代数多様体の爆発 Blow-up

2024/11/23 東大数理 公開講座 石井志保子

今日の主題

「爆発は役に立つ」

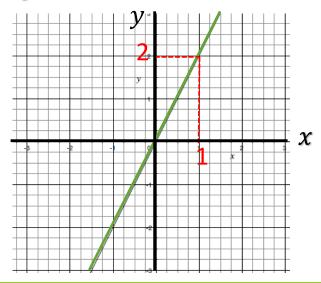
プログラム

- 1. 代数多様体とは何か
- 2. 代数多様体の特異点
- 3. 代数多様体を爆発させる
- 4. 広中の特異点解消定理
- 5. 未解決問題

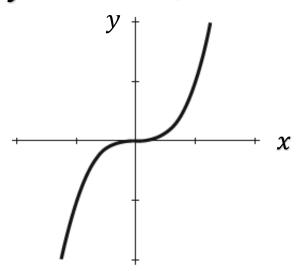
1.代数多様体とは何か?

■ 実は、皆様は中学生の頃にすでに代数多様体を勉強しています

$$y = 2x \mathcal{O} \mathcal{J} \mathcal{J} \mathcal{J}$$

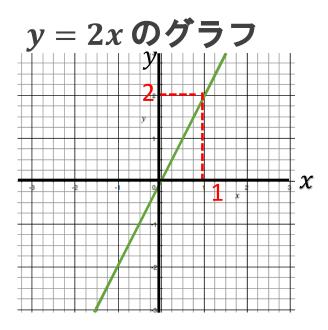


$$y = x^3$$
のグラフ



これらはいずれも代数多様体の例

これらはいずれも代数多様体の例



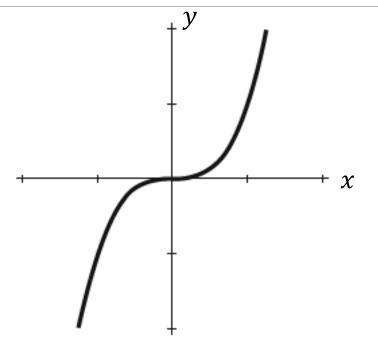
グラフとはなにか?

xy平面の点P = (x, y)その座標ス,yが y = 2xという関係を満たす 点(x,y)全体

$$\lceil y = 2x \, \mathcal{O} \, \mathcal{$$

$$y = x^3$$
のグラフ= $\{(x, y) | y = x^3\}$

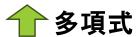
$$y = x^3$$
のグラフ



$$= \left\{ (x, y) \middle| x^3 - y = 0 \right\}$$

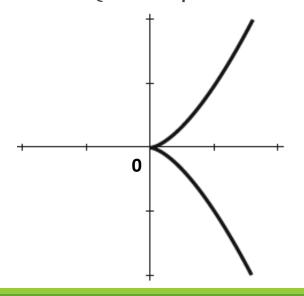
$$X = \{(x,y)|f(x,y) = \mathbf{0}\}$$
 このよっな形で表わざ

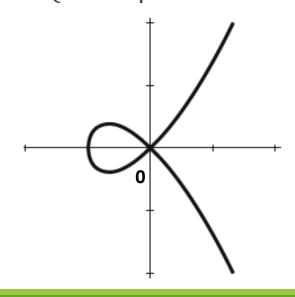
このような形で表わされる 代数多様体と呼ぶ



例1
$$X_1 = \{(x, y) | y^2 - x^3 = 0 \}$$

例1
$$X_1 = \{(x,y)|y^2 - x^3 = 0\}$$
 例2 $X_2 = \{(x,y)|y^2 - x^2 - x^3 = 0\}$



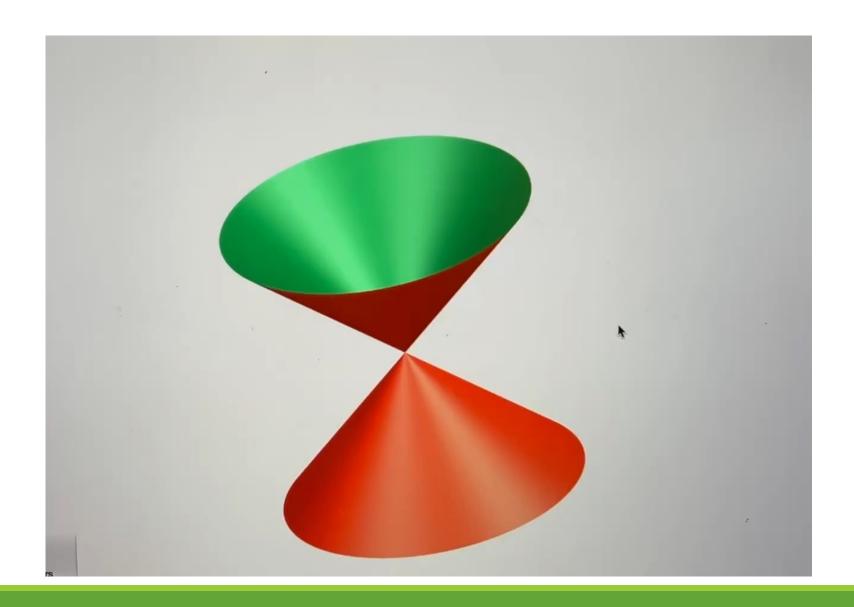


■ これまでの代数多様体は、xy平面上の曲線

■ xyz空間の代数多様体の例を見よう

$$\blacksquare Y_1 = \{(x, y, z) | x^2 + y^2 - z^2 = 0 \}$$

■ どのような形をしているか見てみましょう



もう少し複雑な2次元の代数多様体(代数曲面)

$$Y_2 = \left\{ (x, y, z) \middle| \begin{array}{l} (x^2 + y^2 + z^2 - 1.69)^2 \\ -3.87(1 - z - \sqrt{2}x)(1 - z + \sqrt{2}x)(1 + z + \sqrt{2}y)(1 + z - \sqrt{2}y) = 0 \end{array} \right\}$$

Kummer曲面と呼ばれる (クンマー) 4次の多項式

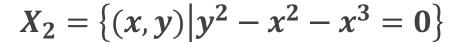
2. 代数多様体の特異点

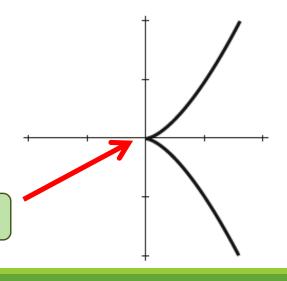
2. 代数多様体の特異点

直観的には『なめらかでない点』=特異点

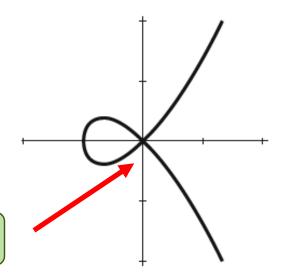
『なめらかな点』=非特異点

$$X_1 = \{(x, y) | y^2 - x^3 = 0\}$$



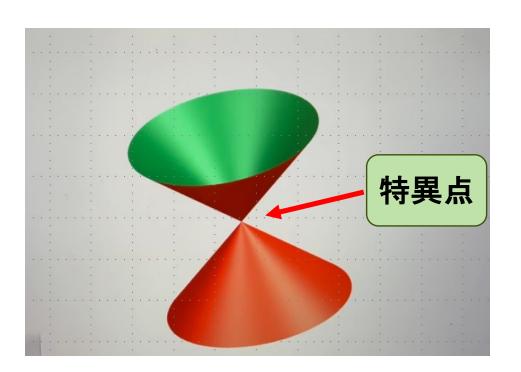


特異点

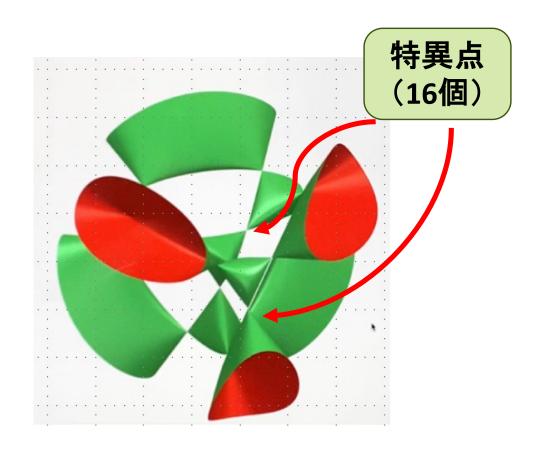


特異点

$$Y_1 = \{(x, y, z) | x^2 + y^2 - z^2 = 0 \}$$



Y₂: Kummer曲面



- 数学的に厳密な定義が必要
- なぜ必要か?
- 高い次元の代数多様体はなめらかかどうか 視覚的に確かめられない

■定義1X: 平面曲線(1次元代数多様体)

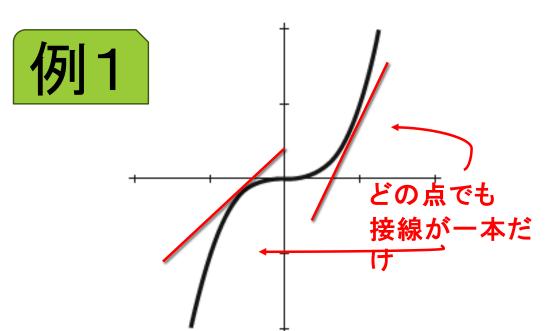
 $(P = (x, y) \in X$ が特異点 $\leftrightarrow P$ での X の接線が2つ以上ある

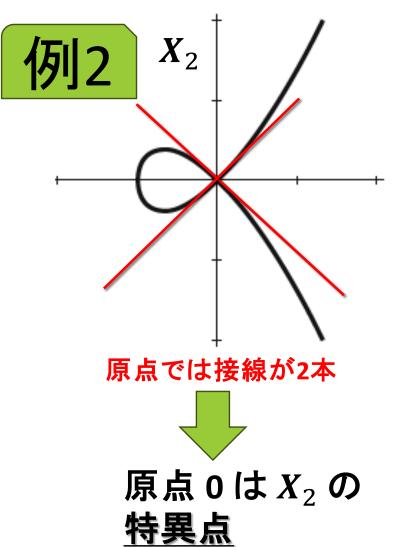
■定義2 \blacksquare X:空間曲面(2次元代数多様体)

 $(P = (x, y, z) \in X$ が特異点 $\leftrightarrow P$ での X の接平面が2つ以上ある

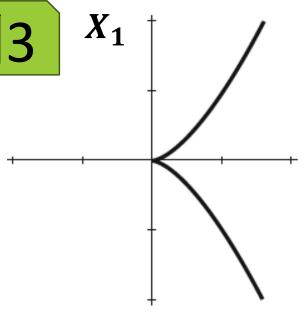
■定義3X:n次元 代数多様体

 $P = (X_{1, \dots, X_{n+1}}) \in X$ が特異点 $\leftrightarrow P$ での X の接n次元空間が2つ以上ある



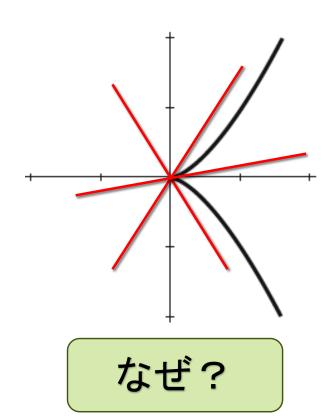


例3



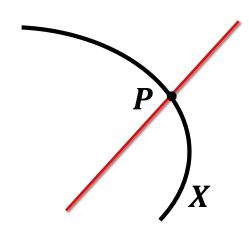
 \blacksquare 実は原点 0 を通るすべての直線が X_1 の原点での接線

- では 非特異?
- でもなめらかでないよ

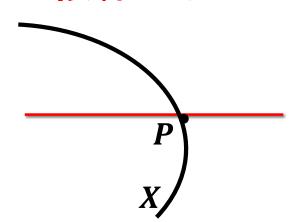


接線とは、そもそも何だったか?

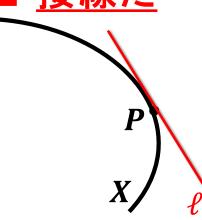
■ 接線でない



■ 接線でない

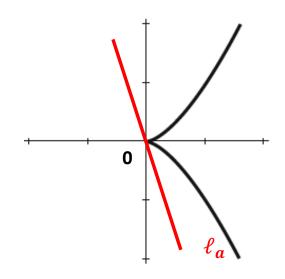


■ 接線だ



"Xと直線の交わりが重複"

ℓの式をXの式に代入 ➡ 重根



$$X_1 = \{(x, y) | y^2 - x^3 = 0\}$$

$$\ell_a = \{(x, y)|y + ax = 0\}, \ell_\infty = \{(x, y)|x = 0\}$$

(これらが 0 を通る直線のすべて)

$$y=-ax$$
 を $y^2-x^3=0$ に代入

$$a^2x^2-x^3=0$$
 任意の ℓ_a は原点での接線 $x^2(a^2-x)\to x=0$ は 重根 ℓ_∞ についても同様にできる

任意のℓαは原点での接線

 \blacksquare というわけで、原点を通る直線はすべて X_1 の『接線』だ

原点を通る X_1 の接線は2個以上ある



原点は X1の特異点

 \blacksquare これで X_1 , X_2 の原点が特異点であることがわかった

- 曲線上に点は無限個ある
- ■では、特異点はどこにあるのか?

$$X = \{(x, y) \mid f(x, y) = 0\}$$

 $P = (a, b)$ を X 上の点とする

■ P が X の特異点 $\leftrightarrow \frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0$

f(x,y)をxの関数 (yは定数)と思って微分 f(x,y)をyの関数 (xは定数)と思って微分

 $X_2 = \{(x, y) | f(x, y) = y^2 - x^2 - x^3 = 0\}$ は原点が特異点だった原点以外に特異点はあるか?

$$\frac{\partial f}{\partial x} = -2x - 3x^{2}, \frac{\partial f}{\partial y} = 2y$$

$$\frac{\partial f}{\partial x}(a,b) = -2a - 3a^{2} = -a(2+3a) = 0$$

$$\begin{cases} a = 0 & \text{又は} \\ a = -\frac{2}{3} \end{cases}$$

$$\frac{\partial f}{\partial y}(a,b) = 2b = 0$$

$$b = 0$$
したがって $\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0$ となる (a,b) は $(0,0)$ か $\left(-\frac{2}{3},0\right)$ のみ

- \bullet (0,0) は f(0,0) = 0 なので、 X_2 の点
- \bullet $\left(-\frac{2}{3},0\right)$ は $f\left(-\frac{2}{3},0\right)\neq 0$ なので X_2 の点ではない は原点のみ!」

「X2の特異点

演習問題

$$f = 2x^3 + 3x^2y^2 + y^4$$
 とするとき

$$X = \{(x,y)|f(x,y) = 0\}$$
 の特異点を探そう

$$X$$
 が $f(x,y) = \mathbf{0}$ で定義されているとき X 上の点 $P = (a,b)$ が特異点 $\leftrightarrow \frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = \mathbf{0}$

なぜ?

$$x' = x - a$$
, $y' = y - b$ と座標変換すると $P \circ x'y'$ 座標は $(0,0)$ $f(x,y) = f(x' + a$, $y' + b) = F(x', y')$ とおくと $F(x', y') = F_0 + F_1 + F_{\geq 2}$ と表すと 定数項 $x', y' \circ 1$ 次式 $x', y' \circ 2$ 次以上の式 $F_0 = 0$ $(F(0,0) = 0$ より) $F_1 = cx' + dy'$ とおく

 $F_1 \neq 0$ (c, d の少なくとも1つが $\neq 0$) のとき

 $F_1 = 0$ が X の P での唯一の接線 したがって *P* は *X* の非特異点

 $\begin{bmatrix} \Pi \end{bmatrix}$ $F_1 \equiv O (c = d = 0)$ のとき

P を通る任意の直線が X の P での接線 したがってPはXの特異点

〔Ⅰの証明〕

実際 $d \neq 0$ として $y' = -\frac{c}{d}x'$ を F に代入すると

したがって $F(x', -\frac{c}{d}x') = 0$ は P で重根をもつ

 $F_1(x',y')=0$ は接線を決める

このとき $F_1 = 0$ は唯一の接線である

実際これ以外のPを通る直線は

$$G(x', y') = ex' + ky'$$
 $e: k \neq c: d$ と表される

$$k \neq 0$$
 として $y' = -\frac{e}{k}x'$ を F に代入すると

$$F(x', -\frac{e}{k}x') = \left(c - \frac{de}{k}\right)x' + (x' \bigcirc 2$$
次以上の式)
 $\neq 0$

よって x'=0 は $F(x',-\frac{e}{\nu}x')=0$ の単根 G(x', y') = 0 は P での接線ではない

〔Ⅱの証明〕

$$P$$
 を通る任意の直線 $\ell(x', y') = rx' + sy' = 0$ は $s \neq 0$ として $y' = -\frac{r}{s}x'$ を F に代入

$$F\left(x', -\frac{r}{s}x'\right) = x'$$
 の2次以上の式 $= x'^2(\cdots)$ となり $x' = 0$ は重根となる

 $\longrightarrow \ell$ は P での接線となる

Ⅰ, Ⅱ まとめると

$$c = d = 0 \leftrightarrow P$$
 は X の特異点

ここで $c = \frac{\partial F}{\partial x'}(0,0), d = \frac{\partial F}{\partial y'}(0,0)$ が成立する

同様に
$$\frac{\partial F}{\partial v'}(0,0) = a$$

注:
$$\frac{\partial f}{\partial x}(a,b) = \frac{\partial F}{\partial x'}(0,0) = c, \quad \frac{\partial f}{\partial y}(a,b) = \frac{\partial F}{\partial y'}(0,0) = d$$

Xが f(x,y) = 0 で定義されているとき,

X上の点 P = (a, b)が特異点

$$\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0$$

n次元代数多様体の場合

X が $f(x_1, \dots, x_{n+1}) = 0$ で定義されているとき

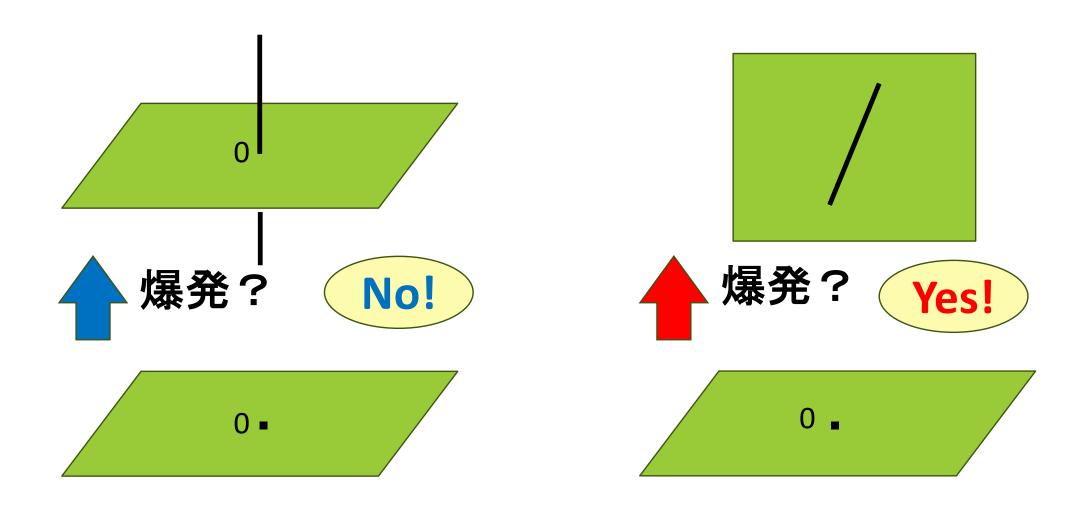
$$X$$
 上の点 $P=(a_1,\cdots,a_{n+1})$ が特異点

$$\frac{\partial f}{\partial x_1}(a_1, \cdots, a_{n+1}) = \cdots = \frac{\partial f}{\partial x_{n+1}}(a_1, \cdots, a_{n+1}) = 0$$

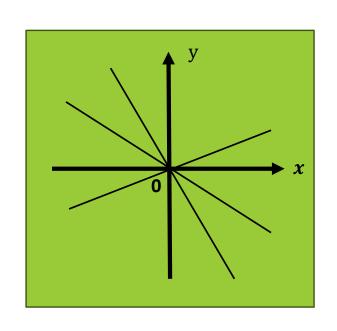
3.代数多様体を爆発させる

3.代数多様体を爆発させる

- ここでは平面を原点で爆発させる方法を紹介
- 具体的には、xy平面の原点を爆発させて 直線におき換える

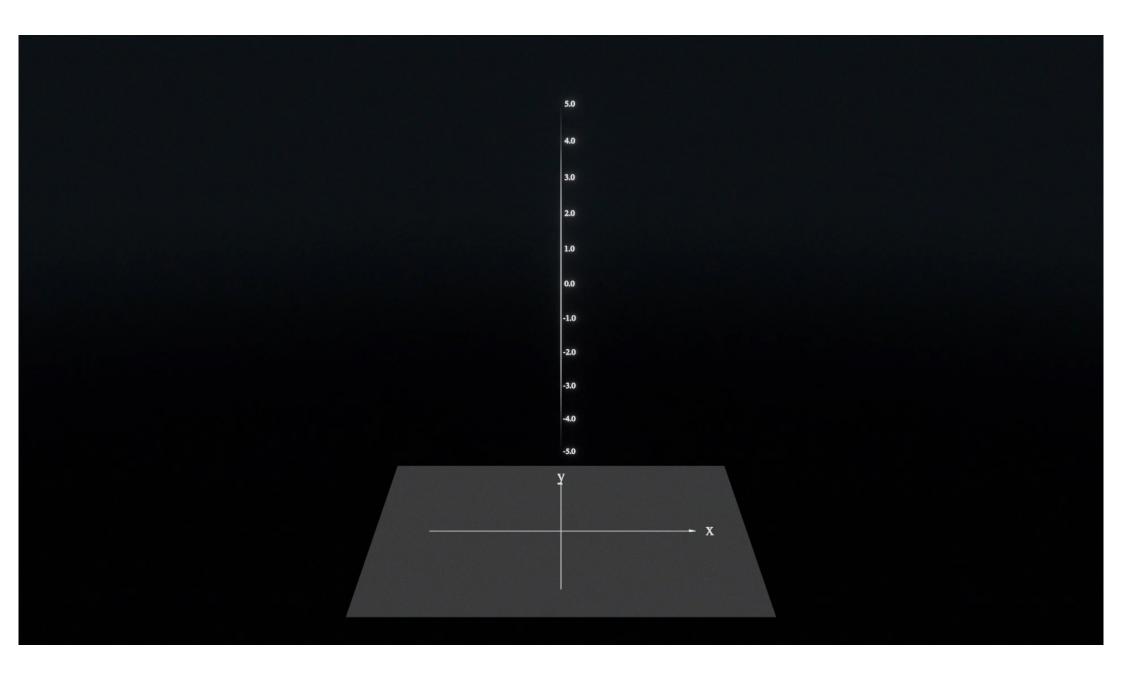


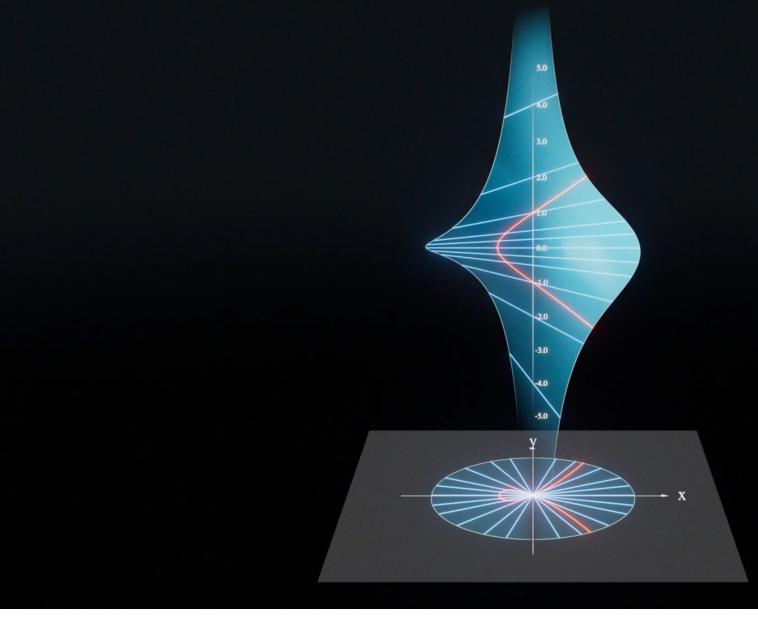
平面上の原点を通る無限個の直線をばらばらにしよう

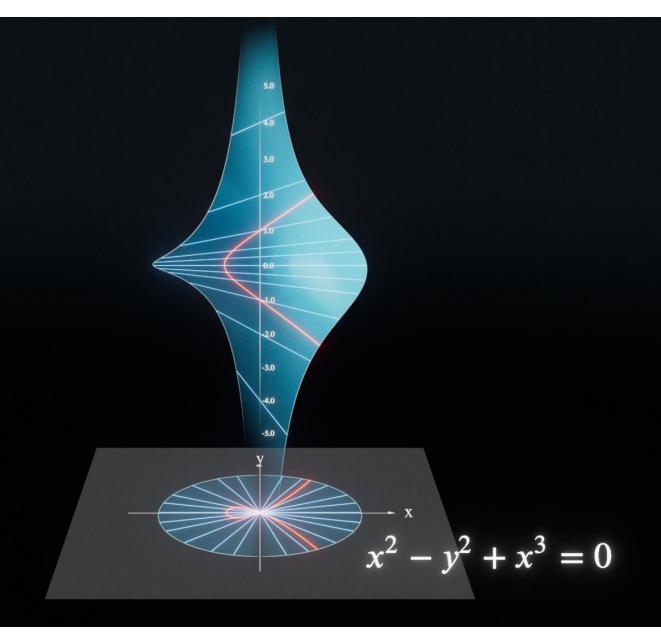


P ≠ (0,0) とすると
P と原点を通る直線が唯一決まる

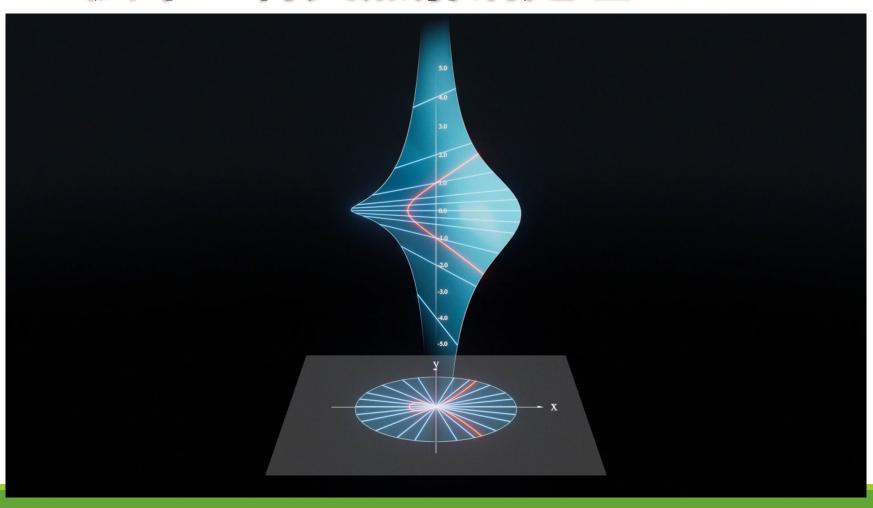
傾きだけで決まる







4.広中の特異点解消定理



- 下の平面上にある特異点をもつ曲線が爆発後は 非特異に変わっている!
- 他の部分は変えずに 特異点だけがなめらかに 変わっている!
- ■このような操作を

特異点の解消と呼ぶ

- 前世紀から人々(数学者)は、非特異なものが 代数多様体の本来の姿だと考えてきた
- 特異点があるとその代数多様体の本質的な 性質がわかりづらい
- ■『特異点を持つ多様体は、非特異なものがつぶれてできたものに違いない』

■『もとの姿を復元しよう』

特異点の解消問題

- 多くの数学者がこの問題にチャレンジ → でもなかなかできなかった
- 1次元、2次元の代数多様体の特異点は、爆発を何回かくり返す ことにより非特異なものに変換できることはわかっていた
- ■(アニメーションの曲線の特異点の場合は 1回の爆発だけでOK)

任意次元の代数多様体の特異点は 何回かの爆発 により解消できる

1964年 広中平祐先生(ハーバード大学)による

フィールズ賞受賞

代数多様体の研究が

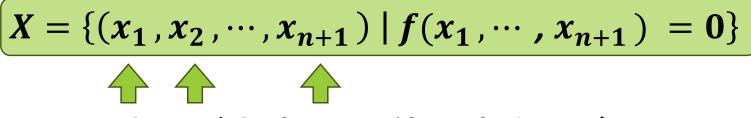
飛躍的に発展

5. 未解決問題

しかし、

特異点解消問題が解決していないもう一つの世界がある

■ 代数多様体



これらが標数0の体の数ならば

- 1+···+1≠0 1を何回足しても0に ならないという性質

■ 広中の特異点解消定理より

Xの特異点解消が存在する

標数 0

: 我々の良く知っている実数体や複素数体

標数 p>0

このような最小の正整数nが素数ならば

数の体系が矛盾なく存在

p と書く

『正標数の体』又は 『標数 p>0 の体』 と呼ぶ

■ 代数多様体

$$X = \{(x_1, \dots, x_{n+1}) \mid f(x_1, \dots, x_{n+1}) = 0\}$$
 標数 $p > 0$ の体の数

この場合 Xの特異点解消問題は未解決

- この問題の完全解決が待ち望まれている
- でもなぜ
 - •正標数の体を考えるのか?
 - ・役に立つの?

実はとても役に立つ!

■ 例) 暗号理論に正標数の体が用いられている

■ IT機器の通信には暗号が用いられている

・メールやネットでの注文など 通信文は暗号化された電気信号で送られる

暗号がないと

- プライバシーだだもれ
- ・現在のIT社会はあり得ない

(正標数の体がないと、IT社会はありえない)

正標数の体が歴史に登場したのは200年以上前

- ・当時の交通手段は馬や馬車
- 電話もまだ発明されてない
- 正標数の体が将来このように役に立つとは誰も 想像していなかった
- でもおもしろいことを追求し続けていた数学者達がいたからこそ、現在の社会がある
- その時すぐに役に立つものだけでなく、数百年後に 役に立つかもしれないことに夢中になることも大切

面白そうならチャレンジ してみる価値あるかも

ご清聴ありがとうございました