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Part I The Deligne-Mumford Compactification

1. Introduction

These notes are based on the lectures which the author delivered in June of 2012
at the Graduate School of Mathematical Sciences of the University of Tokyo, and
in June of 2016 at Fudan University, China.

The primary purpose of the lectures is to construct a “tautological orbifold-
atlas1”on the Deligne-Mumford compactification of the moduli space of Riemann
surfaces. Our method is based on the mapping class groups, the curve complexes,
and Fenchel-Nielsen coordinates. As a by-product, we show that at maximally
degenerate frontier points of the augmented Teichmüller spaces there arise certain
Euclidean crystallographic groups.

The final version of these notes will appear in two papers separately, one [53] in
Handbook of Teichmüller Theory Vol. VII, and the other [54] in Tokyo Journal of
Mathematics.

The author is grateful to Professor Toshitake Kohno for his invitation to post
these notes in Lecture Notes in Mathematical Sciences, The University of Tokyo.

February 2019
Yukio Matsumoto

∫ ∫ ∫

Throughout the discussion, we will fix a topological surface Σg,n obtained by
removing distinct n points from a closed connected oriented surface Σg of genus g.
A surface with no punctures Σg,0 is nothing but Σg. We will assume that the Euler
characteristic χ(Σg,n) of Σg,n is negative. The mapping class group Γg,n of Σg,n is
defined by

Γg,n = {f : Σg,n → Σg,n | orientation preserving homeomorphisms}/ ≃

where f ≃ g means that the homeomorphisms f and g are isotopic. Note that in
this situation f is isotopic to g if and only if f is homotopic to g (see [22]). The
isotopy class of f (the mapping class) is denoted by [f ]. The group structure of
Γg,n is defined by composition of maps: [f ][g] = [f ◦ g].

A marked Riemann surface is a pair (S,w) consisting of a Riemann surface S and
an orientation preserving homeomorphism w : Σg,n → S called a marking. Since
we are assuming χ(Σg,n) < 0, a Riemann surface modeled on Σg,n has a hyperbolic
metric (the Poincaré metric).

Marked Riemann surfaces (S,w) and (S′, w′) are equivalent and denoted by
(S,w) ∼ (S′, w′) if there exists a biholomorphic mapping h : S → S′ such that

1In the case of manifolds, an example of a “tautological atlas” is that of the n-dimensional
projective space Pn = {(x0 : x1 : . . . : xn)} consisting of the n-dimensional affine spaces Ai =
{x0, x1, . . . , xi−1, 1, xi+1, . . . , xn}, i = 0, 1, . . . , n. We do not give any technical definition of

“tautological atlas”, but the meaning would be understandable.
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the following diagram is homotopically commutative (i.e., w′ ≃ h ◦ w):

Σg,n
w−−−−→ S

id.

�
�h

Σg,n −−−−→
w′

S′.

The equivalence class of (S,w) is denoted by [S,w]. The Teichmüller space Tg,n

modeled on Σg,n is the set of equivalence classes of marked Riemann surfaces. It is a
metric space endowed with the Teichmüller metric, and by Teichmüller’s theorem,
it is homeomorphic to R6g−6+2n (see §8.2 of the present notes, and Chapter 5 of
[33] or Chapter 6 of [31]).

In what follows, we assume 3g − 3 + n ≧ 1.
By the Ahlfors-Bers theory ([4],[6],[7],[8],[9]), Teichmüller space Tg,n is a complex

manifold of complex dimension 3g − 3 + n. The mapping class group Γg,n acts on
Tg,n by the rule:

(1) [f ][S,w] = [S,w ◦ f−1] for ∀[f ] ∈ Γg,n, ∀[S,w] ∈ Tg,n.

Note that the action changes the marking w but not the Riemann surface S. The
action is properly discontinuous. It preserves the Teichmüller metric and the com-
plex structure. (See [33], [31].) The moduli space Mg,n is defined to be the quotient

Mg,n = Tg,n/Γg,n.

This is a normal complex variety ([19]).
The moduli space Mg,n parametrizes all the isomorphism classes of Riemann

surfaces homeomorphic to Σg,n. It is known that Mg,n is not compact. But by
adding “frontier points”which parametrize Riemann surfaces with nodes, it can be
compactified. This is the Deligne-Mumford compactification of the moduli space
(the DM-compactification for short), [21]. We will denote the DM-compactification
by Mg,n.

Unfortunately, the arguments of Deligne and Mumford [21] are not easy to un-
derstand. Because of its importance, several authors have tried to understand the
compactification by analytic methods. L. Bers [12], [13] was one of the authors who
started an analytic approach to the DM-compactification, but his project was not
completed. An analytic construction was given only in the 21st century by J. H.
Hubbard and S. Koch [32]. (See [45], p.459, for Kra’s comment on their work.)

The DM-compactification of the moduli space has a structure of a complex orb-
ifold. The primary purpose of the present lectures is to construct natural orbifold-
charts of Mg,n which are indexed by simplexes of Harvey’s curve complex Cg,n (see
§2.2 below and [28]). Note that our orbifold-charts {(Dε(σ),W (σ))}σ∈Cg,n are in
a generalized sense, in which the groups W (σ) are not necessarily finite, but they
act on the complex manifolds Dε(σ) properly discontinuously. See §2 for a formal
definition of generalized orbifold-charts.

Moreover, strictly speaking, our orbifold-charts are not indexed by the curve
complex Cg,n itself but by the quotient of Cg,n under the action of Γg,n. The
quotient complex Cg,n/Γg,n is a finite simplicial complex. The index set of our
orbifold-charts is a finite set of simplexes, each simplex chosen from a coset of
Cg,n/Γg,n as a representative.
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For each σ ∈ Cg,n, the chart (Dε(σ),W (σ)) is defined as follows. Let Γ(σ) be the
free abelian group generated by right-handed Dehn twists about the simple closed
curves belonging to σ, and let NΓ(σ) be the normalizer of Γ(σ) in Γg,n. The group
W (σ) is the quotient group NΓ(σ)/Γ(σ), called the “Weyl group”(see §4, Definition
5). Note that our Weyl group W (σ) is a discrete group, but not necessarily a finite
group. The manifoldDε(σ) is a certain complex manifold of complex dimension 3g−
3+n, called the “controlled deformation space”(see §6, Definition 9). Topologically,
Dε(σ) is homeomorphic to an open cell of (real) dimension 6g−6+2n (see Lemma
14). The group W (σ) acts on Dε(σ) properly discontinuously.

Our main theorem states the following:

Theorem 1. The finite family {(Dε(σ),W (σ))}σ∈Cg,n/Γg,n
is a (“tautological”)

atlas of complex orbifold-charts of the DM-compactification Mg,n of moduli space.

We admit the empty set ∅ to be a member of Cg,n. The chart corresponding
to ∅ is nothing but the pair of Teichmüller space and the mapping class group:
(Dε(∅),W (∅)) = (Tg,n,Γg,n).

Essentially the same orbifold charts appear in many places in the literature.
In fact, the discussion of Hubbard-Koch [32] contains them as an important part.
Precisely speaking, however, to get an orbifold chart such as (Dε(σ),W (σ)), we
must be a little bit careful: the definition of orbifold chart requires that the quotient
Dε(σ)/W (σ) should be an open subset of Mg,n. (See §2, Definition 1.) This is
rather a delicate condition, especially in constructing a “tautological atlas”. Our
(Dε(σ),W (σ)) (see §6, Definition 9) meets the requirement, but the similar pair
(D∗

ε(σ),W (σ)) (see §6, Definition 8) does not. This is the reason why we modified
(D∗(σ),W (σ)) to (Dε(σ),W (σ)). See Remark after Lemma 15.

Theorem 1 was stated in [51] with the idea of the proof. It was stated again in
[52] together with an argument on the ε-thick part of Teichmüller space. In these
lectures, we will present the full discussions.

An interesting feature of our construction is that certain Euclidean crystallo-
graphic groups appear in connection with maximal simplexes of Cg,n. In fact,

our second purpose is to explain this appearance. Let T̂g,n be the augmented
Teichmüller space or equivalently the metric completion of Tg,n with respect to
the Weil-Petersson metric. (See §3, and §8.5.) The action of the mapping class

group Γg,n on Tg,n extends continuously to an action on the completion T̂g,n. Let
Aut(Tg,n) be the group of self-biholomorphisms of Tg,n. A natural homomorphism
α : Γg,n → Aut(Tg,n) is defined by the action of Γg,n on Tg,n. By Royden’s
theorem and its generalization ([67], [23], see also [31]), the homomorphism α is
onto, provided 3g − 3 + n > 1. Thus the group Aut(Tg,n) acts on the completion

T̂g,n. Let σ0 be a maximal simplex of Cg,n. Then we have a unique frontier point

p(σ0) ∈ T̂g,n − Tg,n corresponding to the degenerate surface obtained by pinching
each curve of σ0 to a node. (Here we follow [83] Definition 1, and call any point

belonging to T̂g,n − Tg,n a frontier point.) Our second main theorem states the
following:

Theorem 2. If σ0 is a maximal simplex, then the Weyl group W (σ0) is a finite

group. Furthermore, if 3g − 3 + n > 1, then for the action of Aut(Tg,n) on T̂g,n,
the isotropy group of the frontier point p(σ0) is a crystallographic group acting on
Euclidean (3g − 3 + n)-space E3g−3+n.
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The author believes that this result is new. For details, see §10.
The maximal simplex σ0 determines a pants decomposition of the surface Σg,n

and vice versa. (See §9.1.) If 3g−3+n > 1 and (g, n) ̸= (2, 0), (1, 2), the homomor-
phism α : Γg,n → Aut(Tg,n) is an isomorphism. (See [67], [23], [31], and Lemma
20.) Thus as a corollary to Theorem 2, we have the following

Corollary 2.1. Suppose 3g−3+n > 1 and (g, n) ̸= (2, 0), (1, 2). Then to each pants
decomposition of Σg,n is attached a subgroup of Γg,n which is a crystallographic
group acting on Euclidean (3g − 3 + n)-space E3g−3+n.

These results remind us of the similar property of hyperbolic geometry that
the isotropy group of a cusp point consists of parabolic transformations and the
horospheres based at the cusp point have the Euclidean structure. (See [64] §4.6.)

Conversely, given a flat manifold with the Bieberbach fundamental group, is it
realized as the cusp cross-section of a complete finite volume one-cusped hyperbolic
manifold? A. Szczepański attacks this problem from the viewpoint of fumdamental
groups ([70]) and eta invariants ([71]).

These lectures are divided in two parts.
Part I is concerned with the Deligne-Mumford compactification of moduli

spaces of Riemann surfaces, and Part II with crystallographic groups.

Our plan after §1 is the following:
In §2, we will recall the notion of orbifold and curve complex.
In §3, we will review the augmented Teichmüller spaces T̂g,n.
In §4, we will study the ε-thick part T ε

g,n of Tg,n and the action of the mapping
class group Γg,n on it.

In §5, we will give our proof of the well-known fact that the quotient space
T̂g,n/Γg,n is compact and topologically identified with the DM-compactification of
the moduli space.

In §6, we will introduce the deformation spaces D∗
ε(σ) and the controlled defor-

mation spaces Dε(σ), as refinements of Bers’ deformation spaces [13]. Theorem 1
will be proved in this section.

Part II begins at §7.
In §7, which is short, we will recall the definition of crystallographic groups.
In §8, we will review basic facts on Teichmüller spaces and the Weil-Petersson

metric.
In §9, we will review Wolpert’s results on Fenchel-Nielsen deformations.
In §10, we will prove our second main theorem (Theorem 2).
In §11, we will give some examples.

The bibliography at the end is common to Parts I and II.
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2. Orbifolds and curve complexes

In this section, we will recall the formal definition of orbifolds and curve com-
plexes.

2.1. Orbifolds. Orbifolds were first introduced by I. Satake [68] under the name
of V-manifolds, and were re-discovered by W. Thurston as an essential tool in
the geometry and topology of 3-manifolds ([72]). The name of orbifold is due to
Thurston. “Orbifolds conveniently blend the theory of manifolds with that of finite
group actions”[15], p.441. The definition given here is based on the simplified

version due to F. Bonahon and L. C. Siebenmann [15] (see also [55]). Let Ũ be a
finite dimensional smooth manifold which is acted on by a (not necessarily finite)
group G. Suppose the action of G is smooth and properly discontinuous. Then the
isotropy group of each point of Ũ is finite, and the quotient space Ũ/G is a good
example of an orbifold. The following definition is a somewhat generalized one,
having this example in mind.

Definition 1. A smooth m-dimensional orbifold (briefly, an m-orbifold) is a σ-
compact Hausdorff space M which is locally modeled on a quotient space of a finite
group action on a smooth m-dimensional manifold. More precisely,
(i) an m-orbifold M is covered by an atlas of orbifold-charts {(Ũi, Gi, φi, Ui)}i∈I ,

each chart consisting of a smooth m-manifold Ũi, a (not necessarily finite) group

Gi acting on Ũi smoothly and properly discontinuously, an open set Ui of M and
a folding map φi : Ũi → Ui which induces a natural homeomorphism Ũi/Gi → Ui.

(ii) (compatibility condition) for x ∈ Ũi and y ∈ Ũj such that φi(x) = φj(y) ∈
Ui ∩ Uj, there exists a diffeomorphism ψ : Ṽx → Ṽy from an open neighborhood of

x in Ũi to an open neighborhood of y in Ũj such that ψ(x) = y and φjψ = φi.

Remark. The usual definition of orbifold requires the group action of Gi on Ũi to
be effective. In our discussion, however, we do not assume the effectiveness, aiming
at the uniform treatment to cover certain sporadic cases where the actions of the
mapping class groups on the Teichmüller spaces are not effective (for example the
case (g, n) = (2, 0)). Note that Hinich and Vaintrob [30] §3 also consider non-
effective orbifolds. □

In what follows, we will always consider complex m-orbifolds, in which the man-
ifolds Ũi are complex manifolds of complex dimension m, the gluing diffeomor-
phisms ψ are biholomorphic, and the groups Gi act on Ũi holomorphically. We
will often use the simplified notation {(Ũi, Gi)}i∈I to represent the orbifold-charts

{(Ũi, Gi, φi, Ui)}i∈I .

2.2. Curve complexes. Given a surface Σg,n, W. Harvey [28] introduced an ab-
stract simplicial complex called the complex of curves (or curve complex ) Cg,n =
C(Σg,n).

Definition 2. A vertex of the curve complex Cg,n is an isotopy class of an essential
simple closed curve on Σg,n, where a closed curve is said to be essential if it is
neither null-homotopic nor homotopic to a puncture. A simplex σ of Cg,n is a
collection of disjoint, mutually non-isotopic essential simple closed curves on Σg,n:
σ = ⟨C1, . . . , Ck⟩.
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The number k of simple closed curves contained in σ will be denoted by |σ|. It is
known that |σ| ≦ 3g−3+n. Clearly we have dimσ = |σ|−1. Harvey [28] introduced
the curve complex to study the “boundary structure”of Teichmüller space and the
action of Γg,n on the boundary.

The mapping class group Γg,n naturally acts on Cg,n as automorphisms. N. V.
Ivanov [36] proved the converse, assuming g ≧ 2. M. Korkmaz [43] and F. Luo [47]
extended Ivanov’s results to cover the cases g = 0, 1. The final form of their results
is the following:

Theorem 3 ([47]). (a) If 3g−3+n ≧ 2 and (g, n) ̸= (1, 2), then any automorphism
of Cg,n is induced by a self-homeomorphism of the surface Σg,n.
(b) Any automorphism of C1,2 preserving the set of vertices represented by separating
loops is induced by a self-homeomorphism of the surface.
(c) There is an automorphism of C1,2 which is not induced by any homeomorphisms.

Remark (see Lemma 20 in §10 below). Suppose 3g − 3 + n ≧ 1 and (g, n) ̸=
(2, 0), (1, 2), (1, 1), (0, 4), then the natural homomorphism Γg,n → Aut(Cg,n) is in-
jective. If (g, n) = (2, 0), (1, 2) or (1, 1), the kernel of Γg,n → Aut(Cg,n) is isomorphic
to Z2. If (g, n) = (0, 4), the kernel of Γ0,4 → Aut(C0,4) is isomorphic to Z2⊕Z2. □

Combining Remark and Theorem 3, we have

Corollary 3.1. If 3g − 3 + n ≧ 2 and (g, n) ̸= (1, 2), then

Aut(Cg,n) =

{
Γ∗
g,n for (g, n) ̸= (2, 0)

Γ∗
2,0/Z2 for (g, n) = (2, 0),

where Γ∗
g,n denotes the extended mapping class group containing orientation revers-

ing homeomorphisms.
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3. Augmented Teichmüller spaces

L. Bers [12] [13] and W. Abikoff [1] [3] introduced the augmented Teichmüller

space T̂g,n by attaching to Tg,n a special type of Kleinian groups called regular
b-groups. Regular b-groups are a disguised form of Riemann surfaces with nodes.
Thus the augmented Teichmüller space is the Teichmüller space to which Riemann
surfaces with nodes are attached. The most natural construction of the augmented
Teichmüller space T̂g,n would be to take the metric completion of Teichmüller space
with respect to the Weil-Petersson metric ([83], See [82] Theorem 4.4.)

As mentioned in §1, the Teichmüller metric is a natural metric on Tg,n from the
viewpoint of quasi-conformal deformations. But if we view Tg,n as a Riemannian
manifold, it is not so natural a metric, because the Teichmüller metric is not de-
fined by ds2 ([73], p.384). The Weil-Petersson metric is a natural metric from this
point of view ([73], [4] §4). S. Wolpert [74] and T. Chu [20] proved, however, that
Teichmüller space equippd with the Weil-Petersson metric is not complete. In fact,
there exist geodesics which terminate in a finite length. H. Masur [49], S. Wolpert
[80], [81], [82], and S. Yamada [83] studied in detail the behavior of the metric

tensors on this metric completion T̂g,n.
Let σ = ⟨C1, . . . , Ck⟩ be a simplex in the curve complex Cg,n. Then a singular

surface, denoted by Σg,n(σ), is obtained from Σg,n by pinching each curve Ci ∈ σ
to a point. On a marked Riemann surface (S,w), there is a disjoint union of simple
closed geodesics {c1, . . . , ck} such that ci represents the isotopy class of w(Ci) (i =

1, . . . , k). If each ci shrinks to a point as [S,w] approaches the “boundary”of T̂g,n,
then in the limit we have a Riemann surface with nodes. (See [83], Proposition 1.)
This nodal Riemann surface is modeled on Σg,n(σ).

Here we will recall from Bers’ paper [12] the formal definition of a Riemann
surface with nodes.

Definition 3 ([12]). A Riemann surface with nodes (or a nodal Riemann surface
for short) S is a connected complex space such that every point p ∈ S has arbitrarily
small neighborhood isomorphic either to the set |z| < 1 in C or to the set |z| < 1,
|w| < 1, zw = 0 in C2. In the second case, p is called a node. Every component
of the complement of the nodes is called a part of S. Each part is assumed to have
negative Euler characteristic. (Thus each part has a hyperbolic metric.)

If Σg,n(σ) has no complex structures (in [57], we called such a singular topological
surface a chorizo space) , the meaning of a “part”or a “node”of Σg,n(σ) will be clear.
A marking of a nodal Riemann surface S (modeled on Σg,n(σ)) is a homeomorphism
w : Σg,n(σ) → S which is orientation preserving on each part.

Teichmüller space of marked Riemann surfaces with nodes, T (σ), is defined sim-
ilarly to Tg,n. This is isomorphic to the product of Teichmüller spaces modeled on
the parts of Σg,n(σ) ([49], p.624). Its complex dimension is given as follows (see
[49], [83]):

(2) dimC T (σ) = 3g − 3 + n− |σ|.

Remark. Teichmüller space Tg,n is a bounded domain of C3g−3+n homeomorphic
to an open cell. (See [33], §6.1.4.) Being a product of the Teichmüller spaces of its
parts, Teichmüller space T (σ) of Σg,n(σ) is again a bounded domain of C3g−3+n−|σ|,
and homeomorphic to an open cell. □
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Following [83], we will call T̂g,n \ Tg,n the frontier set or the boundary and will
denote it by ∂Tg,n. T (σ) has its own Weil-Petersson metric, and its metric comple-

tion T̂ (σ) is meaningful ([83], and Wolpert [81]). Each component of the boundary
Teichmüller spaces is totally geodesic (Theorem 2 of [83]), and we have

(3) T̂g,n =
∪

σ∈Cg,n

T (σ) and ∂Tg,n =
∪

∅̸=σ∈Cg,n

T (σ),

where T (∅) = Tg,n.
The equalities (3) are essentially the same as those on p.330 of [83], because we

have the following equation:

(4) T̂ (σ) =
∪
σ<τ

T (τ),

where σ < τ means that σ is a face of τ . See Lemma 6 of §5.
As was earlier pointed out by Weil himself [73], p.389, the Weil-Petersson metric

is invariant under the action of Γg,n. The action of Γg,n is extended to a continuous

action on the augmented Teichmüller space T̂g,n. It is seen (Remark at the end of
§4) that
(5) [f ](T (σ)) = T (f(σ)) for ∀[f ] ∈ Γg,n, ∀σ ∈ Cg,n.
Let Γ(σ) be the free abelian subgroup of Γg,n generated by the right-handed Dehn
twists τ(Ci) about the simple closed curves Ci belonging to σ. The following
theorem is proved in [83] (Theorem 3 and Remark after that).

Theorem 4. The fixed point set of the action of Γ(σ) on T̂g,n is T̂ (σ).

Corollary 4.1. The action of Γg,n on T̂g,n is not properly discontinuous.

Proof. If σ ̸= ∅, each point in T̂ (σ) has the infinite isotropy subgroup which contains
Γ(σ). □
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4. The ε-thick part

Let C be an essential simple closed curve on Σg,n. For any point p = [S,w] ∈
Tg,n, let lC(p) be the length of the simple closed geodesic c on S homotopic to
w(C).

Lemma 1. For any mapping class [f ], we have

lf(C)([f ](p)) = lC(p).

Proof. Let p = [S,w] be any point of Tg,n. By (1), [f ](p) is the equivalence class
of (S,w ◦ f−1). By the definition of the length function, lf(C)([f ](p)) is the length

of the simple closed geodesic on S homotopic to w ◦ f−1(f(C)) = w(C). Thus
lf(C)([f ](p)) is equal to lC(p). □

Define L : Tg,n → R by

L(p)
def
= min

C⊂Σg,n

lC(p).

Following [38], we will call L the systole function. By Lemma 1, the systole function
L is invariant under the action of Γg,n. It is piecewise real analytic on Tg,n (see [2],
or [33] Lemma 3.7).

Lemma 2 ([41], [2], [64] p.655). There exists a universal constant M(> 0) such
that two distinct simple closed geodesics on any Riemann surface S are disjoint if
their length are smaller than M .

We will call such a constant M a (2-dimensional) Margulis constant. It is not
unique, of course, because any positive number smaller than M has again the same
property.

Take a positive real number ε smaller than a Margulis constant M . The ε-thick
part T ε

g,n is a subspace of Tg,n defined as follows:

T ε
g,n

def
= {p ∈ Tg,n | L(p) ≧ ε}.

This space T ε
g,n is a real analytic manifold with corners. It has many essential

features in common with Tg,n. L. Ji and S. Wolpert [38] proved that T ε
g,n is an

equivariant deformation retract of Tg,n with respect to the action of Γg,n. (They
call T ε

g,n the truncated Teichmüller space.) N. V. Ivanov [35] used T ε
g,n in his

cohomological study of the mapping class groups.

Definition 4 (Facet). Let σ = ⟨C1, . . . , Ck⟩ be a (non-empty) simplex of Cg,n. The
facet F ε(σ) corresponding to σ is defined to be the set of those points p ∈ Tg,n that
satisfy the following conditions:
(1) lCi(p) = ε, i = 1, . . . , k, and
(2) lC(p) > ε for any other essential simple closed curve C ⊂ Σg,n.

By the definition,

(6) F ε(σ) ∩ F ε(τ) = ∅, if σ ̸= τ.

We call the set

∂T ε
g,n

def
= {p ∈ Tg,n | L(p) = ε}

the boundary of T ε
g,n. The boundary is a disjoint union of the facets:

(7) ∂T ε
g,n =

∪
∅̸=σ∈Cg,n

F ε(σ).
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In what follows, we will put m = 3g − 3 + n, for simplicity. By adding suitable
m − k simple closed curves Ck+1, . . . , Cm to the members of σ, we get a maximal
simplex of Cg,n:

σ̃ = ⟨C1, . . . , Ck, Ck+1, . . . , Cm⟩.
Recall that with σ̃ are associated the Fenchel-Nielsen coordinates. (See §9 for
a detailed explanation.) In fact, σ̃ decomposes the surface Σg,n into a union of
(generalized) pairs of pants P1, . . . , P2g−2+n. Here a generalized pair of pants means
a surface homeomorphic to a 2-sphere with the interiors of three disjoint disks
removed (this is an ordinary one), or a once punctured annulus, or twice punctured
disk. A pair of pants has the Euler characteristic −1. A marked Riemann surface
(S,w) representing p ∈ Tg,n is decomposed into a union of hyperbolic pants by the
system of m simple closed geodesics ⟨c1, . . . , cm⟩ on S, where ci is homotopic to
w(Ci), i = 1, . . . ,m. The Fenchel-Nielsen coordinate li(p)(> 0) is the hyperbolic
length of ci, and τi(p) is the amount of the “twist”on gluing pairs of pants along
ci. Following [81] [82] we measure the magnitude of twist not by the angle but by
the hyperbolic length of the movement along ci.

The Fenchel-Nielsen coordinates (l1, . . . , lm, τ1, . . . , τm) are real analytic global
coordinates of Tg,n (see [2], [33]), which give a real analytic isomorphism Tg,n

∼=
Rm

+ ×Rm. With respect to these coordinates, F ε(σ) is written by

(8) l1 = · · · = lk = ε, lk+1 > ε, · · · , lm > ε.

It immediately follows that

dimR F ε(σ) = 2m− k, where k = |σ|.

Note that the facet F ε(σ) always contains a factor of twist-coordinate space Rm =
{(τ1, . . . , τm)}, because the coordinates (τ1, . . . , τm) are free from any constraints.

If another simplex τ ∈ Cg,n (with |τ | = l) contains σ as a face, then with suitable
simple closed curves Ck+1, . . . , Cl on Σg,n, we have

τ = ⟨C1, . . . , Ck, Ck+1, . . . , Cl⟩.

Choosing further simple closed curves Cl+1, . . . , Cm on Σg,n, we have a maximal
simplex σ̃′ = ⟨C1, . . . , Ck, . . . , Cl, . . . , Cm⟩. With respect to the associated Fenchel-
Nielsen coordinates, F ε(τ) is written as

(9) l1 = · · · = lk = lk+1 = · · · = ll = ε, ll+1 > ε, · · · , lm > ε.

Thus we have proved the following

Lemma 3. If |σ| = k, the facet F ε(σ) is real analytically isomorphic to Rm−k
>ε ×Rm.

Furthermore, the closure F ε(σ) contains F ε(τ) in its boundary if and only if σ ≨ τ
(i.e. σ is a proper face of τ).

Given a simplex σ with |σ| < m, there are infinitely many simplexes τ with
σ < τ . Thus F ε(σ) is surrounded by infinitely many facets F ε(τ). In this sense, a
facet F ε(σ) itself is an infinite polyhedron (unless the simplex σ is maximal).

The following theorem is regarded as a toy analogue of Royden-Earle-Kra’s theo-
rem [67], [23], or of Masur-Wolf’s theorem [50]. This theorem is not quite necessary
in order to prove our main theorem, but it gives a global perspective to our con-
struction of orbifold-charts.
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Theorem 5. Suppose 3g − 3 + n ≧ 2 and (g, n) ̸= (2, 0), (1, 2). Considering T ε
g,n

as an infinite polyhedron, we have

(10) Aut(T ε
g,n) = Γg,n,

where Aut(T ε
g,n) is the orientation preserving automorphism group of the polyhe-

dron.

Proof. The totality of the closed facets on ∂T ε
g,n makes a complex (the facet com-

plex ) in the following sense:

(i) Two closed facets F ε(σ) and F ε(τ) are disjoint, or else intersect in a common

closed facet F ε(ρ), where ρ = ⟨σ, τ⟩.
(ii) Given a closed facet F ε(τ), there are only a finite number of closed facets F ε(σ)

such that F ε(σ) ⊃ F ε(τ).
These properties are easily proved by Lemma 3.
A flag in the facet complex means a finite sequence of the closed facets:

F ε(σ1) ⊃ F ε(σ2) ⊃ · · · ⊃ F ε(σu).

This flag corresponds uniquely to a flag in Cg,n:

σ1 < σ2 < · · · < σu.

Now an automorphism of T ε
g,n induces an automorphism of the facet complex on

the boundary ∂T ε
g,n, and that of the flag complex of the facet complex. Since the

latter complex is (inversely) isomorphic to the flag complex of Cg,n (which is in
turn isomorphic to the barycentric subdivision of Cg,n), we get an automorphism
of Cg,n. By Theorem 3, this automorphism of Cg,n is induced by a unique element
of Γg,n.

Conversely an element of Γg,n induces an automorphism of Tg,n and that of T ε
g,n.

The argument is closed, and the proof is complete. □
Essentially the same arguments have been done in A. Papadopoulos [63] and K.

Ohshika [62].

Remark. If (g, n) = (2, 0), we have

(11) Aut(T ε
2,0) = Γ2,0/Z2.

This is proved by the same arguments as of Theorem 5, by using Corollary 3.1
instead of Theorem 3. □

Recall that, for a non-empty simplex σ = ⟨C1, . . . , Ck⟩ of Cg,n, Γ(σ) is the free
abelian subgroup of Γg,n generated by the right-handed Dehn twists τ(Ci) about
Ci, i = 1, . . . , k. Let NΓ(σ) be the normalizer of Γ(σ) in Γg,n.

Theorem 6. Suppose 3g−3+n ≧ 1. A mapping class [f ] belongs to the normalizer
NΓ(σ) if and only if [f ] permutes the isotopy classes of the curves Ci, i = 1, . . . , k,
of σ.

Proof. Let [f ] be an element of NΓ(σ), Ci any curve taken from σ. Since

τ(f(Ci)) = [f ]τ(Ci)[f ]
−1 ∈ Γ(σ),

the Dehn twist τ(f(Ci)) commutes with every τ(Cj) (Cj ∈ σ). It is known that
if two simple closed curves C and C ′ cannot be separated by any isotopy of Σg,n,
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then the Dehn twists τ(C) and τ(C ′) do not commute in Γg,n (see Ishida [34]).
Applying this to f(Ci), we may assume that f(Ci) ∩ Cj = ∅, for j = 1, . . . , k.

Let Σ′ denote the component of the (possibly non-connected) surface Σg,n \ σ
that contains f(Ci), where Σg,n \ σ denotes the surface obtained by cutting open
Σg,n along the simple closed curves Cj , j = 1, . . . , k. We need the following

Claim. If an essential simple closed curve C0 in a compact, connected, oriented
surface Σ′ is not peripheral, that is, not isotopic in Σ′ to any boundary curve, then
there is a simple closed curve C ′ in Σ′ which intersects C0 and such that no isotopy
of Σ′ can separate it from C0.

Proof of Claim. If C0 is a non-separating curve in Σ′, then there exists a simple
closed curve C ′ which transversely intersects C0 in a point. This curve C ′ has
the required property. On the other hand, if C0 is a separating curve in Σ′, then
both the components Σ′

1, Σ
′
2 of the cut open surface Σ′ \ C0 have negative Euler

characteristic (because C0 is not peripheral). Take two points a, b on C0, then we
can find an embedded arc on each of Σ′

1 and Σ′
2 which has a, b as end points and

is not isotopic (fixing {a, b}) into C0 by any isotopy of the component. Joining the
two arcs, we get a simple closed curve C ′ in Σ′ which intersects C0 in the two points
{a, b}. From the construction, C ′ cannot be separated from C0 by any isotopy of
Σ′. This completes the proof of Claim. □

Now we return to the proof of Theorem 6. By the claim above, if f(Ci) were
not peripheral in Σ′, then there would be a simple closed curve C ′ in Σ′ which
intersects f(Ci) and such that no isotopy of Σ′ can separate it from f(Ci). By
[34], the Dehn twist τ(f(Ci)) does not commute with the Dehn twist τ(C ′). Every
Dehn twist τ(Cj), however, commutes with τ(C ′), because Cj is disjoint from C ′.
This contradicts the assumption that τ(f(Ci)) belongs to Γ(σ). Thus f(Ci) must
be isotopic in Σ′ to a boundary curve, which is a copy of some Cj . Since we took
Ci from σ arbitrarily, this proves that [f ] permutes the isotopy classes of curves
Cj , j = 1, . . . , k.

Conversely, if [f ] permutes the isotopy classes of curves Cj , j = 1, . . . , k, [f ]
clearly belongs to the normalizer NΓ(σ). The proof of Theorem 6 is complete. □

Corollary 6.1. When Γg,n acts on T ε
g,n, the subgroup which preserves a facet F ε(σ)

is precisely the normalizer NΓ(σ).

Proof. Recall from (1) of §1 that a mapping class [f ] maps a point p = [S,w] to
[f ](p) = [S,w ◦ f−1], and that this action does not change the Riemann surface S
but changes the marking. If p belongs to the facet F ε(σ), the set of closed geodesics
{c1, . . . , ck} on S, each ci being homotopic to w(Ci), is precisely the set of closed
geodesics of hyperbolic length ε.

If as assumed the image [f ](p) belongs to the same facet F ε(σ), then the set
of closed geodesics {c′1, . . . , c′k} on S, each c′i being homotopic to w ◦ f−1(Ci), is
precisely the set of closed geodesics of hyperbolic length ε. On the same Riemann
surface S, the two sets of closed geodesics must coincide:

{c1, . . . , ck} = {c′1, . . . , c′k}.

The set of isotopy classes of simple closed curves {f−1(C1), . . . , f
−1(Ck)} on Σg,n

must coincide with {C1, . . . , Ck}, and by Theorem 6, [f ] belongs to the normalizer
NΓ(σ).
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Let us prove the converse. By Lemma 1, we have a general formula

(12) [f ](F ε(σ)) = F ε(f(σ)).

where f(σ) = ⟨f(C1), . . . , f(Ck)⟩. If [f ] belongs to NΓ(σ), it permutes C1, . . . , Ck

by Theorem 6, and [f ] satisfies f(σ) = σ. Thus we have

[f ](F ε(σ)) = F ε(f(σ)) = F ε(σ),

hence [f ] preserves F ε(σ).
The proof of Corollary 6.1 is complete. □
For a simplex σ = ⟨C1, . . . , Ck⟩ of Cg,n, let us introduce the following group:

Definition 5 (“Weyl group”). We denote the quotient group NΓ(σ)/Γ(σ) by W (σ),
and for the formal resemblance would like to call it the Weyl group associated with
the simplex σ.

Our W (σ) is not necessarily a finite group.

Corollary 6.2. The group W (σ) is the mapping class group of the nodal surface
Σg,n(σ).

Proof. Let [f ] be any element of NΓ(σ). By Theorem 6, [f ] induces a permutation
π on the set of the isotopy classes of Ci, i = 1, . . . , k. Thus we may assume

f(Ci) = Cπ(i), i = 1, . . . , k.

The nodal surface Σg,n(σ) is obtained from Σg,n by pinching each curve Ci to a
point (§3). Thus clearly, f induces an orientation preserving self-homeomorphism

f̃ of Σg,n(σ).
Conversely, given an orientation preserving self-homeomorphism of Σg,n(σ), we

can find a self-homeomorphism f of Σg,n which permutes the isotopy classes of

Ci, i = 1, . . . , k, and such that the homeomorphism f̃ induced on Σg,n(σ) is isotopic
to the given one. Let g be a self-homeomorphism of Σg,n which permutes the isotopy

classes of Ci, i = 1, . . . , k, then f̃ and g̃ are isotopic on Σg,n(σ), if and only if f is
isotopic to g on Σg,n up to the Dehn twists about Ci, i = 1, . . . , k, in other words,
if and only if [f ] = [g] ∈ NΓ(σ)/Γ(σ).

The proof of Corollary 6.2 is complete. □
Definition 6 (Fringe). Let σ = ⟨C1, . . . , Ck⟩ be a (non-empty) simplex of Cg,n.
The fringe FRε(σ) bounded by the facet F ε(σ) is defined by

(13) FRε(σ)
def
=

∪
0<δ<ε

F δ(σ).

By the definition,

(14) FRε(σ) ∩ FRε(τ) = ∅, if σ ̸= τ.

For a point p = [S,w] ∈ Tg,n, let ci be the closed geodesic on S which is homotopic
to w(Ci), i = 1, . . . , k (here we take σ = ⟨C1, . . . , Ck⟩). A point p = [S,w] belongs
to FRε(σ) if and only if L(p) < ε and the k geodesics {c1, . . . , ck} (and only these
geodesics) have the length L(p). Since a point p satisfying L(p) < ε must belong
to some F δ(σ′) (0 < δ < ε), we have the following partition of Tg,n:

(15) Tg,n = T ε
g,n

∪
∅̸=σ∈Cg,n

FRε(σ).
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By (14), this is a disjoint union.

Lemma 4. As ε → 0, the facet F ε(σ) approaches the augmented frontier Te-

ichmüller space T̂ (σ).

Proof. Take a small positive numer η satisfying ε < η < M , where M is a Margulis
contant. Let σ̃ = ⟨C1, . . . , Ck, Ck+1, . . . , Cm⟩ be a maximal simplex of Cg,n which
contains σ = ⟨C1, . . . , Ck⟩ as a face. In terms of the Fenchel-Nielsen coordinates
(l1, . . . , lm, τ1, . . . , τm) associated with σ̃, the fringe FRη(σ) is described as

∃ξ such that 0 < ξ < η, l1 = · · · = lk = ξ, lk+1 > ξ, · · · , lm > ξ.

The facet F ε(σ) which is written as

l1 = · · · = lk = ε, lk+1 > ε, · · · , lm > ε

moves in FRη(σ), and converges to T (σ), or at worst to T̂ (σ), as ε → 0.
This rather intuitive explanation is also justified metrically, because near T (σ)

the Weil-Petersson metric tensor G is “almost product”of two metrics: the metric
along T (σ) and the metric along Earle-Marden’s plumbing coordinates [48], [24].
The plumbing coordinates of the facet F ε(σ) converge to 0 as ε → 0. (See [49], and
Proposition 3 of [83].)

A sharper estimate is provided by Wolpert. Let dT (σ) be the distance on T̂g,n to

T̂ (σ). Wolpert proved ([81], Corollary 4.10)

(16) dT (σ) =

(
2π

k∑
i=1

li

)1/2

+O

(
k∑

i=1

l
5/2
i

)
.

Thus as ε → 0, points on F ε(σ) (for which l1 = · · · = lk = ε) converge to points in

T̂ (σ).
To be more specific, we have to use in advance the argument which will be given

in the proof of Lemma 12 below (in §6). The argument starts with the fact that

T̂g,n is a CAT(0) space. (For the definition of CAT(0) space, see [17], [81], [82],
[83], [85] §5.1.) By Yamada [83], given a σ ∈ Cg,n there exists a family of geodesics

in T̂g,n with the property that any point p ∈ Tg,n is connected by a geodesic in the

family to a unique point πσ(p) ∈ T̂ (σ) such that the length of the geodesic segment
between p and πσ(p) is equal to the distance dT (σ)(p). This property together with
Wolpert’s formula (16) assures that the family of geodesics are transverse to F ε(σ),

and that as ε → 0 F ε(σ) converges along the geodesic family to T̂ (σ). □
Furthermore, if we use an argument supplied by Yamada (see the proof of Lemma

12), we can prove the following more precise statement

Addendum to Lemma 4. F ε(σ) approaches T (σ) as ε → 0.

By Lemma 4 and its Addendum, FRε(σ) ∪ T (σ) is a metric space embedded in

the augmented Teichmüller space T̂g,n. We have the following partition extending
(15):

(17) T̂g,n = T ε
g,n

∪
∅̸=σ∈Cg,n

(FRε(σ) ∪ T (σ)).

This is a disjoint union.

Remark. The action of the mapping class group Γg,n on T̂g,n preserves the
partition (17). A mapping class [f ] ∈ Γg,n sends FRε(σ) ∪ T (σ) to FRε(f(σ)) ∪
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T (f(σ)). This follows from the rule (12). In particular, we have the following
formula:

(18) [f ](T (σ)) = T (f(σ)).



TEICHMÜLLER SPACES AND CRYSTALLOGRAPHIC GROUPS 17

5. The compactness theorem

Although the following theorem is well-known (cf. [26], [27], [3], [46], [66], [30],
[32]), we will give our own proof in this section:

Theorem 7. As a topological space, the quotient T̂g,n/Γg,n is compact, and it is

identical with the Deligne-Mumford compactification Mg,n.

Hinich-Vaintrob [30], Earle-Marden [24], and Hubbard-Koch [32] gave a complex

structure to T̂g,n/Γg,n, and established the analytic identification of T̂g,n/Γg,n with

the algebraic variety Mg,n.
For the sake of exposition, we will give somewhat explicit description of the

moduli spaces, including facets and fringes, and will use this to derive the result.
We start with the partition (17). By Definition 6, the fringe FRε(σ) is foliated

by the facets {F δ(σ)}0<δ<ε. From Corollary 6.1, it follows that a mapping class
[f ] ∈ Γg,n preserves FRε(σ) if and only if [f ] belongs to NΓ(σ). Thus NΓ(σ) acts
on FRε(σ). This action preserves the foliated structure (13). By Lemma 4 together
with its Addendum, this action is extended to the action on FRε(σ) ∪ T (σ).

Take a maximal simplex σ̃ ∈ Cg,n containing σ = ⟨C1, . . . , Ck⟩ as a face. Let us
describe the action of the free abelian subgroup Γ(σ) of NΓ(σ) on FRε(σ) ∪ T (σ)
in terms of the Fenchel-Nielsen coordinates associated with the maximal simplex σ̃

(l1, . . . , lk, . . . , lm, τ1, . . . , τk, . . . , τm).

If a point p of FRε(σ) belongs to a facet F δ(σ) (0 < δ < ε), its Fenchel-Nielsen
coordinates satisfy

l1(p) = · · · = lk(p) = δ, lk+1(p) > δ, · · · , lm(p) > δ.

The generater τ(Ci) (1 ≦ i ≦ k) of Γ(σ) sends the point p to the point

τ(Ci)(p) = (δ, . . . , δ� �� �
k

, lk+1(p), . . . , lm(p), τ1(p), . . . , τi(p)+δ, . . . , τk(p), τk+1(p), . . . , τm(p)),

(see (33) in §7). In other words, Γ(σ) acts on F δ(σ) as the δ-lattice group on
the twist coordinate k-space Rk = {(τ1, . . . , τk)}. The quotient Rk/Γ(σ) is a k-
dimensional torus T k

δ = S1
δ × · · · × S1

δ� �� �
k

, where S1
δ denotes a circle with peripheral

length δ. Thus F δ(σ)/Γ(σ) is identified with

(R>δ)
m−k × T k

δ ×Rm−k.

Since Γ(σ) preserves the foliation FRε(σ) =
∪

0<δ<ε F
δ(σ), we can identify the

quotient

FRε(σ)/Γ(σ)

with ∪
0<δ<ε

(R>δ)
m−k × T k

δ ×Rm−k.

This is identified with

(19) Rm−k
+ × Coneε0(T

k)×Rm−k,

where Coneε0(T
k) denotes an open cone (whose rays have the length ε) over the

k-dimensional torus T k with the cone vertex 0 deleted. If the cone vertex 0 is filled
in, then by Lemma 4 and its Addendum, the “central axis ”Rm−k

+ × {0} ×Rm−k
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in Rm−k
+ ×Coneε(T k)×Rm−k corresponds to the frontier Teichmüller space T (σ),

on which the group Γ(σ) acts as the identity (Theorem 4).
We have proved the following

Lemma 5. As a topological space, the quotient

(FRε(σ) ∪ T (σ))/Γ(σ)

is identified with

Rm−k
+ × Coneε(T k)×Rm−k,

where Coneε(T k) denotes an open cone over T k whose rays have length ε. Via

this identification, the central axis Rm−k
+ ×{0}×Rm−k corresponds to the frontier

Teichmüller space T (σ).

The group NΓ(σ) acts on FRε(σ) ∪ T (σ). Since Γ(σ) is a normal subgroup
of NΓ(σ), the quotient group W (σ) = NΓ(σ)/Γ(σ) acts on the quotient space
(FRε(σ) ∪ T (σ))/Γ(σ). By the construction of (FRε(σ) ∪ T (σ))/Γ(σ), the action
of W (σ) preserves the frontier Teichmüller space T (σ). This action of W (σ) on
T (σ) is just like the action of Γg,n on Tg,n, because by Corollary 6.2, W (σ) is the
mapping class group of the nodal surface Σg,n(σ), and the frontier Teichmüller
space T (σ) is the Teichmüller space modeled on the nodal surface Σg,n(σ). The
frontier Teichmüller space T (σ) has its own Weil-Petersson metric, and is embedded

in T̂g,n totally geodesically ([83], Theorem 2). We can consider the Weil-Petersson

completion T̂ (σ) of T (σ) just like the completion T̂g,n of the ordinary Teichmüller
space.

Lemma 6. We have

(20) T̂ (σ) =
∪
σ<τ

T (τ).

Proof. On taking the metric completion T̂ (σ), we attach to T (σ) the Teichmüller
spaces of singular surfaces obtained from Σg,n(σ) by pinching further essential sim-
ple closed curves on Σg,n(σ). Each of the resulting surfaces is of the form

Σg,n(τ), where σ ≨ τ.

Thus the attached Teichmüller spaces are T (τ), σ ≨ τ . Hence Lemma follows.
The second half of the proof of Lemma 4 together with its Addendum provides

a more specific argument: As remarked above, T (σ) has its own Weil-Petersson

metric, and it is totally geodesically embedded in T̂g,n ([83]). The completion T̂ (σ)
is a CAT(0) space. We can repeat the same argument as in Lemma 4 on T (σ): For
any τ(≩ σ), we can consider the facet F ε

σ(τ) of T (σ). As ε → 0, F ε
σ(τ) moves in

T (σ) and approaches T (τ). □
Proof of Theorem 7.

We will prove the compactness of the quotient space T̂g,n/Γg,n by induction on
the dimension of Tg,n.

Starting case: dimC Tg,n = 1.

Since dimC Tg,n = 3g − 3 + n, we have two subcases (g, n) = (0, 4) or (1, 1).
Subcase (i) (g, n) = (0, 4).
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According to Birman [14], pp.205–207, the mapping class group Γ0,4 has a pre-
sentation with generators ω1, ω2, ω3 and definig relations

ω1ω2ω1 = ω2ω1ω2

ω2ω3ω2 = ω3ω2ω3

ω1ω3 = ω3ω1

(ω1ω2ω3)
4 = 1

ω1ω2ω
2
3ω2ω1 = 1.

To understand the geometric meaning of these generators, consider Σ0,4 as a square
pillow with the four corner points deleted. Let A,B,C,D be the resulting punctures
at the corners in this cyclic order. Then ω1 is the positive half twist about the edge
AB, ω2 the positive half twist about the edge BC, and ω3 the positive half twist
about the edge CD. (See [39]). Birman defines two elements a = ω1ω

−1
3 and

b = ω2ω1ω
−1
3 ω−1

2 . Geometrically, the element a represents a 180◦ rotation on the
axis through the middle points of the edges AB and CD, while b represents a 180◦

rotation on the axis through the centers of the back and front squares ABCD.
Let G be the subgroup of Γ0,4 generated by ω1 and ω2, and let N be the subgroup

generated by a and b. Then Γ0,4 is the semi-direct product of the normal subgroup
N and the subgroup G (Lemma 5.4.1 of [14]). The groupN is isomorphic to Z2⊕Z2,
while the group G is isomorphic to PSL(2,Z) under the mapping

ω1 �→
(
1 1
0 1

)
ω2 �→

(
1 0
−1 1

)
.

Thus we have an exact sequence (Lemma 5.4.3 of [14])

1 → N → Γ0,4 → PSL(2,Z) → 1.

Teichmüller space of Σ0,4 is the upper half plane H. The group Γ0,4 acts on H as
linear fractions:

ω1(z) = z + 1, ω2(z) =
z

−z + 1
.

The subgroup N acts trivially. The moduli space H/PSL(2,Z) is a real 2-orbifold
(or a complex 1-orbifold) homeomorphic to the punctured sphere. It has two cone
points of indices 2 and 3. (§1.2.1 of [33].)

The augmented Teichmüller space T̂0,4 is the union H ∪ (Q ∪ {∞}), and the

quotient T̂0,4/PSL(2,Z) is obtained by filling the puncture of H/PSL(2,Z) with a

point. Thus T̂0,4/Γ0,4(= T̂0,4/PSL(2,Z)) is homeomorphic to S2, which is compact.
Subcase (i) is complete.

Subcase (ii) (g, n) = (1, 1).
This subcase is dealt with in Hubbard-Koch [32] as Example 2.3. The result is

completely analogous to Subcase (i). We will add some explanations.
It is easy to see that the mapping class group Γ1,1 is isomorphic to SL(2,Z).

Its center (∼= Z2) corresponds to the hyperelliptic involution of Σ1,1 which fixes the
puncture and three other points. We have the exact sequence

1 → Z2 → Γ1,1 → PSL(2,Z) → 1.

The Teichmüller space of Σ1,1 is again the upper half planeH, and Γ1,1 acts onH as
linear fractions. (The center Z2 acts trivially.) The augmented Teichmüller space
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T̂1,1 is the union H∪ (Q∪{∞}), and the quotient space T̂1,1/Γ1,1 is homeomorphic
to S2, thus compact. Subcase (ii) is complete.

Subcases (i) and (ii) complete Starting case where dimC Tg,n = 1.

Inductive step: The inductive hypothesis is that T̂g,n/Γg,n is compact if dimC Tg,n <
N , N being a certain integer. Assuming this hypothesis, we will prove the com-
pactness of T̂g,n/Γg,n in the case where dimC Tg,n = N .

Recall the partition (17)

T̂g,n = T ε
g,n

∪
∅̸=σ∈Cg,n

(FRε(σ) ∪ T (σ)).

From the above partition of T̂g,n, we get the following finite partition of the

quotient T̂g,n/Γg,n:

(21) T̂g,n/Γg,n = T ε
g,n/Γg,n

∪
∅̸=σ∈ Cg,n/Γg,n

(FRε(σ) ∪ T (σ))/NΓ(σ).

Here we insert a lemma, which will be used later. This lemma is a general
principle and is independent of the inductive step. We refer the reader to the
closely related results of [46] and [30].

Lemma 7. Let Γ be a subgroup of Γg,n of finite index. If T̂g,n/Γg,n is compact,

then T̂g,n/Γ is compact, too.

Proof. From (17), we get

(22) T̂g,n/Γ = T ε
g,n/Γ

∪
∅̸=σ∈ Cg,n/Γ

(FRε(σ) ∪ T (σ))/NΓ′(σ),

where NΓ′(σ) = Γ∩NΓ(σ). Comparing (22) with (21), we see that there is a finite
branched covering

T̂g,n/Γ → T̂g,n/Γg,n.

Then Lemma 7 is proved by a standard argument. □
We return to the inductive step. We will prove the compactness of T̂g,n/Γg,n

in the case where dimC Tg,n = N , assuming the compactness for the cases where
dimC < N . We will examine each component of (21):

The quotient

(23) T ε
g,n/Γg,n

is compact by the Mumford compactness theorem ([60], [10]). See [31] §7.3, in
particular Theorems 7.3.1 and 7.3.3.

To analyze the component (FRε(σ) ∪ T (σ))/NΓ(σ), we will prove the following

Lemma 8. The quotient space T̂ (σ)/W (σ) is compact.

Proof. Recall that T (σ) is the frontier Teichmüller space modeled on the nodal
surface Σg,n(σ), and that W (σ) is the mapping class group of Σg,n(σ) (Corollary
6.2). Let

Σgj ,nj , j = 1, . . . , u
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be the totality of the parts of Σg,n(σ). The mapping class groupW (σ) may permute
the parts. We define the pure mapping class group

PW (σ)

to be the subgroup of W (σ) that does not permute the parts, and that does not
permute the punctures on each part Σgj ,nj . The subgroup PW (σ) has a finite index
in W (σ). PW (σ) induces on each part Σgj ,nj a subgroup PjW (σ) of the mapping
class group Γgj ,nj . The subgroup PjW (σ) has a finite index in Γgj ,nj . Since T (σ)
is a product of the Teichmüller spaces Tgj ,nj of the parts ([49]), we have

T̂ (σ) =

u∏
j=1

T̂gj ,nj .

Thus

(24) T̂ (σ)/PW (σ) =

u∏
j=1

T̂gj ,nj/PjW (σ).

Note that dimC Tgj ,nj ≦ dimC T (σ) < dimC Tg,n. Here we use the inductive hypoth-

esis that T̂gj ,nj/Γgj ,nj is compact for j = 1, . . . , u. Since the subgroup PjW (σ) has

a finite index in Γgi,ni , we conclude by Lemma 7 that T̂gj ,nj/PjW (σ) is compact for

j = 1, . . . , u. By (24), T̂ (σ)/PW (σ) is compact, and the existence of a continuous
surjection

T̂ (σ)/PW (σ) → T̂ (σ)/W (σ)

assures that T̂ (σ)/W (σ) is compact. The proof of Lemma 8 is complete. □

Definition 7 (Augmented fringe). Put

�FRε(σ)
def
= FRε(σ) ∪ T̂ (σ).

We call �FRε(σ) the augmented fringe.

Notice that T (σ) in FRε(σ)∪ T (σ) is replaced by T̂ (σ) in the augmented fringe
�FRε(σ).

Since T̂ (σ) is the fixed point set of the action of Γ(σ) by Theorem 4, T̂ (σ) remains

unaffected in the quotient �FRε(σ)/Γ(σ). From the partition (21), we get

(25) T̂g,n/Γg,n = T ε
g,n/Γg,n

∪
∅̸=σ∈ Cg,n/Γg,n

�FRε(σ)/NΓ(σ).

Note that this decomposition is no longer a disjoint union.

Completion of the inductive step.
To prove the compactness of T̂g,n/Γg,n, we take an infinite sequence of points

{pi}∞i=1 in T̂g,n/Γg,n, and will show that we can find a subsequence convergent in

T̂g,n/Γg,n. Since the decomposition (25) is a finite union, T ε
g,n/Γg,n or at least one

component �FRε(σ)/NΓ(σ) contains an infinite subsequence. If T ε
g,n/Γg,n contains

an infinite subsequence, then by the Mumford compactness theorem, it contains

a subsequence convergent in T ε
g,n/Γg,n. If a component �FRε(σ)/NΓ(σ) contains

an infinite subsequence, the subsequence may be assumed not to stay above any
systole level L > δ (otherwise an infinite subsequence would stay within the set
T δ
g,n/Γg,n, and by the Mumford compactness theorem it would have a convergent
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subsequence in this set). Therefore, the sequence escapes from all the subsets

L > ε/n, n = 1, 2, . . ., and it approaches the set T̂ (σ)/W (σ). By Lemma 8,

T̂ (σ)/W (σ) is compact. Thus there is an infinite subsequence which converges to

a point of T̂ (σ)/W (σ). This completes the inductive step, and we have proved the

compactness of T̂g,n/Γg,n.
Note that the Deligne-Mumford compactification is the moduli space for all

stable curves, and stable curves are the same as nodal Riemann surfaces. Since
T̂g,n/Γg,n is compact and contains all the frontier points corresponding to nodal

Riemann surfaces, T̂g,n/Γg,n is topologically identical with the DM compactification

Mg,n of the moduli space Mg,n. This completes the proof of Theorem 7. □
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6. Construction of the orbifold-charts

In this section, we will construct our “tautological”orbifold-charts of the DM-
compactification Mg,n. We identify Mg,n with the quotient space T̂g,n/Γg,n by
Theorem 7.

Let m denote the complex dimension 3g − 3 + n of Teichmüller space Tg,n. Let
M be a Margulis constant. Take a number ε with 0 < ε < M , and fix it throughout
the discussion.

Let σ = ⟨C1, . . . , Ck⟩ be a simplex of Cg,n. Define open subsets U∗
ε (σ) and Uε(σ)

of Tg,n

∪
ρ<σ T (ρ) as follows:

(26) U∗
ε (σ)

def
= {p = [S,w] ∈ Tg,n

∪
ρ<σ

T (ρ) | 0 ≦ lCi(p) < ε, i = 1, . . . , k}

and

Uε(σ)
def
= {p = [S,w] ∈ Tg,n

∪
ρ<σ

T (ρ) | 0 ≦ lCi(p) < ε, i = 1, . . . , k,(27)

and other simple closed geodesics on S are

longer than max{lC1(p), · · · , lCk
(p)}}.

Note that Tg,n

∪
ρ<σ T (ρ) is a finite union, because there are only finitely many

faces ρ of σ. Of course, Uε(σ) ⊂ U∗
ε (σ). If σ = ∅, then U∗

ε (∅) = Uε(∅) = Tg,n.
Let σ̃ = ⟨C1, . . . , Ck, . . . , Cm⟩ be a maximal simplex of Cg,n containing σ. Let

(l1, . . . , lm, τ1, . . . , τm) be the associated Fenchel-Nielsen coordinates. Wolpert [81]
proves that these coordinates, except for the first k twist coordinates τ1, . . . , τk,
extend to Tg,n ∪ T (σ) continuously. More precisely, the map

(28) ((lj , τj), li) : Tg,n

∪
ρ<σ

T (ρ) →
m∏

j=k+1

(R+ ×R)×
k∏

i=1

(R≥0)

is continuous ([81], §4). With these extended Fenchel-Nielsen coordinates, the open
set U∗

ε (σ) is described as follows:

(29) 0 ≦ li < ε, i = 1, . . . , k.

In this expression (29), the points satisfying li(p) = 0 for some i ∈ {1, . . . , k} are
frontier points ∈

∪
ρ<σ T (ρ). In particular, we have

(30) T (σ) ⊂ U∗
ε (σ).

The description for Uε(σ) is the following:

(31) 0 ≦ li < ε, i = 1, . . . , k. and max{l1, . . . , lk} < lj , j = k + 1, . . . ,m.

We have a similar inclusion:

(32) T (σ) ⊂ Uε(σ).

Lemma 9. (i) For a mapping class [f ], we have

[f ](U∗
ε (σ)) = U∗

ε (f(σ)) and [f ](Uε(σ)) = Uε(f(σ)).

If [f ] belongs to the normalizer NΓ(σ), then we have

[f ](U∗
ε (σ)) = U∗

ε (σ) and [f ](Uε(σ)) = Uε(σ).

(ii) A mapping class [f ] satisfies [f ](Uε(σ))∩Uε(σ) ̸= ∅, if and only if [f ] ∈ NΓ(σ).



24 YUKIO MATSUMOTO

Proof. (i) By Lemma 1, it follows that [f ](U∗
ε (σ)) = U∗

ε (f(σ)) and [f ](Uε(σ)) =
Uε(f(σ)) . If [f ] ∈ NΓ(σ), then [f ] permutes the isotopy classes of {C1, . . . , Ck} by
Theorem 6. Hence f(σ) = σ, and we have the result.
(ii) Suppose a mapping class [f ] sends a point p = [S,w] of Uε(σ) to another point
[f ](p) = [S,w ◦ f−1] of Uε(σ). By the definition of Uε(σ), on the Riemann surface
(or Riemann surface with nodes) S, the closed geodesics (or nodes) c1, . . . , ck which
are homotopic to w(C1), · · · , w(Ck) are shorter than any other closed geodesics. If
p = [S,w◦f−1] belongs to the same Uε(σ), then on the same surface S, the geodesics
(or nodes) c′1, . . . , c

′
k which are homotopic to w(f−1(C1)), · · · , w(f−1(Ck)) have the

same property. The two sets of geodesics (or nodes) must coincide {c1, . . . , ck} =
{c′1 . . . , c′k}. This implies that the sets of isotopy classes of the simple closed curves
on Σg,n coincide: {C1, · · · , Ck} = {f−1(C1), · · · , f−1(Ck)}, and that f permutes
the isotopy classes of C1, · · · , Ck. Thus [f ] belongs to NΓ(σ).

The converse follows from (i). The proof of Lemma 9 is complete. □
Lemma 10. Uε(σ) ∩ Uε(τ) ̸= ∅, if and only if σ < τ or σ > τ .

Proof. Assume σ = ⟨C1, . . . , Ck⟩, and τ = ⟨C ′
1, . . . , C

′
l⟩. Suppose that there is a

point p = [S,w] in the intersection Uε(σ) ∩ Uε(τ).
Since p ∈ Uε(σ), the closed geodesics (or nodes) c1, . . . , ck which are homotopic

to w(C1), . . . , w(Ck) are the first k shortest geodesics such that other simple closed
geodesics on S are longer than max{lC1(p), . . . , lCk

(p)}. Likewise, since p ∈ Uε(τ),
the closed geodesics (or nodes) c′1, . . . , c

′
l which are homotopic to w(C ′

1), . . . , w(C
′
l)

are the first l shortest geodesics such that other simple closed geodesics on S are
longer than max{lC′

1
(p). . . . , lC′

l
(p)}.

If k ≦ l, the two conditions above are compatible on the same S, only if
{c1, . . . , ck} is a subset of {c′1, . . . , c′l}. In this case, {C1, . . . , Ck} is a subset of
{C ′

1, . . . , C
′
l}, or equivalently, σ < τ .

If l ≦ k, we can prove τ < σ similarly.
Conversely, suppose σ < τ . We may assume

σ = ⟨C1, . . . , Ck⟩, and τ = ⟨C1, . . . , Ck, Ck+1, . . . , Cl⟩.
Then those points p = [S,w] ∈ Tg,n that satisfy the condition

lC1(p) = · · · = lCk
(p) =

1

3
ε, lCk+1

(p) = · · · = lCl
(p) =

2

3
ε.

and other simple closed geodesics on S are longer than 2
3ε,

belong to the intersection Uε(σ) ∩ Uε(τ). Thus Uε(σ) ∩ Uε(τ) ̸= ∅.
If σ > τ , we have the same conclusion. The proof of Lemma 10 is complete. □
By Lemma 9, the normalizer NΓ(σ) acts on U∗

ε (σ) and on Uε(σ). In particular,
Γ(σ) acts on them.

Definition 8 (Deformation space). The quotient space

D∗
ε(σ)

def
= U∗

ε (σ)/Γ(σ)

is called the deformation space associated with the simplex σ.

Definition 9 (Controlled deformation space). The quotient space

Dε(σ)
def
= Uε(σ)/Γ(σ)

is called the controlled deformation space associated with the simplex σ.
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These spaces are considered as refinements of Bers’ deformation spaces [12], [13].
In our previous papers [51], [52], we constructed controlled deformation spaces

in a more complicated manner, depending on 2m numbers 0 < ε1 < η1 < ε2 <
η2 < · · · < εm < ηm < M . This was because certain similarity between controlled
deformation spaces and handle-body decompositions of manifolds was taken into
account. In the present discussion, we have adopted simpler construction without
noticing the similarity.

Lemma 11. The deformation space D∗
ε(σ) is an open 2m-cell homeomorphic to

(∆ε)
k × T (σ),

where ∆ε is the open 2-disk of radius ε.

Proof. In terms of the Fenchel-Nielsen coordinates (l1, . . . , lm, τ1, . . . , τm) asso-
ciated with a maximal simplex σ̃ = ⟨C1, . . . , Ck, Ck+1, . . . , Cm⟩ which contains
σ = ⟨C1, . . . , Ck⟩, the open set U∗

ε (σ) ∩ Tg,n is described as

S1 × · · · × Sk ×
m∏

j=k+1

(R+ ×R),

where Si denotes the strip region Si = {(li, τi) | 0 < li < ε}. The Dehn twist τ(Ci)
(with i ∈ {1, . . . , k}) leaves

∏m
j=k+1(R+ ×R) invariant and acts on Si by

(33) τ(Ci)(li, τi) = (li, τi + li).

The quotient space Si/⟨τ(Ci)⟩ is identified with the punctured ε-disk ∆0
ε := ∆ε \

{0} by the correspondence: (li, τi) �→ lie
2π

√
−1τi/li . Thus the quotient (U∗

ε (σ) ∩
Tg,n)/Γ(σ) is identified with

(∆0
ε)

k ×
m∏

j=k+1

(R+ ×R).

Filling the punctures of ∆0
ε’s by the continuous extension (28), we get

(34) U∗
ε (σ)/Γ(σ) = (∆ε)

k ×
m∏

j=k+1

(R+ ×R).

The continuous extension (28) assures that the factor
∏m

j=k+1(R+ ×R) gives co-

ordinates of {0} × T (σ).
Since T (σ) is homeomorphic to an open (2m− 2k)-cell, D∗

ε(σ) is homeomorphic
to an open 2m-cell. The proof of Lemma 11 is complete. □
Remark. Comparing Lemmas 11 and 5 we see that the factor Coneε(T k) of the
quotient of (FRε(σ)∪ T (σ))/Γ(σ) is embedded in the factor (∆ε)

k of the deforma-
tion space D∗

ε(σ) as the cone over the “corner torus”(∂∆ε)
k. □

The quotient group W (σ) = NΓ(σ)/Γ(σ) acts on D∗
ε(σ) and on Dε(σ).

Lemma 12. The Weyl group W (σ) acts on D∗
ε(σ) properly discontinuously.

Proof. A natural argument would be to appeal to Yamada’s result [83] that the

Weil-Petersson completion T̂g,n is a CAT(0) space and T̂ (σ) is a complete convex

subset in T̂g,n. (For the definition of CAT(0) space, see [17] Chapter II.1, [81] §4, [82]
Chapter 5, and [85] §5.1.) This implies the following ([83] p.342, [17] Proposition
2.4):
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(i) For every p, there exists a unique point πσ(p) ∈ T̂ (σ) such that d(p, πσ(p)) =

d(p, T̂ (σ)), where d( , ) is the distance.
(ii) If p′ belongs to the geodesic segment connecting p and πσ(p), then πσ(p

′) =
πσ(p).

(iii) Given p /∈ T̂ (σ) and q ∈ T̂ (σ), if q ̸= πσ(p) then the Alexandrov angle (as
defined in [17] p.9, or see [85] p.95) ∠πσ(p)(p, q) ≧ π/2.

These properties provide us with a “brush”of geodesics with the core T̂ (σ). This
brush structure is invariant under the action of NΓ(σ). Confining our attention to
geodesic segments of short lengths, say δ > 0, attached to T (σ), and passing to the
quotient space by Γ(σ), we obtain a region Bδ in D∗

ε(σ) which has the structure
of a brush with short geodesic fibers attached to T (σ). The region Bδ is equipped
with the projection πσ : Bδ → T (σ) along the geodesic fibers, which is equivariant
under the action of W (σ). Being the mapping class group of the nodal surface
Σg,n(σ) (Corollary 6.2), the group W (σ) acts on T (σ) properly discontinuously.
The existence of the equivariant projection πσ : Bδ → T (σ) assures that its action
on Bδ is also properly discontinuous. (In the above argument, we changed the

core of the brush from T̂ (σ) to T (σ). The geometric justification of this passage

is provided by the fact that in T̂g,n the stratum T (σ) “meets”another T (σ′) along

T̂ (σ ∪ σ′) (⊂ T̂ (σ) ∩ T̂ (σ′)) at right angles if σ ≮ σ′ nor σ′ ≮ σ. See [82], Chapter
6, §4. The shortest geodesics attached to the points of T (σ) meet T (σ) at right
angles. See property (iii) above. Thus the domain of the geodesic projection πσ :

T̂g,n/Γ(σ) → T̂ (σ) is “stratified”according to the stratification of the target T̂ (σ),
and we can regard D∗

ε(σ) as contained in the domain of the projection whose target
is T (σ). The author learned this argument from Sumio Yamada.)

Under the free action of Γ(σ), the complement (D∗
ε(σ) \ Bδ/2) is a quotient of

a sub-region of U∗
ε (σ) on which NΓ(σ) acts properly discontinuously. Thus the

group W (σ) = NΓ(σ)/Γ(σ) acts on (D∗
ε(σ) \ Bδ/2) properly discontinuously. Since

D∗
ε(σ) = (D∗

ε(σ) \ Bδ/2) ∪ Bδ, we get the assertion of Lemma 12 by combining the
two results above. □

Theorem 8 (Hubbard and Koch [32]). The deformation space D∗
ε(σ) is a complex

m-manifold homeomorphic to an open 2m-cell.

This theorem is essentially Theorem 10.1 of Hubbard and Koch [32], because
their space QΓ (see §7 of [32]) is almost the same as our deformation space D∗

ε(σ).
The only difference is that their QΓ has no restriction on the “size”in the directions
which are normal to the core T (σ), while our D∗

ε(σ) has the size restriction ε.
Hubbard and Koch proved that QΓ is a complex manifold. Their main concern is
to define a complex structure in a neighborhood of a point p = (0,u) of {0}×T (σ)
(in our notation). Their complex coordinates near the point p are (like [49] §2, [76]
§4, [80] §2, [24] §13) the product of the plumbing coordinates (cf. Earle and Marden
[48], [24]) and the coordinates in an open set U ⊂ T (σ).

More specifically, they started from a σ-marked family2 of nodal surfaces Yσ(0,u)
over {0}×U , and constructed a plumbed family Yσ = Yσ(t1, . . . , tk,u) over (∆δ)

k×
U , where (t1, . . . , tk) are plumbing coordinates, each ti belonging to an open δ-
disk ∆δ (with a small δ > 0). Let (l1, . . . , lm, τ1, . . . , τm) be the Fenchel-Nielsen
coordinates associated with a maximal simplex σ̃ containing σ ∈ Cg,n. The fiber of

2A σ-marking means a marking modulo Γ(σ). See the proof of Lemma 13 below.
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Yσ → (∆δ)
k × U over a point (t1, . . . , tk,u) has its position in D∗

ε(σ) described by
the “extended”Fenchel-Nielsen coordinates (see Proof of Lemma 11)

(l1e
2π

√
−1τ1/l1 , . . . , lke

2π
√
−1τk/lk , lk+1, . . . , lm, τk+1, . . . , τm).

The map Φδ,U : (∆δ)
k × U → D∗

ε(σ) which sends (t1, . . . , tk,u) to

(l1e
2π

√
−1τ1/l1 , . . . , lke

2π
√
−1τk/lk , lk+1, . . . , lm, τk+1, . . . , τm)

is continuous ([32], Proposition 9.1). Hubbard-Koch ([32] §9) proved that if we
take δ and U sufficiently small, Φδ,U is a topological embedding, and stratum-
wise it is analytic. Using Φδ,U as a local chart, they put the complex coordinates
(t1, . . . , tk,u) to the open neighborhood Φδ,U ((∆δ)

k × U) of p. Note that the re-
striction Φδ,U |{0} × U is the identity id{0}×U . Therefore their complex structure

about p = (0,u) is a product (∆δ)
k × U . The point p was arbitrarily taken from

{0} × T (σ), thus as a consequence, D∗
ε(σ) is a complex m-manifold, and T (σ) is a

complex submanifold of D∗
ε(σ).

On the other hand, we already proved that D∗
ε(σ) is homeomorphic to an open

2m-cell (Lemma 11).

Remark. (Bers’ Conjecture) Bers ([12] p.47, [13]) made an announcement to the
effect that, in our notation, D∗

ε(σ) is a bounded domain in Cm. But he did not give
any proof. We would like to call this statement Bers’ Conjecture.

When introducing the complex structure to D∗
ε(σ) as above, if we could take

U = T (σ) and thus D∗
ε(σ) would contain an open submanifold biholomorphic to

(∆δ)
k × T (σ), then by taking an ε′ > 0 smaller than ε, we would be able to show

that D∗
ε′(σ) is a bounded domain. Hubbard and Koch, however, gave a warning

that we could not take U = T (σ), ([32], Remark 8.1). This implies that their
construction does not give a bounded domain D∗

ε(σ).
Earle and Marden ([24] §13, Theorem II) states that D∗

ε(σ) can be topologically
embedded in (∆δ)

k × T (σ) by using the plumbing coordinates. If this is the case,
D∗

ε(σ) would again be a bounded domain. But unfortunately, any proof of their
Theorem II has not yet been published (except for the case of a maximal simplex
σ ∈ Cg,n, for which Kra [44] has proved the corresponding result: if σ is maximal,
D∗

ε(σ) is a bounded domain). There is a bad news: Hinich [29], p.152, claimed that
his result contradicts a partial consequence of Earle-Marden’s theorem stated as a
corollary on p.346 of [48].

Wolpert [80] proved the following estimate: at a point p = (0,u) ∈ {0} × T (σ)
and at a node pi on the singular fiber Xp of Yσ(0,u), let ti be the plumbing
coordinate with which we open up the node pi, and let li be the length of a simple
closed geodesic which appears on the opened up smooth fiber Xti , then Wolpert
([80]) gave the estimate

li = 2π2(− log |ti|)−1 +O(log |ti|)−2.

If the second term O(log |ti|)−2 is a uniform estimate w.r.t. the position of p ∈
{0} × T (σ), then we would find some δ such that

Φδ,T (σ)((∆δ)
k × T (σ)) ⊂ D∗

ε(σ).

Furthermore, in this case, if we take smaller ε′ such that D∗
ε′(σ) ⊂ Φδ,T (σ)((∆δ)

k ×
T (σ)), D∗

ε′(σ) would be a bounded domain, and Bers’ Conjecture would follow.
But in a discussion with the author, Wolpert ascertained that the second term
O(log |ti|)−2 is not a uniform estimate w.r.t. p. Thus the above argument fails.
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In conclusion, it seems that at present there is no complete proof of Bers’ Con-
jecture. □

Lemma 13. The action of W (σ) on D∗
ε(σ) is holomorphic.

Proof. This follows from the universality of the marked family of stable curves
constructed by Hubbard and Koch [32]: They constructed a Γ-marked proper flat
family of stable curves with sections YΓ → QΓ ([32], §10). Their Γ is nothing but
our σ = ⟨C1, . . . , Ck⟩ (see Definition 1.4 of [32]), and they defined QΓ by

QΓ := UΓ/∆Γ, where UΓ :=
∪

Γ′⊂Γ

SΓ′ ⊂ T̂g,n.

(See §7 of [32].) Their ∆Γ is our Γ(σ) ([32] §0.1), and SΓ is nothing but our T (σ)
([32] §2.1).

Since discussions with two different systems of notation are inconvenient, let us
follow their arguments using our own notation.

Given a simplex σ = ⟨C1, . . . , Ck⟩ ∈ Cg,n, we will define

(35) U∗(σ)
def
= Tg,n

∪
ρ<σ

T (ρ) ⊂ T̂g,n.

This is exactly Hubbard and Koch’s UΓ, and comparing this definition with (26),
we see that U∗(σ) is an analog of U∗

ε (σ) without size restriction ε. Let us define

(36) D∗(σ)
def
= U∗(σ)/Γ(σ).

Compared with Definition 8, D∗(σ) is the deformation space without size restriction
ε. This D∗(σ) is precisely the same as Hubbard and Koch’s QΓ. Thus D∗(σ) is
a complex m-manifold (see Theorem 10.1 of [32]). One more thing to add is the

strata of QΓ. (See §7.1 of [32].) Their stratum QΓ′

Γ (Γ′ ⊂ Γ) of QΓ is the quotient of
SΓ′ by ∆Γ. We will denote this stratum by Tσ(ρ), where ρ < σ. Thus the stratum
Tσ(ρ) of D

∗(σ) is the quotient of T (ρ) by Γ(σ).
By the above construction, we have the following commutative diagram:

(37)

U∗(ρ)
⊂−−−−→ U∗(σ)

/Γ(ρ)

�
�/Γ(σ)

D∗(ρ) −−−−→
ψρ

σ

D∗(σ),

where ρ < σ.

The map ψρ
σ is Hubbard and Koch’s ΨΓ′

Γ in Step 1 of their proof of Theorem
10.1, which corresponds to taking quotient by Γ(σ − ρ). They have proved that
ψρ
σ : D∗(ρ) → D∗(σ) is a holomorphic covering map of its image. Since Γ(ρ) acts

on T (ρ) trivially, T (ρ) remains in D∗(ρ) untouched, and the image of T (ρ) under
the quotient map ψρ

σ is the stratum Tσ(ρ).
The Weyl group W (σ) acts on D∗(σ) properly discontinuously. The proof is the

same as Lemma 12. Before completing the proof of Lemma 13, we will prove the
following Claim which has no size restriction ε:

Claim. The action of W (σ) on D∗(σ) is holomorphic.

Proof of Claim. Hubbard and Koch’s Γ-marked family pΓ : XΓ → QΓ (Theorem
10.1 of [32]) is in our terminology a σ-marked family, and we would like to denote it
by pσ : X(σ) → D∗(σ). Recall that they introduced the notion of a Γ-marking as a
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marking modulo ∆Γ. See [32], §5, Definitions 5.1 and 5.2. Thus in our terminology,
a σ-marking is a marking modulo Γ(σ).

Take a point p in T (σ). Then there is an open neighborhood U in T (σ) and a
small disk (∆δ)

k (where k = |σ|) representing the plumbing coordinates, such that
the product U × (∆δ)

k gives the complex structure3 of D∗(σ) near p. (See [32], §8
and Theorem 9.11.) Hubbard and Koch’s family pσ : X(σ) → D∗(σ) restricted to
U×(∆δ)

k is a plumbed family ([32], §8.3). The fiber over a point (u, t) ∈ U×(∆δ)
k

is a Riemann surface (S,w) constructed from the “central nodal fiber”over (u,0)
by plumbing. (See [32], §8.3.) This family has a natural σ-marking (i.e., a marking
modulo Γ(σ)), because the central fiber over (u, 0) has a natural σ-marking as a
nodal surface parametrized by T (σ). The fiber over a nearby point (u, t) is obtained
by opening up some nodes, and the ambiguity of Dehn twists arising at this opening
process causes no difficulty if one considers a σ-marking.

Now take an element [f ] ∈ W (σ). We change the natural σ-marking ofX(σ)|(U×
(∆δ)

k) → U × (∆δ)
k from (S,w) to (S,w ◦ f−1). Since W (σ) is the group NΓ(σ)

modulo Γ(σ), this change of the σ-marking makes sense, and we get a new σ-
marked family which we denote by X ′(σ) → U × (∆δ)

k. By the universality of
Hubbard and Koch’s family pσ : X(σ) → D∗(σ), the family with the new σ-
marking X ′(σ) → U × (∆δ)

k is pulled back from pσ : X(σ) → D∗(σ) by a unique
analytic map g : U×(∆δ)

k → D∗(σ). See [32], §10 and §12. On the other hand, the
action of [f ] ∈ W (σ) on D∗(σ) maps p = [S,w] to [f ](p) = [S,w ◦ f−1]. Thus the
analytic map g : U × (∆δ)

k → D∗(σ) coincides with the action of [f ] on U × (∆δ)
k.

This proves that the action of [f ] is holomorphic locally on U × (∆δ)
k.

So far we have considered a neighborhood of a point p in T (σ).
If we take a point p /∈ T (σ), there are two cases: p is in a stratum Tσ(ρ) for some

face ρ < σ, or p is not in such a stratum.
In the first case, choose a point p̃ on T (ρ) such that ψρ

σ(p̃) = p. Then as
before, we find a neighborhood V × (∆δ)

l (where V ⊂ T (ρ) and l = |ρ|) of p̃
in D∗(ρ) which gives the complex structure of D∗(ρ) near p̃, and such that the
restriction of Hubbard and Koch’s family pρ : X(ρ) → D∗(ρ) to V × (∆δ)

l is a
plumbed family with a natural ρ-marking. Since ρ < σ, the natural ρ-marking of
the restricted family X(ρ)|(V × (∆δ)

l) → V × (∆δ)
l gives a natural σ-marking of

the restriction of Hubbard and Koch’s family over ψρ
σ(V × (∆δ)

l), X(σ)|(ψρ
σ(V ×

(∆δ)
l)) → ψρ

σ(V × (∆δ)
l). This natural σ-marking is independent of the choice

of the lift p̃ of p. In fact, if p̃′ is another lift of p, the natural ρ-marking of the
restriction of pρ : X(ρ) → D∗(ρ) to a neighborhood V ′ × (∆δ)

l of p̃′ differs from
the natural ρ-marking of the restriction to the neighborhood V × (∆δ)

l of p̃ by the
action of Γ(σ − ρ) (see (37)). Thus both ρ-markings give the same σ-marking of
X(σ)|(ψρ

σ(V × (∆δ)
l) → ψρ

σ(V × (∆δ)
l). By changing this natural σ-marking from

(S,w) to (S,w ◦ f−1), and using the universality of Hubbard and Koch’s family
X(σ) → D∗(σ), we can repeat the same argument as before. This proves that the
action of [f ] ∈ W (σ) is holomorphic on the open set ψρ

σ(V × (∆δ)
l).

In the second case where p is not in any stratum Tσ(ρ), we can take a lift p̃ in
Teichmüller space Tg,n. Then the natural marked family of Riemann surfaces over
a neighborhood of p̃ (see [11], [44] §4.6, [51] §1) gives a family of Riemann surfaces

3Hubbard and Koch’s order of the factors of the product U × (∆δ)
k is different from ours

(∆δ)
k × U which we used previously. But in this proof we follow their order.
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with a natural σ-marking over a neighborhood of p in D∗(σ), and we can repeat
the same argument.

Thus the action of [f ] ∈ W (σ) on D∗(σ) is globally holomorphic. This completes
the proof of Claim. □

We return to the proof of Lemma 13. But Lemma 13 follows immediately from
Claim above, because D∗

ε(σ) is an open subset of D∗(σ) which is preserved by the
action of W (σ). This completes the proof of Lemma 13. □

The controlled deformation space Dε(σ) is an open subset of D∗
ε(σ) which is

preserved by the action of W (σ). A closer look proves the following.

Lemma 14. The controlled deformation space Dε(σ) is a complex m-manifold,
and homeomorphic to an open 2m-cell.

Proof. Since Dε(σ) is an open subset of D∗
ε(σ), the first assertion follows from

Theorem 8. To prove the second assertion, let Σg1,n1 , . . . ,Σgu,nu be the parts of
Σg,n(σ). Their Teichmüller spaces have their own systole functions Lj : Tgj ,nj →
R, j = 1, . . . , u. Then the systole function Lσ of T (σ) is given by

Lσ(p) = min{L1(p1), · · · , Lu(pu)}.
Here we consider T (σ) as a product Tg1,n1 × · · · × Tgu,nu and write p ∈ T (σ) as
p = (p1, . . . , pu), pj ∈ Tgj ,nj .

Put lσ = min{Lσ, ε}. Fixing the topological product structure D∗
ε(σ) = (∆ε)

k×
T (σ) of Lemma 11, and using the condition (27) for Uε(σ), we see that the controlled
deformation space Dε(σ) is given as follows:

Dε(σ) =
∪

p∈T (σ)

(∆lσ(p))
k × {p} ⊂ (∆ε)

k × T (σ).

Thus Dε(σ) is the total space of an open 2k-disk bundle over T (σ). Since T (σ) is
homeomorphic to an open (2m− 2k)-cell, we get the result. □

By Lemmas 12 and 13, the action of W (σ) on Dε(σ) is properly discontinuous
and holomorphic.

Lemma 15. The quotient space Dε(σ)/W (σ) is an open subset of T̂g,n/Γg,n.

Proof. Let φσ : Dε(σ) → Dε(σ)/W (σ) be the projection map. Suppose that two

points p and q of Dε(σ) represent the same point of T̂g,n/Γg,n. Then there are lifts
p̃, q̃ ∈ Uε(σ) such that p̃ is mapped to q̃ by a certain mapping class [f ] ∈ Γg,n.
By Lemma 9 (ii), [f ] belongs to NΓ(σ). Thus p is mapped to q by an element of
W (σ) which is represented by [f ]. This proves φσ(p) = φσ(q). Thus Dε(σ)/W (σ)

is identified with an open subset of T̂g,n/Γg,n. This completes the proof of Lemma
15. □
Remark. In contrast to Lemma 15, the quotient space D∗

ε(σ)/W (σ) is not nec-

essarily an open subset of T̂g,n/Γg,n: Consider the following example: Suppose we
have two simplexes σ = ⟨C1, C2⟩ and τ = ⟨C3, C4⟩ of Cg,n which are disjoint in Σg,n.
Suppose an involutive mapping class [f ] interchanges C1 and C3, and interchanges
C2 and C4. By Theorem 6, the mapping class [f ] does not belong to the normalizer
NΓ(σ) nor to NΓ(τ), but it belongs to NΓ(⟨σ, τ⟩). The mapping class [f ] repre-
sents an element of W (⟨σ, τ⟩) acting on D∗

ε(⟨σ, τ⟩), and it has fixed points on the
“diagonal set” l1 = l3, l2 = l4. Since D

∗
ε(⟨σ, τ⟩)\T (⟨σ, τ⟩) = D∗

ε(σ)∩D∗
ε(τ), D

∗
ε(σ)
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contains these fixed points, and nearby points are folded by [f ] in T̂g,n/Γg,n. But
W (σ) does not contain the mapping class [f ], and the quotient space D∗

ε(σ)/W (σ)
does not have such a folded region. Thus D∗

ε(σ)/W (σ) is not an open subset

of T̂g,n/Γg,n. This implies that (D∗
ε(σ),W (σ)) is not adequate to be an orbifold

chart. On the other hand, the controlled deformation spaces in this example satisfy
Dε(σ) ∩Dε(τ) = ∅, so they do not cause such difficulty. □

Let Mε(σ) denote the quotient space Dε(σ)/W (σ), which is considered as an

open subset of Mg,n = T̂g,n/Γg,n by Lemma 15.

Lemma 16. We have

Mg,n =
∪

σ∈ Cg,n/Γg,n

Mε(σ),

where the simplex σ can be empty set ∅.

Proof. Because of the inclusion T (σ) ⊂ Uε(σ), we have

∂T̂g,n =
∪

∅̸=σ∈Cg,n

T (σ) ⊂
∪

∅̸=σ∈Cg,n

Uε(σ).

Passing to the quotient under the action of Γg,n, we have

∂T̂g,n/Γg,n ⊂
∪

∅̸=σ∈Cg,n

Dε(σ)/W (σ).

Since [f ](Dε(σ)/W (σ)) = Dε(f(σ))/W (f(σ)) for [f ] ∈ Γg,n, the right-hand side of
the above inclusion can be replaced by the finite union:

∂T̂g,n/Γg,n ⊂
∪

∅̸=σ∈ Cg,n/Γg,n

Dε(σ)/W (σ).

Taking the union with Tg,n/Γg,n(= Dε(∅)/W (∅)) on both sides, we get

T̂g,n/Γg,n =
∪

σ∈ Cg,n/Γg,n

Dε(σ)/W (σ).

Since T̂g,n/Γg,n = Mg,n and Dε(σ)/W (σ) = Mε(σ), the proof of Lemma 16 is
complete. □

Here are some intersectional properties of the family {Mε(σ)}σ∈Cg,n/Γg,n
. To

state the results, we have to use the precise notation

{Mε([σ])}[σ]∈Cg,n/Γg,n
,

where [σ] stands for the image of a simplex σ of Cg,n under the projection Cg,n →
Cg,n/Γg,n. [σ] is considered as a simplex of the finite simplicial complex Cg,n/Γg,n.
Thus [σ] = [τ ] if and only if there is a mapping class [f ] such that f(σ) = τ . The
relation [σ] < [τ ] means that the simplex [σ] is a face of the simplex [τ ] in the
complex Cg,n/Γg,n, or equivalently, that there is a mapping class [f ] ∈ Γg,n such
that f(σ) < τ .

In the following lemma, V ([σ]) stands for the quotient T ([σ])/W ([σ]). Note that
dimC V ([σ]) = m− |σ| (see Lemma 11). V ([σ]) is a complex subvariety of Mε([σ]),
because T (σ) is a complex submanifold of Dε(σ) (see [32], §8.2, and §9).
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Lemma 17. (i) Mε([σ]) ∩Mε([τ ]) ̸= ∅, if and only if [σ] < [τ ] or [σ] > [τ ].
(ii) V ([σ]) ∩ V ([τ ]) ̸= ∅ if and only if [σ] = [τ ].

(iii) Let Mε([ρ]) be the topological closure of Mε([ρ]) in Mg,n. Then V ([σ]) ⊂
Mε([ρ]) if and only if [σ] > [ρ].

(iv) Let V ([σ]) be the topological closure of V ([σ]) in Mg,n, and let ∂V ([σ]) =

V ([σ]) \ V ([σ]) be the “boundary”of V ([σ]). Then we have

∂V ([σ]) =
∪

[σ]≨[τ ]

V ([τ ]).

Proof. (i) Since Mε([σ]) = Dε(σ)/W (σ) = Uε(σ)/NΓ(σ) and likewise Mε([τ ]) =
Uε(τ)/NΓ(τ), the result follows from Lemma 10.
(ii) First suppose σ ̸= ∅, and put σ = ⟨C1, . . . , Ck⟩. Suppose V ([σ]) ∩ V ([τ ]) ̸= ∅,
then there is a lift p̃ = [S,w] of p ∈ V ([σ]) ∩ V ([τ ]) which is in the intersection
T (f(σ)) ∩ T (τ) for a certain mapping class [f ]. On the Riemann surface with
nodes S, the nodes are obtained by pinching the simple closed geodesics homotopic
to {w(f(C1)), . . . , w(f(Ck))}. If τ = ⟨C ′

1, . . . , C
′
l⟩, the nodes of the same S are

obtained by pinching the curves {w(C ′
1), . . . , w(C

′
l)}. Thus the two sets of the

isotopy classes of curves, {f(C1), . . . , f(Ck)} and {C ′
1, . . . , C

′
l}, must coincide. This

implies f(σ) = τ , namely [σ] = [τ ].
If σ = ∅, then V (∅) = T (∅)/W (∅) = Tg,n/Γg,n. Thus V (∅) ∩ V ([τ ]) ̸= ∅ if and

only if τ = ∅.
The proof of (ii) is complete.

(iii) Suppose V ([σ]) ⊂ Mε([ρ]). Then Mε([σ]) ∩ Mε([ρ]) ̸= ∅. From (i), we have
[σ] < [ρ] or [ρ] < [σ]. We may assume σ < ρ or σ > ρ. If σ ≨ ρ, then we may
assume σ = ⟨C1, . . . , Ck⟩ and ρ = ⟨C1, . . . , Ck, Ck+1, . . . , Cl⟩. Take a small positive

number η with ε < ε+ η < M. Then those points p = [S,w] ∈ T̂g,n that satisfy the
condition

lC1(p) = · · · = lCk
(p) = 0,

and other simple closed geodesics on S are longer than ε+ η,

belong to T (σ) \ Uε(ρ). This implies V ([σ]) ̸⊂ Mε([ρ]), a contradiction. Thus we
have [σ] > [ρ].

Conversely suppose [σ] > [ρ]. We may assume σ > ρ. Then we have T (σ) ⊂
T̂ (ρ), because

T̂ (ρ) =
∪
ρ<τ

T (τ), see Lemma 6.

It follows that

V ([σ]) = T (σ)/W (σ) ⊂ T̂ (ρ)/NΓ(ρ) ⊂ Uε(ρ)/NΓ(ρ) = Mε([ρ]).

The proof of (iii) is complete.
(iv) By Lemma 6, we have

∂T (σ) = ∂T̂ (σ) =
∪
σ≨τ

T (τ).

Dividing the both sides by the action of NΓ(σ), we have

∂V ([σ]) = ∂T (σ)/NΓ(σ) =
∪

[σ]≨[τ ]

T (τ)/NΓ(τ) =
∪

[σ]≨[τ ]

V ([τ ]).
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The proof of (iv) is complete. □
As a consequence of Lemmas 12, 13, 14, 15, and 16, we have the following (see

Definition 1):

Theorem 9. In the Deligne-Mumford compactification Mg,n of moduli space, the fi-
nite family {(Dε(σ),W (σ), φσ,Mε(σ))}σ∈Cg,n/Γg,n

forms an atlas of orbifold-charts
of a complex m-orbifold.

Our main Theorem 1 is a restatement of this theorem.
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Part II Crystallographic groups

7. Crystallographic groups

We will give here the definition of crystallographic groups.

Definition 10 (See [37], §I.3). A crystallographic group in Euclidean m-space Em

is a discrete group G of isometries of Em whose translation vectors form a lattice
L ⊂ Em.

Recall that a lattice L is a discrete subgroup of Em which generates Em as a
real vector space. Any lattice L is generated by a basis for the vector space Em

([37], §I.1). The image of G under linearization Isom(Em) → O(Em) is called the

point group of G and denoted by
−→
G . This is a finite subgroup of O(Em). There is

a canonical exact sequence

(38) 1 → T → G →
−→
G → 1

where T is the translation subgroup of G, isomorphic to the lattice L through the
map which assigns a vector x ∈ L to the translation τx by x. ([37], §I.3.) See also
[64], §7.5, and [69], Ch.3.

A beautiful, enjoyable treatment of 2-, 3-dimensional crystallographic groups can
be found in [59] (in Spanish). Also the author recommends two books written in
Japanese, [40], [42], to learn crystallographic groups in dimensions 2 and 3.

Remark. Affine Weyl groups Wa defined in [16], Ch.VI, §2.1, are a special
type of crystallographic groups, which are generated by reflections with respect to
certain hyperplanes associated with a root system. The point group of an affine
Weyl group is the Weyl group W of the root system. Bourbaki ([16], Ch.VI, §2.5,
Definition 2) calls this Weyl group a crystallographic group, which is a finite group.
Thus crystallographic groups in Bourbaki’s sense are different from ours defined
above. See [37], §V.8.
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8. Teichmüller spaces and the Weil-Petersson metric

In this section, we review basic facts on Teichmüller spaces and theWeil-Petersson
metric. Our main references are Ahlfors [6], Imayoshi and Taniguchi [33], and Nag
[61]. For a differential geometric treatment of the same subjects with a much wider
perspective, see [84], [85].

We begin by recalling the definition of Teichmüller space from scratch.

8.1. Definitions. By a marked Riemann surface, we mean a pair (R, f) consisting
of a Riemann surface R of finite type and an orientation preserving homeomorphism
called a marking f : Σg,n → R. Marked Riemann surfaces (R, f) and (S, g) are
said to be equivalent (and denoted by (R, f) ∼ (S, g)) if there exists a conformal
isomorphism h : R → S such that the diagram

Σg,n
f−−−−→ R

id.(=)

�
�h

Σg,n −−−−→
g

S

is homotopically commutative (i.e. h ◦ f ≃ g). The Teichmüller space Tg,n is
defined to be the totality of the equivalence classes, {(R, f)}/ ∼, equipped with the
“Teichmüller distance”explained below.

An orientation preserving homeomorphism of Riemann surfaces w : R → S is
called quasiconformal, provided it is ACL (absolutely continuous on lines, see [6]
p.23, and [33], p.77), and provided∥∥∥wz

wz

∥∥∥
∞

< k, for some k (0 ≦ k < 1).

We call µ(z) = wz

wz
the Beltrami differential. The dilatation of w, K(w), is defined

to be

K(w) =
1 + ∥µ∥∞
1− ∥µ∥∞

(≧ 1).

In general, w is called K-quasiconformal if K(w) ≤ K. Let p = [R, f ] and q = [S, g]
be two points of Tg,n. Then the Teichmüller distance is defined by

(39) d(p, q) =
1

2
log inf

w
K(w)

where w : R → S runs over all quasiconformal mappings homotopic to g ◦ f−1.
Teichmüller space Tg,n is a complete metric space with respect to this distance
([33], Theorem 5.4).

Remark. In the definition of the Teichmüller distance (39), the factor 1
2 is

sometimes omitted. (Cf. [6] p.120, [33], p.125.) However, H. Miyachi [58], Theorem
1 (iv), has proved the following beautiful identity

i(p, q) = ed(p,q) for p, q ∈ Tg,n,

where i(p, q) is a certain generalized intersection number and d(p, q) is the Te-
ichmüller distance as defined in (39). Note that the factor 1

2 is essential for his
identity to hold. □

The mapping class group Γg,n is defined as follows:

Γg,n = {h : Σg,n → Σg,n | orientation preserving homeomorphisms}/isotopy.
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The group Γg,n acts on Tg,n via

(40) [h]∗([R, f ]) = [R, f ◦ h−1].

The action is properly discontinuous, and preserves the Teichmüller distance ([33],
Propositions 5.5 and 6.18). Note that the action of Γg,n changes only markings,
but not Riemann sufaces.

8.2. Teichmüller’s theorem. Let p = [R, f ] ∈ Tg,n be any point. We fix p as a
“base point”for our discussion below. By the uniformization theorem, the universal
covering space R̃ is identified with the upper half plane H (= {z ∈ C | Im(z) > 0}).
The covering translations R̃ → R̃ make a Fuchsian group Γ, i.e., a discrete subgroup
of Aut(H). By choosing the identification R̃ = H appropriately, we may assume
that the following condition (∗) is satisfied:

(∗) Each point of 0, 1,∞ is fixed by some element of Γ− {id}.
Clearly, we have R = H/Γ.

Definition 11. A holomorphic function φ on H is called a quadratic differential
(with respect to Γ), if for each γ ∈ Γ it satisfies

φ(γ(z))(γ′(z))2 = φ(z), ∀z ∈ H.

If φ is a quadratic differential on H, it descends to a holomorphic quadratic
differential on R. In the case where R has punctures, we always assume that the
descended quadratic differential has at most simple poles at the punctures. We
denote the C-vector space of quadratic differentials (with respect to Γ) by

Q(Γ) or more precisely, by Q(H,Γ).

By the Riemann-Roch theorem, we have

dimC Q(Γ) = 3g − 3 + n.

We can introduce a norm ∥φ∥ on Q(Γ) by defining

∥φ∥ = 2

∫

∆

|φ|dxdy, z = x+ iy,

where ∆ denotes a fundamental domain (⊂ H) of the action of Γ. Let Q(Γ)1 denote
the open unit ball in Q(Γ):

Q(Γ)1 = {φ ∈ Q(Γ) | ∥φ∥ < 1}.

Teichmüller proved that to each φ ∈ Q(Γ)1 uniquely corresponds an “extremal
quasiconformal mapping” w : R → S of R to a certain Riemann surface S. Thus
one has a mapping

T : Q(Γ)1 → Tg,n, φ �→ [S,w ◦ f ].
(Here f is the marking of the base point p = [R, f ] ∈ Tg,n.) Teichmüller’s theorem
states the following

Theorem 10 ([33], Theorem 5.15). The mapping T : Q(Γ)1 → Tg,n is a surjective
homeomorphism.

As a corollary, Tg,n is homeomorphic to R6g−6+2n.
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8.3. The complex structure on Tg,n. We use the same notation, and fix a base
point [R, f ] as above. We can put a natural complex structure on Tg,n via Ahlfors-
Bers theory ([4], [6], [7], [8]). Let [S, g] ∈ Tg,n be another point of Tg,n, h : R → S
being a quasiconformal mapping in the homotopy class of g ◦ f−1. By choosing the
identification S̃ = H properly, we may assume that the lift h̃ : H(= R̃) → H(= S̃)
is normalized in the sense that it fixes 0, 1 and ∞.

Since two liftsH → H of h : R → S differ only by the multiplication of conformal
automorphisms of H from the left, the normalized lift is uniquely determined. We
call this lift h̃ the canonical lift of h : R → S with respect to Γ.

Set Γ′ = h̃Γh̃−1. Then Γ′ is a Fuchsian group, and S = H/Γ′. Γ′ is said to be a

quasiconformal deformation of Γ deformed by the quasiconformal mapping h̃.
Recalling Teichmüller’s theorem, we may consider Tg,n as the totality of quasi-

conformal deformations of Γ.
In what follows, we only consider those quasiconformal homeomorphisms w :

H → H that satisfy
(i) w is normalized, and
(ii) wΓw−1 is a Fuchsian group.

Let QuasiConf(Γ) denote the set of such quasiconformal mappings. A quasicon-
formal mapping w ∈ QuasiConf(Γ) deforms the Fuchsian group Γ, and it descends
to a quasiconformal mapping h : R → H/wΓw−1. It is known that the descendants
h1 and h2 of w1 and w2 give the same point of Teichmüller space Tg,n

[H/w1Γw
−1
1 , h1 ◦ f ] = [H/w2Γw

−1
2 , h2 ◦ f ]

if and only if the restrictions of w1 and w2 on the real line R coincide4. See [33],
§5.1.2. With this in mind, we say that w1 and w2 are equivalent (w1 ∼ w2) if
w1|R = w2|R, and denote the equivalence class by [w]. Then we define a set T (Γ)
as follows:

(41) T (Γ) = {[w] | w ∈ QuasiConf(Γ)} (= QuasiConf(Γ)/ ∼).

T (Γ) is called the Teichmüller space of Γ. It is naturally identified with the Te-
ichmüller space Tg,n, but the notation T (Γ) is sometimes preferable in order to
record the distinguished base point p = [R, f ].

Let B(H)1 (or B(C)1) be the set of all measurable (C-valued) functions µ on H
(or C) satisfying ∥µ∥∞ < 1. Then for µ ∈ B(H)1 (or µ ∈ B(C)1), the Beltrami
equation

wz = µwz

can be solved, and a solution gives a quasiconformal homeomorphism w : H → H
(or w : Ĉ → Ĉ). This solution w is uniquely determined under the condition that
it is normalized. ([33], Theorem 4.30, Proposition 4.33. See also [6], Ch. V.) More-
over, if µ depends on real parameters analytically, differentiably, or continuously,
the same is true for the solution w [7]. This unique solution is denoted by wµ.

For µ inB(H)1, it is shown ([33], p.124) that wµ : H → H belongs toQuasiConf(Γ)
if and only if µ satisfies

(42) µ(γ(z))
(γ′(z))

γ′(z)
= µ(z), for a. e. z ∈ H, γ ∈ Γ.

4Precisely speaking, quasiconformal mappings w1, w2 : H → H are uniquely extended to

homeomorphisms H → H, where H = H ∪R, and the relation w1|R = w2|R is actually talking
about the extended homeomorphisms.
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Let B(H,Γ) denote the complex vector space of all bounded measurable functions
on H satisfying (42), and B(H,Γ)1 the open unit ball of B(H,Γ) defined by

B(H,Γ)1 = B(H,Γ) ∩B(H)1.

Clearly there is a bijection

(43) B(H,Γ)1 → QuasiConf(Γ), µ �→ wµ.

(The inverse is given by w �→ wz/wz.)
Introduce an equivalence relation of Beltrami differentials in B(H,Γ)1 by saying

that µ and ν are equivalent (denoted by µ ∼ ν) if wµ ∼ wν . Then the bijection
(43) induces the following bijection of quotient spaces

(44) B(H,Γ)1/ ∼ → QuasiConf(Γ)/ ∼ (41)
= T (Γ), [µ] �→ [wµ],

where [µ] is the equivalence class of µ.
Let H∗ denote the lower half plane {z ∈ C | Im(z) < 0}. We extend a function

µ ∈ B(H,Γ)1 to C by setting

µ̃(z) =

{
µ(z) on H

0 on H∗ ∪R.

The normalized solution of the Beltrami equation wz = µ̃wz gives a quasiconformal
homeomorphism Ĉ → Ĉ. To distinguish from wµ : H → H, we denote it by wµ.

Though wµ fixes 0, 1,∞, it does not necessarily preserves H (⊂ Ĉ).

Lemma 18 ([33], Lemma 6.1). For any two elements µ, ν ∈ B(H,Γ)1, the following
two conditions are equivalent:
(i) wµ|R = wν |R.
(ii) wµ|H∗ = wν |H∗.

Since Aut(H) = PSL(2,R) and Aut(Ĉ) = PSL(2,C), the discrete group Γ (which

is a Fuchsian group in Aut(H)) can be considered as a discrete subgroup of Aut(Ĉ)
(a Kleinian group). The compatibility condition (42) (interpreted as a condition for
the extended Beltrami coefficient µ̃) assures that wµΓ(wµ)

−1 is a Kleinian group.
Since µ̃|H∗ = 0, the restriction wµ|H∗ : H∗ → wµ(H

∗) is a conformal mapping
(Weyl’s lemma, see Lemma 4.6 of [33].) Then wµ|H∗ descends to a conformal
isomorphism R∗ = H∗/Γ → R∗

µ(:= wµ(H
∗)/wµΓ(wµ)

−1).
The difference between conformal mappings and Möbius transformations is mea-

sured by the Schwarzian derivative. For a conformal mapping f on a domain D in
C, we define the Schwarzian derivative {f, z} of f by

{f, z} =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

.

A conformal mapping f : D → f(D) is a Möbius transformation if and only if
{f, z} = 0 on D. ([33], Lemma 6.3.)

In our case, considering the Schwarzian derivative of wµ|H∗, we set

φµ(z) = {wµ|H∗, z}, z ∈ H∗.

Then from the formula for the Schwarzian derivative of composite maps we can
derive

φµ(γ(z))γ
′(z)2 = φµ(z), z ∈ H∗, γ ∈ Γ.
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(See [33], Lemma 6.4.) This means that φµ descends to a holomorphic quadratic
differential (denoted by the same letter φµ) on the Riemann surface R∗ = H∗/Γ.
Let Q(H∗,Γ) denote the C-vector space of quadratic differentials (with respect to
Γ) on H∗. Then φµ ∈ Q(H∗,Γ).

Lemma 18 and the bijection (44) assure that the map [wµ] �→ φµ is a well-defined
injective map (For the proof of the injectivity, see [33], Lemma 6.4.)

(45) B : T (Γ) → Q(H∗,Γ).

This map is called Bers’ embedding. Combining B with the projection B(H,Γ)1 →
T (Γ) (see (44)), we get a projection Φ : B(H,Γ)1 → Q(H∗,Γ). This is called Bers’
projection.

Proposition 1 (See [33], Proposition 6.5). Bers’ projection Φ : B(H,Γ)1 →
Q(H∗,Γ) and Bers’ embedding B : T (Γ) → Q(H∗,Γ) are continuous.

We know that T (Γ) = Tg,n is homeomorphic to R6g−6+2n and (by the Riemann-
Roch theorem) that Q(H∗,Γ) is a (3g − 3 + n)-dimensional complex vector space.
Thus Brouwer’s theorem implies that the B : T (Γ) → Q(H∗,Γ) is a homeomorphism
onto its image. The image is denoted by TB(Γ). In fact, TB(Γ) is a bounded domain
of Q(H∗,Γ). (See [33], Lemma 6.7.) Identify Tg,n, T (Γ) and TB(Γ). Then all of
these Teichmüller spaces inherit the complex structure of Q(H∗,Γ). So far the
arguments depend on the basepoint p = [R, f ] ∈ Tg,n, and it might seem that the
complex structure on Tg,n has the same dependence. But actually, it can be shown
that the complex structure on Tg,n is independent of the choice of the basepoint
([33], Theorem 6.12). Moreover, it can be shown that with respect to this complex
structure the action of the mapping class group Γg,n on Tg,n is biholomorphic ([33],
Theorem 6.18).

8.4. The exponential map. Take an arbitrary point p = [R, f ] ∈ Tg,n, and
suppose that R = H/Γ as above. In the previous subsection, we considered Bers’
projection Φ : B(H,Γ)1 → Q(H∗,Γ), and we saw that Tg,n inherits a complex
structure form Q(H∗,Γ) by identifying Tg,n with TB(Γ) = Image(Φ). On the other
hand B(H,Γ)1 has a natural complex structure inherited from the complex linear
space B(H,Γ) (see [4], §3.2). We will always assume these complex structures on
B(H,Γ)1 and Tg,n. By Proposition 1, the map

Φ : B(H,Γ)1 → Tg,n

is continuous. More strongly, we have

Proposition 2 (See [4], [61] p.190). The map Φ : B(H,Γ)1 → Tg,n is a surjective
complex submersion.

Wolpert [79] suggestively calls this map the exponential map.
The differential of Φ at 0 ∈ B(H,Γ)1 is a complex linear map

dΦ0 : B(H,Γ) → Q(H∗,Γ),

which is calculated by the following method:
First recall Ahlfors’ general integral formula for “infinitesimal quasiconformal

mappings”. Let µt = tν(z) + o(t) be a short arc in B(C)1, and wµt : Ĉ → Ĉ be the
normalized solution of the Beltrami equation

wz = µtwz.
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Then wµt converges to the identity as t → 0, and the infinitesimal quasiconformal
mapping, or the first variation of wµt

ẇ(z) = lim
t→0

wµt(z)− z

t

is represented by the integral formula

(46) ẇ(z) = − 1

π

∫

C
ν(ζ)

z(z − 1)

ζ(ζ − 1)(ζ − z)
dξdη.

(See Ahlfors [6], p.104, where ζ and z are interchanged, see also [33] Theorem 4.37.)
If

ν | H∗ = 0,

formula (46) becomes

(47) ẇ(z) = − 1

π

∫

H

ν(ζ)
z(z − 1)

ζ(ζ − 1)(ζ − z)
dξdη, z ∈ C.

In this case, wµt
is holomorphic on H∗, and by definition of Bers’ projection Φ :

B(H,Γ)1 → Q(H∗,Γ), we have5

Φ(µt) = {wt, z}

=
w′′′

t

w′
t

− 3

2

(
w′′

t

w′
t

)2

= tẇ′′′ + o(t),

here primes (w′
t, w

′′
t , w

′′′
t ) indicate the differentiation w.r.t. z ∈ H∗.

Thus

(48) dΦ0(ν)(z) = (ẇ(z))′′′.

Substituting the right hand side of (47) for ẇ in (48), we get

(49) dΦ0(ν)(z) = − 6

π

∫

H

ν(ζ)

(ζ − z)4
dξdη, z ∈ H∗.

(See [4]6 (1.18), [33] Theorem 6.10.)

The following properties of ẇ(z) will be used later in §4.2.

Proposition 3. We have
(i) (ẇ)z = ν,
(ii) ẇ(z) = 0, for z=0,1, and
(iii) ẇ(z) = o(|z2|) as z → ∞.

Property (i) is observed by Ahlfors [4] (1.5). Properties (ii) and (iii) immediately
follow from (46).

5Here we have simplified the notation wµt to wt.
6Ahlfors [4] calculates on the unit disk instead of the upper half plane H, and his formula does

not coincide with (49).
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8.5. Weil-Petersson metric. In this subsection, we will discuss theWeil-Petersson
metric, which is a natural Riemannian metric on Tg,n. First we will observe that
there is a natural pairing of Beltrami differentials µ ∈ B(H,Γ) and quadratic dif-
ferntials φ ∈ Q(H,Γ). By Definition 11, a quadratic differentail φ ∈ Q(H,Γ) is a
holomorphic function on H satisfying

φ(γ(z))γ′(z)2 = φ(z), z ∈ H, γ ∈ Γ.

This together with (42) implies

µ(γ(z))φ(γ(z))γ′(z)γ′(z) = µ(z)φ(z), z ∈ H, γ ∈ Γ.

Thus the 2-form µ(z)φ(z)dz ∧ dz is Γ-invariant, and descends to a 2-form on R,
which we denote by µφ. Note that the value of the integral∫

R

µφ

is independent of the choice of the coordinate on R, and gives a pairing of µ and
φ. (See [82] p.15.) Since dz ∧ dz = −2idx ∧ dy, the 2-form µ(z)φ(z)dx ∧ dy is
Γ-invariant too. For the sake of simplicity, we use the latter 2-form µ(z)φ(z)dx∧dy
to define a complex valued bilinear pairing (µ, φ)C:

(µ, φ)C =

∫

∆

µ(z)φ(z)dxdy, z = x+ iy,

where ∆ is a fundamental domain of Γ. Looking at Wolpert’s papers, this choice
seems to match his calculations. ( See the equation in the proof of Theorem 2.10
of [75], for example.) Its real part gives a real valued pairing

(50) (µ, φ) = Re ((µ, φ)C) .

We denote the kernel of dΦ0 byN(Γ). This is a complex vector subspace of B(H,Γ).

Theorem 11 ([4], Lemma 8. See [79], Theorem 1.2). A Beltrami differential µ
belongs to N(Γ) if and only if (µ, φ)C = 0 for all quadratic differentials φ ∈ Q(H,Γ).

Since dΦ0 is surjective, the quotient B(H,Γ)/N(Γ) is isomorohic to Q(H∗,Γ),
whose complex dimension is 3g − 3 + n, the same dimension as Q(H,Γ). Thus the
pairing (µ, φ)C induces the non-singular pairing

(51) (·, ·)C : B(H,Γ)/N(Γ)×Q(H,Γ) → C.
Also the real valued pairing is non-singular:

(52) (·, ·) : B(H,Γ)/N(Γ)×Q(H,Γ) → R.

The quotient B(H,Γ)/N(Γ) is naturally regarded as the tangent space of Tg,n at
p = [R, f ]. Thus via the pairing (52), Q(H,Γ) is the cotangent space of Tg,n at p.
The pairing (52) is the tangent-cotangent pairing

As we shall explain below, there are natural representatives of B(H,Γ)/N(Γ)
by harmonic Beltrami differentials : For any φ ∈ Q(H,Γ), we define the associated
harmonic Beltrami differential µφ as follows 7 :

(53) µφ(z) = (Im z)2 φ(z).

It is easy to see that µφ(z) satisfies (42), and µφ belongs to B(H,Γ).

7Imayoshi and Taniguchi [33] defines µφ = −2(Im z)2 φ(z), while Wolpert [79] defines µφ(z) =

(z − z)2φ(z) = −4(Im z)2 φ(z). In the present paper, we follow Wolpert[81], and define µφ by

(53). This definition makes calculations transparent.



42 YUKIO MATSUMOTO

Introduce the ∞-norm in quadratic differentials Q(H∗,Γ) by defining:

∥ψ∥∞ = sup
z∈H∗

(Im z)2|ψ(z)|.

The Ahlfors-Weill theorem ([33], Theorem 6.9) asserts that if the norm of a qua-
dratic differential ψ ∈ Q(H∗,Γ) satisfies ∥ψ∥∞ < 1

2 , then the correspondence

ψ(z) �→ −2(Im z)2ψ(z), z ∈ H∗

is a local cross-section of the exponential map

Φ : B(H,Γ)1 → Tg,n(⊂ Q(H∗,Γ)).

This implies that a quadratic differential ψ ∈ Q(H∗,Γ) with ∥ψ∥∞ < 1
2 belongs to

Tg,n and that the linear map

φ(z) �→ −2µφ(z) : Q(H,Γ) → B(H,Γ)

is an injective map, which makes the diagram commute.

Q(H,Γ)
φ(z) �→−2µφ(z)−−−−−−−−−−→ B(H,Γ)

φ(z)�→ψ(z)=φ(z)

�
�id.(=)

Q(H∗,Γ) −−−−−−−−−−−−−→
ψ(z)�→−2(Imz)2ψ(z)

B(H,Γ).

(Recall µφ(z) = (Imz)2φ(z) and note that ψ(z) = φ(z) belongs to Q(H∗,Γ) for
any φ ∈ Q(H,Γ).) It follows that the map

φ(z) �→ µφ(z) : Q(H,Γ) → B(H,Γ)

is injective and its image H(Γ), consisting of harmonic Beltrami differentials, is a
linear subspace of B(H,Γ) transverse to N(Γ). Thus we can identify H(Γ) with
the quotient space B(H,Γ)/N(Γ), which is the tangent space of Tg,n at the base
point p = [R, f ].

Now take φ and ψ in Q(H,Γ). Then

(Im z)2φψ =
(
(Im z)2ψ

)
φ = µψφ

is a Γ-invariant 2-form, and the pairing

(54) ⟨φ,ψ⟩C =

∫

∆

(Im z)2φψdxdy

is well-defined. We call this pairing the Weil-Petersson cometric (see [82], Definition
2.4.). Since ⟨φ,ψ⟩C = (µψ, φ)C, the Weil-Petersson commetric is a non-singular
Hermitian pairing on Q(H,Γ).

For any µ, ν ∈ B(H,Γ), we can verify by using (42)

µ(γ(z))ν(γ(z)) = µ(z)ν(z).

Thus µν defines a Γ-invariant function on H, which we integrate by the invariant
area form dA = dxdy

(Im z)2 to get

⟨µ, ν⟩C =

∫

∆

µν(Im z)−2dxdy.

Taking µ = µφ = (Im z)2φ and ν = µψ = (Im z)2ψ, we have

(55) ⟨µ, ν⟩C =

∫

∆

(Im z)4φψ(Im z)−2dxdy =

∫

∆

(Im z)2φψdxdy = ⟨ψ, φ⟩C.
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This shows that the restriction of the pairing to the harmonic differentials H(Γ)
gives a non-singular Hermitian pairing ⟨µ, ν⟩C, which is called the (complex) Weil-
Petersson metric on H(Γ). This is invariant under the action of the mapping class
group Γg,n on Tg,n (see [33] Theorem 7.14).

Its real part

(56) ⟨µ, ν⟩ = Re(⟨µ, ν⟩C)
is the Weil-Petersson Riemannian metric8 [81]. Teichmüller space Tg,n with this
metric is Kähler ([4], Theorem 4) and has negative sectional curvature ([5], [81]).

It is non-complete ([74], [20]). By [83] its metric completion T̂g,n is CAT(0)-space
and is identified with Abikoff’s augmented Teichmüller space ([1], [2]). The Kähler
form is given9 by

(57) ω(µ, ν) = −Im(⟨µ, ν⟩C).
Clearly we have ω(µ, ν) = ⟨iµ, ν⟩.

8In [79], Wolpert defines the WP Riemannian metric by 2Re(⟨µ, ν⟩C). Imayoshi-Taniguchi [33]
follows this definition. Here we follow [81] and define the WP Riemannian metric by (56).

9In [79], Wolpert defines the Kähler form ω by −2Im(⟨µ, ν⟩C), and [33] follows this. While we
follow [81] and define ω by (57).
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9. The Fenchel-Nielsen deformation

In this section, we will reviewWolpert’s results ([75], [77], [78]) which are relevant
to our purpose.

9.1. Fenchel-Nielsen coordinates. By a (generalized) pair of pants we shall
mean a surface homeomorphic to a 2-sphere with three disjoint open disks (whose
closures are also disjoint) deleted, or to a once punctured annulus, or to a twice
punctured disk. A pair of pants has Euler characteristic −1. They are assumed to
be oriented.

The surface Σg,n has a system of disjoint simple closed curves

D = {C1, C2, · · · , Cm}, m = 3g − 3 + n

such that the closure of each connected component Pj of Σg,n −
∪m

i=1 Ci is a pair
of pants. The number k of the connected components is equal to 2g − 2 + n, and
we call the collection of these pants P = {P1, P2, · · · , Pk} the pants decomposition
of Σg,n corresponding to the system D of decomposing curves.

Of course, a system D of decomposing curves is identified with a maximal simplex
(which will be denoted by the same symbol D) of the curve complex Cg,n.

Remark. If D′ = {C ′
1, · · · , C ′

m} is another system of decomposing curves, and
if Ci is isotopic to C ′

i on Σg,n, for each i = 1, · · · ,m, then we consider D and D′

are the same systems. Precisely speaking, D is the system consisting of the isotopy
classes of Ci, i = 1, · · · ,m. □

Let p = [R, f ] be any point of Tg,n, D = {C1, C2, · · · , Cm} a system of decom-
posing curves of Σg,n. Then for each i = 1, 2, · · · ,m, there exists a simple closed
geodesic ci of R freely homotopic to f(Ci). The closed geodesics {c1, c2, · · · , cm}
are pairwise disjoint.

Let li(p) denote the hyperbolic length of ci measured by the Poincaré metric of
R. Then we have m functions

li : Tg,n → R+, i = 1, 2, · · · ,m.

The functions li are real analytic (see [2] p.87, or [33], Lemma 3.7).
We may (and will) assume that f(Ci) = ci, i = 1, 2, · · · ,m. Then the image of

the pants decomposition P of Σg,n gives a pants decomposition f(P) of R. The
members of f(P) are hyperbolic pants. It is known that every hyperbolic pair
of pants P admits an anti-holomorphic involution σP : P → P . The fixed point
set of σP consists of three disjoint geodesic arcs with the property that when they
intersect the boundary (circle) components of P the intersections are perpendicular.
Let Pi,1, Pi,2 (∈ f(P)) be the hyperbolic pairs of pants which are glued together
along ci. (It is possible that Pi,1 = Pi,2.) The closed geodesic ci as a boundary of
Pi,1 has two points pi,1, qi,1 which are the intersection of ci and the geodesic arcs
fixed by the anti-holomorphic involution of Pi,1. The points pi,1 and qi,1 divide the
circle ci into two arcs of the same length li(p)/2. Likewise, the closed geodesic ci
as a boundary of Pi,2 has two points pi,2, qi,2 of the same nature.

In the special case where pi,1 = pi,2 (hence qi,1 = qi,2), the anti-holomorphic
involutions of Pi,1 and Pi,2 extend to make an anti-holomorphic involution of Pi,1∪
Pi,2. In general, we have pi,1 ̸= pi,2, and the hyperbolic length of an arc on ci with
terminal points {pi,1, pi.2} measures the amount of twist, i.e, the deviation from
the above matching situation. We want to consider the length as a real number
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with sign (±). Note that a Riemann surface has a natural orientation compatible
with the complex coordinates. We give the orientation to ci as the boundary of the
Riemann surface Pi,1, and measure the hyperbolic length from pi,1 to pi,2. More
precisely, we trace the geodesic arc (that is fixed by the anti-holomorphic involution
of Pi,1) to the point pi,1 then turn to the left and trace the subarc of ci of hyperbolic
length ti to the point pi,2. We get in this way the positive length ti of the subarc.
While if we turn to the right at the point pi,1 and trace the subarc of ci of hyperbolic
length li − ti to the point pi,2, then we get the negative length ti − li.

More generally, we consider “multiple arcs”on ci with terminal points pi,1, pi,2.
Then similar measurement gives various sensed hyperbolic lengths ti+nli mutually
different by integral multiples of li. If we interchange the roles of Pi,1 and Pi,2,
the explanation is the same, and we get the same set of sensed hyperbolic lengths
ti + nli, n ∈ Z. Finally, if we interchange the labeling of the points pi,1 and qi,1,
then we get the set of sensed hyperbolic lengths ti + nli/2, n ∈ Z.

Note that the quantities li and ti depend on the point p = [R, f ] ∈ Tg,n. Thus
we get a continuous function ti at least locally which has additive ambiguity of
integral multiples of li/2. This function ti is real analytic.

Usually, we use the function

θi =
2πti
li

instead of ti itself. This function θi measures the amount of the twist by radians.
Fixing an arbitrary base point p0 = [R0, f0], we get a globally defined continuous

function

θi : Tg,n → R

by analytic continuation starting from p0. The function θi has additive ambiguity
by constant functions nπ, n ∈ Z.

The functions θi, i = 1, 2, · · · ,m, are real analytic (see [2], p.87, or [33], Lemma
3.8).

Theorem 12 ([2], p.91, or [33], Theorem 3.10). The map

(l1, · · · , lm, θ1, · · · , θm) : Tg,n → (R+)m × (R)m

is a real analytic diffeomorphism.

We call these coordinates the Fenchel-Nielsen coordinates of Tg,n associated with
the pants decomposition P (or with the system D of decomposing curves).

Since li is constant along θj-axes (i, j = 1, · · · ,m), we have

Corollary 12.1. The map

(l1, · · · , ln, t1, · · · , tm) : Tg,n → (R+)m × (R)m

is a real analytic diffeomorphism.

These coordinates are called the Fenchel-Nielsen coordinates, too.

9.2. The Fenchel-Nielsen deformtion. Let p = [R, f ] be a point of Tg,n, c a
simple closed geodesic on R. The Fenchel-Nielsen deformation of R with respect
to c means the family {Rt | t ∈ R} of marked Riemann surfaces Rt obtained by
cutting the surface R along c, rotating one side of the cut relative to the other
and attaching the sides in the new position. (See [75], p.501, or [33], §8.1). The
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number t measures the magnitude of the twist just as in §9.1. Let us repeat here
an explanation similar to the one done in the previous subsection.

Let S1 and S2 be the Riemann sub-surfaces in R each of which has c as a
boundary. One bank of c belongs to S1 and the other to S2. Possibly S1 = S2. Let
A be a short geodesic arc on R which cuts c transversely. Then c divides A into A1

and A2, Ai being in Si, i = 1, 2. The intersection point p (= c ∩ A) is duplicated
into p1, p2 (pi being a terminal point of Ai, i = 1, 2). If the magnitude of the twist
t is sufficiently small, we can determine t without ambiguity as a real number. For
this, give the orientation to c as the boundary of S1. We trace A1 to p1 then turn
to the left or to the right according as the short subarc on c whose terminal points
are p1 and p2 lies left or right of the point p1, then trace the short subarc to the
point p2. The hyperbolic length of this subarc is |t|. (Note that 2|t| is smaller than
the length of c.) If we turned to the left (or to the right) at the point p1, then t > 0
(or t < 0). If we interchange the roles of S1 and S2, we obtain the same result.

Let p = [R, f ] be an arbitrary point of Tg,n, C an essential simple closed curve
on Σg,n. Let {Rt | t ∈ R} be the Fenchel-Nielsen deformation of R with respect
to a simple closed geodesic c freely homotopic to f(C). If we construct a family of
quasi-conformal mappings vt : R → Rt depending continuously on t, pt = [Rt, vt◦f ]
draws a real analytic curve on Tg,n passing p when t = 0. Let

(
∂
∂t

)
p
be the tangent

vector to this curve at t = 0. Varying p, we get the deformation vector field

{( ∂

∂t

)

p

}
p∈Tg,n

on Tg,n representing the infinitesimal Fenchel-Nielsen twist. Wolpert [75] studied
this vector field from analytic and geometric viewpoint.

He started with a quasiconformal homeomorphism of H:

(58) w0(z) =




z arg z < θ1

zeε(θ−θ1) θ1 < arg z = θ < θ2

zeε(θ2−θ1) θ2 < arg z,

where 0 < θ1 < π
2 < θ2 < π are arbitrarily chozen. We assume R = H/Γ, and

for simplicity that the imaginary axis iR+ covers the simple closed geodesic c on
R. The homeomorphism w0 covers a Fenchel-Nielsen twist about c. Note that the
twist in (58) is right-handed if the magnitude ε of twist is positive.

It seems that there is no general consensus on whether a right-handed twist is
a positive twist or not. The answer depends on the author. The present author
prefers to consider a left-handed twist to be positive. This standpoint has already
been adopted in our previous work [56], [57]. Also the way of determining the sign
of the twist coordinate t explained above is consistent with this. The standpoint
is in a sense arbitrary, but should be consistent in an author. Thus in the present
lecture the author considers as before left-handed twist to be positive. This will
cause some discrepancies in the sign between Wolpert’s formulas and ours.

Imayoshi and Taniguchi adopt the same standpoint as ours, and in their expla-
nation of Wolpert’s work (§8.1 of [33]) they construct a quasiconformal mapping
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wt as follows:

(59) wt =





z 0 < θ < π
2 − θ0

z exp( −t
2θ0

(θ − π
2 + θ0))

π
2 − θ0 ≤ θ ≤ π

2 + θ0

z exp(−t) π
2 + θ0 < θ < π,

here θ = arg z. Note that wt is a left-handed twist if the magnitude t of twist is
positive.

Following [75] and [33], we calculate the complex dilatation τt of w
t:

(60) τt(z) =
−it

4θ0 + it
χI(θ)

z

z
, z ∈ H.

Here χ(θ) is the characteristic function of [π2 − θ0,
π
2 + θ0].

It is not quite true that a Fenchel-Nielsen twist with respect to c is lifted to
w0, because w0 is not Γ-invariant. To fix this point, Wolpert [75] constructed a
Γ-invariant quasiconformal mapping v by moving w0 by various elements of Γ, and
taking the limit of the finite compositions of these (see [75], p.504). He showed
that the complex dilatation of v is the sum of the Beltrami differentials obtained
by “moving” the complex dilatation of w0 ([75], p.504-505).

Imayoshi-Taniguchi [33] follows this recipe and obtains the Γ-invariant Beltrami
differential:

(61) µt =
∑

γ∈⟨γ0⟩\Γ

(τt ◦ γ)
γ′

γ′ ,

where we assume that γ0(z) = λz (λ > 1) belongs to Γ and covers c. Note that the
complex dilatation τt is invariant under the action of γ0. The Beltrami differential
{µt} belongs to B(H,Γ)1, and draws a curve {µt | t ∈ R}. This curve represents
the Fenchel-Nielsen deformation of R with respect to c. Then by applying the
method of §8.4, we can calculate the tangent vector to the curve Φ(µt) at t = 0.

By differentiation, we get

d

dt
τt|t=0 = − i

4θ0
χI(arg z)

z

z
.

Set ν0(z) = (the right-hand side of the above equality), and set

(62) ν(z) =
∑

γ∈⟨γ0⟩\Γ

ν0(γ(z))
γ′(z)

γ′(z)
, z ∈ H.

Then we have

lim
t→0

���µt

t
− ν

���
∞

= 0.

Ahlfors’ formula (47) gives the integral representation of the first variation of wµt

(wµt being the normalized solution of the Beltrami equation wz = µtwz):

(63) ẇ(z) = − 1

π

∫

H

ν(ζ)
z(z − 1)

ζ(ζ − 1)(ζ − z)
dξdη, z ∈ C.

Substituting (62) for ν in the right-hand side, and calculating, we can rewrite (63)
as follows:
(64)

ẇ(z) =
∑

γ∈⟨γ0⟩\Γ

(
− γ(z)

γ′(z)

{∫ arg γ(z)

0

χI(t)

2θ0
dt+

i

2π
log γ(z)

}
+

i

2π
Pγ(z)

)
z ∈ C,
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where Pγ(z) is a polynomial of degree at most two. In the calculation, we use
the properties of ẇ stated in Proposition 3. For details, see [75], pp.513–514, or
[33], pp.222–223.

In particular, if z ∈ H∗, the integral term in (64) vanishes, and we have

(65) ẇ(z) = − i

2π

∑
γ∈⟨γ0⟩\Γ

(
γ

γ′ log γ − Pγ

)
, z ∈ H∗.

Using (48) and applying Bol’s formula
(
γ

γ′ log γ

)′′′

= −
(
γ′

γ

)2

we have obtained

(66) dΦ0(ν) =
i

2π

∑
γ∈⟨γ0⟩\Γ

(
γ′

γ

)2

.

Both sides belong to Q(H∗,Γ).
So far we have assumed that the simple closed geodesic c is covered by the

imaginary axis iR+. If we take a general c which is covered by a geodesic in
H whose end points are reals, say α and β, the transformation B ( ∈ PSL(2,R))
which sends this geodesic to iR+ pulls back the ⟨γ0⟩-invariant quadratic differential
θ0(z) =

1
z2 to

(67) θ0(B(z))(B′(z))2 =
(α− β)2

(z − α)2(z − β)2
.

For simplicity, we denote the right-hand side of (67) by ωC(z). Though the aspect
is different, this ωC is the same thing as Wolpert’s ωC in Definition 2.5 of [75]. Put
γC(z) = B−1 ◦ γ0 ◦B(z). Then ωC is invariant under γC .

Definition 12 (See [75], Definition 2.6). (The Petersson series)

(68) ΘC(z) =
∑

γ∈⟨γC⟩\Γ

ωC(γ(z))γ
′(z)2.

Since the coefficients of ΘC are real numbers, ΘC can be considered as an element
of Q(H,Γ), and at the same time, as an element of Q(H∗,Γ).

The result for a general c is the following:

Theorem 13. Let ν be the first order term in the expansion of the Beltrami dif-
ferential for the Fenchel-Nielsen deformation with respect to c, then

(69) dΦ0(ν) =
i

2π
ΘC .

Note that the sign of the right-hand side is opposite to Wolpert’s formula in
Theorem 2.7 of [75].

Recall from §8.5 that for any ψ ∈ Q(H∗,Γ), µψ(z) = (Im z)2ψ(z) is a harmonic
Beltrami differential which belongs to B(H,Γ). Also ψ �→ −2µψ is a cross section
for dΦ0 : B(H,Γ) → Q(H∗,Γ). Namely,

dΦ0(−2µψ) = ψ.

Applying this to ΘC ∈ Q(H∗,Γ), we get

dΦ0(−2µΘC ) = ΘC .
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Since the coefficiens of ΘC are reals, we have

ΘC(z) = ΘC(z), z ∈ H.

Thus

−2µΘC
(z) = −2(Im z)2ΘC(z) = −2(Im z)2ΘC(z), z ∈ H

and we have

(70) dΦ0(−2(Im z)2ΘC) = ΘC .

Combining (69) and (70), we get

dΦ0

(
ν + 2(Im z)2(

i

2π
ΘC)

)
= 0.

Since the kernel of dΦ0 : B(H,Γ) → Q(H∗,Γ) is N(Γ) we have the following
corollary.

Corollary 13.1. The first order term ν of the Fenchel-Nielsen deformation about
C is equivalent to − i

π (Im z)2ΘC modulo N(Γ).

This is Corollary 2.8 of [75]. The sign there differs from the above formula.
Miraculously, the quadratic differential ΘC appears again in the variational for-

mula of length function. Let C be an essential simple closed curve on Σg,n. Let
p = [R, f ] be an arbitrary point of Tg,n, where R = H/Γ and f : Σg,n → R being
the marking as before. The length function lC(p) gives the length of the simple
closed geodesic c on R freely homotopic to f(C). The differential dlC is given by
the following theorem. Wolpert[75] attributes this formula to Gardiner [25].

Theorem 14. (See [75], Theorem 2.9, and [33], Theorem 8.3.)

(dlC)p(µ) =

(
µ,

2

π
ΘC

)
.

Here, µ is any element of B(H,Γ) which we consider representing a tangent
vector at p ∈ Tg,n. The pairing

(
µ, 2

πΘC

)
is the tangent-cotangent pairing (see §3.5).

Imayoshi and Taniguchi [33], pp.225–226, gives a detailed proof of this theorem.

Recall that in Theorem 13, ν(∈ B(H,Γ)) was the first term in the expansion of
the Beltrami differential for the Fenchel-Nielsen deformation about c: ν is the initial
velocity vector of the deformation. Corollary 13.1 says that if the tangent space
Tp(Tg,n) = B(H,Γ)/N(Γ) is identified with the harmonic Beltrami differentials H,

ν is identified with the tangent vector − i
π (Im z)2ΘC . Following Wolpert [81], we

denote this tangent vector by tC , hence

(71) tC = − i

π
(Im z)2ΘC .

Teichmüller space Tg,n is a Riemannian manifold equipped with the Weil-Petersson
metric ⟨·, ·⟩, and we can consider the gradient vector grad lC of the length function
lC . As an element of H, the gradient vector is represented by the following formula:

(72) grad lC =
2

π
(Im z)2ΘC .
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Proof of (72). For any µ ∈ H, we have

⟨µ, grad lC⟩ Weil-Petersson product

= (µ, dlC) tangent-cotangent pairing

= Re

∫

∆

µ
2

π
ΘC dxdy by Theorem 14

= Re

∫

∆

µ (Im z)2
2

π
ΘC dA dA = dxdy

(Im z)2 is the invariant area form on H

= Re

∫

∆

µ (Im z)2
2

π
ΘC dA

= ⟨µ, 2
π
(Im z)2ΘC⟩ Weil-Petersson product.

Thus (grad lC)p = 2
π (Im z)2ΘC . The proof of (72) is complete. □

Combining (71) and (72), we have the following twist-length duality formula ([75],
Theorem 2.10) :

(73) grad lC = 2itC .

The sign of the right-hand side is opposite to the formula stated in [81], p.277.
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10. Proof of Theorem 2

In this section, we will prove Theorem 2 of §1.

10.1. Riera’s formula and Wolpert’s evaluation. Let p = [R, f ] be an arbi-
trary point ∈ Tg,n, where f : Σg,n → R is the marking. Let Cα and Cβ be disjoint,
mutually non-isotopic essential simple closed curves on Σg,n. For simplicity, we
will denote the geodesic length functions lCα and lCβ

by lα and lβ respectively, and
the quadratic differentials ΘCα and ΘCβ

by Θα and Θβ . G. Riera [65] calculated
the real part of the Weil-Petersson coproduct of Θα and Θβ . When cα and cβ are
disjoint as in the present case, his general formula turns to the following (see [65],
Theorem 2):

If cα ̸= cβ , we have

(74) Re(⟨Θα,Θβ⟩C) =
π

2

∑
⟨A⟩\Γ/⟨B⟩

(
c log

(
c+ 1

c− 1

)
− 2

)
,

where c = cosh δ, δ being the hyperbolic distance from the axis of A to each disjoint
axis congruent to the axis of B.

If cα = cβ , then

(75) Re(⟨Θα,Θα⟩C) =
π

2


lα +

∑
⟨A⟩\Γ/⟨A⟩

c log

(
c+ 1

c− 1

)
− 2


 ,

where c = cosh δ, δ being the hyperbolic distance from the axis of A to each disjoint
axis congruent to it.

Using (72), we get

(76) ⟨grad lα, grad lβ⟩ =
4

π2
Re(⟨Θα,Θβ⟩C).

See (55) and (56).
Via (76), we can convert formulas (74) and (75) to the Weil-Petersson product

formula of grad lα and grad lβ . Wolpert [81] evaluated the expansion of the right-
hand sides of (74) and (75), and obtained the following formula valid for sufficiently
small lα and lβ (see [81], Lemma 3.12, [82], Theorem 3.7).

(77) ⟨grad lα, grad lβ⟩ =
2

π
lαδαβ +O(l2αl

2
β).

Applying the duality formula (73) to (77), we get

(78) ⟨tα, tβ⟩ =
1

2π
lαδαβ +O(l2αl

2
β).

10.2. Facet F ε(D). Let P be a pants decomposition of Σg,n corresponding to a
system of decomposing curves D = {C1, C2, · · · , Cm}. Let

(l1, · · · , lm, t1, · · · , tm)

be the Fenchel-Nielsen coordinates associated with P (or equivalently with D).
Recall that there exists a universal constant M > 0 (a 2-dimensional Margulis

constant, not unique) such that two distinct simple closed geodesics on a Riemann
surface R are disjoint if their lengths are shorter than M (see §4, Lemma 2, and
[41], [2], [64] p.655).
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Facets F ε(σ) were defined in Definition 4 of §4, where σ ∈ Cg,n. The facets for
the maximal simplexes play an essential role in this section, so we will recall the
definition in the special case σ = D:

Definition 13. Let ε be a positive number smaller than a Margulis constant M .
We define the facet F ε(D) as follows:

F ε(D) = {p ∈ Tg,n | li(p) = ε, i = 1, 2, · · · ,m}
where l1, · · · , lm are the Fenchel-Nielsen length coordinates associated with the max-
imal simplex D.

The facet F ε(D) is an m-dimensional real analytic submanifold. Moreover, re-
calling Wolpert’s formula10 which represents the Kähler form ω of Tg,n (Wolpert
[78], [82])

(79) ω =
1

2

m∑
i=1

dti ∧ dli,

we know that F ε(D) is a Lagrangian submanifold of Tg,n, because ω|F ε(D) = 0. The
facet F ε(D) is parametrized by the Fenchel-Nielsen twist coordinates (t1, · · · , tm)
, and is homeomorphic to Rm.

For an essential simple closed curve C on Σg,n, let τC denote the right-handed
Dehn twist (i.e. negative Dehn-twist in our sense) about C. Let Γ(D) denote the
subgroup of the mapping class group Γg,n generated by the Dehn twists τi = τCi

about the simple closed curves Ci, i = 1, · · · ,m of D. Γ(D) is a free abelian group
of rank m. By (40), τi acts on Tg,n by

τi([R, f ]) = [R, f ◦ τ−1
i ].

Since τ−1
i is a left-handed Dehn twist (i.e., positive Dehn twist from our viewpoint)

about Ci, we have

(80) ti(τi(p)) = ti(p) + ε, tj(τi(p)) = tj(p), j ̸= i, where p = [R, f ].

The action of τi preserves F
ε(D) because it preserves the length functions, lj , j =

1, · · · ,m.
Here we remark that the action of Γ(D) extends to the augmented Teichmüller

space T̂g,n , and that it fixes a unique boundary point p(D) corresponding to the
maximally degenerate Riemann surface, obtained by pinching each curve of D to a
node (see [83], Theorem 3 and Remark on the same page). The facet F ε(D) shrinks
to p(D) as ε → 0.

Let NΓ(D) be the normalizer of Γ(D) in the mapping class group Γg,n. The
following theorem is nothing but a restatement of Theorem 6 in §4, in the special
case where the simplex σ is a maximal one D.

Theorem 15. Suppose m = 3g − 3 + n ≧ 1. A mapping class [h] belongs to
the normalizer NΓ(D) if and only if [h] permutes the isotopy classes of the curves
Ci, i = 1, · · · ,m of D. □

10The formula displayed in (79) differs in the sign from [78] and [82] Theorem 3.14, as was

explained in §9.2 (between the formulas (58) and (59)). It also differs in the coefficients from

[78], because [78] defined the Weil-Petersson cometric by ⟨ϕ, ψ⟩ = 1
2

∫
∆(Im z)2ϕψdxdy, while [82]

Definition 2.4 defined it by ⟨ϕ, ψ⟩ =
∫
∆(Im z)2ϕψdxdy and we followed the latter definition. See

(54).
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Corollary 15.1. The action of NΓ(D) preserves the facet F ε(D).

This corollary is a special case of Corollary 6.1.

Let Σg,n(D) denote as before the topological space obtained from Σg,n by pinch-
ing each curve Ci of D to a point (node). Σg,n(D) is a surface with nodes (a chorizo
space, [57] ).

Let W (D) denote the quotient group NΓ(D)/Γ(D).
The following corollary is a special case of Corollary 6.2.

Corollary 15.2. The group W (D) is the mapping class group of Σg,n(D).

It is known that the mapping class group of Σg,n(D) is a finite group. Thus we
have

Corollary 15.3. The quotient NΓ(D)/Γ(D) is a finite group.

NΓ(D) acts on the Lagrangian submanifold F ε(D) isometrically. Its normal
subgroup Γ(D) acts as “translations”, and the quotient NΓ(D)/Γ(D) is finite. At
this stage, we might well call NΓ(D) a Lagrangian analogue of a crystallographic
group.

A general result is known that if an abstract group G0 has a free abelian normal
subgroup T0 of finite rank which is maximal abelian and which has finite index,
then G0 is isomorphic to a Euclidean crystallographic group. (See Theorem on
p.31 of [69]). Applying this, we know that the group NΓ(D) is isomorphic to some
Euclidean crystallographic group. But the following theorem directly shows that the
Lagrangian crystallographic group NΓ(D) acting on F ε(D) becomes a Euclidean
crystallographic group in the limit of ε → 0 :

Theorem 16. Assume m = 3g − 3 + n > 1. Then the group NΓ(D) is a crystal-
lographic group acting on a certain “ideal”Euclidean m-space Em.

Remark (See Lemma 20 below). In the case of (g, n) = (2, 0) or (1, 2), we consider
NΓ(D) as a subgroup of Aut(Tg,n) = Γg,n/Z2. □
Proof of Theorem 16. We use the twist-twist pairing (78), where ti stands for

∂
∂ti

.

F ε(D) becomes a Riemannian manifold with the Weil-Petersson metric:

(81) ⟨ ∂

∂ti
,
∂

∂tj
⟩ = ε

2π
δij +O(ε4).

Let (x1, · · · , xm) denote the natural coordinates ofRm. We define a diffeomorphism
fε : R

m → F ε(D) by setting

(t1, · · · , tm) = fε(x1, · · · , xm)

= (εx1, · · · , εxm).

Let us define a metric ⟨·, ·⟩ε on Rm by rescaling the metric induced from the Weil-
Petersson metric under fε:

(82) ⟨ ∂

∂xi
,

∂

∂xj
⟩ε

def
=

2π

ε3
⟨dfε(

∂

∂xi
), dfε(

∂

∂xj
)⟩.

Since

dfε(
∂

∂xi
) = ε

∂

∂ti
,
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we have

⟨ ∂

∂xi
,

∂

∂xj
⟩ε =

2π

ε3
⟨ε ∂

∂ti
, ε

∂

∂tj
⟩

=
2π

ε

( ε

2π
δij +O(ε4)

)
by (81)

= δij +O(ε3).

This implies the following

Lemma 19. As ε approaches 0, the metric ⟨·, ·⟩ε on Rm converges to the Euclidean
metric.

We consider the action of NΓ(D) on Rm induced by fε:

(83) γ(p) := f−1
ε (γ(fε(p))), ∀p ∈ Rm, ∀γ ∈ NΓ(D).

The group NΓ(D) acts on F ε(D) as isometries with respect to the Weil-Petersson
metric. Thus the induced action of NΓ(D) on Rm is isometric with respect to the
induced metric ⟨·, ·⟩ε. As we saw above, the metric ⟨·, ·⟩ε converges to the Euclidean
metric as ε → 0. Therefore, in the limit, the action of NΓ(D) on Rm becomes an
isometric action on Euclidean m-space Em. Note that the induced action of the
abelian subgroup Γ(D) is coincident with the natural action of the lattice Zm. Let
T be the translation subgroup of NΓ(D). Then

Zm ⊂ T ⊂ NΓ(D).

Since NΓ(D)/Zm is finite by Corollary 15.3, we conlude that NΓ(D)/T is finite.
Thus NΓ(D) is a crystallographic group acting on Em. The proof of Theorem 16
is complete. □

Proposition 4. Suppose 3g−3+n > 1. For the action of Γg,n on T̂g,n, the isotropy
subgroup of the frontier point p(D) is NΓ(D).

Proof. For a (not necessarily maximal) simplex σ ∈ Cg,n, let T (σ) be the Te-
ichmüller space of nodal Riemann surfaces modeled on Σg,n(σ). (See §3.) For two

simplexes, σ, τ ∈ Cg,n, Lemma 17 states that T (σ) ∩ T (τ) ̸= ∅ in T̂g,n if and only if
σ = τ . (See Lemma 17 (ii) in §6 and its proof.)

Now in the present case, we have a maximal simplex D, and in this case the
Teichmüller space T (D) is a point (because Σg,n(D) admits no deformation), and
this point is nothing but the point denoted by p(D).

Let [h] ∈ Γg,n be a mapping class. Using the rule (18) of §4, we have

[h](p(D)) = [h](T (D))
(18)
= T (h(D)) = p(h(D)).

Thus [h](p(D)) = p(D) if and only if h(D) = D. By Theorem 15, this last condition
is equivalent to that [h] ∈ NΓ(D). This proves Proposition 4. □
Proof of Theorem 2. Now Theorem 2 is obtained by combining Theorem 16 and
Proposition 4. □

Before proving Corollary 2.1 to Theorem 2 (of §1), we will prove the following
(well-known) result.

Lemma 20. Suppose 3g−3+n > 0 and (g, n) ̸= (2, 0), (1, 2), (1, 1), (0, 4). Then the
natural homomorphism α : Γg,n → Aut(Tg,n) is injective. If (g, n) = (2, 0), (1, 2)
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or (1, 1), the kernel of α : Γg,n → Aut(Tg,n) is isomorphic to Z2. If (g, n) = (0, 4),
the kernel of α : Γ0,4 → Aut(T0,4) is isomorphic to Z2 ⊕ Z2.

Proof. Suppose that the kernel of α : Γg,n → Aut(Tg,n) is non-trivial. Let γ be a
non-trivial element of Ker(α). Take an arbitrary pants decomposition P of Σg,n

with decomposing curve system D = {C1, · · · , Cm}.
Since the action of γ on Tg,n is the identity id, it preserves the facet F ε(D).

Let p = [R, f ] be a point of F ε(D). The simple closed geodesics c1, · · · , cm on R
which are freely homotopic to f(C1), · · · , f(Cm) have the same geodesic length ε.
Since γ(p) = p, γ maps R to itself, and we may assume γ preserves the Poincaré
metric on R. Let ci be a closed geodesic from {c1, · · · , cm}. Then γ(ci) has the
length ε. We took ε smaller than a Margulis constant M . Thus γ(ci) is disjoint
of c1, · · · , cm, unless it coincides with one of them. Recall that m is the maximal
number of disjoint, mutually non-isotopic essential simple closed curves on R. Then
the simple closed geodesic γ(ci) cannot be disjoint of all the curves c1, · · · , cm, and
it must coincide with one of the decomposing curves cj . We took i arbitrarily
from {1, · · · ,m}, thus γ permutes the curves of D. But γ acts as the identity of
Tg,n. Thus γ induces the trivial permutation of D (Otherwise, γ would induce a
non-trivial permutation of the Fenchel-Nielsen axes li, ti).

Let P be a pair of pants arbitrarily chosen from P.
(1) First, suppose P is an ordinary pair of pants. Let c1, c2, c3 be the boundary
curves of P .

Recall that γ is a non-trivial element of Ker(α). Two subcases are possible:
(1-i) γ maps the pants P to another pair of pants P ′, or
(1-ii) γ maps P to itself, and interchanges two boundary curves, say c1 and c2.

In case (1-i), the image P ′ of P under γ must have the same boundary curves as
P , because γ induces the trivial permutation of D. As a consequence, Σg,n is the
double P ∪ P ′, which is a closed surface of genus two Σ2,0, and γ has order 2: it
interchanges P and P ′.

In case (1-ii), γ interchanges c1 and c2, and induces a 180◦ rotation on c3. The
curves c1 and c2 were the same curve before the pants decomposition, and through
the curve c3, P must be connected to another pair of pants P ′. The 180◦ rotation
of c3 is extended to P ′.

If P ′ is again an ordinary pair of pants, with two boundary curves c′1 and c′2 other
than c3, γ again interchanges c′1 and c′2, which were the same curve before the pants
decomposition. Therefore, the original surface Σg,n is obtained by pasting P and
P ′ and gluing together c1 and c2, and c′1 and c′2, respectively. The resulting surface
is again a closed surface of genus 2, and γ acts as a hyperelliptic involution. (Note
that γ does not cause any twist about c3. Otherwise, γ would induce a nontrivial
action on Tg,n along the twist axis corresponding to c3.)

If P ′ is a twice punctured disk, the 180◦ rotation of c3 is extended to an involution
of P ′ which interchanges the punctures. The original Σg,n is obtained by pasting
P and P ′ along c3, and pasting together c1 and c2. The resulting surface is a twice
punctured torus, and γ acts as an involution interchanging the two punctures.
(2) Secondly, we consider the case where P is a once punctured annulus. Let c1
and c2 be the boundary curves of P . There are two cases to be considered.
(2-i) γ maps P to another once punctured annulus P ′, or
(2-ii) γ maps P to itself, and permutes c1 and c2.
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In case (2-i), P ′ has the same boundary curves c1 and c2. The surface Σg,n is
obtained by pasting P and P ′ along c1 and c2. The resulting surface is a twice
punctured torus Σ1,2, and γ acts as an involution interchanging P and P ′.

In case (2-ii), γ acts on the once punctured annulus P as an involution inter-
changing the boundary curves c1 and c2.This time, c1 and c2 had to be the same
curve before the decomposition, and Σg,n is obtained by gluing together c1 and c2.
The resulting surface is a once punctured torus Σ1,1 and γ acts as a non-trivial
involution which induces a reflection on the curve c1 = c2.
(3) Finally, suppose P is a twice punctured disk. There are two cases to be consid-
ered:
(3-i) γ maps P to another twice punctured disk P ′.
(3-ii) γ maps P to itself and induces a 180◦ rotation to the boundary curve c1 of
P .
In case (3-i), the surface Σg,n is obtained by pasting P and P ′ along c1, and the
resulting surface is a four times punctured sphere Σ0,4. γ acts as an involution
interchanging P and P ′.
In case (3-ii), γ acts as an involution of P which induces a 180◦ rotation on the
boundary curve c1. Let P ′ be the neighbor of P having the same boundary curve
c1. The involution γ is extended to an involution of P ′. If P ′ is an ordinary pair
of pants, the involution interchanges the remaining two boundary curves of P ′ as
in the case (1-ii). Thus the original surface Σg,n is obtained by attaching a twice
punctured disk to a boundary curve of a pair of ordinary pants whose remaining
boundary curves are pasted together. The resulting surface is a twice punctured
torus Σ1,2. γ acts on Σ1,2 as an involution which interchanges the two punctures.

If the neighbor P ′ is a twice punctured disk, the involution γ of P is extended
to P ′ as an involution which interchanges the two punctures of P ′. The original
surface is obtained by pasting P to P ′ along c1. The resulting surface is a four
times punctured sphere Σ0,4. The involution γ induces a 180◦ rotation on c1, and
interchanges two punctures on P and P ′, respectively. This involution on Σ0,4

is of different type from the involution on Σ0,4 discussed in case (3-i). Thus the
kernel of α : Γ0,4 → Aut(T0.4) is isomorphic to Z2 ⊕Z2 generated by two mutually
commutative involutions.

Summarizing the above argument, we get Lemma 20. □

Proof of Corollary 2.1. Suppose 3g − 3 + n > 1, and (g, n) ̸= (2, 0), (1, 2). Then
by Lemma 20, α : Γg,n → Aut(Tg,n) is injective. On the other hand, by Royden’s
theorem [67] and its generalization [23], the homomorphism α : Γg,n → Aut(Tg,n)
is surjective. Thus under the condition of Corollary 2.1, Γg,n is isomorphic to
Aut(Tg,n). This fact together with Theorem 2 proves Corollary 2.1. □

10.3. A natural representation of the point group. In this subsection, we
will show that there is another convergent process giving a natural representation

of the point group
−−−−→
NΓ(D). Let us define a diffeomorphism f√ε : Rm → F ε(D) by

setting

(t1, · · · , tm) = f√ε(x1, · · · , xm)

= (
√
εx1, · · · ,

√
εxm)
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Also define a metric ⟨·, ·⟩√ε on Rm as follows:

(84) ⟨ ∂

∂xi
,

∂

∂xj
⟩√ε

def
=

2π

ε2
⟨df√ε

(
∂

∂xi

)
, df√ε

(
∂

∂xj

)
⟩.

As before, the right-hand side is the Weil-Petersson metric on F ε(D).
Since

df√ε

(
∂

∂xi

)
=

√
ε
∂

∂ti
,

we have

⟨ ∂

∂xi
,

∂

∂xj
⟩√ε =

2π

ε2
⟨
√
ε
∂

∂ti
,
√
ε
∂

∂tj
⟩

=
2π

ε

( ε

2π
δij +O(ε4)

)
by (81)

= δij +O(ε3).

Thus the induced metric on Rm converges to the Euclidean metric.
We define the induced action of NΓ(D) on Rm via f√ε:

γ(p) = f−1√
ε
(γ(f√ε(p))) ∀p ∈ Rm, ∀γ ∈ NΓ(D).

This action is isometric with respect to the induced metric ⟨·, ·⟩√ε. Thus as before,
the action converges to a Euclidean isometry group as ε → 0. But this time, the
action of τi is pulled back to the following translation:

(x1, · · · , xi, · · · , xm) �→ (x1, · · · , xi +
√
ε, · · · , xm),

and the free abelian group Γ(D) is pulled back to a “fine” lattice (
√
εZ)m. This

implies that in the limit of ε → 0 the action of Γ(D) becomes stationary. Let T
be the translation subgroup of NΓ(D). Then for ε > 0, the fundamental region
of (

√
εZ)m is covered by a finite number of copies of the fundamental region of T .

Thus as ε tends to 0, the action of T becomes stationary too. This implies that in
the limit we naturally get an isometric action of the quotient group NΓ(D)/T on

Em, and this quotient is nothing but the point group
−−−−→
NΓ(D).
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11. Examples

11.1. Closed surface of genus 2. Let us consider an oriented closed surface Σ2

of genus 2. There are two kinds of pants decompositions of Σ2. (See Fig. 1.)
These decompositions are represented by trivalent graphs, whose vertices repre-

sent pairs of pants, and the edges decomposing curves. (See Fig. 2.)
We denote the corresponding crystallographic groups by G0 (left one), and G1

(right one).
The translation subgroup T (G0) of G0 is generated by ⟨a⟩, ⟨b⟩ and 1

2 ⟨c⟩, where
⟨a⟩ denotes the Dehn twist about the decomposing curve (a) corresponding to the
edge a. Similarly for ⟨b⟩ and ⟨c⟩. The coefficient 1

2 of ⟨c⟩ stands for the half-twist
around the decomposing curve (c). Now the left-right reflection of the graph induces
an orientation preserving homeomorphism of Σ2 which reverses the orientation of
the curve (c). But the Dehn twist does not depend on the orientation of the curve.
Thus the left-right reflection of the graph leaves ⟨c⟩ fixed. It interchanges ⟨a⟩ and
⟨b⟩. While the up-down reflection of the graph induces the so-called “hyperelliptic
involution”of Σ2, which belongs to the kernel of Γ2 → Aut(T2). (Lemma 20.)

Therefore, the point group
−→
G0 isD1, the dihedral group of order 2. The generator

is the reflection of E3 with respect to the plane containing the axis corresponding
to ⟨c⟩, which interchages the axes corresponding to ⟨a⟩ and ⟨b⟩.

Recall that the 3-dimensional crystallographic groups are classified into 32 crys-
tal classes, according to the types of spherical orbifolds produced by the point
groups. These 32 crystal classes are divided into 7 crystal systems according to
the number of the axes or reflection planes which are contained in the point groups
(see [59], [42], [18], and https://en.wikipedia.org/wiki/Crystal system). The above
crystallographic group G0 belongs to the domatic crystal class (whose spherical
orbifold is a disk with silvered boundary in the sense of [55]) which is contained in
the monoclinic crystal system. More specifically, J. M. Montesinos-Amilibia iden-
tified the group G0 as the group 2/2/2/01 in the notation of H. Brown, R. Bülow,
J, Neubüser, H. Wondratschek and H. Zassenhaus [18], namely the group 8 in the
International Table of Crystallography (IT for short). (See p.62 of [18].) Note that
Brown et al. [18] classify the crystallographic groups up to the conjugation of affine
groups. An example of an actual mineral crystal representing the group IT 8 is
“Tsepinite-Na”. (Figs. 3, 4. See also https://www.mindat.org/min-11013.html or

Figure 1. Two pants decompositions

Figure 2. Corresponding trivalent graphs
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http://www.webmineral.com/data/Tsepinite-Na.shtml#.XBi5nxB7mEl). Tsepinite
was named for Anatoliy I. Tsepin (1946–), Russian microprobe analyst.

Figure 3. Tsepinite-Na

Figure 4. Tsepinite-Na, a closer look

In the group G1, the translation subgroup T (G1) is generated by ⟨d⟩, ⟨e⟩ and
⟨f⟩. The dihedral group of order 6, D3, permutes the edges, thus permutes the

axes of E3 corresponding to ⟨d⟩, ⟨e⟩ and ⟨f⟩. The point group
−→
G1 is isomorphic to

D3, and the corresponding spherical orbifold is D33. The crystallographic group G1

belongs to the ditrigonal pyramidal crystal class which is contained in the trigonal
crystal system. According to Montesinos, G1 is the group 5/4/1/01 in the notation
of Brown et al. and is identified as the group IT 160. See [18], p.71. An example of
an actual mineral crystal representing this group is “Tourmaline”. (See [59], Fig.
52, and https://www.mindat.org/min-4003.html.) The pictures Figs. 5, 6, and 7
were taken by J. M. Montesinos-Amilibia.

Figure 5. Tourmaline: Two ends are different
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Figure 6. One end of a specimen of tourmaline, a different one
from Figure 5

Figure 7. The other end of the same specimen as in Figure 6

11.2. Closed surface of genus 3. The closed surface Σ3 has 5 types of pants
decompositions. See Fig. 8.

Figure 8. Five types of decompositions of Σ3

The considerations similar to genus 2 case give the point groups of the corre-
sponding 6-dimensional crystallographic groups. They are from left to right (in Fig.
8)D3, S4 (symmetric group on 4 elements), D1×D1,D1×D1, andD1×D1×D1×D1.
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