tsygan differential B.

Sketch of a proof. One checks that the map we need to describe does not depend on choices: neither
of a projective resolution P q, since any two such resolutions are chain-homotopy equivalent, nor of
the map ι, since any two such are chain-homotopic to each other. Thus to compute it, we can take
any P q and any ι. If we take P q = C q(A), the bar-resolution, and let ι be the sum of tautological

maps A⊗l ⊗ A⊗l′ → A⊗l+l′ , then B̃ is precisely the same as in the bicomplex (3.5). �

Remark 3.8. In the assumptions of the Hochschild-Kostant-Rosenberg Theorem, it would be very
interesting to try to work out explicitly the map B̃ for the Koszul resolution.
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Lecture 4.
Combinatorics of the category Λ: cohomology of Λ and Λ≤n, periodicity,
classifying spaces. Fibrations and cofibrations of small categories; Λ∞ as
a fibered category over Λ.

4.1 Cohomology of the category Λ and periodicity.

In the last lecture, we have shown that the homology H q(Λ, E) with coefficients in some cyclic
vector space E ∈ Fun(Λ, E) can be computed by the standard complex (3.2); in particular, we have
the periodicity map u : H q+2(Λ, E)→ H q(Λ, E) and the Connes’ exact triangle

H q(∆opp, j∗E) −−−→ H q(Λ, E)
u−−−→ H q−2(Λ, E) −−−→ ,

where j : ∆opp → Λ is the embedding defined in the last lecture. Today, we want to give a more
invariant description of the periodicity map. That such a description should exist is more-or-less
clear. Indeed, homology H q(Λ,−) — or rather, hyperhomology H(Λ,−) — is a functor from the
derived category D(Λ, k) of the abelian category Fun(Λ, k) to the derived category D(k -Vect). By
definition, this functor is adjoint to the tautological embedding D(k -Vect)→ D(Λ, k), k 7→ kΛ, so
that by Yoneda Lemma, every natural transformation H q+2(Λ,−) → H q(Λ,−) should be induced
by an element in

Ext2(kΛ, kΛ) = H2(Λ, k).

Thus to describe periodicity, we have to compute the cohomology H
q
(Λ, k) of the category Λ with

constant coefficients k = kΛ ∈ Fun(Λ, k).
The computation itself is not difficult: since the category Λ is self-dual, the complex (3.2) has

an obvious dualization, and exactly the same argument as in the proof of Lemma 3.2 shows that
dualized complex computes H

q
(Λ, E) for any E ∈ Fun(Λ, k). For the constant functor k, this gives

(4.1) H
q
(Λ, k) ∼= k[u],

where, as before, k[u] means “the space of polynomials in one formal variable u of degree 2”. It is
only slightly more difficult to see that the isomorphism (4.1) is an algebra isomorphism, and the
action of the generator u ∈ H2(Λ, k) on homology H q(Λ,−) is the periodicity map. One can argue,
for instance, as follows. The same operation of “shifting the bicomplex by two columns” induces a
periodicity map H

q
(Λ, E)→ H

q+2(Λ, E); this map is functorial, thus (1) induced by an element in
H2(Λ, k), and obviously the same one, and (2) compatible with the algebra structure on

H
q
(Λ, k) = Ext

q
(kΛ, kΛ),

so that H
q
(Λ, k) must be a unital algebra over the polynomial algebra k[u] generated by the

periodicity map. Since by (4.1), it is isomorphic to k[u] as a k[u]-module, it must also be isomorphic
to k[u] as an algebra.

However, it will be useful to have a more explicit description of the generator u ∈ H2(Λ, k).

To obtain such a description, we use the topological interpretation of the category Λ — in other
words, we treat [n] ∈ Λ as a wheel formed by marking n points on the circle S1. Note that this
defines a cellular decomposition of the circle: its 0-cells are vertices v ∈ V ([n]), and its 1-cells
are edges e ∈ E([n]). Denote by C q([n]) the corresponding complex of length 2 which computes
the homology H q(S1, k). Any map f ∈ Λ([n], [m]) induces a cellular map S1 → S1, or at any
rate, a map which sends 0-skeleton into 0-skeleton, and thus induces a map C q([n]) → C q([m]).
In this way, C q([n]) becomes a length-2 complex of cyclic vector spaces. Since the homology of
the circle Hi(S

1, k) is equal to k for i = 0, 1 and 0 otherwise, and does not depend on the cellular



Homological methods in Non-commutative Geometry – Tokyo, 2007/2008 24

decomposition, the homology of the complex C q ∈ Fun(Λ, k) is kΛ in degree 0 and 1, and 0 in other
degrees. Thus we have an exact sequence

(4.2) 0 −−−→ kΛ −−−→ C1 −−−→ C0 −−−→ k −−−→ 0

of cyclic vector spaces. Explicitly, V ([n]) ∼= Λ([1], [n]), so that C0([n]) = k[V ([n])] = k[Λ([1], [n])],
and C0 is canonically isomorphic to the representable functor k[1]. As for C1, we have by definition

C1([n]) = k[E([n])] = k[Λ([n], [1])],

and the map C1(f) : C1([n])→ C1([m]) corresponding to a map f : [n]→ [m] is given by

(4.3) C1(f)(e) =
∑

e′∈fo−1(e)

e′ ∈ k[E([m])]

for any edge e ∈ E([n]), so that C1 is canonically identified with the corepresentable functor k[1].
All in all, the exact sequence (4.2) can be rewritten as

(4.4) 0 −−−→ kΛ −−−→ k[1] −−−→ k[1] −−−→ kΛ −−−→ 0.

This represents by Yoneda a certain class in H2(Λ, k) = Ext2(kΛ, kΛ).

Lemma 4.1. The class u′ ∈ H2(Λ, k) represented by (4.4) is equal to the periodicity generator u.

Proof. Let us first prove the equality up to an invertible constant. To do this, it suffices to prove
that the cone of the map H q+2(Λ, k) → H q(Λ, k) induced by u′ is isomorphic to k in degree 0 and
trivial in other degrees. This cone is the hyperhomology H(Λ, C q). Since C0 = k[1] is representable,
it already has all the homology we want from the cone, so that we have to prove that

H q(Λ, C1) = H q(Λ, k[1]) = 0

(in all degrees). Denote by M the kernel of the natural map k[1] → kΛ, so that we have short exact
sequences

0 −−−→ M −−−→ k[1] −−−→ kΛ −−−→ 0,

0 −−−→ kΛ −−−→ k[1] −−−→ M −−−→ 0.

Computing the homology long exact sequence for the first of these exact sequences, we see that
the boundary differential δ1 : Hi(Λ, M) → Hi+1(Λ, k) is non-trivial, so that the first short exact
sequence is not split, and that in fact δ1 is an isomorphism for all i ≥ 0. To prove the claim, it
suffices to check that the boundary differential δ2 : Hi+1(Λ, M)→ Hi(Λ, k) in the second long exact
sequence also is an isomorphism for all i. Since everything is compatible with with k[u′]-action, it
suffices to prove it for i = 0 – in other words, we have to prove that the generator of H0(Λ, k) = k
goes to 0 under the map kΛ → k[1]. But if not, this means by definition that the second short
exact sequence is split. This is not possible: the duality Λ ∼= Λopp together with the usual duality
k -Vectopp → k -Vect, V 7→ V ∗ induce a fully faithfull duality functor Fun(Λ, k)o → Fun(Λ, k), and
this functor sends our short exact sequences into each other.

As for the constant, we note that it obviously must be universal, thus invertible in any field,
thus either 1 or −1. On the other hand, in the definition of (4.4) there is a choice: we have to
choose an orientation of the cirle S1. Switching the orientation changes the sign of u′, so that we
can always achieve u = u′. We leave it at that. �
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4.2 Canonical resolution.

We can extend the exact sequence (4.4) to a resolution of the constant functor kΛ by iterating it –
the result is a complex of the form

. . . −−−→ k[1] −−−→ k[1] −−−→ k[1] −−−→ k[1],

where the maps k[1] → k[1] are as in (4.4), and the maps k[1] → k[1] are the composition maps
k[1] → kΛ → k[1]. Moreover, for any cyclic vector space E ∈ Fun(Λ, k), we have a canonical
resolution

(4.5) . . . −−−→ k[1] ⊗ E −−−→ k[1] ⊗ E −−−→ k[1] ⊗ E −−−→ k[1] ⊗ E.

The periodicity map for E is induced by id⊗u ∈ Ext2(E, E), and it can be represented explicitly
by the obvious periodicity endomorphism of (4.5) which shift everything to the left by two terms.

It is instructive to see what happens if compute H q(Λ, E) by replacing E with (4.5), as in
Lemma 3.6 in the last Lecture. Both k[1]⊗E and k[1]⊗E are clean in the sense of Definition 3.3, so
that we can compute H q(Λ,−) by the complex (3.3). Applying it to (4.5) gives a double complex
Mi,j(E) with terms

Mi,j(E) =

{
(k[1]([j + 1])⊗ E([j + 1]))τ , i even,

(k[1]([j + 1])⊗ E([j + 1]))τ , i odd.

To identify further M0,j(E) = E([j + 1]), we need to choose a vertex v ∈ V ([j + 1]) (for instance,
we may fix the embedding j : ∆opp → Λ), and to identify M1,j(E) = E([j + 1]), we need to to
choose an edge e ∈ E([j +1]) (for instance, since choosing v ∈ V ([j +1]) cuts the wheel and defines
a total order on E([j + 1]), we can take the last edge with respect to this order). To compute
the differential b : Mi,j(E) → Mi,j−1(E), we note that for any contraction [j + 1] → [j] of an
edge e′ ∈ E([j + 1]), the corresponding face map me : k[1]([j + 1]) → k[1]([j]) sends the chosen
vertex v ∈ k[V ([j + 1])] = k[1]([j + 1]) to the chosen vertex v ∈ k[V ([j])]. On the other hand, it
immediately follows from (4.3) that the face map m′e′ : k[1]([j + 1]) → k[1]([j]) sends the chosen
last edge e ∈ k[E([j + 1])] to e ∈ k[E([j])] if e 6= e′, and to 0 otherwise. Thus the diferential
b : Mi,j(E)→Mi,j−1(E) is given by

b =
∑

0≤l≤j

(−1)jrlml,

where rl = 0 if i is odd and l = j, and rl = 1 otherwise. Thus M q, q(E) becomes exactly isomorphic
to the original bicomplex (3.2) for the cyclic vector space E. We also have H q(Λ, E⊗k[1]) = 0, and
H q(Λ, E ⊗ k[1]) = H q(∆opp, j∗E).

4.3 Nerves and geometric realizations.

To anyone who studied algebraic topology, the cohomology algebra H
q
(Λ, k) = k[u] of the category

Λ will seem familiar: the same algebra appears as the cohomology algebra H
q
(CP∞, k) of the

infinite-dimensional complex projective space CP∞, the classifying space BU(1) for the unit circle
group U(1) = S1. This is not a simple coincidence. The relation between Λ and CP∞ has been
one of the recurring themes of the whole theory of cyclic homology from its very beginning.

The relation occurs at various levels, and while the most advanced ones are not properly un-
derstood even today, we do understand the picture up to a certain point. The next level after the
cohomology isomorphism is that of the so-called geometric realizations.
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Unfortunately, we do not have time to present the notion of the geometric realization in full
detail (it is easily available in the literature; my personal favourite is the exposition in Chapter
I of Gelfand-Manin’s book, also Quillen has a nice and concise exposition in his paper on higher
K-theory in Lecture Notes in Math., vol. 341). Let us just briefly remind the reader that to any
small category Γ, one associated a simplicial set N(Γ) called the nerve of the category Γ. By
definition, 0-simplices in N(Γ) are objects of Γ, 1-simplices are morphisms, 2-simplices are pairs
of composable morphisms [a1] → [a2] → [a3], and so on – n-simplices in N(Γ) are functors to Γ
from the totally ordered set [n + 1] considered as a category in the usual way. Given a simplicial
set X ∈ Fun(∆opp, Sets), one forms a topological space |X| called the geometric realization of X by
gluing together the elementary simplices ∆n, one for each n-simplex in X([n + 1]). Given a small
category Γ, we will call |N(Γ)| its geometric realization, and we will denote it simply by |Γ|.

Here are some simple properties of the geometric realization.

(i) We have |Γ| ∼= |Γopp|.

(ii) A functor γ : Γ→ Γ′ induces a map |γ| : |Γ| → |Γ′|, and a map γ1 → γ2 between functors γ1,
γ2 induces a homotopy between |γ1| and |γ2|.

(iii) Consequently, if a functor γ : Γ→ Γ′ has an adjoint, then |γ| is a homotopy equivalence. In
particular, if Γ has a final, or an initial object, then |Γ| is contractible.

(iv) If Γ is a connected groupoid, and an object [a] ∈ Γ has automorphism group is G, then up to
homotopy, |Γ| is the classifying space BG.

To any functor E ∈ Fun(Γ, k), one associates a constructible sheaf E of k-vector spaces on |Γ|
by the following rule: for any n-simplex [a0] → · · · → [an] of N(Γ), the restriction of E to the
corresponding simplex ∆n ⊂ |Γ| is the constant sheaf with fiber E([a0]), and the gluing maps are
either identical or induced by the action of morphisms in Γ. The gives an exact comparison functor
Fun(Γ, k) → Shv(|Γ|, k). This functor is fully faithful, and it is even fully faithful on the level of
derived categories: for any E, E ′ ∈ Fun(Γ, k) with corresponding sheaves E , E ′ ∈ Shv(|Γ|, k), the
natural map

Ext
q
(E, E ′)→ Ext

q
(E , E ′)

is an isomorphism in all degrees (to prove it, one can, for instanse, use the Godement resolution of
E ∈ Fun(Γ, k) by representable sheaves, as in Lecture 2). Of course, the comparison functor is not
an equivalence: in general, the category Shv(|Γ|, k) is much larger. However, we have the following
obvious fact.

Definition 4.2. A functor E ∈ Fun(Γ, k) is locally constant if for any morphism f : [a] → [a′] in
Γ, the corresponding map E([a])→ E([a′]) is invertible.

Lemma 4.3. The comparison functor induces an equivalence between the derived category Dlc(Γ, k)
of complexes with locally constant homology and the derived category Shvlc(|Γ|, k) of complexes of
sheaves on |Γ| whose homology sheaves are locally constant. �

Corollary 4.4. Assume that for any field k and for any locally constant E ∈ Fun(Γ, k), we have
H q(Γ, E) = E([a]), where [a] ∈ Γ is s fixed object. Then |Γ| is contractible.

Proof. By the well-known Whitehead Theorem, a map f : X → Y of CW -complexes is a homotopy
equivalence if for any local systems A on Y , B on X, the induced maps H q(X, f∗A) → H q(Y,A),
H q(X, B)→ H q(Y, f∗B) are isomorphisms. �
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Going back to the cyclic category Λ: our goal is to prove that |Λ| is homotopically equivalent
to CP∞. We will do it indirectly, in two steps: first, we prove that the realization |Λ∞| of the
category Λ∞ is contractible, then we prove that the projection functor Λ∞ → Λ induces a fibration
|Λ∞| → |Λ| whose fiber is the circle S1 = U(1) – thus |Λ∞| can be taken as the contractible space
EU(1), and |Λ| is homotopy equivalent to the classifying space EU(1)/U(1) = BU(1) ∼= CP∞.
For the first step, we only need Corollary 4.4, but for the second step, we need to develop some
machinery of fibrations for small categories.

4.4 Fibrations and cofibration of small categories.

The notion of a fibered and cofibered category was introduced by Grothendieck in SGA1, Ch.VI,
which is perhaps still the best reference for those who can read French; nowadays, this machinery
is usually called Grothendieck construction. Let me give the basic definitions.

Assume given a functor γ : Γ′ → Γ between small categories Γ, Γ′. By the fiber Γ′[a] over an

object [a] ∈ Γ we understand the subcategory Γ′[a] → Γ′ of objects [a′] ⊂ Γ′ such that γ([a′]) = [a],

and morphisms f such that γ(f) = id. A morphism f : [a] → [b] in Γ′ is called Cartesian if it has
the following universal property:

• any morphism f ′ : [a′] → [b] such that γ(f ′) = γ(f) factors through f by means of a unique
map [a′]→ [a] in Γ′γ([a]).

Definition 4.5. A functor γ : Γ′ → Γ is called a fibration if

(i) for any f : [a]→ [b] in Γ, and any b′ ∈ Γ′[b], there exists a Cartesian morphism f ′ : [a′]→ [b′]

such that γ(f ′) = f , and

(ii) the composition of two Cartesian morphisms is Cartesian.

Condition (i) here mimics the “covering homotopy” condition in the definition of a fibration in
algebraic topology, but it is in fact much more precise — indeed, the Cartesian covering morphism
f ′, having the universal property, is uniquely defined. Grothendieck also introduced “cofibrations”
as functors γ : Γ′ → Γ such that γopp : Γ

′opp → Γopp is a fibration. This terminology is slightly
unfortunate because the topological analogy is still a fibration – “cofibration” in topology means
something completely different. For this reason, now the term “op-fibration” is sometimes used.
However, we will stick to Grothendieck’s original terminology.

Assume given a fibration γ : Γ′ → Γ and a morphism f : [a]→ [b] in Γ. Then for any [b′] ∈ Γ′[b],

we by definition have a Cartesian morphism f ′ : [a′] → [b′], and using the universal property of
the Cartesian morphism, one checks that the correspondence [b′] 7→ [a′] is functorial: we have a
functor f ∗ : Γ′[b] → Γ′[a], [b′] 7→ [a′]. Using condition (ii) of Definition 4.5, one checks that for any

composable pair of maps f , g, we have a natural isomorphism (f ◦ g)∗ ∼= g∗ ◦ f ∗, and there is a
compatibility constraint for these isomorphisms when we are given a composable triple f , g, h. All
in all, the correspondence [a] 7→ Γ′[a], f 7→ f ∗ defines a contravriant “weak functor” from Γ to the
category of small categories. Conversely, every such “weak functor”, appropriately defined, arises in
this way. This was the main reason for Grothendieck’s definition of a fibration – it gives a nice and
short replacement for the cumbersome notion of a weak functor, with all its higher isomorphisms
and compatibility constraints.

Today, we will only need one basic fact about fibrations, and we will use it without a proof.

Definition 4.6. A fibration γ : Γ′ → Γ is locally constant if for any f in Γ, the functor f ∗ is an
equivalence.
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Proposition 4.7. Assume given a connected small category Γ and a locally constant fibration
γ : Γ′ → Γ. Then the homotopy fiber of the induced map |γ| : |Γ′| → |Γ| is naturally homotopy
equivalent to the realization |Γ′[a]| of the fiber over any object [a] ∈ Γ. �

4.5 Computation of |Λ|.
We can now prove that the realization |Λ| is equivalent to CP∞. We start with the following.

Lemma 4.8. The realization |Λ∞| is contractible.

Proof. By Corollary 4.4, it suffices to prove that H q(Λ∞, E) ∼= E([1]) for any locally constant
E ∈ Fun(Λ∞, k). The homology of the category Λ∞ can be computed by a complex similar to
(3.2): we take (3.2) and remove everything except for the two right-most columns. We leave it
to the reader to check that this indeed computes H q(Λ∞, E) (while the rows of the complex now
have only length 2, they still compute the homology of the infinite cyclic group Z = Aut([n]), and
the same proof as in Lemma 3.2 works). Since we now only have two columns, and one of them is
contractible, the Connes’ exact sequence reduces to an isomorphism

H q(∆opp, j∗E) ∼= H q(Λ∞, E).

Since j∗E is obviously locally constant, it suffices to check that the realization |∆opp| of the category
∆opp is contractible. This is clear — ∆opp has an initial object. �

Lemma 4.9. The natural functor Λ∞ → Λ is a locally constant fibration whose fiber is the groupoid
ptZ with one object whose automorphisms group is Z.

Proof. We use the combinatorial description of the category Λ. Then for any [n], [m] ∈ Λ, the
map Λ∞([n], [m]) → Λ([n], [m]) is surjective by definition, and one checks easily that any map
f ∈ Λ∞([n], [m]) is Cartesian. The fiber, again by definition, has one object, and its automorphism
group is freely generated by the automorphism σ. �

Proposition 4.10. We have a homotopy equivalence |Λ| ∼= CP∞ ∼= BU(1).

Proof. By Proposition 4.7 and Lemma 4.9, the homotopy fiber of the map |Λ∞| → |Λ| is homotopy
equivalent to |ptZ|, and since |Λ∞| is contractible, this implies that |ptZ| is homotopy equivalent
to the loop space of |Λ|. But ptZ is a groupoid, so that |ptZ| is equivalent to the classifying space
BZ ∼= S1. This means that |Λ| has only one non-trivial homotopy group, namely π2(|Λ|) = Z, so
that it must be the Eilenberg-MacLane space K(Z, 2) = CP∞. �

As a corollary, we see that the derived category Dlc(Λ, k) of complexes of cyclic objects with
locally constant homology objects is equivalent to the derived category of complexes of sheaves of
CP∞ with locally constant homology sheaves. The objects in this latter category are also know as
U(1)-equivariant constructible sheaves on the point pt.
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Lecture 5.
The structure of Dlc(Λ, k) and Fun(Λ, k); Dold-Kan equivalence, mixed
complexes. Cyclic bimodules. Cyclic homology as a derived functor.

5.1 The structure of the category Fun(Λ, k).

In the last lecture, we have proved that the geometric realization |Λ| of the Connes’ cyclic category
is homotopy equivalent to the infinite projective space CP∞. In particular, we have an equivalence

Dlc(Λ, k) ∼= Dlc(Shv(CP∞, k)),

where Dlc means “the full subcategory in the derived category D(Λ, k) spanned by complexes with
locally constant homology”, and similarly in the right-hand side. The category in the right-hand
side is also equivalent to the derived category of S1-equivariant sheaves on a point. Besides these
topological descriptions, there is also the following very simple combinatorial description.

Let Dper(k -Vect) be the periodic derived category of the category k -Vect – namely, Dper(k) is
the triangulated category obtained by considering the category of quadruples 〈V+, V−, d+, d−〉 of two
vector spaces V+, V− and two maps d+ : V+ → V−, d− : V− → V+ such that d+ ◦ d− = d− ◦ d+ = 0,
and inverting quasiisomorphisms. Equivalently, Dper(k) is the homotopy category of 2-periodic
complexes V q of k-vector spaces (with V+ = V2 q, V− = V2 q+1, and d+, d− being the components
of the differential). Just as the usual derived category D(k -Vect) has filtered version DF(k -Vect),
we define the filtered periodic category DFper(k -Vect) by considering 2-periodic filtered complexes
F

q
V q such that F qV q ∼= F q+1V q+2 – note the shift in the filtration! Then for any cyclic vector space

E ∈ Fun(Λ, k), the periodic cyclic homology HP q(E) equipped with the Hodge filtration is an
object in DFper(k -Vect), so that we have a natural functor

HP q(−) : D(Λ, k)→ DFper(k -Vect).

Exercise 5.1. Show that the induced functor Dlc(Λ, k)→ DFper(k -Vect) is an equivalence of cat-
egories. Hint: both categories are generated by k, so that it suffices to compare Ext

q
(k, k).

Thus an object Dlc(Λ, k), when compared to its periodic cyclic homology equipped with the
Hodge filtration, contains exactly the same amount of information, we lose nothing by taking
HP q(−). What can be said about non-constant cyclic vector spaces — in other words, how com-
plicated is the category Fun(Λ, k)? Unfortunately, the answer is “very complicated”.

This might not seem surprising, because the category Λ contains so many maps. However, so
does the category ∆. Nevertheless, there is the following surprising fact, discovered about 50 years
ago independently by A. Dold and D. Kan.

Theorem 5.1 (Dold,Kan). The abelian category Fun(∆opp, k) of simplicial k-vector spaces is
equivalent to the category C≤0(k) of complexes of k-vector spaces cocentrated in non-positive degrees.

Proof. There are many proofs, but they all involve either non-trivial computations, or non-trivial
combinatorics. We will not give any of them, but we will indicate what the equivalence is. Given
a simplicial vector space E ∈ Fun(∆opp, k), we take its stadrd complex E q, and we replace it with
its normalized quotient N(E) q given by

N(E)i = Ei/
∑

Im sj,

where sj : Ei−1 → Ei are the degeneration maps (induced by surjective maps [i]→ [i− 1]). �
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There exist also various generalizations of the Dold-Kan equivalence. First, the category
Fun(∆, k) of co-simplicial vector spaces is equivalent to the category C≥0(k) of complexes con-
centrated in non-negative degrees (this is not surprising, since Fun(∆, k) and Fun(∆opp, k) are
more-or-less dual to each other). One can also consider the subcategory ∆+ ⊂ ∆ with the same
objects, and only those maps [n] → [m] which send the first element to the first element. Then
Fun(∆opp

+ , k) is equivalent to the category of k-vector spaces graded by non-positive integers (re-
striction to ∆opp

+ ⊂ ∆opp corresponds to forgetting the differential in the complex). Finally, if one
“truncates” ∆ and considers the full subcategory ∆≤n ⊂ ∆ spanned by objects [1], . . . , [n], then
Fun(∆opp

≤n , k) is equivalent to the category C [1−n,0](k) of complexes concentrated in degrees from
1− n to 0, and similarly for Fun(∆≤n, k) and for ∆+.

Now, we have a natural embedding ∆opp ⊂ Λ, so that we have a flag of subcategories ∆opp
+ ⊂

∆opp ⊂ Λ. We know that Λ is self-dual, Λ ∼= Λopp. One checks easily that ∆opp
+ is preserved by this

self-duality — we have ∆opp
+
∼= ∆+. The intermediate category ∆opp ⊂ Λ is not preserved, so that

by duality, we get an embedding ∆ ⊂ Λ. All in all, we have the following diagram.

∆+
∼= ∆opp

+ −−−→ ∆y y
∆opp −−−→ Λ ∼= Λopp.

Applying restrictions and the Dold-Kan equivalence, we associate to any cyclic vector space E ∈
Fun(Λ, k) a complex E q ∈ C≤0(k) and a complex E

q ∈ C≥0(k), and since the diagram of categories
commutes, we also have natural identifications Ei

∼= Ei as k-vector spaces. In other words, we have
a collection Ei, i ≥ 0 of k-vector spaces and two differentials b : Ei → Ei−1, B : Ei → Ei+1. One
can check that these differentials anti-commute, bB + Bb = 0. The result is what is known in the
literature as a mixed complex.

Definition 5.2. A mixed complex E q is a collection Ei, i ≥ 0 of k-vector spaces and two maps
b : Ei → Ei−1, B : Ei → Ei+1 such that b2 = B2 = bB + Bb = 0.

Mixed complexes form a nice abelian category M≤0(k) which is not much more complicated
than the category of complexes C≤0(k), and we have a comparison functor Fun(Λ, k) → M(k).
But the obvious analog of the Dold-Kan Theorem is wrong — the comparison functor is not an
equivalence.

The only fact which is true is the following: define the derived category D(M(k)) of mixed
complexes by inverting the maps which are quasiisomorphisms with respect to the differential b.
Then the comparison functor Dlc(Λ, k)→ D(M(k)) is an equivalence (and D(M(k)) is equivalent to
DFper(k) – this is an instance of the so-called Koszul, or S−Λ duality). However, even when we pass
to the restricted categories Fun(Λ≤n, k), M [1−n,0](k), with the obvious notation, the comparison
functor probably is an equivalence only if k has characteristic 0. And for non-locally constant
functors, things only get worse.

To sum up: while in the literature on cyclic homology people often use mixed complexes as
a basic object, especially in characteristic 0, in reality, cyclic vector spaces contain strictly more
information. And we will see later at least one example where this extra information is crucially
important.

5.2 Projecting to Dlc(Λ, k).

One moral of the above story is that it is much preferable to work with the locally constant
subcategory Dlc(Λ, k) rather then with the whole category D(Λ, k). An immediate problem is
that the cyclic vector space A# ∈ Fun(Λ, k) defined for an associative unital k-algebra A is not
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locally constant unless A = k. However, we can force it to be locally constant. Namely, the
embedding Dlc(Λ, k) ⊂ D(Λ, k) admits a left-adjoint functor lc : D(Λ, k) → Dlc(Λ, k). Since
Dlc(Λ, k) ⊂ D(Λ, k) is a full subcategory, lc is identical on D(Λ, k), and since it contains the constant
cyclic vector space kΛ which corepresents the homology functor, the homology functor factors
through lc, so that for any E ∈ D(Λ, k), we have a canonical isomorphism H q(Λ, E) ∼= H q(Λ, lc(E)).

The existence of the adjoint functor lc is easy to prove by general nonsense, but it is perhaps
more interesting to use the following explicit construction.

Consider the category Λopp × Λ, and consider the functor I ∈ Fun(Λopp × Λ, k) spanned by the
Hom-functor: we set

I([n]× [m]) = k [Λ([m], [n])] .

Denote by π, πo the natural projections π : Λopp × Λ→ Λ, π : Λopp × Λ→ Λopp. We claim that for
any E ∈ Fun(Λ, k), we have a natural isomorphism

(5.1) H q(Λopp × Λ, I⊗ π∗E) ∼= H q(Λ, k).

Indeed, by an obvious version of the Künneth formula, we can compute the homology in the left-
hand side first along Λopp, and then along Λ. Then it suffices to show that for any [n] ∈ Λ, we have
a functorial isomorphism

H q(Λopp, E([n])⊗ I|Λopp×[n]) ∼= E([n]).

But here we can take E([n]) out of the brackets, so that it suffices to consider the case E([n]) = k,
and the restriction IΛopp×[n] is nothing but the representable functor kΛopp

[n] , so that its homology is
indeed isomorphic to k concentrated in degree 0.

But on the other hand, we can compute the left-hand side of (5.1) by first using the projection
πo. By general nonsence, we have

H q(Λopp × Λ, I⊗ π∗E) ∼= H q(Λopp, L
q
πo

! (I⊗ π∗E)),

and since Λ ∼= Λopp, we can define lc(E) = L
q
πo

! (I⊗ π∗E)). All we have to do is to prove that it is
locally constant. Indeed, by the Künneth formula, for any [n] ∈ Λopp ∼= Λ we have

lc(E)([n]) = H q(Λ, k[n] ⊗ E),

where the representable functor k[n] is the restriction of I to [n] × Λ ⊂ Λopp × Λ. But k[n] is clean
in the sense of Definition 3.3, so that

H q(Λ, k[n] ⊗ E) ∼= H q(∆opp, k∆opp

[n] ⊗ j∗E).

By the well-known Künneth formula for simplicial vector spaces, the right-hand side is canonically
isomorphic to

H q(∆opp, k∆opp

[n] ) ∼= H q(∆opp, E)⊗H q(∆opp, E),

which is manifestly independent of [n].

5.3 Cyclic bimodules.

If one writes down explicitly lc(E) by using the complex (3.3), the result is very similar to the “third
bicomplex” (3.5) for cyclic homology which we defined in Lecture 3. One can also clearly see why
that construction only worked in characteristic 0. The columns in (3.5) are naturally assembled

into a cyclic object, not in a simplicial one; when we simply imposed the differential B̃ on them,
we in effect forgot the cyclic structure and only considered the underlying simplicial structure. In
char 0, this did not matter – the cyclic group action on each column is actually trivial, so that we
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we compute H q(Λ, lc(E)) by (3.3), taking coinvariants with respect to τ can be omitted. In the
general case, we do need to compute honestly the cyclic homology H q(Λ, lc(E)).

However, the bicomplex (3.5), although it only worked in char 0, was very interesting for the
computation of the cyclic homology HC q(A) of an associative algebra A, because it had a version
where the bar resolution C q(A) of the diagonal A-bimodule could be replaced with an arbitrary
resolution P q (at least for the two rightmost columns). Now that we know the full truth, can we
perhaps give a version of that construction which is valid in any characteristic and for all columns,
not only the two rightmost ones?

It turns out that we can do even better — it is possible to obtain the whole lc q(A#) as an
object of Dlc(Λ, k) completely canonically, without any explicit choice at all, neither of a resolution
P q, nor of the homotopy ι, as in Lecture 3, part 3.5. Or rather, the choices do occur, but they
are all packed into a single choice of a projective resolution in some appropriate abelian category,
and cyclic homology is obtained as a derived functor on this abelian category (just as Hochschild
homology is the derived functor on the abelian category A-bimod of A-bimodules).

To construct this new category, which we call the category of cyclic A-bimodules, we use the
technique of fibered and cofibered categories explained in Lecture 4.

Assume given a small category Γ and a category C equipped with a cofibration π : C → Γ. Thus
for any [a] ∈ Γ, we have the fiber C[a], and for any map f : [a] → [b], we have a transition functor
f! : C[a] → C[b]. Denote by Sec(C) the category of sections Γ → C of the projection π : C → Γ.
Explicitly, an object M ∈ Sec(C) is given by a collection of objects M[a] ∈ C[a] for all [a] ∈ Γ, and
of transtion maps ιf : f!M[a] →M[b] for all f : [a]→ [b], subject ot natural compatibilities.

Proposition 5.3. Assume that all the fibers C[a] of the cofibration π : C → Γ are abelian, and all
the transition functors f! : C[a] → C[b] are left-exact. Then the category Sec(C) is abelian.

Sketch of a proof. To prove that an additive category is abelian, one has to show that it has kernels
and cokernels, and they satisfy some additional conditions (such as “the cokernel of the kernel is
isomorphic to the kernel of the cokernel). The kernel and cokernel of a map ϕ : M → N in Sec(C)
are taken fiberwise, Coker ϕ[a] = Coker ϕ[a], Ker ϕ[a] = Ker ϕ[a]. The transition maps of the kernel
are induced from those of M , and to construct the transtion maps for the cokernel, one uses the fact
that the transition functors f! are right-exact. All the extra conditions can be checked fiberwise,
where they follow from the assumption that all fibers are abelian. �

As we can see from its explicit description, the category Sec(C) is rather large. One can define a
smaller subcategory by only considering those sections that are Cartesian – that is, any f : [a]→ [b]
goes to a Cartesian map in C. Equivalently, in the explicit description above, all the transition
maps ιf : f!M[a] → M[b] must be isomorphisms. This is often a much smaller category, but it
need not be abelian (unless all the transition functors are exact, not just right-exact, which rarely
happens in practice). A reasonable thing to do is to consider the derived category D(Sec(C)) and
the full subcategory Dcart(Sec(C)) ⊂ D(Sec(C)) of complexes with Cartesian cohomology.

Assume now given an associative unital algebra A, and consider the category A-bimod of A-
bimodules. This is a unital tensor category: we have the (non-symmetric) associative tensor product
functor m : A-bimod×A-bimod→ A-bimod, M1×M2 7→M1⊗AM2. Moreover, we can also consider
the category A⊗2-bimod of A⊗2-bimodules, and the exterior product functor A-bimod×A-bimod→
A⊗2-bimod, M1 ⊗ M2 7→ M1 � M2 is a fully faithful embedding. The tensor product functor
then obviously extends to a right-exact functor m : A⊗2-bimod → A-bimod. Since the tensor
product on A-bimod is associative, we can iterate this and obtain the right-exact tensor product
functors mn : A⊗n-bimod → A-bimod for any n ≥ 1. For n = 0, we take A⊗0 to be k, and
m0 : k -Vect→ A-bimod is the functor which sends k to the unit object of A-bimod.
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What we want to do now is to take the construction of the cyclic vector space A#, and replace
the unital associative algebra A with the unital associative tensor category A-bimod. The result is
a category cofibered over Λ which we denote by A-bimod#. The fibers are given by

A-bimod#([n]) = A⊗n-bimod,

and the transition functors f! are induced by the multiplication functors mn by the same formula
(3.4) as in the definition of the cyclic vector space A#.

Definition 5.4. A cyclic A-bimodule M is a Cartesian section of the cofibration A-bimod# → Λ.

Explicitly, a cyclic A-bimodule M is given a collection of M[n] ∈ A⊗n-bimod, n ≥ 1, and tran-
sition maps between them. However, because all transition maps are isomorphisms, the bimodules
M[n], n ≥ 2 can be computed from the first bimodule M1 = M[1] — it suffices to apply the tran-
sition functor f! for some map f : [1] → [n]. Since such a map is not unique, extending a given
M1 ∈ A-bimod to a cyclic bimodule requires extra data. It is enough, for instance, to specify an A⊗2-
bimodule isomorphism τ : A�M →M�A such that the induced maps τ23 : A�A�M → A�M�A,
τ12 : A � M � A→M � A � A, τ23 : M � A � A→ A � A � M satisfy

(5.2) τ31 ◦ τ12 ◦ τ23 = id .

The category of cyclic A-bimodules is abelian, but this is an accident: the category that must
be abelian for general reasons is the category Sec(A-bimod#) of all sections of the cofibration
A-bimod# → A. Thus we consider the derived category DΛ(A-bimod) = D(Sec(A-bimod#)), and
we define the derived category of cyclic bimodules DΛlc(A-bimod) as the full subcategory

DΛlc(A-bimod) = Dcart(Sec(A-bimod#)) ⊂ D(Sec(A-bimod#)) = DΛ(A-bimod)

of complexes with Cartesian cohomology.
We note that even though the category Seccart(A-bimod#) of cyclic bimodules per se happens

to be abelian, its derived category is smaller than DΛlc(A-bimod). For instance, if A = k, so that
A⊗n = k for any n ≥ 0, with identical transition funcotrs, then Sec(A-bimod) is exactly equivalent
to Fun(Λ, k), and the Cartesian sections correspond to locally constant functors. But every locally
constant cyclic vector space is constant, while DΛlc(k-bimod) ∼= Dlc(Λ, k) is a non-trivial category.

5.4 Cyclic homology as a derived functor.

We now recall that the Hochschild homology H q(A, M) with coefficients in an A-bimodule M is
by definition the derived functor of the functor M 7→ A ⊗Aopp⊗A M , which can be equivalently
described as the following right-exact trace functor

tr(M) = M/{am−ma | a ∈ A, m ∈M}.

We prefer this description because it clearly has the following “trace property”: for any two A-
bimodules M , N , there exists a canonical isomorphism tr(M ⊗A N) ∼= tr(N ⊗ M). Even more
generally, for any A⊗n-module Mn, we can define

tr(Mn) = M/{am−mσ(a) | a ∈ A⊗n, m ∈Mn},

where σ : A⊗n → A⊗n is the cyclic permutation. These trace functors obviously commute with
the transition functors of the cofibered category A-bimod#, so that tr extends to a functor tr :
A-bimod# → k -Vect which sends every Cartesian map to an isomorphism of vector spaces.
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We can now apply the trace functor tr fiberwise, to obtain a Cartesian functor tr : A-bimod# →
k -VectΛ, where k -VectΛ = k -Vect×Λ is the constant cofibration with fiber k -Vect. This induces
a right-exact functor

tr : Sec(A-bimod#)→ Fun(Λ, k),

and since tr : A-bimod# → k -VectΛ is Cartesian, the derived functor L
q
tr : DΛ(A-bimod) →

D(Λ, k) sends DΛlc(A-bimod) into Dlc(Λ, k).

Definition 5.5. The cyclic homology HC q(A, M) of the algebra A with coefficients in some M ∈
DΛ(A-bimod) is given by

HC q(A, M) = H q(Λ, L
q
tr(M)).

In general, it is not easy to construct cyclic bimodules. However, one cyclic bimodule manifestly
exists for any algebra A — this is A#, with the diagonal A⊗n-bimodule structure on every A#([n]) =
A⊗n.

Proposition 5.6. For any algebra A, we have HC q(A, A#) ∼= HC q(A).

Proof. Notice that we can define a simpler notion of cyclic homology with coefficients in some
M ∈ DΛ(A-bimod) – we can forget the A⊗n-bimodule structure on M([n]), and treat M simply as
a complex of cyclic vector spaces. Denote H q(Λ, M) by HC ′q(A, M). We have obvious projection
maps M([n])→ tr(M([n])) which induce a functorial map

(5.3) HC ′q(A, M)→ HC q(A, M).

We have to show that this map is an isomorphism for M = A#. It suffices to prove that it is
an isomorphism for any M ∈ DΛ(A-bimod), or even for any M ∈ Sec(A-bimod#). We note that
the evaluation at [n] ∈ Λ induces a functor Sec(A-bimod) → A⊗n-bimod, which has a left-adjoint

i
[n]
! : A⊗n → Sec(A-bimod). Explicitly, for any A⊗n-bimodule P , we have

(5.4) i
[n]
! P ([m]) =

⊕
f :[n]→[m]

f!P.

If P is projective, then i
[n]
! P is projective in Sec(A-bimod) by adjunction, and Sec(A-bimod) obvi-

ously has enough projectives of this type, so it is enough to prove that (5.3) is an isomorphism for

M = i
[n]
! P . Even further, it is enough to consider objects P n ∈ Sec(A-bimod) given by

P n = i
[n]
! A⊗n ⊗ A⊗n,

where on the right-hand side we have the free A⊗n-bimodule with one generator.
Since P n is projective, we have Li tr(P n) = 0 for i ≥ 1, and tr(P n) ∈ Fun(Λ, k) is isomorphic

to A⊗n ⊗ k[n]; thus the right-hand side of (5.3) with M = P n is canonically isomorphic to A⊗n in
degree 0, and trivial otherwise. As for the left-hand side, we see from (5.4) that

P n([m]) =
⊕

f :[n]→[m]

A⊗(n+m).

In particular, it is clean, so that H q(Λ, P n) can be computed by the complex (3.3). We leave it to the
reader to check that the resulting complex P nq can be described as follows: if we take the augmented
bar resolution C q(A), Ci(A) = A⊗i+1 and consider the n-fold tensor power Cnq = C q(A)⊗n, then

P n
i = Cn

i+1

for any i ≥ 0. Since the whole complex Cnq , being the n-fold tensor power of the acyclic complex
C q(A), is itself acyclic, the complex P nq is a resolution for the 0-th term Cn

0 , which is again A⊗n. �
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Lecture 6.
Cyclic homology for general tensor categories. Morita-invariance. Exam-
ple: cyclic homology of a group algebra. Regulator map.

6.1 Cyclic homology for general tensor categories.

In the last lecture, we have constructed the derived category DΛlc(A-bimod) of cyclic bimodules
over an associative algebra A, and we have re-defined cyclic homology by means of a trace functor
tr : DΛlc(A-bimod)→ Dlc(Λ, k). The algebra A itself essentially only appeared in the construction
though the tensor category A-bimod of A-bimodules. A natural question is, can we do the same
construction for a more general tensor category C?

To start with, we need to construct a category C# cofibered over Λ. Here there is one problem:
there is no well-defined tensor product for general abelian categories. Namely, we can introduce
the following.

Definition 6.1. Assume given two abelian k-linear categories C1, C2. The tensor product C1 ⊗ C2
is a k-linear abelian category equipped with a functor C1 × C2 → C1 ⊗ C2 which is k-linear and
right-exact in each variable, and has the following universal property:

• for any k-linear abelian category C ′, any functor C1×C2 → C ′ which is k-linear and right-exact
in each variable factors through C1 × C2 → C1 ⊗ C2, and the facrorization is unique up to an
isomorphism.

The problem is, while the tensor product in this sense is obviously unique up to an equivalence,
it does not always exist. However, it does exist for categories of modules or bimodules: one can
show that for any k-algebras A, B, we have A-mod⊗B-mod ∼= (A⊗B)-mod, A-bimod⊗B-bimod ∼=
(A⊗B)-bimod – thus the category A⊗n-bimod which we used in the last lecture is actually A-bimod⊗n

in the sense of Definition 6.2. There are other interesting cases, too. Thus we simply impose this
as an assumption.

Definition 6.2. A k-linear abelian tensor category C is good if it has arbitrary sums, the tensor
product functor is right-exact in each variable, and for any n, there exists a tensor product C⊗n in
the sense of Definition 6.2.

Remark 6.3. Sometimes in the representation-theoretic literature, “tensor category” means “sym-
metric tensor category” – that is, the tensor product is not only bilinear, but also symmetric – and
tensor categories in the normal sense are called “monoidal”. The reason for this is completely un-
clear to me, and this is bad terminology – in the standard language of category theory, “monoidal”
does not imply that the tensor product is a bilinear functor.

Given a good k-linear unital tensor category C, we can literally repeat the construction of the
last lecture and obtain a category C# which is cofibered over Λ – the fiber (C#)[n] is the category
C⊗n, and the transition functors f! are obtained from the tensor product functors mn : C⊗n → C
(for n = 0, we take C⊗n = k -Vect, and m0 : k -Vect → C is the functor which sends k to the
unit object in C). Again, the category Sec(C#) of sections of the cofibration C# → Λ is abelian by
Proposition 5.3, so that we can consider the derived category DΛ(C) = D(Sec(C#)) and the full
triangulated subcategory DΛlc(C) = Dcart(Sec(C#)) spanned by Cartesian sections. We will call
DΛlc(C#) the cyclic envelope of C#.

Cyclic envelope only depends on the tensor category C. However, already to define Hochschild
homology HH q(C) of the category C, we need an extra datum – a right-exact “trace functor”.
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Definition 6.4. Assume given a good k-linear tensor category C. A trace functor on C is a functor
tr : C → k -Vect which is extended to a functor tr : C# → k -Vect in such a way that tr(f) is
invertible for any Cartesian map f in C#/Λ.

Explicitly, a trace functor is given by a functor tr : C → k -Vect and an isomorphism

(6.1) τ : tr(M ⊗N) ∼= tr(N ⊗M)

for any two objects M, N ∈ C. The isomorphism τ should be functorial in both M and N , and
satisfy the condition τ31 ◦ τ12 ◦ τ23 = id, as in (5.2). We leave it to the reader to check that such an
isomorphism τ uniquely defines an extension of tr to the whole category C#.

Given a good k-linear tensor category C equipped with a trace functor tr, we can repeat the
construction of the last lecture: we extend tr to a functor tr : Sec(C#) → Fun(Λ, k), and consider
the corresponding dervied functor L

q
tr : DΛ(C) → D(Λ, k). As before, it sends DΛlc(C) ⊂ DΛ(C)

into Dlc(Λ, k).

Definition 6.5. Hochschild homology HH q(C, tr) of the pair 〈C, tr〉 is given by

HH q(C, tr) = L
q
tr(I),

where I ⊂ C is the unit object. Cyclic homology HC q(C, tr) of the pair 〈C, tr〉 is given by

HC q(C, tr) = H q(Λ, L
q
tr I#),

where I# ∈ Seccart(C#) is the Cartesian section of C# → Λ which sends an object [n] ∈ Λ to
I�n ∈ C⊗n, the n-th power of the unit object I ∈ C.

Of course, in the case C = A-bimod, tr as in the last lecture, we have HC q(A-bimod, tr) =
HC q(A, A#) = HC q(A) by virtue of Proposition 5.6.

6.2 Morita-invariance of cyclic homology.

As an application of the general formalism developed above, we prove that Hochschild and cyclic
homology of an associative algebra A only depends on the category A-mod of left A-modules. This
is known as Morita invariance.

A typical situation is the following. Assume given two k-algebras A, B, and a k-linear functor
F : A-mod → B-mod. Assume that F is right-exact and commutes with infinite direct sums.
Consider the B-module P = F (A). Since EndA(A) = Aopp, P is not only a left B-module, but also
a right A-module – in other words, an A − B-bimodule. By definition, we have F (A) = A ⊗A P ;
since F is right-exact and commutes with arbitrary sums, the same is true for any M ∈ A-mod –
the bimodule P represents the functor F in the sense that we have a functorial isomorphism

F (M) ∼= M ⊗A P.

If F is an equivalence of categories, then the inverse equivalence F−1 is of course also right-exact and
commutes with sums; thus we have a B−A-bimodule P o representing F−1, and since F ◦F−1 ∼= Id,
F−1 ◦ F ∼= Id, we have isomorphisms

(6.2) A ∼= P ⊗B P o ∈ A-bimod, B ∼= P o ⊗A P ∈ B-bimod.

Proposition 6.6. Assume given two associative k-algebras A, B, and an equivalence A-mod ∼=
B-mod. Then there exist natural isomorphisms HH q(A) ∼= HH q(B), HC q(A) ∼= HC q(B).
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Proof. As we have already proved, every right-exact k-linear functor G : A-mod → A-mod which
commutes with sums is represented by an A-bimodule Q. Conversely, every Q ∈ A-bimod represents
such a functor. Tensor product of bimodules corresponds to the composition of functor. Therefore
the k-linear tensor category A-bimod only depends on the k-linear abelian category A-mod, and
can be recovered as the category of endofunctors of A-mod of a certain kind (k-linear, right-exact,
preserving sums). Thus in our situation, we have a natural equivalence F : A-bimod ∼= B-bimod
of k-linear abelian tensor categories. It induces an equivalence of the corresponding categories of
cyclic bimodules. To finish the proof, it suffices to prove that the equivalence A-bimod ∼= B-bimod
is compatible with the natural trace functors on both side. This is obvious: for any M ∈ A-bimod,
we have

tr(M) = A⊗Aopp⊗A M ∼= B ⊗Bopp⊗B (P ⊗ P o)⊗Aopp⊗A M ∼= B ⊗Bopp⊗B F (M) = tr(F (M)),

where P and P o are as in (6.2). �

6.3 Example: group algebras

Traditionally, in every exposition of cyclic homology, the authors devote some time to one very
special case, that of a group algebra. I don’t really know why — whether it’s because this is needed
to construct the regulator map from higher algebraic K-theory, or because there are interesting
new things special for the group algebra case, or for some other reason. But let me follow the
tradition. This will also give us an example where the general theory of cyclic homology for tensor
categories is applied to a tensor category which is not a category of bimodules.

Assume given a group G, and consider the group algebra k[G]. This is an associative unital
algebra, so it has Hochschild and cyclic homology, and the category of k[G]-bimodules is a tensor
category. However, since G is a group, the category G-mod = k[G]-mod of representation of G
a.k.a. left k[G]-modules is a tensor category in its own right. Moreover, there is an obvious functor
γ : G-mod→ k[G]-bimod which sends a representation V ∈ G-mod to a functor G-bimod→ G-bimod
given by M 7→ M ⊗ V (here we use the interpretation of k[G]-bimodules as endofunctors of the
category G-mod). This functor is obviously exact and obviously tensor. Explicitly, it is given by

γ(V ) = V ⊗R,

where we denote R = k[G], the left k[G]-action on V ⊗R is through V and R, and the right action
is through R: we have g1(v ⊗ g)g2 = g1v ⊗ g1gg2. If we have two representations V1, V2 ∈ G-mod,
the natural isomorphism γ(V1 ⊗ V2) ∼= γ(V1)⊗k[G] γ(V2) is given by the map

(6.3) V1 ⊗ V2 ⊗R→ (V1 ⊗R)⊗k[G] (V2 ⊗R)

which sends v1 ⊗ v2 ⊗ g to (v1 ⊗ 1)⊗ (v2 ⊗ g), where 1 ∈ G is the unity element.
Since the functor γ is tensor, the usual trace functor tr on k[G]-bimod gives by restriction a

trace functor trR = tr ◦γ on G-mod. Explicitly, it is given by

trR(V ) = (V ⊗R)/{g1v ⊗ g1g − v ⊗ gg1 | g, g1 ∈ G, v ∈ V },

and since the quotient is over all g and all g1, we might as well replace g with gg−1
1 . Then we have

trR(V ) = (V ⊗R)/{g1v ⊗ g1gg−1
1 − v ⊗ g} = (V ⊗R)G,

the G-coinvariants in the G-representation V ⊗R, where R is equipped with the adjoint G-action.
One can also check, and this is important, that the identification survives on the level of derived
functors — the natural map

(6.4) L
q
tr(γ(V ))→ L

q
trR(V ) = H q(G, V ⊗R)
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is an isomorphism in all degrees. For example, for the trivial representation V = k, we obtain an
isomorphism HH q(k[G]) ∼= H q(G, R). The isomorphism τR : trR(V1 ⊗ V2) ∼= trR(V2 ⊗ V1) of (6.1)
is induced by the usual symmetry isomorphism V1 ⊗ V2 → V2 ⊗ V1 and the isomorphism (6.3);
explicitly, τR is the map on the spaces of coinvariants induced by the map

(6.5) τ̃R : V1 ⊗ V2 ⊗R→ V2 ⊗ V1 ⊗R, τ̃R(v1 ⊗ v2 ⊗ g) = gv2 ⊗ v1 ⊗ g.

One easily checks that the map τ̃R defined in this way is actually a map of G-representations.
Applying the general theory of cyclic homology with coefficients, we extend this isomorphism

to an isomorphism
HC q(k[G]) ∼= HC q(G-mod, trR).

We now note that the adjoint representation R = k[G] canonically splits into a direct sum R =⊕
〈g〉R

g over the conjugacy classes 〈g〉 ⊂ G, Rg = k[〈g〉], and this induces a canonical direct sum
decomposition

(6.6) trR =
⊕
〈g〉

trg

of the trace functor trR: we set trg(V ) = (V ⊗ Rg)G, and since the isomorphism t̃r
R

of (6.5)
obviously respects the direct sum decomposition, the isomorphism τR induces isomorphisms (6.1)
for every component trg. Therefore we actually have a canonical direct sum decomposition of cyclic
homology:

(6.7) HC q(k[G]) =
⊕
〈g〉

HC q(G-mod, trg),

and a corresponding decomposition for HH q(k[G]).
However, we can say more. Consider the component tr1 in the decomposition (6.6) which

corresponds to the unity element 1 ∈ G. Then we have tr1(V ) = VG, the space of G-coinvariants,
and

HH q(G-mod, tr1) ∼= H q(G, k).

What can we say about the cyclic homology HC q(G-mod, tr1)? Looking at (6.5), we see that
the isomorphism tr1(V1 ⊗ V2) ∼= tr1(V2 ⊗ V1) for the trace functor tr1 is induced by the symmetry
isomorphism v1⊗v2 → v2⊗v1. We can rephrase this in the following way: since the tensor category
G-mod is symmetric, any right-exact functor F : G-mod → k -Vect canonically extends to a trace
functor F# : G-mod# → k -Vect, and it is this trace functor structure that tr1 has — we have
tr1 ∼= Coinv#, where Coinv : G-mod→ k -Vect is the coinvariants functor, V 7→ VG.

In other words, the identity functor Id : G-mod → G-mod can also be considered as a trace
functor, albeit with values in G-mod rather than k -Vect, so that we have a functor

L
q
Id : DΛ(G-mod)→ D(Λ, G-mod) = D(Λ× ptG, k),

where ptG is the category with one object with automorphism group G, and the trace functor L
q
tr1

factors through L
q
Id, so that we have

HC q(G-mod, tr1) = H q(Λ× ptG, L
q
Id(I#)).

Moreover, Id is exact, so that there is no need to take its derived functor, and we simply have
L

q
Id(I#) = Id(I#) = kΛ×ptG , the constant cyclic k-vector space with the trivial action of G. Thus

by the Künneth formule, we have

HC q(G-mod, tr1) ∼= H q(Λ× ptG), k) = H q(Λ, k)⊗H q(ptG, k).



Homological methods in Non-commutative Geometry – Tokyo, 2007/2008 39

Since H q(ptG, k) = H q(G, k) = HH q(G-mod, tr1), we conclude that the Hodge-to-de Rham spectral
sequence for the cyclic homology HC q(G-mod, tr1) canonically degenerates: we have a canonical
isomorphism

(6.8) HC q(G-mod, tr1) ∼= HH q(G-mod, tr1)[u−1]

for the unity component in the direct sum decomposition (6.7).

6.4 The regulator map

To finish today’s lecture, let me give the standard application of the above computation of groups
algebras: I will construct the higher regulator a.k.a. higher Chern character map from Quillen’s
higher K-theory to cyclic homology.

Recall that to define higher K-theory of an algebra A, one considers the group GL∞(A) =
lim→GLN(A) of infinite matrices over A and its classifying space BGL∞(A). This is of course
an Eilenberg-MacLane space of type K(π, 1). However, Quillen defined a certain very non-trivial
operation called the plus-construction with replaces a topological space X with another topological
space X+ so that the homology is the same, H q(X, Z) ∼= H q(X+, Z), but X+ has an abelian
fundamental group. Then by definition, higher K-groups of A are given by

K
q
(A) = π q(BGL∞(A)+),

the homotopy groups of the plus-construction BGL∞(A).
These groups are very hard to compute (not surprisingly, since homotopy groups in general are

hard to compute). Fortunately, to construct the regulator, we do not need to do it. Namely, for
any topological space X, there exists a canonical Hurewitz map π q(X) → H q(X). The regulator
map factors through the Hurewitz map for BGL+

∞, so that the source of the map we will construct
is actually the homology H q(BGL+

∞). At this point, we can also get rid of the plus-construction:
by its very definition, H q(X) = H q(X+), so that H q(BGL+

∞) = H q(BGL∞) = H q(GL∞, Z), the
homology of the group GL∞(A) with trivial coefficients. In fact, our map will further factor through
H q(GL∞(A), k).

What is the natural target of the regulator map? Comparison with the Chern character map
in algebraic geometry suggests at first that this should the de Rham cohomology groups H

q
DR(−)

— in our situation, these correspond to the periodic cyclic homology groups HP q(A). However,
it is known that the Chern character actually behaves nicely with respect to the Hodge filtration
— the Chern character map K0(X) →

⊕
i H

2i
DR(X) for an smooth algebraic variety X actually

factors through
⊕

i F
iH2i

DR(X). In the non-commutative situation, this corresponds to taking the
0-th graded piece of the Hodge filtration on HP q(A). This has its own name.

Definition 6.7. The negative cyclic homology HC−q (A) of an algebra A is the 0-th term F 0HP q(A)
of the Hodge filtration on HP q(A).

If we compute HP q(A) by the standard periodic bicomplex, then computing HC−q (A) amount
to removing all the columns to the left of the 0-th one — as opposed to the usual HC q(A), where
we remove everything to the right. This explains the adjective “negative”.

So, what we want to do is to construct a map H q(GL∞(A), k) → HC−q (A). This is done in
three steps.

First, fix some integer N , and consider the group algebra k[GLN(A)]. This has a natural map
into the algebra MatN(A) of N×N -matrices in A – an element g ∈ GLN(A) goes to itself considered
as an element in MatN(A). The map of algebras induces a map of negative cyclic homology; passing
to the limit, we obtain a map

lim
→

HC−q (k[GLN(A)])→ lim
→

HC−q (MatN(A)).
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Second, we observe that by Morita-invariance of cyclic homology, the directed system in the right-
hand side is actually constant — we have HC−q (MatN(A)) ∼= HC−q (A) for any N . Thus we have
constructed a map

lim
→

HC−q (k[GLN(A)])→ HC−q (A).

Finally, we use the direct sum decomposition (6.7) — we take the graded piece of (6.7) corresponding
to the unity element 1 ∈ GLN(A), and apply the canonical Hodge-to-de Rham degeneration (6.8).
This gives a canonical map

H q(GL∞(A), k) = lim
→

H q(GLN(A), k)→ lim
→

HC−q (k[GLN(A)]).

Composing the two maps above, and plugging in the Hurewitz map, we obtain the higher regulator
map K q(A)→ HC−q (A).
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Lecture 7.
Cartier isomorphism in the commutative case. The categories Λp. Frobe-
nius and quasi-Frobenius maps. Non-commutative case: the Cartier iso-
morphism for algebras with a quasi-Frobenius map. Remarks on the gen-
eral case.

7.1 Cartier isomorphism in the commutative case.

The goal of this lecture is to explain the construction of the so-called Cartier isomorphism for
algebras over a finite field k. We start by recalling what happens in the commutative case.

Fix a finite field k of characteristic p = char k, and consider a smooth affine variety X = Spec A
over k. Assume that p > dim X, and consider the de Rham complex Ω

q
X . This complex behaves

very differently from what we have in characteristic 0. For instance, in characteristic 0, a function
f is closed with respect to the de Rham differential if and only if it is locally constant. In our
situation, however, the p-th power ap of any a ∈ A is closed: we have dfp = pfp−1df = 0. About
fifty years ago, P. Cartier has shown that this gives all the closed functions, and moreover, the
situation in higher degrees is similar — for any n ≥ 0, there exists a canonical Cartier isomorphism

C : Hn
DR(X) ∼= Ωn

X(1)

between the de Rham cohomology group Hn
DR(X) and the space Ωn

X(1) of n-forms on the so-called

“Frobenius twist” X(1) = Spec A(1) of the variety X — A(1) coincides with A as a ring, but the
k-algebra structure is twisted by the Frobenius automorphism of the field k.

Let us briefly sketch the construction of the inverse isomorphism C−1 : Ωn
X(1) → Hn

DR(X) (this is
simpler). Consider the ring W (k) of Witt vectors of the field k — that is, the unramified extension

of Zp whose residue field is k. Since X is an affine variety, we can lift it to a smooth variety X̃ over

W (k) so that X = X̃ ⊗W (k) k. Moreover, we can lift the Frobenius map F : X → X(1) to a map

F̃ : X̃ → X̃(1), where X̃(1) means the twist with respect to the Frobenius automorphism of W (k).
For any 1-form fdg ∈ Ω1eX , we have

F̃ ∗(fdg) = fpdgp mod p,

so that the pullback map F̃ ∗ : Ω1eX(1)
→ Ω1eX is divisible by p, and cosequently, F̃ ∗ on ΩneX(1)

is divisible
by pn. Let us make this division and consider the map

F : Ω̃
qeX(1) → Ω

qeX
given by F = 1

pn F̃ ∗ in degree n, where Ω̃
qeX(1)

is the de Rham complex of the variety X̃(1) with
differential multiplied by p. Then it is not difficult to check — for instance, by a computation in
local coordinates — that the map F is a quasiisomorphism. Reducing it modulo p, we obtain a
quasiisomorphism ⊕

n

Ωn
X(1)
∼= Ω

q
X ,

where the differential in the left-hand side, being divisible by p, reduces to 0. One then checks that
the components of this quasiisomorphisms in individual degrees do not depend on our choices —
neither of the lifting X̃, nor on the lifting F̃ . These are the inverse Cartier maps.

We note that the Cartier maps are not easy to write down by an explicit formula even when
X is a curve, expect for one especially simple case — and contrary to the expectations, the simple
case is not the affine line X = Spec k[t], but the multiplicative group X = Spec k[t, t−1]. In this
case, we have

C−1

(
f

dt

t

)
= fp dt

t
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for any f ∈ k[t, t−1]. Analogously, in dimension n, we have a similar explicit formula for the torus
X = T = Spec k[L], the group algebra of a lattice L = Zn.

7.2 The categories Λp.

To generalize this construction to the non-commutative case, we need one piece of linear algebra
which we now describe.

Recall that in the combinatorial description, the cyclic category Λ was obtained as a quotient
of the category Λ∞: for any [m], [n] ∈ Λ, we have Λ([n], [m]) = Λ∞([n], [m])/σ. For any positive
integer l, we can define a category Λl by a similar procedure: Λl has the same objects as Λ, and we
set

Λl([n], [m]) = Λ∞([n], [m])/σl

for any [n], [m] ∈ Λl. We have an obvious projection π : Λl → Λ; just as the projection Λ∞ → Λ,
this is a connected bifibration whose fiber is the groupoid ptl with one object and Z/lZ as its
automorphism group. One the other hand, we also have an embedding i : Λl → Λ which sends
[n] ∈ Λl to [nl] ∈ Λ. Just as for Λ, the embedding j : ∆opp → Λ∞ induces an embedding
jl : ∆opp → Λl.

It turns out that most of the facts about the homology of the category Λ immediately generalize
to Λl, with the same proofs. In particular, for any E ∈ Fun(Λl, k), the homology H q(Λl, E) can be
computed by a bicomplex

(7.1)

. . . −−−→ E([1])
id−−−→ E([1])

id−τ−−−→ E([1])xb

xb′

xb

. . . −−−→ E([2])
id +···+τ l−1

−−−−−−−→ E([2])
id−τ−−−→ E([2])xb

xb′

xb

. . . . . . . . . . . .xb

xb′

xb

. . . −−−→ E([n])
id +τ+···+τ ln−1

−−−−−−−−−→ E([n])
id−τ−−−→ E([n]),xb

xb′

xb

we have a periodicity map H q+2(Λl, E)→ H q(Λl, E) which fits into a Connes’ exact sequence

H q(∆opp, j∗l E) −−−→ H q(Λl, E)
u−−−→ H q−2(Λl, E) −−−→ ,

and the periodicity map u is induced by the action of the generator u of the cohomology algebra
H

q
(Λl, k) ∼= k[u]. As in Lecture 4, this generator admits an explicit Yoneda representation by a

length-2 complex jopp
l∗ jopp∗

l k → jl!j
∗
l k. Moreover it is easy to check that this complex coincides with

the pullback of the analogous complex in Fun(Λ, k) with respect to i : Λl → Λ, so that i induces
an isomorphism

i∗ : H
q
(Λ, k)→ H

q
(Λl, k)

sending the periodicity generator to the periodicity generator. However, there is also one new and
slightly surprising fact.

Lemma 7.1. For any associative unital algebra A over k, the natural map

M : H q(Λl, i
∗A#)→ H q(Λl, A#)

is an isomorphism.
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Proof. Since i∗ is compatible with the periodicity maps, it suffices to prove that the natural map

H q(∆opp, j∗l i
∗A#)→ H q(∆opp, j∗A#)

on Hochschild homology is an isomorphism. By definition, we have

j∗A#
∼= C q(A)⊗A⊗Aopp A,

where C q(A) is the bar resolution considered as a simplicial set. Writing down explicitly the
definition of i : Λl → Λ, one deduces that

j∗l i
∗A#

∼= (C q(A)⊗A · · · ⊗A C q(A))⊗A⊗Aopp A,

with l factors C q(A). But since C q(A) is a resolution of A, so is the product in the right-hand
side. We conclude that H q(∆opp, j∗l i

∗A#) is just the Hochschild homology HH q(A) computed by a
diffewrent resolution, and M is indeed an isomorphism. �

Exercise 7.1. Prove that the map M is an isomorphism for any cyclic vector space E ∈ Fun(Λ, k),
not just for A#. Hint: use the acyclic models method, and show that Fun(Λ, k) has a generator of
the form A#.

7.3 Frobenius and quasi-Frobenius maps.

Assume now given an associative unital algebra A over k; motivated by comparison theorems of
Lecture 2, we want to construct a Cartier isomorphism of the form

(7.2) HH q(A(1))((u)) ∼= HP q(A).

Unfortunately, the procedure that we have used in the commutative case breaks down right away:
there is no Frobenius map in the non-commutative case. The endomorphism F : A→ A given by
a 7→ ap is neither additive nor multiplicative for a general non-commutative algebra A.

To analyze the difficulty, split F into the composition

A(1) ϕ−−−→ A⊗p m−−−→ A

of the map ϕ given by ϕ(a) = a⊗p, and the multiplication map m : A⊗p → A, m(a1 ⊗ · · · ⊗ ap) =
a1 . . . ap. The map ϕ is not additive, nor multiplicative, but this is always so, be A commutative
or not. It is the map m that causes the problem: if A is commutative, it is an algebra map, and in
general it is not.

This is where the p-cyclic category Λ helps. Although the map m is not an algebra map, so that
no Frobenius map acts on A, we still can get an action of this nonexisting Frobenius on Hochschild
and cyclic homology by extending m to the isomorphism

M : H q(Λp, i
∗A#)→ H q(Λ, A#)

of Lemma 7.1. As for the map ϕ, which behaves very badly in all cases, it turns out that it can
be replaced by a different map within a certain large class of them. Namely, the only important
property of the map ϕ is the following.

Lemma 7.2. For any vector space V over k, the map ϕ : V (1) → V ⊗p induces an isomorphism

Hi(Z/pZ, V (1)) ∼= Hi(Z/pZ, V ⊗p)

for any i ≥ 1, where the cyclic group Z/pZ acts trivially on V (1), and by the cyclic permutation on
V ⊗p.
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Proof. The homology of the cyclic group Z/pZ with coefficients in some representation M can be
computed by the standard periodic complex M q with terms Mi = M , i ≥ 0, and the differentials
d− = 1 − σ in odd degrees and d+ = 1 + σ + · · · + σp−1 = (1 − σ)p−1 in even degrees, where σ is
the generator of Z/pZ. For the trivial representation V (1), d+ = d− = 0. The map ϕ obviously
sends V (1) into the σ-invariant subspace in V ⊗p, thus into the kernel of both d+ and d−. We have
to show that (1) ϕ becomes additive modulo the image of the corresponding differential d−, d+,
and (2) it actually becomes an isomorphism. Choose a basis in V , so that V = k[S] is the k-vector
space generated by a set S. Then V ⊗p = k[Sp]. Decompose Sp = S

∐
(S \ S), where S ⊂ Sp is

embedded as the diagonal, and consider the corresponding decomposition V ⊗p = V ⊕ V ′, where
V ′ = k[Sp \S]. This decomposition is Z/pZ-invariant, thus compatible with d+ and d−; morever, ϕ
obviously becomes an additive isomorphism if we replace V ⊗p with its quotient V ⊗p/V ′ = V . Thus
it suffices to prove that the complex which computes H q(Z/pZ, V ′) is acyclic in degrees ≥ 1. This
is obvious — the Z/pZ-action on Sp \ S is free. �

For a more natural formulation of Lemma 7.2, one can invert the periodicity endomorphism of
the homology functor H q(Z/pZ,−) to obtain the so-called Tate homology Ȟ q(Z/pZ,−) (this is the
same procedure that we used in passing from HC q(−) to HP q(−)). Then Lemma 7.2 claims that
ϕ induces a canonical isomorphism

Ȟ q(Z/pZ, V (1)) ∼= Ȟ q(Z/pZ, V ⊗p)

in all degrees. We will call it the standard isomorphism.

Definition 7.3. A quasi-Frobenius map for an associative unital algebra A over k is a Z/pZ-
equivariant algebra map Φ : A(1) → A⊗p which induces the standard isomorphism on Tate homology
Ȟ q(−).

Given an algebra A with a quasi-Frobenius map Φ, we can construct an inverse Cartier map
(7.2) right away. Namely, comparing the bicomplex (7.1) with the usual cyclic bicomplex (3.2), we
see that the only difference is that the differential 1 + τ + · · ·+ τn−1 is replaced with

1 + τ + · · ·+ τnp−1 = (1 + σ + ◦+ σp−1) ◦ (1 + τ + · · ·+ τn−1),

where we have used the fact that σ = τn. But for some E ′ ∈ Fun(Λp, k) of the form E ′ = π∗E,
E ∈ Fun(Λ, p), we have σ = 1, so that 1 + σ + ◦ + σp−1 = p = 0. Therefore we have a natural
identification

(7.3) HP q(π∗A(1)
# ) ∼= HH q(A(1))((u)),

where on the left-hand side we have a periodic version of the homology H q(Λp, π
∗A

(1)
# ). On the

other hand, the quasi-Frobenius map Φ induces a map Φ : π∗A# → i∗A#, which induces a map on
periodic homology. We define the inverse Cartier map C−1 as the map

(7.4) C−1 = M ◦ Φ : HH q(A(1))((u)) ∼= HP q(π∗A(1)
# )→ HP q(i∗A#)→ HP q(A).

We must say that this comparatively easy situation is quite rare — in fact, the only situation where
I know that a quasi-Frobenius map exists is the case of a group algebra A = k[G] of some group G
(one can take, for instance, the map Φ : k[G]→ k[Gp] = k[G]⊗p given by Φ(g) = g⊗p, g ∈ G). This
is perhaps not surprising, since in the commutative case, the situation was also explicit and simple
only for the torus A = k[L]. It remains to do three things.

(i) Prove that the map C−1 is an isomorphism.
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(ii) Compare it to the usual inverse Cartier isomoprhism in the commutative case.

(iii) Explain what to do when no quasi-Frobenius map is available.

I will give a sketch of (i) next, under an additional assumption that the algebra A has finite
homological dimension — it seems that this is a necessary assumption. I will leave (ii) as a not
very difficult but tedious exersize. As for (iii), this is unfortunately quite involved, and I cannot
really present the procedure here in any detail, however sketchy; let me just mention that the
only new thing in the general case is a certain generalization of the notion of a quasi-Frobenius
map, while everything that concerns cyclic homology per se remains more-or-less the same as in the
simple case. I refer the reader to Section 5 of my paper arXiv.math/0708.1574 for an introductory
exposition, with the detailed proofs given in arXiv.math/0611623.

7.4 Cartier isomorphism for algebras with a quasi-Frobenius map.

We assume given an associative algebra A/k with a quasi-Frobenius map Φ, and we want to prove
that the corresponding inverse Cartier map (7.4) is an isomorphism. We note that the map M
induces an isomorphism by Lemma 7.1, so that what we have to prove is that Φ also induces an
isomorphism on periodic cyclic homology.

We will need one technical notion. Note that the embedding j : ∆opp → Λp extends to an

embedding j̃ : ∆opp × ptp → Λp. Thus every E ∈ Fun(Λp, k) gives by restriction a simplicial Z/pZ-

representation j̃∗E ∈ Fun(∆opp × ptp, k) ∼= Fun(∆opp, Z/pZ-mod). By the Dold-Kan equivalence,

j̃∗E can treated as a complex of Z/pZ-representations.

Definition 7.4. An object E ∈ Fun(Λp, k) is small if j̃∗E is chain-homotopic to a complex of
Z/pZ-modules which is of finite length.

Lemma 7.5. Assume given a small E ∈ Fun(Λp, k) such that E([n]) is a free Z/pZ-module for
any [n] ∈ Λp (the action of Z/pZ is generated by σ = τn). Then we have

HP q(E) = 0.

Sktech of a proof. We have H q(Λp, E) = H q(Λ, L
q
π!E), and the Connes’ exact sequence for L

q
π!E

gives an exact triangle

H q−1(Λp, E) −−−→ H q(∆opp, j̃∗E) −−−→ H q(Λp, E)
π∗u−−−→ ,

where the connecting map is induced by the pullback π∗u ∈ H2(Λ, k) of the generator u ∈ H2(Λ, k).
Computing H2(Λp, k) by a cohomological version of the bicomplex (7.1), as in Lecture 4, we find
that π∗u = 0 (this is the same computation as in (7.3)). Therefore, to prove that

HP q(E) = lim
u←

H q(Λp, E)

vanishes, it suffices to prove the vanishing of

lim
u←

H q(∆opp × ptp, j̃
∗E),

where j̃∗u ∈ H2(∆opp × ptp, k) is the restriction of the periodicity generator u ∈ H2(Λp, k). Using
the Yoneda representation of u, we see that with respect to the Künneth isomorphism H2(∆opp ×
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ptp, k) ∼= H
q
(Z/pZ, k), the class j̃∗u corresponds to the periodicity generator of H2(Z/pZ, k).

Therefore in the spectral sequence

H q(∆opp, lim
u←

H q(Z/pZ, j̃∗E))⇒ lim
u←

H q(∆opp × ptp, j̃
∗E),

the limit in the left-hand side is the Tate homology Ȟ q(Z/pZ, j̃∗E). Since E is small, the spectral
sequence converges, and since E([n]) is a free Z/pZ-representation for every [n], the Tate homology
in question is equal to 0. �

Proposition 7.6. Assume given an associative algebra A equipped with a quasi-Frobenius map
Φ : A(1) → A⊗p, and assume that the category A-bimod of A-bimodules has finite homological
dimension. Then the Cartier map (7.4) for the algebra A is an isomorphism.

Proof. We first note that the object i∗A# ∈ Fun(Λp, k) is small in the sense of Definition 7.4. Indeed,
by assumption, the diagonal A-bimodule A admits a finite projective resolution P q. Therefore the
bar resolution C q(A) is chain-homotopic to a finite complex P q, its p-th power C q(A)⊗A · · ·⊗AC q(A)
is chain-homotopic to the finite complex P q⊗A· · ·⊗AP q, and the induced chain homotopy equivalence
between i∗A# and the finite complex

(P q ⊗A · · · ⊗A P q)⊗Aopp⊗A A

is obviously compatible with the Z/pZ-action. Moreover, π∗A# is also small. It remains to notice
that any quasi-Frobenius map Φ must be injective (otherwise it sends some element a ∈ A(1) =
Ȟ0(Z/pZ, A(1)) to 0), and its cokernel A⊗p/Φ(A⊗p) by definition has no Tate homology.

Exercise 7.2. Prove that for some k[Z/pZ]-module V , Ȟ q(Z/pZ, V ) = 0 if and only if V is free.
Hint: identifying k[Z/pZ] = k[t]/tp, σ 7→ 1 + t, show that V decomposes into a direct sum of
modules of the form k[t]/tl, 0 < l ≤ p, and check the statement for all l.

We conclude that A⊗p/Φ(A⊗p) is a free k[Z/pZ]-module. Therefore for every n, the module
A⊗pn/Φ⊗n(A(1)⊗n) is free, and has no Tate homology. This means that the cokernel i∗A#/Φ(π∗A#)
satisfies the assumptions of Lemma 7.5, and Φ indeed induces an isomorphism between HP q(π∗A#)
and HP q(i∗A#). �

Remark 7.7. In the smooth commutative case, the assumption that A-bimod has finite homolog-
ical dimension just means that A is of finite type over k. In the general case of the theorem, when
no quasi-Frobenius map is available, one actually needs to assume that the homological dimension
is less than 2p− 1. In the commutative case, this reduces to p > dim Spec A.
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Lecture 8.
Hochschild cohomology of an associative algebra and its Morita-invariance.
Hochschild cohomology complex. Multiplication and the Eckman-Hilton
argument. Derivations of the tensor algebra and the Gerstenhaber bracket
on Hochschild cohomology. Hochschild cohomology and deformations.
Quantizations. Kontsevich formality (statements).

8.1 Generalities on Hochschild cohomology.

Up to now, we were studying Hochschild homology of associative algebras and related concepts
— cyclic homology, regulator maps, and so on. We will now turn to the other half of the story:
Hochschild cohomology.

We recall (see Definition 1.1) that the Hochschild cohomology HH
q
(A, M) of an associative

unital algebra A over a field k with coefficients in an A-bimodule M ∈ A-bimod is given by

HH
q
(A, M) = Ext

q
A-bimod(A, M),

where A in the right-hand side is the diagonal bimodule A ∈ A-bimod. Hochschild cohomology of
an algebra A is its cohomology with coefficients in the diagonal bimodule, HH

q
(A) = HH

q
(A, A).

We note right away that the Hochschild cohomology groups HH
q
(A) are Morita-invariant —

that is, they only depend on the category A-mod of left A-modules. Indeed, all we need to compute
HH

q
(A) is the tensor abelian category A-bimod with its unit object A ∈ A-bimod; as we have seen

already in Lecture 6, these only depend on A-mod.
When A is commutative and X = Spec A is smooth, the Hochschild-Kostant-Rosenberg Theo-

rem (Theorem 1.2) provides a canonical identification

HH
q
(A) ∼= H0(X, Λ

qTX),

where TX is the tangent bundle to X. Roughly speaking, Hochschild cohomology is in the same
relation to Hochschild homology as vector fields are to differential forms. We note, however, that
to describe HH

q
(A), we need not only the tangent bundle TX , but all its exterior powers Λ

qTX , so
that Hochschild cohomology contains not only vector fields, but all the polyvector fields, too. In
the non-commutative setting, there is no reasonable way to work only with vector fields, we have
to treat all the polyvector fields as a single package.

Just as in the case of Hochschild homology, we can compute Hochschild cohomology HH
q
(A)

of an algebra A by using the canonical bar resolution C q(A) of the diagonal bimodule A. This gives
the Hochschild cohomology complex with terms

Hom(A⊗n, A), n ≥ 0,

where Hom means the space of all k-linear maps. Maps f ∈ Hom(A⊗n, A) are called Hochschild
cochains; we can treat an n-cochain as an n-linear A-valued form on A. The differential δ in the
Hochschild cohomology complex is given by
(8.1)

δ(f)(a0, . . . , an) = a0f(a1, . . . , an)−
∑

0≤j<n

(−1)jf(a0, . . . , ajaj+1, . . . , an)+(−1)n+1f(a0, . . . , an−1)an.

For example, if f = a ∈ A is a 0-cochain, then δ(f) is given by δ(f)(b) = ab− ba; if f : A→ A is a
1-cochain, then we have

δ(f)(a, b) = af(b) + f(a)b− f(ab).

We conclude that the space HH0(A) ⊂ A of Hochschild 0-cocycles is the center of the algebra A;
the space of Hochschild 1-cocycles is the space of all derivations f : A → A (that is, maps that
satisfy the Leibnitz rule f(ab) = af(b)+ f(a)b). The Hochschild cohomology group HH1(A) is the
space of all derivations A→ A considered modulo the inner derivations given by b 7→ ab− ba.
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8.2 Multiplication and the Eckman-Hilton argument.

By definition, Hochschild cohomology HH
q
(A) = Ext

q
(A, A) of an associative unital algebra A is

equipped with an additional structure: an associative multiplication, given by the Yoneda product
on Ext-groups.

However, the abelian category A-bimod is a tensor category, and the diagonal bimodule A ∈
A-bimod is its unit object. This defines a second multiplication operation on HH

q
(A): given two

elements α, β ∈ Ext
q
(A, A), we can consider their tensor product α⊗A β ∈ Ext

q
(A, A).

Both multiplications are obviously associative, and it seems that this is all we can claim. How-
ever, a moment’s reflection shows that more is true.

Lemma 8.1. The two multiplications on Hochschild cohomology HH
q
(A) are the same, and more-

over, this canonical multiplication is (graded)commutative.

Proof. It is easy to see that the two multiplications we have defined obey the following distribution
law:

(8.2) (α1 ⊗A α2) · (β1 ⊗A β2) = (−1)deg α2 deg β1α1β1 ⊗A α2β2,

for any α1, α2, β1, β2 ∈ HH
q
(A). This formally implies the claim:

αβ = (α⊗A 1) · (1⊗A β) = (α · 1)⊗A (1 · β) = α⊗A β,

and similar for the commutativity, which we leave to the reader. �

This observation is known as the Eckman-Hilton argument: two associative multiplications
which commute according to (8.2) are commutative and equal. It first appeared in algebraic
topology — essentially the same argument shows that the homotopy groups πi(X) of a topological
space X are abelian when i ≥ 2. Although the Eckman-Hilton argument is very elementary, it
captures an essential feature of the whole story: in fact, all the results about Hochschild cohomology
can be deduced from an elaboration of this semi-trivial observation. A good reference for this is a
paper by M. Batanin, arXiv:math/0207281. In these lectures, we will not attempt such an extreme
treatment and follow a more conventional path, only refering to the Eckman-Hilton argument when
it simplifies the exposition.

One example of this is an explicit description of the product in HH
q
(A) in terms of Hochschild

cochains. Writing down the Yoneda product in terms of Ext’s computed by an explicit resolution is
usually rather cumbersome, and the resulting formulas are not nice. However, the tensor product
f ⊗A g of two Hochschild cochains f : A⊗n → A, g : A⊗m → A is very easy to write down: it is
given by

(8.3) (f ⊗A g)(a1, . . . , an+m) = f(a1, . . . , an)g(an+1, . . . , an+m).

By Lemma 8.1, the Yoneda product is given by the same formula.

8.3 The Gerstenhaber bracket.

Recall now that the space of vector fields on a smooth algebraic variety has an additional structure:
the Lie bracket. It turns out that such a bracket, known as the Gerstenhaber bracket, also exists for
an arbitrary associative unital algebra A. To define it, we need to introduce a completely different
construction of the Hochschild cohomology complex.

Assume given a k-vector space V , and consider the free graded associative coalgebra T q(V )
generated by V placed in degree 1 — explicitly, we have

TnV = V ⊗n, n ≥ 0.
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Consider the graded Lie algebra DT
q
(V ) of all coderivations of the coalgebra T q(V ) — the notion

of a coderivation of a coalgebra is dual to that of a derivation of an algebra, and we leave it to the
reader to write down a formal definition. Then since the coalgebra T q(V ) is freely generated by V ,
every δ ∈ DT

q
(V ) is uniquely determined by its composition with the projection T q(V ) → V , so

that we have

(8.4) DT n+1(V ) ∼= Hom(V ⊗n, V ), n ≥ 0.

Lemma 8.2. Assume that char k 6= 2. A coderivation µ ∈ DT 1(V ) = Hom(V ⊗2, V ) satisfies
µ2 = 0 if and only if the corresponding binary operation V ⊗2 → V is associative.

Proof. Since µ is an odd derivation, µ2 = 1
2
{µ, µ} : T q+2(V ) → T q(V ) is also a derivation; thus it

suffices to prove that the map µ2 : V ⊗3 → V is equal to 0 if and only if the map µ : V ⊗2 → V is
associative. This is obvious: by the Leibnitz rule, we have

µ2(v1, v2, v3) = µ(µ(v1, v2), v3)− µ(v1, µ(v2, v3))

for any v1, v2, v3 ∈ V . �

Thus if we are given an associative algebra A, the product in A defines an element µ ∈ DT 1(A) =
Hom(A⊗2, A) such that {m, m} = 0. Then setting δ(a) = {µ, a} for any a ∈ DT

q
(A) defines a

differential δ : DT
q
(A) → DT

q+1(A) and turns DT
q
(A) into a graded Lie algebra. But as we can

see from (8.4), the space DT n(A) is exactly the space of Hochschild (n+1)-cochains of the algebra
A.

Exercise 8.1. Check that under the identification (8.4), the differential δ in DT
q
(A) becomes equal

to the differential in the Hochschild cohomology complex.

Thus the Hochschild complex for the algebra A becomes a graded Lie algebra, with a Lie bracket
of degree −1, and we get an induced graded Lie bracket on Hochschild cohomology HH

q
(A). This

is known as the Gerstenhaber bracket. Explicitly, the Gerstenhaber bracket {f, g} of two cochains
f : A⊗n → A, g : A⊗m → A is given by

(8.5)

{f, g}(a1, . . . , an+m−1) =
∑

1≤i<n

(−1)if(a1, . . . , g(ai, . . . , ai+m−1), . . . , an+m−1)

−
∑

1≤i<m

(−1)ig(a1, . . . , f(ai, . . . , ai+n−1), . . . , an+m−1).

Exercise 8.2. Prove this. Hint: use the Leinitz rule.

We note that if we take g = µ, (8.5) recovers the formula (8.1) for the differential δ in the
Hochschild cohomology complex. On the other hand, if both f and g are 1-cochains — that is,
k-linear maps from A to itself — then {f, g} : A→ A is their commutator, {f, g} = fg − gf . If f
and g are also 1-cocycles, that is, derivations of the algebra A, then so is their commutator {f, g}:
the Gerstenhaber bracket on HH1(A) is given by the commutator of derivations.

Thus we have two completely different interpretation of the Hochschild complex, and two natural
structures on it: the multiplication and the Lie bracket. These days, the corresponding structure
on HH

q
(A) is usually axiomatized under the name of a Gerstenhaber algebra.

Definition 8.3. A Gerstenhaber algebra is a graded-commutative algebra B
q

equipped with a
graded Lie bracket {−,−} of degree −1 such that

(8.6) {a, bc} = {a, b}c + (−1)deg b deg c{a, c}b

for any a, b, c ∈ B
q
.
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Exercise 8.3. Check that the Hochschild cohomology algebra HH
q
(A) equipped with its Gersten-

haber bracket satisfies (8.6), so that HH
q
(A) is a Gerstenhaber algebra in the sense of Definition 8.3.

We note that the definition of a Gerstenhaber algebra is very close to that of a Poisson algebra
— the difference is that the bracket has degree −1, and (8.6) acquires a sign. We will discuss this
analogy in more detail at a later time.

8.4 Hochschild cohomology and deformations.

By far the most common application of Hochschild cohomology is its relation to deformations of
associative algebras. We will explain this in the form of the so-called Maurer-Cartan formalism
popularized by M. Kontsevich.

Assume given an Artin local algebra S with maximal ideal m ∈ S and residue field k = A/m.

By an S-deformation Ã of an associative unital k-algebra A we will understand a flat S-algebra Ã
equipped with an isomorphism Ã/m ∼= A.

Assume given such a deformation Ã, choose a k-linear splitting A → Ã of the projection
Ã → Ã/m ∼= A, and extend it to an S-module map Ã ∼= A ⊗k S — since Ã is flat, this map is an
isomorphism. We leave it to the reader to check that Lemma 8.2 extends to flat S-modules, with
the same statement and proof. Then the multiplication map µ : Ã⊗S Ã→ Ã can be rewritten as

(8.7) µ = µ0 + γ ∈ Hom(A⊗2, A)⊗ S,

where µ0 is the multiplication map in A. If the splitting map A → Ã is compatible with the
multiplication, then γ = 0; but in general, it is a non-trivial correction term with values in
Hom(A⊗2, A)⊗m ⊂ Hom(A⊗2, A)⊗S. All we can say is that, since both µ0 and µ are associative,
by Lemma 8.2 we have {µ, µ} = 0 and {µ0, µ0} = 0. This can be rewritten as the Maurer-Cartan
equation

(8.8) δ(γ) +
1

2
{γ, γ} = 0,

where δ is the Hochschild differential of the algebra A. Conversely, every solution γ of the Maurer-
Cartan equation defines by (8.7) an associative product structure on the S-module A⊗k S.

This establishes the correspondence between S-deformations of the algebra A and m-valued
degree-1 solutions of the Maurer-Cartan equation in the differential graded Lie algebra DT

q
(A).

We denote the set of these solutions by MC(DT
q
(A), m); by definition, it only depends on the

differential graded Lie algebra DT
q
(A) and the local Artin algebra S with its maximal ideal m ⊂ S.

How canonical is this correspondence? There is one choice: that of an S-module identification
Ã ∼= A⊗ S. The set of all such identifications is a torsor over the algebraic group GLS,m(A) of all
S-linear invertible maps A⊗ S → A⊗ S which are equal to identity modulo m. Assume now that
char k = 0. Then we note that since S is local and Artin, this algebraic group is unipotent, and
therefore it is completely determined by its Lie algebra Hom(A, A)⊗m ∼= DT 0(A)⊗m. Changing

an identification Ã ∼= A⊗S changes the solution γ ∈MC(DT
q
(A), m), so that we have an action of

the group GLS,m(A) on MC(DT
q
(A), m). The corresponding action of its Lie algebra DT 0(A)⊗m

is easy to describe: an element l ∈ DT 0(A)⊗m sends µ to {µ, l}, which in terms of γ is given by

γ 7→ {µ0, l}+ {γ, l} = δ(l) + {γ, l},

where δ : DT 0(A)→ DT 1(A) is the differential in DT
q
(A).

This is the general pattern of deformation theory in the Maurer-Cartan formalism. To a defor-
mation problem, one associates a differential graded Lie algebra L

q
, which “controls” the problem

in the following sense: isomorphism classes of deformations over a local Artin base 〈S, m〉 are in
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one-to-one correspondence with solutions of the Maurer-Cartan equation in L1 ⊗ m, considered
modulo the natural action of the unipotent algebraic group corresponding to the nilpotent Lie
algebra L0 ⊗ m (because of this passage from a Lie algebra to a unipotent group, the formalism
only works well in characteristic 0). In the case of deformations of an associative algebra A, we
have just shown that the controlling differential graded Lie algebra is the Hochschild cohomology
complex DT

q
(A).

As an interesting special case, one can consider the so-called first-order deformations — that
is, one takes S = k[h]/h2, the algebra of dual numbers. Then m = k and m2 = 0, so that the
Lie algebra L0 ⊗ m ∼= L0 is abelian, the corresponding unipotent group is simply the vector space
L0 ⊗ m, and its action is given by γ 7→ γ + dl, l ∈ L0. On the other hand, the term {γ, γ} in the
Maurer-Cartan equation vanishes. Thus the set of isomorphism classes of deformations is naturally
identified with the degree-1 cohomology classes of the complex L

q
. We note that this special case

does not require the assumption char k = 0 — indeed, integrating an abelian Lie algebra to a
unipotent group does not require exponentiation, so that no denomitators occurs.

In particular, the first-order deformations of an associative algebra A are classified, up to an
isomorphism, by elements in the second Hochschild cohomology group HH2(A).

We also note that while we have introduce the Maurer-Cartan formalism in the case of a local
Artin base S, it immediately extends to complete deformations over a complete local Noetherian
base: the only difference is that the Lie algebra L

q⊗m should be replaced with its m-adic completion,
and its degree-0 term L

q ⊗m becomes not nilpotent but pro-nilpotent.

8.5 Example: quantizations.

A useful particular case of the deformation formalism described above is that of a commutative
algebra A: assume given a commutative algebra A, and assume that X = Spec A is a smooth
algebraic variety. Under the Hochschild-Kostant-Rosenberg isomorphism

HH
q
(A) = H0(X, Λ

qTX),

the group HH1(A) corresponds to the space of vector fields on X, and the Gerstenhaber bracket is
the usual Lie bracket of vector fields. The bracket between HH1(A) = H0(X, TX) and HH0(A) =
H0(X,OX) is given by the action of a vector field on the space of functions. The bracket on
HH i(A), i ≥ 2 is uniquely defined by (8.6); it is known as the Schouten bracket of polyvector fields.

Deformations of the algebra A are classified by HH2(A) = H0(X, Λ2TX), the space of bivector
fields on X. Such a field Θ ∈ H0(X, Λ2TX) defines a bracket operation {−,−} on OX by the rule

{f, g} = 〈df ∧ dg, Θ〉.

This bracket is obviously a derivation with respect to either of the arguments: we have {f1f2, g} =
f2{f1, g}+ f1{f2, g}. Moreover, it satisfies the Jacobi identity if and only if [Θ, Θ] = 0 with respect
to the Schouten bracket. In this case, Θ is called a Poisson bivector, and A acquires a structure of
a Poisson algebra.

Definition 8.4. A Poisson algebra is a commutative algebra A equipped with a Lie bracket {−,−}
such that {f1f2, g} = f2{f1, g}+ f1{f2, g} for any f1, f2, g ∈ A.

A natural source of Poisson algebra structures on A is given by its quantizations.

Definition 8.5. A quantization Ã of the algebra A is a flat complete associative unital k[[h]]-

algebra Ã equipped with an isomorphism Ã/h ∼= A.
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For any quantization Ã, there obviously exists a unique bracket {−,−} on A such that

(8.9) f̃ g̃ − g̃f̃ = h{f, g} mod h2

for any f, g ∈ A and arbitrary f̃ , g̃ ∈ Ã such that f̃ = f mod h, g̃ = g mod h. It is easy to check
that this bracket defines a Poisson algebra structure on A. On the other hand, Ã can be treated as
a k[[h]]-deformation of A, so that we have a solution γ ∈ Hom(A⊗2, A)[[h]] of the Maurer-Cartan
equation. Its leading term Θ ∈ Hom(A⊗2, A) is a Hochschild cocycle, thus gives a bivector on X.

Exercise 8.4. Check that the bracket on A defined by the bivector Θ is equal to the bracket given
by (8.9).

The equation [Θ, Θ] = 0 also immediately follows from the Maurer-Cartain equation.

8.6 Kontsevich formality: the statement.

For some time, an important open question was whether the above construction can be reversed:
given a Poisson algebra structure on a commutative smooth algebra A, can we extend it to a
quantization Ã? Or, equivalently: given an element Θ ∈ HH2(A) such that {Θ, Θ} = 0, can we
extend it to a solution of the Maurer-Cartan equation in DT

q
(A)[[h]]? A positive answer to this

was first conjectured and then proved by M. Kontsevich. In fact, he proved the following stronger
fact.

Theorem 8.6 (Kontsevich Formality Theorem). Let A = k[x1, . . . , xn] be a polynomial alge-
bra over a field k of characteristic 0. Then the DG Lie algebra DT

q
(A) is formal — that is DT

q
(A)

is quasiisomorphic to its cohomology HH
q+1(A) (the DG Lie algebra formed by the Hochschild

cohomology groups of A, with trivial differential).

Here the precise meaning of “quasiisomorphic” is the following: there exists a chain of DG Lie
algebras L

q
i and DG Lie algebra maps DT

q
(A) ← L

q
1 → L

q
2 ← · · · → HH

q+1(A) such that all
the maps induces isomorphisms on cohomology of the complexes. Unfortunately, in general there
does not exist a single DG Lie algebra quasiisomorphism HH

q+1(A)→ DT
q
(A) (in particular, the

canonical Hochschild-Kostant-Rosenberg map is not compatible with the bracket). However, this
is not important for the deformation theory.

Exercise 8.5. Check that for any local Artin 〈S, m〉, a DG Lie algebra quasiisorphism L
q
1 → L

q
2

between two DG Lie algebras L
q
1, L

q
2 induces a map between the solution sets MC(L

q
1, m) and

MC(L
q
2, m) of the Maurer-Cartan equation which identified the sets of equivalence classes of the

solutions.

This together with the Formality Theorem implies that quantizations of the algebra A are in one-
two one correspondence with equivalence classes of the solutions of the Maurer-Cartan equations in
the DG Lie algebra HH

q+1(A). However, since the differential in this algebra is trivial, the Maurer-
Cartan equation simply reads {Θ, Θ} = 0. In particular, any Poisson bivector on A canonically
gives such a solution.

There are two proofs of the Kontsevich Formality Theorem: the original proof of Kontsevich,
which is largely combinatorial, and a second proof by D. Tamarkin — this is more conceptual, but it
requires a much more detailed study of the the Hochschild cohomology complex DT

q
(A). Roughly

speaking, one proves an even stronger theorem: DT
q
(A) and HH

q+1(A) are quasiisomorphic not
only as DG Lie algebras, but as Gerstenhaber algebras. This stronger statement is actually easier; in
fact, Tamarkin shows without much difficulty that any Gerstenhaber algebra which has cohomology
algebra HH

q
(A) must be formal. The real difficulty in the proof is the following: a priori, the
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Hochschild cohomology complex DT
q
(A) is not a Gerstenhaber algebra — indeed, while it does

have a Lie bracket and a multiplication, the multiplication (8.3) is commutative only on the level
of cohomology, not on the nose. What precise structure does exist on DT

q
(A) is a subject of

the so-called Deligne Conjecture. We will return to this later, after introducing some appropriate
machinery.
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Lecture 9.
The language of operads. Poisson and associative operad. Gerstenhaber
operad and small discs. Braided algebras. Deligne Conjecture.

9.1 The language of operads.

These days, it has become common practice to use the language of the so-called operads to describe
various non-trivial algebraic structures such as that of a Gerstenhabe algebra. It must be mentioned
that the notion of an operad has been introduced 35 years ago by P. May essentially as a quick hack;
it is not very natural, and in many cases it is not quite what one needs, so that descriptions using
operads tend to be somewhat ugly and somewhat artificial. But at least, from the formal point of
view, everything is well-defined. We will only sketch most proofs. For a complete exposition which
covers much if not all the material in this lecture, I refer the reader, for instance, to the paper
arXiv:0709.1228 by V. Ginzburg and M. Kapranov which is now considered one of the standard
references on the subject (the paper was published in 1994, and I am grateful to V. Ginzburg who
finally put it on arxiv in 2007). Another reference is the foundational paper arXiv:hep-th/9403055
by E. Getzler and J.D.S. Jones, but this has to be used with care, since some advanced parts of it
were later found to be wrong.

To define an operad, let Γ be the category of finite sets, and let Γ[2] be the category of arrows
in Γ (objects are morphisms f : S ′ → S between S ′, S ∈ Γ, morphisms are commutative squares).
Then Γ has a natural embedding into Γ[2]: every finite set S has a canonical morphism pS : S → pt
into the finite set pt ∈ Γ with a single element. We note that every f ∈ Γ[2], f : S ′ → S canonically
decomposes into a coproduct

(9.1) f =
∐
s∈S

f s,

where f s ∈ Γ[2] is the canonical map pf−1(s)f−1(s)→ pt corresponding to the preimage f−1(s) ⊂ S ′.

Definition 9.1. An operad O q of k-vector spaces is a rule which assigns a vector space Of to any
f ∈ Γ[2] together with the following operations:

(i) for any pair f : S ′ → S, g : S ′′ → S ′ of composable maps, a map µf,g : Of ⊗Og → Of◦g,

(ii) for any f ∈ Γ[2], f : S ′ → S, an isomorphism

Of
∼=
⊗

s

Ofs ,

where f s = pf−1(s) are as in (9.1).

Moreover, the assignment f 7→ Of should be functorial with respect to isomorphisms in Γ[2], the
maps in (i) and (ii) should be functorial maps, and for any triple f, g, h ∈ Γ[2] of composable maps,
the square

Of ⊗Og ⊗Oh −−−→ Of◦g ⊗Ohy y
Of ⊗Og◦h −−−→ Of◦g◦h

should be commutative.
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It is useful to require also that Oid
∼= k for an identity map id : S → S, and we shall do so. We

note that by virtue of (ii), it is sufficient to specify only the vector spaces OpS for the canonical
maps pS : S → pt (these are usually denoted OS, or simply On, where n is the cardinality of S).
However, the way we have formulated the definition makes it slightly more natural, and slightly
easier to generalize.

Definition 9.2. An algebra A over an operad O q of k-vector spaces is a k-vector space A, together
with an action map

af : Of ⊗ A⊗S1 → A⊗S2

for any f ∈ Γ[2], f : S1 → S2, where for any finite set S ∈ Γ, we denote by A⊗S the tensor product
of copies of A numbered by elements s ∈ S. The maps af should be functorial with respect to
isomoprhisms in Γ[2] and satisfy the following rules:

(i) For a pair f, g ∈ Γ[2] of composable maps, we should have af ◦ ag = af◦g ◦ µf,g.

(ii) For any f ∈ Γ[2], f : S ′ → S, we should have

af =
⊗
s∈S

afs .

As in the definition of an operad, (ii) insures that it is sufficient to specify the action maps
an = aS = apS : OpS ⊗ A⊗S → A for all S ∈ Γ, but our formulation is slightly more natural. We
also note that algebras over a fixed operad O form a category, which has a forgetfull functor into
the category of k-vector spaces. The left-adjoint functor associates to a k-vector space V the free
O-algebra FOV generated by V , which is explicitly given by

(9.2) FOV =
⊕
S∈Γ

(
OS ⊗ V ⊗S

)
Aut(S)

,

where the sum is over all the isomorphism classes of finite sets — in other words, over all integers
— and Aut(S) is the symmetric group of all automorphisms of a finite set S.

The reasoning behind these definitions is the following. We want to describe algebras of a certain
kind — associative algebras, commutative algebras, Lie algebras, Poisson algebras, etc. To do so,
one usually says that an algebra is a vector space A equipped with some multilinear structural
maps which satisfy some axioms (associativy, the Jacobi identity, and so forth). However, this is
not always convenient — just as describing a concrete algebra by its generators and relations is
usually too cumbersome. An operad O encodes all the polylinear operations we want our algebra
to have. More precisely, given some f : S1 → S2, we collect in the vector space Of all the
operations from A⊗S1 to AS2 which can be obtained from the structural maps by composing them
and substituting one into the other; and we take the quotient by all the relations our concrete type
of algebraic structure imposes on these compositions. Moreover, we only want to consider those
algebraic structures which are defined by operations with values in A itself, not its tensor powers.
This is the reason for the condition (ii) in Definition 9.1 and Definition 9.2.

9.2 Examples.

Probably the simplest example of an operad is obtained by taking Of = k, the 1-dimensional vector
space, for any f ∈ Γ[2]. This operad is denoted by Com. A moment’s reflection shows that algebras
over Com are nothing but commutative associative unital algebras. Indeed, by definition, we must
have a unique action map

aS : A⊗S → A
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for any S ∈ Γ, and moreover, this map should be functorial with respect to isomorphisms in Γ —
in other words, apS must the equivariant with respect to the natural action of the symmetric group
Aut(S). Thus first, we must have a commutative multiplication µ : A⊗2 → A corresponding to
the generator of Com2 = k, and second, any way to compose this operation to obtain an operation
A⊗n → A for any n must give the same result — which for n = 3 implies associativity,

µ ◦ (µ⊗ id) = µ ◦ (id⊗µ).

One checks easily that conversely, associativity implies the uniqueness for any n ≥ 3. The free Com-
algebra FComV generated by a vector space V is given by (9.2) and coincides with the symmetric
algebra S

q
V .

Exercise 9.1. Check that for a Com-algebra A, the action map a0 : k = A⊗0 → A provides a unity
in the commutative associative algebra A.

A slightly more difficult example is the operad Ass which encodes the structure of an associative
unital algebra: it is usually described by setting

AssS = k[Aut(S)],

the regular representation of the symmetric group Aut(S). To define the operadic composition, one
can, for example, consider the so-called category Σ of non-commutative sets: objects are finite sets,
morphisms from S ′ to S are pairs of a map f : S ′ → S of finite sets and a total ordering on every
preimage f−1(s), s ∈ S. The composition is obvious, and we obviously have the forgetfull functor
γ : Σ→ Γ which forgets the total orders. Then we set

(9.3) Assf = k[{f ′ ∈ Σ(S ′, S) | γ(f ′) = f}]

for any f ∈ Γ, f : S ′ → S, and the composition in Σ induces the composition maps Assf ⊗Assg →
Assf◦g. The free algebra FAssV generated by a vector space V is the tensor algebra T

q
V .

Let us assume from now on that the base field k has characteristic 0, char k = 0. For any vector
space V , the diagonal map V → V ⊕ V induces a coproduct T

q
V → T

q
V ⊗ T

q
V which turns the

tensor algebra T
q
V into a cocommutative Hopf algebra. Since char k = 0, this means that T

q
V is

the universal envelopping algebra of some Lie algebra L
q
V . In fact, by the universality property

of a universal envelopping algebra, L
q
V is the free Lie algebra generated by V . The universal

envelopping algebra T
q
V acquires a Poincaré-Birkhoff-Witt increasing filtration K qT q

V , and the
associated graded quotient with respect to this filtration is the symmetric algebra generated by
L

q
V — we have a canonical identification

grFq T
q
V ∼= S

q
L

q
V.

This graded quotient is a Poisson algebra, and it is easy to see by spelling out the universal
properties that P qV = grFq T

q
V is actually the free Poisson algebra generated by V .

Now, both the PBW filtration and the isomorphism grFq T
q
V ∼= P qV are functorial in V ; this

implies that what we actually have is a decreasing filtration F
q
Ass on the associative operad Ass,

and an identification gr
q
F Ass ∼= Poi between the associated graded quotient of Ass and an operad

Poi which encodes the structure of a Poisson algebra (in particular, the PBW filtration on Ass
is compatible with the operadic structure). We see that Poi is in fact an operad of graded vector
spaces. This is also obvious from the definition: if we assign degree 0 to multiplication and degree 1
to the Poisson bracket, then all the axioms of a Poisson algebra are compatible with these degrees.

The highest degree term of the PBW filtration on Ass — or equivalently, the highest term in
the associated graded quotient gr

q
F Ass ∼= Poi — is the Lie operad Lie; the natural maps Lie→ Ass,
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Lie→ Poi encode the fact that both a Poisson algebra and an associative algebra are Lie algebras in
a canonical way (in the associative case, the bracket is given by the commutator, [a, b] = ab− ba).
We note that it is not trivial to describe Lie explicitly. For example, the dimension of Lien is (n−1)!.
If the base field k is algebraically closed, then Lien can be described as the representation of the
symmetric group Σn induced from the non-trivial character of the cyclic subgroup Z/nZ ⊂ Σn

spanned by the long cycle. It is a pleasant exersize to check that this representation is actually
defined over k even when k is not algebraically closed.

Finally, the example that interest us most is that of Gerstenhaber algebras. Since the definition
of a Gerstenhaber algebra differs from that of a Poisson algebra only in the degree assigned to the
bracket, one might expect that Gerstenhaber algebras are controlled by an operad Gerst

q
essentially

isomorphic to Poi
q
. This is true, but there is the following subtlety. Both Poi

q
and Gerst

q
are operads

of graded k-vector spaces, but this can means one of two distinct things: either we define the product
of graded vector spaces simply as their product with induced grading, or we treat the degree as a
homological degree. The difference is in the symmetry isomorphism σ : V q ⊗W q → W q ⊗ V q of the
tensor product of graded vector spacee V q, W q: if the degree is homological, then by convention we
introduce the sign and define σ by

σ(a⊗ b) = (−1)deg a deg bb⊗ a.

Now, Gerst
q
and Poi

q
are both operads of graded vector spaces, and the difference between them is

the following: the action of the symmetric group Aut(S) on GerstS is twisted by the sign represen-
tation — for any n, S, we have

(9.4) GerstnS
∼= PoinS ⊗ε⊗n,

where ε is the one-dimensional sign representation of Aut(S). But while Poi
q
is a graded operad in

the usual naive sense, the degree in Gerst
q
is homological, and because of this, the isomorphisms

(9.4) are still compatible with the operadic structure.

9.3 Little cubes operad.

It turns out, however, that there is a different, more conceptual construction of the Gerstenhaber
operad Gerst.

One immediately notes that in the definition of an operad, one can use any symmetric monoidal
category instead of the category of k-vector spaces. Thus we can speak not only about operads of
vector spaces, or graded vector spaces, but also abouts operads of sets and operads of topological
spaces. And historically, it was the operads of topological spaces which appeared first — specifically,
the so-called operad of little n-cubes.

Let I be the unit interval [0, 1]. Fix a positive integer n, and consider the cube In of size 1 of
dimension n. For any finite set S, say that an S-cube configuration in In is an open subset in In

whose complement is the union connected components numbered by elements of S, each being a
subcube in I of smaller size, whose faces are parallel to faces of In. Let On

S be the set of all such
configurations. A configuration is completely determined by the centers and the sizes of all the
cubes, so that On

S is naturally an open subset in (I(n+1))S. This turns it into a topological space.
We now note that the collection On

S with a fixed n naturally defines an operad of topological
spaces. The composition is given by the following procedure: take an S1-cube configuration in In,
rescale it to a smaller size, and plug it into an S2-cube configuration by filling in one of the connected
components of its complement. When the sizes fit, the result is obviously an (S1 ∪ S2 \ {s})-cube
configuration, where s ∈ S2 is the point which we used for the operation. We leave it to the reader
to check that this procedure indeed gives a well-defined operad, and that all the structure maps of
this operad are continuous maps.
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Definition 9.3. The operad Onq is called the operad of little n-cubes.

What one is interested in is not the topological spaces On
S but their homotopy types, and these

have a simpler description. Forgetting the size of a cube defines a projection On
S → (In)S \Diag, the

complement to all the diagonals in the power (In)S, and this projection is a homotopy equivalence
— in other words, On

S is homotopy-equivalent to the configuration space of injective maps from S
to In. Equivalently, one can take Rn instead of the cube In. Unfortunately, the structure of the
operad is not visible in this model.

If n = 1, we can go even further: the configuration space of injective maps from S to the interval
I has |Aut(S)| connected components, numbered by the induced total order on the set S, and each
connected component is a simplex, thus contractible. We conclude that O1

S is homotopy-equivalent
to the (discrete finite) set of total orders on S.

Now, taking the homology with coefficients in k turns any operad of topological spaces into
an operad of graded k-vector spacers. In particular, for any n ≥ 1 we have an operad formed by
H q(On

S, k).

Exercise 9.2. Check that for n = 1, H q(Onq , k) is the operad Ass q. Hint: use the description (9.3).

Proposition 9.4. Algebras over the homology operad H q(O2
S, k) of the operad O2q of little squares

are the same as Gerstenhaber algebras, and H q(O2
S, k) is isomorphic to the Gerstenhaber operad

Gerst
q
.

Proof. This is an essentially well-known but rather non-trivial fact; for example, it implies that
Hn(O2

n, k) is the n-th space Lien of the Lie operad — as far as I know, this was first proved by V.
Arnold back in the late 60-es.

Let us first construct a map of operads a q : Gerst
qq ∼= H q(O2q , k). The component Gerst

q
2 is

spanned by the product and the bracket, and O2
2 is the complement to the diagonal in the product

I2 × I2, which is homotopy-equivalent to the circle S1. We define a2 by sending the product in
Gerst02 to the class of a point in H0(S

1, k) ∼= k, and the bracket in Gerst12 to the fundamental class
in H1(S

1, k) ∼= k.

Exercise 9.3. Check that this extends to a map of operads. Hint: since all the relations in Gerst
q

invlove only three indeterminates, it is sufficient to consider O2
3.

Now assume by induction that ai is an isomorphism for all i ≤ n. By definition, Gerst
q
n+1

is spanned by all expressions involving the product and the bracket in n + 1 indeterminates
x1, . . . , xn+1. Substituting the unity instead of xn+1 gives a map Gerst

q
n+1 → Gerstn; this map

is obviously surjective. Substituting {xn+1, xi} instead of xi gives a map Gerst
q
n⊗k[S]→ Gerst

q+1
n+1,

where S is the set of indeterminates x1, . . . , xn. Since {1, xi} is by definition equal to 0, we have a
sequence

(9.5) Gerst
q−1
n ⊗k[S] −−−→ Gerst

q
n+1 −−−→ Gerst

q
n −−−→ 0.

which is exact on the right.
On the geometric side, filling in the (n + 1)-st cube in a cube configuration — or equivalently,

forgetting the (n+1)-st point in a configuration of points in R2 — defines a projection O2
n+1 → O2

n,
and this is a fibration with fiber En = R2 \ S, where S ⊂ R2 is the configuration of the remaining
n distinct points. We have the Leray spectral sequence

H q(O2
n, H q(E2

n, k))⇒ H q(O2
n+1, k).

The homology H q(E2
n, k) is only non-trivial in degrees 0 and 1; the group H1(E

2
n, k) can be naturally

identified with k[S] by sending s ∈ S to a small circle around its image in R2. The fundamental
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group of the base O2
n is the pure braid group, and it is easy to check that it acts trivially on

H q(E2
n, k), so that the spectral sequence reads

H q(O2
n, k)⊗H q(E2

n, k)⇒ H q(O2
n+1, k).

Moreover, replacing R2 with C, we can treat O2
S = CS \ Diag as a complex algebraic variety

whose homology groups have Hodge structures, and in particular, weights. One checks easily that
Hn(O2

S, k) is pure Hodge-Tate of weight 2n. Therefore the Leray spectral sequence degenerates, so
that, taking in account the isomorphism H1(E

2
N , k) ∼= k[S], we have a short exact sequence

(9.6) 0 −−−→ H q−1(O
2
n, k)⊗ k[S] −−−→ H q(O2

n+1, k) −−−→ H q(O2
n, k) −−−→ 0.

Now, it is obvious from the construction of the map a q that it is a map between (9.5) and (9.6), so
that we have a commutative diagram

(9.7)

Gerst
q−1
n ⊗k[S]

f−−−→ Gerst
q
n+1 −−−→ Gerst

q
n −−−→ 0

an

y yan+1

yan

0 −−−→ H q−1(O
2
n, k)⊗ k[S] −−−→ H q(O2

n+1, k) −−−→ H q(O2
n, k) −−−→ 0.

Moreover, we now that an is an isomorphism, which implies in particular that the map f in (9.7)
is injective. To prove that an+1 is also an isomorphism, it suffices to prove that the top row forms
a short exact sequence. But we also have the projection O1

n+1 → O1
n, and it induces a short exact

sequence
0 −−−→ Assn⊗k[S] −−−→ Assn+1 −−−→ Assn −−−→ 0

which gives (9.5) under taking the associated graded with respect to the Poincaré-Birkhoff-Witt
filtration and using the isomorphism Gerst

q ∼= Poi
q
. Since this sequence is exact, and its associated

graded is exact on the left and on the right, it must also be exact in the middle term for dimension
reasons. �

9.4 Braided algebras and Tamarkin’s proof.

What we did in Proposition 9.4 was to take two different operads, that of 1-cubes and that of
2-cubes, and identify, up to a sign twist, H q(O2q , k) with a certain associated graded quotient of
H q(O1q , k) (which reduces to H0(O

1q , k)). We now note that H q(O2q , k) can also be treated as an
associated graded quotient. Namely, given a topological space X, one can consider its singular
chain complex C q(X, k). Every complex E q has a “canonical filtration” F

q
E q given by

F iEj =


0, j < i,

Ker d, j = i,

Ej, j > i,

where d is the differential. The associated graded quotient gr
q
F E q is canonically quasiisomorphic

to the sum of homology of the complex E q. In particular, we have

gr
q
F C q(X, k) ∼= H q(X, k).

Thus passing to homology is, up to quasiisomorphism, equivalent to taking the associated graded
quotient with respect to the canonical filtration.
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Given an operad X q of topological spaces, we can consider the DG operad formed by C q(X q, k).
The canonical filtration, being canonical, is automatically compatible with the operadic structure,
and the associated graded quotient gr

q
F C q(X q, k) is quasiisomorphic to H q(X q, k).

In particular, we can consider the operad C q(O2q , k). Its canonical filtration in fact behaves
similarly to the PBW filtration on Ass = H0(O

1q , k), although to define it, we do not need to use
the structure of an operad. The associated graded quotient gr

q
F C q(O2q , k) is quasiisomorphic to the

Gerstenhaber operad Gerst.

Definition 9.5. A braided algebra is a DG algebra over the DG operad C q(O2q , k).

The term “braided algebra” comes from the relation between O2
n and the pure braid group Bn

of n braids: we have π1(O
2
n) = Bn, and one can show that O2

n has no higher homotopy groups, so
that it is homotopy-equivalent to the classifying space of Bn.

We note that as stated, Definition 9.5 is almost useless, since the singular chain complex C q(X)
of a topological space is huge — one cannot expect the DG operad C q(O2q , k) to act on anything
reasonable. However, what one can do is to invert quasiisomorphisms and consider DG algebras over
some DG operad O q “up to quasiisomorphism”, in the same way as we did for DG Lie algebras.
A convenient formalism for this is provided by the so-called closed model categories originally
introduced by Quillen (a modern reference is the book “Model categories” by M. Hovey). This
gives a certain well-defined category Ho(O q), and, what is important, it only depends on the
defining operad “up to a quasiisomorphism” — a quasiisomorphism O′q → O q between DG operads
induces an equivalence Ho(O′q) ∼= Ho(O q). In practice, one is only interested in braided algebras up
to a quasiisomorphism, that is, in objects of the category Ho(C q(O2q , k)); and to construct such an
algebra, it is sufficient to have a DG algebra over some DG operad quasiisomorphic to C q(O2q , k).
It is this structure which one has on the Hochschild cohomology complex of an associative unital
algebra A.

Theorem 9.6 (Deligne Conjecture). For any unital associative k-algebra A, its Hochschild co-
homology complex is a DG algebra over a DG operad which is quasiisomorphic to C q(O2q , k).

This statement has an interesting history. Originally it was a question, not even a conjecture,
asked in 1993 by P. Deligne. Almost immediately it was wrongly proved by Getzler and Jones, and
independently, also wrongly, by A. Voronov. But in 1998, Tamarkin has discovered his amazingly
short proof of the Kontsevich Formality Theorem, which used Deligne conjecture; under close
scrutiny, the mistakes were found, and new complete proofs by several groups of people were
available by 2000 (among those people I should mention at least Tamarkin, Voronov, J. McClure-J.
Smith, and M. Kontsevich-Y. Soibelman). In almost all the proofs, the authors actually construct
a single DG operad which works for all associative algebras, but all of them are rather complicated
and unnatural. The real reason for this is that what acts naturally on Hochschild cohomology is
not an operad but a more complicated object, and this is currently under investigation. However,
for practical purposes such as Formality Theorem, any solution is good, since it can used as a black
box.

Assuming Deligne Conjecture, Tamarkin’s proof of the Formality Theorem is a combination of
the following two results.

Theorem 9.7 (Tamarkin,Kontsevich). The DG operad C q(O2q , k) itself is formal, that is, there
exists a chain of quasiisomorphisms connecting it to the Gerstenhaber operad Gerst

q
= H q(O2q , k).

Theorem 9.8 (Tamarkin). Let A be the polynomial algebra k[x1, . . . , xn] in n variables, equipped
with the natural action of the group GL(n, k) which interchanges the variables. Any DG algebra over
Gerst which is equipped with a GL(n, k)-action and whose cohomology is isomorphic to HH

q
(A) as

a GL(n, k)-equivariant Gerstenhaber algebra is formal.
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It is the second result that was the original discovery of Tamarkin, and its proof was very simple.
But then the problems with Deligne Conjecture appeared... in the course of fixing them, Kontsevich
suggested that the operad C q(O2q , k) itself should be formal, and Tamarkin promptly proved it (but
this proof was combinatorial and not simple at all). Later on, Kontsevich gave a different proof,
also combinatorial. There is also a very simple argument in folklore which deduces Theorem 9.7
from Hodge Theorey, similarly to the classic formality result of Deligne-Griffits-Morgan-Sullivan,
but this, to the best of my knowledge, has never been written down. In any case, one thing
is very important: the quasiisomorphisms in Theorem 9.7, no matter how one produces them,
are very non-trivial, and they usually depend on transcedental things like periods of differential
forms or the so-called “Drinfeld associator”. In addition, there is no canonical choice of these
quasiisomorphisms — one expects that the conjectural “motivic Galois group”, or even the usual
Galois group Gal(Q/Q), acts on the set of these quasiisomorphisms in a very non-trivial way. On
the other hand, the DG operads which appear in the solutions to Deligne Conjecture are quite
canonical, and their action on Hochschild cohomology is elementary and defined over Q.



Homological methods in Non-commutative Geometry – Tokyo, 2007/2008 62

Lecture 10.
Combinatorics of planar trees. Comparison theorem. Brace operad and
its action on the Hochschild cohomology complex.

10.1 Planar trees.

The topic of today’s lecture is Deligne Conjecture — we want to construct an operad O q quasiiso-
morphic to the chain complex operad C q(O2q , k) of the operad of little squares so that O q acts in a
natural way on the Hochschild cohomology complex of an associative algebra A.

We start by introducing a certain combinatorial model of the operad of little squares (or rather,
it will be more convenient for us to work with little discs).

By a planar tree we will understand an unoriented connected graph with no cycles and one
distiguished vertex of valency 1 called the root, equipped with a cyclic order on the set of edges
attached to each vertex. Given such a tree T , we will denote by V (T ) the set of all non-root vertices
of T , and we will denote by E(T ) the set of all edges of T not adjacent to the root.

More generally, by an n-planar tree we will understand an unoriented connected graph with no
cycles and n distiguished vertices of valency 1, called external vertices, one of which is additionally
distinguished and called the root; again, the graph should be equipped with a cyclic order on the
set of edges attached to each vertex. We note that this automatically induces a cyclic order on the
set of external vertices, so that n-planar trees are naturally numbered by an object [n] of the cyclic
category Λ. For an n-planar tree T , V (T ) denotes the set of all non-external vertices, and E(T )
denotes the set of of edges not adjacent to external vertices.

Given a tree T , we denote by |T | its geometric realization, that is, a CW complex with vertices of
T as 0-cells and edges of T as 1-cells. We note that for every planar tree T , |T | can be continuously
embedded into the unit disc D so that the root of T goes to 1 ∈ D, the external vertices, if any, go
to points on the boundary S1 ⊂ D and split it into a wheel graph, the rest of |T | is mapped into
the interior of the disc, and for every vertex v ∈ V (T ), the given cyclic order on the edges adjacent
to v is the clockwise order. Moreover, the set of all such embeddings with a natural topology is
contractible, so that the embedding is unique up to a homotopy, and the homotopy is also unique
up to a homotopy of higher order, and so on.

Given a tree T and an edge e ∈ E(T ), we may contract e to a vertex and obtain a new tree T e.
The contrations of different edges obviously commute, so that for any n edges e1, . . . , en ∈ E(T ), we
have a unique tree T e1,...,en obtained by contracting e1, . . . , en. By construction, we have a natural
map V (T )→ V (T e1,...,en) and a natural map of realizations |T | → |T e1,...,en|.

Assume given a finite set S. By a tree marked by S we will understand a planar tree or an
n-planar tree T together with an injective map S → V (T ). The vertices in the image of this map
are called marked, the other ones are unmarked. A marked tree T is stable if every unmarked
vertex v ∈ V (T ) \ S has valency at least 3. Given a marked tree T which is unstable, we can
canonically produce a stable tree T ′ by first recursively removing all unmarked vertices of valency 1
and edges leading to them, and them removing unmarked vertices of valency 2 and gluing together
the corresponding edges. We will call this T ′ the stabilization of T .

Given a stable marked tree T and some edges e1, . . . , en ∈ E(T ), we mark the contraction by
composing the map S → V (T ) with the natural map V (T )→ V (T e1,...,en). If the resulting map is
injective, then this is again a stable marked tree.

Exercise 10.1. Check that for any two trees T , T ′ stably marked by the same set S, there exists at
most one subset {e1, . . . , en} ⊂ E(T ) such that T e1,...,en ∼= T . Hint: removing an edge splits a tree
T into two connected components; first prove that an edge is uniquely defined by the corresponding
partition of the set V (T ).
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By virtue of this exercize, for every [n] ∈ Λ the collection of all n-planar trees stably marked
by the same finite set S acquires a partial order: we say that T ≥ T ′ if and only if T ′ can be
obtained from T by contraction. We will denote this partially ordered set by T

[n]
S , or simply by TS

if [n] = [1]. This is our combinatorial model for the configuration space.

Theorem 10.1. For any [n] ∈ Λ, the classifying space |T[n]
S | of the partially ordered set TS is

homotopy equivalent to the configuration space DS \Diag of injective maps S → D to the unit disc
D.

As a first step of proving this, let us construct a map |TS| → D.
Let us denote by BS the fundamental groupoid of the configuration space DS \Diag: objects are

points, that is, injective maps f : S → D, morphisms from f to f ′ are homotopy classes of paths,
that is, homotopy classes of continuous maps S×I → D, whose restriction to S×{0}, resp. S×{1}
is equal to f , resp. f ′ (here I = [0, 1] is the unit interval, and S × I is equipped with the product
topology — it is the disjoint union of S copies of I). Since DS \ Diag is an Eilenberg-MacLane
space of type K(π, 1), we have the homotopy equivalence DS \ Diag ∼= |BS|.

Now consider the following category T̃S. Objects are stable marked trees T together with an
embedding f : |T | → D. Maps from f : |T | → D to f ′ : |T ′| → D exist only if T ≥ T ′, and they are
homotopy classes of continous maps γ : |T | × I → D such that the restriction γ : |T | × {x} → D
is injective for any x ∈ [0, 1[, the restriction γ : |T | × {0} → D is equal to the map f , and the
restriction γ : |T | × {1} → D is the composition of the natural map |T | → |T ′| and the map
f ′ : |T ′| → D.

Then on one hand, we have a forgetfull functor T̃S → TS which forgets the embedding, and
since the space of embeddings is contractible, this is an equivalence of categories.

On the other hand, we have a comparison functor T̃S → BS which sends an embedded stable
marked tree |T | ⊂ D to the subset of its marked points S ⊂ |T | ⊂ D, and forgets the rest. Then
Theorem 10.1 for n = 1 follows immediately from the following.

Proposition 10.2. The comparison functor T̃S → BS induces a homotopy equivalence |TS| ∼=
|T̃S| ∼= |BS|.

10.2 Stratified spaces and homology equivalences.

Our strategy of proving Proposition 10.2 is the same as in the study of the Gerstenhaber operad in
the last lecture: we want to apply induction on the cardinality of S by forgetting points one-by-one
and considering the corresponding projections of the configuration spaces.

Thus we assume given a finite set S ′ and an element v ∈ S ′, and we denote S = S ′ \ {v}.
Then forgetting v defines a projection BS′ → BS. On the other hand, unmarking v and applying
stabilization defines a projection TS′ → TS. This is obviously compatible with the comparison
functors, so that we have a commutative diagram

(10.1)

TS′ −−−→ BS′y y
TS −−−→ BS.

Definition 10.3. An abelian fibration C over a small category Γ is a fibration C/Γ such that all
fibers C[a], [a] ∈ Γ are abelian categories, and all the transition functors f ∗ : C[b] → C[a], f : [a]→ [b]
are left-exact.

Just as in Proposition 5.3, one shows easily that the category of sections Sec(C) of an abelian
fibration C/Γ is an abelian category.
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Definition 10.4. A functor γ : Γ → Γ′ between small categories is said to be a homological
equivalence if

(i) for any abelian fibration C/Γ′, the pullback functor γ∗ :: D(Sec(C))→ D(Sec(γ∗C)) is a fully
faithful embedding, and

(ii) the essential image γ∗(Sec(C)) ⊂ Sec(γ∗C) consists of such E ∈ Sec(γ∗C) that for any map
f : [a]→ [b] in Γ with invertible γ(f), the transition map E[a] → f ∗E[b] is invertible.

Here γ∗C = C ×Γ′ Γ is the pullback of the abelian fibration C/Γ′, D(−) stand for the derived
category, E|[a] is the restriction of E to the fiber (γ∗C)[a]

∼= Cγ([a]), and similarly for E[b]. For
example, if Γ′ = pt, γ : Γ → pt is the projection to the point, and C = k -Vect, the conditions
of the definition say that Dlc(Γ, k) is equivalent to the derived category D(k -Vect). As we saw in
Corollary 4.4, this implies that the geometric realization |Γ| is contractible.

Exercise 10.2. Prove that if γ : Γ → Γ′ is a homological equivalence, then the induced map
|γ| : |Γ| → |Γ′| is a homotopy equivalence.

The reason we have put the additional abelian fibration C in Definition 10.4 is that this way, it
becomes recursive: we have the following.

Lemma 10.5. Assume given cofibrations Γ′1/Γ1, Γ′2/Γ2, a functor γ : Γ1 → Γ2, and a Cartesian
functor γ′ : Γ′1 → Γ1 ×Γ2 Γ′2 → Γ′2. Then if γ is a homological equivalence, and γ′ restricts to a
homological equivalence on all the fibers, then γ′ itself is a homological equivalence.

Exercise 10.3. Prove this. Hint: first show that for any cofibration π : Γ′ → Γ and any abelian
fibration C/Γ′, there exists an abelian fibration π∗C whose fibers are given by

(π∗C)[a] = Sec(C|Γ′
[a]

), [a] ∈ Γ,

where C|Γ′
[a]

means the restriction to the fiber Γ′[a] ⊂ Γ′, and that Sec(C) ∼= Sec(π∗C).

Exercise 10.4. Assume given diagrams of categories and functors

Γ1 −−−→ Γ12x x
Γ0 −−−→ Γ2

Γ′1 −−−→ Γ′12x x
Γ′0 −−−→ Γ′2

which are cocartesian in the sense that for any category C, we have

Fun(Γ12, C) ∼= Fun(Γ1, C)×Fun(Γ0,C) Fun(Γ2, C),

and similarly for Γ′. Assume given a functor γ = 〈γ0, γ1, γ2, γ12〉 between them. Prove that if γ0,
γ1 and γ2 are homological equivalences, then so is γ12.

Unfortunately, Lemma 10.5 cannot be used to analyze (10.1) directly, since the projection
functor TS′ → TS is not a cofibration. To correct this, we have to “compactify” the categories
TS by allowing non-injective markings S → V (T ) — geometrically, this corresponds to adding the
diagonals Diag ⊂ DS to the configuration space DS \ Diag.

So, first, for every finite set S we define the category TS whose objects are trees T equipped
with a map f : S → V (T ) such that the induced embedding Im(f) ⊂ V (T ) is a stable marking,
with maps given by contractions of edges.

Second, we consider the topological space DS as a space stratified by the diagonals, and we
define the category BS as the its “stratified fundamental groupoid” in the following sense.
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Definition 10.6. The stratified fundamental groupoid of a topological space X stratified by strata
Xi ⊂ X is the category whose objects are points x ∈ X, and whose maps from x1 ∈ X1 to x2 ∈ X2

exist only when X2 ⊂ X1, and are given by homotopy classes of paths f : I → X1 from x1 to x2

such that f(I) ∩X2 = f(1) = p2, and f(I) ∩X3 = ∅ for any proper substratum X3 ⊂ X2.

Explicitly, an object in BS is given by a not necessarily injective map f : S → D, and maps from
f0 to f1 are given by homotopy classes of maps γ : f0(S)× I → D such that γ : f0(S)× {x} → D
is injective for any x ∈ [0, 1[, γ : f0 × {1} → D is a map onto f1(S) ⊂ D, and the composition
γ ◦ f0 : S → f0(S)→ f1(S) is equal to f1.

Exercise 10.5. Let 〈X, Xi ⊂ X〉 be a stratified topological space, and let π1(X) be its stratified
fundamental groupoid. Prove that the category Fun(π1(X)opp, k) is equivalent to the category of
constructible sheaves of k-vector spaces on X which are locally constant along the open strata.
Hint: consider first the case X = I, with a single proper stratum X1 = {1} ⊂ I.

We leave it to the reader to check that the comparison functor (10.1) extends to a functor
TS → BS, and we have a commutative diagram

(10.2)

TS′ −−−→ BS′y y
TS −−−→ BS.

10.3 The comparison theorem.

We can now prove the comparison theorem between TS and BS.

Proposition 10.7. The comparison functor TS → BS is a homological equivalence for any finite
set S.

Proof. One checks easily that the vertical projections in (10.2) are cofibrations; thus by induction,
it suffices to check that the comparison functor induces a homological equivalence on all the fibers.

Fix a tree T ∈ TS, and consider a tree T ′ ∈
(
TS′
)

T
. When we remove the mark v ∈ S ′ from T ′,

one of the following four things might happen:

(i) The tree remains stable, with the vertex v ∈ V (T ′) = V (T ) possibly becoming unmarked.

(ii) An unmarked vertex of valency 2 appears; under stabilization, it is removed, and adjacent
edges are glued together to give an edge e ∈ E(T ).

(iii) An unmarked vertex of valency 1 appears; under stabilization, we remove this vertex and the
adjacent edge.

(iv) An unmarked vertex of valency 1 appears; under stabilization, we remove it with its edge,
and then an unmarked vertex of valency 2 appears, which also has to be removed.

In the case (i), T ′ is completely determined by specifying v ∈ V (T ), and in the case (ii), by
specifying e ∈ E(T ). To describe the combinatorial invariants in (iii), it is convenient to embed
the tree T into the disc D and draw a small disc around each vertex v ∈ V (T ). The boundary
of this disc is a wheel graph [n] ∈ Λ whose vertices correspond to edges adjacent to v. Edges of
these graphs are called angles of T , and the set of all angles of T is denoted by A(T ). Then in the
case (iii), to determine T ′ we need to specify the other vertex v ∈ V (T ) of the removed edge, and
the (unique) angle a ∈ A(T ) which this removed edge intersects. Finally, in the case (iv), T ′ is
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determined by the new edge e ∈ E(T ) containing the removed vertex of valency 2, and the “side”
of this edge at which the removed edge was attached. The set of these sides is denoted by S(T ) (it
is of course a 2-fold cover of the set E(T )). We note that every side defines an angle attached to
each of the two vertices of the corresponding edge.

To sum up: the fiber of the projection TS′ → TS over a tree T ∈ TS is the set

FT = V (T ) ∪ E(T ) ∪ A(T ) ∪ S(T ),

with some partial order.

Exercise 10.6. Check that FT has the following order: an edge e ∈ E(T ) is less than either of its
vertices, an angle a ∈ A(T ) is less than the vertex where it lives, and a side s ∈ S(T ) is less than
the corresponding edge, and less than the two angles it defines.

On the other hand, the fiber Fp of the projection BS′ → BS over an object represented by
p : S → D is the stratified fundamental groupoid of the pair f(S) ⊂ D. To finish the proof, it
suffices to prove the following.

Lemma 10.8. Assume given a possibly unstable marked tree T embedded into the disc D, |T | ⊂ D,
and let p : S → D be the corresponding embedding of the set of markings S ⊂ V (T ). Then the
comparison functor FT → Fp is a homological equivalence.

Proof. Choose a vertex v ∈ T of valency 1, let T ′ be the tree obtained by removing v and the
adjacent edge e ∈ E(T ), and let p′ : S ′ → D be the embedding of its set of markings S ′ ⊂ V (T ′).
Then we have a cocartesian diagram

FT ′ −−−→ FTx x
Fe −−−→ Fv,

where Fe ⊂ FT is the subset consisting of e and its two sides, and Fv ⊂ FT is the subset consisting
of v, all its adjacent edges, all its angles, and all their sides. On the other hand, we can shrink D to
a small neighborhood of |T | ⊂ D and then decompose it into the union of a small disc Dv centered
at v and a neighborhood DT ′ of |T ′| ⊂ D so that the intersection Dv ∩DT ′ is contractible with no
stratification. This gives a cocartesian diagram

Fp′ −−−→ Fpx x
pt −−−→ Fv,

where Fv is the fundamental groupoid of Dv if v is unmarked, and the stratified fundamental
groupoid of {v} ⊂ Dv if v is marked. By virtue of Exercize 10.4, we can apply induction. Thus it
suffices to prove that Fe is homologically equivalent to a point, and the comparison functor Fv → Fv

is a homological equivalence (both if v is marked and if it is not). We leave it as an exercize. Hint:
in the marked case, show first that the partially ordered set Fv \ {v} is homologically equivalent to
the fundamental groupoid of a circle S1. �

Proof of Proposition 10.2. An immediate corollary of Proposition 10.7: every abelian fibration C/BS,
resp. C/TS can obviously be extended to BS, resp. TS by setting C[a] = 0 for any [a] ∈ BS \ BS,

resp. [a] ∈ TS \ TS, and this does not change the category of sections; therefore the comparison
functor TS → BS is also a homological equivalence, and this implies the claim by Exercize 10.2. �
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To finish the proof of Theorem 10.1, it remains to consider n-planar trees for n ≥ 2. Note
that for any [n] ∈ Λ and a fixed embedding f : [n − 1] → [n], we have a natural projection

πf : T
[n]
S → T

[n−1]
S obtained by the removing the external vertex not contained in the image of f

and applying stabilization.

Exercise 10.7. Check that πf is a cofibration whose fiber ET over a tree T ∈ T
[n−1]
S is the partially

ordered set of cells of a certain cell decomposition of the open interval ]0, 1[, with the order by given
adjacency (the decomposition may depend on T ). Deduce that πf is a homological equivalence.

This Exercize together with Exercize 10.2 finish the proof of Theorem 10.1.

10.4 Regular partially ordered sets.

By virtue of Theorem 10.1, instead of studying the chain complex C q(DS \ Diag) directly, we may
study complexes which compute the homology of the partially ordered set TS (considered as a small
category). This turns out to be easy, since the partially ordered set TS is well-behaved.

Assume given a partially ordered set P . For any p ∈ P , denote by δp ∈ Fun(P opp, k) the functor
given by δp(p) = k, δp(p

′) = 0 if p 6= p′.

Definition 10.9. A finite partially ordered set P is called regular if for any p ∈ P , we have

(10.3) Hi(P
opp, δp) ∼=

{
k, i = n,

0, otherwise

where n is some integer n ≥ 0 called the index of p and denoted ind(p).

Exercise 10.8. Prove that the product P1 × P2 of two regular partially ordered sets is regular.

Exercise 10.9. Prove that P is regular if and only if for any p ∈ P , so the set Up = {p′ ∈ P |p′ ≤
q}.

Proposition 10.10. The partially ordered set T
[n]
S is regular for any finite set S and any [n] ∈ Λ,

and the index of a tree T ∈ T
[n]
S is equal to ind(T ) = n− 2− v(T ), where v(T ) is the cardinality of

V (T ).

Proof. For any tree T ∈ T
[n]
S , the partially ordered set UT of Exercize 10.9 is isomorphic to

(10.4) UT
∼=

∏
v∈V (T )

T
[nv ]
s(v),

where [nv] is the set of edges adjacent to the vertex v with its given cyclic order, and s(v) is pt if
v is marked and ∅ if v is unmarked. Thus by Exercize 10.8, it suffices to consider the cases S = pt
and S = ∅. In either of these cases, we use induction on n. The sets T

[1]
∅ and T

[2]
∅ are empty; the

sets T
[1]
pt and T

[3]
∅ both consist of one point, thus giving the induction base. For the induction step,

choose an embedding [n− 1]→ [n], and consider the corresponding projection T
[n]
S → T

[n−1]
S . This

is a cofibration. Its fibers ET have been described in Exercize 10.7, and it is easy to check that they
are regular. Moreover, for any T ≤ T ′ ∈ T

[n−1]
S , the corresponding transition map ET → ET ′ is

obviously a homological equivalence. To finish the proof of the inductive step and the Proposition,
it suffices to apply the following to every δT ∈ Fun(T

[n]opp
S , k).
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Lemma 10.11. Assume given a fibration γ : Γ′ → Γ of small categories, and assume that the
transistion functor f ∗ is a homological equivalence for any map f : [a] → [b] in Γ. Then for any
E ∈ Fun(Γ′, k) and any [a] ∈ Γ, there exists an isomorphism

(10.5) (L
q
γ!E)([a]) ∼= H q(Γ′[a], E[a]),

where E[a] ∈ Fun(Γ′[a], k) is the restriction of E to the fiber Γ′[a] ⊂ Γ′.

Proof. Let i : pt → Γ be the embedding of the object [a], and let i′ : Γ′[a] → Γ′ be the embedding
of the fiber. Then we have the adjunction map

i! ◦ γ! ◦ i
′∗ ∼= γ! ◦ i′! ◦ i

′∗ → γ!,

which by adjunction induces a base change map γ!◦ i
′∗ → i∗◦γ!. Taking derived functors, we obtain

a map (10.5) functorially for any E. To prove that it is an isomorphism, it suffices to consider the
case of a representable E, E = k[b′] for some [b′] ∈ Γ′. Then the left-hand side of (10.5) is canonically
isomorphic to k[Γ([b], [a])], where [b] = γ([b′]) ∈ Γ. On the other hand, since γ is a fibration, we
have a canonical identification

k[b′]|Γ′
[a]

∼=
⊕

f∈Γ([b],[a])

(f ∗)!k[b′]|Γ′
[b]

.

But since f ∗ is a homological equivalence for any f ∈ Γ([b], [a]), we have

H q(Γ′[a], (f
∗)!k[b′]|Γ′

[b]
) ∼= H q(Γ′[b], k[b′]|Γ′

[b]
) ∼= k,

which finishes the proof. �

Exercise 10.10. Prove that the homology H q(P, k) = H q(P opp, k) of a finite partially ordered set
P can be computed by a complex C q(P, k) with terms Ci(P, k) =

⊕
ind(p)=i k. Hint: take a maximal

element p ∈ P , let P ′ = P \ {p}, and consider the short exact sequence

0 −−−→ jopp
! kP ′ −−−→ kP −−−→ δp −−−→ 0,

where kP ∈ Fun(P opp, k), kP ′ ∈ Fun(P
′opp, k) are the constant functors, and j : P ′ → P is the

embedding.

10.5 The brace operad.

Now consider the partially ordered set TS. It is regular, so its cohomology can be computed by a
complex C q(TS, k), which we denote by C q(S) to simplify notation. Unfortunately, there is some
abguity in the differentials of the complexes C q(S) (for a discussion, see the Kontsevich-Soibelman
paper arxiv:math/0001151). As it turns out, with the appropriate choice of the differentials, the
complexes C q(S) form a DG operad, called the brace operad, and this operad acts naturally on the
Hochschild cohomology complex of any associative algebra A.

Namely, assume given an associative unital algebra A, and assume given an m-cochain f ∈
Hom(A⊗m, A) and l other cochains gj ∈ Hom(A⊗nj , A), 1 ≤ j ≤ l of degrees n1, . . . , nl. Then the
brace f{g1, . . . , gl} is the cochain of degree M = m + n1 + · · ·+ nl − l given by

f{g1, . . . , gl}(a1, . . . , aM) =
∑

I

(−1)ε
If(a1, . . . , ai1−1, g1(ai1 , . . . , ai1+n1−1), ai1+n1 , . . . ,

aM−m−n+1, gl(aM−m−nl+1, . . . , aM−m+il), aM−m+il+1, . . . , aM),
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where the sum is taken over all the multiindices 1 ≤ i1 < · · · < il ≤ m, and εI is given by

εI =
∑

1≤j≤l

nj(ij − 1).

If m < l, then the set of multiindices is empty, and the brace is set to be 0.
In other words, the brace is obtained by substituting g1, . . . , gl into f in all possible ways, and

taking the alternating sum.
Then every tree T ∈ TS defines an S-linear operation αT on the Hochschild cohomology complex

of A by the following inductive rule.

(i) If T is the tree with exactly one vertex of valency ≥ 1, and this vertex is marked, then

αT (f1, . . . , fn) = f1(f2, . . . , fn),

where f1, . . . , fn are cochains numbered by elements in S = V (T ), and f1 corresponds to the
marked vertex.

(ii) If in the situation above the vertex is unmarked,

αT (f1, . . . , fn) = f1 · f2 · · · · · fn.

(iii) In the general case, split T into two trees T1, T2 by cutting an edge e ∈ E(T ), marking one
of the resulting new vertices, and declaring the other one the new root vertex, and let

αT (f1, . . . , fn) = αT1(αT2(f1, . . . , fl), fl+1, . . . , fn),

where T1 is the subtree which contains the original root, and αT2 corresponds to the new
marked vertex of T1.

It is not too difficult to check that the brace operation is associative in the appropriate sense, so
that the operation in (iii) does not depend on the choice of the edge e ∈ E(T ). To make (ii) similar
to (i), we note that since A is associative, we have a preferred cochain µ ∈ Hom(A⊗n, A) for any
n ≥ 0 given by the product, and

µ{f1, . . . , fn} = f1 · f2 · · · · · fn.

Moreover, it is clear that the collection of the operations αT is closed under substitution — more
precisely, αT span a suboperad in the endomorphism operad of the Hochschild cohomology complex
of the algebra A. This defines an operad structure on the graded vector spaces C q(S) = k[TS].

Theorem 10.12. With the appropriate choice of the differentials in the complexes C q(S), the
operad structure on C q(S) defined by the brace operation and the action of this operad on the
Hochschild cohomology complexes is compatible with the differential, so that we have a DG operad,
and for any associative unital algebra A, its Hochschild cohomology complex is a DG algebra over
the DG operad C q(S).

I do not give the exact differentials, since I will not prove this result anyway (see the quoted
paper of Kontsevich-Soibelman, and also arxiv:math/9910126 of McClure and Smith, where a
closely related result is proved). Rather, to finish the lecture, I want to discuss what the result
means, and what would a conceptually clear proof look like.
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10.6 Discussion.

First of all, we note that Theorem 10.12 does not prove the Deligne Conjecture.

Indeed, while we have constructed quasiisomorphisms between the chain complexes of configu-
ration spaces DS \Diag and the complexes C q(S) which act on Hochschild cohomology, we did not
prove that they are compatible with the operadic structure. A natural way to do this would be to
extend Theorem 10.1 to a comparison theorem between operads; this would also take care of all
the signs. But it is completely impossible to do this: while the groupoids BS do form an operad in
an approppriate 2-categorical sense, the partially ordered sets TS do not.

Namely, the operadic structure would allow one to replace a marked vertex v in a tree T with
another tree T ′. But this is only possible if v has valency 1 — otherwise it is not clear what to do
with the extra edges coming into v. We can only replace v with an n-planar tree, where n is the
valency of v.

This is why there is a sum in our definition of the brace operation — essentially this is an
averaging over all possible ways to take care of the extra edges; and this becomes possible only after
we pass to the chain complex. What happens is that we consider the canonical quasiisomorphism
C q(T[n]

S , k)→ C q(TS, k) = C q(S) obtained by projection, and forcibly invert it.

Considering all the n-planar trees together does not help much: they do not an operad either,
because they can be sustituted one into the other only if the valencies match.

To me, the best way to prove Deligne Conjecture would be not to force the pieces into submission,
but rather, to formalize the structure that the partially ordered sets TS and T

[n]
S do possess; this

amounts to generalizing the notion of an operad by replacing the category Γ of finite sets with
something else — for example, an appropriately defined category of trees, with (10.4) playing the
role of the product decomposition (9.1). However, as far as I know, this has not been done. M.
Batanin has realized a similar plan, but a different replacement for Γ — he introduces a notion of
a “non-Σ 2-operad” which is encoded by the “category of 2-ordinals”; this category is not directly
related to trees, but rather, gives another model of the configuration spaces of points on a disc.
Recently D. Tamarkin has shown in arXiv:math/0606553 how to prove the Deligne Conjecture
in this language. The other existing approaches to Deligne Conjecture (for example in the papers
by Voronov, McClure-Smith, Kontsevich-Soibelman, in fact also in the original paper by Getzler-
Jones) are more indirect. What these authors do is the following: they construct a different and
much larger DG operad which maps both onto the brace operad and onto the chain complex operad
of small discs, and show that both maps are quasiisomorphisms. The construction usually involve
doing some very intricate cellular subdivisions of the configuration spaces and a lot of combinatorics.
My feeling is that the “final solution” of the Deligne Conjecture is not yet known.

Finally, some bibliographical notes. I have borrowed the formula for the brace operation from
the paper arXiv:math/9910126 of McClure and Smith, together with the signs. The brace operad
also appeared there, or rather, a version of it slightly different from the one presented here (I note
that the authors use “formulas” instead of planar trees, but these objects are in fact identical).
Exactly the same complex as above appears in arXiv:math/0001151 by Konstevich and Soibelman,
and also in other places in the literature. So does the partially ordered set of planar trees. But
our proof of the comparison theorem seems to be new. The usual approach is to take a certain
cellular subdivision of the configuration space and quote the general theorem which says that if
the subdivision is nice enough, then the geometric realization of the partially ordered set of cells
in a space is homotopy equivalent to the space itself. An exact subdivision which corresponds to
trees also appears in Kontsevich-Soibelman, but without proof. The other references that I know
use different subdivisions which give different partially ordered sets, and then use combinatorics of
varying degrees of difficulty to identify the result with trees.
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Lecture 11.
Deformations of DG algebras and A∞ algebras. Deformations in the Pois-
son and the Gerstenhaber case. Formality and deformations. Tamarkin’s
Theorem.

11.1 The language of A∞-maps.

In this last lecture, I will try to sketch the proof of D. Tamarkin’s theorem which I have already
formulated as Theorem 9.8. I start with a discussion of associative DG algebras.

Assume given an associative unital DG algebra A
q
over a field k. To define Hochschild coho-

mology HH
q
(A

q
), one can naively write down the Hochschild cohomology complex, just as in the

case of usual associative algebras, and obtain a bicomplex; Hochschild cohomology HH
q
(A

q
) is the

cohomology of the total complex of this bicomplex. We note that since the complex Hom(A
q⊗n, A

q
)

for every n ≥ 1 has terms both of positive and of negative degrees, there is an ambiguity in taking
the total complex of a bicomplex: one can take either the sum, or the product of the diagonal
terms. For the definition of Hochschild cohomology, one needs to take the product: the degree-n
term of the resulting total complex is given by∏

i≥0

Homn−i(A
q⊗i, A

q
),

where Homn(−) stands for the term of degree n in the complex of Hom’s. More invariantly, one
can consider the category of DG modules over A

q
, and formally invert quasiisomorphisms. The

result is a triangulated category D(A
q
-mod) known as derived category of DG-modules over A

q
.

Analogously, one defines the triangulated category D(A
q
-bimod) of DG A

q
-bimodules. Then we

have
HH

q
(A

q
) = RHom

q
D(A

q
-bimod)(A

q
, A

q
),

where A
q
in the right-hands side is the diagonal bimodule.

Recall now that for ordinary associative algebras, Hochschild cohomology could be also used to
describe deformations. What is the situation with DG algebras? It turns out that a similar theory
exists, but it describes deformations of DG algebras “up to a quasiisomorphism”, as in Lecture 8.

To explain how this works, we first describe briefly a convenient technical tool — the notion of
an A∞-map. For a very good overview of this subject with detailed references, I refer the reader
to a paper arXiv:math/0510508 by B. Keller.

Assume given an associative DG algebra A
q
, with or without unit, and consider the free coalge-

bra T q(A q
) generated by A

q
. Then by Lemma 8.2, T q(A q

) has a natural structure of a bicomplex,
with one differential induced by the differential in A

q
, and the other induced by multiplication. Its

total complex is then a DG coalgebra with counit. For technical reasons, we need to remove the
counit, and we denote the corresponding coalgebra by T q(A q

). Explicitly,

(11.1) T q(A q
) =

⊕
i≥1

A
q⊗i[i]

as a graded vector space.

Exercise 11.1. Prove that if A
q
is a DG algebra with unit, then the complex T q(A q

) is acyclic.
Hint: show that T q(A q

) is exactly the acyclic bar complex C ′q(A q
) of Lecture 1 (Lemma 1.3).

Exercise 11.2. Assume that A
q
itself is a free associative DG algebra without unit generated by a

complex V
q
, A

q
= T

q
(V

q
) =

⊕
i≥1 V

q⊗i[i]. Prove that the natural map

V
q
[1]→ T

q
(V

q
)[1] = A

q
[1]→ T q(A q

)
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is a quasiisomorphism. Hint: using the previous exercize, first show that the complex T q(A q
) com-

putes TorA
qq (k, k), where k is the trivial left, resp. right A

q
-module.

Definition 11.1. An A∞-map between associative DG algebras A
q
1, A

q
2 is a DG coalgebra map

ϕ : T q(A q
1)→ T q(A q

2).

Since the coalgebra T q(A q
2) is free, an A∞-map ϕ is completely defined by the induced map

ϕ : T q(A q
1)→ A

q
2, and this can be decomposed as

ϕ = ϕ0 + ϕ1 + · · ·+ ϕi + . . .

according to (11.1). Here ϕ0 is simply a map of complexes ϕ0 : A
q
1 → A

q
2. If all the components ϕi,

i ≥ 1 are equal to zero, then ϕ0 : A
q
1 → A

q
2 is just a map which commutes with multiplication —

that is, a DG algebra map in the usual sense. In general, however, ϕ0 commutes with multiplication
only up to a homotopy, and this homotopy is ϕ1 : A

q⊗2
1 → A

q
2[−1]. This in turn commutes with

multiplication in an appropriate sense, but only up to a homotopy given by ϕ2, and so on.

Definition 11.2. An A∞-map ϕ is a quasiisomorphism if so is its component ϕ0.

Of course, a quasiisomorphism ϕ : A
q
1 → A

q
2 between two DG algebras is also an A∞-quasiiso-

morphism. However, while it is often not invertible in any sense as a DG algebra map, the resulting
A∞-map admits an inverse, in the following sense.

Lemma 11.3. Assume given an A∞-quasiisomorphism ϕ from a DG algebra A
q
1 to a DG algebra

A
q
2. Then there exists an A∞-quasiisomorphism ϕ−1 from A

q
2 to A

q
1 such that both ϕ ◦ ϕ−1 and

ϕ−1 ◦ ϕ induce identity maps on cohomology.

Proof. Since ϕ is a quasiisomorphism, there exists a map ϕ−1
0 : A

q
2 → A

q
1 of the underlying complexes

which induces an iverse map on cohomology. We extend it to an A∞-map by induction. Namely,
for any DG algebra A

q
, denote by T<i(A

q
) ⊂ T q(A q

) the subcoalgebra consisting of components
A

q⊗j[j] with j ≤ i, and assume given a DG coalgebra map ϕ−1
<i : T<i(A

q
2) → T<i(A

q
1) which

induces a map on cohomology inverse to that induced by ϕ. Extend ϕ−1
<i to a DG coalgebra map

ϕ−1
<i : T<i+1(A

q
2)→ T<i+1(A

q
1). Then this extended map ϕ−1

<i no longer necessarily commutes with
the differential. However, the commutator is a certain map

e : A
q⊗(i+1)
2 → A

q
1[−i + 1],

and using the inductive assumption, one easily checks that e induces a zero map on cohomology.
Therefore it is chain-homotopic to 0 by a certain chain homotopy ϕi : A

q⊗(i+1)
2 → A

q
1[−i]. We now

take ϕ<i+1 = ϕ<i + ϕi. �

Proposition 11.4. Two DG algebras A
q
1, A

q
2 are quasiisomorphic if and only if there exists an

A∞-quasiisomorphism ϕ : T q(A q
1)→ T q(A2q).

Proof. Assume that such a ϕ exists. Then Lemma 8.2 has an obvious dual statement for coalgebras,
so that for any DG coalgebra B

q
, we have a DG algebra T

q
(B

q
) which is free as an algebra. Applying

this to DG coalgebras T<i(A
q
), i ≥ 1 corresponding to a DG algebra A

q
, we obtain a DG algebra

T̃ (A
q
) = lim

→i
T

q
(T<i(A

q
)).

Then ϕ obviously induces a quasiisomorphism T̃ (A
q
1) → T̃ (A

q
2), so that it suffices to prove that

T̃ (A
q
) is quasiisomorphic to A

q
for any A

q
. To construct a DG algebra map τ : T̃ (A

q
) → A

q
, we

use induction on i and construct a compatible system of DG algebra maps

τi : T
q
(T<i(A

q
))→ A

q
.
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Since the left-hand side is a free algebra, at each stage a map is competely defined by its restriction
to the generator T<i(A

q
). When i = 1, we have T<i(A

q
) = A

q
; as τ1, we take the map which is

identical on generator. Once the map τi is constructed to some i, we first extend it to T<i+1(A
q
)

as a linear map commuting with the differential, in any way we like, and then extend further to a
DG algebra map τi+1 : T

q
(T<i+1(A

q
)) → A

q
by multiplicativity. Passing to the limit, we obtain a

DG algebra map τ : T̃ (A
q
)→ A

q
.

To show that τ is a quasiisomorphism, we consider the increasing filtration F qT̃ (A
q
) induced by

the filtration FiT q(A q
) = T<i(A

q
) on the generating graded vector space T q(A q

). It is easy to check
that this filtration is compatible with the differential, and it suffices to prove that the induced map

gr
q
F T̃ (A

q
) ∼= T

q
(gr

q
F τ q(A q

))→ A
q

is a quasiisomorphism. But the left-hand side is the DG algebra T̃ (A
q
), where A

q
is A

q
with the

trivial multiplication. Thus we may assume from the very beginning that the multiplication in A
q

is trivial. In this case, the claim is an obvious dualization of Exercize 11.2.
Conversely, assume that A

q
1 and A

q
2 are quasiisomorphic, that is, there exists a chain A

q
1 ←

A
q
1,1 → A

q
1,2 ← · · · → A

q
1,n = A

q
2 of DG algebras and quasiisomorphisms between them. Then by

induction, we may assume that the chain is of length 2, so that we either have a DG quasiisomor-
phism η : A

q
1 → A

q
2, or η : A

q
1 → A

q
2. In the first case, ϕ is induced by η, and in the second case, we

take ϕ = η−1 provided by Lemma 11.3. �

This Proposition considerable simplifies controlling quasiisomorphism classes of DG algebras.
In particular, it allows to describe deformations.

Definition 11.5. Assume given a commutative Artin local k-algebra S with maximal ideal m,
S/m ∼= k. An S-deformation Ã

q
of an associative DG algebra A

q
is a DG algebra Ã

q
which is

flat over S and equipped with an isomorphism Ã
q ⊗S k ∼= A

q
. Two such deformations Ã

q
1, Ã

q
2 are

equivalent if there exists an S-linear A∞-quasiisomorphism ϕ : T q(Ã q
1)→ T q(Ã q

2).

Definition 11.6. The reduced Hochschild cohomology complex DT
q
(A

q
) of a DG algebra A

q
is

the DG Lie algebra of derivations of the DG coalgebra without unit T q(A q
). Reduced Hochschild

cohomology groups HH
q
(A

q
) are the cohomology groups of the complex DT

q
(A

q
).

Exercise 11.3. Assume given an associative DG algebra A
q
. Prove that for any S as in Defini-

tion 11.5, the set of equivalence classes of S-deformations of A
q
is in natural one-to-one correspo-

dence with the set of equivalence classes of m-valued solutions of the Maurer-Cartan equation (8.8)
in the reduced Hochschild cohomology complex DT

q
(A

q
). Hint: repeat literally the corresponding

statement for associative algebras presented in Lecture 8.

The reason we have to use DG coalgebras without unit in the definition of an A∞-map is clear
from Lemma 11.3 — otherwise, an A∞-map ϕ would also have a component ϕ−1, and the recursive
procedure would fail. Because of this, the relevant deformation theory is controlled by the reduced
Hochschild cohomology DT

q
(A

q
), not by the full Hochschild cohomology complex DT

q
(A

q
). The

difference between them is the constant term: we have a natural exact triangle

DT
q
(A) −−−→ DT

q
(A) −−−→ A

q −−−→ .

We note that strictly speaking, we had to consider the reduced Hochschild cohomology even in
the deformation theory of the usual associative algebras. However, there it made no difference: if

A
q
= A is concentrated in degree 0, we have HH i(A) = HH

i
(A) for any i ≥ 2, and the spaces of

the Maurer-Cartan solutions are also isomorphic. For a DG algebra A
q
which has non-trivial terms

in positive degrees, they might be different.
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In the interests of full disclosure, let me mention that in some situations, one can also consider
A∞-maps which have non-trivial (−1)-component; these correspond, roughly speaking, to functors
between categories of DG modules which are not induced by a map of DG algebra. One can
also develop a deformation theory which is controlled by the full Hochschild cohomology complex
DT

q
(A

q
); this is “the deformation theory of the category of DG modules”, in some appropriate

sense. Deformations of the category of DG modules which do not come from deformation of a DG
algebra do exist, and they are sometimes known as “deformations in the gerby direction”. However,
this lies outside of the scope of the present course.

11.2 Poisson cohomology.

What we really need to study for Theorem 9.8 is Gerstenhaber algebras, not associative ones; thus
we need to extend the above formalism to the Gerstenhaber case. For simplicity, we start with the
Poisson case. The reference here is, for instance, the Appendix to my joint paper with V. Ginzburg
arXiv:math/0212279.

Assume given a vector space V . The free Poisson coalgebra P q(V ) generated by V is the
associated graded quotient of the free associative coalgebra T q(V ) with respect to the Poincaré-
Birkhoff-Witt filtration. It turns out that an analog of Lemma 8.2 holds in the Poisson situation,
too.

Lemma 11.7. Poisson algebra structures on V are in one-to-one correspondence with coderivations
δ : P q(V )→ P q−1(V ) of degree 1 such that {δ, δ} = 0.

Sketch of a proof. By definition, we have P2(V ) = grPBW V ⊗2 = S2(V ) ⊕ Λ2(V ), the sum of the
symmetric and the exterior square of the vector space V . Thus a coderivation δ consists of two
components, δ0 : S2(V ) → V and δ1 : Λ2(V ) → V . The component δ0 defines the multiplication,
and δ1 defines the Poisson bracket. The commutator {δ, δ} has three components, {δ0, δ0}, {δ1, δ1}
and 2{δ1, δ0}; their vanishing means, respectively, that the multiplication is associative, the bracket
satisfies the Jacobi identity, and that the bracket satisfies the Leibnitz rule with respect to the
multiplication. The proof is a direct computation which I leave as an exercize (or see the quoted
paper arXiv:math/0212279). �

Thus given a Poisson algebra A, we have a canonical differential on the free Poisson coalgebra
P q(A), and we can consider the DG Lie algebra DP

q
(A) of all coderivations of P q(A).

Definition 11.8. Poisson cohomology HP
q
(A) of the Poisson algebra A is the cohomology of the

complex DP
q
(A).

As in Lecture 8, we can also consider the DG Lie algebra DT
q
(A) of coderivations of the

tensor coalgebra T q(A), and this is nothing but the Hochschild cohomology complex of the algebra
A. The PBW filtration on T q(A) induces a filtration on DT

q
(A), and we have gr

q
PBW DT

q
(A) ∼=

DP
q
(A). The component DL

q
(A) = gr0PBW DT

q
(A) is particularly important; it depends only

on the multiplcation in A, and it coincides with the DG Lie algebra of coderivation of the free
Lie coalgebra L

q
(A) generated by A. This is known as the tangent complex of the commutative

algebra A, and it computes the so-called Harrison cohomology of A. We note that the differential
in DL

q
(A) is A-linear, so that it is a DG Lie algebra of A-modules (in fact, free A-modules). As

such, it is quasiisomorphic to the complex

RHom
q
A(Ω q(A), A),

where Ω q(A) is the cotangent complex of A first constructed by L. Illusie. The whole Lie alge-
bra DP

q
(A) also has the structure of an A-module, and coincides with the total complex of the
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bicomplex
gr

q
PBW DT

q
(A) ∼= Λ

q
ADL

q
(A).

One differential in this bicomplex is induced by the differential in DL
q
(A), thus by multiplication

in A — explicitly, the multiplication gives a class µ ∈ DL1(A), and the differential is given by
α 7→ {µ, α}. The other differential in the bicomplex comes from the Poisson bracket in A — the
bracket gives a class

(11.2) Θ ∈ Hom(Λ2A, A) ⊂ Λ2
A(DL0(A)),

and the differential is given by α 7→ {Θ, α}.
In general, it is very diffucult to compute DP

q
(A) and the Harrison complex DL

q
(A). However,

the situation becomes much simpler when the algebra A is smooth — that is, in the situaton of
the Hochschild-Kostant-Rosenberg Theorem. In this case, the cotangent complex Ω q(A) reduces
to the module Ω(A) of Kähler differentials of A/k, and this module is flat. Therefore DL

q
(A) has

non-trivial cohomology only in degree 1, and this cohomology is canonically identified with the
module T (A) of derivations of the algebra A (that is, vector fields on X = Spec A). The higher
quotients gr

q
PBW DT

q
(A) are then isomorphic to modules of polyvector fields on X, so that the

PBW filtration is in fact split — gr
q
PBW DT

q
(A) is quasiisomorphic to the same space of polyvector

fields H0(X, Λ
qTX) as the full Hochschild cohomology complex DT

q
(A). Under this identification,

the class Θ from (11.2) corresponds to the Poisson bivector Θ ∈ H0(X, Λ2TX). To sum up:

Proposition 11.9. Assume given a smooth Poisson algebra A of finite type over a characteristic-
0 field k. Then the Poisson cohomology complex DP

q
(A) is quasiisomorphic to the complex with

terms
H0(X, Λ

qTX)

and with differential given by a 7→ [Θ, a], where Θ ∈ H0(X, Λ2TX) is the Poisson bivector. �

I will not prove this Proposition. Let me just mention that it is rather easy to reduce the
statement to the case when A = S

q
(V ) is the symmetric algebra generated by a k-vector space

V — in other words, a polynomial algebra — and then the crucial fact is the quasiisomorphism
L

q
(S q(V )) ∼= V , analogous to the quasiisomorphism of Exercize 11.2 (here S q(−) means the free

commutative coalgebra without unit).
One way to establish this quasiisomorphism uses a more careful analysis of the Hochschild-

Kostant-Rosenberg map of Lecture 2, which shows how it interacts with the symmetric group
actions on the terms A⊗n of the Hochschild complex; the reader can find such a proof, for instance,
in Loday’s book.

Another and slightly more conceptual proof uses the notion of “Koszul duality of operads”
introduced in Ginzburg-Kapranov arXiv:0709.1228. One of the statements there is that the
Lie and the commutative operad are “Koszul dual”, and this includes, as a part of the package,
canonical quasiisomorphisms L

q
(S

q
(V )) ∼= V and S

q
(L q(V )) ∼= V . The second quasiisomorphism

is semi-obvious, since the left-hand side S
q
(L q(V )), with the degree-0 term S0(L q(V )) added, is

nothing but the standard Chevalley complex which computes Lie algebra homology H q(L q
(V ), k).

Then the first quasiisomorphism, which we actually need, can be deduced by the general formalism
of Koszul duality. I refer the reader to arXiv:0709.1228 for further details.

Assuming Proposition 11.9, we see that for a smooth algebra A — in particular, for a polynomial
algebra S

q
(V ) — the Poisson cohomology can be computed by the very explicit complex whose

terms are polyvector fields. This complex was first discovered by J.-L. Brylinski in the early 80es,
so that it is sometimes called the Brylinski complex. But when the Poisson bivector Θ is non-
degenerate, so that the smooth Poisson variety X = Spec A is actually symplectic, the Poisson
cohomology becomes even simpler.
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Exercise 11.4. Prove that for any smooth Poisson variety X, the map Ω1
X → TX given by con-

traction with the Poisson bivector Θ extends to a multiplicative map

Ω
q
X → Λ

qTX

from the de Rham complex of X to the Brylinski complex 〈Λ qTX , [−, Θ]〉.

Applying this in the affine symplectic case X = Spec A, we see that Ω1
X → TX is actually an

isomorphism, so that the Brylinski complex is quasiisomorphic to the de Rham complex, and the
Poisson cohomology HP

q
(A) is isomorphic to the de Rham cohomology H

q
DR(X) (in particular, it

does not depend on the symplectic/Poisson structure at all). When A = S
q
(V ) is the polynomial

algebra generated by a symplectic vector space V , with the Poisson structure induced by the
symplectic form on V , we have

HP i(A) = H i
DR(X) =

{
k, i = 0,

0, i ≥ 1,

where X = Spec A is the affine space.

The Gerstenhaber case works in exactly the same way, except that we now have to care of the
gradings, and use reduced cohomology.

Definition 11.10. The Gerstenhaber cohomology complex DG
q
(A

q
), resp. the reduced Gersten-

habe cohomology complex DG
q
(A

q
) of a Gerstenhaber DG algebra A

q
is the DG Lie algebra of

coderivations of the free Gerstenhaber coalgebra with, resp. without unit generated by A
q
[1].

There is also a version of the A∞-formalism for DG Gerstenhaber algebra, and the classification
theorem for deformations of DG Gerstenhaber algebras up to a quasiisomorphism; this is completely
parallel to the associative case and left to the reader. The end result is that deformations “up to a
quasiisomorphims” of a DG Gerstenhaber algebra A

q
are controlled by the DG Lie algebra DG

q
(A

q
).

Exercise 11.5. Let A
q
= S

q
(V

q
) be graded polynomial algebra generated by a graded vector space

V , with the Gerstenhaber structure induced by a non-degenerate graded sympletic form Λ2(V
q
) →

k[−1]. Show that the reduced Gerstenhaber cohomology complex DG
q
(A

q
) is quasiisomorphic to the

quotient A
q
/k, where k → A

q
is the unit map λ 7→ λ · 1.

11.3 Tamarkin’s Theorem.

We can now explain how to prove Tamarkin’s Theorem, ar rather, the following version of it.

Proposition 11.11. Let A
q
= S

q
(V ) be the polynomial algebra generated by a vector space V , and

assume given a DG Gerstenhaber algebra B
q
whose cohomology is isomorphic to the Hochschild

cohomology Gerstenhaber algebra HH
q
(A). Aswsume in addition that B

q
admits an action of the

group GL(V ) such that the isomorphism H
q
(B

q
) ∼= HH

q
(A) is GL(V )-equivariant. Then the DG

Gerstenhaber algebra B
q
is formal, that is, quasiisomorphic to HH

q
(A).

Proof. Consider the canonical filtration F qB q
on the Gerstenhaber algebra B

q
. Then we have

a canonical quasiisomorphism grFq B
q ∼= HH

q
(A), and this quasiisomorphism, being canonical,

is compatible with the Gerstenhaber algebra structure and with the GL(V )-action. There is a
standard way to interpret the associated graded quotient grFq B

q
as a special fiber of a certain

deformation of the algebra B
q
(known as “the deformation to the normal cone”). Namely, consider

the Rees algebra

B̃
q
=
⊕

i

FiB
q
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defined by the canonical filtration. This is also a Gerstenhaber algebra which has an additional
grading by i. Moreover, the embeddings FiB

q ⊂ Fi+1B
q
give a certain endomorphism of B̃

q
of degree

1 which we denote by h. Then B̃
q
is a graded Gerstenhaber algebra over S = k[h]. Its generic

fiber B̃
q ⊗S k[h, h−1] is isomorphic to B

q ⊗ k[h, h−1], while its special fiber B̃
q
/h is isomorphic to

gr
q
F B

q
. Thus we have a GL(V )-equivariant S-deformation of the Gerstenhaber algebra gr

q
F B

q ∼=
HH

q
(A), and we have to show that this deformation is trivial up to a quasiisomorphism. But by

the Hochschild-Kostant-Rosenberg Theorem, we have HH
q
(A) = S

q
(V ⊕ V ∗[−1]), and it is easy

to check that the Gerstenhaber structure is induced by the natural pairing V ⊗ (V ∗[−1])→ k[−1])
(it suffices to check this on the generators V ⊕ V ∗[−1], and this is a trivial exercize). Applying
Exercize 11.5, we conclude that

DG
q
(HH

q
(A)) ∼= HH

q
(A)/k.

In the right-hand side, the GL(V )-invariant part is trivial in degrees ≥ 2, so that every GL(V )-
equivariant deformation of the DG Gerstenhaber algebra HH

q
(A) is trivial up to a quasiisomor-

phism. �

As we have noted already in Lecture 9, this reduces Kontsevich Formality Theorem to Theo-
rem 9.7, the formality of the chain operad of little discs (and the Deligne Conjecture). Indeed, once
these both are established, we know that the Hochschild cohomology complex DT

q
(A

q
) is a DG

Gerstenhaber algebra. It is obviously GL(V )-equivariant, thus formal by Proposition 11.11.


