高校生のための現代数学講座 「素数と暗号」 講義(2)高木 俊輔

東京大学 玉原国際セミナーハウス 2017 年 7 月 22 日

「RSA 暗号の実際」

この講義では 2 人 1 組になり,RSA 暗号を計算してみよう.現在インターネット上で実際に使われている RSA 暗号には n=pq として 10 進数で $300\sim1000$ 桁という非常に大きい数が用いられるが,計算の都合上この講義では n は高々 4 桁の数とする.まず鍵の作成担当者が, $\S 1$ の手順に従い,鍵を作成する.暗号化の担当者は, $\S 2$ の手順に従い,公開鍵を用いて暗号文を作成せよ.そして鍵の作成担当者は, $\S 3$ の手順に従い,秘密鍵を用いてその暗号文を復号せよ.

1 鍵の作成手順

ステップ 1-1

29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

の中から好きな数を 2 つ選び,p,q とする. ただし,同じ数を 2 つ選んではいけない. さらに n=pq とする.

$$p = \boxed{ }$$
 $q = \boxed{ }$ $n = \boxed{ }$

ステップ 1-2 (p-1)(q-1) を計算し、(p-1)(q-1) を割り切らない素数 e を 3,5,7,11,13

の中から1つ選ぶ。小さいeを選んだ方が暗号化の計算が楽になる。

$$(p-1)(q-1) = \boxed{\qquad \qquad e = \boxed{\qquad }}$$

ステップ 1-3 $m(p-1)(q-1) \equiv -1 \pmod{e}$ となる自然数 $1 \leq m \leq e-1$ を求める。そして,m(p-1)(q-1)+1 を e で割った商を d とする。

$$m = \boxed{ \qquad \qquad d = \boxed{ }}$$

ステップ 1-4 n,e が**公開鍵**である。n,e の値を相手に教えよう。p,q,d は**秘密鍵**なので,決して相手に教えてはいけない!

2 暗号化の手順

ステップ 2-0 相手から受け取った公開鍵を書き込もう.

$$n = \boxed{ \qquad \qquad e = \boxed{ } }$$

ステップ 2-1 相手に伝える平文を決めて、ローマ字で記入する.

ステップ 2-2 次の表を使ってアルファベットを数字に変換し、各数字の間をハイフンでつなぐ.

アルファベット	数字
A	2
В	3
C	4
D	5
E	6
F	7
G	8
Н	9
I	10

アルファベット	数字
J	11
K	12
L	13
M	14
N	15
O	16
P	17
Q	18
R	19

アルファベット	数字
S	20
T	21
U	22
V	23
W	24
X	25
Y	26
Z	27
スペース	28

例えば、平文がBARUSU (バルス) ならば、3-2-19-22-20-22 となる.

ステップ 2-3 得られた数字の列を M_1 - M_2 -···- M_r (各 M_i は 28 以下の自然数) としたとき,各 $i=1,\ldots,r$ について $M_i^e\equiv N_i \pmod n$ となる自然数 $1\leq N_i\leq n-1$ を計算する。 N_1 - N_2 -···- N_r が暗号文である。

暗号文のみ相手に教える. 平文は教えてはいけない!

3 復号の手順

ステップ 3-0 相手から受け取った暗号文を書き込もう.

ステップ 3-1 暗号文を N_1 - N_2 -···- N_r (各 N_i は n-1 以下の自然数) としたとき,各 $i=1,\ldots,r$ についてフェルマーの小定理を用いて $N_i^d\equiv M_i \pmod n$ となる自然数 $2\leq M_i\leq 28$ を計算する(§4 のステップ 3-1 を参考にせよ)。 M_1 - M_2 -···- M_r が復元された平文(数字)である.

ステップ 3-2 次の表を使って各 M_i をアルファベットに変換する.

数字	アルファベット
2	A
3	В
4	\mathbf{C}
5	D
6	E
7	F
8	G
9	Н
10	Ī

数字	アルファベット
11	J
12	K
13	L
14	M
15	N
16	О
17	Р
18	Q
19	R

数字	アルファベット
20	S
21	Γ
22	U
23	V
24	W
25	X
26	Y
27	Z
28	スペース

ステップ 3-3 正しく復元されたか、相手に確かめてみよう.

4 例

例として、p=29, q=41 として鍵を作成し、平文 BARUSU を暗号化・復号する手順を確認する.

ステップ 1-1 p = 29、q = 41 とする. このとき, n = pq = 1189 である.

ステップ 1-2 (p-1)(q-1) = 1120 は 3 で割り切れない。 そこで e=3 とする.

ステップ 1-3 $1120 \equiv 1 \pmod{3}$ なので、m = 2 とすると、

$$1120m \equiv 2 \equiv -1 \pmod{3}$$

となる. 1120m + 1 を 3 で割った商は 747 なので、d = 747 とする.

ステップ 2-1 平文 (ローマ字)=BARUSU

ステップ 2-2 平文 (数字)=3-2-19-22-20-22

ステップ 2-3 $3^3 \equiv 27 \pmod{1189}$, $2^3 \equiv 8 \pmod{1189}$, $19^3 \equiv 914 \pmod{1189}$, $22^3 \equiv 1136 \pmod{1189}$, $20^3 \equiv 866 \pmod{1189}$ より、暗号文は 27-8-914-1136-866-1136 となる.

ステップ 3-1 d=747, n=1189 なので、暗号文の数字の 747 乗を 1189 で割った余りが知りたい。以下で、914 の 747 乗を 1189 で割った余りの計算の仕方を説明する。 914 を p=29 で割った余りを計算すると、914 $\equiv 15 \pmod{29}$ である。フェルマーの小定理より $15^{28} \equiv 1 \pmod{29}$ であるので、 $747 \equiv 19 \pmod{28}$ から

$$914^{747} \equiv 15^{747} \equiv 15^{19} \equiv 19 \pmod{29}$$

が従う. 各アルファベットは 28 以下の自然数に変換されているので、復号して得られる数字も 28 以下の自然数である. よって 914 の 747 乗を 1189 で割った余りも 28 以下の自然数でなければならない. このことから $914^{747} \equiv 19 \pmod{1189}$ を得る.

914 を q=41 で割った余りを計算すると、 $914\equiv 12\pmod{41}$ である。フェルマーの小定理より $12^{40}\equiv 1\pmod{41}$ であるので、 $747\equiv 27\pmod{40}$ から

$$914^{747} \equiv 12^{747} \equiv 12^{27} \equiv 19 \pmod{41}$$

が従う. このことから $914^{747} \equiv 19 \pmod{1189}$ であると結論付けてもよい (どちらか一方を計算すれば十分である).

同様にして、 $27^{747}\equiv 3\pmod{1189}$ 、 $8^{747}\equiv 2\pmod{1189}$, $1136^{747}\equiv 22\pmod{1189}$, $866^{747}\equiv 20\pmod{1189}$ と計算できるので、平文(数字)は 3-2-19-22-20-22 である.

ステップ 3-2 平文 (ローマ字)=BARUSU