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Mathematics is unreasonably effective for us physicists,
as Wigner famously mentioned. excerpt

But the usefulness depends on the subfields of math.

Ordinary/partial differential equations are obviously effective.

Group theory is also obviously effective to describe symmetry.

Differentiable manifolds are the basis of general relativity.

Algebraic geometry? Only in string theory.
Number theory? Not much.
Mathematical logic? Hmm... but see a recent paper here
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How about algebraic topology?

Some use have been made in the past.

Notably, homotopy groups were used
to understand topological solitons in 1970s.

Not much else has been used until late 1990s,
when string theorists started to use K-theory.

(We can debate whether string theory is physics, though.)

More recently, in the last 10 years,
physicists started to use algebraic topology more fully.
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A youtube channel run by a grad student in Kyoto:

https://www.youtube.com/channel/UCi4ZotOnAla-loruLQkeyMw/videos
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The poster of a physics student group
in五月祭 (the annual campus festival in Hongo):

https://twitter.com/PhysicsLab_2021/status/1382982094180159491/photo/1
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Today I would like to review the relationship
between physics and algebraic topology.

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories

(math: 2000s, physics: 2020s)

We’re trailing behind, but slowly catching up.
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Pre-history
up to 1970s
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Math side

Hopf invariant / fibration (1931)

S3 = {(a, b) ∈ C2 | |a|2 + |b|2 = 1}
→ S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},

where
(a, b) 7→ (2Re ab̄, 2 Im ab̄, |a|2 − |b|2)

(a, b) and eiθ(a, b) map to the same point on S2.

S3 is an S1 bundle over S2 with
∫
S2

c1 = 1.

(If you download the slides, texts in purple are
linked to journal webpages etc.)
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Physics side

Dirac’s quantization condition (1931)
The magnetic charge of a magnetic monopole is
an integer multiple of a fixed constant.

Modern paraphrase of Dirac’s argument:
Wavefunction of an electron is a section of
a complex line bundle L over space.

Electromagnetic field is the U(1) connection of this line bundle,
and the magnetic field strength F is its curvature . Therefore,∫

S2

F

2π
=

∫
S2

c1(L) ∈ Z.
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Math side

Steady progress in algebraic topology.

Stiefel-Whitney / Pontryagin / Chern classes (’30s – ’40s)

Eilenberg-Steenrod axiom for (co)homology (1945)

H∗(G) := H∗(BG) for finite G (Eilenberg-Mac Lane 1947)

Bordism groups (Pontryagin, Thom ’50s)

Adams spectral sequence (1958)

K-theory (Atiyah-Hirzebruch 1959, 1961)
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Physics side

Not much happens in this area until 1970s,

when some concrete homotopy groups were used

to study topological solitons.
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What are topological solitons?

A G-symmetric system can come with a G-bundle.

There are situations where having anH-bundle forH ⊂ G is
energetically more favorable.

G is said to be “spontaneously broken toH” in physics.
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i.e.
Dn−1 → G
∪ ∪

Sn−2 → H

which determines a class in

πn−1(G/H).
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A topological soliton

gives a class in
πn−1(G/H).
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Example 1

In a superconducting material,
the electromagnetic G = U(1) symmetry is broken toH = {±1}.

U(1)-bundle in the interior; {±1}-bundle outside.

Measured by n ∈ π1(U(1)/{±1}) = Z, which translates
to the magnetic flux ∫

D2

F

2π
=

∫
D2

c1 =
n

2
.

Known as Abrikosov vortex (1957) in condensed matter physics
and Nielsen-Olsen vortex (1973) in high energy physics.
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signature of short-range ordering. In addition, we have unexpectedly
found groups of closely spaced vortices which show an appearance of
interacting currents. These groups are also examined and discussed.

Methods
A scanning SQUID microscope consisting of a m-SQUID magnetometer with a 3 mm
3 5 mm pickup loop is raster scanned at a distance of approximately 5 mm from the
YBCO sample surface at an angle of 30u. The SSM measurements were performed in a
crystat equipped with a m-metal shield with an approximate shielding factor of 25.
This reduces the Earth’s magnetic field to a constant background field during cooling
and scanning. The vertical component of this background field was measured to be
approximately 2 mT by a Bartington Mag-03MS three-axis magnetic field sensor,
with other components negligibly small, and this background field value was con-
firmed as 2.73 mT by preliminary scanning SQUID measurements on our samples.
That is the field of 22.73 mT was found to reduce the number of observed vortices to a
minimum, this was also found to be the field value at which the vortex direction
reversed. The root-mean-square (RMS) variation of the background field was found
to be less than 30 nT by antiferromagnetic scanning SQUID microscopy. All sub-
sequent field values stated in this paper are given after compensating for this back-
ground field.

All measurements were taken at a temperature of 4.2 K in the field-cooled state,
with applied fields in the range 0.1 mT , Ba , 5.5 mT perpendicular to the film’s
surface.

Local current distribution in the samples was calculated from the magnetic field
data using a program15 based on an inverse Biot-Savart procedure16,17. The arrange-
ment of vortices was further analysed by autocorrelation and Delaunay triangulation
based on vortex positions.

The YBa2Cu3O7 2 x thin films used in this work have been grown by pulsed laser
deposition18,19 with the thickness of ,200 nm. The critical temperature (Tc) of the
films has been measured by magnetisation measurements to be 90.0 6 0.5 K. The

surface of the films has been observed by atomic force microscopy, showing an
average grain size of about 200 nm.

Scanning squid microscopy
Figure 1 shows the local magnetic field data obtained by the scanning
SQUID microscope. The brightness of each point in the image shows
the magnetic field strength at the corresponding point above the
sample. Vortices are seen as round dark spots over the right-hand
side of the images. An identifiable position at the edge of the film was
chosen for scanning to ensure that repeat scans were taken at the
same position on the film. This edge is seen at the left side of the
images.

Since the SQUID magnetometer scans at a constant height of
5 mm above the sample, the magnetic features observed are those
of the stray field. In this paper the term ‘‘stray field’’ refers to the
observed magnetic field at the scan height as opposed to the field
directly at the film’s surface, and ‘‘stray current’’ refers to the current
in the film as calculated from the stray field. This distance from the
sample surface increases the apparent size of the vortices in Fig. 1.
The vortices also appear slightly asymmetrical in Fig. 1 due to the tilt
of the SQUID pick-up loop with respect to the field direction.

Figure 2 shows the current distribution in the sample calculated
from the magnetic field data of figure 1. The brightness of each point
in the image is proportional to the magnitude of current at the
corresponding point in the sample. The dark spots seen throughout
the sample and the bright regions around them are the current-free
vortex cores and the circulating current of the vortices, respectively.

The distance between the midpoints of neighbouring vortices has
been determined from the field maps in Fig. 1. At Ba^6:93 mT, the
average intervortex spacing is 32 mm, with a significant spread in
nearest neighbour distances as expected in glassy distributions.
However, there were a disproportionately large number of vortices
with nearest neighbour distances in the range of , 15 mm. The
groups of these closely spaced vortices in Fig. 2 are mapped to have
overlapping stray supercurrents that are continuous around the peri-
meter of the whole group. However, in this strongly diluted vortex
regime the magnetic field penetration depth (l)20 and the individual
vortex depinning radius in YBCO films are of the order of 0.5 mm21,22,
being too small to have any profound effect at such large intervortex
distance within the group21,22. Thus, the supercurrent overlap is
probably due to the spread of stray fields at the SQUID scanning
height23.

Figure 1 | Images of vortices in 200 nm thick YBCO film taken by
Scanning SQUID Microscopy after field cooling at 6.93 mT to 4 K. (b) is
taken after heating above Tc and re-cooling. The sample edge at the left
side of the images is used as a reference for scan location.

Figure 2 | Supercurrents calculated from the field map in Fig. 1(a). Some
closely-spaced vortex groups are highlighted by the circles.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8677 | DOI: 10.1038/srep08677 2
Wells, Pan, Wang, Fedoseev, Hilgenkamp (2015)

17 / 65

https://doi.org/10.1038/srep08677


Example 2

Taking G = SU(2) andH = U(1) ⊂ SU(2), you can consider

which is classified by

π2(SU(2)/U(1)) = π2(S
2) = Z.

Known as the ’t Hooft-Polyakov monopole (1974).

18 / 65
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Example 3

The A-phase of the superfluid helium-3 (Osheroff-Richardson-Lee 1972)
is characterized by

G = SO(3) × SO(3) × U(1) ↷ C3 ⊗ C3

and
H = stabilizer at e1 ⊗ (e2 + ie3)

so we have
vortices : π1(G/H) = Z/4Z,

“monopoles” : π2(G/H) = Z.

Furthermore, π1(G/H) acts nontrivially on π2(G/H).

Volovik-Mineev (1976)
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Middle ages
1980s–2000s
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What you learn in high school:

σ is called the conductivity.
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In a two-dimensional material, this can also happen:

σH is called the Hall conductivity.
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Surprising discovery of von Klitzing, Dorda, Pepper (1980):
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Figure is taken from a slightly later review, von Klitzing (1986)
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When the ordinary conductivity σ vanishes, i.e. the system is gapped,
the Hall conductivity has the universal value

σH = ν
e2

h
, ν ∈ Z

where e is the electric charge of the electron
and h is the Planck constant.

Called the integer quantum Hall effect.

This is now the accepted method to calibrate
the experimental apparatus against the declared value of e2/h.
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Why is ν an integer?

There are both microscopic understanding
and macroscopic understanding.

Microscopic understanding is briefly given in the appendix jump .

Let us concentrate on the macroscopic understanding.
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Consider an idealized situation where the quantum Hall material
fills the entire 2 + 1 dimensional spacetimeM .

M comes with a U(1) bundle L with connection A describing the
electromagnetic field.

The integer quantum Hall material is gapped with unique ground state.

This means that the system determines the partition function

Z(M,A) ∈ U(1).
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When the U(1) bundle is topologically trivial, A is a one-form.
The standard Kubo formula says that the coefficient ν in

σH = ν
e2

h

appears in the partition function as

Z(M,A) = exp(i
ν

4π

∫
M
AdA).

How do we know that ν is an integer?

We use the fact that AdA is not well-defined for a topologically
non-trivial U(1)-bundle L.
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Given

we have

i
ν

4π

∫
M3

AdA = i
ν

4π

∫
W4

FF = πiν

∫
W4

c1(L)2.

(Note F = dA and c1 = F/(2π).)

The RHS makes sense for topologically nontrivial L,
but looks like it depends onW4.
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Let us compare the two different choicesW4 andW ′
4:

The difference is

exp(πiν
∫
W4
c1(L)2)

exp(πiν
∫
W ′

4
c1(L)2)

= exp
(
πiν

∫
c1(L)2

)
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So we need to ask:

exp
(
πiν

∫
c1(L)2

)
?
= 1

This seems to require ν ∈ 2Z,
but odd ν has been experimentally observed.

The resolution: electrons are spinors,
and thereforeM3,W4 etc. require spin structure.

The intersection form on a spin 4-manifold is even,
and therefore ν ∈ Z.
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This argument was implicitly known for a long time since late 80s,
but the crucial factor of two related to spin structure
was not appreciated very much until around 2000.

I think it is quite amazing that we see this fact experimentally in
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Aside: why is the intersection form even on a spin 4-manifoldM?

It suffices to show that
∫
M
x2 = 0 ∈ Z/2 for any x ∈ H2(M,Z/2).

This is because∫
M
x2 (1)

=

∫
M

Sq2 x
(2)
=

∫
M
v2x

(3)
=

∫
M

(w2 + w2
1)x

(4)
= 0.

(see e.g. Milnor-Stasheff (1974))

32 / 65

https://doi.org/10.1515/9781400881826


Modern times
2010s
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Integer quantum Hall system is an example of

(n+ 1)-dimensional quantum field theory (QFT)
with unique gapped ground state with G-symmetry.

Often called
SPT phases

and/or
invertible phases.

(SPT= symmetry protected topological)
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A more general (n+ 1)-dimensional quantum field theory (QFT) Q
assigns a Hilbert space to a spatial manifoldNn:

Nn 7→ HQ(Nn),

and for

it assigns
ZQ(Mn+1) : HQ(Nn) → HQ(N ′

n).

The manifold can be equipped with various structures of your choice,
orientation, spin structure, G-bundle with connection, etc.,
giving rise to different flavors of QFTs.
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We assume HQ(∅) = C, then

ZQ( ) : HQ(∅) → HQ(∅)

determines a complex number

ZQ( ) ∈ C,

called the partition function.
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A QFT Q is SPT/invertible/with unique gapped ground state
⇔ HQ(N) is always 1-dimensional.

Integer quantum Hall material is a (2 + 1)-dimensional
spin invertible QFT with U(1) symmetry:

ZQ( ) : HQ(N) → HQ(N ′)

N ,N ′ are 2-dimensional;M is 3-dimensional;
they come with spin structure and U(1) bundle with connection,

and HQ(N) is always 1-dimensional.
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We would like to understand

Invn+1
S,G := π0({

(n+ 1)-dim. invertible QFTs
with structure S and symmetry G

})

Here S can be spin structure, orientation only, etc.

As invertible QFTs form a group under tensor product

HQ×Q′(N) = HQ(N) ⊗ HQ′(N),

ZQ×Q′(M) = ZQ(M) ⊗ ZQ′(M), etc.,

Invn+1
S,G will be an Abelian group.
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Dijkgraaf-Witten (1990)

Invn+1
?,G

proposal
= Hn+2(BG,Z)

Dependence on S not appreciated at that time.
Wrong if taken too literally.

Integer quantum Hall effect is the case n = 2, G = U(1). Then

H4(BU(1),Z) ' Z

is generated by (c1)
2, but we need 1

2
(c1)

2 as we saw,
for which the spin structure was crucial.
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Chen-Gu-Liu-Wen (2011)

Invn+1
oriented,G

proposal
= Hn+2(BG,Z)

An influential paper, which introduced
and popularized the notion of SPT phases.

(The terminology “invertible phases” originates
from Freed-Moore (2004).)

Now known to be wrong for n ≥ 4.

How about the spin case?
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http://arxiv.org/abs/1106.4772
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Freed (2006), Gu-Wen (2012)

Invn+1
spin,G

proposal
= En+2(BG)

where Ed is a cohomology theory given by

Ed(X) =

{
(a, b) ∈ Cd−3(X,Z/2) × Cd(X,Z) | δa= 0,

δb= β ◦ Sq2 a

}
certain equiv. relation

where
β is the Bockstein for 0 → Z → Z → Z/2 → 0 and
Sq2 is the Steenrod square.

(Amazingly, Gu and Wen rediscovered
the cochain-level expression of Sq2 by themselves! )
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Schnyder-Ryu-Furusaki-Ludwig (2008), Kitaev (2009)

KOn−2(pt) → Invn+1
spin,pt

They classified free spin invertible phases without additional symmetry.

They also considered structures related but not quite spin
(such as imposing time reversal, corresponding to considering pin±)
so that the classification isKOn+i(pt) for arbitrary i mod 8.

Called the periodic table of free topological superconductors.

(see e.g. a nice lecture by Ryu)
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https://arxiv.org/abs/0803.2786
https://arxiv.org/abs/0901.2686
https://topocondmat.org/w8_general/classification.html


Kitaev (2015)
Invn+1

S,G = En+2
S (BG)

where ES should be a generalized cohomology theory.

Kitaev only gave a talk and never wrote it up.

Fleshed out in Xiong, (2017) and Gaiotto, Johnson-Freyd (2017) etc.
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http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015
https://arxiv.org/abs/1701.00004
https://arxiv.org/abs/1712.07950


Kapustin-Thorngren-Turzillo-Wang (2014)
Freed-Hopkins (2016)

Invn+1
S,G

accepted
= (DΩS)n+2(BG)

where ΩS is the S-bordism homology andD is the Anderson dual.
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A generalized (co)homology theory hn(X), hn(X) satisfies
the Eilenberg-Steenrod axioms for the ordinary (co)homology
except the dimension axiom.

So hn(pt) = h−n(pt) can be nontrivial for n 6= 0.

Bordism group

ΩS
n(X) =

{
S-structured manifoldMn

together with f : Mn → X

} /
bordism

is an example, where

M
bordant∼ M ′ ⇔
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For a generalized homology theory h∗(−),
there is the Anderson dual cohomology theoryDh∗(−)
which satisfies the analogue of the universal coefficient theorem:

0 → ExtZ(hd−1(X),Z)
→ (Dh)d(X) →

HomZ(hd(X),Z) → 0

The universal coefficient theorem ofH(−,Z) means that

DH(−,Z) = H(−,Z).

Similarly,DK = K andDKO• = KO•+4.
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Classification of fermionic invertible phases

Invn+1
spin,G

accepted
= (DΩspin)n+2(BG)

Ωspin
• (pt) was determined in Anderson-Brown-Peterson (1967)

and the Anderson dual was introduced in Anderson (1969).

Physicists now need them!

That’s why graduate students in condensed matter physics learn
the Atiyah-Hirzebruch spectral sequence and
the Adams spectral sequence to compute them.
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Present
2020s
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The last topic of the talk is about physics and elliptic cohomology.

There are three types of complex curves with Abelian group law:

C, C×, elliptic curves.

Correspondingly, there are three types of cohomology theories:

H∗(−,Z), K∗(−), elliptic cohomologies.

They are all complex orientable: a complex n-foldM2n has
the fundamental class [M2n] ∈ E2n(M).

All these cohomology theories have the 1st Chern class
c1(L) ∈ E∗(X) for complex line bundles L → X.

The group law dictates how c1(L ⊗ L′) is expressed
in terms of c1(L) and c1(L′).
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Today I would like to discuss their real analogues:

H∗(−,Z), KO∗(−), TMF ∗(−).

TMF is the topological modular form, constructed by Hopkins et al.
in late 1990s. (cf. Hopkins’ talk at ICM 2002)

I hear the construction uses a sheaf of E∞-ring specta
over the moduli stack of elliptic curves over Z.

I don’t understand any of the words in the last sentence.
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Mn has a fundamental class inHn(M,Z)
ifM is oriented. = the trivialization of w1(TM) is given.

Mn has a fundamental class inKOn(M)
ifM is spin. = the trivialization of w2(TM) is given.

Mn has a fundamental class in TMFn(M)
ifM is string. = the trivialization of p1(TM) is given.

Note that the first three nontrivial homotopy group of O is

π0(O) = Z/2, π1(O) = Z/2, π3(O) = Z

and w1, w2, p1 are the corresponding obstruction classes.

51 / 65



Mn has a fundamental class inHn(M,Z)
ifM is oriented. = the trivialization of w1(TM) is given.

Mn has a fundamental class inKOn(M)
ifM is spin. = the trivialization of w2(TM) is given.

Mn has a fundamental class in TMFn(M)
ifM is string. = the trivialization of p1(TM) is given.

Note that the first three nontrivial homotopy group of O is

π0(O) = Z/2, π1(O) = Z/2, π3(O) = Z

and w1, w2, p1 are the corresponding obstruction classes.

51 / 65



Mn has a fundamental class inHn(M,Z)
ifM is oriented. = the trivialization of w1(TM) is given.

Mn has a fundamental class inKOn(M)
ifM is spin. = the trivialization of w2(TM) is given.

Mn has a fundamental class in TMFn(M)
ifM is string. = the trivialization of p1(TM) is given.

Note that the first three nontrivial homotopy group of O is

π0(O) = Z/2, π1(O) = Z/2, π3(O) = Z

and w1, w2, p1 are the corresponding obstruction classes.

51 / 65



Adams spectral sequences computing them have the form

Es,t
2 = Exts,tA(0)(H

∗(X,Z/2),Z/2) ⇒ Ht−s(X,Z)2̂
Es,t

2 = Exts,tA(1)(H
∗(X,Z/2),Z/2) ⇒ kot−s(X)2̂

Es,t
2 = Exts,tA(2)(H

∗(X,Z/2),Z/2) ⇒ tmft−s(X)2̂

where A(n) is the subalgebra of the Steenrod algebra
generated by Sq1, Sq2, …, Sq2n

.

TMF is the natural next entry afterH(−,Z) andKO.
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KO is 8-periodic:

KOn+8(X) ' KOn(X)

TMF is 242 = 576-periodic:

TMFn+576(X) ' TMFn(X)

53 / 65



TMF is called the topological modular form since there is a
homomorphism

TMF∗ → MF∗[∆
−1]

where
MF = Z[c4, c6,∆]/(c34 − c26 − 1728∆).

is the ring of integral modular forms, with

c4 = 1 + 240q + · · · , c6 = 1 − 504q − · · ·

are the Eisenstein series and

∆ = q − 24q2 + · · ·

is the modular disciminant.
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TMF∗ → MF∗[∆
−1] is rationally isomorphic

TMF∗ ⊗ Q ' MF∗[∆
−1] ⊗ Q,

and it is isomorphic at degree 0

TMF0 = Z[J ]

where J is the modular J -invariant,
but not surjective in general.

For example, k∆ is in the image only when 24 divides k.

TMF∗ → MF∗[∆
−1] also has a lot of torsion.
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KOn(X) has a geometric realization: for n = 0,
it is given by virtual differences of real vector bundles overX.

Is there a similarly nice realization of TMFn(X)?

Segal-Stolz-Teichner conjecture

TMFn(X) = π0

{ 2-dim’l supersymmetric QFT
of degree n parameterized byX

}
Segal 1988, Stolz-Teichner 2002, 2011

This is a very difficult conjecture. The RHS isn’t even defined yet.

56 / 65

https://mathscinet.ams.org/mathscinet-getitem?mr=992209
https://doi.org/10.1017/CBO9780511526398.013
https://arxiv.org/abs/1108.0189


KOn(X) has a geometric realization: for n = 0,
it is given by virtual differences of real vector bundles overX.

Is there a similarly nice realization of TMFn(X)?

Segal-Stolz-Teichner conjecture

TMFn(X) = π0

{ 2-dim’l supersymmetric QFT
of degree n parameterized byX

}
Segal 1988, Stolz-Teichner 2002, 2011

This is a very difficult conjecture. The RHS isn’t even defined yet.

56 / 65

https://mathscinet.ams.org/mathscinet-getitem?mr=992209
https://doi.org/10.1017/CBO9780511526398.013
https://arxiv.org/abs/1108.0189


An easier version is:

KOn(X) = π0

{ 1-dim’l time-reversal invariant
supersymmetric QFT

of degree n parameterized byX

}
which was rigorously formulated and proved.

Roughly: a 1-dim’l supersymmetric QFT is just
a supersymmetric quantum mechanics, and

Time-reversal invariant means that
everything is defined over R instead of C.

Supersymmetric means that the Hilbert space H is Z/2-graded,
and an odd self-adjoint operator Q is given,
called the supersymmetry generator.

Degree n means that there is an action of Cl(n,R).
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Therefore the statement becomes

KOn(X)
?
= π0

{ family of odd self-adjoint operators Q
parameterized overX

on a Z/2-graded real Hilbert space H
commuting with Cl(n,R) action

}

and the RHS is more or less the definition ofKO in terms of Fredholm
operators.

(For a detailed proof, see e.g. Cheung 2008.)

In this description, the pushforward

π! : KO
0(M) → KO−n(pt)

of [V ] ∈ KO0(M) for an n-dimensionalM is given by

H = Γ(V ⊗ S(R8k−n ⊕ TM)),

Q = Dirac operator on it.
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The TMF version is much harder:

TMFn(X) = π0

{ 2-dim’l supersymmetric QFT
of degree n parameterized byX

}

The LHS involves sheaves of spectra over the moduli stack of elliptic
curves over Z.

The RHS involves QFTs, which seem to me a purely characteristic-0
phenomenon.

Still, nontrivial physics motivation and checks.
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For example, take
TMF3(pt) = Z/24,

which is naturally isomorphic to

Ωframed
3 (pt) = πS

3 (pt) = limπn+3S
n.

In the standard math definition, the computation involves
elliptic curves in characteristic 2 and 3.

The same Z/24 also follows from an intricate construction in QFT.

Gaiotto, Johnson-Freyd 2019
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Historically, elliptic cohomologies / TMF came from two strands of ideas.

One is purely from within algebraic topology, called chromatic
phenomena, about which I have no clue.

Another is from Witten.

(This part of the story is nicely summarized in Landweber 1988.)
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In string theory we consider strings moving in a manifold:

This should be described by a 2-dim’l supersymmetric QFT on the
worldsheet of the string.

It gives rise to a sequence of Dirac operators acting on the spinor bundle
SM tensored with tensor powers of the tangent bundle TM .
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In 1984, Witten asked the property of the index of these operators to
Landweber and Stong, who then informed Ochanine about the question.

By 1986, they realized that there is a generalization of the Â genus∫
M
Â ∈ Z

which takes the values in modular forms∫
M
ϕW ∈ MF.

Here,M needs to be spin (i.e. w2 = 0) for the former
and string (i.e. p1 = 0) for the latter.

Â was known to come fromKO.
There should be some nice cohomology theory for ϕW .
It took about 15 years for mathematicians to construct TMF .
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But physicists were almost completely detached from these
developments until very recently.

Only in November 2018 papers on this topic appeared (by Gaiotto,
Johnson-Freyd and Gukov-Pei-Putrov-Vafa), in which some physics
checks of the Segal-Stolz-Teichner conjecture were made.

Instead, assuming the Segal-Stolz-Teichner conjecture, we can use
the known properties of TMF to deduce the properties
of 2d supersymmetric QFTs and of string theory.

I wrote a short letter about it a few months ago;
and I am trying to generalize it further,
with the help of Yamashita at RIMS.

But the details need to be left to some other time. some more detail
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Today I surveyed the interaction between physics and algebraic topology.

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories

(math: 2000s, physics: 2020s)

We’re trailing behind, but slowly catching up.
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Back-up slides
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Excerpt from Wigner
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XIII, 001-14 (1960) 

The Unreasonable Effectiveness of Mat hematics 
in the Natural Sciences 

Richard Courant Lecture in Mathematical Sciences delivered at New York University, 
May 11,  1959 

E U G E N E  P. WIGNER 
Princeton University 

“and it i s  probable that there i s  some secret here 
which remains to be discovered.” (C. S .  Peirce) 

There is a story about two friends, who were classmates in high school, 
talking about their jobs. One of them became a statistician and was working 
on population trends. He showed a reprint to his former classmate, The 
reprint started, as usual, with the Gaussian distribution and the statistician 
explained to  his former classmate the meaning of the symbols for the actual 
population, for the average population, and so on. His classmate was a 
bit incredulous and was not quite sure whether the statistician was pulling 
his leg. “How can you know that?” was his query. “And what is this 
symbol iere?” “Oh,” said the statistician, “this is n.” “What is that?” 
“The ratio of the circumference of the circle to its diameter.” “Well, now 
you are pushing your joke too far,” said the classmate, “surely the pop- 
ulation has nothing to do with the circumference of the circle.” 

Naturally, we are inclined to smile about the simplicity of the classmate’s 
approach. Nevertheless, when I heard this story, I had to admit to an 
eerie feeling because, surely, the reaction of the classmate betrayed only 
plain common sense. I was even more confused when, not many days later, 
someone came to me and expressed his bewilderment1 with the fact that 
we make a rather narrow selection when choosing the data on which we 
test our theories. “How do we know that, if we made a theory which focusses 
its attention on phenomena we disregard and disregards some of the phe- 
nomena now commanding our attention, that we could not build another 
theory which has little in common with the present one but which, never- 
theless, explains just as many phenomena as the present theory.” It has 
to be admitted that we have not definite evidence that there is no such theory. 

The preceding two stories illustrate the two main points which are the 

‘The remark to be quoted was made by F. Werner when he was a student in Princeton. 

1 

https://doi.org/10.1002/cpa.3160130102
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Mathematical Logic and Physics?

This page is just to keep a paper I recently got to know.

There is a translation-invariant local Hamiltonian on a 1d lattice which is
gapless/gapped only when ZFC is inconsistent/consistent.

[Cubitt, 2105.09854]

The point is to combine two techniques:

• There is a known way to encode a Turing machine to a
translation-invariant local Hamiltonian on a 1d lattice so that it is
gapless/gapped only when the said Turing machine halts or not.

[Baush, Cubitt, Lucia, Perez-Garcia 1810.01858]

• There is a Turing machine which does not halt if and only if ZFC is
consistent. [Yedidia, Aaronson 1605.04343].

back
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Microscopic understanding of
integer quantum Hall effect

It starts from the lattice structure in two-dimensional material:

Therefore
Z2 ↷ H

which allows us to decompose H in terms of the character

T 2 = Hom(Z2, U(1)).
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This means that H is the space of sections

ψ : T 2 → H′

of a trivial Hilbert space bundle

T 2 × H′

and the HamiltonianH has the form

(Hψ)(p) = h(p)(ψ(p)) p ∈ T 2

where h(p) : H′ → H′ is a self-adjoint operator.
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The gapped condition says that the lowest eigenvalue of h(p) is
non-degenerate, which determines a one-dimensional subspace

L(p) ⊂ H′.

It forms a line bundle L → T 2 which is a sub-bundle of T 2 × H′.

A standard computation using the Kubo formula says that
the Hall conductivity is

σH =
e2

h

∫
T 2

c1(L)

and therefore it is an integer multiple of e2/h.

Thouless-Kohmoto-Nightingale-den Nijs (1982)

back
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Anomalies of heterotic string theories

What is an anomaly?

I said that an n-dim’l QFT Q assigns the partition function

ZQ( ) ∈ C,

but the partition function of an anomalous QFT Q is instead given as

ZQ( ) ∈ HA(M)

where A is an (n+ 1)-dim’l invertible QFT and
HA is its Hilbert space which is one dimensional.
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There are many anomalous QFTs.
Notable examples are free massless fermions, for which
HA(M) is the determinant line bundle of the Dirac operator.

A n-dim’l possibly-anomalous spin QFT Q has

A: a (n+ 1)-dim’l spin invertible QFT

as part of the data.

This is given by an element

A ∈ Invn+1
spin = (DΩspin)n+2.
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Now, there is a procedure called the second quantization
you learn in the basic QFT course.

This is a machinery which does

{time-reversal-invariant quantum mechanics of degree n− 2}
↓

{possibly-anomalous n-dim’l spin QFT }

Applying the Stolz-Teichner for the source and the anomaly for the
target, we have a homomorphism

KOn−2 → (DΩspin)n+2.

This is the Anderson dual to the spin orientation of theKO theory:

Ωspin → KOn

where we useDKOn+4 = KOn.
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My interest is the anomaly of heterotic string theory, which is a
machinery which does

{2-dim’l supersymmetric QFT of degree n+ 22}
↓

{possibly-anomalous n-dim’l quantum gravity with string structure }

Again applying the Stolz-Teichner for the source and the anomaly for the
target, we have a homomorphism

TMFn+22 → (DΩstring)n+2.

String theory is often non-anomalous from miraculous reasons.
So we would like to know whether this homomorphism is zero.
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TMFn+22 → (DΩstring)n+2

The seminal paper of Green and Schwarz (1984), which started
superstring theory as we know it,
showed that the image of a certain element of TMF 10+22 is torsion.

The paper by Witten with an appendix by Strong (1986) proved that
the image of this particular element is actually zero.

Lerche-Nilsson-Schellekens-Warner (1988) showed that
the image in general is torsion.
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TMFn+22 → (DΩstring)n+2

In my recent paper (2021), I showed that the map is trivial when n = 2,
for which

(DΩstring)n+2 = Hom(Ω
string
3 , U(1)) = Z24,

using a result of Hopkins 2002.

In an ongoing collaboration with Yamashita,
we show that the map is zero in general.
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