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CHAPTER 0

Introduction

This book presents the theory of flows, that is, continuous-time dynamical
systems, with an emphasis on the theory of (uniformly) hyperbolic dynamics
for flows. It serves both as an introduction as well as an exposition of recent
developments in uniformly hyperbolic dynamics.

While the study of flows historically predates that of discrete-time systems, the
literature tends to develop the theory of dynamical systems primarily in the context
of discrete-time systems and leaves it to the reader (or unaddressed) to transfer
those insights to flows. It is thus often implicit that “things work analogously for
flows,” or that “this is different for flows.” This book fills a gap in the introductory
literature by giving a “flows-first” introduction to dynamical systems and focus-
ing on continuous-time systems, rather than treating these as afterthoughts or
exceptions to methods and theory developed for discrete-time systems.

Even the introductory parts of this text have distinctive features beyond the
fact that flows are the subject. Chapter 5 is to our knowledge unique in the litera-
ture for the extent to which it implements the Anosov-Katok-Bowen program of
developing the dynamical features of hyperbolic sets from shadowing alone! While
it is satisfying in itself to see this implemented, it does seem particularly timely as
well because recent work of Climenhaga, Thompson and collaborators has put the
Bowen approach back in the enter of smooth ergodic theory, and to great effect. We
are also happy to provide the reader with a range of examples of hyperbolic flows,
of which several are quite recent discoveries. Chapter 5 may furthermore be the
first account to provide a proper natural definition of a (uniformly) hyperbolic flow
(Definition 5.3.48) based on the equivalence of the 3 popular notions (Theorem
5.3.45 on page 269), which, although not in itself new, does not seem to be as well
known as it should. We also call attention to the very end of the book, where Section
12.7 reproduces a clean proof by Abdenur and Viana of absolute continuity of the
invariant foliations in the greatest generality for partially hyperbolic dynamical

1Speciﬁcally, the Shadowing Lemma and the Shadowing Theorem, which include uniqueness, so
in terms of customary usage one should say that shadowing and expansivity produce the insights in
Chapter 5.



2 0. INTRODUCTION

systems. This exceeds what we need but seemed like a most desirable addition to
the literature.

As complements to this introductory material the reader may also enjoy a brisk
introduction in a similar spirit that focuses on discrete time [147], the rather larger
book [181], and the more example-driven text [149].

The second half of the book, from Chapter 7 onwards? includes a range of
advanced topics in uniformly hyperbolic dynamics with a focus on the topology
and dynamics of Anosov flows and a number of topics in recent research that for
the most part have not appeared in any expository literature. These topics are
no less accessible than the introductory subjects, but here we take even more
opportunities to augment the results we prove with complements whose proofs
we do not include, and in Chapters 9 and 10 we more frequently take the liberty of
providing outlines of proofs rather than full proofs. This is meant to provide not
only a substantial introduction to these subjects with proofs, but further vistas to
form a more complete panorama.

There is much to acknowledge that has significantly helped us write this book.
We owe a debt to students from Tufts University, Brandeis University, the Univer-
sity of Tokyo and the ETH Ziirich for their forbearance, support and criticism? to
colleagues and students who commented helpfully on book drafts from afar, to
Manfred Einsiedler and Michael Struwe for arranging the Nachdiplom Lectures
at the ETH, and to Takashi Tsuboi and Masahiko Kanai for arranging lectures on
hyperbolic flows at the University of Tokyo. It seems highly appropriate and satisfy-
ing that thereby the second author was at the last stages of writing a department
colleague of Masahiko Kanai, whose work was foundational for substantial parts of
the rigidity theory described near the end of the book, as well as of Shuhei Hayashi,
who with his proof of the stability theorems for hyperbolic flows placed one of the
crowning glories atop hyperbolic dynamics in the 20th century.

Some of the writing in this book owes to earlier books and research articles by
one or the other of us, which included text we deemed—in more or less adapted
form—to be an excellent fit for this work. This implies a debt to our respective
coauthors of such prior works, Anatole Katok notably among them. In some cases,
original research papers by others still remain the best exposition of ideas we could
not omit from this book, so it will be apparent and often explicit where we followed
their ideas; Bowen foremost comes to mind. And occasionally, unpublished lecture
notes (such as by Lanford at the ETH) provided the most elegant proofs we know
of a needed fact.

2Actually, from Section 6.5.
3In the Talmud, R. Chanina remarked, "I have learned much from my teachers, more from my
colleagues, and the most from my students” (Ta’anis 7a).
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1. Purpose and scope

The book is divided into two parts. The first of these develops the general the-
ory of flows. The second part is about hyperbolicity and includes an introduction
as well as a panorama of current topics. This book is self-contained in the technical
sense, that is, it includes definitions of all dynamics concepts with which we work,
but without any pretense to being comprehensive with introductory material.

It has been written in a way that it can be adapted to a course in a number
of different ways depending on the purpose of the course. Starred chapters and
starred sections are not necessarily “harder; but they are optional, and the material
is not necessary for further sections except for an occasional result that can be
used as a black box. Much of this material is hard to find in the literature except for
original sources.

The core chapters are Chapter 1, Chapter 5, and Chapter 6. If one wants to
emphasize ergodic properties of flows then one could include Chapter 3, Chapter
4, and Chapter 8; or at least portions of them. For a more topological or geometric
course one would instead include Chapter 2, and portions from either Chapter 9
and/or Chapter 10. However, there are sections in Chapter 10 that invoke some
ergodic theory. The core chapters include exercises.

The appendices contain material on maps that are helpful for certain sections.
For those already familiar with the theory for maps this can be omitted or quickly
covered. For those not familiar with the discrete case it will be necessary to cover
the needed parts of these to understand either the material on ergodic theory in
Chapter 3 or the material on invariant foliations in Chapter 6.

To give our selection of flows versus discrete-time systems some context, we de-
scribe a few connections between these. Historically, dynamical systems were flows,
such as those that arise from differential equations that describe a mechanical
system. Poincaré is widely regarded as the founder of the discipline of dynamical
systems as we know it, and among the wealth of notions he created is that of a local
section, known also as a Poincaré section. This arose in the context of periodic
orbits (trajectories) of a continuous-time dynamical system as anchors to study
other motions in the system. Such a nearby motion will track the periodic motion
for possibly considerable amounts of time, and it is often of less interest whether it
lags or leads a little as to how it moves closer to or further from the periodic orbit.
To focus on these transverse phenomena Poincaré considered a small hypersurface
perpendicular to the periodic orbit on which he could track successive “hits” by a
nearby motion. This defines a map on this disk, called the Poincaré (first) return
map, see Figure 0.1.1 This is an early way in which discrete-time dynamical systems
arose.
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FIGURE 0.1.1. Poincaré section and map

Coming from a different direction, billiard systems illustrate how a similar
approach works both naturally and globally. A mathematical billiard system ideal-
izes physical billiards by ignoring the spin and rolling of the balls: a point particle
moves along straight lines and is reflected in the boundary with incoming angle
equal to outgoing angle. This makes them more like air hockey or a description
of light in a mirrored room. (And tables of shapes other than rectangular are of
considerable interest.) These are naturally continuous-time systems, but they

FIGURE 0.1.2. Billiard

come with natural discrete moments in time: the moments in which collisions
occur. Indeed, all information about the evolution of such a system is contained in
the locations and velocities of all balls at the moment of a collision, because this
determines the motion until the next collision and the positions and velocities at
that subsequent moment. Therefore, the dynamics can be described as a map on
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the “collision space” that sends each collision configuration to the next one. Once
again, a discrete-time system describes the dynamics of a continuous-time system.

This latter process can be reversed: Given the discrete-time system, one more
piece of information reconstructs the flow entirely: the “return time” from one
collision to the next. We call this assembly of a map and a return-time function a
suspension if the return time is constant (Definition 1.2.4), and a special flow or
flow under a function otherwise (Definition 1.2.7).

There are also aspects of dynamics in which pronounced differences between
flows and discrete-time systems are manifested. On one hand, this occurs when
“longitudinal” effects matter, that is, when time-changes make a difference. In the
case of a special flow this amounts to properties that are affected by the choice
of “roof” or return-time function versus those that are not. For instance, the
existence of a dense orbit is unaffected by the choice of roof function, but whether
all periodic orbits are commensurate (their periods are various multiples of one
positive number) clearly does depend on return times. Another notable feature of
flows is that they permit surgery constructions to construct new flows. Accordingly,
such a construction establishes that Anosov flows need not have a dense orbit
(Section 9.3), but it is a long-open and exceedingly difficult problem to decide
whether Anosov diffeomorphisms always have a dense orbit. In fact, it is not even
known whether every Anosov diffeomorphism has a fixed point.

The theory of continuous-time dynamical systems does not directly reduce
to that of discrete-time dynamical systems in the most obvious way: few diffeo-
morphisms arise as time-¢ maps of flows (Definition 1.1.1) since (every time-¢
map of) every flow is isotopic to the identity? Also: time-¢ maps of flows have
“roots” of all orders, being the n'" iterate of the time—¢/n map. But one might say
that a full continuous-time theory yields a full discrete-time theory because every
diffeomorphism can be represented as a Poincaré section for some flow via the
suspension/special-flow construction—provided one has a comprehensive under-
standing of the dynamics of a section in terms of that of the flow. This does not
work in reverse because that construction is not unique, and many flows generate
a given diffeomorphism, with confounding “longitudinal” effects as above.

More to the point in our context: for the study of hyperbolic flows (Chapter 5)
it may be useful to know all about hyperbolic maps, but that theory does not apply
to time-1 maps of (any) flows since those are never hyperbolic (unless the periodic
points for the flow are all hyperbolic equilibria). More specifically, the time-t map

40ne point of view from which flows produce a “sparse" set of maps of a given manifold is related
to the mapping class group. For a manifold M the mapping class group is the set of isotopy-classes of
homeomorphisms (or diffeomorphisms) of M. Flows are contained in the trivial equivalence class of
the mapping class group.
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of a hyperbolic flow satisfies a weaker condition called partial hyperbolicity due to
the flow direction, in which neither contraction nor expansion occur. Thus, this
flows-first book complements the existing literature emphasising discrete-time
systems.

Once more, beyond the general theory, our emphasis is on uniformly hyper-
bolic dynamics. Neither partial nor nonuniform hyperbolicity are themselves
subjects in this book. (The sole exception being the proof of absolute continuity
of the invariant foliations for partially hyperbolic diffeomorphisms: while it is
provided here to be applied to uniformly hyperbolic flows via time-1 maps, the
proof covers partially hyperbolic diffeomorphisms in full generality.)

In short, discrete-time dynamics and continuous-time dynamics have closely
related toolkits and close interactions, but the discrete-time focus of the existing

literature leaves room for an explicit presentation of continuous-time dynamics?

2. Historical sketch

We now outline some of the developments that brought about the theory of
hyperbolic flows® There are several intertwined strands of the history of hyperbolic
dynamics: Geodesic flows and statistical mechanics on one hand and hyperbolic
phenomena ultimately traceable to some application of dynamical systems. Geode-
sic flows were studied, for example, by Hadamard, Hedlund, Hopf (primarily either
on surfaces or in the case of constant curvature) and Anosov-Sinai (negatively
curved surfaces and higher-dimensional manifolds). Other hyperbolic phenomena
appear in the work of Poincaré (homoclinic tangles in celestial mechanics [242]),
Perron (differential equations [233]), Cartwright, Littlewood (relaxation oscillations
in radio circuits [81,82,202]), Levinson (the van der Pol equation, [201]) and Smale
(horseshoes, [277,278]), as well as countless others in recent history.

a. Homoclinic tangles and negative curvature. The advent of complicated dy-
namics took place in the context of Newtonian mechanics, according to which
simple underlying rules governed the evolution of the world in clockwork fashion.
The successes of classical and especially celestial mechanics in the 18th and 19th
century were seemingly unlimited and Pierre Simon de Laplace felt justified in
saying (in the opening passage he added to [191, p. 2]):

Nous devons donc envisager I'état présent de 'univers, comme |'effet de son

état antérieur, et comme la cause de celui qui va suivre. Une intelligence qui

pour un instant donné, connaitrait toutes les forces dont la nature est animée,

5To be clear, the research literature does not omit the continuous-time theory altogether, it is
among books that this work occupies a unique place.
6An expanded version can be found in [147].
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et la situation respective des étres qui la composent, si d’ailleurs elle était assez
vaste pour soumettre ces données a I'analyse, embrasserait dans la méme
formule les mouvemens des plus grands corps de I'univers et ceux du plus
léger atome: rien ne serait incertain pour elle, et’avenir comme le passé, serait
présent a ses yeux’
The enthusiasm in this passage is understandable and its forceful description of
(theoretical) determinism is a good anchor for an understanding of one of the basic
aspects of dynamical systems. Moreover, the titanic life’s work of Laplace in celestial
mechanics earned him the right to make such bold pronouncements. Another bold
pronouncement of his, that the solar system is stable, came under renewed scrutiny
later in the 19th century, and Henri Poincaré was expected to win a competition to
finally establish this fact. However, Poincaré came upon hyperbolic phenomena
in revising his prize memoir [242] on the three-body problem. He found that
homoclinic tangles (which he had initially overlooked) caused great difficulty and
necessitated essentially a reversal of the main thrust of that memoir [30]. He
perceived that there is a highly intricate web of invariant curves and that this
situation produces dynamics of unprecedented complexity:
Que l'on cherche a se représenter la figure formée par ces deux courbes et
leurs intersections en nombre infini dont chacune correspond a une solution
doublement asymptotique, ces intersections forment une sorte de treillis, de
tissu, de réseau a mailles infiniment serrées; chacune des deux courbes ne
doit jamais se recouper elle-méme, mais elle doit se replier sur elle-méme
d’'une maniere trés complexe pour venir recouper une infinité de fois toutes
les mailles du réseau. On sera frappé de la complexité de cette figure, que je
ne cherche méme pas a tracer.?
This is often viewed as the moment chaotic dynamics was first noticed. He con-
cluded that in all likelihood the prize problem could not be solved as posed: To find
series expansions for the motions of the bodies in the solar system that converge
uniformly for all time. Indeed, when Birkhoff picked up the study of this situation

We ought then to consider the present state of the universe as the effects of its previous state and
as the cause of that which is to follow. An intelligence that, at a given instant, could comprehend all
the forces by which nature is animated and the respective situation of the beings that make it up, if
moreover it were vast enough to submit these data to analysis, would encompass in the same formula
the movements of the greatest bodies of the universe and those of the lightest atoms. For such an
intelligence nothing would be uncertain, and the future, like the past, would be open to its eyes.

81f one tries to imagine the figure formed by these two curves with an infinite number of intersec-
tions, each corresponding to a doubly asymptotic solution, these intersections form a kind of trellis, a
fabric, a network of infinitely tight mesh; each of the two curves must not cross itself but it must fold on
itself in a very complicated way to intersect all of the meshes of the fabric infinitely many times. One
will be struck by the complexity of this picture, which I will not even attempt to draw
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FIGURE 0.2.1. Homoclinic tangles [©Cambridge University Press, reprinted from

[181] with permission]

in his prize memoir [48] for the Papal Academy of Sciences, he noted that and
described how this implies complicated dynamics [48, p. 184].

b. Geodesic flows. A major class of mathematical examples motivating the de-
velopment of hyperbolic dynamics is that of geodesic flows (that is, free-particle
motion) of Riemannian manifolds of negative sectional curvature. Hadamard
considered (noncompact) surfaces in R3 of negative curvature [142] and found,
with apparent delight, that if the unbounded parts are “large” (do not pinch to
arbitrarily small diameter as you go outward along them) then at any point the
initial directions of bounded geodesics form a Cantor set. Since only countably
many directions give geodesics that are periodic or asymptotic to a periodic one,
this also proves the existence of more complicated bounded geodesics. Hadamard
was fully aware of the connection to Cantor’s work and to similar sets discovered
by Poincaré, and he appreciated the relation between the complicated dynamics
in the two contexts. Hadamard also showed that each homotopy class (except for
the “waists” of cusps) contains a unique geodesic. Duhem [109] seized upon this
to describe the dynamics of a geodesic flow in terms of what might now be called
deterministic chaos: Duhem used it to illustrate that determinism in classical
mechanics does not imply any practical long-term predictability.
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FIGURE 0.2.2. Negatively curved surface  (reproduced from Hadamard [142]

©1898 Elsevier Masson SAS. All rights reserved.]

Several authors trace the introduction of symbolic dynamics to the work of
Hadamard on geodesic flows. Birkhoff is among them: In his proof of the Birkhoff-
Smale Theorem (see Theorem 6.3.2) symbolic sequences appear (as well as a
picture that resonates with Figure 6.3.2). It appears, however, that only in 1944
did symbol spaces begin to be seen as dynamical systems, rather than as a coding
device [91].

c. Boltzmann’s Fundamental Postulate. Well before Poincaré’s work, James Clerk
Maxwell (1831-1879) and Ludwig Boltzmann (1844-1906) had aimed to give a
rigorous formulation of the kinetic theory of gases and statistical mechanics. A
central ingredient was Boltzmann’s Fundamental Postulate, which says that the
time and space (phase or ensemble) averages of an observable (a function on the
phase space) agree. Apparently because of a misstatement by Maxwell? one often
ascribes to him the so-called Ergodic Hypothesis:
The trajectory of the point representing the state of the system in phase space
passes through every point on the constant-energy hypersurface of the phase
space.
Poincaré and many physicists doubted its validity since no example satisfying it
had been exhibited [243]. Accordingly, in 1912 Paul and Tatiana Ehrenfest [112]
proposed the alternative Quasi-Ergodic Hypothesis:
The trajectory of the point representing the state of the system in phase space
is dense on the constant energy hypersurface of the phase space.

9 the system, if left to itself in its actual state of motion, will, sooner or later, pass through every

phase...”
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FIGURE 0.2.3. The pseudosphere [©Cambridge University Press, reprinted from

[181] with permission]

Indeed, within a year proofs (by Rosenthal and Plancherel) appeared that the
Ergodic Hypothesis fails [238, 259]. (This is obvious today because a trajectory
has measure zero in an energy surface.) These difficulties led to the search for
any mechanical systems with this second property. The motion of a single free
particle (that is, the geodesic flow) in a negatively curved space (beginning with
the pseudosphere, Figure 0.2.3) emerged as the first and for a long time sole class
of examples with this property. Within a decade, the understanding of the problem
led to the pertinent contemporary notion, and this turned out to be probabilistic
in nature!® The 1931 Birkhoff Ergodic Theorem (Theorem 3.2.16) (“time averages
exist a.e.”)!! laid the foundation for the definition of ergodicity now in use, which
is: “No proper invariant set has positive measure.”'?

If this is the case, then time averages agree with space averages—Boltzmann’s
Fundamental Postulate. Furthermore, almost every orbit is dense in the support of
the measure.

The 1930s saw a flurry of work in which Artin’s 1924 work on the modular
surface was duly extended to other manifolds of constant negative curvature. For
constant curvature, finite volume and finitely generated fundamental group the

10This serves to point out that the earlier quote by Laplace about determinism comes from his
Philosophical essay on probabilities, where he goes on to say that we often do not have sufficiently
detailed initial data, and must hence resort to a probabilistic approach. The motion of a molecule of air
was a prominent instance he mentioned in that context.

HThis was proved after the von Neumann Ergodic Theorem 3.2.4 but published earlier [294]—and
the true foundational paper of ergodic theory is much more likely [218].

12These two combine to give the Strong Law of Large Numbers.
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geodesic flow was shown to be topologically transitive [186,208], topologically mix-
ing [156], ergodic [161], and mixing [157,162]. (In the case of infinitely generated
fundamental group the geodesic flow may be topologically mixing without being
ergodic [267]). If the curvature is allowed to vary between two negative constants
then finite volume implies topological mixing [134] (see also [137, p. 183]). But
as Hedlund noted in an address delivered before the New York meeting of the
American Mathematical Society on October 27, 1938:
Outstanding problems remain unsolved, a notable one being the problem of
metric transitivity [ergodicity] of the geodesic flow on a closed analytic surface
of variable negative curvature.
It so happens that Eberhard Hopf was just then working on this problem [162]. He
considered compact surfaces of nonconstant (predominantly) negative curvature
and was able to show ergodicity of the Liouville measure (phase volume).

From Hopf’s work there was no progress in the direction of ergodicity of geode-
sic flows (= free particle motion) for almost 30 years. Hopf’s argument had shown
roughly that Birkhoff averages of a continuous function must be constant on al-
most every leaf of the horocycle foliation, and, since these foliations are C!, the
averages are constant a.e. He realized that much of the argument was independent
of the dimension of the manifold (indeed, he carried much of the work out in
arbitrary dimension), but could not verify the C! condition in higher dimension.
Dmitri Anosov [10] axiomatized Hopf’s instability, defining Anosov flows, and he
showed that differentiability may indeed fail in higher dimension, but that the Hopf
argument can still be used because the invariant laminations have an absolute
continuity property [10, 12, 20,27, 65, 248]. This extension is interesting because
despite the ergodicity paradigm central to statistical mechanics, Boltzmann’s Fun-
damental Postulate, there was a dearth of examples of ergodic Hamiltonian systems.
The quintessential model for the Fundamental Postulate, the gas of hard spheres,
resisted sustained attempts to prove ergodicity for half a century [271-273]*3

The Hopf argument remains the main method for establishing ergodicity
of volume in hyperbolic dynamical systems without an algebraic structure (the
alternative tool being the theory of equilibrium states, see [181, Theorem 20.4.1]).

d. Picking up from Poincaré. Like Hadamard, several mathematicians had begun
to pick up some of Poincaré’s work during his lifetime. Birkhoff did so soon after
Poincaré’s death. He addressed issues that arose from the mathematical devel-
opment of mechanics and celestial mechanics such as Poincaré’s Last Geometric

13Halfa century because Sinai convinced physicists that he had solved this problem in 1963 [192].



12 0. INTRODUCTION

Theorem and the complex dynamics necessitated by homoclinic tangles [46, Sec-
tion 9]. He was also important in the development of ergodic theory!* notably by
proving the Pointwise Ergodic Theorem 3.2.16.

The work of Cartwright and Littlewood during World War II on relaxation
oscillations in radar circuits [81, 82, 202] consciously built on Poincaré’s work.
Further study of the van der Pol equation by Levinson [201] contained the first
example of a structurally stable diffeomorphism with infinitely many periodic
points. Structural stability had originated in 1937 with Andronov and Pontryagin
[9] (necessary and sufficient conditions on singularities and periodic orbits for
structural stability of vector fields on a disk) but began to flourish only 20 years
later—thanks in no small part to Pontryagin’s favorite student, Anosov. Inspired by
Peixoto’s work, which generalized [9] to any orientable closed surface [232], Smale
had been after a program of studying diffeomorphisms with a view to classification
[279], and he proved that Morse-Smale systems (finitely many periodic points with
stable and unstable sets in general position) are structurally stable. The Cartwright—
Littlewood example was brought to his attention by Levinson just as he conjectured
that Morse-Smale systems are the only structurally stable ones [276]. He eventually
extracted from Levinson’s work the horseshoe [277,278]. Independently, Thom
(unpublished) studied hyperbolic toral automorphisms (Example 1.5.23) and their
structural stability. Smale in turn was in contact with the Russian school, where
Anosov systems (then C- or U-systems) had been shown to be structurally stable,
and their ergodic properties were studied by way of further development of the
study of geodesic flows in negative curvature.

This book focuses on uniformly hyperbolic flows, and even in this realm there
are plenty of new developments. Section 5.2 gives instances of uniformly hyper-
bolic flows of which several are quite new, and Chapter 9 includes various further
constructions of such (notably in Section 9.3 and Section 9.2). Our presentation of
these includes results in a range of directions that still await publication.

The initial development of the theory of hyperbolic systems in the 1960s was
followed by the founding of the theory of nonuniformly hyperbolic dynamical sys-
tems in the 1970s, mostly by Pesin [28, 224,234] (during which time the hyperbolic
theory continued its development). One of the high points in the development of
smooth dynamics is the proof by Robbin, Robinson, Mafié and Hayashi [155] that
structural stability indeed characterizes hyperbolic dynamical systems. For diffeo-
morphisms this was achieved in the 1980s, for flows in the 1990s. Starting in the
1980s the field of geometric and smooth rigidity came into being and is flourishing
now (Chapter 10). At the same time topological and stochastic properties of attrac-
tors began to be better understood with techniques that nowadays blend ideas from

14The Poincaré Recurrence Theorem 3.2.1 is proved in Poincaré’s prize memoir [242]
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hyperbolic and one-dimensional dynamics. Meanwhile, the theory of partially hy-
perbolic dynamical systems, which goes back to seminal works of Brin and Pesin in
the 1970s, has seen explosive development since the last years of the 20th century
[236], which in turn has entailed renewed interest in the methods of uniformly
hyperbolic dynamical systems and their possible extensions to this new realm.

Of course, insights into complicated dynamics have penetrated well beyond
pure mathematics. In the sciences, these ideas have fundamentally changed the
appreciation of nonlinear behavior and that complex data may arise from simple
models; they have also provided terminology for describing complexity [131].
Celestial mechanics is the realm where applications have most clearly gone beyond
the descriptive; since the 1980s the design of trajectories for space probes has
irreversibly moved beyond perturbing the 2-body problem in ways that make
entirely new mission designs feasible and economical in astonishing ways [35].
This can also be said to have added to the very foundation of how evidence is used
to build science [289].
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Flows






CHAPTER 1
Topological dynamics

This chapter introduces flows and develops the basic notions of dynamical
behaviors from a topological point of view, and provides a foundation for the re-
mainder of the book. The themes of this chapter are the following: definition and
basic properties of flows, properties of individual orbits, techniques for varying
speed or time, notions of equivalence for flows, and the interplay between continu-
ous and discrete time. Throughout the chapter we provide a number of examples
to refer to in this and subsequent chapters; these examples are chosen to illustrate
various notions and phenomena that will be encountered throughout the book.

We also examine the orbit structure of flows by first defining various notions
of recurrence (including periodicity) and sensitive dependence. We then turn to a
more global approach to the orbit structure of a flow. The chain decomposition and
the Conley Theorem can be viewed as pinnacles of organizing recurrent behavior
in a global context, and they later turn out to be basic for hyperbolic flows.

With a view to hyperbolic flows, we also look at properties of topological flows
that involve even closer entanglement of orbits: transitivity, mixing, and expansivity
for flows. Lastly, we describe symbolic flows, which will later provide finite models
for hyperbolic flows.

1. Basic properties

We begin by introducing flows, the central concept of this book. The notion of
a flow arose from studying solutions to differential equations. Over time mathe-
maticians realized that the notion of a flow could be generalized to the definition
we give below. We relate flows to solutions of a differential equation in Subsection
1.1b.

Definition 1.1.1 (Flow). A flow on a set X is a mapping ¢: X x R — X such that

e ¢(x,0) = x, and

o plp(x,1),s) =@(x,s+1).
Here, X is variously referred to as the phase space or state space of the flow. A flow is
C" for0<r <ooif ¢ is C". When we use the term smooth flow we will mean a flow

17
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that is at least C'. We usually assume that either X is a topological (or metric) space
and ¢ is continuous or that X is a measure space and ® is measure-preserving.

a. Time-¢ maps and orbits. It is illuminating in different ways to fix one input
variable at a time. Fixing ¢ yields self-maps of the space X, where a self map is a
map from X to X. For t € R the time-t map is @' = @(-, 1): X — X! We will typically
refer to a flow by ® = {¢'} ;e to avoid confusion with ¢?.

Claim 1.1.2. If ® isaflowand t € R, then the time-t map @' of the flow is a bijection
with inverse ™.

PROOF. Taking s = —¢ in Definition 1.1.1 gives ' o™ =Id = ¢t o p’. O

Thus, ¢° =1Id and ¢* o @ = ¢**! for all 5, t € R. Hence, a flow is a group action
of the real numbers. One can also study actions of groups other than R, but for the
most part we will restrict to group actions by R.

Definition 1.1.3. The inverse flow of a flow ¢ — ¢! is the flow t — ¢~ 7.

Remark 1.1.4. Note thatif a < b where a, b € R, then the flow is completely deter-
mined by the mapping ¢: X x [a,b] — X. (By inversion and the group law, this
determines the flow for t € [a, b] — [a, b], which contains an interval I around 0,
and by iteration, this determines the flow for r € ZI =R.)

We now provide a number of simple examples of flows.

Example 1.1.5. If ve R and (pt(x) =x+tv, then (po(x) =xandif s, t € R, then
P x) =x+ s+ Dv=(x+sv)+tv =0 (@’ (x)).
So @ is a flow on R.

This illustrates the contrast to discrete-time dynamical systems: a translation
and its iterates constitute an action of Z (or N), and here we have a family of
translations parametrized by a continuous parameter, and in fact, it contains all
translations.

Example 1.1.6. By consideringR (mod 1) =R/Z in Example 1.1.5, one projects the
flow from the previous example to a flow on a circle—which can also be represented
as (z,t) — 2"z for|z|=1inC.

This illustrates that the gap between continuous and discrete time is greater
than suggested by the previous example: while any two translations of R are dynam-
ically the same, circle rotations as maps have quite disparate behaviors. Rotations
by a rational number are periodic, while rotations by an irrational number exhibit

(_.» o, w»

1our notations “:=,” “=:,” “:«,” and “<:” define the quantity/property on the side of the “:
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rather nontrivial dynamics. By contrast, this circle flow is about as simple as a flow
can be. There is just a little more complexity in the next example.

Example 1.1.7. If a€ Rand ¢’(x):=x-e%, then ¢°(x) = xand if 5, € R, then
(ps+t(x) — x_eu(s+t) — (x_eas) Lot = (,Ot((PS(X)).
So @ is a flow on R.

More generally, flows in dimension 1 are dynamically quite simple. For that
reason we will typically investigate flows on higher dimensional spaces. We now
provide higher-dimensional examples of flows where more interesting dynamics
can be present. The next example is a flow on the torus.

Example 1.1.8 (“Asteroids”). The linear flow @, on the n-torus T” in the direction
v € R" is defined by ¢’(x) = ¢! (x) = (x+ tv) mod 1. As in Example 1.1.5, this
defines a flow (which generalizes the one in Example 1.1.6). Geometrically, a point
moves with constant speed along a straight line and (like in old video games such
as Asteroids) reemerges from one side of a fundamental domain after encountering
the opposite side.

'

g

FIGURE 1.1.1. Linear flow

This example is not quite as new as it first seems. Taking n copies of Example
1.1.6 with possibly different speeds, one can construct their cartesian product,
described more generally as follows.

Example 1.1.9. If ® and ¥ are flows on X and Y, respectively, then their cartesian
product ® x ¥ on X x Y defined by (¢ x v)!(x, ) = (¢, v (x,y) = (@' (x),w' () is
a flow on the product space.
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Having explored flows as families of maps, we now take the complementary
approach of fixing x € X and letting ¢ vary to focus attention on the time-evolutions
of individual initial conditions, that is, curves in X.

Definition 1.1.10 (Orbits). The orbit of x € X under the flow ® on X is

O (x) ::(pR(x) = {(pt(x) cteR} or O(x) ::(p“x}xR: t»—»(pt(x),

depending on whether we wish to keep track of the time parameter or not.? Simi-
larly, the forward orbit of x is

0 (x) =" (x) = {p'(x) : £= 0},
and the backward orbit of x is
6™ (%) =9 (x) = {p'(x) : t<0}.

We say that x is a fixed point (or equilibrium or singularity) of ® if 0 (x) = {x} (so
@'(x) =xforall teR).

A point x € X is periodic for a flow ® if there exists some ¢ > 0 such that
¢'(x) = xand a r > 0 with ¢’(x) # x. The point x is ¢-periodic, and its orbit is said
to be closed. The set of periodic points is denoted by Per(®).The (least or prime)
period of x is the infimum of all ¢ such that x is #-periodic.

As a fixed point does not have a flow direction, fixed points and periodic points
for flows require somewhat different analysis.

Remark 1.1.11. Example 1.1.5 has only a single orbit, which is R parametrized
with speed |v|. Even though the parametrizations differ for different initial points,
they differ only by a constant offset of time, so we do not consider these as different
orbits even if there is an intent to pay attention to the parametrization. Example
1.1.7 has 3 orbits: the origin and two half-lines. Unless n = 1 (in which case there is
a single orbit), Example 1.1.8 has uncountably many orbits, each of which is the
projection of a line to T"; these lines are all parallel. If v = (1,0,...,0) then they
all project to circles. If v = (1,/2,0,...,0) then they all lie in the projection of the
xy-plane and fill it densely.

In Example 1.1.8 the existence of a periodic orbit implies that thereisa T # 0
for which Tv € Z", in which case every orbit is periodic. (This is the case, for
example, if v € Q".) Fixed points occur only if v = 0, in which case the flow is
trivial. Summarized in slightly different terms, ®, has periodic orbits (and is itself
periodic) if and only if v € RZ".

2Here, the orbit of x and ¢* (x) are the same even in the former case, so parametrized orbits are
identified if they differ only by precomposition with a translation of R.
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Near a fixed point a flow is going to be very “slow,” and it is plausible that
the absence of fixed points implies positive minimum speed by a compactness
argument. This is indeed easy when “speed” makes sense, as it does when the flow
is described by differential equations as in the next section. Let us demonstrate
here that continuity of the flow is sufficient:

Proposition 1.1.12 (“Minimum speed”). If ® is a continuous flow without fixed
points on a compact space, then there is a Ty > 0 such that for any t € (0, Ty) there is
ay: >0 withd(@'(x),x) =y, forall x.

PROOE. If ¢ is such that for all z € N there is an x, with d(¢(x,), x,) < 1/n, then
an accumulation point x of the x,, satisfies d ((pt(x), x) = 0. Thus, if there are no
periodic points, take Ty = 1. Otherwise, T := inf{t | @'(x)=xforsome x € X} >0
will serve. O

Definition 1.1.13. Let ® be a flow on a topological space X. A point x € X has a flow
box neighborhood if there is a neighborhood U of x and a continuous embedding
h: U — R such that ho® = Wo h, where y': (x,s) — (x,s+ 1), see Figure 1.1.2.

Proposition 1.1.14 (Flow box). If ® isa C! flow, then any point where the generat-
ing vector field is nonzero admits a flow box.

FIGURE 1.1.2. A flow box

PROOF. By the Inverse-Function Theorem there is an € > 0 such that if B is an
e-ball transverse to the vector field at the point in question, then

Bx[-€,€el— M, (x,1)— @' (x)

is an embedding. ]
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Figure 1.1.4 below illustrates the obvious fact that this only works away from
fixed points. In the purely measurable context, however, something much like this
is indeed is not just locally, but globally possible; this is the Ambrose-Kakutani-
Rokhlin Special-Flow Representation Theorem 3.6.2. In the topological setting
there are some flows where there is a global flow box. This is the notion of a
suspension flow Definition 1.2.4.

b. Differential equations. The study of flows originated in the field of ordinary
differential equations, and smooth flows always arise in this way. We now make
this connection explicit. This is meant to serve readers coming to this subject from
a background in differential equations, but for others we point out that knowledge
of differential equations is not required.

Proposition 1.1.15. If f: R"” — R" and for all £ € R" the initial-value problem

dx
{ =fx)
x(0)=¢
has a unique solution x¢(t) defined for all t € R, then (pt(f) =x¢(1) is a flow.
PROOF. Given se€Rand y: R — R” defined by y(t) = x¢ (¢ + s) we write x': ‘Zl’t‘ and

Y= ZJ; and have y(0) = xg(s) and y' (1) = t+s) fx(+s,9)=f(y@).Soyisa

solution to = f(x). Since a solution is unlque we have
<p”s(£) = Xg (14 5) = Y() = Xy(0) () = Xe(9) (D) = (@7 09" (&)
as well as ¢° (&) = x(0) = &. O

Remark 1.1.16. Example 1.1.5 arises in this way from ‘;’t‘ = v and Example 1.1.7

from 4* %+ = ax. Inboth cases, and in general, f(x) = dt|t:0(p (x) = @(x) will serve.

We now examine another class of flows for which we can find explicit formulas
for the flow. A flow @ on a vector space X is linear if for all x, y € X, t € R and scalars
a and  we have

@ (ax+ By) = ap'(x) + B’ (y).

An example of a linear flow is the flow generated by the differential equation
x" = Ax where Ais an n x n real valued matrix (A € 4, (R)). If n = 1, then solutions
of x' = ax are easily seen to be of the form x(#) = Ce?". We will see that solutions to
x' = Ax have a similar form.

Ak
Definition 1.1.17. If A€ .4, (R), then the exponential of A is el = ?

Ii M8

Proposition 1.1.18. e is well-defined.
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PROOF. To show that the series converges we use that || AB|| < || AllllB]| and hence
[IA™] < | All". If M < N then

iAk M Ak i Ak % ”A”k
k=0 k' k=M+1 k! _k:M+1 k-

AR . . moAk

Since Z is convergent, hence Cauchy (in R), this shows that Z o is
k=0 _ :

Cauchy, hence convergent in .4, (R). ]

Analogously to the power series representation of the exponential function on
< (At)

< rone oA 240 —
R, this gives e’ = )~ W =1d, and
k=0
d 4 & k(Apk! (Ap)¥ Ar
—_ = _— A = A— = A .
PR M L AT = e
At

So for each x € R" the function e“* x is the solution to ' = Ay with initial condition
y(0) = v. The flow ¢’ (x) = e x is a linear flow.

If A€ 4, (R) has n-linearly independent eigenvectors, then we can diagonalize
A and explicitly compute e’ from the power series. When A does not have n-
linearly independent eigenvectors, we can instead use the decomposition into
generalized eigenspaces (Theorem 12.2.5). Specifically, we will (as such vacuously)
write eA? = e* e4=AD1 and then find a basis of vectors for each of which the matrix
exponential on the right collapses to a polynomial.

Since (A— AI) commutes with A1, eA? = eA=ADIME gq Al — AT 1f } is an
eigenvalue of A we let M(A) be the generalized eigenspace (Section 12.2) and r (1)
be the natural number at which the nullspace of (A— AT Yk stabilizes. If v € M(A),
then (A—AD)"Wp = 0 and the series for e/4~*D?p terminates:

r(M)-1 +k

eAADL, — lim Z—(A ADFy = > t—(A ADkv.
oo i=o k!

Hence,

r(A)-1 k
eA V= exlte(A M)t At Z (A Al)k

So now we have the following result.

Theorem 1.1.19. Ler Ay, A, be eigenvalues with M (A1), ..., M(Ap) the corresponding
generalized eigenspaces (Theorem 12.2.5). If{ = v1 +---vp for vj € M(A;) and
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1< j<p,thenx' = Ax and { = x(0) has the solution

p r(j)-1 k
x(t) = Z elhit

Y (a-AnkE

k=0

Uj.

p
Remark 1.1.20. Note that this could be written as x(1) = ) elite(A_’lfmvj, but
j=1

the point is that the middle term is polynomial rather than exponential, i.e., up to

p
polynomial error we have x(t) = Y_ e'v;.
j=1

It is rare, however, for a flow to be given in terms of explicit formulas, just
like it is rare for a discrete-time dynamical system to admit simple closed-form
expressions of arbitrary iterates. Indeed, the insight by Poincaré that founded the
discipline of dynamical systems was that one can study the dynamics without
expressing solutions, that is, orbits, explicitly in closed form or in terms of power
series.

For a smooth manifold M and 1 <r <ocolet X" = X" (M) be the space of C"
vector fields on M and 2P (M) the space of Lipschitz-continuous vector fields.
That is, if V € 2MP(M), then for each x € M we have V(x) € T,M and the map
x — V(x) is a section of the tangent bundle TM = Uyep TxM and the section
varies in a Lipschitz-continuous manner. In a local coordinate chart we can use
an existence-and-uniqueness theorem by Picard® and Proposition 1.1.15 to show
that the flow exists for small values of ¢. If M is compact without boundary (that is,
“closed”), then for arbitrary values of ¢ we can use compositions of maps defined in
local coordinates to define the flow on M for all £. Then

(1.1.1) v
1. —=V(x
dt
generates a flow (Proposition 1.1.15), which we will denote by ®y. Conversely, if ®

is a C! flow on a smooth manifold, then

d
(1.1.2) V(x) =) =¢ (x)= E(p[(x)hzo

defines a continuous vector field on the manifold.

3The proof due to Picard considers a Banach space of candidates for solutions of the differential
equation and constructs an operator that is a contraction mapping and whose fixed points are solutions
of the differential equation. By the Contraction Mapping Theorem (Proposition 12.1.3) there is a unique
fixed point, hence a unique solution to the differential equation, and this depends smoothly on initial
values and the vector field.
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Remark 1.1.21. Equation (1.1.1) extends to nonautonomous or time-dependent
differential equations, that is, differential equations of the form

@ =V(x, 1)
dr
x(0)=¢

when V is continuous and x — V (x, t) is Lipschitz-continuous; the aforementioned
theorem of Picard gives (local) existence and uniqueness of solutions, which then
extend to globally-defined ones as in (1.1.1). The resulting maps ¢ — ¢’(-) may
not satisfy ¢° o ¢’ = ¢**!, however, so we may not obtain a flow. This corresponds
to having a time-dependent vector field in (1.1.1), and some of the results and
techniques presented in this book can be adapted to this context. It is possible, of
course to make a nonautonomous differential equation autonomous by treating ¢
as an additional independent variable. The price is that the resulting differential
equation on M x R no longer “lives” on a compact space. Furthermore, one may
lose structural information; for instance, a nonautonomous linear differential
equation may in this way become nonlinear because of nonlinearities in the time-
dependence.

We now give a classical example of a nonlinear ordinary differential equation.

Example 1.1.22 (The pendulum). Consider a pendulum consisting of a point mass
in the plane attached by a rod to a fixed joint. If we take 27x to be the angle of
deviation from the vertical then (with a suitable choice of units) the pendulum is
described by the differential equation

d’x . B

ﬁ +sin2nx =0,

Writing v = % (velocity) we obtain the system of first-order differential equations

dx
_:U,
dt

v i
— =—sin27x
dt

for x € S', v € R. The total energy of the system is the kinetic energy plus the
potential energy. It is not hard to show that in this case the total energy is given by
H(x,v) = $v* — 5= cos2mx (see Figure 1.1.3). As this equation is for the undamped
(frictionless) pendulum we know that energy is conserved for a solution, and so
the function H on the cylinder S! x R is invariant under the flow:

H(x,v) = vdv + dx sin27x=0
de 77 Tdr dt e



26 1. TOPOLOGICAL DYNAMICS

https://academo. org/demos/3d- surface-plotter/?expression=x}5E2%2Bcos (pi*y) 2%2C+ ge=-2/2C+24resolution=100

FIGURE 1.1.3. Total energy of the pendulum

We say that H is a constant of motion (sometimes also referred to as a (first) integral),
and this means that the orbits are on level curves H = const. as shown in Figure
1.1.4. This means that without solving the system of differential equations, we can

= =S

FIGURE 1.1.4. Energy levels of the pendulum rolled out to the plane

describe the solution curves precisely. (It helps that v = % tells us that in the upper
half of the picture the direction of motion is to the right and to the left in the lower
half.) For —1/2n < H < 1/2n each energy level consists of a single closed curve
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corresponding to oscillations around the stable equilibrium (x, v) = (0,0); these
are periodic orbits, and the period increases monotonically to +oo as a function of
He(-1/2m,1/2m).

Because of its utility, we formalize the notion of constant of motion:

Definition 1.1.23. A constant of motion or first integral for a flow is a continuous
invariant function. Here, a function f: X — R is said to be invariant for a flow @ if
fopi(x)=f(x)forall teR.

Because a constant function is always trivially a constant of motion, we abuse
semantics (omitting “nonconstant”) and follow established terminology by saying
that a flow has no constants of motion if each continuous invariant function is
constant.

Those closed periodic orbits are separated from higher-energy orbits corre-
sponding to rotation around the joint by a homoclinic loop (an orbit that joins an
equilibrium to itself) with H = 1/27 containing the equilibrium (x, v) = (1/2,0).
For H > 1/2n each energy level consists of two orbits corresponding to rotation in
opposite directions.

This is a good moment to note the character of the fixed points that are joined
by these homoclinic loops. They satisfy the definition given below.

Definition 1.1.24. A fixed point p of a flow @ is said to be hyperbolic if for any
t # 0 the differential D, of the time-¢ map ¢’ at p has no eigenvalues on the
unit circle (or, more generally, if D¢ is a hyperbolic linear map as in Definition
12.4.1).

Figure 1.1.4 is a little less confusing than the picture on the actual phase
cylinder. It shows 2 hyperbolic “saddle” points connected by 2 arcs; the upper one
consist of points tending to the right saddle in positive time and to the left one in
negative time, and pts on the lower one do likewise in reverse. Such arcs are called
saddle connections. Likewise, these can be seen as unstable sets for the respective
other saddle. The full stable set of the saddle on the right consists of the upper
of these arcs as well as the corresponding lower arc to its right, of which only half
is shown. So its stable set is a arc with the saddle in its interior. Likewise for the
unstable set. The points in any of the arcs in Figure 1.1.4 are heteroclinic, positively
asymptotic to one saddle and negatively asymptotic to another. On the phase
cylinder they are homoclinic because they are positively and negatively asymptotic
to the same saddle, which thus has 2 homoclinic loops.

c. Geodesic flows. We now describe flows that arise naturally from differential
geometry. As these will be very important in later chapters we have separated these
examples into a separate section and revisit them again in Chapter 2.
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In the case of a complete Riemannian manifold, flows arise naturally from the
geodesics on the manifold. We will restrict ourselves at present to closed connected
orientable surfaces. Any such surface is homeomorphic to one of the following: a
sphere, a torus, or a higher-genus surface. By the Uniformization Theorem, each of
these surfaces admits a metric of constant Gauss curvature, which is either positive,
zero, or negative respectively.

We first describe the concept of geodesic flow, and then study the geodesic
flow for the torus and sphere. We will wait to discuss the geodesic flow on surfaces
of negative curvature until Chapter 2 and show in Theorem 5.2.4 that these provide
the classical example of a hyperbolic flow. In the case of negative curvature we will
see that the geodesic flow is far more dynamically complicated.

The flow in Example 1.1.8 describes a point moving in a fixed direction with
constant speed; this is the motion of a particle that is not subject to any external
forces. This flow is connected to acceleration via F = ma and the absence of an
external force implies zero acceleration and hence constant velocity?

The motion of a free particle is described as in Example 1.1.8, except that any
velocity vector v is allowed. Thus, a state of this system is given by a location and
a velocity, that is, by a point on the torus and a tangent vector. We know that the
geodesics of R” are exactly the straight lines, and so the geodesics on the (flat) torus
T™ =R"/Z" are exactly the projections of straight lines. Therefore the description
of the motion of a free particle on T", also known as the geodesic flow on T" is
given as follows. On the tangent bundle T” x R" of T” the geodesic flow is defined
by

g'(x,v):=(x+tv (mod 1), v).

The geodesic flow on T” is completely integrable, that is, it decomposes into
invariant tori carrying linear flows—with frequency vector w on the invariant torus
{x, )| xeT",v=w}.

In like manner, the motion of a free particle on any Riemannian manifold can
be described as motion along geodesics, the “straight lines” for the manifold, except
that there usually are no formulas as explicit as in the formula for the torus given
above to describe the time-evolution. Indeed, the geodesic equation in differential
geometry describes geodesics as having zero acceleration, and for each vector v at
a point x of a manifold there is a unique geodesic y(y,,) such that y ,)(0) = x and
Y&, (0) = v, where y denotes the ¢-derivative or tangent vector (that is, velocity
vector). The geodesic flow is defined as follows.

4Here, F denotes force, m, mass, and a, acceleration.
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FIGURE 1.1.5. Geodesic flow

Definition 1.1.25 (Geodesic flow). The geodesic flow g* of a Riemannian manifold
M is defined on the tangent bundle of M by

g (%) = Y (D, Yn (D),

that is, the tangent vector v at x is sent to the tangent vector of the geodesic y 1)
attime ¢ (that is, at the point y ) (£)).

Remark 1.1.26. The fact that the geodesic flow on the flat torus decomposes
naturally into linear flows as in Example 1.1.8 is specific to the torus, but the fact
that the speed ||v| is preserved holds generallys. Moreover, restricting attention
to vectors of a given norm produces a flow that is much like the flow obtained by
restricting to vectors of any other norm, except for being uniformly faster or slower.
Therefore we will normally (and often implicitly) restrict the geodesic flow to unit
vectors, that is, to the unit tangent bundle . Note that this is a fixed-point-free flow
on a compact space.

Example 1.1.27. The sphere with constant positive curvature has a particularly
simple geodesic flow: it involves motion along great circles with unit speed and is
hence periodic, that is, the time-27m map is the identity.

Example 1.1.28 (Magnetic flows). That the geodesics are so simple in the case of
the sphere makes it easy to explore a slight variation on the theme of free-particle
motion. A deformation of this geodesic flow is obtained by modeling a constant
magnetic field perpendicular to the sphere. For a charged particle this produces a
constant deflection, which means that instead of moving along great circles, such
a particle moves along curves with constant and nonzero geodesic curvature, and

5This is conservation of kinetic energy.
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these happen to be circles of latitude when viewed as a perturbation of the equator.
Each vector is tangent to two such circles, one of which “bends right” and the
other of which “bends left” according to the sign of the geodesic curvature or the
orientation of the magnetic field. This is called the magnetic flow. In all cases, we
retain the feature that all orbits are periodic with the same period.

Remark 1.1.29 (Reversibility and the flip map). Magnetic flows call attention to a
symmetry of geodesic flows that the magnetic flows lack. A geodesic flow can be
reversed by reversing vectors, that is, —¢’(—v) = ¢ (v). Flows with this property
are said to be reversible, and because of its importance in this respect, the map
v — —v is called the flip map. Magnetic flows lack this symmetry; the closest match
would be to flip vectors as well as the magnetic field at the same time. While we
concentrate on Riemannian metrics when we study geodesic flows, Finsler metrics
(where instead of an inner product, each tangent space is given a norm) give rise to
additional examples of flows, but those often lack reversibility.

Beyond surfaces, there are, of course, Riemannian manifolds of higher dimen-
sion. To see what makes the geodesic flows of the torus and the sphere tractable it
will be useful to put them into a framework that will enable us to study geodesic
flows in other cases when a Riemannian manifold possesses a lot of isometries and
“symmetries,” and therefore, the geodesic flowcan be described without explicitly
solving the geodesic equation.

2. Time-change, flow under a function, and sections

In this section we study phenomena that are different in the continuous-time
case then in the discrete-time case. Specifically, we investigate reparametrizations
of a flow. (Remark 1.1.26 is suggestive of this.) We also look at connections between
flows and maps by use of suspensions and sections.

Definition 1.2.1 (Time-change). A flow ¥ on M is a time-change of another flow
@ if for each x € M the orbits O (x) = {p" (%)} rcr and Oy (x) = {w(x)}ser coincide
and the orientations given by the change of ¢ in the positive direction are the same.

Equivalently, if ® and ¥ are smooth flows with generating vector fields V and
W respectively and V¥ is a time change of @, then W = pV for some continuous
p: M — [0,00) with p # 0 away from fixed points. Usually we (implicitly) assume
that p is as smooth as ® (in order for ¥ to be equally smooth).

Proposition 1.2.2. If ¥ is a time-change of ® then their fixed points coincide, and
wi(x) = "9 (x) for every x € M, where

(1.2.1) alt+s,x) = alt,x) +als, v (x),
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and
1.2.2) a(t,x) =0 ift=0
Indeed, eitherl//t(x) =xforallteR, ora(t,x)>0if t>0.

PROOF. The “group” property y'*S = ¢S oy’ gives (1.2.1), while (1.2.2) reflects
preservation of orientation. The factor p in Definition 1.2.1 generates «a as follows:
a(t,x) = fot p(p*(x)) ds; this gives the last claim. ]

If ® and ¥ are C” in Proposition 1.2.2 and x is not a fixed point, then a(t, x) is
C" in both variables by the Implicit-Function Theorem (though at fixed points. «
might not even be continuous in x), while p = Va = %a(t, X)|, o 18 cr L.

Sometimes the term “time-change” is used for the flow generated by a scalar
multiple of the vector field V even if it vanishes at some points where V # 0.
Interesting examples of time-changes arise in connection with constructions that
will be seen to amount to a reversal of finding Poincaré sections (Figure 0.1.1).

The equation (1.2.1) is important beyond time-changes and defines a notion
one can consider in greater generality.

Definition 1.2.3. A cocycle over a flow ¥ on X is a group-valued function a: R x
X — G such that the cocycle equation (1.2.1) holds (using additive notation).

Note that (1.2.1) with ¢ = 0 gives a(0,x) = 0. The cocycle equation can be
motivated and remembered as saying: to go time ¢ + s go time ¢ and then go time
s from that point® Another natural example of a cocycle is the differential of a
flow, that is, a (¢, x) = Dy’ (x), where the cocycle equation is the chain rule with
composition of linear maps as the group operation (so instead of “+” we have
composition). Another is the cocycle generated by a function a: X — R by setting
a(t,x) = fot a(y*(x)) ds; this is how the cocycles in time-changes come about. The
one most pertinent here is a real-valued cocycle that defines a time-change—the
cocycle equation ensures that the time-changed map is a flow (Proposition 1.2.2).
Note that expressing the new time through the old time gives rise to a cocycle over
the “new” flow y'.

We now study how flows can arise naturally from a map. Indeed, a number of
examples arise in this manner (such as Example 1.5.23 and Definition 6.3.4).

Definition 1.2.4 (Suspension). For a homeomorphism f: M — M of a topological
space we define the suspension flow f, as the “vertical” flow generated by the vector
field % on the suspension manifold (or mapping torus) My = (M xR)/ ~, where
(x,8) ~ a"(x,s) for all n € Z with a(x, s):=(f(x),s—1). (This is well-defined because
the vertical flow commutes with «.)

6The word “cocycle” rightly hints at a cohomology theory (Definition 1.3.20).
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FIGURE 1.2.1. Suspension

The notion of a suspension flow is related to the solution of differential equa-
tions with periodic coefficients.

Example 1.2.5. Let M =S 1 = {z€C:|z| =1} and consider the following situations:

1) If f(z) = e2"i% 7 then the suspension manifold M ris homeomorphic to
the 2-torus and f; is linear. All orbits are periodic if « is rational, and all
orbits are dense if « is irrational; see Example 1.6.2 below.

(2) If f(z) =z, then My is the Klein bottle and f, has two orbits of period 1,
and all others have period 2.

Remark 1.2.6 (Metric for a suspension manifold). That Definition 1.2.4 produces
a topological space is not surprising, but at times a suitable distance function on
My is needed if M is a metric space, and the one induced from the suspension
construction is not well-defined. To this end it is convenient to think of My as
M x [0,1] with (x,1) ~ (f(x),0). Let p be a metric (that is, distance function) on M
and assume (up to scaling, hence without loss of generality) that the p-diameter of
M is at most 1. Then

(10, (2, 0)=0-0Dp,2) +tp(f), f(2) =min(p(y,2), 0(f (), f(@) =0y, 2)

defines a metric on M x {t} ¢ M x [0, 1]. To define the distance between arbitrary
X1, X2 € M x [0,1] consider finite “paths” x; = wg, wn,..., W, = X, such that for each
i either w;, w;+1 € M x {t} for some ¢ (in which case we call the pair a horizontal
segment of length p,(w;, w;+1)) or w; = (@, t;) and w;4; = (@, fp) for some @ € M
(in which case we call the pair a vertical segment of length |#; — £2]). The length of
such a path is the sum of the lengths of its segments, and d(x;, x») is the infimum of
such path lengths. This is nondegenerate (since d((y, t), (z, 5)) = p'(y, z) +|t—s|) and
symmetric, and it satisfies the triangle inequality and induces the given topology.
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The next construction is closely related to the idea of a Poincaré section (Figure
0.1.2) where the return time to the section is not necessarily a constant function.
(We will make the connection precise after the definition.) In this case, the re-
turn time varies continuously with the base point on the section, and this gives a
generalization of a suspension flow as defined below.

Definition 1.2.7 (Special flow, flow under a function). Startingwithamap f: M —
M define the special flow or flow under a function r: M — (0,00) as the flow @, =
@, generated by the vector field 5% on

My, =M xR/ ~, where (x,s) ~a"(x,s) forall ne Z

with a(x, s) = (f(x), s —r(x)). (This is well-defined because the vertical flow com-
mutes with a.) The function r is also called a roof function.

Topologically the flows on My and My, are related by a time change (scale
the vector field % on My, to r(x)%). Equivalently, consider the manifold M for
obtained from M, :={(x,1) | x€ M, reR, 0 <t < r(x)} by identifying pairs (x, r(x))
and (f(x),0).

R

(x,r(x)

?i(x)

?i(y)

Ly

(x0) (x0) (1x),0) (f().0)

FIGURE 1.2.2. Special flow

Remark 1.2.8. Special flows will arise in Example 1.2.9, Definition 1.8.3, Exam-
ple 1.5.23, Definition 6.3.4, and Section 6.4. Indeed, in ergodic theory, this is the
universal model (Theorem 3.6.2).

From a flow under a function one can recover the original map f in the con-
struction as follows. Identifying X with the projection S of X x {0} (or the graph
of any function on X) to the identification space, the desired map sends each
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point of this section to the point of first return. Formally, if ® denotes the flow, this
first-return map on S is given by x — Mint>01 ¢ WeS} (4) ¢ g,

Locally, one can often use this first-return idea to define a map that reflects
the local transverse character of a flow near a reference orbit. This is most naturally
a way to study a periodic orbit via a small transversal, an idea that goes back to
Poincaré’s approach of taking periodic orbits as anchors for studying the overall
dynamics by working outwards from behavior near them. With a little care this
is still possible and useful if a point x and ¢’(x) are so close to each other for
some ¢ that there is a small hypersurface S through x transverse to ¢ (as in Re-
mark 1.1.16 and Figure 0.1.1), called a local section or Poincaré section. If ¢ and
S are smooth then by the Implicit-Function Theorem so is the first-return time
T(x):=min{r>0] ¢'(x) € S} on a neighborhood of x in S, and on a possibly
smaller neighborhood the map f(x):=¢”™ (x) is well-defined and continuous
(hence smooth if ¢ and S are). Example 1.1.8 illustrates this in a global way: either
of the circles S x {0} or {0} x S! is a section that meets every orbit.

Example 1.2.9 (Billiard flow). Consider a strictly convex region R < R? with smooth
boundary I" and define a flow on unit vectors as follows. For a vector v at a point
x € R\T follow the line through x in the direction v with unit speed until it
encounters I' (geodesic flow as in Definition 1.1.25). If x € T', and v points outside of
R, reflect vin T according to “angle in=angle out” (“optical” or “specular” reflection)
and follow this inward direction as before (see Figure 0.1.2). In this case, there is a
global section or global transversal given by inward-pointing vectors at points of I
The induced map on this section is called the billiard map, and the billiard flow
is the flow over the billiard map under the function given by the free path length
(until the next encounter with the boundary).

In this section we have seen differences as well as natural connections between
discrete-time and continuous-time dynamics. In summary, there is no discrete-
time counterpart to time-changes (other than passing to an iterate), suspensions
produce flows from maps, and sections produce (usually local) maps from a flow or
part thereof. The flexibility of flows in time adds challenges and a richness to this
subject compared to discrete-time dynamics, sections can provide a useful tool
for local study of flows, and suspensions (as well as special flows) are on one hand
topologically special but on the other hand a source of topologically interesting
dynamical systems.

3. Conjugacy and orbit-equivalence

Our ambition is to study classes of flows, and it helps to have effective means
to relate or identify different flows with substantially the same or similar features.
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They might be naturally equivalent in that they differ only by a global change of
coordinates, or one may be a subsystem of another. It turns out that for flows there
are several notions of equivalence that correspond to a single notion for maps.
This is related to the fact that the notion of conjugacy, which is the main notion of
similarity used for maps, is of less use for flows due to longitudinal effects (effects
in the flow direction). We now make some of these notions precise.

a. Conjugacy and semi-conjugacy. The first notion we define is topological con-
jugacy and is an equivalence relation that preserves the topological properties of a
flow. The related notion of a semi-conjugacy does not preserve all of the topological
properties, but often preserves sufficient properties to be useful.

Definition 1.3.1 (Factor, conjugacy). We say that the flow ® on M is a lift or ex-
tension of ¥ on N, and ¥ is a factor of @ if there exists a continuous surjection
h: M — N such that ho@(t,x) = w(t, h(x)) for all x € M and all ¢. In that case we
sometimes say that ® and ¥ are semiconjugate’ If h is a homeomorphism, then we
say that the flows are fopologically conjugate (or flow-equivalent). If, furthermore,
his C", then we say that the flows are C"-conjugate or C" flow-equivalent.

Remark 1.3.2. Thus, topological conjugacy preserves the entire orbit structure of
a flow, and the orbit structure of a factor is naturally “included” in its extension.
This notion was central to Smale’s idea of classifying dynamical systems; it pro-
vides an equivalence relation for which there is hope to understand the equivalence
classes. That it is indeed an equivalence relation is not hard to check (Exercise 1.9).

Proposition 1.3.3. The circle flow (Example 1.1.6) is a factor of any suspension.

PrOOF. The factor map is the projection to the fiber direction. |

Remark 1.3.4. The factor map in Proposition 1.3.3 collapses a lot; the preimage
of any point is a copy of the base. This is nonetheless useful, but we will also
encounter factors that are definitely not homeomorphisms, but close to it. This is

2a; a;
well-illustrated by the surjective continuous map Z —ll — Z —ll from the ternary
2 ieN ieN 2
a:
Cantor set { )| 3—11 | a;€{0,1}} (Figure 1.3.1)to [0, 1], which is injective on points
ieN

that are not end-points of complementary intervals of the Cantor set, and 2-to-1 on
those end-points, a countable set. The semiconjugacies we obtain from “coding”
later on are sometimes conjugacies (Example 1.8.16) and at least also this close to
being conjugacies (Example 1.8.18). In those situations, the Cantor model has a
useful combinatorial structure.

7A drawback to this terminology is that it sounds more symmetric than it is by being unclear about
which flow is a factor of which.
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FIGURE 1.3.1. The ternary Cantor set

For future reference, the Cantor function c: [0,1] — [0, 1] is defined by linearly
interpolating this map across complementary intervals—which makes it constant
on those.

FIGURE 1.3.2. The Cantor function ¢

Example 1.3.5. Consider an interval I = (a, b) c R and a flow ® on it defined by
% = f(x) with f(x) >0on I and f =z 0 (see Proposition 1.1.15). Then ® is
topologically conjugate to the flow y’: x — x+  on R (see Example 1.1.5) via
hoc: R— I, s— ¢°(c) for any fixed c € (a, b) because

ha,c(P1(S)) = ho,c(s+ ) =91 (0) = " (¢°(0) = @' (ha,c(5)).

It is rare to have an explicit formula for a topological conjugacy; in Example
1.3.5 it helps that the dynamical system in question consists of a single orbit. On
the other hand, the conjugacy is not unique, the choices being parametrized by
¢ € (a,b). This corresponds to the fact that h;),lc, o ho, is a self-conjugacy by a
constant time shift.

Example 1.3.6. The definition of ¢ in Example 1.3.5 naturally extends to [a, b] by
taking a, b to be fixed points, that is, ¢’(a) = a and ¢’ (b) = b for all ¢ (see Definition
1.1.10).

Example 1.3.7 (North-south dynamics). Let 82 ={(x, 12 | x%+ y2 +2z%2 =1} bethe
standard unit sphere in R3. We consider the flow that moves every point downward
(or “southward”, if we think of S2 as the surface of the globe and take the earth’s
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axis to be vertical) along a great circle (meridian) connecting the point (0,0, 1) (“the
north pole”) and (0,0, —1) (“the south pole”). The speed of the motion is equal to
the derivative of the vertical coordinate along the meridian. In other words, our
flow is generated by integrating the following vector field v on the sphere:

v(x, ¥, 2) = (x2, yz,— x> — y°).

To see this note that the downward unit vector tangent to the sphere at (x, y, z)
is given by (xz, yz, —(x* + y*))/1/x% + y2. The absolute value of its z-coordinate
\/ X2 + y? gives the norm of the gradient vector. The two poles are the only zeroes
of this vector field and consequently they are fixed points for the flow. Every point
except for the north pole asymptotically approaches the south pole as time goes to
plus infinity. In fact this convergence is exponential. Similarly, every point except
for the south pole exponentially approaches the north pole as time goes to minus
infinity. This example can be extended to gradient flow on any n-sphere for n > 1
and will have similar dynamics.

Interestingly, the lowest-dimensional case of the preceding example turns out
to be an ingredient in the study of an important class of hyperbolic flows (Figure
2.3.2). We revisit gradient flows in Example 1.4.12.

Example 1.3.8 (Uniqueness and smoothness of conjugacies). In the context of
Proposition 1.1.15 with n = 1 consider a flow on R generated by % = f(x) with
x- f(x) >0 for x #0. Then ¢’(x) == 0 monotonically for any x € R, that is, ® is
contracting, and ® is conjugate to a linear flow as follows. Example 1.3.5 with a =0,
b = oo shows that ® " is conjugate to the flow (#, x) — x+ ¢ on R, hence to the flow
(t,y) — ye " onR". Similarly on R™, and setting k(0) = 0 gives a conjugacy to the
flow (¢, y) — ye~ ! on R. This further implies that any 2 such flows are topologically
conjugate. As noted in Example 1.3.5, the conjugacy is not unique (we freely chose
the image of 0), and in this context we can make independent choices on R* and
-R*.

That 0 is the fixed point is not central here because the homeomorphism
X — X+ cis a conjugacy to a contracting flow that fixes ¢ € R. Thus, all contracting
flows on R are pairwise topologically conjugate.

One can also show that the choice of conjugacy we have described is all there
is. The first indication is given by linear flows: if i conjugates the linear contracting
flow (¢, x) — A'x on R" to itself (that is, it commutes with the linear flow), then
h(A'x) = A!(x) forall t € R, so h islinear (on R*) and hence determined by choosing
the image of a single point. Since all contracting flows are conjugate to a linear flow,
this gives the complete story: If i, hy both conjugate @ to ¥ and & conjugates ®
to a linear flow, then hhyhih™! conjugates the linear flow to itself and is hence
unique up to a choice of scale factor.
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Lastly, the topological conjugacy between 2 differentiable contracting flows
we have obtained here is differentiable, except possibly (indeed, probably) at 0: if
it is differentiable at 0, then differentiating the conjugacy relation at 0 shows that
((pt ) (0) = (1//t )/ (0) for all ¢ € R® In this case, uniqueness up to a scale factor shows
that a conjugacy that is differentiable at 0 is unique once we prescribe 1 as the
derivative at 0.

The presence of this obstruction shows that using differentiable conjugacy
to define equivalence of flows creates “structural fragility” in the sense that a
typical perturbation of a flow would not be equivalent to the flow itself. This is
an important reason for preferring continuous conjugacy as the natural notion
of equivalence. Indeed, with respect to this notion we will find the opposite of
structural “fragility” for hyperbolic flows (Corollary 5.4.7) (though with a weakening
of “conjugacy” to “orbit-equivalence”; see Subsection 1.3b). Looking even further
ahead we note that the rarity of smooth conjugacy (or indeed, orbit-equivalence)
can in this context make it intensely interesting in some rather particular respects;
this is central to rigidity theory (Chapter 10).

Example 1.3.9 (South-south dynamics). An example on the circle arises from
Example 1.3.6 by identifying a and b; the resulting flow has a single fixed point
(Figure 1.3.3). (Note that this is also included in Figure 1.5.4.) With more specific
choices one can describe this as generated by the differential equation % =f(x)
on [0,1] mod 1 with f(0) =0 and f(x) > 0 otherwise.

FIGURE 1.3.3. North-south (Example 1.3.7), south-south (Exam-
ple 1.3.9), south-north-south (Example 1.3.10) dynamics

No two of the flows in Examples 1.3.5, 1.3.6 and 1.3.9 are topologically conju-
gate because the spaces on which they are defined are not homeomorphic.

8This is sufficient for the existence of a conjugacy that is differentiable at 0, but the argument is
not elementary. Theorem 10.1.10 implies this, and it might be interesting to simplify its proof for the
present situation.
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Example 1.3.10 (South-north-south dynamics). A companion example to the
preceding circle flows reverses one arrow in the north-south dynamics, giving 2
fixed points with one orbit each connecting them in one direction versus the other
(Figure 1.3.3). Note that this dynamics also appears as part of Figure 1.1.4 (Figure
1.3.4). Clearly, no 2 flows in Figure 1.3.3 are topologically conjugate.

FIGURE 1.3.4. The south-north-south dynamics in the context
of Figure 1.1.4

Example 1.3.11. More generally, consider an interval I = [a, b] =R and a flow ¢’
on I defined by % = f(x) with f continuous on I and f(a) = f(b) = 0 (see Proposi-
tion 1.1.15), that is, we do not assume f > 0. The zeros of f are the fixed points of
this flow. It is illuminating to prove that two such flows are conjugate if (and clearly
only if) there is an increasing homeomorphism that identifies the respective sets
where f is zero, positive, and negative.

Example 1.3.12 (Akin). Example 1.3.11 describes a class of flows which could
likewise be defined on S! = [0,1]/Z, and we specialize this to a pair of examples
on [0,1] and S!. Choose f:10,1] — [0,1] continuous such that f’l({O}) = C, the
ternary Cantor set (Remark 1.3.4), and define the Akin flow A = (a’) g on [0,1]
by % = f, A, its projection to S'. Note that here we do not only specialize the
fixed-point set but also unidirectional motion.

Note that the Cantor function ¢ (Remark 1.3.4) is a constant of motion for A,
and c¢(1 — ¢) is a constant of motion for both A and A..

Example 1.3.13. Let v = (vy,..., V;-1,1). The linear flow @, (Example 1.1.8) on the
n-torus is C* conjugate to the suspension of the translation fy: x — x +7 on the
(n—1)-torus, where y := (vy,..., v;—1): Consider the map H from the suspension
manifold M = T’T’Y_l to the torus T” given by

H(x1,...,xp-1,0) = (X1 +v1t, X0+ V2t,..., Xp—1+ Up_1t, Xn + 1).
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It is differentiable for ¢ # 0. Differentiability at ¢ = 0 follows from the definition of
the smooth structure on the suspension manifold. The differential of H carries

and

0 0 0
the upward vector field — to the vector field vy — + vo— +--- + vy
ot 0x 0x; Xn

1
hence conjugates the flows generated by those vector fields, which are exactly the
suspension flow and the linear flow, respectively.

Example 1.3.14. The cartesian product of two flows has either flow as a factor by
the projection.

Example 1.3.15. The flow (x1, x2) — (x1, X2 + £x1) on T2 has the identity on S' = T!
as a factor (via h: (x1,x2) — x1).

More generally, special flows admit a straightforward sufficient criterion for
conjugacy that is useful, even though this is viewed as a trivial example of conju-

gacy.
Definition 1.3.16. For an invertible map f: X — X two functions r1,r2: X — (0,00)

are cohomologous via a transfer function g: X — Rif rj(x) = ro(x) + g(f(x)) — g(x)
forall x€ X.

Proposition 1.3.17. Let f: X — X be an invertible map and r,r2: X — (0,00) be
cohomologous via a transfer function g. Then ®,, and ®,, are conjugate via a
conjugacy with the same regularity as g.

PROOF. The function /1: X x R — X x R defined by (x, s) — (x, s + g(x)) is as regular
as g and commutes with the vertical flow, while by assumption

hoay(x,s) = (f(x),s—r(x) +g(f () = (f(x), s+ g(x) — r2(x) = az o h(x,5). O
Example 1.3.18 (Trivial time-change). Let ® be a smooth flow with generating
vector field V. Let h(x) = (pb ™) (x), where b be a differentiable function with

db(p'(x)
dt | t
that is, the derivative in the flow-direction is positive if V(x) # 0. Then

(Vb)(x) =db(V)(x) = >0 when V(x) #0,

(hog'oh™")(hx) = h(g' (1) = "¢ (" (1)) = W' () = !+ PO (),

and

B(t,x) =t + b(p'x) — b(x)

satisfies (1.2.2). This kind of time-change is said to be frivial. An equivalent way to
describe these is as follows.
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Proposition 1.3.19 (Trivial time-changes). Consider a flow ® generated by the
vector field V and a smooth f: M — R such that1+d f(V) > 0. Then h: x — ¢/ ¥ (x)

0.

%
conjugates the flow generated by the vector field Vy = —— Fon "

PROOF. Smoothness of f and 1+ df(V) > 0 ensure that & is a diffeomorphism.
Now we write x; = ¢’ (x) and use the chain rule to compute

dh _ d dy
_ 2 _ 2 f(xn) —
dh(V(0) = — = @l 0| g =

= V(') -df(V)(x) + Ve P ) = A+ dfF (V) 0) V(e P (x)),

df(V)(x) + V(e (x))

which gives dh(Vf) = V upon division by 1+ d f(V)(x). O

b. Orbit-equivalence. Example 1.3.8 showed that differentiable conjugacy is more
restrictive than we want because even small perturbations of a flow can remove
it from a given smooth conjugacy class. However, even topological conjugacy is
restrictive because even gentle time-changes may render topological conjugacy
impossible, that is, the equivalence classes of topological conjugacy are often too
small to be helpful for classifying flows. The notion of an orbit-equivalence is often
a more natural equivalence relation for flows—although, unlike topological conju-
gacy, an orbit-equivalence fails to preserve some important topological properties
(such as mixing) and quantities (such as entropy).

Before moving on, we introduce the counterpart of Definition 1.3.16 for func-
tions over flows.

Definition 1.3.20. For a flow ® on X generated by a vector field V, two functions
r1, 12 X — R are cohomologous via a transfer function g: X - Rifri =+ Vg,
where V g is the derivative along the flow. If r» = 0 then r; is null-cohomologous.

By definition, topological conjugacy preserves topological properties, as is the
case with the corresponding notion for maps. However, topological conjugacy for
flows is in many contexts too narrow a notion because of its rigidity with respect to
the parametrization of orbits. That is to say, the equivalence classes for topological
conjugacy are too small in general to be interesting for flows. Therefore one more
often encounters the following notion of equivalence for flows, which allows for
the possibility of time-changes.

Definition 1.3.21 (Orbit-equivalence). A flow ¥ on N is said to be an orbit factor
of a flow ® on M if there exists a continuous surjection h: M — N that sends
orbits of @ to orbits of ¥. We also say that ¥ and ® are semiequivalent. If h is a
homeomorphism, then the flows are orbit-equivalent.
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Remark 1.3.22. Orbit-equivalence occurs more commonly for flows than conju-
gacy and therefore tends to be the more prominent concept of these two. However,
it does not preserve some topological properties sensitive to “longitudinal” effects,
notably topological mixing (Definition 1.6.31) and topological entropy (Definition
4.2.2; see equation (4.3.5)). This is a reason we do not refer to this as topological
equivalence. It is, of course, an equivalence relation (Exercise 1.12).

In some simple contexts (Example 1.3.11) there is little distinction between
orbit-equivalence and topological conjugacy.

Remark 1.3.23. If a flow ® without fixed points is topologically orbit-equivalent to
aflow ¥ via h (that is, /& is a homeomorphism that maps orbits of ® to orbits of ¥),
then h™! oy o his a flow with the same orbits as ®, and the reparametrization is
homeomorphic: If x € X is not periodic, then o : R — R defined by h~! (y! (h(x))) =
(p”x(” (x) is a homeomorphism with o4(0) = 0. If x € X is periodic for ® with least
period v and p is its least period for 1~ oy o h, then h™! (! (h(x))) = ¢+ (x)
defines a strictly monotone continuous map o on [0, u] whose range is an interval
of length v with 0 as an end-point. Extending naturally to [ny, (n+ 1)u] gives a
homeomorphism of R.

We now begin to study the relative behavior of orbits, an important concern
for topological dynamics.

Definition 1.3.24. For a flow ® and point x € X define the stable and unstable sets
of x by
13.1 WS = W)= (ye X | dp"(0),0" (1) 7= O,
W'x) =W"™x) ={yeX | de'x),¢'(y) == 0.
The sets

W (x) = " (W (x)) and W (x) = | o' (W*(x))
teR teR

are called the center-stable and center-unstable sets of x.
The triangle inequality gives (Exercise 1.8):

Proposition 1.3.25. Fora flow ® if x,y € X, then
o WS(x)NW3(y) # @ implies W5 (x) = W3(y);
o WS (x)NnWE(y) # @ implies W (x) = W (y);
o WH(x)n W¥(y) # @ implies W (x) = W¥(y); and
o W x)N W (y) # & implies W (x) = W (y).

By uniform continuity, conjugacies and orbit-equivalences preserve these sets
as follows:
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Proposition 1.3.26. If ® and YV are flows with hyperbolic sets conjugate by h, then
h(W3(x)) = W3(h(x)) and h(W"(x)) = W¥(h(x)) for all x, hence likewise for center-
stable and center-unstable sets. For an orbit-equivalence a similar statement holds
for the center-stable and center-unstable sets (only).

Proposition 1.3.27 (Longitudinal regularity of orbit-equivalence). For r € N an
orbit-equivalence between fixed-point free C" flows can be chosen to depend C" on
time.

PROOF [126]. If h maps orbits of ® homeomorphically to orbits of ¥, then (as in
Proposition 1.2.2) there is a continuous cocycle a over ¥ such that

h(g'(x) = y* 9 (h(x),
thatis, a(t+s, x) = a(t, p*(x))+a(s, x). Forsome T > 0 set k(x) :=w% i awx dr (h(x))

to get (reverting to the original notation v (¢, x) = ¥ (x)):

1 T
k(' (x)) = w(; fo Ia(r,q)”(x))l dT,Ih((pt(X))l)

=a(t+1,0)-a(t,x) =X (h(x)

1 T
ZW(Tfo a(t+1,x) - a(t,x) dT+a(t,x),I}Lx)l)

1 1 T
=y(—= [, a(r,x) dr,k(x)
=%f0’r a(t+1,x) dr=% tTHOC(T,x) dr verh

1

T+t 1 T
_W(I?ft a(t,x) dr—?j(; a(t, x) drl,k(x)).

=B(t,x)=1 [y a(T+1,0)—a(r,x)dr
Since ¥ is smooth, differentiability of £ — k(¢ (x)) = wP¥¥ (k(x)) follows because
d 1
T B(t,x) = T (a(T + ¢, x) — a(t, x)) by the Fundamental Theorem of Calculus, so

t— B(t,x)is cl.

Now;, if £ — a(t, x) is C!, then this construction leads to a B such that t — B(¢, x)
is C2, thatis, recursively, we can make the orbit equivalence C” in the time direction
so long as the flows themselves are C". ]

Naturally, orbit equivalence fails to distinguish between flows under a function
(Definition 1.2.7) and suspensions (Definition 1.2.4).

Proposition 1.3.28. Let M be a compact differentiable manifold, f: M — M aC™
diffeomorphism, andr: M — Ry a C™ function on M. Then the special flow on the
manifold M } is C™ orbit-equivalent to the suspension flow on My.

PROOF. Let k:=minr and K:=maxr. Consider a C* function g: [0,1] x [k, K] — R
such that
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(1) g(t,s)=tforte[0,1/4],
(2) g(t,s)=t+s—1forre[3/4,1],

0
(3) Eg(t, s) > 0.

Then the map (x,7) — (x,g(z,r(x))) is a diffeomorphism between My and M}

0
which takes the vertical vector field 37 on M¢toa vertical vector field on M", and

hence conjugates the suspension flow with a time change of the special flow under
r. U

Both orbit-equivalence and conjugacy preserve periodic orbits, although only
conjugacy preserves their periods. In the next sections we investigate the structure
and relative behavior of orbits for a flow; we specifically examine properties related
to stability and recurrence.

4. Attractors and repellers

We begin with the notion of attracting and repelling fixed points before moving
to more general attracting and repelling sets for a flow. The notion of an attracting
fixed point is related to the notion of having a steady state in an engineered system
that is stable in the sense that the system returns to it if it was ever jolted away. In
terms of differential equations, a “stable” solution is such that “nearby” solutions
either don’t go far away from the solution or converge to the stable solution in some
sense. The desirability of this is also related to the fact that in practice we don't
have infinite precision in starting a time-evolution, so stability can provide the
mechanism for settling into the desired state. This notion is of particular interest
with respect to fixed or periodic points, but Poincaré focused attention on using
these as anchors for the understanding of other orbits.

Definition 1.4.1 (Attracting fixed points). A fixed point p of a flow @ is attracting®
if it is in the interior of its stable set (Definition 1.3.24), ithat is, given € > 0 there is
a6 > 0such that d(x, p) <6 = d(¢’(x), p) <eforall t =0 and there is a y > 0 such
that d(x, p) <y = ¢'(x) == p. In other words, the basin of attraction is open. A
fixed point is repelling if it is attracting for ¢~ ".

A periodic point p is asymptotically stable or attracting if it is stable and there
exists some y > 0 such that d(x, p) <y = 35: d(@’(x),"*?(p)) == 0.

In Example 1.3.6 the fixed point b is attracting but a is not. In Example 1.1.7 the
origin is attracting if and only if a < 0. In Example 1.1.22 the origin is not attracting
because all orbits nearby are periodic and hence not asymptotic to the origin. (This

91n the theory of differential equations this is called an asymptotically stable fixed point.
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changes with damping; see Figure 1.4.1.) In Example 1.3.6 the fixed point b is
attracting. The fixed point in Example 1.3.9 is neither attracting nor repelling.

Example 1.4.2. The orbit of (0,0) is periodic and asymptotically stable for the flow
(x,y)— (x+1t (mod 1), ye”") on S' x R.

Attracting fixed points have a neighborhood such that each point limits on
the fixed point as time approaches infinity. Similarly, for repelling fixed points the
same happens as time approaches minus infinity.

a. Linear flows. We now investigate stability and conjugacy for the classical exam-
ple of a linear flow arising from a matrix. Let A € .4, (R) and e*! be the flow on R"
generated by A for the equation x’ = Ax. To investigate the stability of the origin
for these linear constant coefficient flows we will use the closed-form solution that
is particularly amenable to discerning asymptotic growth and decay from Theorem
1.1.19. There is an easy criterion for asymptotic stability of 0 for x' = Ax.

Theorem 1.4.3. For A€ ./, (R) there are K,a >0 with | e!|| < Ke=*! if and only if
all eigenvalues have negative real part.

Remark 1.4.4. The proof gives a sharper version: if —a € (max;Re(4;),0), then
there is a K such that | e?!|| < Ke~ %! for all ¢.

PROOF. Let{ € C% and x(#) the solution of x’ = Ax with x(0) = . Let A, . Ap be
the eigenvalues of A. For Aj = a;+ifjand { = vy +---+ v, where v; € M(A;) for
each 1 < j < p we have

p N r(j)-1 ktk
— it
x(t)—jZ:le j kz=o (A=A;D" 7 vj.

Let M =max{||A-A;I|¥:1<j<p0<k=r(A;)—1. Then
p r(ﬂ.]‘)—l |l.|k
lx@l< Y e’ Y. Ml
j=1 k=0 :
We now define anorm || - || 4 on c4 by
ICla=llvrll+---+lvpl.
Then there exists some C > 0 such that | v;|| < [|{]|4 < ClI{|l. Then
p r(/lj)—l |t|k

Zeajt Z o

j=1 k=0

lx()Il = MCIC]l.
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Ifall a; <0, then choose 0 > @ > max;<j<p @;. SO

eafjttk B

im
f—oo edl
So there exists some Kj > 0 such that

eajttk

<
eal - KO

forall 1 =20,1<j<p,and 0 <k <r(A;)—1. This implies that etk < Kyedt.
Define K = (r(A1) +r(A2) + - + (1)) Ko.
The converse is easy (consider eigenvectors). g

The above result helps us establish topological conjugacy for flows arising
from matrices if the origins are asymptotically stable.

Proposition 1.4.5. Ifall eigenvalues of A, B € 4,(R) have negative real part, then
the flows e and eP' are topologically conjugate.

Remark 1.4.6. Byreversing the flow, the conclusion also holds when all eigenvalues
have positive real part.

PROOE. By Theorem 1.4.3 there are C = 1, ag > 0 such that || e’ x| < Ce=%’| x| for
all xe R? and ¢ = 0. For a € (0, ap) there is a T such that ||e?'x|| < e~%|| x| for all
t = T. Define a new norm || x| 4 = fOT e™|le*Sx||ds. Then

T
led x|l 4 :f e®letSet x|l ds.
0
Write t =nT+7twith0<7<T. Then

T-1 T
e x4 :f o eAnTeA(r+s)x”ds+f oS || AM+DT GAT=T+9) 1y 7 ¢
0 T-1

T T
Sf palu=t-nT) ||eA”x||du+f A T=T=(+ DD Aty 10
T 0

T
= e—“ff e e x||du= e | x|l 4.
0

Such anorm || - || 4 is called an adapted norm or Lyapunov norm and always exists in
the hyperbolic case (Proposition 5.1.5 and Proposition 12.3.8). We likewise define
an adapted norm | - || g for B. Now let

Sa={x| lxlla=1}and Sp={x ]| lxlp=1}.
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Each nonzero orbit for A crosses S, exactly once, and likewise for B, so we call
these fundamental domains of the flows}? and

hoZSA—>SB, X— —

lxl s
”)’%A' Extend hg to R” by using that for x €
R” ~. {0} there is a unique 7(x) such that eA"x € S,, and 7(e4’x) = 7(x) — ¢ for all

teR:

is a homeomorphism with iy (y) =

) { e—BT(X) ho(eAT(x) x) ifx#0

ifx=0
is a bijection of R”, continuous on R” \ {0}, and satisfies

_ At At
h(eAtx) —e Bt (e x)ho(eAT(e x)eAtx)

= e BEW=10 o (pAT-1) pAL 4
= eB1e BT (£AT) )
=ePlh(x).
To check that & is continuous at 0, let x; == 0. Then 7; = 7(x;) == —oo. Let
yi= ho(eAfoj). Since |ly;llg = 1for all j we have
Ih(xplis=lle B y;lp < e il =0,
so h is continuous at the origin. ]

In the present context, we say that a matrix A is hyperbolic if none of the
eigenvalues have zero real part. The eigenvalues are roots of the characteristic
polynomial which vary continuously with the coefficients of the characteristic
polynomial, and these coefficients vary continuously with the matrix. Thus, hyper-
bolicity is an open and can shown to be a dense property among matrices. The
more general definition of hyperbolicity (Definition 5.3.48) is similarly shown to be
an open property (Theorem 5.4.5). However, in this generality the set of hyperbolic
flows is not dense among all smooth flows.

There is a related notion of hyperbolicity for maps (Definition 1.1.24) that can
be seen by taking the time-t or time one map of the flow. In this case of the time
one map we are looking at e” and so we take the exponential of the eigenvalues
for the flow. The corresponding notion is that the derivative of the map has no
eigenvalues with modulus 1 (corresponding to strictly imaginary eigenvalues for
the flow).

10These are sections, but the terminology is adopted from the discrete-time context, where it is
natural.
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For a hyperbolic matrix A the stable space for A is ES, or E* when there is
no ambiguity, and consists of all vectors that are in the span of the generalized
eigenspaces corresponding to eigenvalues with negative real part. Similarly, the
unstable space for A is EY{, or E“ when there is no ambiguity, and consists of
all vectors that are in the span of the generalized eigenspaces corresponding to
eigenvalues with positive real part. Then R” = E’ @ E*. Furthermore, Theorem
1.1.19 shows that if x € E° for 0 = u or s, then x(t) € E” for all ¢t € R. So these
subspaces are invariant for the flow. Remark 1.4.4 shows that there exists some K
and a > 0 such that

led x| < Ke * forall xe ES, t=0, and ||e? x| < Ke*' forall xe E%, t<0.

Beyond the linear context, these rates of exponential contraction in forward or
backward time will be the defining feature of hyperbolicity (Definition 5.3.48).

The next result shows that there are topological conjugacies between linear
flows with constant coefficients if they are hyperbolic and the dimensions of the
splittings into stable and unstable subspaces are equal.

Theorem 1.4.7. If A, B € 4, (R) are hyperbolic with stable/unstable splittings of the
same dimension, then their flows e and eB' are topologically conjugate.

PROOF. Let hy: EY — E for o = u or s where h is the conjugacy from Proposition
1.4.5. Let 7, be the projection from R% to E° for o = u or s. Then x = 7, (x) + 7(x).
It is now a straightforward calculation to show that h(x) = h, (7, (x)) + hs(ms(x))
defines the desired conjugacy. |

The Hartman-Grobman Theorem (Theorem 5.6.1) states that if ® is a flow with
fixed point p such that the linear approximation of @ at p is given by a hyperbolic
matrix, then locally the nonlinear flow is topologically conjugate to the linearized
flow.

We note that for nonhyperbolic matrices one does not expect, in general, that
there is a conjugacy between the nonlinear flow and the linearized flow near a
fixed point. In fact, it is not hard to give examples where the linearized flow is not
asymptotically stable at the origin, but the nonlinear flow is asymptotically stable
at the fixed point.

b. Lyapunov functions and attractors. Until the 1950s, local analysis, that is, the
study of asymptotic stability and hyperbolicity, was largely limited to fixed points
and periodic points. Attention focused on fixed points whose linearization is
hyperbolic and periodic orbits whose return map is hyperbolic as described above.
From the late 1950s onward more complicated invariant sets came into view as
attractors, that is, possessing an open set of points that asymptotically limit on
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these sets. These sets are called an attractor if this happens as time approaches
infinity or repeller if this happens as time approaches minus infinity (Definition
1.4.16).

Lyapunov developed a method to determine the basin of attraction for ordinary
differential equations that does not require solving the equation, but instead uses
something called a Lyapunov function—a continuous function that decreases along
orbits. The difficulty to this method is in finding a Lyapunov function. In certain
physical situations there are ways to do this; for instance, energy will be decreasing
in mechanical systems with friction. Differential equations that admit Lyapunov
functions sometimes allow heuristic approaches to guessing a Lyapunov function.

Example 1.4.8. If we modify the pendulum in Example 1.1.22 to account for fric-
tion, then a possible model is given for some ¢ > 0 by the differential equation

d'x +c2% 4 sin2 0
— +c— +sin27x =0,
dr>  dt
With v:= % we obtain the system of first-order differential equations

dx_
dr

v,

=-—sin2nx—cv

dat

for x € S', v € R. Hence the total energy given by H(x, v) = % V- — % cos2nx (Figure
1.1.3) on the cylinder S! x R decreases along orbits of the flow:

2

d H(x,v) = vdv + dx sin27x=—-cv’ <0
dt 77 Tdr  dt - -

with strict inequality when v # 0. Therefore, energy is now a Lyapunov function
rather than a constant of motion, so orbits no longer lie on the energy level sets in
Figure 1.1.4 but cross them “downward” at all times, which gives the phase portrait
in Figure 1.4.1. Friction thus changes the character of the stable equilibria: They
are now asymptotically stable.

Definition 1.4.9 (Lyapunov function). For a flow ¢’ on a space X a continuous
function L: X — R is a Lyapunov function if L(¢'(x)) < L(x) for all x € X and all
t=0.

Remark 1.4.10. Note that constant functions are therefore always Lyapunov func-
tions. It is thus tempting to require strict inequality when ¢ > 0 and x is not fixed,
as is the case in Example 1.4.8. (In that case we could say that L is a strict Lyapunov
function.) However natural that might be for situations like the damped pendulum,
there are important applications in which it is crucial to avoid this restriction.



50 1. TOPOLOGICAL DYNAMICS

S
=\

FIGURE 1.4.1. Phase portrait of the damped pendulum

On the other hand, if f is a Lyapunov function, then so are arctan f, f + ¢
for any constant ¢, and cf for any positive constant c, so one can alway assume
without loss of generality that a Lyapunov function takes values in a prescribed
closed bounded interval (of positive length).

Example 1.4.11. x — c¢(x) — x (Figure 1.3.2) is a strict Lyapunov function for the
Akin flow (Example 1.3.12) on [0, 1].

Aside from Example 1.4.8, other previous instances of flows admit somewhat
obvious Lyapunov functions. In Example 1.3.7 the height (that is, the z-coordinate)
will do, and in Example 1.3.6 L(x) = —x clearly works because (see Example 1.3.5)
%L(x) = f(x) < 0 away from the end-points. In Example 1.4.2, |y| is a Lyapunov
function whose absolute minimum is attained on the attracting periodic orbit.

Example 1.4.12 (Gradient flows). Example 1.3.7 is a specific manifestation of a
class of flows that by design have a Lyapunov function that one can think of as a
“height.” Consider a Riemannian metric on a compact smooth manifold M and a
real-valued function F on M. At each point x € M that is not a critical point for F
one can define the unique direction of fastest increase for F, that is, the unit tangent
vector {(x) € TxM such that £y F = maxper, M £, F/lInll, where £, F denotes the
Lie (directional) derivative of the function F along the vector 7.
We define the gradient vector field VF by

Ly F-((x) if xis noncritical,

VF(x) = {

0 if x is critical.
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Suppose that in local coordinates (x,..., X;) the Riemannian metric has the form
ds*=Y gij(x1,...,xn)dx;dx;. Then

-1 (OF GF)
VF(x1,...,x,) =G " (x) —|»

ox;’ " dxy,

where G(x) = {g;;(x)} and G is the inverse matrix, so it is a smooth vector field
on M. The flow generated by the gradient vector field VF is called the gradient flow
of F.

From calculus we know that the gradient defined in coordinates is orthogonal
to level sets of the function. This is still true in this setting because the direction
of the gradient vector field is that of the fastest increase of the function F.

Example 1.3.7 is the gradient flow for the function F(x, y, z) = —z on the two-
sphere provided with the Riemannian metric induced from the standard Euclidean
metric in R,

Example 1.4.13 (Toral gradient flows). To consider a less simple instance than
Example 1.3.7, let M =~ T? embedded in R® as a doughnut standing up as in Figure
1.4.2, and as before, F(x, y, z) = —z, the negative of the height function. The func-
tion F has four critical points on the torus, a maximum A, two saddles B and C,
and a minimum D. All orbits of the gradient flow other than those fixed points and
six special orbits described below approach the minimum D as ¢ — +oo and the
maximum A as ¢t — —oo. Two special orbits connect A with B, two more connect B
with C, and the last two connect C with D.

Now tilt this torus slightly, that is, change the embedding but keep the function
F the same. Equivalently, consider instead the function F = —z + ex for small € > 0.
Four critical points remain, as well as the special orbits connecting the maximum
with the upper saddle and the lower saddle with the minimum. However, the orbits
connecting the two saddles disappear. Instead of these two orbits we have four:
two connecting the maximum with the lower saddle and two connecting the upper
saddle with the minimum; see Figure 1.4.2.

Example 1.4.14 (Hot vinyl). Orbits of a gradient flow need not be asymptotic to
a single fixed point. Consider an old-fashioned vinyl record suspended flat from
its rim but sagging towards the center. The music is encoded by a groove that
spirals towards a circular groove around the center. Consider such a grooved
“bowl” but with an infinite spiral towards a circle. The gradient flow then has the
bottom of the spiral groove as an orbit that is asymptotic to that entire circle—with
ever-diminishing speed.

Lyapunov functions impose a gradient-like structure on the dynamics, but
without the requirement that critical sets consist of fixed points. We will see that this



52 1. TOPOLOGICAL DYNAMICS

FIGURE 1.4.2. Gradient flows on the torus

makes them a universal tool for disentangling transient and recurrent dynamics.
If, as in the case of gradient flows, a Lyapunov function is strictly decreasing along
nonconstant orbits, then there is no nontrivial recurrence, and as in Example
1.4.8 this has long been a tool for establishing (asymptotic) stability in differential
equations. Note that L = 0 is always a Lyapunov function, so it is usually understood
that a Lyapunov function is not meant to be constant. Functions that are merely
nonincreasing along orbits can provide deep insights into the interplay between
different invariant pieces of a dynamical system, as we now begin to demonstrate.

Definition 1.4.15. Let ¢’ be a flow on a metric space X. Aset @ # U C X is
a trapping region if ¢'(U) < U for all ¢ = 0 and there exists a T > 0 such that
T () cint@)!!

Note that since a flow ¢’ is a homeomorphism for each r that if U is a trapping
region, then X \ U is a trapping region for ¢~!. We need this fact in the next
definition.

Definition 1.4.16. A set A c X is an attracting set for the flow ¢’ provided there ex-
ists a trapping region U such that A= Ay :=;» @' (U). We say that U is a trapping
region for A. Similarly, the repelling set associated with U is Ry := N;<o @' (X \ U).
For a given trapping region U the pair (Ay, Ry) of attracting and repelling sets for U
is called an attracting-repelling pair for U. We denote the set of attracting-repelling
pairs by <% (®).

It is illuminating to explore these notions in the examples of flows that have
appeared so far (Examples 1.1.5,1.1.7,1.1.8, 1.3.13, 1.3.5, 1.3.6, 1.3.9, 1.3.11, 1.3.12,
1.4.14), and a more subtle context is provided by Example 1.5.14 below.

HNote the improvement in Corollary 1.4.20.
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The set of attracting-repelling pairs is not as large as one might suspect:
Lemma 1.4.17. The set S (®) from Definition 1.4.16 is countable.

PROOF. Since X is a compact metric space, the topology has a countable base. For
an attracting-repelling pair (Ay, Ry) there exists a neighborhood U of Ay, which is
(without loss of generality) a finite union of elements of the countable base, such
that Ay < U and Ry < X ~ U. Furthermore, Ay and Ry are the unique attracting-
repelling pair associated with U, so we have a map U — (Ay, Ry). Since there are
at most countably many such U, the claim follows. g

Lemma 1.4.18. If ¢! is a flow on a compact metric space, then any attracting or
repelling set is nonempty, closed and invariant.

PROOF. If U is a trapping region and T > 0 is such that ¢ (U) c int(U), then
Ne T cNe' W =AapcNe" @ <N T (D.
=0 =0 =0 =0
So Ay is an intersection of nonempty closed sets, hence nonempty and closed, and

Ne e )= Ay ifs<0,
t=zs t=0

s S t _ S+t _ -
P (Ay)=¢ (ﬂ(p (U)))—f'](p () = N @ ) cNe' W) = Ay ifs=0.

=0 =0
t=0 L—— =0
cU

The proofs for repelling sets are similar. O

Attractor-repeller pairs are separated by Lyapunov functions:

Proposition 1.4.19. Let (A, R) € <. Then there is a Lyapunov function L: X —
[0,1] such that L(A) =0, L(R) =1, L(X "\ (AUR)) € (0,1), and L is strictly decreasing
along orbits of points outside AU R.

PROOF. A and R are disjoint compact sets, so

d(x, A)
d(x,A)+d(x,R)
is continuous with V(A) =0 and V(R) =1 and V(X ~ (AU R)) < (0, 1). From this we
presently obtain a function that is strictly decreasing off AU R.

Since every orbit outside AU R convergesto Aas t —ocoand to R as t — —oo,
the supremum V (x) = sup V (¢!>° (x)) = max V (¢'*!(x)) is attained and hence
continuous by compactness, continuity of V, and equicontinuity of the flow on
[0, ], where t, is such that V (¢’ (x)) < V(x)/2 for t = t,. Also, V(¢ (x)) < V(x) for
allxe Xand t=0.

Vix)=
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To make V strictly decreasing off AU R, let
o —_—
L(x) ::f e V(p'(x)ds
0

be the weighted average of V along the forward orbit. Since V is continuous and
nonincreasing, so is L: if £ = 0, then

(e o]

(1.4.1) L((pt(x))zf e*sV«ps”(x))dssf e SV(p*(x))ds = L(x).
0 0

Now suppose x ¢ R is such that L(¢’(x)) = L(ic) for some r> 0. Then on one hand
p'(x) — Aas t — oo and on the other hand V(ST (x)) = V(¢’(x)) for all s >0 by
(1.4.1),s0 V(x) = V(p'(x)) — 0,and x € A. O

This result allows us to slightly recast the terminology in Definition 1.4.16 by
“improving” trapping regions as follows.

Corollary 1.4.20. For any attracting set A there exists a trapping region U for A
such that "(U) < U forall t > 0.

PROOF. Let L be as in Proposition 1.4.19 and U := L71([0,¢)) fore >0 sufficiently
small. Then U < L~1([0,¢]) and (pt(U) c L71([0,¢)) for all ¢ > 0. O

The above results presage a remarkable general structural result: any flow
admits a Lyapunov function, so the dynamics flows “downward” except for inde-
composable dynamics on level sets of the Lyapunov function (Theorem 1.5.41).
The next sections develop these indecomposability notions.

5. Recurrence properties and chain decomposition

Our study of dynamical behaviors has so far been limited to single orbits,
and simple ones at that. We mainly considered fixed points, periodic orbits, and
points that approach these orbits as time approaches infinity or minus infinity
(asymptotic behavior). For example, orbits near an asymptotically stable fixed point
have rather simple asymptotic behavior themselves; they converge to the fixed
point. In particular, they are fransient in the sense that there is a neighborhood to
which they never return.

a. Recurrent points. We now develop terminology to describe more complicated
asymptotic behavior.

Definition 1.5.1 (Limit set). The w-limit set of x € X for a flow ® is the (closed) set

w(x) = ﬂ (p[t,oo) (x)

t=0
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of accumulation points of the positive semiorbit. The a-limit set is defined similarly
for negative time or as the w-limit set for the inverse flow.

The closure £ (®) of the union of all w-limit sets and all a-limit sets is the limit
set of ®.

Remark 1.5.2. For instance, the a-limit set and the w-limit set of a periodic (or
fixed) point both coincide with the orbit of that point. It is a good exercise here
to determine these sets in the context of Examples 1.1.5, 1.1.7, 1.1.8, 1.3.13, 1.3.5,
1.3.6,1.3.9,1.3.11,1.3.12,1.4.14, 1.5.14, 1.6.2.

Note that w(x) may be empty (but rarely so in this book, see Proposition 1.5.7).
In the context of Definition 1.4.1, the fixed point is the w-limit set for all orbits that
ever come close enough. This motivates the following.

Proposition 1.5.3. g € w(x) < thereis a sequence ty == oo with ¢ (x) —= q.

PROOE. For g € w(x) and k € N there exist #; = k such that d(¢%*(x),q) < 1/k.
Conversely, g = limy_o, ¢ (x) € {p'(x) | t=m}forall m=0. O

Starting earlier or later does not affect the asymptotics:
Proposition 1.5.4. w(x) is ¢’ -invariant: If s € R, then ¢’ (w(x)) = w(x) = w(@*(x)).

PROOF. ¢° is a homeomorphism, so

P’ (M ") = ¢ (w(x))

=3 (p!T0) (x)) T=0
o — oo
M) @57 (x) =< [ T (@5 (x)) = w(e®(x)) O
T=0bl—-rr— T=0

:(p[T-#s,oo)(x)

n (p[T'OO) (x) = ﬂ (p[T,OO) (x) = w(x)
T=s T=0

Definition 1.5.5. If A is an invariant set for a flow ® on X, define its basin of
attraction or stable set and basin of repulsion or unstable set by

WS A)={xe X | D #w(x)c A},

WHYA) ={xe X | D # a(x) c Al
Remark 1.5.6. Compare with Definition 1.4.1. Examples 1.3.7 and 1.3.9 provide
quite complementary simple instances of these sets. Figure 1.5.4 below shows a
rather more interesting situation in this respect.
Proposition 1.5.7. If 0% (x) = ¢'*° (x) ¢ K with K c X compact, then

(1) 9 #wx)cKk,
(2) w(x) is compact,
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3) d@'(y),0®)) == 0: if w(x) < O open = AT € R with ¢!7> (x) c O.
(4) w(x) is connected, so it is either a single point or infinite.

PROOF. i — ¢ (x) has an accumulation point in K, so Proposition 1.5.3 gives (1).

(2): w(x) c K is closed, hence compact.

(3): Otherwise there are ; — +oo with @' (x) € K \. O, and these points accu-
mulate in the compact set K \. O, contrary to w(x) < O.

(4): We show that if p, g € w(x) have disjoint neighborhoods O, Oy, then
w(x) & Op U Oy4. Pick T,, — oo, t; = 0 such that p, = ¢ (x) — pin Op and q,, =
@' (pn) — qin Oy, and let

sp=max{re [0,1,] | ¢®?(p,y)c Op}.

Then ¢ (p,) = """ (x) € KN 00, has an accumulation point which is in 0,

FIGURE 1.5.1. Proof of Proposition 1.5.7(4)

hence outside O, U O4 and on the other hand in w(x) since 7, — co. (|

Corollary 1.5.8. If h is a constant of motion (Definition 1.1.23) for a flow ® on a
compact space X, then h(X) = h(Z£(®)) (Definition 1.5.1).

PROOF. If x € X, then h({x}) = h(¢pR(x)) = h(w(x)) € h(ZL (D). ]

Definition 1.5.9 (Recurrence). A point x is w-recurrent or positively recurrent if
X € w(x), a-recurrent or negatively recurrent if x € a(x), and recurrent (or Poisson
stable) if x € a(x) N w(x). We denote the closure of the set of recurrent points by
B (D)—for “Birkhoff center” (Remark 1.5.37).

Remark 1.5.10. Per(®) c B(P) c L (P) (see Definition 1.1.10).
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b. Nonwandering. The next generalization of recurrence that we study is that a
point may not come back close to itself, but a different point arbitrarily close to a
given point comes back close to the given point.

Definition 1.5.11 (Nonwandering). x € X is nonwandering for a flow ® on X if
for any neighborhood U of x and Ty > 0 there is a t > Ty with (pt(U) NU # ;12
otherwise x is said to be wandering. The set of nonwandering points is denoted by
NW(®). We say that @ is regionally recurrent if NW (®) = X.

— ——
/

(S

FIGURE 1.5.2. A nonwandering point

Remark 1.5.12 (Auslander). Recurrence of x is defined in terms of the w-limit
set of x, and analogously, x € NW(®) is equivalent to the existence of x; — x,
t; == +oo such that lim; .., ¢’ (x;) and hence to

x€PL(x)={lim " (x;) | Xi == % t; == +oo} =[] @) (B(x,€)),
i—oo teRe>0
the first prolongational limit set of x.

FIGURE 1.5.3. The first prolongational limit set of each point on
the top line is the bottom line

N

127he following from [159, p. 22] may be helpful: “A better choice of words, suggested to us by
K. Sigmund, is that a point is called nostalgic iff its neighborhoods U keep returning as in the definition
of [nonwandering]. The point itself may or may not return near by, but its thoughts (nearby points)
always do”
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The definition of the nonwandering set looks asymmetric in time, but this is
only apparent since ¢! (U)NU#Z@ < T # @ (@' (U)NU) =@ L ({U)NU:

Proposition 1.5.13. NW(¢") = NW(p™"), that is, a point x € X is nonwandering
if and only if for all neighborhoods U of x and all Ty < 0 thereis a t < Ty with
' UNNU# 2.

Example 1.5.14. From the examples so far it is not apparent that being nonwan-
dering is a strictly weaker notion than recurrence, and Figure 1.5.4 shows a planar
flow'® with nonwandering nonrecurrent points. Only the 3 fixed points are recur-
rent, but the nonwandering set includes the entire “co” curve. Note as well that the
flow restricted to this nonwandering set has only fixed nonwandering points.

FIGURE 1.5.4. The Bowen—Katok “figure eight attractor” [178, p. 140]

Proposition 1.5.15. NW(®) is closed and Per(®) c B(P) c £ (D) c NW (D).

PROOFE. A wandering x has a neighborhood U and a T > 0 with ¢! (U) N U = @ for
all £ > T. Then every point in U is wandering, so the set of wandering points is
open. If x€ X, y e w(x) and y € O open, Ty > 0, take #; > 0 and ¢ > T such that
@ (x) € O and ¢ (x) € O (since y € w(x)), hence ¢ *!(x) € ¢’ (0) N O. Thus,
Vx: w(x) c NW(D), so £ (P) c NW(®P) (Proposition 1.5.13). The rest follows from
Remark 1.5.10 and Proposition 1.5.15. O

Remark 1.5.16. While examples show that each of the inclusions in Proposition
1.5.15 can be strict, a deep and important result, the proof of which is well beyond
our scope, says that C!-generically, they are not (Theorem 1.5.19).

Definition 1.5.17. For k = 0 the C*-distance between two C¥ flows on a C*-
manifold M is the usual (uniform) C k_distance between their restrictions to [0,1] x

13By including oo as a repelling fixed point, this becomes an example on the 2-sphere with 4 fixed
points.
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M. In a topological space, the intersection of a countable collection of open sets is
called a Gs-set. A property of elements of a topological space is said to be generic if
it holds for each member of a dense Gg-set!*

Theorem 1.5.18 (Pugh Closing Lemma [13, 155,252-254]). For a nonwandering
point of a vector field there is an arbitrarily C' -close vector field for which this point
is periodic.

PROOF STRATEGY. The basic task would seem to be rather obvious: consider a
tube around an orbit segment that starts and ends near enough the nonwandering
point p and make a perturbation of the vector field inside the tube that moves p
onto this orbit at the start and of it at the end. The difficulty arises from the fact that
we are aiming for the reverse of a usual perturbation result: those usually involve
arbitrarily small modifications, but here we must, for a give length of nearby orbit,
change the dynamics by a definite amount. For instance, a tube as described might
well have to necessarily self-intersect because the nearby orbit is very long and
tangled. Thinning the tube might avert the problem but make it difficult to perturb
p enough and moreover, localizing perturbations more requires larger derivatives,
which countervails the desired C'-smallness of the perturbation. Instead, choosing
many flow boxes along parts of that orbit that aren’t too close to others is a better
strategy. .. This balancing act makes for a formidable proof in which the gentlest
possible deformations are just barely made to accumulate enough total change
over the length of the orbit. Counterexamples to C? versions of this underscore the
delicacy of what is required. (On the other hand, there are astonishing results in
low dimensions [16, 166].) O

Together with general genericity results and Theorem 6.1.6, this implies:

Theorem 1.5.19 (Pugh General Density Theorem [253]). Per(®) = NW (D) generi-
cally among C* -flows.

Recurrence other than periodicity is usually referred to a nontrivial recurrence.
Since smooth curves locally separate the plane, flows on simply-connected surfaces
have only trivial recurrence:

Theorem 1.5.20 (Poincaré-Bendixson Theorem). Let ® be a C' flow on an open
subset of the sphere S%. Then all positively or negatively recurrent orbits are periodic.
Furthermore, if the w-limit set of a point contains no fixed points, then it consists of
a single periodic orbit."

14while this notion can be defined in this generality, it is usually applied in complete metric
spaces where the Baire Category Theorem can be used.
15The Poincaré-Bendixson Theorem won't be used in the sequel.
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PROOF. Suppose p is positively recurrent and neither fixed nor periodic. Take
a short transversal y at p and let ¢ be the smallest positive number for which
(pt(p) € y. Then the union of the orbit segment {¢*(p)}o<s<; and the piece of y
between p and ¢! (p) is a simple closed curve € called a pretransversal. By the
Jordan Curve Theorem the complement of € consists of two disjoint open sets A
and B. We may label them such that near y the flow goes from A to B. This implies
that the positive semiorbit of ¢’(p), hence the w-limit set w(p) of p, is in B. Since
p is recurrent we have A3 ¢~ ¢(p) € G (p) < w(p) < B, a contradiction.

Now assume that W := w(p) contains no fixed points. By Remark 1.6.29 below
there are recurrent points in W. By the preceding, these are periodic. Thuslet g € W
be periodic. Consider a small transverse segment y containing g. By continuity the
return map to this segment is defined on a neighborhood of g in y. Take a one-sided
neighborhood I of g small enough so that the first point ¢ (p) in y is not in I, but in-
finitely many of these returns are. Parameterizing this neighborhood by [0, §) gives
a continuous map [ from an interval [0,5) to an interval (0,6') that fixes 0. The orbit
of p provides infinitely many x € (0,6) for which f(x) < x, so either f(x) < x for all
x €10,0) or [0,0) contains a fixed point y. The latter case is impossible, since the in-
terval [0, y] would be invariant under f and hence there would be an invariant annu-
lus for the flow that separates the orbit of g from that of p, so g ¢ w(p). Butif f(x) <
x then all x € (0,0) are positively and monotonically asymptotic to 0. Since the
return times to I are bounded this means that the orbit segments of p between suc-
cessive returns converge to the orbit of g, so w(p) coincides with the orbitof g. [J

By contrast, higher-dimensional flows can be rather more complex; it is a good
exercise to also explore the various recurrence notions in the next examples. Exam-
ple 1.5.21 and Example 1.5.23 will also serve as standard examples of hyperbolic
flows that we describe later.

Example 1.5.21 (Smale horseshoe). The flow we introduce here is a suspension
or special flow over a map of R? or S? (or of any surface) which arises naturally
in a Poincaré section. This map f squeezes a rectangle A vertically, stretches it

FIGURE 1.5.5. A pretransversal
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horizontally and folds it over the original rectangle (Figure 1.5.6) in a horseshoe
shape. Specifically, let us assume that the map is linear on the 2 halves, so the
contraction factor is a constant A < 1/2 and the expansion is by a factor y > 2 (to
ensure that there are gaps between the branches) and that there are two complete
strips that are folded back over A. The set A=,z f"(A) of points whose orbits
are in A is then a Cantor set with vertical contracting direction and horizontal
expanding direction (Figure 1.5.7). A horseshoe flow is the time-1 suspension. Note
that we have partially or implicitly defined a smooth flow but will focus on the
continuous flow obtained by restricting to the suspension of A. Variants on this
original construction allow for more crossings in A as well as nonlinearly expanding
and contracting directions.

Example 1.5.22 (Linked horseshoes). More generally, several rectangles might be
mapped across each other in a like fashion, Figure 1.5.8 shows an instance that
involves 2 rectangles with horizontal stretching; the black rectangle is mapped
across both rectangles plus across itself a second time, while the other rectangle is
mapped once across both rectangles.

Example 1.5.23 (Toral automorphism). Consider the suspension (Definition 1.2.4)
of the following map of the 2-torus. The linear map of R? given by the matrix

2 1
A= (1 1) has integer entries and hence induces a well-defined map Fj4 of the

2-torus T? = R?/Z2. Since it has unit determinant, the same goes for the inverse,
which means that it defines a diffeomorphism (indeed, algebraic automorphism)

FIGURE 1.5.6. Horseshoe
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of T2—which, furthermore, preserves area. The eigenvalues are

3+v5 3-v5
2 2

A = >landA;'=1,= <1.

The eigenvectors for the first eigenvalue are on the line y = x. The family of

lines parallel to it is invariant, and distances on those lines are expanded by a factor

A1. Similarly, there is an invariant family of contracting lines y = — % +const..

The tangent space spanned by the direction of expansion and contraction
together with the flow direction define hyperbolicity (formally so in Definition
5.1.1). Note that the stable and unstable sets (Definition 1.3.24) for any point in
the suspension flow are given by translations of the contracting and expanding
eigendirections, respectively.

It is an interesting exercise to show that the collection of periodic points for
the map F, is exactly the set of points with rational coordinates, so the periodic
orbits in the suspension flow are dense. But we will see later that there are also
dense orbits for both F4 and the suspension, indeed, almost every orbit is dense.

Example 1.5.24. More generally, any A € GL(m, Z) induces an automorphism F
of T™ that preserves Lebesgue measure!® We say that it is hyperbolic if A has no

16Here, GL(m, Z) consists of the integer matrices that are invertible among integer matrices, which
requires that they have determinant +1.

FIGURE 1.5.7. The invariant set of the Smale Horseshoe
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L |
|

L

FIGURE 1.5.8. Linked horseshoes (Example 1.5.22)

eigenvalues on the unit circle. We will see that the suspension is then hyperbolic
on the whole suspension manifold.

Remark 1.5.25. In contrast with a phenomenon we will see later (Theorem 9.5.1),
the universal cover R? x R of the suspension manifold has a (dynamical) global

-V5-1

product structure as follows: Each contracting plane { y= X+ const.} X

R meets each expanding plane { y= X+ const.} x R in an orbit (which is

necessarily unique).
c. Chainrecurrence. The notion of a nonwandering point involves nearby orbits;

another variant of recurrence behavior is expressed in terms of objects that are
nearly orbits.

FIGURE 1.5.9. Example 1.5.23, Cat (cougar) map
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Definition 1.5.26 (Pseudo-orbit, chain). An e-pseudo-orbit or e-chain for a flow ®

on aspace X isamap g: I — X on a nontrivial interval I c R such that
dgt+1),9"(gn) <e, fort,t+teland|r|<]1.

It is a pseudo-orbit from x to y oflength T'if0, T € I and g(0) = x, g(T) = y.

FIGURE 1.5.10. e-pseudo-orbit

Note that g need not be continuous, see Figure 1.5.10.

This important notion is a little more involved for flows than for diffeomor-
phisms. Specifically, an alternate definition of an e-pseudo-orbit is that there is
a sequence of points {x = xo, ...,y = X,} and times #; = 1 with f; +---+ £, = T and
d(li(xj-1),xj) <eforall 1 < j<n. These variants are related as follows.

Proposition 1.5.27. Let X be a metric space, ® a flow on X, € >0, and § > 0 such
thatd(x,y) <6 = d((pt(x),qot(y)) <€ for0 <t < 2. Then we have the following:
(1) Ifthereexistpoints{x = xy,..., X, =yt and timest; 21 with ty+-+-+t, =T
and d(¢'i(xj-1),x;) <& forall1 < j < n, then there is an e-pseudo-orbit
of length T fromx to y.
(2) If there is a 6 -pseudo-orbit of length T > 1 from x to y, then there are
points {x = xo,...,y = X} and times t; =1 with ty +---+ t, = T and
d(@li(xj_1),xj)<eforalll<j<n.

PROOE. (1): For 7 € [0, T] there is a unique j € {1,...,n} with 1 +---+1; <1 <
fi+++tj + tj1. Define g'(x) = '~ "**1)(x;_;) and check that g: [0, T] — X is
an e-pseudo-orbit of length T from x to y.

(2): Let g: [0, T] — X be a §-pseudo-orbit from xto y. Set xop = x, x, =y, n=
[T1-1€(T/2,T), tj=L e(1,2)for je(1,...,n},and x; = g(j L) for je{1,...,n-1}.
Then the choice of & gives d(¢"i (xj_1),xj) <ewhenl<j<n O

By Proposition 1.5.27 the two ways of defining a pseudo-orbit can be used
interchangeably, and so we will.



5. RECURRENCE PROPERTIES AND CHAIN DECOMPOSITION 65

Remark 1.5.28. Pseudo-orbits arise in different ways. A pseudo-orbit might consist
of orbit segments with jumps, that is, it is given by a sequence of points x; €
M and times t; € R* such that inft; > 0, sup ;. < oo, and d(@(tx, xXg), Xk41) < 6.
The term “chain” seems particularly apt in this case. It might “drift” if it is the
orbit of a perturbation of the given vector field; an orbit for the new vector field
will be a pseudo-orbit for the old vector field. In this case there are no jumps
(discontinuities) but there can be a “drift” from a true orbit. In full generality one
may combine jumps and drift.

Moreover, the arguments in the proof of Proposition 1.5.27 combined with
interpolation show that on a topological manifold one can without loss of generality
take a pseudo-orbit to be continuous, and on a smooth manifold one can take it to
be smooth. In that case one can with additional work furthermore arrange for the
tangent vectors to the pseudo-orbit to be close to the vector field that generates @.

This notion lends itself to a surprising way of defining trapping regions that
plays an important role in understanding the global structure of a flow.

Proposition 1.5.29. The set Z.(x) of end-points of e-pseudo-orbits that start at x
(1) isopen,
) satisfies ' (x) € R¢(x) (an orbit segment is an e-chain),
(3) satisfies y € B¢ (x) = Re(y) € % (x) (by concatenation of chains),
(4) satisfies ' (R (x)) € Re(x) for t =0 (by concatenation of chains), and
(5) is atrapping region.

PROOF. (1) If y € Z¢(x), then Bs(y) € Z¢(x) for sufficiently small § by modifying
the connecting e-orbit.

(5) If y € Z¢(x) take Re(X) 3 Yy == ¥, SO @' (¥n) 7== @' () by continuity.
Then there is an N € N such that d(¢'(y,),¢' () <e/2forall n = N, so ¢'(y) €
Re(Yn) € Re(x). We have shown that ¢! (%, (x)) c R (x). O

This helps understand the global structure of a flow via the following important
recurrence notion.

Definition 1.5.30 (Chain recurrence, equivalence, components, decomposition).
Let @ be a continuous flow on a metric space X. A point x is chain recurrent if
X € Ne>0 Ze (), that is, for all € > 0 there is an e-pseudo-orbit from x to x. In other
words, x lies on a closed e-chain for any € > 0. The set Z(®) of chain recurrent
points is the chain recurrent set of @

For points x, y € Z(®P) we say x ~ y or x, y are chain-equivalent or chainable if
X €Ne>0Z(y) and y € Neso Ze (), that is, for all € > 0 there is an e-pseudo-orbit
from x to y and an e-pseudo-orbit from y to x. In other words, x, y lie on a common
closed e-chain for any € > 0.
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The equivalence classes of ~ define the chain decomposition into the chain
(-transitive) components, chain recurrent classes, chain-equivalence classes, or (in
hyperbolic flows) homoclinic classes of Z(®).

@ is said to be chain-transitive if Z(®) = X and there is only one chain compo-
nent.

Remark 1.5.31. Again, while these notions are surprisingly effective for hyperbolic
flows, they do not in themselves imply any complexity—see the Conley example
(Figure 1.5.11) or, for that matter, the constant flow (#, x) — x or (more naturally)
Figure 1.1.4 (on the cylinder S x R; this example also illustrates that a constant of
motion need not be constant on Z(®)) or the geodesic flow on the torus T".

The following justifies the term “chain-equivalence”:
Proposition 1.5.32. Chain-equivalence is an equivalence relation on Z(®).

PROOF. Symmetry is clear, and reflexivity follows by definition of 22 (®). Transitiv-
ity: x~y~2z2=>x€R:(y) € Zc(z) because y € Z.(z) (Proposition 1.5.29(3)). O

We note that “small” changes can make a big difference. The chain-recurrent
set is very different for the south-south dynamics (Example 1.3.9) on the circle
(chain-transitive) versus its interval counterpart (only the 2 fixed points are chain-
recurrent). Likewise, the chain-recurrent set of the Akin flow on the interval (Ex-
ample 1.3.12) is the ternary Cantor set, while the projection A, to the circle is
chain-transitive.

Remark 1.5.33. NW(®) c Z(®) = Z(®) (it is easy to check that the complement
of Z(®) is open.) As before, it is good to examine this notion in the context of
our examples so far, for instance by identifying the recurrent, nonwandering, and
chain-recurrent sets in Figure 1.3.3, Figure 1.5.4 and Example 1.3.6 as well as in
Conley’s example of a continuous vector field that is zero on the boundary of a
rectangle and nonzero pointing downward inside (Figure 1.5.11). This is a some-
what “pathological” situation, which should induce scepticism about the notion
of chain-recurrence, and Figure 1.1.4 shows a natural chain-transitive example
where a meaningful analysis would produce much finer information than chain-
transitivity alone. However, the value of the chain-decomposition in understanding
the global structure of a continuous flow justifies the notion, particularly in the con-
text of hyperbolicity, which precludes the occurrence of such pathology (Corollary
5.3.14(1)).

To summarize, Proposition 1.5.15 and Remark 1.5.33 give:

Proposition 1.5.34. Per(®) c B(P) c L(P) c NW(®) = NW (D) c (D) = 2 (D).
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FIGURE 1.5.11. The Conley example

Remark 1.5.35. One should not expect a strengthening of Proposition 1.5.34—
each of these inclusions can be strict (Exercise 1.21). This does not mean that
we do not often have equality. When there is no nontrivial recurrence at all, then
these levels of recurrence are all conflated, and they are also so C!-generically
(Theorem 1.5.19). This is the case in our simplest examples. More importantly for
us, however, these sets tend to coincide in hyperbolic flows not despite but because
of the complexity of the dynamics. This is the content of Proposition 5.3.31, and
“semilocal” counterparts follow from Theorem 5.3.35.

Proposition 1.5.32 suggests studying a continuous flow through the strategy of
restricting to chain components, so we pause to note that this is not a recursive
process, that is, that chain components are themselves chain-recurrent:

Theorem 1.5.36 (Restriction property). Let ® be a flow on a compact metric space

X. Then Z(® loeq q))) = Z(®) and with the same chain-decomposition.

PROOF. “c”isobvious: Z(® I A) c Afor any A, and if x, y lie on a common periodic
e-chain in CR(®) then these trivially are periodic e-chains in X. Conversely, let
X € Z(®) and g,: R — X a periodic 1/n-pseudo-orbit for n € N with g,(0) = x
(and g, () = y for some t to prove heredity of chain-equivalence). Note first that
it suffices to show that for any neighborhood U of Z(®) there is an N € N with
grn([®) c U for n = N. To show this, suppose (by compactness) to the contrary that
there are a z ¢ Z(®) and sequences ny =z +oo and #; with gy, (fx) == z. But
then the periodic pseudo-orbits

_ (t+1ty) ifi¢ pp2,
gk(t)::{g"’“ k Pk

ifieprz,
where py is the period of g, , show that z € Z(®). U
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Remark 1.5.37. In contrast to this heredity of chain-recurrence, NW (® fNW@)) #
NW(®) in general; see Example 1.5.14. The Birkhoff center of a flow is defined
by recursively restricting to the nonwandering set, that is, from NW(®) pass to
NW@) o) etc!” The ultimate intersection is called the Birkhoff center and
can be characterized as the maximal set C such that C = NW(® I C). It is a closed

set that contains the recurrent points, and for flows on complete metric spaces it
coincides with their closure. This explains the notation 28 in Definition 1.5.9.

Remark 1.5.38. The heredity of chain-recurrence gives it a somewhat intrinsic
nature, and this makes it natural to note that w-limit sets are characterized by being
connected (Proposition 1.5.7) and chain-recurrent (Proposition 1.5.15): if ® is a
continuous flow on a connected space X and X = Z(®), then ® is topologically
conjugate to the restriction of some continuous flow to the w-limit set of some
point [121].

Lyapunov functions (Definition 1.4.9) and Proposition 1.5.29 make it possi-
ble to connect the notion of chain recurrence with stability as represented by
attracting-repelling pairs (see Definition 1.4.16), incuding a characterization of
chain-equivalence in terms of attracting-repelling pairs:

Theorem 1.5.39. Let @ be a flow on a compact metric space. Then

R@® = (] AUR
(AR)eotR
If x,y € Z(D), then x ~ y if and only if for each (A, R) € o/ (see Definitions 1.4.16
and 1.5.30), x and y are either both in A or both in R.

Remark 1.5.40. In Example 1.3.11 one can describe attractor-repeller pairs ex-
plicitly. A connected component of a trapping region is an interval [a, ¢) or (c, b]
with f(c) # 0 or («, B) with f(a) > 0> f(B). For example, if the trapping region is
an interval [a, ¢) or (c, b] with f(c) # 0, then the corresponding attractor-repeller
pair consists of [a, c1] and [cy, b] (which is the attractor and which is the repeller
depends on the sign of f(c)), where f(c;) =0= f(c2) and f # 0 on (c1, ¢2). An illus-
trative special case is f~1({0}) = {a, b, ¢} with f =0 (or f <0), when each AUR is
either [a, c]u{b} or {a}U[c, b]. In either case one member of the pair contains points
that are not chain-recurrent, so the intersection over % is essential in Theorem
1.5.39. (If f takes both positive and negative values, this is a little different.)

7\ore precisely, for each ordinal a set Ny = X if @ =0, Ny = NW(® IN ) when «a is the successor
B

of B, and Ng = Mg<q Np if @ is a limit ordinal; this terminates after at most countably many steps
because each closed set in this sequence is characterized by the elements in a countable base for the
topology from which it is disjoint.
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PROOF. “2”: If x ¢ Z(®), then there is an € > 0 with x ¢ Z%.(x) > Ag, . On
the other hand, ¢’(x) € %.(x) for ¢t > 0 (Proposition 1.5.29), so x ¢ Ra.(x) since
Ra.(v) is invariant. Therefore, x ¢ Az, (x) U R, (x), and we have shown that x ¢
Naresr AUR.

Furthermore, if x and y are in different chain components, then there is no
e-chain from x to y for sufficiently small ¢, so y ¢ Z.(x) (see Proposition 1.5.29),
and x € Ag, (). Hence, y € Ry, (x).

“c”: Let x ¢ AUR for some attracting-repelling pair. Proposition 1.4.19
yields a Lyapunov function L that is strictly decreasing off Au R. If ¢y := L(x) and
= L((,o1 (x)), then L is strictly decreasing on L™ Y(ley, co). By compactness there
isa d € (0,(co— c1)/2) such that if y € L™!([c1, c; +6]), then ¢'(y) € L([0,¢;]) and
there is an € > 0 such that L(y") < ¢; + 6 for all y € L™([0,¢;]) and y' € Be(y). Even
with pseudo-orbits we “can’t get back up”, that is, e-chains starting at x cannot be
closed: To see this we use the sequence-definition of e-chain (Proposition 1.5.27).
Let {x = xg,...,Xn; Lo, ..., tn—1} be an e-chain with t; = 1 foreach 0 < k < n—1, then
L(p" (x0)) < L' (x0)) = c1. Also, L(x1) < ¢;+6 by the choice of e and L(g" (x1)) < c1.
Inductively, we have L(xy) < ¢; + 6 for 1 < k < n. Hence, there is no e-chain from
x to x, and x ¢ Z(®). Thus, Z(P) < N(4,r)ez AU R by contraposition.

If x ~ y, then we see from this that x and y are in the same component of any
attracting-repelling pair (A, R). g

Theorem 1.5.39 suggests that a continuous flow should be studied by analyzing
the dynamics on the chain components, which can be done by restriction because
they are compact invariant sets, and to then augment this analysis by determining
the transient dynamics between them. We are indeed ready to give a complete
global description of the dynamics: a Lyapunov function will disentangle transient
and recurrent behavior systematically.

Theorem 1.5.41 (Conley’s Fundamental Theorem of Dynamical Systems). Let ® be
a flow on a compact metric space X. Then there is a Lyapunov function L: X — [0,1]

such that L(R(®)) is nowhere dense, x ¢ #(®) = L(p"(x)) < L(x) forall t >0, and if
X,y € Z(®), then L(x) = L(y) © x ~ y (see Proposition 1.5.32).

Remark 1.5.42. A Lyapunov function with these properties is called a complete
Lyapunov function. The proof also reveals that there are either finitely many or
uncountably many chain-components. Example 1.3.12 is an instance of the latter.

PROOF. By Lemma 1.4.17 write o/22(®) = {(Aj,Rj)}?’il with M e NU {oo}. Propositi-
on 1.4.19 gives Lyapunov functions L;: X — [0, 1] that strictly decrease along orbits
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off AjUR;j. The continuous function defined by the uniformly convergent series

M
Lx)=2) 377Lj(x)€[0,1]
j=1
is nondecreasing along orbits since the summands are, and L(Z(®)) is the ternary
Cantor set or a finite subset.
If x ¢ 2(®), then x ¢ A; UR; for some j, and L; (¢’ (x)) < L;(x) for £ > 0. Also,
Lk((pt(x)) < Li(x) for all k, so L((pt(x)) < L(x) and L is strictly decreasing off 2(®).
Theorem 1.5.39 shows that x, y € Z(®) are chain-equivalent if and only if for
each attracting-repelling pair (A;, R;) they are in the same component. Hence,
L(x) = L(y). Conversely, if x # y, then there is a minimal j < co with x € Aj, yER;
after possibly relabeling, so L;j(x) =0and L;(y) = 1. Then

2 M 1 2 2 1 1
L —-Lx)=—-2 —_>———|—|=—=>0. O
T k:%lsk 3i 3/“(1 1) 3J

With the chain-decomposition, the phase space or an essential part of it splits
into a well-behaved union of closed invariant subsets, and the dynamics on these
may be studied separately. This is highly effective, especially for hyperbolic flows.
Therefore, our next agenda is to concentrate on such pieces, and we now investigate
ways in which the recurrence on them can be stronger than just chain-recurrence.

Remark 1.5.43 (Generalized recurrent set). As an aside we note that the finest
decomposition of the space X by Lyapunov functions for the flow @ is given by the
(closed invariant) generalized recurrent set GR(®) of points along whose orbits any
Lyapunov function for the flow is constant. Then NW(®) c GR(®) < Z(®). Each of
these inclusions can be strict, see Exercise 1.27 and Remark 5.3.41, so in light of
this and Proposition 1.5.34,

Per(®) c B(®) c L(P) c NW(®) c GR(D) € Z(D),
with set closed and each inclusion strict in some of our examples (Exercise 1.21).
Analogously to the proof of Conley’s Theorem one shows:

Theorem 1.5.44 ([17, Theorem 2]). There is a Lyapunov function f such that x €
GR(®) if and only if [ is constant on ©(x), and x ¢ GR(®) = [ (¢’ (x)) < f(x) for
t>0.

PROOF. The space £ be the space of Lyapunov functions f: X — [-1,1] (with the
topology of uniform convergence on compact sets) is separable, so there is a dense
subset {fi}ken, and x € GR(®) if and only if fi (¢’ (x)) = fi(x) forall t e Rand k € N.

Then F:=) ey fk/2k e Zand f(x):= f(;’o Fo'0) ds is as desired: If F(¢'(x)) = F(x)

s2+1
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forall >0, then fi.(p(x)) = fx(x) forall  >0and k € N, so x € GR(®). Conversely,
if x ¢ GR(®), there are t,, — +oo with F(¢@™+1(x)) < F(¢'™ (x)) for all n € N, hence
the claim. g

The level sets of the Lyapunov function in Theorem 1.5.41 dynamically de-
compose the manifold in a way that is coherent with the chain components. The
dynamics still can be (and for continuous systems in discrete time generically
is [5]) rather complicated, but for hyperbolic flows (Definition 5.3.48) the chain
components are open and hence finite in number (Corollary 5.3.34). Then this de-
composition by level sets can even more effectively describe the overall dynamics.

Definition 1.5.45. Let ® be a flow on a compact manifold M. A filtration M*® for
® is a nested sequence & = My C M; C --- C My = M of compact sets such that
@' (M;) cint(M;) forany t >0and any i € {1,..., k}.

Remark 1.5.46. This notion is not obviously hereditary: a filtration for ® Ia does
not imply the existence of a filtration for ®.

So (the set of interiors of the members of) a filtration is a nested sequence of
trapping regions. Note that KfD M) =Ner ¢ (M; \ M;_1) is compact and the maxi-
mally ®-invariant subset in M; \ M;_ for i € {1,..., k}. We let K® M) :=U~_ K (MD).

Theorem 1.5.47 (Filtration). Let ® be a continuous flow on X with finite chain-
decomposition \y,..., Ai. Then there is a filtration M of X composed of My < M) c
-+ My, such that A; = K (M) for each i €{1,...,k}.

PRrROOF. Theorem 1.5.41 gives a Lyapunov function L: M — R for ® with L(Ag) >
L(Ag—1) > -+ > L(A2) > L(A) after possibly relabeling. Fix ay, ..., a; € R such that

ayp > L(Ag) > ag—1 > L(Ag—1) >--->ap > L(A2) > a; > L(Ay).

The M; = L™! (—o0, a;] define a filtration with A; € M; \ M;_,. If x € K" (M), then
w(x) c Z(D)N K;D(M) c A;. Similarly, a(x) c A;, so x € A;. O

While Lyapunov functions and the chain-decomposition are effective in hom-
ing in on recurrent dynamics and organizing it to some extent, we saw that con-
stants of motion can do so to some extent (Corollary 1.5.8) but also previously
pointed to Figure 1.1.4 viewed on the cylinder S! x R as an illustration that a con-
stant of motion need not be constant on £ (®); indeed, in this chain-transitive
example the level sets of energy provide a far better disaggregation of the dynamics:
except for the energy level of the saddle, each level set here is an orbit. While this is

18)\fore generally, a filtration is a decomposition into an indexed collection of sets where the index
I'is a totally ordered set such that if i < j in I then M; c M;.
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untypically fine a decomposition, it motivates studying finer decompositions as
well as stronger dynamical entanglements. This is the goal of the next section.

6. Transitivity, minimality, and topological mixing

As we mentioned after the proof of Theorem 1.5.41, the chain decomposition
splits a flow into chain-transitive pieces. That chain-recurrence is the weakest
recurrence notion in the previous section suggests to now describe ways in which
orbits in a given chain-component might be more tightly entangled than chain-
recurrence alone implies. This is our task for the present section.

Definition 1.6.1 (Topological transitivity). We say that a flow on a metric space X

is topologically transitive if there is a point x € X such that ©* (x) = X. A subset of
X is said to be (topologically) transitive if it is an orbit closure.

This is a recurrence property in two ways: on one hand the point x is recurrent,
and on the other hand, this property implies that every point is nonwandering.

Transitivity will also play a major role in studying hyperbolicity for flows. One
of the fundamental notions in hyperbolicity is the idea of a basic set Definition
5.3.15 that is a transitive component of the flow.

Example 1.6.2. Taking n =1 and v # 0 in Example 1.1.8 gives a trivial example
of a topologically transitive system,; it consists of a single periodic orbit. If n =2
and 0 # v; = av, with irrational «, then the corresponding linear flow is indeed
topologically transitive (see also Remark 1.1.11). This can be shown by adapting
the observation in Example 1.3.13 to reduce this to studying the rotation x — x + «,
whose orbits are xp + @Z mod 1, hence dense. This shows that indeed every (semi-)
orbit is dense(Definition 1.6.21). By contrast, all orbits are periodic if @ € Q (Remark
L111):If pvy = quz and £ = ;L = 2 then t(v1, v2) = (g, p), s0 P9 =1d.

=

Remark 1.6.3. A similarly homogeneous example arises below in a geometric
context (Example 2.1.16), and it is profoundly different in terms of longitudinal
behavior: while toral translations (Example 1.1.8) are suspensions (Example 1.3.13),
those flows are not (Theorem 3.4.44).

The notion of transitivity proves useful immediately. For instance:

Proposition 1.6.4. A ropologically transitive flow has no constant of motion (Defi-
nition 1.1.23).

PROOF. A constant of motion is constant on the closure of the dense orbit. U

We can easily amplify this in the context of the chain-decomposition:
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Proposition 1.6.5. A flow on a connected space X whose chain-components are
transitive and finite in number'® has no constant of motion.

PROOF. A constant of motion # is constant on orbit closures, hence
¢ his constant on each chain-component, and
o forany x € X, h(x) = h(gR(x)) = h(w(x)), where 0(x) = Nser @14 (x) is
contained in a chain-component.
Thus, h(X) is finite and connected. O

Remark 1.6.6. This is a good moment to look back at Figure 1.3.3. None of those
flows have a constant of motion, but only one has a dense orbit. None is topologi-
cally transitive, and the chain-recurrent set of the north-south dynamics consists
of the fixed points, whereas it is the circle in the other 2 examples—which shows
that Proposition 1.6.5 is not sharp.

Also, in all cases the nonwandering set consists of the fixed points, but when
the south-north-south dynamics is included in Figure 1.1.4, then all its points are
nonwandering.

Proposition 1.6.7. A flow is transitive if and only if w(x) = X for somex € X.

PROOF. Since w(x) c W_(x) , a flow is transitive if there exists a point x € X such
that w(x) = X. Conversely, suppose X = 6% (x). Unless x is periodic and hence
X =0%(x) =0 (x), wehave ¢ (x) € X\ O (x) =0 (x) \ O (x) < w(x), so (since
w(x) is closed and invariant) X = 0 (x) € w(x). O

It is common to define topological transitivity as the existence of a dense orbit,
rather than a forward dense orbit. While there are flows that satisfy the first of these
and not the latter (Example 1.3.6 or 1.3.9), this is a 1-dimensional phenomenon.
This suggests a natural terminology in analogy to discrete-time dynamics, where
the various definitions of topological transitivity agree on a perfect set, that is, a
compact set without isolated points.

Definition 1.6.8. A compact set is said to be flow-perfect if it has no isolated
segments, that is, no open subset is homeomorphic to an interval?°

Proposition 1.6.9 (Transitivity). For a continuous flow ® on a flow-perfect metric
space X, the following four conditions are equivalent:

(1) @ has a dense positive semiorbit (topological transitivity, Definition 1.6.1).
(2) ® has a dense orbit.

B, by Remark 1.5.42 equivalently, at most countable in number
20150]ated points are not a problem because if there is one, then all cases below are equivalent to

it being the whole space.
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(3) If @ # U,V < X are open, then there exists a t € R such that " (U)NV # @.
(4) If @ # U,V < X are open, then there exists a t = 0 such that " (U)NV # @.

Remark 1.6.10. (4) = (3) and (1) = (2) are clear. We prove (2)=(3)=4)=(1).
Note that (1)=(2)=(3) (and (4) = (3)) use no assumptions on the topology of X.
Considering Examples 1.3.6 or 1.3.9 in light of these 4 statements may help clarify
Proposition 1.6.9 and its proof.

Remark 1.6.11. Item (3) can be strengthened. Since {B(x,e/Z) xB(y,el2) | x,y€
X} has a finite subcover by compactness of X x X,

Ve>03TeRVx,ye X3re[0,T]: (p[(B(x,e))mB(y,e) #.

PROOF OF PROPOSITION 1.6.9. (2)=(3). If @ # U,V c X are open and G (x) = X,
then there are 7,5 € R with ¢!(x) € U and V 3 ¢%(x) = 9"~ S(¢’(x)) € @'~ 5(U), so
PNV #02.

(3)=(4) is the “uphill” step. Here we “symmetrize time.” To that end, first
“symmetrize space” by considering the case U = V =W in (4). We show:

(1.6.1) Given @ # W c X openand T >0 thereisa t = T with ' (W)n W # 2.

It is important here that ¢ can be taken arbitrarily large.

Claim 1.6.12. For @ # W c X open thereare t =21 and & # W' < W open with
PIW)cw.

This implies (1.6.1) because applying it to W’ recursively, we find that given
@ # W c X and T > 0 there are an open W’ < W and ¢ = T such that ¢!(W') c W.
We use the following notation several times.

Definition 1.6.13. For a topological space X and x € Ac X we denote by C (A, x)
the connected component of A containing x.

PrOOF OF CLAIM 1.6.12. If W consists of fixed points, then so does its closure,
and by (3) the closure is X, hence again by (3), X is a point, in which case (4) holds
(trivially, as do the other 3 statements). Otherwise, pick a point x € W that is not
fixed, andlet I:=C({r€(-2,2) | ¢'(x) € W},0) =R. Then ¢!~ (x) is compact,
and we can replace W by W . ¢[=1I>(x). Since W is not homeomorphic to
an interval, there is a y € W . ¢’ (x), and there are disjoint neighborhoods W, of
(pI(x) and W, of y.21 By (3) (and the choice of I) there is an s € R\ [-1,1] with
PSWNW, #2. Let t:=1s| = 1.
o Ifs<0set W=¢@*(W)n W, c W, c W to get

P W)= (fS(Z)NZ)c Zy cW.

21This uses that X is a metric space, and “regular Hausdorff” would suffice.
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o Ifs>0set W:=Wine (W) c W) c W to get
P'W) =@ (Wi N (W,)) c W c W. O

We now return to the proof of Proposition 1.6.9. (1.6.1) implies (3)=(4) in
Proposition 1.6.9: If & # U,V < X are open, then there exists an s € R such that
W:=¢5(U)nV # @. If s > 0 we are done. Otherwise, (1.6.1) gives a ¢ > —s with

AP WNW =@ (@ ()N V)N (U)NV ™S (U)nV.

Since £+ s > 0, this proves (4).
(4)=(1). Since X is second countable, let Uy, Uy, ... be a base for the topology.
We inductively construct a semiorbit that intersects every U, and is hence dense.
As the first step, take an open W; # & with WicU =W, compact and #; =0.
Suppose for 1 < j < n there are ¢; = 0 and open & # W; V_Vj < Wj_; with
¢'i(x) e Uj for all x € Wj. (4) then gives f,4+1 > 0 with @1 (W) N Uy # &. Since
@ is continuous, W,; =W,n (p’t’”1 (Up+1) # @ is open, and there is a nonempty
open Wy € Wy € W),
Then & # K :=jen MZcﬂjeN Wistandxe€K,jeN=¢li(x) e p'i(Wj))cU;. O

Remark 1.6.14. Examples 1.3.6 and 1.3.9 are not the only ones showing the need
for the assumption on X in Proposition 1.6.9. More generally, if a point x € X has a
dense positive semiorbit for a flow @, consider the cartesian product of ® and the
flow in Example 1.3.6 or 1.3.9. If y is a nonfixed point in the latter factor, then ®
restricted to the orbit closure of (x, y) has a dense orbit by definition, but no dense
semiorbit.

Example 1.1.8 in dimension higher than 2 does not yield a transitive-versus-
periodic dichotomy as in Example 1.6.2, but Proposition 1.6.9 gives a convenient
criterion for transitivity.

Proposition 1.6.15. A linear flow x — x + tv on T" is topologically transitive if
and only if the components of v are rationally independent (that is, if k€ Z" and
(k,v)=0, thenk=0).

We prove this via a converse to Proposition 1.6.4:

Lemma 1.6.16. If @ is a continuous flow on T" and every bounded measurable ®-
invariant function is constant, then ® is topologically transitive.

PRrROOF. If O is an open ®-invariant set then yo is ®-invariant, hence constant
almost everywhere, so O has Lebesgue measure 0 or 1. Thus, there are no disjoint
nonempty open ®-invariant sets. If now U, V < X are open then the ®-invariant
open sets @R (U) and ¢®(V) are therefore not disjoint, so ¢*(U) N ¢*(V) # & for
some f,s€R, and ! S(U)NV # @. |
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PROOF OF PROPOSITION 1.6.15. We show both implications by contraposition. If
there is a k € Z" \ {0} with (k, v) = 0, then sin (27(k, x)) is a nontrivial constant of
motion, and @ is not transitive by Proposition 1.6.4.

Conversely, suppose f is a nonconstant bounded measurable (hence L?) in-
variant function and use the Fourier expansion:

Z fke2ni<k,x) —_ f(x) — f(x+ tv) = Z fk62ni<k,x+tv> — Z fkeZHit(k,v)eZHKk,x).
kezm kezm kezn

Since f is not constant, there is a k # 0 with f; # 0, so the uniqueness of this
expansion implies e2mitlk,v) — 1 for all t € R, hence (k, v) = 0. O

The criteria in Lemmas 1.6.4 and 1.6.16 are not meant to be optimal, but they
are well suited for the purpose at hand and also yield Proposition 3.3.6 below.

Remark 1.6.17. Proposition 1.6.15 gives a clean connection between a dynamical
property and a parameter of the flow. This makes it natural to discuss this whole
family of linear flows as such rather than viewing each in isolation. Among this
family, flows with rather different kinds of orbit structures are tightly interspersed.
A rational vector v gives rise to a flow all of whose orbits are closed, but arbitrarily
near v there are rationally independent vectors, and they define flows with dense
orbits; conversely each of these in turn is arbitrarily close to a rational vector and,
on T" with n = 3, also to “intermediate” flows with neither periodic nor dense
orbits but orbit closures that form tori of smaller dimension. In particular, such
distinct flows are definitely not orbit-equivalent. This indicates a great deal of
structural “fragility” of these flows.

From this perspective we revisit some earlier examples. Example 1.4.13 has
similarities but also a pronounced difference. We noted that the gradient flow on
a “standup” torus undergoes a qualitative change when the torus is tilted slightly;
this is akin to the “fragility” for toral flows. On the other hand, the description in
Example 1.4.13 of the dynamics after this slight tilt did not depend on the amount
of the tilt, so structurally all these perturbations of the initial gradient flow look
rather the same. One might conjecture that they are pairwise orbit-equivalent. In
arather similar vein, Example 1.4.8 was obtained from the undamped pendulum
and behaves quite differently—but as we change the amount of damping, Figure
1.4.1 changes geometrically (the spirals will approach the stable equilibrium more
quickly) but not topologically, so here as well, we have a whole range of parameters
with structurally “constant” behavior. The dynamics here is simple enough that
one can try to slightly refine the ideas in the proof of Proposition 1.4.5 to show that
any 2 of these damped pendulum flows are topologically conjugate.
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Let us clarify as well that these features of the various families of flows are
not an artefact of the parametrization; in a natural sense, these are continuous
parametrizations in the following sense.

Definition 1.6.18 (C”-closeness). Two flows ® and ¥ on M are said to be C"-close
. : v
ifp [0,1)x M and ¥ N[0,11x M are uniformly C"-close.

Remark 1.6.19. This is the compact-open C" topology for maps on R x M. Since

a flow @ is determined by the mapping ¢ N pix M for any a < f (Remark 1.1.4),

this definition incorporates all information about the flows without unrealistically
imposing bounds that are uniform in time.

For toral flows, changing v slightly produces slight changes in this C" sense
for any r. Similarly for the angle of tilting the torus with the gradient flow or for
increasing the damping parameter.

Remark 1.6.20. Any 2 orbits of a linear flow on T" are isometric (by a translation),
so whenever such a linear flow is topologically transitive, every orbit is dense. The
latter feature is a natural indecomposability condition for topological dynamical
systems, a property stronger than topological transitivity and, after periodicity, the
next case of strong and uniform recurrence.

Definition 1.6.21. A flow is said to be minimal if every orbit is dense or, equiv-
alently, if every closed invariant set is empty or the whole space. A ®-invariant
set Ais said to be minimal if ® Fa is minimal (or A has no proper closed invariant
subset).

Remark 1.6.20 gives

Proposition 1.6.22. A linear flow x — x + tv on T" is minimal iff the components
of v are rationally independent (meaning: if k € Z" and (k,v) =0, then k=0).

Example 1.6.23. A topologically transitive flow that is not minimal is easy to con-
struct from a minimal linear flow on a torus (which is generated by the constant vec-
tor field v) by considering the flow generated by the vector field fv with f: T" - R
such that f ~1(0) (the set of fixed points) is nonempty and finite.

Theorem 1.6.24. Ifa flow is minimal then so are its time-t maps for all but count-
ably manyt € R.

PROOF OUTLINE. If ¢" is not minimal, then there is a proper minimal set A; for
the map ¢". Note first that no orbit stays in A; for an interval [0, €) of time because
by minimality of ¢* 4, and by an approximation argument every point of A;
would stay in A; for all s € [0,¢) and hence forever, so A; is a proper invariant set
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for the flow ¢, contrary to minimality. Thus every point of A; has a positive first-
return time, which again by minimality of ¢* A, and an approximation argument
is a constant 7; on A;, and then 7 € 71Z. We define a continuous nonconstant
eigenfunction f; for ¢! by taking f;(x) = 1 for x € A; and imposing f(¢°(x)) =
e2misit fr(x) (then |f;| = 1). Note that the f; are distinct for different first-return
times, so by separability of C(M) there are hence only countably many t for which
" is not minimal. O

Proposition 1.6.25. A continuous flow ® on a compact metric space X is minimal
ifand only if for everye > 0 thereis an T > 0 such that ¢'*™!(x) ise-dense in X for
eachxe X.

PROOF. The latter condition clearly implies minimality. On the other hand, if it
fails then there is an € > 0 such that for every n € N there is an x, € X for which
=TT (x,,) misses a ball B(c,,,€). By compactness there are accumulation points
x of (x;,) nen and c of (¢;,) nen, and we claim that the orbit of x misses B(c,e/3). To
that end, take NV € N and choose n = N such that

e c,€B(cel3),
e ¢'(xn) € Blp'(x),e/3) for || < N.

Then for |£| = N we have
d(@'(x),0) =2 d(p"(x,),cn) — d(@" (xp), 0" (x)) —d(cp,c) =e—€/3—€/3=¢€/3.

Since N was arbitrary, this proves the claim. |

Remark 1.6.26. For the linear flows in Proposition 1.6.15 the exceptional values of

l
7 are those of the form —— with [ € Z, k € Z" < {0} because for such 7 we have
N7

t{k,v) =1, so sin (2n(k, x)), say, is ¢" -invariant. This is illuminating even for n = 1.

The next result can be proved using Zorn’s Lemma, but we will provide a
different proof.

Proposition 1.6.27. A continuous flow on a compact metric space has a nonempty
minimal subset.

Lemma 1.6.28. The set of closed invariant sets of a flow ® on a metric space is closed
with respect to the Hausdorff metric.

PROOF. @ acts homeomorphically on the collection of closed subsets with the
Hausdorff metric, and invariant sets are the fixed points, so the set of these is
closed. O
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PROOF OF PROPOSITION 1.6.27. Let m(B) = max{d(A,B) | Ac B closed invariant}
for B closed and invariant. Take M such that m (M) = mg:= min m. Then M has no
proper closed invariant subsets: Otherwise my > 0. Take a closed invariant M; ¢ M
such that d(M;, M) = my. By assumption M is not minimal and contains M, such
that d(M», M) = mo and hence d(M,, M) > mgy. We continue this process to obtain
a sequence M; such that d(M;, M;) = mg contradicting compactness with respect
to the Hausdorff metric. O

Remark 1.6.29. For a continuous flow ® on a compact metric space denote the
closure of the union of all invariant minimal sets by M (®). Then 8(®) > M(®) # &
since every point of a minimal set is recurrent.

An obvious and useful observation is:

Proposition 1.6.30. Each of topological transitivity, minimality, and density of
periodic orbits is invariant under time-changes and holds for a special flow if and
only if its discrete-time counterpart (defined in the obvious way) holds for the base.

While minimality is a strengthening of topological transitivity as defined by
density of an orbit, a strengthening of transitivity as defined by open sets gives a
criterion for much greater dynamical complexity: images of an open set persistently
overlap with another given open set.

Definition 1.6.31 (Topological mixing). A flow ¢! on a topological space X is said
to be topologically mixing if for any two open sets U and V there exists a 7 > 0
such that o’ (U)nV Z@ forall t = T.

Remark 1.6.32. Figure 1.6.1 shows this in the context of Example 1.5.23 with a
figure due to Grayson, Kitchens and Zettler on which some of those in their 1993
article [135] were based.

Analogously to Remark 1.6.11 this implies a uniform property if X is compact:
Ve>03TeRVx, yeX, t=T: " (B(x,6)) NB(y€) # 2.

This can be seen as an extreme form of unpredictability: if € is taken to be
the size of observational accuracy, then this statement says that after time 7, an
initial state can evolve to literally any state whatsoever, that is, no prediction at all
is possible beyond this time 7.

Proposition 1.6.9(4) immediately gives
Corollary 1.6.33. Topologically mixing flows are topologically transitive.

In contrast with Proposition 1.6.30, topological mixing depends on longitudi-
nal effects, that is, the time-parametrization matters. The clearest illustration is
given by suspensions:



80 1. TOPOLOGICAL DYNAMICS

FIGURE 1.6.1. Mixing in Example 1.5.23

Example 1.6.34 (Suspensions are not mixing). A suspension flow ® over a homeo-
morphism of a space X is not mixing: if U:= X x (0,1/2) and V= X x (1/2,1), then
p"U)nV=gforallneZ.

This is more generally true for special flows whose roof function is coho-
mologous to a constant: If ¢ and ® 7 are special flows over X, and f and f are
cohomologous, that is,

f(x) = fx0) +v(x) - v(ox)
for some continuous function v, then by Proposition 1.3.17 the two flows are
topologically conjugate via 7 (x, t) = (x, t + v(x)).

In particular, a flow under a function that is cohomologous to a constant is

topologically conjugate to a suspension and hence not mixing.

For discrete-time dynamical systems we define topological mixing in the same
way (but with integers ¢, T). Example 1.6.34 shows that unlike with topological
transitivity, a special flow over a topologically mixing homeomorphism need not
be topologically mixing. On the other hand, Example 1.6.35 below is a special flow
with mixing base that is mixing. Thus, topological mixing (Definition 1.6.31) is
sensitive to time-changes and hence to the choice of roof function for special flows.

Example 1.6.35. @, is a mixing special flow over the map F4 (Example 1.5.23)
when the roof function is r.: T? — R*, p—1+cP(d(p,0) withc¢ Qand f: R—
[0,1] smooth, even, decreasing on [1/4,1/2], and such that f(x) = 1 for |x| < 1/4,
B(x) =0 for |x| > 1/2: r. is irrational at the fixed point associated with the origin,



7. EXPANSIVE FLOWS 81

but 1 at the period 3-point associated with the orbit (1/2,1/2), (0,1/2), and (0,1/2),
so the periods of these two points for the special flow are incommensurate, and
®,. is mixing by Proposition 6.2.19 below.

The details for the next example are given in the following chapter, but mention
it now as another important example of a mixing flow. Furthermore, we will see
that this is an important example of a hyperbolic flow.

Example 1.6.36. The geodesic flow on a compact factor of the hyperbolic plane
(Section 2.4) is topologically mixing (Remark 8.1.14 and Corollary 9.1.4).

Remark 1.6.37. We pick up once more from Remark 1.6.20. Whether or not a toral
translation is minimal, the orbit closures provide a natural decomposition of the
torus: each orbit closure is a translate (or coset) of the closure of the orbit of 0,
which is itself an embedded (sub)torus. This is, however, not an instance of a gen-
eral phenomenon but rather a reflection of the homogeneity of toral translations,
specifically the fact that any 2 orbits differ by a translation. (The orbit closure of
0 is a compact subgroup; other orbit closures are its cosets.) When this is not the
case, a decomposition into orbit closures does not usually go well. The next section
provides abundant examples of this. Recall, though, that while orbit closures do not
usually partition the space neatly, Proposition 1.5.32 and Theorem 1.5.41 provide a
natural and effective decomposition in great generality, which in also particularly
well-suited to hyperbolic flows, where there is a finite partition by transitive pieces
(Theorem 5.3.35).

7. Expansive flows

We now explore the concept of expansivity, a property that is central to hy-
perbolic flows and which, together with compactness of the space, provides a
mechanism for complicated dynamical phenomena. Because special flows are our
first examples of expansive flows and as a warm-up we first define expansivity for
maps.

Definition 1.7.1 (Expansivity for maps). A homeomorphism f: X — X is said to
be expansive if there exists a constant > 0 such that if d(f" (x), f"*(y)) < 6 for all
neZthenx=y.

The adaptation of expansivity to flows is subtler because of the flow direction
and the possibility of reparametrization. For any 2 orbits of a flow one expects
to be able to reparametrize one of them in such a way that at some time the
orbits are substantially separated. Expansivity says that this will happen for any
reparametrization, or conversely, that no reparametrization can make 2 orbits stay
close forever. This definition has proven to have the desired properties, and we
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now formalize it and then study some of its consequences as well as equivalent

formulations:

22

Definition 1.7.2 (Expansivity). A flow ® on a compact metric space X is expansive
if for all € > 0 there is a § > 0, called an expansivity constant (for €), such that:
if x,y€ X, s: R— R continuous, s(0) =0, and d (¢’ (x),¢*?(y) <6 VteR,
then y=¢!(x) for some |t]| <e.

Remark 1.7.3. By contraposition this says that any 2 orbits will separate by 4 at
some time, no matter how you reparametrize (one of) them.
For flows a few notable features of expansivity contrast with the discrete time.

As in the discrete-time context, expansivity implies that points on differ-
ent orbits separate by ¢ in the future or the past. In particular, no orbit
is stable for both the flow and the reversed flow. (In discrete time, this
characterizes expansivity.)

Expansivity is independent of the metric and preserved by orbit equiva-
lence (Theorem 1.7.7), time-changes (Corollary 1.7.8) and the forming of
Cartesian products. (Likewise in discrete time for topological conjugacy
and products.)

A suspension is expansive if and only if the base is (Proposition 1.7.9).
Expansivity implies that fixed points of ® are isolated points of X, so
one can omit these (X \ {fixed points} is compact) and thereby study
flows without fixed points. Specifically, if x is fixed, € > 0, § as in the
definition, d(x, y) < 8, s =0, then d (¢ (x),p*? (y)) = d(x,y) < for all ¢,
s0 y = @' (x) = x. (This also implies that there are only finitely many fixed
points.) For flows without fixed points expansivity can be easier to check,
see Theorem 1.7.5.

We do not instead use the natural-looking simpler variant

“6 >0 (dp'(x), 0" (1) <O VteER)>x=y"
because it does not hold for any nontrivial flow: V§ >0 31 > 0 such that

(y=¢*(x) with |s] <) = (d(¢'(x), 9" (y) <6 VI R).
On the other hand, it merely seems less natural to instead use

(1.7.1) “Ye>036>0: (d(@'(x),¢' () <6 VreR) = (y=¢"(x) forsome | 7] <€)’

This notion turns out not to be invariant under orbit-equivalence(!) and
holds for the “twist” flow (x,y) — (x+ ty (mod 1),y) on S! x [1,2] or
equivalently, rotation of the annulus 1 < r < 2 in R? with constant linear
speed, even though this can be time-changed to a rigid rotation and

220ur presentation follows that by Bowen and Walters [59].
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no two orbits (y = const.) separate. This example should also be out of
bounds because it has a continuum of closed orbits. Hence the preference
for allowing arbitrary continuous reparametrizations in the hypothesis.

In light of recent developments we point out that a nonuniform
counterpart of (1.7.1) is weaker than Definition 1.7.2 but sufficient for
existence and uniqueness of equilibrium states, which is a central moti-
vation for the notion of expansivity?® That is to say, with respect to our
principal purpose for this notion, this would serve. We prefer our choice
because of the utility of Theorem 1.7.5 and because it reflects that no
orbit can closely track another even if we are flexible with the timing, that
is, the parametrization.

It is illuminating to show directly that the Smale horseshoe (Example 1.5.21) is an
expansive flow; this also follows from Example 1.8.16 below. Likewise, Example
1.5.23 (the suspension of (2 1)) also provides an instance of an expansive flow.
This is a consequence of Proposition 1.7.9 below but also not hard to see directly.
Indeed, the orbits of 2 points x, y will separate (exponentially) for positive time
unless y is in the local center-stable set of x, in which case such separation occurs
in negative time. Hence, the only points that remain close are on the same orbit.
It might be interesting to consider this argument in the case of a special flow over
(21), or one can reduce this to the suspension by invoking Proposition 1.3.28 and
Theorem 1.7.7 or Proposition 1.7.10.

Compactness and contraposition give:

Proposition 1.7.4. If ® is a flow on a compact metric space X and & an expansivity
constant fore > 0 (Definition 1.7.2), then for any p > 0 thereisa T > 0 with

d(@'(x),¢'(y) <6 forallt e [-T, T = d(y,¢"(x)) < p for some t € [¢,€].

PRrROOEF. Otherwise, take x,, y, € X such that d(y,, (pt(xn)) > pforall t € [—¢,€e] and
d((pt(xn),(pt(yn)) <nforall t € [-n, n], and (without loss of generality) x,, — x and
¥n — y. Then on one hand, ¢’ (x) # y when |¢| < ¢, while on the other hand for any
r € R we have d(¢" (x,),¢" (yn)) <nforall n = K:=|r|, so d(¢"(x),¢" () <n, so,
since r was arbitrary, y = ¢’ (x) for some 7 € [—¢, €], a contradiction. |

Theorem 1.7.5. Expansivity of a fixed-point-free flow ® is equivalent to each of:

(1) Ye>03a >0 suchthatif x,ye€ X, h: R— R is an increasing homeomor-
phism, h(0) = 0, and d(¢*(x), "D (y)) < a Vt € R, then y = ¢*(x) for some
|t] <e.

23This can be found in [87, Section 2.5 (definition), Theorems A & 2.9 (application)] but that
context is far outside our uniformly hyperbolic setting.
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(2) Yn>036 >0 such thatif x,y € X, s: R— R is continuous, s(0) =0, and
d(p'(x), D () <8 Vt €R, then y € O (x) and the orbit segment from x
to y lies in the ball By (x).

(3) Ye>03a >0 as follows: if t.; = 200,0< tjy1 — i<, |ujy1 — Uil < a,
uy=1to=0,d(@"(x),p" () <aforallic Z, thenI|t|<e: y=q'(x)**

PROOF. That expansivity implies (1) and (2) is clear (for (2) take € > 0 such that
@' (x) € By(x) for |f] < €). That (2) implies expansivity is also easy: For € € (0, Tp)
take 1 > 0 such that d(x, ¢°(x)) > n for all x € X by Proposition 1.1.12. Then the
orbit segment from x to y lying in By (x) implies y = ¢"(x) with |¢| <e.

Showing that (1) implies expansivity involves deforming a continuous s(-) in
the definition of expansivity to a homeomorphism. As a first step we show thatin a
coarse way s is uniformly increasing.

Claim 1.7.6. If T is as in Proposition 1.1.12, T € (0, Ty/3), then there is at such
thatif x,y € X, s: R — R continuous, s(0) = 0, d(¢" (x), p* P (y)) <67:=y1/3 (Where
YT is as in Proposition 1.1.12) forall t € R, then s(t+ T) —s(t) =2t forall t e R.

PROOE. Proposition 1.1.12 gives

d@* " (), 0" D)
>d(p"(x), "™ T (x) - d @' (), 0" (1) = d@* D), " T (x)) =y 267 >0,

so continuity of @ yields a 7 > 0 such that [s(t+ T) — s(T)| = 77 forall t e R.

We still need to “remove the absolute value”, that is, to check that s(t+ T) = s(¢)
for all ¢, and it suffices to do so for ¢ = 0. Suppose to the contrary that there is a
T € (0, Ty/3) such that for all n € N there are x,, y, € X and continuous ¢,,: R — R
with s,,(0) = 0 for which d(¢*(x,), p*"? (y,)) < 1/n for all t € R but s,(T) <0 and
(by passing to a subsequence) that x, — x and hence y, — x. We will see that this
produces a periodic orbit of period less than Ty, contrary to the choice of Tj.

If 5,(T) = —T for infinitely many n, then s,,(T) — —L € [-T,0] for a subse-
quence, so d((pT(x), (p‘L(x)) =0, and x is periodic with period L+ T < Ty, a contra-
diction. Otherwise, s,(T) < —T for all large n, so s,(t,) = —T for some ¢, € [0, T]
and f,; — t, hence likewise x = ¢ *!(x), a contradiction. U

We now return to the proof of the theorem. The claim above shows that
if d(@’(x),9*?(y) < &7, then the desired increasing homeomorphism hr of R
is obtained from s by taking hr(nT) = s(nT) for n € Z and linear in between.
Moreover, for t € [nT,(n+1)T] thereisa t' € [nT,(n + 1) T] such that h7 () = s(t)

247Thjs last characterization is particularly useful for Proposition 4.2.23 and hence Theorem 4.2.24.
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and thus
dp'(0,¢" V(1) = d(" (x), """ (1) = d(@" (), 0" (1)) +d (" (), ().
SSUPyex yefo, 11 469" (X))
Now we establish expansivity. For € > 0 and «a as in (1) choose T € (0, Tp/3) such
that sup e x (0,7 d(x,¢"(x)) < a/2. Then
d('(x),p* P (y)) <6 <min(d7,a/2) forall e R

implies d (@’ (x), "7 (y)) < aforall t € R, so y = ¢’ (x) for some t € (~¢,€).
Finally, we prove that (3) is equivalent to expansivity. If ® is expansive, € > 0,

6 as in Definition 1.7.2, @ > 0 such that @ + 2sup{d(z,¢'(2)) | z€ X, |t|<a} <,

tj, uj, x,y asin (3), s(#;) = u;, then interpolate linearly to s(¢) for t € [#;, ;1] to get

d('(x),0* D (y)) < Id((pt(x), @"1(x) +d(@" (x), 0" (1) + d (@™ (), p*? (1) <8,
<a+2supld(z,9’(2)) | zeX, |tI<a}

50 y = ¢'(x) for some || < € by choice of 8.
Conversely, choose € > 0 and a asin (3). Ifd((pt(x), (phm () <aforallte Rand
an increasing homeomorphism 4 : R — R with /(0) =0 let fo = 0 and t.; == *o0

such that 0 < tj41 — t; < @ and 0 < h(tj4+1) — h(t;) < a. Then (3) with u; = h(¢;) gives
¥y =@(x) with |f| <e. O

Proposition 8.3.11 illustrates the utility of the characterization (3).
Theorem 1.7.7. Expansivity is preserved by orbit-equivalence.

PROOF. If 1 is a homeomorphism that maps orbits of an expansive flow ® on X
to orbits of a flow ¥ on Y, then the fixed points of both flows are isolated and can
hence be omitted (Remark 1.7.3). For i’ > 0 choose n > 0 such that h(By(x))
Bn/(h(x)) for all x € X and § as in Theorem 1.7.5(2) as well as §’ > 0 such that
dy (y1,y2) <6' = dx(h™ (y1), h ™ (y2)) < 6.

Suppose now that x, x, € X are such that there is a continuous s: R — R with
5(0) =0 and dy (' (h(x1)),w*? (h(x,))) < 8’ for all £ € R. Then Remark 1.3.23 and
the choice of ¢’ give

dx (71D (x1), 972D (x2)) < 8, that is, dx (" (x1), %251 ) (1)) < §

for all £ € R. Thus, by Theorem 1.7.5(2), x; € G (x;), and the ®-orbit segment from
X1 to xp is in By (x1), s0 h(xz) € ©(h(h;)) and the ¥-orbit segment from h(x;) to
h(xp) is in By (h(x1)). O

Corollary 1.7.8. A time-change of an expansive flow is expansive.

Here is a counterpart of Proposition 1.6.30 (with Proposition 1.7.10 providing
a broader one); Example 1.5.23 illustrates this.
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Proposition 1.7.9. A suspension is expansive if and only if the base is.

PROOF. With the conventions of Remark 1.2.6 suppose the suspension flow @ is
expansive. For € € (0,1/2) take 6 > 0 as in Definition 1.7.1 and suppose y;,y2 € M
are such that d(f"(y1), f"(y2)) <6 forall n € Z. Then

d(@'((11,0),¢" (y2,0)) <pri @ (1), !t (1)

=A-t+1tDp et (1), () + (= LtD p (@ HH L (y1), 0+ (1)
<(A-t+[tho+ (- tho=6.

Thus, (y2,0) = ¢! (y1,0) with |£| <€ < 1/2, 50 y1 = y», and [ is expansive.

Conversely, if f is expansive and € > 0 take § < min(1/4,¢€) less than the expan-
sivity constant of f with respect to p’ and x, x € M such that d (¢’ (x1), ¢*" (x2)) <
6 for all £ € R and some continuous s: R — R with s(0) = 0.

We will later reduce to the case where x; ~ (y1,1/2) € M x [0, 1], and with x, ~
(32, 1) we then get p'(y1, y2) < d(x1,x2) < 6 < 1/4. Since (pl(xl) ~(f(y1),1/2) and
d(@'(x1), 9% (x2)) < 6 forall £ € [0,1], we have @3V (x) ~ (f(y2), 5), and therefore
o' (F(y), f(y2) < d(@'(x1), 9V (x2)) < 8. Continuing this gives p’'(f"(y1), f"(32)) <
& for all n € Z and hence y; = y», which also gives x, = ¢’ (x;) for some |f| <6 <e.

For arbitrary x; find r € [-1/2,1/2] with x] = ¢" (x1) ~ (y1,1/2). With x{ =
@°") (x2) this gives d(¢’(x}), @+ 750 (x})) < § for all 7 € R, so the foregoing im-
plies x), = ¢’ (x}) for some || < &, hence x; = ¢~ (x)) with [+ 1 - s(r)| =
d(x1,x2) <8 <e. Thus, ® is expansive. O

With Proposition 1.3.28 and Theorem 1.7.7 this also implies:
Proposition 1.7.10. A special flow is expansive if and only if the base is.

In topological systems one often finds a weaker version of expansivity where
some (but not necessarily all) nearby orbits separate in time, so that some micro-
scopic deviation in initial conditions can lead to macroscopic differences in the
orbits.

Definition 1.7.11 (Sensitive dependence). Suppose @ is a flow on a metric space
X. A point x € X is said to exhibit sensitive dependence on initial conditions if there
is an € > 0 as follows: for all § > 0 there is a y € X such that d(y, x) < d and for any
continuous map s: R — R there is a f € R with d((pt(x),(ps(” (») = €. If this is the
case for all x € X, then we say that ® has sensitive dependence on initial conditions.

Together with compactness of the metric space this can lead to chaotic dynam-
ics. As hyperbolic flows are expansive (the stronger notion) we will not investigate
sensitive dependence further.
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8. Symbolic flows

We now describe a class of topological flows that provide the standard model
for representing hyperbolic flows, in a way that we will later make explicit. A
finite coding can help investigate the dynamics of deterministic systems that are
so complex as to appear random. The flows that arise from coding a system are
symbolic flows, and we will show that they are expansive. Chapter 2 will introduce
the paradigmatic case of smooth flows for which these notions are pertinent.

Symbolic flows are particularly amenable to careful study of the orbit structure,
as well as, later, statistical features. They are constructed as special flows over finite-
state systems, that is, over a system that is described in terms of allowed sequences
of symbols from a finite alphabet. Symbolic flows can also exhibit recurrence
properties from among those listed in the previous sections and thus also provide
new examples of systems with such features.

The symbolic examples with which we do this are central to the study of
hyperbolic dynamical systems. In fact, we will show later that hyperbolic flows
have a lift to a symbolic system that is uniformly finite-to-one and so will preserve
many of the important properties of the hyperbolic flow (Section 6.4).

Definition 1.8.1. Let <7, be a finite set with the discrete topology (the “alphabet,”
whose members are called the symbols), where n = #7,,. Let £, = {«/,}?. Then a
point t = {t;};ez € X, is a bi-infinite sequence with each ¢; € <7,. To give the set Z,,
the structure of a compact metric space we use the product topology.

For a > 1 (and usually a = 2) we define a metric on X, by d(s,t) = a~ " where
N is the largest nonnegative integer such that s; = ¢; for all |i| < N.

The (left) shift map is the homeomorphism o: X, — X, such that o(s); = s;j41.
The space (2, 0) is the full shift on n-symbols. A set A c X, together with the shift
map is a subshift if A is a closed shift invariant set.

If A: o, x of, — {0,1} is a function (that is, an 7n x n matrix) such that for each
i€, thereisa j € of, such that A(i, j) = 1 and for each j € o/, thereisa i € o/,
where A(i, j) = 1, then the subshift

A=Z,=1{s€Z,: A(Si,S,‘+1)=IViEZ}VVithO'AZ:Uh
A

is called a subshift of finite type or topological Markov chain.

The entries of the transition matrix A satisfy a;; = 1 if and only if A(i, j) =1,
in which case we say that the transition from i to j is allowed. By assumption,
each row and each column have a nonzero entry, and such a matrix is called an
adjacency matrix.

Example 1.8.2. A subshift of infinite type is given by the sequences in {0, 1}< that
contain at most one occurrence of the symbol 1. It consists of a fixed point (the
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sequence of zeros) and an orbit whose @- and w-limit sets are the fixed point. This
is a discrete-time counterpart of Example 1.3.9. A discrete-time counterpart to
1 1

Example 1.3.6 is given by the subshift defined by A = [ o 1l

Topological Markov chains provide the base for the special flows (Definition
1.2.7) that are the subject of this section.
A basis for the topology on X, is given by the cylinder sets

(1.8.1) cl =dsex, : sn; = ij forall 1 <j<k}, wheren;ez, ijeo),

i1k
consisting of the sequences with prescribed symbols in a finite set of locations.
Since the complement of a cylinder is a union of cylinders, hence open, cylinders
are both open and closed.

Definition 1.8.3. For a subshift A and a positive continuous function f: A — R, the
symbolic flow (p} is the flow over A under the function f. When A is a topological

Markov chain and the roof function is Hélder-continuous, the symbolic flow ¢ } is
called a hyperbolic symbolic flow.

Here, and often, we use a regularity notion that is particularly natural for
hyperbolic flows (Definition 12.1.1):

Definition 1.8.4. A map f between metric spaces is said to be Holder continuous
with exponent a € (0, 1] or a-Holder if d(f(x), f()) < (d(x, y))® for nearby x and
y?® A 1-Holder map is said to be Lipschitz-continuous.

We use this assumption here because it naturally arises in hyperbolic dynamics
and is at the same time needed in their study. The essential point is that hyperbolic
behavior is connected with exponential growth or decay of distances between
orbits, and Hélder continuity is well-adapted to this because exponentially small
differences in inputs result in exponentially small differences in outputs. For
symbolic flows, different natural choices of distance functions are related by Holder
regularity of the identity (and its inverse), and with a Holder continuous roof
function, the resulting flow has a natural Hélder structure.

Specifically, let

X={(s,1:tel0,f(s)],se A}c A xR,

and identify the points (s, f(s)) and (o (s),0) for all s € A. On this identification
space A(f) the special flow over A with roof function f is described as follows (De-
finition 1.2.7). Let w: X — A(f) be the quotient map. Then (p} (7(s, ty)) = 7%, D)

255ee also Definition 7.1.1.
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where k = 0 satisfies
k-1

f=t+t—- ) flol(s)
j=0
with 0 < 7 < f(a*(s)).

For these flows under functions it is of interest to connect dynamical properties
of the base to those of the flow.

We are primarily interested in symbolic flows over subshifts of finite type. In
this setting many of the dynamical properties of the subshift of finite type can be
recovered from properties of the adjacency matrix A. For an adjacency matrix A
there is an associated graph ¢4 on n vertices such that there is an edge from i to j if
and only if a; j # 0.2 The reader is encouraged to draw the graphs for the matrices

0100 11 11
A=|9000), A= , and A= :

[B88i) a=lo i) man=li g
Lemma 1.8.5. Let A be an adjacency matrix and 4, be the associated graph on n
vertices. If i, j € oy, then the the number #;’]’. of distinct paths on 9, of length meN

fromi to j equals thei, j-th entry a;;f of A™ (the product of m copies of A).

PROOF. We use induction on m. The case m =0 (or m = 1) is clear. The induction
step is accomplished once we show that

+1 _
(1.8.2) #ih= ) #hax;.
kesty,

For every k € of,, every admissible path of length m connecting i and k produces
exactly one admissible path of length m + 1 connecting i and j by adding j to it, if
and only if a; = 1. This proves (1.8.2). ]

Corollary 1.8.6 (Periodic-orbit growth). limy— oo % cardFix(c"}) = r(A), where r(A)
is the spectral radius (Definition 12.3.1).

Remark 1.8.7. If we let # be the set of finite length sequences that appear in X 4,
then w € # if and only if there is a corresponding allowed path on ¢4 following
the prescribed vertices. We call such a finite sequence w an allowed wordin X 4.

A matrix A with nonnegative integer entries is irreducible if for each i, j €
{1,..., n} there exists some N = N(i, j) such that af.\]’. #0.

Proposition 1.8.8. A symbolic flow (A(f), 0 ¢) over a subshift of finite type X 4 has
dense periodic points if A is irreducible. Furthermore, A(f) is transitive if and only
if A isirreducible.

26The graphs we consider are directed, allow “loops’; that is, an edge from a vertex to itself,
and each vertex has at least one entering and one exiting edge (because otherwise it can’t occur in a
bi-infinite sequence).
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PROOE. By Proposition 1.6.30 it suffices to prove this for X 4.

To prove that the periodic points are densein Z 4,lets€ X4 and € > 0. Fix N e N
such that a~N < e where a is the constant in the metric. Let w =s_p ---sy. For the
elements s_p, Sy € o, there exists some n = 2 such that aans, v 7#0.50 there exists
an allowed word w' of length n —2 such that ww'w is an allowed word, and we
can define a periodic § € ¥ 4 with period N+ n—2by §_y---Sy4+n-2 = ww'. Then
d,(s,8) < € and periodic points are dense in X 4.

To show that X 4 is transitive if A is irreducible, order # by first enumerating
the words of length one (symbols in «7},), then all the words of length 2, then all
the words of length 3, etc. To prove there is a point with a dense forward orbit we
connect the enumerated words. To do this let wj and wy.,; be successive points
in the enumerated words. Let i € <7, be the final symbol of wy and j € <, be
the first symbol in wy.;. Fix n € N such that a;’j Z0andlet w=s1---s, € # be
a word of length 7 such that the first symbol is i and the last symbol is j. Fix
w' = s+ 5,1 be the finite word obtained by removing the first and last symbols of
w. Then wiw' w1 is an allowed word. Continuing by induction we then construct
a forward infinite sequence containing all allowed words in X 4. Fix s € X 4 such that
the forward sequence of terms in s agrees with the infinite sequence we constructed.
It is not hard to see that under the shift map the forward orbit of s is dense in X 4.

The converse is much easier: Given i, j € of,, transitivity implies that there is
an s € 0 4 that goes from the cylinder set {sy = i} to the cylinder set {sy = j}, that is,
that w j is an allowed word for some word w. Thus a;; # 0. ]

Example 1.8.9. For a permutation matrix A (that is, a matrix with a single 1 in
each row and each column), each symbol has a unique successor, so X 4 consists of
periodic orbits (one for each cycle of the permutation) and is hence transitive if

and only if there is only one such orbit, that is, the permutation is cyclic and A is

0100
irreducible, such as A= ((1) 99 (1)) In fact, permutation matrices give the only cases
0010

of subshifts of finite type with finite cardinality.

Example 1.8.10. The matrix

A:[o 1

is not irreducible. For a roof function f the suspension flow ®7 on A(f) of 4 has
a dense orbit, but does not have a dense forward orbit. This flow consists of two
periodic orbits (coming from fixed points of £ 4) and an orbit whose a-limit set is
one of the periodic orbits and w-limit set is the other periodic orbit. This flow is
topologically conjugate to the cartesian product of the flow in Example 1.3.6 with
that in Example 1.1.6.
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Example 1.8.11. An irreducible matrix that appears similar to the previous ex-
ample, but whose associated topological Markov chain has different dynamical

11 o, 201
1 0]wr[hA_11

each i and j with af\]’. # 0, but N = 2 works simultaneously for all i j-pairs.

properties, is given by A = . So not only is there an N for

Definition 1.8.12. An integer matrix A is positive if each entry is positive and
eventually positive or aperiodic if there is an N € N such that A" is positive.

Then the proof of Proposition 1.8.8 gives:
Proposition 1.8.13. If A is eventually positive, then Z 4 is topologically mixing.

The next two results could have been proven earlier, and connect the results in
this section to the results in the previous section.

Theorem 1.8.14. Subshifts are expansive.

PROOFE. Let A be a subshift, e <1, and s,§ € A. Then thereis an i € Z with s; # §;,
so dg(c'(s),0'(8)) =1>e€. O

As an immediate consequence of this and Theorem 1.8.14 we further have:
Proposition 1.8.15. Symbolic flows are expansive.

a. Symbolic codings. One of the main uses of symbolic flows for us will be in
coding invariant sets for flows. In this case the coding is typically a semi-conjugacy
and so does not preserve all of the properties of the original flow. However, the
symbolic flow is usually easier to investigate and preserves sufficient properties
to be useful. We now provide a few examples to show how this can be done. The
more general theory on symbolic extensions will be given in Section 6.4.

Example 1.8.16. In Example 1.5.21, the dynamics on A is topologically conjugate
to the full 2-shift by labeling the 2 image pieces overlapping with A as 0 and 1 and
associating points and their itineraries. The flow is thus topologically conjugate
to the symbolic flow over the full 2-shift with roof function equal to 1. Variants
with more crossings in A are topologically conjugate to a full shift on more sym-
bols. Therefore, the set A has a dense set of periodic points and is topologically

transitive®’

Example 1.8.17. In Example 1.5.22, the dynamics on the natural invariant (Cantor)
set is topologically conjugate to a shift on 5 symbols by proceeding analogously
using the 5 overlap rectangles in the picture. In the rectangle to the right there are
three rectangles that are preimages of the regions that overlap. In the rectangle

27And has positive topological entropy (Section 4.2).
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to the right there are two rectangles that are the preimages of the regions that
overlap. In the first two subrectangles of the rectangle that is to the left the image
intersects all three of the preimages, and the third rectangle the image intersects
the two preimages in the rectangle to the right. For the rectangle that is to the
right the image of the first subrectangle intersects the three subrectangles in the
rectangle to the left, while the image of the second subrectangle intersects the two
subrectangles in the rectangle to the right. With suitable labeling, these allowed
transitions are collected in the matrix

0

J

1

0

1

Thus, we have a “coding” by A, that is, a homeomorphism & between the suspen-
sion of X4 and that of the invariant Cantor set in Figure 1.5.8 that intertwines the
flows.

(1.8.3) A=

11
11
00
11
00

== =]

Example 1.8.18. Suspensions of hyperbolic toral automorphisms are factors of
symbolic flows. Consider the suspension of the map

(1.8.4) Falx,y))=C2x+y,x+y) (mod 1)

of the two-torus from Example 1.5.23. Draw segments of the two eigenlines at the

)

a

\

FIGURE 1.8.1. Partitioning the torus

origin until they cross sufficiently many times and separate the torus into disjoint
rectangles. Although this prescription contains an ambiguity, direct inspection
shows that it can be effected by taking a segment of the contracting line in the
fourth quadrant until it intersects the segment of the expanding line twice in the
first quadrant and once in the third quadrant (see Figure 1.8.1). The resulting
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configuration is a decomposition of the torus into two rectangles R and R®.
Three pairs among the seven vertices of the plane configuration are identified,
so there are only four different points on the torus which serve as vertices of the
rectangles. This agrees with our description: those vertices are exactly the origin
and three intersection points.

One can see even without explicit calculation that the image F4(R™”) (i = 1,2)
consists of several “horizontal” rectangles of “full length”. The union of the bound-
aries ARV U OR@ consists of the segments of the two eigenlines at the origin just
described. The image of the contracting segment is a part of that segment. Thus,
the images of R and R® have to be “anchored” at parts of their “vertical” sides,
that is, once one of the images “enters” either R'"Y or R it has to stretch all the
way through it. Tracking where A sends integer points shows that F4(R") consists
of three components, two in R and one in R?). The image of R® has two compo-
nents, one in each rectangle (see Figure 1.8.2). We can use these five components

oN
€® Q)
o\

FIGURE 1.8.2. The image of the partition

Ao, A1,Az,As3, A4 (or their preimages) as the pieces in our coding construction. Due
to the contraction of F4 in the “vertical” direction and contraction of Fgl in the
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“horizontal” direction each intersection

ﬂ F;n (R((Un))

nez
contains no more than one point. On the other hand, the “Markov” property,
that is, the images going full length through rectangles, implies: If w € X5 and
Fa(IntAy,)NnIntA,,,,, # S forall ne Z, thenNez FX (IntA,,) # @. In other words,
we have a “coding,” that is, a continuous map h: X5 — T2 with A from (1.8.3) such
that

FA oh=hoo.
Thus, Fj is a (topological) factor of Z4; in this case the term “semiconjugacy” for h
is apt, because we will see that it is “mostly” bijective. Every point g € T?> whose
positive and negative iterates avoid the boundaries RV and AR has a unique
preimage and vice versa. The points of X 4 whose images are on those boundaries
or their iterates under F,4 fall into three categories corresponding to the three
segments of stable and unstable sets through 0 which define parts of the boundary.
Thus, sequences are identified in the following cases: They have a constant infinite
right (future) tail consisting of 0’s or 4’s, and agree otherwise, or else an infinite left
(past) tail (of 0’s and 1’s, or of 4’s) and agree otherwise. We summarize some of the
properties of the coding.

Proposition 1.8.19. The induced factor map between the suspensions of o s and
A

F, is one-to-one on all periodic points (except for those coming from fixed points).
The number of preimages of any point not negatively asymptotic to the suspension
of the fixed point is bounded.

Exercises
1.1. For a flow @ on a space X and a point x € X prove that exactly one of the
following hold:
(1) ¢~ @'(x) is one-to-one,
(2) there exists a smallest 7 > 0 such that ¢*!(x) = ¢’ (x) for all t € R, and
(3) x=¢'(x)forall teR.

1.2. If g:R — Ris continuous, then writing v = % (velocity) converts the second-

dZ
order differential equation d_t)zc + g(x) =0, to the system
dx )
dr
dv
— =-gX)

dt
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of first-order differential equations. Show that H(x, v) = $v? + [ g(s)ds is a con-
stant of motion.

1.3. Prove the converse of Theorem 1.4.3.

1.4. Carry out the “straightforward calculation” in the proof of Theorem 1.4.7.

1.5. Find all Lyapunov functions for the North-south flow Example 1.3.7 and the
South-south flow Example 1.3.9.

1.6. In a compact metric space, show that {x} is attracting (Definition 1.4.15) if and
only if x is attracting (Definition 1.4.1).

1.7. Show that W*(x) (Definition 1.3.24) and W*({x}) (Definition 1.5.5) agree. (This
is a tiny preview of Theorem 5.3.25.)

1.8. Prove Proposition 1.3.25.

1.9. Show that topological conjugacy (Definition 1.3.1) defines an equivalence
relation among continuous flows.

1.10. Carry out the “illuminating” proof in Example 1.3.11.

1.11. Suppose f, g: R — R are expanding maps with | f'| bounded and || f — gl o1 <
oo. Show that there is a unique 4: R — R with #—1d bounded such that fog=go f
and that hn:=f""0g" +== huniformly and |7, -Idllcc < Kl f— gl = Kl f—gllc1
for some K > 0.

1.12. Show that orbit-equivalence (Definition 1.3.21) defines an equivalence rela-
tion among continuous flows.

1.13. Assuggested in Remark 1.6.17 show that any 2 versions of Figure 1.4.1 (for
different damping parameters) are topologically conjugate by refining the ideas in
the proof of Proposition 1.4.5.

1.14. Find the stable and unstable sets (Definition 1.3.24) of a fixed point of a
topological Markov chain.

1.15. Find the stable and unstable sets (Definition 1.3.24) of a point in a topological
Markov chain.

1.16. Find the stable and unstable sets (Definition 1.3.24) of a periodic point in a
symbolic flow.

1.17. Find the stable and unstable sets (Definition 1.3.24) of a point in a symbolic
flow.
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1.18. Determine Z (Definition 1.5.1), 2 (Definition 1.5.9), NW (Definition 1.5.11),
Z (Definition 1.5.30), <2 (Definition 1.4.16) as well as the chain decomposition
(Definition 1.5.30) in Examples 1.1.5,1.1.7,1.1.8, 1.3.13, 1.3.5, 1.3.6, 1.3.9, 1.3.11,
1.3.12,1.4.14, 1.5.14, 1.5.23, 1.6.2 and Figures 1.1.4, 1.3.3,1.4.1, 1.5.4, 1.5.11.

1.19. Find each basin of attraction and basin of repulsion (Definition 1.5.5) of any
compact invariant sets that are apparent in Figures 1.1.4, 1.3.3, 1.4.1, 1.5.4, and
1.5.11.

1.20. Determine NW(®), NW/(®, ), NW(@; )) in Figures 1.1.4,

NWe) NW(®)

NW (@,
1.3.3,1.4.1,1.5.3,1.5.4, and 1.5.11.

1.21. Find examples to show that each inclusion in Proposition 1.5.34 can be strict.
(They can be found among examples presented in this chapter.)

1.22. In Figure 1.5.3 find the prolongational limit sets of any points not on the top
line.

1.23. Prove that Ay and Ry in Definition 1.4.16 are nonempty, compact and ®-
invariant.

1.24. In the context of Remark 1.5.40 describe all possible trapping regions and
attractor-repeller pairs.

1.25. Inlight of Proposition 1.6.7 prove or give a counterexample: If w(x) # @ then

d lo 18 topologically transitive.

1.26. Show that the complement of 22(®) is open.
1.27. In Conley’s example show that GR(®) C Z(®) (Remark 1.5.43).

1.28. Show that Z(®)/ ~ (the space of chain-equivalence classes) is a Hausdorff
topological space.

1.29. Show that Z(®)/ ~ (the space of chain-equivalence classes) is either finite or
a Cantor set.

1.30. Show that a continuous flow with infinite chain-decomposition has the Akin
flow A (Example 1.3.12) as an orbit-factor.



CHAPTER 2

Hyperbolic geodesic flow*

Having built up more concepts for describing complicated flows we now pick
up again from Subsection 1.1c to develop geodesic flows on hyperbolic surfaces.
We will see later that these are the standard examples of hyperbolic flows. This
chapter may be omitted, but provides details on the classical example that provided
the impetus for studying hyperbolic flows.

This chapter assumes a basic knowledge of differential geometry. We will
review some of the concepts, especially ones we will need for the dynamics of
surfaces with negative curvature.

We begin with a description of the upper half-plane model of a hyperbolic
metric with emphasis on the geometry and isometries of this model to have the
tools we need for describing the dynamics of the geodesic flow, and we introduce
the Poincaré disk as another standard model for hyperbolic geometry. We then
describe the dynamics on the upper half-plane model and explain how we obtain
compact factors of the Poincaré disk and hence flows on compact spaces with non-
trivial recurrence. These compact factors are the classical examples of hyperbolic
flows and illustrate many of the notions that we will develop in the second half of
the book.

If one wants to only study the flows that have hyperbolic properties then one
would study Subsections 2.1a, 2.1b, and 2.2a, together with Sections 2.3 and 2.4.

1. Isometries, geodesics, and horocycles of the hyperbolic plane and disk
The upper half-plane
H={zeC| Imz>0}cC
is an open subset of C ~ R2, hence a smooth manifold, and
(u+iv)(u' —iv)
(Im z)2

forzeM, u+iv, u' +iv' € T,H is symmetric, R-bilinear, and positive-definite,
hence a Riemannian metric (-, ), called the hyperbolic metric. The half-plane H

(u+iv,u' +iv'y,=Re

97
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with this metric is called the Poincaré upper half-plane (or the Klein model or
the Lobachevsky plane). The hyperbolic metric differs from the Euclidean metric
Re(u+ iv)(u' — iv') only by the scalar factor (Im 2)2, s0 hyperbolic angles coincide
with Euclidean angles.

Lemma2.1.1. The imaginary axis I':=i-(0,00) is a geodesic with unit-speed param-
eterization t — ie'.

PROOF. I minimizes length between any two of its points: The length of a curve
t—c(t)=x(0)+iy(), x(0)=x(1) =0, y(0) = yy, y(1) = y1 connecting i yp to iy is

1 1 — - 1 gy
()2 + (y(1)? ar
[(C):f\/@'(t),c'(t))c(t)dt:f Mdtzfﬂdtzﬁ(y),
(y(0) y
0 0 0
where y is a parameterization of the segment i[yp, y;]1 < I. O

a. Isometries. The principal tool for understanding the geometry of H are its
isometries. We begin with linear fractional transformations. Denote by GL (2,R)
the collection of real 2 x 2 matrices with positive determinant and associate to each

(d Z)EGL+(2,IR2) the map
a b az+b
@2.1.1) T._w(c d).l]—l]—»l]—l], g —
ad—bc
Then T'(z) = i dy? and hence
ImT(z)—i az+b_ az'+b)_ (az+b)(cz+d)—(az+Db)(cz+d) T (2)|Im(2)
" 2i\lcz+d cz+d)” 2i(cz+d)(cz+d) B ’

so T maps H to itself. .4 :=y(GL.(2,R)) is a group under composition and y is a
homomorphism with kernel RId. As a matrix group, this is PSL(2,R).

Lemma2.1.2. The maps T € 4 are isometries of the hyperbolic metric.
T'RQ)u+inT (@)W +iv) T(2T'(2)  (u+iv)u' —iv)

(Im T(2))’ TP (m@)?

=(T"(2)(u+iv),T'(2) (W' +iv")) (5 =1 =(u+iv,u'+iv'),

PROOE. Re

Note that all T € .4 extend naturally to HURU {oo} by setting T'(—d/c) = oo and
T (o0) = alc (or T(oo) = oo if ¢ = 0). Examples of linear fractional transformations
arez— —1/z,z— z+b (beR), and z— az (a > 0). They represent correspondingly
three types of linear fractional transformation from the point of view of the intrinsic
geometry of the Lobachevsky plane: elliptic (direct counterparts of Euclidean
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rotations), with a single fixed point inside the plane, parabolic, with no fixed points
on the plane and no invariant geodesic, and hyperbolic, with no fixed points but a
unique fixed geodesic (the axis). On H a parabolic map has a unique fixed point on
R U {oo} and a hyperbolic map has two fixed points on R U {oo}. Both parabolic and
hyperbolic maps are counterparts of translations of the Euclidean plane.

There are also isometries other than linear fractional transformations. Clearly
z— —zand z — 1/z are examples. Geometrically the former is the reflection in the
imaginary axis and the latter is the inversion with respect to the unit circle. We use
linear fractional transformations now to study geodesics. Lemma 2.1.1 suggests to
examine isometric images of the imaginary axis I (parameterized with unit speed
by ¢t — ie?).

Lemma 2.1.3. If C is a vertical line or a semicircle with center on the real line, then
thereexistsa T € # with T1 = C. Furthermore, given any unit tangent vector v at a
point of C one can take T such that it maps the upward vertical vectoriatie I to v.

PROOF. If Cisthe vertical line {z | Re(z) = b} take T(z) = z+ b. If C is a semicircle

with end-points x, x+r € R then note that T;: z— z/(z+1) maps I to the semicircle
t 1 2it—(1+1it) 1

— — —|=|—————=|==)andlet T»(2) = rz,
1+it 2 2(1+1i1) 2

T5(z) = z+x,and T = T30 Ty o T}. To map tangent vectors as desired note that there

is a linear fractional transformation Ty such that DTy(i) = DT ! (v), namely, either

with end-points 0 and 1 (since

c
To(z) = cz or To(z) = —— for some c € R,. Then T o Ty is as desired. O
z

Corollary 2.1.4. ./ acts transitively on the unit tangent bundle SH of H: if v € T H,
we TyH, vl =1=|wl|, then thereisaT € M4 withT(z) =z and T'(2)v=w.

Remark 2.1.5. Since any vertical line or semicircle with center on the real axis
parameterized with unit speed is obtained via a linear fractional transformation
from I parameterized by ¢t — ie’, they are all geodesics, and transitivity on SH
implies that we have identified all geodesics. We note that the end-points of

ab a0+b _ b aicoth _ a
y(¢ g)(Dare &4T7 = 7 and [0 = 4.

b. Geodesics and geodesic flow. We are now able to describe the geodesic flow
on the upper half-plane.

Theorem 2.1.6. The geodesics of the Poincaré upper half-plane are precisely the
vertical half-lines and the semicircles with center on the real axis.

Remark 2.1.7. We also have a natural identification of PSL(2,R) and SH given by
Y ~ v:=7vi, where iis as in Lemma 2.1.3. Equivalently, set

¢: SH—PSL(2,R) by D(y@w))@ =y,
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where V¥ is as in (2.1.1). With respect to this identification, the geodesic flow is
et/2 0
givenbyy— Y( 0 e_t/z)-

Since they are isometries and hence send geodesics to geodesics, we also have:

Proposition 2.1.8. If C is a vertical line or a circle with center on the real axis and
¢ € M or Pp(z) = —z then ¢(C) is a vertical line or a circle with center on the real axis.

o~

FIGURE 2.1.1. Geodesics on the Lobachevsky plane

The group I' generated by the group .# of linear fractional transformations
and the transformation S: x — —z is the isometry group:

Proposition 2.1.9. The group of isometries of H is generated by # and the symme-
tryS: z— —z.

PROOF. Let ¢ be any isometry of H. Any isometry that preserves a geodesic and
a tangent vector to it is the identity on that geodesic. Since ¢(I) is a geodesic,
Theorem 2.1.6 and Lemma 2.1.3 give a T € . such that T~'¢ M= Id Ve It suffices

to show that T~ ¢ is either the identity on H or coincides with the symmetry
S: z— —z. Consider the geodesic C with end-points —r and r. It contains the point
ir € I and hence so does T~ '¢(C) (since T‘lcp“ =1d ). Since T~ ¢ preserves
angles, both these geodesics are orthogonal to I at ir. Hence they coincide up to
orientation, that is, we either have T~ '¢(z) = zfor ze C or T"'¢p(z) = —z for z € C,
and hence the derivative of T~!¢ at ir is either the identity or the reflection in 1.
Since isometries are smooth, the same case occurs for all points on I; hence the
same choice was made for all such geodesics, thatis, T"'¢=Id or T"'¢p = S on H.
Sope M orpoSe M. ]
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Proposition 2.1.10 (Stable manifolds). The orbits of upward vertical unit vectors
at points x + i € R+ i are pairwise exponentially positively asymptotic under the
geodesic flow g': SH — SH.

PROOF. We use the canonical distance on SH: If z, z’ € H, v € S,H, w € S,/H, then
there is a geodesic y: [0,1] — H (unique if z # z') connecting z and z’, and a unique
continuous vector field X along y such that X(0) = v and £ X (1), y(t) = Lv,7(0) for
all £ €[0,1]. Then

d(, w) =V (LX), w)? + (d(z,2"))2.

Geometrically, this amounts to parallel-translating v along y to z’ € H and measur-
ing angles there.
In particular, if v € Tyxy;yH, w € Tyy4+iyH are vertical unit vectors then the

Ldl2

_ d
angle term in this distance function is 2tan” " — < —, and an upper bound for

y
the length of the connecting geodesic is given by the length of the connecting line
segment, which is d/y. Thus,

2.1.2) d(v,w) <V2dly.

The orbit of the upward vertical unit vector w at x + i € H projects to the geodesic
t— x+ie’, and the distance between the corresponding upward unit vectors i, at
ie’ and w; at x + ie’ is bounded by v2xe . O

Remark 2.1.11. By using the transformation z— —1/z one also sees then that the
orbits of the outward unit normals to the circle of radius 1/2 centered at i/2 are
negatively asymptotic to that of i. Together, we have thus identified the stable and
unstable foliations explicitly, which we will much later produce in proper generality
(Theorem 6.1.1).

Remark 2.1.12. We also note that in the proof of Proposition 2.1.10 one can
let y — 0 and conclude that 2 such vertical geodesics separate exponentially as
t — —oo. In particular, geodesic arcs limiting on distinct boundary points di-
verge (exponentially) from each other. Contrariwise, if y,n are geodesics such that
{d(y(1),n(1)} =0 is bounded, then there is a ¢ € R such that d(y (¢ + ¢),n(?)) === 0.
This also implies that if y,n are geodesics such that {d(y(f),n(#))} ;cr is bounded,
then there is a c € R such that y(¢ + ¢) =n(¢) forall t e R.

c. Horocycle flow. We are now able to define the horocycle flow for the upper
half-plane model. Although this will not be a hyperbolic flow it will have some
similar properties and is an important class for both dynamics and geometry.
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Definition 2.1.13. Horizontal linesR+ir ={t+ir | te€ R} are called horocycles
centered at co. Circles tangent to R at x € R are called horocycles centered at x.
If y: R — His a geodesic then y(—o0), y(c0) € RU {oo} are the limit points of y as
t — —oo and t — +oo, respectively. If v € T,H then let 7 (v) == z.

FIGURE 2.1.2. Geodesics and horocycles in the hyperbolic plane

Lemma 2.1.14. For every horocycle H thereisa T € #4 with T(R+1) = H.

PROOE If H=R+ir take T(z) = rz. If H is centered at x € R and of Euclidean
diameter r take T1(z) = —1/z, To(z) =12, I3(z) =z+x,and T = T30 Tr o T}. O

Remark 2.1.15. With the identification from Remark 2.1.7, these horocycles are

the orbits of the horocycle flow h®: y— vy ((1) i)

Example 2.1.16. The horocycle flow on a compact factor of the Poincaré disk (Sec-
tion 2.3) is topologically transitive; indeed, the orbit of every g’-periodic point is
dense [156, Theorem 2.2] (see also Exercise 2.6, Exercise 6.7).

For some purposes it is useful to have an alternative model of the Lobachevsky
plane (Figure 2.1.3).

Proposition 2.1.17 (Poincaré disk). Themap f: H—C,z— Z—: maps the Poincaré
z
upper half-plane H onto the open unit disk D in C bounded by the unit circle
Sl={zeC | |z|=1}since |f(2)| =1 when z€ R and f (i) = 0. Pushing forward the
hyperbolic Riemannian metric {-,-) on H to the metric given by
(v,wy=(Df v,Df Tw)

on the unit disk makes f an isometry. The unit disk with this metric is called the
Poincaré disk. Since f maps lines and circles into lines and circles and preserves
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FIGURE 2.1.3. Geodesics and horocycles in the Poincaré disk
with a common boundary point (Proposition 2.1.17), and a horo-
cycle as a limit circle (Remark 2.1.18)

angles, the geodesics in the Poincaré disk are diameters of S' and arcs of circles
perpendicular to S', and the horocycles are circles tangent to S* (Figure 2.1.3).

Remark 2.1.18 (Busemann function). It is useful to note that the word “horocycle”
(sometimes “oricycle”) means “limit circle, which is due to the fact that these are
limits of circles as follows: For a point ¢ at infinity and x € D consider the geodesic
Y =7v¢,x With ¥(0) = x and y () +=== ¢. The nested union U;-q B(y (%), ) of disks is
bounded by the horocycle through x determined by ¢ (Figure 2.1.3). Alternatively
it can be described as the set of points y € D such that d(y(t), y) — t == 0. Indeed,
more generally, the horocycles determined by ¢ are the level sets of the Busemann
function
b.f,x(y) = tll»l}—loo d(y&,x(t)r -t

illustrated by Figure 2.1.3. Busemann functions are Lipschitz continuous by the
triangle inequality! Furthermore, this description is altogether independent of
having constant curvature.

Remark 2.1.19. Horocycles are lines because the point on the boundary of the
Poincaré disk is not included. In fact, the dynamically natural objects are their
normal vector fields (in PSL(2, R) or SD because they define the pairwise asymptotic
geodesics—positively or negatively asymptotic according to whether one considers

IThus, this pointwise limit is uniform on compact sets by Dini’s Theorem: if a monotone sequence
of continuous functions on a compact space converges pointwise to a continuous function, then the
convergence is uniform.
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the normal vector field pointing into or out of the horocycle. With this point of
view, one can then moreover consolidate all unit vectors pointing to a common
boundary point into a plane in PSL(2,R), and likewise with vectors pointing away
from a boundary point. Each of these 2 sets of planes is parametrized by the
boundary circle, and Figure 2.1.4 shows them in a natural presentation in PSL(2, R).

Animations at http: //www.tsuboiweb.matrix. jp/showroom/public_html/animations/gif/T3image/T3image8.html,
http://www.tsuboiweb.matrix.jp/showroom/public_html/animations/gif/geodflow/geodflowconft.html, and
http://www.tsuboiweb.matrix.jp/showroom/public_html/animations/gif/geodflow/geodflowconftes.html

FIGURE 2.1.4. Horocycle foliations in PSL(2,R) (after Tsuboi)

2. Dynamics of the natural flows

We now explore some of the dynamics for the geodesic flow and horocycle
flow. We begin with the geodesic flow.

a. Dynamics of the geodesic flow. To further study the dynamics of the geodesic
flow on H one can parameterize the set SH of unit vectors on H by #,u,v € R as
follows: Given a fixed reference vector g € SH and p € SH that does not point
vertically downwards let H, be the horocycle with p as inward (or upward) normal
vector, y the geodesic connecting the centers of H,; and H), (that is, the points of
tangency on the real axis), v the oriented hyperbolic length of the arc of H, between
Y N Hy, and the footpoint 7(p) of p, ¢ the oriented arc length of the segment of y
between H, and H, and u the oriented length of the arc of H; between yn H,; and
n(g). It is easy to see that locally ¢: (t,u,v) — p is a diffeomorphism between R3


http://www.tsuboiweb.matrix.jp/showroom/public_html/animations/gif/T3image/T3image8.html
http://www.tsuboiweb.matrix.jp/showroom/public_html/animations/gif/geodflow/geodflowconft.html
http://www.tsuboiweb.matrix.jp/showroom/public_html/animations/gif/geodflow/geodflowconftes.html
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and SH. Note, however, that this does not parameterize any vertically downward
vectors. A second chart starting from —q would cover these.

If W¥(p) denotes the collection of inward (or upward) unit normal vectors
to Hp, (the stable manifold of p), then the orbit of any p’ € W*(p) is positively
asymptotic to that of p by Proposition 2.1.9, since the orbits of upward vertical
unit vectors to R + i have pairwise asymptotic orbits. Note that W*(p) is a level
set of (t,u). Indeed W*(q) = ¢({0} x {0} x R). The set W*(g) = (R x {0} x R) the
center-stable manifold of q. Likewise the points of W¥(p):=—W?(-p) (the unstable
manifold of p, outward unit vectors to H_j) have negatively asymptotic orbits and
W"(q) = ({0} x Rx {0}). The set W”O(q) =¢p(RxRx{0}) is called the center-unstable
manifold of of g. For vertically downward vectors we have to use the corresponding
chart starting with —¢g to make these definitions.

Proposition 2.1.10, particularly the estimate (2.1.2) of the decay of the distance
between vertical tangent vectors combined with the fact that ¢ — x + ie’ is a geode-
sic, Definition 2.1.13, Lemma 2.1.14, and the preceding notions are summarized as
follows:

Proposition 2.2.1. The stable manifold of v € SH with respect to the geodesic flow
g! is the unit normal vector field containing v to the horocycle centered aty ,(co).
The unstable manifold of v € SH is the unit normal vector field containing v to the
horocycle centered aty,(—o0). In particular all stable and unstable manifolds are
one-dimensional and the contraction and expansion rates are e~ and e.

Remark 2.2.2 (Hyperbolicity from the structure equations). One can see the hy-
perbolic behavior of these geodesic flows directly from their algebraic structure.
The unit tangent bundle has a framing by a vertical vector field V, a horizontal
vector field H, and the vector field X that generates the geodesic flow. With respect
to the representation in terms of PSL(2,R) they are given by elements of the Lie
algebra (that is, traceless matrices) as follows. V is the initial derivative of the
cost/2 sin t/z) 9

rotational flow (in unit tangent circles) given by the matrices | .
sint/2  cost/2
12

0 =12 . o N e
) is the initial derivative of ( 0 e‘”z)’ so

1/2 0

1/2 0

soV~( 0 —1/

), while X ~ (
taking

= 0 -12\(12 0 Yo 0 \(O0O =12} (0 12
H'_[V’X]N(l/z o)(o —1/2)_(0 —1/2)(1/2 0)_(1/2 0)

2We encountered this in Example 1.1.28 as an extreme magnetic flow; see also Remark 2.2.10
below.
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gives the canonical framing X, H, V and the structure equations
(2.2.1) [V,Xl=H, [HX]=V, [HV]=X.

One can check (2.2.1) by using that in the PSL(2, R)-representation of SZ, the vector
fields of the canonical framing are given by

1/2 0 0 12 0 -1/2
X~(0 —1/2)’ H~(1/2 0)’ V~(1/2 O)’

A dynamically natural variant of this framing is the one by X and

. 00 0 1
H,=H=%+V, thatis, H;~ (1 0), H_~ (0 0)
with the corresponding bracket relations

(2.2.2) [X,H{]=[X,H£[X,V]=FHy and [H, H.1=[H+V,H-V]=-2X.
—_ 1
=-2[H,V]

Avector field f H; invariant under the geodesic flow satisfies

0=(X,fH:l=(f T f)Hs,

which means that f = + f, so f = e*’. Thus, the differential of the geodesic flow
expands and contracts, respectively, the directions H.; this is the defining feature
of hyperbolicity (Definition 5.1.1).

b. Dynamics of the horocycle flow.

Example 2.2.3 (The horocycle flow). The vector fields X and H. each generate a
flow we can describe explicitly (Remark 2.1.15):

120 e”” 0 .
XWeXp((o —1/2) t)‘( 0 e_,/2)~g,
0 0 10
H+WeXp((1 O)t):(t 1)~hi’

T P

The first is (again) the geodesic flow, and, as previewed in Remark 2.1.15, the latter
flows are called the horocycle flows. Note that the matrix action is on the right
(Remark 2.1.15).

Early on (Proposition 2.1.10, Proposition 2.2.1 and Remark 2.1.15) we noted
that h® parameterizes the stable manifold of Id, and we can now see by a matrix
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computation which gives the commutation relation
e 2 0 \(1 s\(et? o 1 se’! fs ot set
B G | O [N M L PR

which reflects the fact that geodesic flow contracts (or expands) orbits of the horo-
cycle flow with the constant coefficient e’. This plays important roles in the study of
asymptotic behavior of both flows? In addition to implying hyperbolicity of the geo-
desic flow, this also shows that the horocycle flow is parabolic, that is, characterized
by polynomial behavior:

0=[H.,aX+bH,+cH ]=(a-20)X+(b+a)H, +¢cH_

implies that as a function of ¢, c is constant (¢ = 0), a is linear (a@ = 2¢), and b is
quadratic (b= —a).

We note that the bracket relation [H,, H_] = —2X is also important because of
its finitary counterpart, the quadrilateral formula:

1o0\(1 =Ly(1ooy(q =2t (s 0y Eo st o
B O 3 [ I e

N

which is crucial below for mixing properties of the geodesic flow. Geometrically,
this is a quadrilateral argument: For s = 1 +¢? this says that a quadrilateral with
h.-sides about e causes a 2¢? displacement along a geodesic: we approximately
have hZ°hS h h( € = gzez. However, for s further away from 1, this gives useful
information by way of highly elongated quadrilaterals (Proposition 3.3.19).

In a different vein we note that 43 and h® generate PSL(2,R) by (2.2.4).

Example 2.2.4 (The horizontal flow). The structure equations (2.2.1) are invariant
under the exchange of X < H, V — -V, so £*:=V + X = F[H,{*], which implies
hyperbolicity of the flow generated by H. It is given by
6(192 1(/)2); _ C?Sh t/2 sinht/2
sinh#/2  cosht/2)’
which sends I to the semicircle with end-points coth#/2 and tanh /2 (these are

reciprocals)? and the image of i ranges over the upper half of the unit circle as ¢
ranges over R—multiply

. . . . . . . 2t o3 t .
icoshf+sinhi icoshf+sinhi coshi—isinhf 2y/1+sinh”3sinh3+i

isinh% +coshi isinh%+coshi coshi —isinh 1+2sinh? £

3And well beyond this algebraic context Section 9.6.
4Thus, the dynamics induced on the boundary circle R U {oo} is north-south dynamics (Example
1.3.7, Figure 2.3.2).
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by its complex conjugate to check the absolute value; surjectivity is clear from
2y/1+sinh? £ sinh £ +i

1+25ir12h2 % — === 1.

Geometrically, this flow can be descibed as follows: Rotate a unit vector by
—n/2, follow the corresponding geodesic for time ¢, then rotate the tangent vector
back by 7/2. Put differently, transport perpendicular vectors along geodesics.
Presented this way, one sees that there is nothing special about “perpendicular”
(Example 2.2.7).

c. Reeb flow. Let us describe a structure possessed by all geodesic flows that is in
the present case particularly easy to discern because of its algebraic nature.

Definition 2.2.5 (Contact form, Reeb flow). An (antisymmetric) n-form A on a
smooth manifold M is a smooth map A: TM" — R that is linear in each fiber
argument and antisymmetric. The exterior derivative dA of a 1-form A is the
2-form defined by

dA(X,Y)=2LxA(Y) - Ly A(X) - A([X, Y]),

where Z is the Lie derivative and [ X, Y] is the Lie bracket. The contraction operator
inserts a vector field in the first slot of a differential form:

IxA=AX,..)=A X.
A 1-form A on a 3-manifold M is called a contact form if
(ANdA)X,Y,Z)=AX)dA(Y,Z)- A(Y)dA(X, Z)+ A(Y)dA(Z, X)

defines a volume form, that is, is nonzero at every point. (See also Subsection 2.6d.)
The associated plane field ¢ :=ker A is said to be a (cooriented) contact structure.

The Reeb vector field R4 associated to a contact form A is defined by 1, A =
A(Ra) =1and g, dA=dA(Ra,") = 0° Its flow is called the Reeb flow (and it pre-
serves the contact form because £r, A = 1, d A= 0). Equivalently, R, is the unique
(up to a constant scalar factor) vector field that generates a flow which preserves
the contact form. A contact flow is a flow that preserves a contact form.

In the case at hand, we can define a 1-form A uniquely by

(2.2.5) A(X)=1and A(V) =0=A(H).

S5This is unique: the second condition determines R4 up to a scalar since d A is nondegenerate,
and the first then fixes the scalar. Note that the Reeb vector field is associated to a contact form «
rather than the contact structure: if o’ = fa with f € €°°(M,R\{0}), then da' = df na+ fda, and the
condition ¢ Ry da' = 0 implies that Ry and Ry are not collinear unless f is constant. A Reeb field on a
contact manifold (M, ¢) is the Reeb field of a(ny) contact form a with ¢ = kera. These are exactly the
nowhere-vanishing vector fields transverse to ¢ whose flow preserves ¢.
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=0 =1 e—{V,H}
For Z € {V, H} we then have dA(X, Z) = Lx A(Z)— Ly AX) — IA('[X, Z]')I =0, 0

ixdA=dA(X,")=0,and X = R4, while AA dA(OX, V,H) = g(X)dA(V, g{) =1 since
=0 =0 =—X
AAWV, H) = Ly A(H) - Ly AV) = ALV, H)) = 1.
=0 =0 =1
Thus, AA dAis indeed a volume; in fact a volume particularly well adapted to this
canonical framing. We have shown that the geodesic flow on H is a contact flow
with A the canonical contact form.

The aforementioned symmetry of the structure equations implies that the
horizontal flow from Example 2.2.4 is also a contact flow: Set B(H) =1, B(V) =0=
B(X) and either repeat the preceding calculations or observe that by symmetry
they work out to the same effect, notably BAdB(H, X, V) = 16 (Compare Exercise
2.3 below.)

Example 2.2.6 (The vertical or fiber flow). In the PSL(2,R)-representation of SZ,
the 3 flows corresponding to the vector fields of the canonical framing are given by

12 0 e” 0
XWeXp(( 0 _1/2) t) =( 0 e—’/z)’
o ( 0 12 ) cosh?/2 sinht/2
Pl o “\sinht/2 cosh?/2)’

-1 L —gint
V s exp(( 0 /2) t) _ (cos /2 sin /2)

1/2 0 sint/2  cost/2

We will explore the dynamics of X and H below (Remark 2.2.11). The last of these
3 flows is called the vertical or fiber flow. Unlike the other 2 it is not hyperbolic
because of a sign change in the symmetry; this is reflected in the trigonometric
functions in its representation: it is a periodic flow because it consists of “spinning”
around the tangent fibers’ The arguments #/2 give the right period, by the way:
(Costmz —sin?2) = (' ) ~ (§9) mod +1. The horizontal has an easy geometric
interpretation:

cosm/a —sinn/4) (e? 0 cos-7/4 —sin-7/4) (cosht/2 sinht/2
sin7/a cos7/4 |\ 0 e "?[\sin-n/a cos-7/a ) |sinh#/2 cosht/2)’

so “rotate 7/2, follow the geodesic, rotate back 7/2” or, in other words, translate a
normal (rather than tangent) vector along a geodesic.

61n fact, B=dA(V, ).
"The counterpart to the earlier calculations is that ¢ * .= X + i H satisfies [V, {*] = Fi& ‘J—’, s0 a vector
field f¢* is V-invariant if and only if 0 = [V, f&*] = f&* Fif&*, thatis, f = +if or f = e*'Z,
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Asbefore, one can chick that € := d A(H, -)/is a Contact forminvariant under
the fiber flowgenerated by ¥ but it$ Reeb/field is/~V,/and CA dC(V, H, X p
is volume has“the opposite prientation/frg e ores defined by A and B
i ic toeither\of\them. The géodesic flow and the fiber flow
aghetic floy
\OW'S

of hyperbali¢ Reeb) flows) \ After (2:2:2) and in Example
224wenoted hat X apd H generdte hyperbplic flows\andthat they are the Reeb
flowsfor A and B, respectively/ Mgre/generally,

E:=Ep=cosOA+S§inOB

cosP X Hsinq H, and {\;=cos8H —sinf X%

(F RO

is a contact formrwith Rg'= P:
IHSEE:

as before. Thus'Ry generates a family of hyperbolic flows paxameterizedby S’ As
suggested by our previous také¢ on the horizontal flow, these consist of paralle
translation along geogdesics of yectors making an angle\d with the'geodesic.

S0 0/= [P, f{*] f = const, e*’.

Remark 2.2.8. Ag’a byproduct of Example 2.2.7 we note that the horosycle flows
as well are eaclypart of an S} -family of natural flows generated by (%
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Remark 2.2.9 (Hopf coordinates). We complement the infinitesimal version of
hyperbolicity in Remark 2.2.2 by a description in Hopf coordinates. These are given
by a homeomorphism

SD — (8! x $' \ diagonal) xR, v~ (v7,v",B,+(0,7()),

where v :=lim;_ .07, (f) €D ~ S, 7: SD — D is the footpoint projection, and
is the Busemann cocycle

DxDxdD, x,y,¢— Pe(x, )= lim d(x,6x(1) = d(y,cx(1)).

Here ¢, is the geodesic with ¢ (0) = x and ¢ (#) === ¢. In these coordinates, the
geodesic flow is given by g’(v™, v*,7) = (v~, v, 7 + 1), and it contracts the stable
manifold (see Proposition 2.2.1 and Remark 2.1.7)

W™, v, ) =& v, 1) | EedD~{v'}}.

Remark 2.2.10 (Magnetic flows). As in Example 1.1.28 (and as promised in Ex-
ample 2.2.6) one can interpolate between the geodesic and horocycle flows as
follows. The geodesic flow takes a tangent vector along a curve with zero geodesic
curvature with unit speed, and the horocycle flow does the same thing along curves
with geodesic curvature 1. The interpolation is to choose a different (constant)
geodesic curvature to obtain other defining curves for a flow. This does, in fact
have a physical motivation in that while the geodesic flow models the motion
of a force-free particle, constant nonzero geodesic curvature corresponds to the
effect of a magnetic field perpendicular to the plane or disk on a charged particle,
which is to produce constant acceleration perpendicular to the direction of motion
and translates to constant geodesic curvature. These flows are called magnetic
flows. (Note that depending on the orientation of the magnetic field one could
drift right or left, which corresponds to making a consistent choice of horocycle, of
which there are 2 through each tangent vector.) For a given initial tangent vector,
increasing the intensity of the magnetic field (that is, geodesic curvature) produces
ever smaller circles, which for curvature +1 just barely touch the boundary. These
are the horocycles, and when one transports the normal rather than tangent unit
vector, this is the horocycle flow (Example 2.2.3). A magnetic field that produces
geodesic curvature greater than 1 produces motion along circles too small to reach
the boundary, and therefore all orbits are periodic (as in Example 1.1.28), whereas
none of the orbits are periodic for flows along curves of geodesic curvature between
1 and —1. To get periodic orbits for the geodesic flow requires passing to a compact
factor. (We briefly return to magnetic flows on page 229.)

Let us briefly remark that in the spirit of Remark 1.6.17 we have here a continu-
ous family (Definition 1.6.18) of flows and may be interested in how the dynamics
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changes as we make these deformations. Until the magnetic field, that is, the
deviation from geodesic motion, becomes rather large, the flows look rather similar
to each other. We will indeed see that for weak magnetic fields, any 2 of these flows
are pairwise topologically orbit-equivalent (Theorem 5.4.5).

Remark 2.2.11. In summary, a linear combination of X, H, V can be written as a
linear combination of Eg (from Example 2.2.7) and V and generates a flow whose
orbits project to curves on H with constant geodesic curvature given in terms of
the coefficient of V with vectors transported along them that make an angle 0 with
the tangent vector of the curve in the surface (the size of which is determined by
the coefficient of E)—unless the linear combination is just V, in which the curve in
the surface is a point (zero speed since E has coefficient 0). The special cases we
noted earlier are generated by X, V, H. and H. We also noted that X, H, V generate
contact flows but that the contact form for V is not isotopic to either of the other 2.

3. Compact factors

Stable and unstable manifolds made their appearance earlier in Example 1.5.23
and Example 1.5.24, where they appeared as families of lines with irrational slope
invariant under a hyperbolic automorphism of the two-torus and its suspension.
The existence of families of stable and unstable manifolds is a hallmark of global
hyperbolic behavior; flows on compact manifolds with such behavior are called
Anosov flows (Definition 5.1.1).

Therefore it is natural to utilize our understanding of hyperbolic behavior of
the geodesics in the hyperbolic disk in order to construct first examples of Anosov
flows. All we need is to construct a compact factor of the hyperbolic disk and
project the geodesic flow to that factor. We accomplish this by factoring out by a
discrete group of isometries.

Draw a regular (hyperbolic) octagon 2 in the Poincaré disk in C with vertices
vp=d e kmild f=o0,...,7, joined by arcs of circles perpendicular to the unit circle
(see Figure 2.3.1). Here d € (0,1) and as d — 1, the sum of the internal angles
converges to 0, and it goes to 67, the value for the Euclidean octagon, as d — 0.
This becomes clear by keeping d fixed and increasing the size of the Poincaré disk
indefinitely so that the arcs of circles approach line segments. Thus, we can fix
d such that the internal angles add up to 2z. The identification space obtained
from labeling and identifying the edges as in Figure 2.3.1 is a surface X of genus 2.
Since the internal angles of £ add up to 2, the identification map is smooth at the
vertices (which are all identified to one point) and we can therefore push the metric
on £ down to X. We obtain a compact manifold which is locally isometric to H.
Topologically this manifold is homeomorphic to the double torus or the sphere
with two handles: the half with labels a, b is a torus with a hole, and so is the other



3. COMPACT FACTORS 113

~./ ¢

La
o s
ol

FIGURE 2.3.1. A hyperbolic octagon, identifications, and tiling
by translates [Reproduced from [181] ©1995 Cambridge University Press. All rights reserved,
and http://topologygeometry.blogspot.ch/2010/06/notes-from-062310.html with permis-

sion]

half; the hole is the common diameter along which these tori are glued together.
One can also show that X is the space obtained by identifying orbits of the group T’
generated by the isometries mapping an edge to the one with which it is identified.
In other words, the fundamental group of X can be identified with a discrete group
I' of hyperbolic linear fractional transformations.

Replacing eight arcs here by 4g = 8 arcs gives a metric locally isometric to that
of H on the orientable surface of genus g (sphere with g handles).

If a linear fractional transformation y preserves a geodesic then such geodesic
isunique and it is called the axis of y. In fact, every y € I has an axis. The projections
of these geodesics to M :=T'\D are precisely the closed geodesics of M. These are,
of course, the projections of the closed orbits of the geodesic flow from the tangent
bundle to M. The dynamics of any such y (under iteration) restricts to a translation
of the axis, and the action on the boundary circle is of north-south type much like
in Example 1.3.7 as shown in Figure 2.3.2. The end-points of the axis are fixed
points, one repelling (y~) and one attracting (y*). Indeed,

lim y"(x) = yi for every xe DuoD \ {y:}.
n—+oo

Associated to any C? Riemannian metric on a surface is the Gaussian curvature
of the metric, an isometry-invariant real-valued function. Since the isometry group
of D is transitive, the curvature of D is a constant k. Thus the induced metric on the
compact factor X of genus 2 constructed from the octagonal fundamental domain
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FIGURE 2.3.2. North-south dynamics on the boundary

has constant curvature k as well. The Gauss-Bonnet Theorem
k-volM =2ny

then shows that k < 0 because the Euler characteristic y = 2 —2g of X is nega-
tive. Conversely this then shows that any compact factor of D has negative Euler
characteristic and hence genus at least 2. Thus the compact factors of D are homeo-
morphic to spheres with several handles attached. In fact, any compact orientable
surface with a metric of constant negative curvature is isometric to a factor I'\D
of D by a discrete group I of isometries of D. To see how the picture developed for
the octagonal fundamental domain looks in the general case, consider a discrete
group of orientation-preserving isometries of the Poincaré disk D which produces
a compact factor. One can choose a fundamental domain for I' by considering the
Dirichlet domain

D=Dp={xeD | d(x,p)=<dx,yp)forallyel}

for any given point p € D. For any y € I' we evidently have Dy, = y(Dp). The
interiors of Dy, and Dy, are disjoint when y # Id and since T’ is discrete, there
are only finitely many y € I' such that D, n Dy, # @. If y € I' is one of these
elements, then Dy, N Dy, consists of the points equidistant from p and yp, that
is, is a geodesic segment. Thus D is a hyperbolic polygon, that is, bounded by
finitely many geodesic arcs. Our assumption that I'\D is compact means that D is
compact. By construction we also observe that the sets Dy, cover D, so we have, in
fact, tessellated D by the images of D under I

Compact factors of the hyperbolic plane cannot be embedded isometrically in
R3 because a compact embedded surface has positive curvature at the points of
contact with a circumscribed sphere. An illustration of an isometrically embedded
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FIGURE 2.3.3. The pseudosphere [©Cambridge University Press, reprinted from

[181] with permission]

surface of constant negative curvature is given by the pseudosphere in Figure 2.3.3.

4. The geodesic flow on compact hyperbolic surfaces

Unlike the geodesic flow on the round sphere and the flat torus considered
in Subsection 1.1c, where the dynamics turned out to be rather simple, compact
factors of the hyperbolic plane have geodesic flows of a complicated dynamical
nature rather similar to hyperbolic symbolic flows. The full extent of this similarity
will become clear as we develop the theory of hyperbolic dynamical systems, and
indeed, these very geodesic flows were and still are among the primary motiva-
tions for studying hyperbolic dynamical systems. Therefore their study here is a
precursor to the central object and Part 2 of this book. Thus we now establish for
the geodesic flow on compact factors of the hyperbolic plane some of the proper-
ties that we tend to consider typical for complicated dynamical behavior, namely,
density of closed orbits, and topological transitivity.

We first prove density of closed orbits:

Theorem 2.4.1 (Periodic orbits are dense). Let I" be a discrete group of fixed-point-
free isometries of D such that M :=T\D is compact. Then the periodic orbits of the
geodesic flow on SM are dense in SM.

PRrOOF. We use the model of the Poincaré disk D. Let v € SM, take a Dirichlet
domain D for T, and let w € SD be a lift of v with footpoint in D. Let ¢ be the
geodesic with ¢(0) = w in D and let x and y be the end-points of ¢ on the boundary
of the Poincaré disk. Our strategy is to find a hyperbolic element y € I" such that
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the end-points of its axis lie in given small §-neighborhoods U and V, respectively,
of the points x =: ¢(—oc0) and y =: c(0c0). Then among the tangent vectors to this
axis one can find a vector that is close to w. The projection of the axis to M is the
desired closed geodesic.

Minimality of the action of I' on 9D is the first step:

Lemma 2.4.2. No proper closed subset of 0D is invariant under the action of T.

PROOF. If F cdD is closed and I'-invariant, then so is its convex hull E in D, that
is, the intersection of all hyperbolic half-spaces that contain F, and so also is the
function 6 (x) :=d(x, E) on D. Thus, ¢ is well-defined on the quotient and hence
bounded—and identically zero (otherwise it is positive on a point of a geodesic
orthogonal to the boundary of E and hence unbounded). Thus F = 0D. |

This implies that the set of end-points of axes in 0D is dense, so we can find
Y,n €T suchthaty* € Uand ™ € V. If y =, we are done. Otherwise we may as-
sume that y*,n* are 4 distinct points, and we will show that y"n" for large enough
n is the desired isometry by using the north-south dynamics from Figure 2.3.2.
If W), < 0D is a neighborhood of y~ and W, c dD is a neighborhood of * such
that the closures of both of these and of U and V are pairwise disjoint, take n € N
such that " (U) ¢ W, and y" (0D \. Wy) < U, then y"n"(U) c U, so y"n" has a
(necessarily attracting) fixed point in U. Likewise n~"*y~" (for possibly larger n)
has an attracting fixed pointin V. ]

Remark 2.4.3. The interaction of y and 7 is sometimes called “playing ping pong’”

In the present context the multitude of closed orbits is “organized” rather
neatly by the topology of the surface: Since these orbits are based on parameterized
geodesics, they can be represented by those geodesics on the manifold itself, and
it is a consequence of having negative curvature that there is at most one closed
geodesic in each free homotopy class of loops, and there is indeed exactly one each
by a curve-shortening argument in each such class. This means that likewise the
periodic orbits in the unit tangent bundle are in pairwise different free homotopy
classes except for the duplication of a geodesic with its reverse.

We emphasize that density of closed geodesics as orbits in the phase space is
rather stronger than density of closed geodesics on the underlying surface—indeed,
the latter is generic for any surface [166, Remark 1.6].

Theorem 2.4.4 (Transitivity). LetT" be a discrete group of fixed-point-free isometries
of D such that M :=T\D is compact. Then the geodesic flow on SM is topologically
transitive (see Proposition 1.6.9).
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Remark 2.4.5. We emphasize that the dense orbit implied by topological transitiv-
ity is dense in the unit tangent bundle, which is stronger than the assertion that it
traces a dense geodesic in the surface.

PROOF. By Theorem 2.4.1 and Proposition 1.6.9 it is sufficient to show that for any
two periodic points u, v € SM (whose lifts to D we also denote by « and v) and
neighborhoods U, V of u, v, respectively, there is ¢ € R such that g'/(U) NV # @.
Take the geodesics ¢, and ¢, in D with ¢,(0) = v and ¢,(0) = v. Replacing, if
necessary, u by yu assume that ¢, (—o0) # ¢, (c0), then denote by c the geodesic
with end-points ¢(—o0) = ¢, (—00) and c(oc0) = ¢, (00). By Proposition 2.2.1 we can

FIGURE 2.4.1. Transitivity of the geodesic flow

exponentially

find for each t € R numbers f(¢), g(#) € R such that d (¢, (f (1)), c(1)) — 0
——00

exponentially

and d(¢,(g(1),c(1))

—00
geodesic flow this shows that there exist #; and #, such that the projection of ¢(#;) to
SM is in U and the projection of ¢(#2) to SM is in V. This then yields the claim. [

0. Since ¢, and ¢, project to closed orbits of the

Remark 2.4.6 (Mixing). As noted earlier, this geodesic flow is actually topologically
mixing (Exercise 2.7, Remark 8.1.14, and Corollary 9.1.4) [156, Theorem 3.1].

Furthermore, Remark 2.1.12 implies:

Theorem 2.4.7 (Expansivity). The geodesic flow onH or D or any factor is expansive
(Definition 1.7.2).

Returning attention from compact factors to the universal cover, it is instruc-
tive to go further and consider the universal cover of the unit circle bundle SD
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(rather than the circle bundle of the universal cover D). Unrolling the circle fibers
shows that topologically this is D x R, and Figure 2.4.2 shows a way to here visualize
the sets of geodesics positively or negatively asymptotic to a given boundary point.
The choice made here is that one can represent the set of geodesics positively
asymptotic to a given boundary point as a D-slice in the picture, shown here in red
with those geodesics rendered as straight lines. In that case, the set of geodesics
negatively asymptotic should be represented as in the green cross-section in the
figure to show that the boundary point to which each geodesic is negatively as-
ymptotic varies over the boundary circle in a way that corresponds to an interval’s
worth of red slices. An interesting consequence is that the red and green sets shown
here do not intersect; each green slice meets a bounded interval of red slices, and,
vice versa, each red slice meets a circle minus a point worth of green sections. This
is in contrast with the global product structure of a suspension (Remark 1.5.25).

Animation athttp://www.tsuboiweb.matrix. jp/showroom/public_html/animations/gif/geodflow/geodflowconf .html

FIGURE 2.4.2. The universal cover of SD. Left (after Barthelmé):
the (red) “flat” and (green) “spindle” fans do not intersect. Right
(after Tsuboi): still picture from animation.

Remark 2.4.8. This geodesic flow is the original instance of an Anosov flow (De-
finition 5.1.1), which we study more carefully below. In that context, topological
transitivity implies density of periodic orbits via a mechanism central to the study
of their dynamics (shadowing, Section 5.3). Moreover, this geodesic flow is not
only topologically transitive, but has strong ergodic properties (see for example,
Theorem 8.1.13). These in turn imply that it is also topologically mixing (Definition
1.6.31).

In addition, we will further down describe surgeries that produce new (contact)
flows from the 3 flows in Remark 2.2.2 and Example 2.2.4. Those turn out to have
some profoundly different features from the ones we studied here.


http://www.tsuboiweb.matrix.jp/showroom/public_html/animations/gif/geodflow/geodflowconf.html
http://www.tsuboiweb.matrix.jp/showroom/public_html/animations/gif/geodflow/geodflowconf.html

5. SYMMETRIC SPACES 119

5. Symmetric spaces

An important class of manifolds of negative curvature is obtained by an al-
gebraic construction which generalizes the algebraic description of surfaces of
constant negative curvature. This involves a substantial amount of differential
geometry and Lie theory and is not required for other parts of this book.

The geometric property that enabled us to describe the geodesic flow on
the sphere, the torus, and the hyperbolic plane was the presence of an isometry
group that is transitive on unit tangent vectors. In general such spaces are called
(globally) symmetric spaces. We begin with the traditional definition and then
prove transitivity of the isometry group in the case of nonvanishing curvature.

Definition 2.5.1. A Riemannian locally symmetric spaceis a connected Riemann-
ian manifold M such that for all p € M there is a neighborhood U on which
exp,o(-Id)o exp;1 : U — M is an isometry. M is called a globally symmetric space
if this local isometry extends to an isometry of M, that is, for every p € M there is an
isometry o, of M with o, (p) = p and DUP'I!J = -1d. o} is called the (global) sym-
metry at p. The space is said to have rank one if there is no isometrically embedded
totally geodesic Euclidean plane.

Remark 2.5.2. (1) An alternative definition is that the curvature tensor is
parallel, that is, VR = 0 and the space is simply connected.

(2) Since the end-points of any geodesic segment are exchanged by the
symmetry at the midpoint and any two points are connected by a broken
geodesic, the isometry group of a globally symmetric space or compact
locally symmetric space is clearly transitive on points.

(3) Having rank 1 implies that all sectional curvatures are nonzero.

(4) S",R", H = RH? are globally symmetric spaces; T" is locally symmetric®

(5) A complete simply connected locally symmetric space is globally sym-
metric.

(6) Thus the universal cover of a complete locally symmetric space is a glob-
ally symmetric space.

Proposition 2.5.3. If M is a rank-one symmetric space then the isometry group is
transitive on SM.

PROOF. Since transitivity on points is known we only need to show that the isome-
try group is transitive on any particular unit sphere S, M. To that end it suffices to
show that for every 2-plane Il c T, M the isometry group is transitive on I[N S, M,
which in turn follows once we see that there exists an € > 0 such that for v € IInS, M

87N jsa (globally) symmetric if one adopts the existence of a global symmetry as the definition,
but not if simple connectedness is required.
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there exists a family of isometries such that the images of v under their differentials
cover an arc of length € in IIn S, M.

To that end consider a disk D = exp p B(0,0) and a triangle in D with p as one
vertex and interior angles «, §,y. Consider the isometry I obtained by composing
the three symmetries about the midpoints of the edges (in cyclic order). Since
isometries preserve angles one easily sees by a picture that the angle between v
and DI(v) is a + B +v. Since IT has nonzero curvature the sum « + § +y converges
to 7 as the diameter of the triangle tends to 0 but it never equals 7. Thus we obtain
an arc of images whose size is independent of v. |

All symmetric spaces arise from an algebraic construction which generalizes
the construction in the preceding subsections. To give an indication of how this
comes about we begin with a direct generalization of a geometric construction of
the hyperbolic space.

The Poincaré disk with the group of Mébius transformations can be obtained
as follows. Consider the upper sheet # of the hyperboloid in R® given by Q(x) :=
xf + x% - x§ = -1, x3 > 0. The group SO(2,1) of real 3 x 3 matrices preserving the
indefinite quadratic form Q acts on the hyperboloid, and the index-two subgroup
preserving x3 > 0 therefore acts on /. Since the action is linear in R?® it sends
planes through 0 (that is, planes given by ax; + bx, — cx3 = 0) to planes through 0
and hence the family € of curves given by the intersection of such planes with .4
is preserved.

If we change variables to n; = x1/x3, 12 = X2/x3, N3 = 1/ x3 the hyperboloid
becomes the hemisphere 75 + 13 +n3 = 1,73 > 0 and a plane ax; + bx, — cx3 = 01is
mapped to the plane an + bn, = c perpendicular to the 17172-plane. Thus curves
from ¥ are mapped to circles orthogonal to the equator n3 = 0. Finally apply
the stereographic projection centered at (0,0, —1) from the upper hemisphere to
the disk 75 + 75 < 1. It is known to be conformal, so the curves from € now are
(lines and) circles perpendicular to the boundary, that is, the geodesics of the
Poincaré disk. One can show that the transformations that arise from SO(2, 1) in
this process are exactly the Mébius transformations. In fact, the hyperboloid is an
isometric embedding of the Poincaré disk into Minkowski space (R3, q) with the
pseudometric g induced by the form Q.

This geometric construction generalizes to give n-dimensional real hyperbolic
spaces RH". Consider the upper sheet of the hyperboloid # in R"*! given by
Qx):=x2+-+-+x4—x2,, = -1, Xp41 > 0. Again let € be the family of curves that
lie on planes through 0, that is, on planes given by n simultaneous equations of the
form ayx; + -+ ayx, — ap+1xn+1 = 0. The group SO(n, 1) of matrices preserving
Q acts on #. Change variables to 171 = x1/Xp+1,---» Mn = Xn/ Xn+1, Mn+1 = 1 Xp41
and then apply the stereographic projection centered at (0,...,0,—1) to map the
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resulting hemisphere to the open unit ball in R". As before curves in ¢ map to
(lines and) circles perpendicular to the boundary of the unit ball RH".

These spaces RH" have (sectional) curvature —1 as well. This is clear for all
tangent planes IT at (0,...,0, 1) since in the three-dimensional subspace of Re+1
containing I1 the entire picture looks like the description of RH?.

For purposes of generalization it is more convenient to view RH" as a subset
of the n-dimensional real projective space RP" of lines through 0 in R"*! by iden-
tifying a point p on the upper hyperboloid with the line through 0 containing p.
The Riemannian metric is, of course, not the induced one, but the tangent vectors
to RH" are tangent vectors of RP". Hyperbolic distances are given as follows. Two
points in this space correspond to two lines in R”*!. The plane defined by these
intersects the cone Q = 0 in two more lines. The hyperbolic distance is given by the
logarithm of the cross ratio of the four points in projective space determined by
these four lines.

This latter description works over the complex field C as well. We obtain the
n-dimensional complex hyperbolic space CH" as a subset of complex projective
space CP", that is, the space of complex lines through the origin of C"*!, with a
distance similarly defined by cross ratios. There is an important new phenomenon,
however. Any tangent space can be viewed simultaneously as an n-dimensional
complex linear space or a 2n-dimensional real linear space. Thus a real vector v
in a tangent space can be multiplied by i = v/~1 to give a unique direction that
is perpendicular to v with respect to the real structure but collinear to v with
respect to the complex structure. One can check that this real 2-dimensional
subspace has (sectional) curvature —4 and that multiplication by i is an isometry
of the unit tangent bundle. Thus one has a natural real 1-dimensional subbundle
on the unit tangent bundle SCH" given by these directions. There is naturally a
complementary subbundle defined by the vectors that are complex orthogonal to
v and iv. Inside this subbundle all sectional curvatures are —1. This subbundle
turns out to be nonintegrable.

For the geodesic flow these subbundles correspond to subbundles of vectors
with expansion rates e?’ and e’, respectively, and corresponding contraction rates.

For the quaternions @ one obtains hyperbolic spaces QH" with a similar struc-
ture, but here one obtains a (real) 3-dimensional subbundle corresponding to
planes of curvature —4. Even for the octonians O (Cayley numbers) one obtains a
hyperbolic plane OH?, here with a corresponding 7-dimensional subbundle. The
last construction, however, does not extend to higher dimension due to nonassocia-
tivity of the Cayley numbers. These examples in fact exhaust the list of Riemannian
globally symmetric spaces of negative curvature. All of these spaces admit compact
Riemannian factors obtained by the left action of a uniform lattice in the isometry
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group, so the geodesic flows on such factors provide examples of Anosov geodesic
flows.

We now give, also without proof, an indication of the general algebraic descrip-
tion of globally symmetric spaces.

Proposition 2.5.4. If M is a globally symmetric space then the identity component
G of the isometry group of M acts transitively on M and the isotropy group K of any
point is compact.

Definition 2.5.5. A globally symmetric space M is said to be of noncompact type if
G is semisimple with no compact factors and K is a maximal compact subgroup of
G.

Remark 2.5.6. Unlike in the case of RH? the group G for other globally symmetric
spaces of rank 1 is substantially larger than the unit tangent bundle of the manifold
we are considering.

Conversely for every connected semisimple Lie group with no compact factors
and a maximal compact subgroup K (which is unique up to conjugacy by an inner
automorphism of G) there is a natural globally symmetric structure on M :=G/K,
namely, every left-invariant Riemannian metric on G that is right-invariant under
K then makes M a Riemannian manifold and the quotient of M under the left
action of a lattice I in G is a compact Riemannian factor of M. This is the analog of
the torus and compact factors of the hyperbolic plane RH?.

In this model geodesics through Id are given by one-parameter subgroups of
G/K.

The general algebraic description of the geodesic flow on rank-one Riemann-
ian symmetric spaces of noncompact type is as follows. Let G be a simple noncom-
pact Lie group of real rank one. Such groups are SO(n, 1), SU(n, 1), Sp(n, 1), and
Fy. Let K be a maximal compact subgroup of G. Then G/K is a globally symmetric
space and its unit tangent bundle is of the form G/T, where T is a compact sub-
group of K (namely, the isotropy subgroup of a tangent vector). The symmetric
spaces are, correspondingly, n-dimensional real, complex, and quaternionic hy-
perbolic spaces and the 2-dimensional hyperbolic Cayley plane. The geodesic flow
corresponds to the right action of a one-parameter subgroup that commutes with
T. (Note that in the two-dimensional case T = {Id}.)

The algebraic description of the geodesic flow on the hyperbolic plane and its
factors allows another remarkable generalization to higher dimension. The idea is
simply to replace SL(2,R) with SL(#n,R) for larger n. For n = 2, as we have seen, the
geodesic flow appears as the action of the positive diagonal subgroup; the natural
generalization would be the following:



5. SYMMETRIC SPACES 123

Definition 2.5.7. The right action of the positive diagonal subgroup

exp 1 .
D;:{ ( ) | (s tn) €RT, Ztk:O}ER"—l
*ptn k=1

=:diag(exp f1,...,.exp t5)

on SL(n,R) and its compact factors is called the Weyl-chamber flow.

This is our first example of an action of a higher-rank abelian group. Since it
appears as a generalization of the geodesic flow on a surface I'/H? (an Anosov flow,
Definition 5.1.1) it is natural to expect that its elements exhibit hyperbolic behavior.
Note first that since all diagonal matrices commute, every element of the Weyl-
chamber flow acts by isometries with respect to any left-invariant metric on SL(#, R)
and hence to its projection to I'/ SL(n,R). Thus we should expect hyperbolicity
transverse to the orbit direction.

Consider the one-parameter unipotent subgroup u;;(t) = Id +tn;; where the
i j-entry of n;; is 1 and all others are 0, and let W;; be the foliation into left cosets
of this subgroup. An explicit calculation gives

diag(e”,...,e") u;j(s)diagle™",...,e” ") = u;j(se"i"1),
—
=Gy,.tn
that is,
ij i
25.1) Gttt B Gt = H

if we denote by H ;] the right multiplication by u; ;(¢). The dynamical interpreta-
tion of (2.5.1) is that the element Gy, .., ;,, of the Weyl-chamber flow preserves the
foliation W;; and expands or contracts its leaves with coefficient e~/ depending
on whether i > j or i < j—much as the geodesic flow expands the horocycles from
one family and contracts those from the other?

Thus for all elements Gy, ;, with #; > t; > --- > t,, the stable and unstable
foliations are the same; the set of such elements (or their indices) is called the
positive Weyl chamber. When the sign of #; — t; changes, the pair of foliations W
and W;; switches roles. This is an essential higher-rank effect. A Weyl chamber is
the subset of D, = R"~! where all differences t; — tj are nonzero and have the same
sign.

The Weyl-chamber flow is a generalization of the geodesic flow on the sym-
metric space of the group SL(2,R), which can be described as the homogeneous
space SL(2,R)/SO(2) provided with a Riemannian metric that is projected from a

.....

Definition 12.5.1 with the neutral direction being that of the orbits of Weyl-chamber flow.
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left-invariant metric on SL(2,R) that is also SO(2) right-invariant. Hence one may
naturally ask about connections between the Weyl-chamber flow and the geodesic
flow on the symmetric space SL(n,R)/ SO(n) provided with a Riemannian metric
that is projected from a left-invariant metric on SL(n,R) that is also SO(#n) right-
invariant. It turns out that the latter geodesic flow has n— 1 commuting (Definition
2.6.18) first integrals (Definition 1.1.23) and the restriction of the geodesic flow to
any regular value of those integrals is smoothly conjugate to a Weyl-chamber flow
with properly chosen generators.

Moreover, the Weyl-chamber flow provides the main instance of an algebraic
R*-action, whose smooth rigidity is established in Theorem 10.1.24.

6. Hamiltonian systems

Both in this algebraic instance and when they appear in greater generality, it is
useful to have a framework for decribing geodesic flows as mechanical or Hamilton-
ian systems rather than solely focusing on their geometric origin. This section gives
a brief axiomatic introduction to the modern approach to Hamiltonian dynamics.

a. Symplectic geometry. The natural geometry for describing Hamiltonian sys-
tems is an antisymmetric counterpart to a Riemannian metric. Accordingly, we
begin with nondegenerate antisymmetric 2-forms on linear spaces.

Definition 2.6.1. Let E be a linear space. A 2-tensor a: E x E — R is said to be
nondegenerateif a’: v — a(v,-) is an isomorphism from E to its dual space E*. It is
said to be antisymmetric or skew-symmetricif a(v, w) = —a(w, v). Anondegenerate
antisymmetric 2-form is called a symplectic form. A linear space with a symplectic
form is called a symplectic vector space. If (E, a), (F, B) are symplectic vector spaces
then a linear map T': E — F is said to be symplecticif T*f = a.

Remark 2.6.2. If a scalar product (:,-) on E is fixed we can write a(,-) = (-, A-), s0o
we identify the tensor with its matrix representation with respect to a given basis.

Proposition 2.6.3. Let E be a linear space. If a is a symplectic form on E then
dim E = 2n for some n € N and there is a basis e, ..., e2, of E such that a(e;, en+i) =
lifi=1,...,nanda(e;,e;) =0 if |i — j| # n. Hence, if one fixes a scalar product

, . . , 0o I\ .
with respect to which ey, ..., ex;, is an orthonormal basis, then A = (_ I O) with
respect to this basis, where I is the n x n identity matrix.

PROOF. Since «a is nondegenerate there exist e;, e, such that a(e;,e,+1) #0,
and we may take a(e;, e,+1) = 1. By antisymmetry a(e;, e1) = a(en+1,en+1) =0 and

a(en+1,61) = —1, so the matrix of Ig where E; = spanf{e;, e,+1}, with respect to
1
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. (0 1 . . . . .

(e1,ens1) is -1 ol The claim follows by induction on dimension: If v € E, then
v—a(v,epr1)e1 +a(v,eep1 € Eo={veE | a(v,w)=0forall we E;},

so E; & E» = E since E; N Ey = {0}. O

Definition 2.6.4. A subspace V of a symplectic linear space (E, @) is said to be
isotropicif a y = 0 and Lagrangian if furthermore dim V = dim E /2.

Remark 2.6.5. Thus the “adapted” basis of Proposition 2.6.3 gives a decomposition
of E as a direct sum of two Lagrangian subspaces. Note that by nondegeneracy of
a an isotropic subspace has dimension at most dim E /2, so Lagrangian subspaces
are maximal isotropic subspaces.

An interesting description of nondegeneracy is the following:

Proposition 2.6.6. An antisymmetric 2-form a on a linear space E is nondegenerate
ifand only if dim E = 2n and the nth exterior power a" of a is not zero.

PROOE. “<”: If a is degenerate then a” has nontrivial kernel, that is, there is a
vector v such that a(v, w) = 0 for all w, hence a”(v, va,...,v,) =0forall vy,...,v,.
“=”":If @ is nondegenerate write @ = }.7"_, dx; A dx;+n by Proposition 2.6.3. Then

n
a’= ) dxiy AdXjinN-AAX, NAXGwn = (=) dx, A Adxop 20. O
i1ynin=1

An immediate observation from the preceding results is

Proposition 2.6.7. If T: (E,a) — (F, B) is a symplectic map, then T preserves vol-
ume and orientation. In particular T is invertible with Jacobian 1.

Thus the set of symplectic maps (E, a) — (E, ) is a group which we call the
symplectic group of (E, a). Assume a scalar product -, ) is fixed and « is in standard

form J = (_OI (I)) Here are some further simple properties of symplectic maps.
Proposition 2.6.8. Suppose (E, a) is a symplectic vector spaceand T: (E,a) — (E, @)
a symplectic map. If A is an eigenvalue of T, then so are A, 1/A, 1/A. If T has the
form (é g) with respect to a basis for which a(v, w) = (v, Jw), then A'C and B'D
are symmetric, and A'D— C'B = I.

PROOE. If T preserves a, and a(v, w) = (v, Jw) then symplecticity means T*JT = J.
By calculation this implies that A’C and B? D are symmetricand A’'D—-C'B=1.If A
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is an eigenvalue then so is A since the characteristic polynomial P(1) = det(T — AI)
has real coefficients. Furthermore JTJ7! = (T71)!, so

PA) =det(T - A =detJ(T-ADJ Y =det(T"H (I - ATH
=det(I-AT)T™ Y =detA(A~' 1= T)) = A*"P(A7Y);
hence, since 0 is not an eigenvalue, P(1) = 0 if and only if P(1/1) = 0. O

Exercise 2.13 gives an appropriate version of a converse to this result.
Now we discuss symplectic forms on manifolds.

Definition 2.6.9. Let M be a smooth manifold. A differential 2-form w is a smooth
map from M to the space A T* M of antisymmetric 2-tensor fields, that is, it assigns
to each x € M an antisymmetric 2-tensor on T, M. A differential 2-form w is said to
be nondegenerate if it is nondegenerate at every point. A nondegenerate 2-form w
with dw = 0 is called a symplectic form. A pair (M, w) of a smooth manifold and a
symplectic form is called a symplectic manifold. If (M, w) is a symplectic manifold
then a subbundle of the tangent bundle T'M of M is said to be isotropic if at every
point p € M it defines an isotropic subspace of T, M, and Lagrangian if at every
point p € M it defines a Lagrangian subspace of T, M. A smooth submanifold of
a symplectic manifold is said to be isotropic if its tangent bundle is an isotropic
subbundle, and Lagrangian if its tangent bundle is a Lagrangian subbundle of
TM. A diffeomorphism f: (M,w) — (N,n) between symplectic manifolds such
that f*n = w is said to be a symplectic diffeomorphism or symplectomorphism. If
(M, w) = (N,n) itis also called a canonical transformation.

Symplectic C" diffeomorphisms of a symplectic manifold (M, w) form a closed
subset of Diff” (M) with the C" topology. Proposition 2.6.6 immediately yields:

Proposition 2.6.10. If (M,w) is a symplectic manifold then M is even-dimensional
and " is a volume form. In particular M is orientable.

By Proposition 2.6.3 we can find coordinates around any given point x such
thatin T, M the induced coordinates bring the symplectic form into standard form.
This can be done by introducing any coordinate system and making an appropriate
linear coordinate change in that system. Unlike in the case of a Riemannian metric,
it is, however, possible to find a local chart such that the symplectic form is in
standard form at every point of the chart. The proof uses an argument due to Moser
sometimes called the “homotopy trick.”

Theorem 2.6.11 (Darboux Theorem). Let (M,w) be a symplectic manifold and
x € M. There is a neighborhood U of x and coordinates ¢: U — R*" such that at

0 0
every point y € U w is in standard form with respect to the basis {a, e K}
1 2n
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These coordinates are referred to as Darboux or symplectic coordinates.

PROOF (Moser homotopy trick). As noted, we may assume that we already have

coordinates such that M = R?" and w is in standard form at x = 0 with respect to

0 0
the basis {—, ey —— } Thus we need to find coordinates in which w is constant.
6x1 Oxgn

. . 0
Denote by a the form with matrix J = ( .Letw' =a—-wand w; = w+ tw' for

5
t € [0,1]. Then there is a ball around 0 on which all w; are nondegenerate (since
there is such a ball for every ¢ and it depends continuously on t). Thus o’ = d# for
some one-form 6 by the Poincaré Lemma, and without loss of generality 8(0) = 0.

Since w; is nondegenerate, there is a unique (smooth) vector field X; such that
wr 1 X=X awe=1x,0=w(Xy,-) = —0. Since X;(0) = 0 one can integrate X; ona
small ball around 0 to get a 1-parameter family of diffeomorphisms {¢}c(0,1) such
that ¢’ = X; and ¢° = Id. Then

d * * * d * * *
E(pt wr =" (Lx,0) + @' Ew:z(p” dw, X))+ 0 =" (-df+ ) =0,

s0 @ *w; = ¢°* W = w, that s, ¢' is the desired coordinate change. g

Remark 2.6.12. As mentioned before, this result is in contrast to the situation
for Riemannian metrics, for which such charts exist only for flat metrics. An
explanation is that the condition dw = 0 here may be considered an analog of
flatness of a Riemannian metric.

b. Cotangent bundles. We now describe an important class of spaces with a
canonical symplectic structure, the cotangent bundle of a smooth manifold. Not
only does a cotangent bundle have a canonical symplectic structure, but further-
more the natural coordinates induced by coordinates on the underlying manifold
are symplectic coordinates.

Let M be a smooth manifold and consider local coordinates {q;,...,g,}. On
the cotangent bundle these induce coordinates {qy,...,qn, p1,.-., Pn}. Define a
1-form 0 by setting

n
(2.6.1) 0=-) pidq,.
i=1
n
Then its exterior derivative is w = Z dg; A dp;, that is, a symplectic form in Dar-
i=1
boux coordinates. The next lemma shows that this definition does not depend on
the choice of coordinates on the manifold. Alternatively it shows that diffeomor-

phisms of the manifold induce symplectomorphisms of the cotangent bundle:
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Lemma 2.6.13. Let M be a smooth manifold and f: M — M a diffeomorphism.
Then the coderivative D* f acting on the cotangent bundle T* M preserves 6 and w.
PROOEF. Ifwe write (Qy,...,Q,) = f(q1,...,qn) then

D*f(qlr”-)anplru-)pn) = (Qlw--rQn)Pl)'--)Pn))

0Q;
h =YY" =" p. Th
where p =1 3g; ;. Thus
n n aQ n
Y PidQi= ) Pia—’dqj =) pjdq;
i=1 ij=1 qj j=1
and 0, hence w, is preserved. O

c. Hamiltonian vector fields and flows. Now we can begin to study the Hamilton-
ian equations.

Definition 2.6.14. Let (M, w) be a symplectic manifold, and H: M — R a smooth
function. Then the vector field Xz = d H? defined by w 1 Xy = dH is called the
Hamiltonian vector field associated with H or the symplectic gradient of H. The
flow ® with ¢! = Xy is called the Hamiltonian flow of H.

A Hamiltonian vector field is C” if and only if the Hamiltonian function is C"*!.
Thus one can identify the space of C” Hamiltonian flows, which is a closed linear
subspace of I'" (T M), with the space C"1(M,R) modulo additive constants.

This is indeed a formulation of usual Hamiltonian equations

. O0H . 0H.
ql - apl) pl - aql .
0H O0H
to see that ¢’ = Xy gives these, we check that Xy := (5, —a) satisfies w 1 Xy =
i i

d H in Darboux (symplectic) coordinates. But

n n n
wiXg=) (dqgindp) s Xg=) (dq; s Xg) Adp; =) dq; A(dp; 1 Xp) =dH.
| I |

;. PRNET S| ;_
=1 = S Hiop; =1 —_0H/q;

Remark 2.6.15. This can be restated as saying that a Hamiltonian flow is a skew-
gradient flow in that X is orthogonal to the gradient of H (and has the same norm).
This makes the next 2 propositions natural.

It is easy to see that Hamiltonian flows are instances of one-parameter groups
of canonical transformations (Definition 2.6.9):

Proposition 2.6.16 (Liouville Theorem). Hamiltonian flows are symplectic and
hence volume-preserving.
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PROOF. Let (M,w) be a symplectic manifold, H: M — R a smooth function, w
Xy =dH,and ¢' = Xg. Then

=dd

d t* ¥ ¥ T Z 1 ¥

E(p w=¢ (Lx,w)=¢ (dwisXyg)+(dwiXg)=¢ (ddH)=0. O
=dH =0

The converse is not true, that is, there are symplectic flows that are not Hamil-
tonian: A linear flow on the two-dimensional torus with the standard volume
2-form dx A dy preserves area and is hence symplectic. Its velocity vector field is
constant # 0. Thus if it were a Hamiltonian flow the Hamiltonian would have to
have constant nonzero gradient. On the other hand the Hamiltonian attains its
maximum and thus has a critical point, a contradiction. Note, incidentally, that
the lift of the linear flow to R? is indeed Hamiltonian. If a vector field X generates a
symplectic flow the calculation above shows that the 1-form w 1 X is closed. Thus
the obstruction to being Hamiltonian is, in fact, of a topological nature (namely,
vanishing of the cohomology class of the closed 1-form w _ X). See Exercise 2.14
for a discussion of a related phenomenon.

We note that the Hamiltonian is itself a constant of motion.

Proposition 2.6.17. Let (M,w) be a symplectic manifold, H: M — R a smooth
function, w 4 Xy = dH, and ¢' = Xy. Then H((pt(x)) does not depend on t.

i _ t Sy t .t _
PROOFE. H , = dH(@ ()" (x) =o(X(p' (x),¢"(x)) =0. O
dt o' —
=Xg(p"(x)
The Poisson bracket predates the symplectic approach to Hamiltonian me-

chanics and was traditionally used in coordinate calculations, but also illuminates
the Lie algebraic structure underlying the geometry.

Definition 2.6.18. Let (M,w) be a symplectic manifold and f,g: M — R smooth
functions. Then the Poisson bracket of f and g is defined by

1f, 8} =0(Xf, Xg) = df(Xg),

where X¢ = df* and X; = dg” (cf. Definition 2.6.14), that is, w 1 Xy = df and
w1Xg=dg. f and g are said to commute or be in involution if their Poisson
bracket vanishes.

Proposition 2.6.19. In symplectic coordinates{q,...,qn, P1,--., Pn} We have

-~ (0f g _Of og
(2.6.2) {f gt = L o _ZL o)
)8 l:zi (5671‘ opi Op; aqi)
The Poisson bracket is antisymmetric and {, f} = Lx;. f is an integral of the Hamil-
tonian flow of H ifand only if {f, H} = 0.
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PROOE. (2.6.2) follows by definition using X = (0g/dp;,—0g/0dq;). Antisymmetry
follows from antisymmetry of w. {-, f} = Zx, since

ffxfg: ngXf = ((I)JXg)_le Zw(ngXf) = {grf}

If ¢! is the Hamiltonian flow for H then (d/dt) fo @' = ¢'* Lx, f = " {f, H}
vanishes if and only if { f, H} does. ]

Remark 2.6.20. In particular we have reproved invariance of H since {H, H} = 0.
This gives a well-known result about Hamiltonian systems with symmetries:

Theorem 2.6.21 (Noether). Let (M, w) be a symplectic manifold, H: M — R smooth,
wiXy=dH, and ¢' = Xy. If H is invariant under the Hamiltonian flow for f,
then [ is a constant of motion of ¢'.

PROOF. The hypothesis is that H is an integral for the flow of f, thatis, {f, H} =0,
so conversely f is an integral for the flow of H. ]

Remark 2.6.22. An interesting instance may arise when the phase space of the
system is a cotangent bundle and the Hamiltonian is invariant under the action
on the cotangent bundle of a one-parameter family of diffeomorphisms of the
configuration space. Since such symmetries tend to be easy to detect, this result
gives an easy way to find integrals of this sort.

Example 2.6.23. Consider the central-force or Kepler problem of two bodies mov-
ing freely, but subject to mutual gravitational attraction. In coordinates centered
at the center of mass of the system the position of one body is x € R \ {0} and
its velocity is v € R3. The potential energy of the gravitational field is given by
V(x) = —-1/|1x|l, so Newton’s equation F = ma becomes

1 X

V— =
Il x| %3

or
x=v,
X

llxll®”

The Hamiltonian H(x, v) = (v, v)/2—1/|| x| (total energy) is invariant under rota-
tions around the origin. In particular it is invariant under rotations in the xy-plane,
which are generated by the Hamiltonian q; p» — g2 p1, if we choose to label the
coordinates (q1, q2). Thus g, p2 — g2 p;1 is a first integral. It happens to be the z-
component of angular momentum. The other two components are invariant by
invariance under rotations in the other planes.
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Definition 2.6.24. Let M be a smooth manifold. If X, Y are vector fields on M then
the Lie bracket [ X, Y] is the unique vector field with Zx,y) = Ly Lx - LxZy.

Remark 2.6.25. The Lie bracket measures to which extent the flows of two vec-
tor fields fail to commute. Indeed the Lie bracket of two vector fields vanishes
identically if and only if the corresponding flows commute.

From the point of view of classical mechanics the most important (or at least
the most traditional) symplectic manifolds are R?" with the standard symplectic
structure and the cotangent bundle of a differentiable manifold M (the config-
uration space of a mechanical system) with the symplectic form w described in
Subsection 2.6b, notably with the invariant 1-form (2.6.1). In both cases the sym-
plectic manifold (phase space) itself is not compact, although in the second case
the configuration space M may be compact; this is true in many important classical
problems such as the motion of a rigid body. Of course R?” can also be viewed as
T*R", so the first case is a particular instance of the second.

In this book we primarily consider dynamical systems with compact phase
space, and to apply our concepts and methods to a Hamiltonian system with
Hamiltonian H one considers the restriction of the dynamics to the hypersurfaces
H = ¢, which are compact in many situations, for example, for a geodesic flow on
a compact Riemannian manifold, where those hypersurfaces are sphere bundles
over the configuration space. Sometimes one can make a further reduction using
the first integrals other than energy. If c is not a critical value of the Hamiltonian
and the hypersurface Hy:={x | H(x) = c} is compact then the Hamiltonian system
preserves a nondegenerate (21 — 1)-form w,'°

d. Contact forms. There is an important situation when the invariant (2n —1)-
forms can be described in a particularly natural way. In the case of both R?"
and T* M the form w is not only closed, but also exact. The 1-form 6 defined by
X" | pidq;—globally in the first case, locally in the second—obviously satisfies
df = w. The calculation in the proof of Lemma 2.6.13 shows that 6 is defined
on T* M independently of the choice of local coordinates. Of course in general
a Hamiltonian system on T*M does not preserve 8 or any other 1-form whose
exterior derivative is equal to w. Let us see what conditions the invariance of 0

10This can be described as follows. One can locally decompose the 2n-dimensional measure
generated by w into (21 — 1)-dimensional measures on H,, 5 for all sufficiently small |§| and consider
the conditional measures, each of which is defined up to a multiplicative constant. Thus in this case
due to Proposition 2.6.16 one can apply the Poincaré Recurrence Theorem 3.2.1, the Birkhoff Ergodic
Theorem 3.2.16, and other facts from ergodic theory to the restriction of the Hamiltonian system to H.
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imposes on the Hamiltonian:
ffXHQ: A0 . Xy+dO.Xyg)=dH+dO_.Xy)=0if 0 s Xy=—-H.
IS |
:—Zm%%
Since the choice of Hamiltonian for a given vector field Xy is unique up to an
additive constant, we have proved:

Proposition 2.6.26. The Hamiltonian vector field Xy on T* M preserves the 1-form
0 if and only if the Hamiltonian can be chosen as positively homogeneous in p of
degree one, that is, H(q,Ap) = AH(q, p) for 1 > 0.

The restriction of the form 6 to the surface H = c for a noncritical value of c of
H is an example of a 1-form such that 6 A (d6)"~! is nondegenerate. This motivates
the following definition (see also Definition 2.2.5).

Definition 2.6.27. An alternating multilinear n-form w on a smooth manifold is a
map on n-tuples of vector fields X; such that

w(XU(l), ...,Xa'(n)) = signaw(Xl,...,Xn),

where signo is the sign of the permutation o, and w is C(R)-linear in each entry.
The exterior product or wedge product of a j-form a and a k-form S is defined by
anBXi,..., Xjei) =) signoa(Xoy,..., Xo(j) - BXo),- - Xoi)-
o()<—<a(j)
o(j+D)<-<o(j+k)
A l-form 6 on a (2n—1)-dimensional orientable manifold M is called a contact form
if the (2n—1)-form 6 A (d6)"*"! (the power being with respect to the wedge product)
is nondegenerate. Accordingly a pair (M, 0) of a smooth manifold with a contact
form is said to be a contact manifold. A contact flow is a flow on M that preserves
the contact form on M. The Reeb flow or characteristic flow of a contact form 6 is
the flow generated by the Reeb vector field Ry defined by 6 . Rg =1 and d6 1 Rg = 0.
A diffeomorphism preserving the contact form is called a contact diffeomorphism.

Unlike a symplectic manifold, which admits a variety of Hamiltonian vector
fields, a contact manifold (M, 6) comes with the canonical vector Reeb vector field
Ry, which is unique because the kernel of d6 is one-dimensional and disjoint from
that of 6 by the nondegeneracy assumption. Note that £5,0 = 0 since 0 L Ry =
const., so the Reeb flow of the contact form preserves 8 and hence all structures
defined in terms of 0, in particular the volume. Thus the Reeb flow provides a
canonical example of a volume-preserving flow.

Suppose now that X is a vector field generating a flow preserving the contact
form 6. Then it preserves ker df as well and hence commutes with the Reeb flow
of 6. Thus contact flows always arise as flows commuting with the Reeb flow of a
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contact form!! Combined with hyperbolicity this usually means that X is the Reeb
field up to constant scaling (page 501).

Furthermore if the contact manifold is a level set for a homogeneous Hamil-
tonian then Ry is exactly the Hamiltonian vector field. In fact, contact forms always
arise in this manner from generalized homogeneous Hamiltonians (see Proposition
2.6.29). Conversely, we note:

Proposition 2.6.28. Geodesic flows are Hamiltonian flows with a homogeneous
Hamiltonian. Hamiltonian flows for homogeneous Hamiltonians, in particular
geodesic flows, are Reeb flows, hence contact flows.

Proposition 2.6.29. Suppose (M, 0) is a contact manifold. Then M can be embedded
into a symplectic manifold (N, w) in such a way that the restriction of the ambient
symplectic form to M is d@.

PROOE. If N = M xR and w,; = d(e'0,) then 0" = e (ndt A0 A (dO)"1) is a
volume, so (N, w) is a symplectic manifold and w restricted to M x {0} is d6. O

Locally a contact form, similarly to a symplectic form, can be brought into
a standard form. The following result is a simple consequence of the Darboux
Theorem 2.6.11 for symplectic forms.

Theorem 2.6.30 (Darboux Theorem for contact forms). Let
Op=x1dy1+-+x,dy,+dz

be the canonical contact form onR*"*! and (M, 0) a contact (2n+1)-manifold. Then
for x € M there exists a neighborhood U of x with coordinates in which 6 = 0.

PRrOOEF. For x € M pick a neighborhood V; of 0 in ker0, and let V = V x (—¢,€),
U =expV, U; =exp(Vy x {t}) € M. dO restricted to U; is a symplectic form so by
the Darboux Theorem 2.6.11 each y € U; has a neighborhood U; c U} on which
there are Darboux coordinates xi,..., Xy, ¥1,-.., Yn, 2, thatis, d0 =Y. dx; Ady;. On
U:=U-e<t<e Us we thus have d(@ - Y dx; Ady;) =0whence 0 =Y dx; Ady; +dz
and x1,...,Xn, ¥1,.--, Yn, 2 are the desired coordinates. U

Exercises

2.1. Adapt the computations after (2.2.5) to B defined by B(H) =1, B(V) =0 = B(X)
to checkthat BAdB(H,X,V)=1and B=dA(V,-).

2.2. Check the claims in Example 2.2.7.

HThe same holds for a contact diffeomorphism.
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2.3. Check the claims in Example 2.2.6: The discussion after Example 2.2.4 and De-
finition 2.2.5 showed that the geodesic flow and the horizontal flow each preserve a
contact form (A and B = dA(V, ), respectively). Check that C:=d A(H, ) is a contact
form invariant under the fiber flow V in Remark 2.2.2 but that its Reeb field is — V'
and that C A dC(V, H, X) = —1, so this volume has the opposite orientation from
the ones defined by A and B (and E in Example 2.2.7) and is hence not isotopic to
either of them.

2.4. Since the generators H, for the horocycle flows are linear combinations of
H and V, check whether a linear combination of the 1-forms B and C in Example
2.2.6 and before it is an invariant 1-form and if so, whether it is a contact form.

2.5. Prove the existence of the defining limit in Remark 2.1.18.

2.6. Show that the horocycle flow is minimal (by combining Example 2.1.16 with
the use of homogeneity as in Example 1.6.2).

2.7. Asin Theorem 2.4.4, let T be a discrete group of fixed-point-free isometries
of D such that M :=T'\D is compact. Prove that the geodesic flow is topologically
mixing by combining Example 2.1.16 and the argument for (2)=(1) in Theorem
6.2.12 below.

A hypersurface M in R” is said to be star-shaped if there exists a point ¢ such
that every half-line from c to co intersects M in exactly one point.

2.8. Prove that any star-shaped hypersurface in R?” provided with the standard
symplectic structure is of contact type.

2.9. Describe the contact form and the (l;eeb vector field on 2”1 < R?" corre-

1 & 0
ding to th tor field { = — i—+qi—|
sponding to the vector field ¢ 5 ,:Zl (p, am qgi 6qi)
2.10. Consider a hypersurface M in the cotangent bundle T* N of a smooth man-
ifold that intersects each fiber in a star-shaped hypersurface. Prove that M is of
contact type with respect to the standard symplectic structure.

2.11. Let L be a Lagrangian subspace of a symplectic vector space E. Prove that L
has a Lagrangian complement, that is, a Lagrangian subspace M such that Ln M =
{01.

2.12. Prove that in a Lagrangian subspace L c E the basis ey, ..., ez, from Proposi-
tion 2.6.3 can be chosen in such a way that ey, ...,e; € L.

2.13. Let A =(Ay,...,A2,) be a collection of nonzero complex numbers with the
following properties:
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(1) A contains an even number of 1’'s and an even number of —1’s.

(2) If e Aisreal, A # 1, then 1/1 € A (with the same multiplicity).

(3) IfLe A, A =1,and A # +1 then A € A (with the same multiplicity).

(4) fAeA, A #1,A¢Rthen A1, 1,171 € A (with the same multiplicities).
Prove that there exists a symplectic linear map T: (R*",w) — (R?",w), where w
is the standard symplectic form, such that A is the set of eigenvalues of T (with
multiplicities).

2.14. * Prove that the 2-cohomology class of any nondegenerate closed 2-form on
a 2n-dimensional compact manifold M is nonzero.

2.15. Prove that there is no symplectic structure on the 2n-sphere for n = 2, that is,
there is no symplectic manifold (5*", ).

2.16. Suppose {w;}p<;<1 is a family of nondegenerate closed differential 2-forms
on a compact manifold M. Prove that there exists a family of diffeomorphisms
@:: M — M such that ¢} w; = wy if and only if the cohomology classes of the forms
w; are the same.

2.17. Show that the geodesic flow on any surface of revolution has a first integral
independent of the total energy. This integral is called the Clairaut integral.

2.18. Prove that any discrete subgroup of R” is isomorphic to Z¥ for some k < n
using the construction outlined in the proof of ?2.

2.19. * Let (M, ) be a symplectic manifold and {¢’} a Hamiltonian flow all of
whose orbits are periodic with the same minimal period 7. Fix a value c of the
Hamiltonian and consider the factor space N of the level surface M, by the action
of the flow. Show that the restriction of w to M, projects to a nondegenerate 2-form
on N.

2.20. Show that the geodesic flow on the standard n-dimensional sphere satisfies
the conditions of the previous exercise. Apply the procedure from that exercise
to obtain a (2n — 2)-dimensional symplectic manifold. Describe that manifold in
detail for n =2.






CHAPTER 3

Ergodic theory

Two important strands of 19th-century mathematics and physics led to the
evolution of dynamical systems as we know it today. Celestial mechanics was a
central motivation for Poincaré and his development of topological approaches
to the study of dynamical systems (including the invention of topology itself).
Statistical mechanics motivated a probabilistic approach to mechanical systems,
where the preservation of volume provides a natural measure. This motivated
von Neumann to formalize the foundations of ergodic theory [218,219], and this
approach is broadly applicable, since there are usually many important invariant
measures besides volume. Accordingly, we now study flows defined on measure
spaces—in full generality. Later, in Chapter 8, we examine how these notions apply
to hyperbolic flows.

This chapter introduces basic notions in measure theory, and then studies
basic properties of measures invariant under a flow. We then examine the existence
of time-averages of functions along orbits (Birkhoff’s Ergodic Theorem). Next, we
introduce ergodicity, which can be viewed as analogous to transitivity in topological
dynamics, and a range of mixing properties much broader than topological mixing.
Mixing is quite sensitive to time-changes, and this leads into a careful study of
basic issues specific to continuous time: time-changes and special flows. This
is significantly different from the theory of discrete systems. We conclude with
spectral theory. This is an important subject in ergodic theory, but the section is
optional since we will not use it in studying hyperbolic flows.

A number of the subjects in this chapter show significant differences between
the discrete-time and continuous-time setting, such as invariant measures for time-
changes and special flows, some aspects of ergodicity, properties of mixing, and
measure-theoretic entropy. Especially the latter requires measure theory beyond
what is usually done in an introductory graduate course, and we summarize those
ideas in Section 11.1.

137
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1. Flow-invariant measures and measure-preserving transformations

We now review basic notions of measures and measure spaces. Let X be a set
and 9 c2X a o-algebra (thatis, @, X € 9 and J is closed under complements
and countable unions of sets). Then (X,9") is called a measurable space and
the elements of 9 are referred to as measurable sets. A measure is a function
p: I —[0,00] such that (U2, A;) = X372, p(A;) for pairwise disjoint A; € I. A set
is a null set if (A) = 0. The o-algebra J is complete if any subset of a y-null set is
in 9. The completion of a o-algebra 9 is the o-algebra 9~ generated by 9~ and the
p-null sets. A complete o-algebra 9 is said to be separable if it is the completion
of a o-algebra generated by a countable family of sets. A set A has full measure or
is conullif (A°) = 0. An assertion is said to be essentially true if it holds on a set
of full measure. (Such as, an essentially constant function, an essential bound for a
function, a flow with essentially no fixed points.)

A measure space (X, 9, ) is o -finiteif X is a countable union of sets of finite
measure. If u(X) = 1, then we call p a probability measure. A point x € X is called
an atom if u(x) > 0.

We usually assume that X is a probability measure and 9 is complete. We now
define the basic notion of a measurable dynamical system.

Definition 3.1.1 (Measurability, measure-preservation, isomorphism). A map be-
tween measurable spaces is measurable if the preimage of any measurable set is
measurable. A measurable map between measure spaces is non-singular if the
preimage of any null set is a null set. For a measurable map T: (X,J,u) — (Y, <)
we define the push-forward of u by

T, p(A) = u(T~1 (A)).

A measurable map T: (X,J ,u) — (Y, <,v) is measure-preserving if Tt =v.

Two measure spaces are isomorphic if there exist sets X’ < X and Y’ c Y each
of full measure and a measurable measure-preserving bijection T: X’ — Y’ with
measurable inverse, the isomorphism. An isomorphism of a set to itself is called an
automorphism.

Aflow ¢’ : X — X of a measure space (X, ) is measure-preserving if each ¢’ is
measurable with (¢’ (A)) = u(A) for all measurable A.

A function f: (X,9) — Ris said to be measurable if the preimage of any open
set is measurable. Two measurable functions are equivalent if they coincide on a
set of full measure. If p € [1,00), then

LP(X):={f: X — R measurable | f|f|p<oo}/§

1 A¢ denotes the complement of A.
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is the linear space of equivalence classes of functions whose pth power is integrable
(L2(X, ) is a Hilbert space with inner product (f, g) = [ fgdu), and

L°X)={f: X =R | Iflloo:=essup|f]<oo}/=
| I
=inf{M | pdf171((M,00])=0}

consists of the equivalence classes of essentially bounded measurable functions.

A function f: X — Ris said to be essentially ®-invariant if there is a null set
N off which fo ¢’ = f forall r € R. The salient point is that N does not depend on
t.2 A set is said to be essentially ®-invariant if its characteristic function is. The
o-algebra of these sets is denoted by .#.

Remark 3.1.2. We remark that a.e. orbit is a measurable set; this is most easily
seen from Theorem 3.6.2 below because orbits of measure-preserving suspensions
are measurable.

Definition 3.1.3. A complete measure p is said to be a Borel measure if it is defined
on the Borel o-algebra. It is a Radon measure if furthermore the measure of a
compact set is finite, and a Borel probability measureif u(X) = 1.

Example 3.1.4. We now illustrate these notions with previous examples.

¢ The flow in Example 1.1.5 (linear translations on R) preserves Lebesgue
measure on R.

« Similarly, the translation flow on the circle from Example 1.1.6 preserves
Lebesgue measure on the circle, and

+ Example 1.6.2 is a flow on the torus that preserves Lebesgue measure.

« If a flow has a fixed point x then the Dirac measure 6 . on it is invariant,
where 6§ (A) ==y a(x).

» For the flow on the circle with a single fixed point (Example 1.3.9), the
Dirac measure at the fixed point is the only flow-invariant Borel proba-
bility measure: any interval that does not contain the fixed point in its
closure has countably many disjoint images and preimages of pairwise
equal measure by invariance, hence is a null set.

* The suspension of Example 1.8.2 has a single invariant Borel probability
measure that is the Lebesgue measure on the single periodic orbit. Defi-
nition 3.6.1 and the discussion following will clarify invariant measures
for suspension flows and how these relate to invariant measures on the
base space.

2tis not required, but in the situation at hand, we can ultimately choose the exceptional set to be
invariant, that is, f is measurable with respect to the completion of the o-algebra of (properly) invariant
sets.
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» Orbits of suspension flows are clearly measurable sets. Up to measurable
isomorphism, every measurable flow is of this type (Theorem 3.6.2), so
almost every orbit of a measurable flow is a measurable set.

Theorem 3.1.5. Every Borel probability measure |1 on a metric space is regular: for
each measurable set B and all € > 0 there exist an open set U, and a closed set C
such that C, c B c Ug and u(Ue \ C¢) <e.

PROOE. We let o/ be the collection of A c X such that for all all € > 0 there exist
a closed set C, and an open set U, with C, ¢ A c U, and pu(U, \ C;) <€ (so « is
the collection of regular sets). We will show that < is a o-algebra and contains all
open sets. It is then clear that «f is complete, so it is the completion of the Borel
o-algebra.

First, &, X € of since both are simultaneously open and closed. If A€ of, € >0,
and C, and U be as in the definition of regular, then X \ U, < X \ Ais closed, and
X~ Ce> X~ Aisopen,and

LX N Co) N (XN Up) = p(Ue . Ce) <.

Thus X\ A€ «.

Let A;,---e o/ and A = U‘l?gl A;. Fix € > 0 and for each i let U; be an open
set and C; . be a closed set such that C;, ¢ A; c U; ¢ and u(U; ¢\ C; ) < e/3. Let
Co= U‘l?gl Cicand Cg:= U;‘:l C; ., where k is such that ,u(ég NCe) <e/2. Then C. c A
is closed, U, = U‘i’il U;¢ > Ais open, and

o0
pUe~ Co) < p(Ue \ Ce) + (Ce N Co) = Y~ pu(Uje N Cie) + p(Ce N Ce) <e.
I — |

=1 /2

<YR el3i=¢/2

So A€ o, and « is closed under countable unions, hence a o-algebra.

To finish the proof we show that </ contains all closed C c X. Lete > 0. The
Uij={xe X :d(x,C) <1/i} c C are open with & = ﬂ‘l?zl Ui~ C,s0 u(Up~C)— 0,
and there is a k € Nwith u(Uy \ C) < €. Taking C = C; and U, = Uy gives Ce «. [

Corollary 3.1.6. If u is a Borel probability measure on a metric space X and B a
measurable set, then

p(B) =supu(C) (uisinnerregular) and p(B)=infu(U) (u isouter regular).
CcB closed U>B open

Borel measures are identified by the integrals of continuous functions:

Theorem 3.1.7. Let u,v be Borel probability measures on a metric space X. If
S fdu= [ fdv forall continuous functions f, thenu="v.
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PRrROOF. This can be proved directly from the Riesz Representation Theorem for
continuous functions (Theorem 3.1.10), but we provide a different independent
proof. Let C be a closed subset of X and fix € > 0. Then there exists an open set U,
such that C c U, and pu(Ue \. C) <e. Then f: X — [0,1] defined by

dx, X\ U,)
dx, X\ Uy)+d(x,C)
is a continuous function such that f =0 on X \ U,, f =1 on C. Hence,

V(C)sffdv:ffdpsp(U€)<u(C)+e.

thus, v(C) < u(C) since € is arbitrary. Switching u and v gives the opposite inequal-
ity, so u = v for closed, hence measurable, sets.. |

fx)=

Proposition 3.1.8. For a Borel measure u on a separable metrizable space X :
(1) Thesupportsuppu:={xeX | p(U)>0ifxeU,U open} of u is closed.

(2) p(X ~suppu)=0.
(3) Any set of full measure is dense in supp L.

ProOOF. (1) If x ¢ supp u take Uy 3 x open with p(Uy) =0. Then U, nsuppu = <.
(2) Since X is separable, X \ supp u is covered by countably many U, as above,
so p(X ~\ supp p) = 0 by o-additivity of p.
(3) Contraposition: f Ac X, @ # U:=suppu~ Athen (X~ A) = u(U) >0. O

Remark 3.1.9. If supp 1 = X then we say that u has full support or is positive on
open sets. In Example 3.1.4 we showed that the support of the sole invariant mea-
sure for Example 1.8.2 is the fixed point. We will see more interesting connections
between (properties of) invariant measures and the topological dynamics on their
support (Theorem 3.3.29, Exercise 3.2, Proposition 3.4.12).

Theorem 3.1.7 is related to the fact that measures define (positive) linear
functionals. The converse, that positive linear functionals arise from measures is
the content of the Riesz Representation Theorem from analysis, and this will give
another way to obtain invariant measures.

Theorem 3.1.10 (Riesz Representation Theorem). Let X be a compact Hausdorff
space. Then for each bounded linear functional F on C°(X) there exists a unique
mutually singular pair u,v of finite Borel measures (Definition 3.1.3) such that
F(p) = [@du— [@dv forallp € C°(X).

Remark 3.1.11. In particular, when F is positive (that is, nonnegative on positive
functions) there is a unique finite Borel measure p such that F(¢) = [ ¢du. This
is an important class of functionals in this book. It is especially useful that the
collection M1(X) of Borel probability measures on a compact metrizable space
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is a convex norm-bounded subset of the dual to C(X). 971 is closed with respect
to the weak* topology (the product topology of setwise convergence) defined by
fn— e [x@du, — [@duVe e C(X) (we say that p,, equidistributesto ), hence

compact and sequentially compact by the Banach-Alaoglu Theorem?

We continue our study of measure-preserving flows (Definition 3.1.1) by re-
stating what it means to preserve a measure.

Theorem 3.1.12. Let ¢’ : X — X be a measurable flow of a measure space (X, , ).
Then [ fd(piu) = [ fop'du forall f € L'(X,u) and all t.

PROOF. By definition, this holds for characteristic functions of Borel sets, hence for
simple functions (linearity) and for nonnegative measurable functions (pointwise
limits of increasing sequences of simple functions). Considering positive and
negative parts gives the theorem. |

Corollary 3.1.13. Let ® be a measure-preserving flow of a measure space (X, I, 1)
and f : X — R (orC) integrable. Then [y f(x)du= [y f(¢'x)dp forall t e R.

Together with Theorem 3.1.7, this implies
Proposition 3.1.14. p € M(X) is @-invariant iff [ fop'du= [ fdu forall f € C(X).

The next result can be proved in more generality, but this version will be
sufficient for our needs.

Theorem 3.1.15 (Krylov—-Bogolubov Theorem). Any continuous flow on a metriz-
able compact space has an invariant Borel probability measure.

PROOF. If ¢’: X — X continuous, u € 91(X), then by Remark 3.1.11 there is a
weak* accumulation point p1’ of 1 fOT(pip e M(X). ' is ¢! -invariant. O

Theorem 3.1.16. If ® is a continuous flow of a compact metric space then the
set M(®) of ©-invariant Borel probability measures is a closed, hence compact,
convex subset of M(X).

PROOE. If {u,}52 , « M(P) and pp — pin M(X), then

[ rattm= [ rotan=tim [ rog'u, = tim [ rap,= [ rau

for all continuous functions f: X — R and all £ > 0. So py € M(®). Convexity is clear
since M (X) is convex. O

3The (norm-) unit ball in the dual of a normed linear space B is weak*-compact (proved using the
Tychonoff thm on compact products), and sequentially compact if B is separable (proved by a diagonal
argument)—this implies that norm-bounded weak*-closed sets are compact/sequentially compact.
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Definition 3.1.17. A continuous flow on a metrizable compact space is said to be
uniquely ergodic if it has exactly one invariant Borel probability measure. It is said
to be strictly ergodic if it is furthermore minimal.

Remark 3.1.18. If the measure u used in the proof of Theorem 3.1.15 is invariant,
then the process becomes trivial because the accumulating family is constant,
yielding p’ = y. Indeed, a number of invariant measures often arise in an obvious
way. Dirac measures on fixed points (see Example 3.1.4) is the most self-evident. If
p is periodic with period ¢, then 64() = % fol 84t(p dt is an invariant Borel prob-
ability measure, as are convex combinations of any number of invariant Borel
probability measure.*

For a suspension flow over a u-preserving transformation on X, the product
of p with Lebesgue measure on [0, 1] defines an invariant Borel probability mea-
sure. For a flow under a function r on X, likewise for continuous F: A(r) — R the
following equation

(3.1.1)

Jx (5 Fex, ndt) dpto
f Fdy, =
r fX r (x) dl't(x)
defines an invariant Borel probability measure p,. We revisit this in Definition 3.6.1

below, where it turns out that any invariant Borel probability measure for a flow
can be seen as arising in this way (Theorem 3.6.2).

The next theorem connects some of the notions on topological dynamics of
Chapter 1 to the set of invariant measures for a flow.

Theorem 3.1.19 ([211]). If WV is a time-change of a continuous flow ® without fixed
points, then there is an affine bijection between (®) and M (V)?

Definition 3.1.20. Aflow ¢’ : X — X of ameasure space (X, y) is measure-theoretically
isomorphic to a flow ¢’ : Y — Y if there is an isomorphism h: X — Y such that
wlohZho! for all 1 € R. These flows are orbit-equivalent if there is an isomor-
phism h: X — Y that sends orbits of ® to orbits of V. A flow ¥ on Y is a factor of

® on X if there is a measure-preserving essentially surjective i: X — Y such that
wloh®hog'forall reR.

Remark 3.1.21. For continuous flows the notion of orbit-equivalence proved nat-
ural, and the reader may have noted that we only introduced here the measurable
counterpart of topological conjugacy. The reason for this is that the natural notion

4A convex combination is a linear combination with nonnegative coefficients that sum to 1.

5Thus, a time-change of a uniquely ergodic flow (Definition 3.1.17) without fixed points is uniquely
ergodic; however, there are uniquely ergodic flows (with a fixed point) for which some time-change is
not uniquely ergodic [211].
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of measurable orbit-equivalence in the sense of “same orbits” is too weak to be
interesting as the next result illustrates.

Theorem 3.1.22 (Dye’s Theorem [110,111]). Between any two free ergodic measure-
preserving flows there is a measurable isomorphism that sends orbits to orbits.

What is missing is any control of time along orbits under this isomorphism.
An important equivalence relation retains just enough control by requiring the
isomorphism to be monotone along orbits.

Definition 3.1.23 (Monotone (or Kakutani) equivalence [176, 177]). Two flows are
monotonically or Kakutani-equivalent if one of them is measurably isomorphic to
the other after a time-change which is smooth along orbits®

Note that this does not only provide monotonicity in the orbit direction but
average control of the speed-change as well.

We are motivated by continuous flows on compact metric spaces X. Here, the
smallest o-algebra containing all open sets is called the Borel o -algebra. Although
we will not need the following result, we mention that it is not very restrictive to
focus on this context because there is the device of continuous representation:

Theorem 3.1.24 (Ambrose-Kakutani Theorem [7, Theorem 5]). A measure-preserving
flow ® on a Lebesgue space (Definition 11.1.1) with essentially no fixed points is
measure-theoretically isomorphic to a continuous special flow on a separable metric
space with an invariant Borel probability measure.

Remark 3.1.25. Itis a natural and rather deeper question whether any probability-
preserving flow can be realized as a volume-preserving flow, as conjectured by von
Neumann in his foundational paper [218].

The next example is a very important class of flow, and we will refer back to
the example a number of time in this chapter.

Example 3.1.26 (Bernoulli flow). Consider the full shift (Definition 1.8.1) and
endow the shift space o, with the Borel measure u for which u(C?) = p; with
Y.ipi =1 (see (1.8.1)). Together with shift-invariance, this uniquely defines a
probability measure by Theorem 3.1.7, in fact, this is the product measure on <¢7,
where v({i}) = p; for i € of,,. The full shift with this measure is called a Bernou!lli
shift, and a flow is called a Bernoulli flow or said to have the Bernoulli property if
every time-¢ map for ¢ # 0 is measure-theoretically isomorphic to a Bernoulli shift
(see Definition 3.4.3).

6Speciﬁcally, whose derivative along orbits is in It (X, ). (Ifitis identically 1, then there is no
time-change, and the flows are isomorphic.)
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2. Ergodic Theorems

The purpose of studying invariant measures is to be able to meaningfully
investigate probabilities in a statistical approach to long-term evolution. This
necessitates knowing that such long-term statistics exist, and theorems to this
effect are called ergodic theorems. The first of these was proved by von Neumann,
and it served to crystallize the notion of ergodicity. Spurred by von Neumann’s
article, Birkhoff established a pointwise counterpart. We begin with a precursor to
these.

In this section we prove results on ergodic theorems without defining ergod-
icity. The reason for this is that the theorems can be stated and proved in a more
general setting, and often one needs the more general statement. Later we will
explain the importance of the theorems in the context of ergodicity.

Poincaré viewed recurrence as a weaker form of stability, and he had the insight
that this is ubiquitous in celestial mechanics, and indeed all mechanical systems,
as a simple consequence of preserving a probability measure:

Theorem 3.2.1 (Poincaré Recurrence Theorem). Let ® be a measure preserving
flow of a probability space (X, T, ). If A is measurable and T = 0, then for almost
every x € A there exists t > T such that ¢'(x) € A (that is, there are t; — oo with
pli(x)€A).

PROOF. B:={xe Al¢'T(x) € A foralli € N} = AN Ujen @ "7 (A)) is measurable
and the ¢~ 'T (B) are pairwise disjoint and have the same measure as B. Therefore,
1(B) =0since pu(X) =1. O

Corollary 3.2.2. Let X be a separable metric space ¢' : X — X a continuous flow,
1 a ®-invariant Borel probability measure. Then (9B(®)) =1 (hence u(£L(®)) =
U(NW (D)) =1 by Proposition 1.5.34).

PROOF. For a countable base {U;, Us, ...} of open subsets of X the set of all points
x € Uy, with @' (x) € Uy, with t; — oo has full measure by the Poincaré Recurrence
Theorem 3.2.1. |

Remark 3.2.3. This corollary is not in all cases as interesting as it seems. If p is the
Dirac measure on a fixed point, then essentially all points are fixed no matter how
much orbit complexity there might be elsewhere.

While the Poincaré Recurrence Theorem establishes recurrence, a qualitative
phenomenon, ergodic theorems are about using statistics. We present the von
Neumann (convergence in the mean) and Birkhoff (pointwise convergence) ergodic
theorems.
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Theorem 3.2.4 (von Neumann Mean Ergodic Theorem). Ler¢?: (X, u) — (X, u) be
a measure-preserving flow of a measure space, f € L*(X, ). Then

1T ‘ 2
7| retar—E—puip),

where Py is the orthogonal projection to the space L*(X,.%, By ) of @'-invariant
functions.

Note that this theorem does not require the measure space to be a probability
space. It follows from a Hilbert-space lemma, for which it is useful that one can
associate with a measure-preserving map an isometric operator, and hence a 1-
parameter family of such operators to a flow.

Definition 3.2.5 (Koopman operator). For p = 1 one associates to a measure-
preserving map f: (X, u) — (Y,v) an isometric operator

Up: LP(Y,V) = LP(X,p), @—@pof

on complex-valued functions, the Koopman operator. For a measure-preserving
flow ® we have Uj, := U(;l, so we sometimes write Ug = U,,1 and

Uy ()= fog'.
Remark 3.2.6. The case p = 2 is of particular interest. If f: X — X is invertible
then so is Uy and in this case Uy defines a unitary operator on L2. In particular,

U, is a 1-parameter family of unitary operators on L2(X, ) if @ is a u-preserving
flow on X.

Remark 3.2.7. When (X, ) is a compact metric probability space and f is contin-
uous, then f — Ugh is continuous in the norm-topology—clearly for uniformly
continuous & and the subspace of uniformly continuous functions is dense.

Theorem 3.2.8 (Alaoglu-Birkhoff Abstract Ergodic Theorem). Suppose H is a Hilbert
space, G a group of unitary operators, and Py the orthogonal projection to Hg, the
space of its common fixed points. If v € H, then Py (v) is the unique element of the

closed convex hullcoGv of Gv:={gv | g€ G} of minimal norm!

PROOF. Asanonempty closed convex subset of a Hilbert space, coGv contains a
unique norm-minimizing element F. Since % gF+ %F € coGv cannot have smaller
norm, we have gF = F, that is, F € H;. To see that F = Py, (v) we show that
v—F 1 Hg. For he Hg theset{we H| (w-Fh)=(v—F h)}>visclosed and
convex and contains Gv (since each g is unitary) and hence F. Thus (v-F h) =0
(and indeed, {Pg, (v)} = HzncoGv). O

We reproduce here a proof from Terence Tao’s blog.
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PROOF OF THE VON NEUMANN ERGODIC THEOREM. Take v € L? and € > 0. By the

Alaoglu-Birkhoff Abstract Ergodic Theorem there is a finite convex combination
. T

Ve :Z_l’le U(ptl- v with ||v. — Pgp V| <€, hence || % fo U&;l)gdt—Pq) V|| <eforany T >0,

and lim7— II%fOT Ugvdt—Povll < 2e. a

The Birkhoff Ergodic Theorem addresses the question of the existence of the
time averages in the sense of pointwise convergence. It applies on any probability
space, and no topology is involved. Before stating it, we recall a standard result in
measure theory in a slightly unconventional form.

Definition 3.2.9 (Absolute continuity). If (X,.%,u) and (X,9,v) are signed mea-
sure spaces then v is said to be absolutely continuous with respect to y, written
v < W, if every null set for p is a null set for v.

Theorem 3.2.10 (Radon-Nikodym). If (X,%,u) and (X, ,v) are o-finite signed
measure spaces and v < L, then there is a pu-a.e. unique density or Radon-Nikodym

derivative

dp
to the completion & of & and such that v(A) = Japdp, where fi is the completion
of u, for every A in the completion of I .

=p: X — R of v with respect to u that is measurable with respect

In particular, I c.%.

Corollary 3.2.11 (Conditional expectation). Suppose (X,.%, ) is a o -finite measure
space, I < ¥ ao-algebra, ¢ € LY(X, %, ). Denote by A lor the restriction, that is,
A lor (A) = A(A) forall Ae 9 c . Then the conditional expectation

dlpA),

E|I)=¢pg = dlr

Pl )
g

of p on T is defined A-a.e. uniquely by [, oo dA= [, dA forall Ac T .
PROOF. Apply Theorem3.2.10t0 A} > vi=(pA)} ., A— JoyadArforAeg. O

Proposition 3.2.12.
(1) ECl9)=ng: L' (u)— L' (u 1y LY (w) is a projection.
(2) mg is linear and positive, that is, f 20= fg =0.
(3) If g isT -measurable and bounded, then E(gf | 9 ) =gE(f19).
4@ If 92T thenE(-1J3) o E(-1971) = E(- | J2).

The proof is straightforward; we note that 1. follows from 4. but more directly
from the obvious fact that 7. = Id.
We digress briefly to a contemplation of how this plays out in L2.
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Definition 3.2.13. Suppose H is a Hilbert space and L c H is a closed subspace.
Theneachve H uniquely8 decomposesas v=vyp+v,,wherevpe Land v, L L,
thatis, v; 1 wforall w € L, and the orthogonal projection to L is defined by

np: H—L, vo+v— 1.

Proposition 3.2.14. If ve H, w e L, then |lv—-a)| < |lv—wl| and (v,w) =
(m(v), w).

PROOF. ||v—wl? = |vo+ v, — wl? = |lvo — w|? is minimal iff w = vy = 7(v), and
(v, w) =V + v, w) = vy, w) ={m;(v), W). O

Example 3.2.15. Suppose (X,J, ) is a probability space and .¥ < J is a o-
algebra in 9. Then L:=L*>(X,.,u) € H:=L*(X,J,u) is a closed subspace. For
feL?(X,9,u) and A € .% we then have y 4 € L and hence by Proposition 3.2.14

fA Fap=(foxa = () pa) = fA 1(f)dp.

In light of uniqueness in Corollary 3.2.11 we see that 7,2 x, & ;) = E(- | &) g’
Tl

that is, the orthogonal projection to L2(X,.%, ) is given by conditional expectation.

We next prove the Birkhoff Ergodic Theorem for discrete time. The continuous-
time counterpart (Theorem 3.2.19) then follows easily. If T' is a measure-preserving
transformation of a measure space (%, u) denoteby .#:=r:={Ae€ B| T l(A) = A}
the invariant o-algebra.

Theorem 3.2.16 (Birkhoff Ergodic Theorem). Let (X,u) be a probability space,
T: X — X p-preserving, f € L' (X, u). Then the time average exists:

1 n—1
T k_ )
fT-—,}ggonkZ:OfoT for n-ae.
In particular, fr is measurable and T -invariant, and

(3.2.1) fdell:ffde:ffdﬂ-
k-1

PRrROOE. Ifge L (1), then G, '=max i go Tiell (1) is nondecreasing in n, and

k=sn j=0

_ 1n—l — G
(3.2.2) lim — Y goTF<lim — <0 off A={x| Gu(x)—oo}e.g.

n—oo n =, n—oo n

8po+vy =wo+w| = vg—wo=wr-vteLnlt=10}.
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Gpi1=8+GpoT © GpoT=0,50Gpy1 —GpoT =g—min(0,G,oT) \ g on A, and

Monotone

05[(Gn+1_Gn)dH=f(Gn+l_Gn° T)d[.t Convergence fgd’,t:fgydﬂrj
A A A A

Theorem

s0g8s<0=>pu(A)=0.Ifg:=f— fy—¢€,then gy =—€<0,s0 (3.2.2) becomes

1%
lim — Z(fOTk)—fy €<0p-a.e. withe>0arbitrary.

n—o0
Replacing here f by —f gives lim —ZfOT > fy—ep-ae ]
n—oo N j—

Now consider a measurable map (£, x) — ¢’ (x) that To obtain the correspond-
ing Birkhoff Ergodic Theorem for a flow ®, we apply the Birkhoff Ergodic Theorem
3.2.16 to the measure-preserving transformation ¢! and the function fi := fol fo
p*ds.

Proposition 3.2.17. Let (X, 1) be a probability space, ® a p-preserving flow on X,
feLY(X,u). Then - f fo@" " ds s

Proo€F. The Birkhoff Ergodic Theorem 3.2.16 applied to the measure-preserving
transformation ¢' and the function f; := fol fop*dse L'(X,p) gives

n+1

Zflowk]——z,flo(ﬁ 2% 1-(fi)s —(f1) #=0

n n+1

1 flf n+sd
— o s=
nJo ¢
e — |
=fiop"

Remark 3.2.18. Here and later, we use the Bachmann-Landau “little O” notation:

fMHeo(g®):e L 53 +—=z 0, where a is usually clear from context and most often

equal to 0 or co. The corresponding “big O” notation is: f(t) € O(g(1)): Eg

bounded for ¢ near a. We sometimes write f(t) = o(g(¢)) and f(t) = O(g(1)).

is

Theorem 3.2.19 (Birkhoff Ergodic Theorem for flows). Let (X, u) be a probability
space, p': X — X a p-preserving flow, f € L' (X, 11). Then the time average exists:

1 t
fo(x)= tlim ;f fo@'ds=fgs pu-ae.
~oo t Jo

9This proof from [181] incorporates a shortcut by A. Fieldsteel and B. Bassler compared to the
version originally communicated to us by Uwe Schmock who had first seen it in lecture notes by Erwin
Bolthausen (a Managing Editor of this book series) with attribution to Jacques Neveu. (Neveu in turn
explicitly told us that he was unaware of having given any such proof.)
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PROOE. We apply the Birkhoff Ergodic Theorem 3.2.16 to establish the existence of
the limit and then show that itis f». As a minor convenience we assume f = 0; the
result follows from this by considering positive and negative parts.

First note that by Tonelli’s Theorem

n n
oo>nffd,u=/0 fxf((ps(x))d,uds=fxf0 fl@*(x)dsdy,

$00 < f:= [ fogp’dsiswell-defined (and finite) off a null set E, with [ fi =n [ f.
The Birkhoff Ergodic Theorem 3.2.16 gives

1 n 1 n-1
(3.2.3) Ef fO(psds=; Y fiogpr == E(fi | #,1) off anull set F.
0 k=0

To pass from integer times to others, consider x outside the null set N defined
as the union of the set F in (3.2.3), all the E,, above and the null set implicit in
Proposition 3.2.17. Then Proposition 3.2.17 and f = 0 imply

t—t]
0< fo F@* @ wds < filp (x)) € o),

so (3.2.3) gives

I.J 1 Lt]-1 t—|t] s Ltl B
fo(x) = hm —— Z File* ) + hm f@* @ (x)ds=(fi)s , +0.
| | 0 P

=limy—oo * ¢ fo f((p (x))ds

Thus [ fo = [ f. Now apply what we proved so far to g:= fy 4 forany A€ .#:

fﬁb ffCDXA ffCD(XA)(p f(fXA)tp fgqa fg ffXA ff

and this, together with ®-invariance, is the very definition of fp = fy.!
The Birkhoff Ergodic Theorem also yields almost-everywhere convergence of
negative and two-sided time averages:

- 1t 1 [t
Proposition 3.2.20. fp:= tlim ;f fop~Sds=fs%fo andaf fop®dsass fg.
—> 1 Jo -t

Remark 3.2.21. The Birkhoff Ergodic Theorem says that f — fg is a projection to
the ®-invariant functions.

Remark 3.2.22. Another perspective on existence of time-averages is given by the
empirical measure €, = %fOT Opsdsforagivenxe X. If f € L (), then ey, r(f)
converges for p-a.e. x by the Birkhoff Ergodic Theorem. Thus, if L' () is separable,
then e,,r converges weakly for u-a.e. x.

107hjs proof follows one in ETH lecture notes by Oscar Lanford.
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The exceptional set where the positive or negative time averages do not exist
may, of course, depend on the function f. However, it is negligible for any invariant
measure.

Definition 3.2.23. Given a continuous flow ® of a metric space X, we say that a
subset A c X has fotal measureif A has full measure with respect to any ®-invariant
Borel probability measure on X.

Corollary 3.2.24. Let X be compact metrizable, ® a continuous flow. Then
1 t
{x eX | tlim ;/ fo o*(x)ds exists for all continuous functions f}
—o0 t Jo

has total measure, as does
1 ¢ 1t
{xEX | tlim ;f fogos(x)ds:tlim ;[ fogo_s(x)dsforfeC(X)}.
—oo t Jo —oo [ Jo

PROOE. For each f; in a countable dense set of functions the averages converge
on a set E; of total measure. Lipschitz continuity of f — % fot fo@®ds implies
convergence on (); E; for all continuous f, and having total measure is stable
under countable intersection. g

By the Krylov—-Bogolubov Theorem 3.1.15, a set of total measure is nonempty:

Corollary 3.2.25. For any continuous flow ® on a compact metric space X there is
an x € X such that for every continuous function f on X the time averages % fot fo
@*(x)ds and L [} f op~5(x) ds both converge and have the same limit.

Remark 3.2.26. We emphasize that while Corollary 3.2.24 produces an apparently
large set of points whose Birkhoff averages exist, we have encountered instances
of dynamical systems with a paucity of invariant measures; if these are moreover
atomic, then the set promised by Corollary 3.2.24 may not look very large. For
instance, in the south-south flow (Example 1.3.9) the fixed point is a set of total
measure. Ruelle proposed to call points “historic” if they do not have a Birkhoff
average, the idea being that the running average % fot fo@’ds fluctuates signifi-
cantly over time and thus in a vague way associates with a given average a time
t or, rather, an “era” in the “history” of the orbit!! Among the questions one can
raise when Lebesgue measure is defined on X but not invariant under a given flow,
whether Lebesgue-almost all points have Birkhoff averages or whether instead
there is a set of historic points with positive Lebesgue measure. While for hyper-
bolic flows this does not happen (Remark 8.4.8), a variant of Figure 1.5.4 shows

Has Ruelle put it, “This absence of limit is what we want to call historical behaviour. This means
that, as the time... . tends to oo, the point...keeps having new ideas about what it wants to do.” [261]
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a situation where this is indeed the case: taking Figure 1.1.4 to represent a flow
on R?, alter it, so orbits spiral out from the neutral fixed point to the homoclinic
loop that connects adjacent saddles (Figure 3.2.1). Bowen observed thatif f isa
continuous function with different values at the adjacent saddles, then for any of
those points whose orbits spiral towards the homoclinic loop, the Birkhoff averages
do not exist—because the times spent near each of the saddles grows exponentially
and therefore always moves the running averages back towards that value of f. We

thus have an open set of historic points'?

FIGURE 3.2.1. Spiraling towards a homoclinic loop

3. Ergodicity

We now introduce a central notion of this chapter. We discussed in Subsection
0.2c that ergodic theory arose from the desire for equality of time-averages, on
whose existence we just elaborated, with the space average of an observable. Ergod-
icity of an invariant Borel probability measure is the very indecomposability notion
which produces this circumstance. Despite their names, the ergodic theorems in
the previous section do not presuppose the measure to be ergodic, and we will
show how these general theorems specialize to ergodic systems to give in particular
the equality of time- and space-averages (Corollary 3.3.11).

Definition 3.3.1. A measure p is said to be ergodic with respect to @, or one says
that @ is ergodic with respect to g, if for any measurable A c X with ¢~ ?(A) = A for
all £ e R either p(A) =0 or p(X \ A) =0.

12This example does not persist under typical perturbations because the homoclinic loop can dis-
appear or become tangled instead; there are persistent examples, however, using homoclinic tangencies
[190].
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Remark 3.3.2. ®-invariance of p is not needed for this definition. Dirac measures
are trivially ergodic, as is d¢(p) in Remark 3.1.18 (€(p) has no proper invariant
subsets) and hence Lebesgue measure for the translation flow on the circle from Ex-
ample 1.1.6. Proposition 3.3.6 and Proposition 3.3.7 below give the first nontrivial
instances. It is clear from the definition (or from Proposition 3.3.12 below) that if p
is ergodic and v < yu < v, then so is v.

Ergodicity can be reformulated in functional language:

Proposition 3.3.3 (Characterization of ergodicity). The following are equivalent.
(1) @ is ergodic with respect to u.
(2) Any measurable ®-invariant f: X — C is constant ji-a.e.
(3) Any bounded measurable ®-invariant f: X — R is constant ji-a.e.
(4) Any ®-invariant f € LP (X, ) is constant p-a.e.
(5) Any nonnegative measurable ®-invariant f: X — C is constant y-a.e.

Remark 3.3.4. The following also characterize ergodicity of a probability measure
15

feC(X)= fo =const. y-a.e. (Theorem 3.3.10).

©>>veM®@) = p=v (Proposition 3.3.12).

1 is an extreme point of M (D) (Proposition 3.3.26).

1 is ergodic for the time-7 map for all but countably many 7 (Theorem
3.3.13, Proposition 3.3.14).

L]

PRrOOF. These (and other) characterizations arise from the following implications:
® is not ergodic = there is an invariant characteristic function (namely, of an
invariant set of intermediate measure) that is not constant a.e. = there is a non-
negative bounded invariant measurable function that is not constant a.e. = there
is a nonconstant invariant f € LP = there is an invariant measurable C-valued
function that is not constant a.e. = @ is not ergodic (because either the real or the
imaginary part is a ®-invariant measurable function f: X — R and not constant
almost everywhere, so there exists an a € R such that ;J(f’1 ((a,00))) ¢ {0,1}, and
this set is invariant). ]

Remark 3.3.5. With any of these characterizations and keeping in mind that in-
variance of the measure is not needed to define ergodicity, it is easy to see that
ergodicity is preserved by time-change, orbit-equivalence (for these, this holds
both for the given measure or the one induced from it by the time-change or the
orbit-equivalence), measure-theoretic isomorphism, and passing to factors or
suspensions'? (To which invariant measures these various modifications lead is
an altogether different and harder question.)

135 suspension is ergodic if and only if the base transformation is.
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As we mentioned earlier, ergodicity can be thought of as the measurable analog
to transitivity. Similarly to the above, transitivity is preserved by time-change,
conjugacy, orbit-equivalence, and passing to factors or suspensions.

Ergodicity can be (and has been) viewed as having no measurable constant
of motion. This is different from not having constants of motion, which follows
from transitivity. Ergodicity does not follows from transitivity, even if the measure
is a smooth volume, and there are even minimal nonergodic systems, though such
examples are not easy to construct [181, Corollary 12.6.4].

Thanks to Proposition 3.3.3, the proof of Proposition 1.6.15 yields:

Proposition 3.3.6. A linear flow x — x+ tv on T" is ergodic with respect to Lebesgue
measure if and only if the components of v are rationally independent.

Proposition 3.3.7. Consider A € GL(m, Z), that is, an m x m-matrix with integer
entries and determinant +1, and assume that no eigenvalue of A is a root of unity.
Then the suspension of the toral automorphism Fa: T™ — T™ induced by A is
ergodic.

Remark 3.3.8 (Walters). Note that the hypotheses hold for (? 1) and indeed any

hyperbolic automorphism, but also for

000 -1
100 8

W=lo | o _g|€CL&D.
00 1 8

Its characteristic polynomial g(A) := A* — 813 + 612 — 81 + 1 is irreducible over Q
because so is (1 —1) = 1* — 1213 + 3612 — 481 + 24 by Eisenstein’s Criterion (the
prime p = 3 divides all coefficients other than the leading one, but p? = 9 does not).
The eigenvalues 2 — /3 + i1/4v/3 — 6 lie on the unit circle, and the remaining two
are real and off the unit circle. Therefore g is not a factor of A" — 1 for any n; since
q is irreducible, the eigenvalues on the unit circle are thus not roots of unity.

PROOF. A bounded measurable invariant function f does not depend on ¢, hence
is naturally written as an F4-invariant function on T™.1 Fourier expansion gives

frexpuik,x)) = f(X)2f(Fax) =) frexp@mik, Ax))
R R e

Uniqueness of the Fourier expansion implies that fi = fi4n for n € N. Since
no root of unity is an eigenvalue of A and hence of the transpose Al (At)l —Idis

14Equivalently, we could invoke Remark 3.3.5.
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invertible for every I € Z . {0}. So, for k € Z™ \. {0} the (A))" k (for n € Z) are pairwise
distinct, that is, there are infinitely many [ € Z™ with f; = fi. But f € L! implies
| fk! =11l == 0, so fi = 0. This means that = f;, a constant. g

Remark 3.3.9. Proposition 3.3.3 simply states in various function spaces that the
subspace of ®-invariant functions is the space of constant functions. Remark 3.2.21
lets us determine the space of ®-invariant functions as the range of the projection
f — fo, and doing so for a dense set of functions gives the needed information. If
X is a metric space, then density of C(X) in LP gives:

Theorem 3.3.10. If fp = const. u-a.e. for every f € C(X), then u is ergodic.

The converse (that the time average equals the space average—to which we
alluded at the start of this section) is an important corollary of the Birkhoff Ergodic
Theorem 3.2.16.

Corollary 3.3.11 (Strong Law of Large Numbers). Ifu(X) =1, ® is an ergodic p-
preserving flow, and f € L' (X, u), then

1 T
fo(x) = lim —f f((pt(x))dtzf fdu
T—oo T Jo X
for every x outside of a set of measure zero.

PROOF. fg is ®-invariant, so constant a.e. By (3.2.1) the constant is [ f dp. |

Thus, an invariant measure determines the asymptotic distribution of u-
almost every point if it is ergodic. A nonergodic invariant measure y may also
determine the asymptotic distribution of some orbits, but such orbits are always a
set of u-measure zero.

Considering densities gives:

Proposition 3.3.12. p e M(D) is ergodic if and only if p>veIM(@)=>pu=v.

PROOF. 1> veIM(®) < v =p-u, where p € L' (v) is the (unique hence ®-invariant)
Radon-Nikodym derivative. This is always constant (= 1) iff v is ergodic. |

The argument in the proof of Theorem 1.6.24 also establishes

Theorem 3.3.13. If a probability measure is ergodic for a flow then for all but
countably many 7 it is ergodic for the time-t map.

Conversely, we clearly have

Proposition 3.3.14. Ifthe time-t map @' is ergodic for some t, then ® is ergodic.
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Example 3.3.15. The time-¢ maps of the circle flow (Example 1.1.6) are ergodic
(with respect to Lebesgue measure) exactly for irrational . This can be seen via the
Fourier decomposition of an invariant function f:

Z aie*=f(x)=f(x+1) = Z aie'le*=>VieZ a;=a;e'’,
ieZ ieZ

so either a; =0 forall i #0 (so f =const.) or it € Z for some i € Z, hence t € Q.

In light of Proposition 3.3.14, ergodicity of the geodesic flow in Section 2.3 with
respect to the Liouville measure defined by the invariant contact form in (2.2.5)
follows from:

Theorem 3.3.16. For t # 0 the time-t-map of the geodesic flow on a finite-volume
factor of the Poincaré disk (Section 2.3) is ergodic.

PROOE. If fogl=fe I2 (for fixed t), then fohi— f (and likewise for h%):

(2.2.3) nt nt Remark 3.2.7
I fog" ohl—fog" | === fohi og"'—fog"l=Ifohy —fl——0.
L 1 L ]

nt——oo
=f =f

g', h3 and K’ generate SL(2,R), so f is PSL(2,R)-invariant, that is, for all g €
PSL(2,R) fogZf, or, by the Fubini Theorem, for a.e. x we have f(g(x)) = f(x) for
a.e. g € PSL(2,R). Thus, there is an x with f(g(xg)) = f(xo) for all g € PSL(2,R), so
fZ=const. |

Corollary 3.3.17. The geodesic flow on a finite-volume factor of the Poincaré disk
(Section 2.3) is ergodic with respect to the Liouville measure.

Remark 3.3.18. Indeed, Theorem 3.3.16 implies more than ergodicity by Proposi-
tion 3.4.40 (Theorem 3.4.43). Yet stronger ergodic properties are obtained below
with refined arguments (Theorem 3.4.32 and later on Theorem 8.1.13).

The horocycle flow from Theorem 3.3.16 is ergodic as well, and this is tightly
connected with ergodicity of the geodesic flow.

Proposition 3.3.19. An L? function invariant under a time-t -map of the horocycle
flow h_ (Example 2.2.3) on a finite-volume factor of the Poincaré disk (Section 2.3)
is invariant under the time-21n2-map of the geodesic flow. (Likewise for h...)
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PROOF. If f € I? is invariant under h”, then (2.2.4) with €:=1/n7 and s = 2 gives

||f0g21ﬂ2 _f||2 — " foh:ZI’ZT h_l'—/fl‘[hf‘[hzz/n‘[ _f||2

=f
=S o my MR HIAT — fo T BT 4 fo M — £l
| IS
=f
1/ -2/ Remark 3.2.7
<Ifohl™ = flla+1f o 2™ = fll; =2==2L 0 O

Corollary 3.3.20. Each time-t-map of the horocycle flow h. (Example 2.2.3) on a
finite-volume factor of the Poincaré disk is ergodic.

Remark 3.3.21. In fact, the horocycle flow is uniquely ergodic and hence strictly er-
godic (Definition 3.1.17, Exercise 6.7, Corollary 3.4.35): Birkhoff averages converge
uniformly (Theorem 3.3.32). (And more—Theorem 3.4.44 and Section 9.6.)

One can strengthen the statement that functions invariant under an ergodic
flow are constant via the following simple observation:

Proposition 3.3.22. If ® is a u-preserving flow and f: X — R satisfies fop' < f
(“subinvariance”), then f is ®-invariant.

PROOF. By assumption A, ={xe X | f(x)<r}o{xeX| fl'x) =<r}=
@~ '(Ay), while u(p~'(A;)) = u(A;). Thus ¢ 1(A,)%A, forall r e R. O

This and Proposition 3.3.3 yield

Corollary 3.3.23. If u is an ergodic ®-invariant probability measure, f: X — R,
and fo@' < f, then f is constant u-a.e.

Proposition 3.3.24. A probability-preserving flow ® is ergodic iff
I ;

(3.3.1) f—f foo dtgmfffg

x T Jo x" Jx

1 T
forall f,g € L?, that is, if and only if ?f fo@! 34 const. forall f € L?.
0

Remark 3.3.25. For f = y4 and g = yp, (3.3.1) becomes

1 T
(3.3.2) = fo o~ (A) N B) - u(A)(B) dt 7= 0.

PROOE. If f = fog!, then f = %fonqut dr 3. const., so @ is ergodic.
If @ is ergodic, then Corollary 3.3.11 and the Vitali Convergence Theorem give
(3.3.1) forall f,g € L2, O



158 3. ERGODIC THEORY

Corollary 3.3.11 leads to the question of whether every continuous flow has an
ergodic invariant measure. This becomes clear with an alternate characterization.

Proposition 3.3.26. Ergodic measures are the extreme points of 9U(®): u € M(D) is
not ergodic iff there exist 1y # pp € M(P) and 0 < A < 1 such that p= Ay + 1 - A)uy.

PROOE. If ¢ "(A)= Aand 0 < u(A) <1, then u = u(A)u; + (1 — u(A))uz, where
w(BN A

3.3.3 B) = B)=u(B|A)=
( ) M1 (B):=pa(B):=u(B|A) A

is the density of Bin A, and 2 :=pux-a Ll ta.

i < pfori=1,2, so the Radon-Nikodym Theorem gives ®-invariant p; €
L'(w) with [ fdu; = [p;fdu. By assumption Ap;+(1-A)ps=1= [prdu=
S p2du, so uy # e = p1 # p2 = p1 # const., and y is not ergodic. ]

Theorem 3.3.27. Every continuous flow on a metrizable compact space has an
ergodic invariant Borel probability measure.

PROOFE. By the Krein-Milman Theorem!® 9)t(®) # & has extreme points. ]
Corollary 3.3.28. A uniquely ergodic flow (Definition 3.1.17) is ergodic.
PROOF. IM(®) = {y}, so p is extreme, hence ergodic. ]

By the Krylov—-Bogolubov Theorem 3.1.15 every minimal set is the support of
an invariant measure, so:

Theorem 3.3.29. A uniquely ergodic action has only one minimal set; in particular
a topologically transitive uniquely ergodic action is minimal.

Remark 3.3.30. Exercise 3.2 provides a related inference for (“plain”) ergodicity.

Example 3.3.31. The flow in Example 1.3.5 is uniquely ergodic, so unique ergodic-
ity is compatible with trivial recurrence—but only for Dirac measures.

The circle flow (Example 1.1.6) is uniquely ergodic. To see this note that the
interval [0, %) has measure 1/n because all translates by multiples of 1/7 have the
same measure, and they sum to 1. By additivity, the measure of intervals with
rational endpoints is their length; this defines Lebesgue measure.

A more generally useful criterion is:

155 compact convex set in a locally convex topological vector space is the closed convex hull
of its extreme points, that is, C = coex(C); less than this will do, of course, when only the existence
of an extreme point is needed: Define a face F of a compact convex set K by x+ (0,1)(x—y) c F =
x+1[0,1](x — y)  F; K itself has this property. The Hausdorff maximal principle gives a minimal face,
and the Hahn-Banach Extension Theorem shows that it must be a point, hence an extreme point.
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Theorem 3.3.32. A continuous flow is uniquely ergodic if the time-averages of
continuous functions converge uniformly to a constant.

¢ uniformly

foeR. If pisa @-
(e 9)

invariant Borel probability measure, then [ fdu = [ fodu = fy, so p is uniquely
defined on C(X) and hence unique. O

PrOOF. If f is a continuous function, then % fOT fop

Conversely:

Proposition 3.3.33. If ® is uniquely ergodic, then for every continuous function f
the time averages % fOT fp'(x)) dt converge uniformly (to a constant).

PRrROOF. If f is a continuous function for which this fails, then there are a < b,
sequences of points xi, yx € X, k=1,2,..., and a sequence n; — oo such that

1 [ . 1 [T ;
—f flo'(xp))dt<a, —f flo"(y) > b.
ng Jo ni Jo

A diagonal argument gives a subsequence ny; such that for every g € C(X) both
. 1 nkj t . 1 nkj t
J1(g) = lim —f 8 (xx;);drand J(g) = lim —f gl (y;);dt
j=o0 ng; Jo j=oo ng; Jo

exist. J; and J, are bounded linear positive ®-invariant functionals; thus J;(g) =
Jgdu, J2(g) = [ gdu, for ®-invariant probability measures y; and yp. Since
J1(f) < a< b= Jo(f) we have ) # o so @ is not uniquely ergodic. |

Theorem 3.3.34. If a flow is uniquely ergodic then the time-t maps for all but
countably many T are uniquely ergodic.

PROOF (Veech). By Theorem 3.3.13, the unique ®-invariant Borel probability mea-
sure p is ¢”-ergodic for all but countably many 7. To show that such ¢7 is uniquely
ergodic, let v be any ¢"-invariant Borel probability measure. Then f; ¢°(v)ds is
®-invariant, so u = [y ¢°(v) ds by unique ergodicity of ®. However, y is ergodic for
¢ and hence an extreme point of the set of invariant measures, so the convex com-
bination p = [y ¢°(v) ds must be trivial, that is, ¢°(v) = p. Since y is ¢°-invariant,
this implies v = gy, which establishes the claim. 0

Remark 3.3.35. The examples of uniquely ergodic flows (as well as the majority
of those one encounters in the early pertinent literature) suggest that unique
ergodicity (and hence minimality) is closely tied to simple dynamics. This turns
out to be wrong in the strongest possible way. Not only are there natural examples
of uniquely ergodic weakly mixing flows (Definition 3.4.1, Theorem 3.4.44, Corol-
lary 3.4.35), but by the Jewett—Krieger Theorem, every ergodic flow is measure-
theoretically isomorphic to a uniquely ergodic one [99,167].
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Proposition 3.3.26 connects decomposability of a measure (by convex combi-
nation) and decomposability of the space. One can sharpen that connection:

Proposition 3.3.36. Different invariant ergodic probability measures for the same
flow are mutually singular.

PROOF. Call them v, = u< + p* with u= < v L u* (invariantly by uniqueness of
Lebesgue decomposition); since y is ergodic, hence extreme, we have either u = u*
or y = u = v by ergodicity of v and Proposition 3.3.12. O

Proposition 3.3.36 means that any convex combination of finitely many ergodic
measures produces a corresponding nontrivial finite partition of the space.

Moreover, every invariant measure for a measure-preserving transformation
can be decomposed into—possibly uncountably many—ergodic components.

Theorem 3.3.37 (Ergodic Decomposition [90, Theorem 15, p. 152]). Every invari-
ant Borel probability measure for a continuous flow ® of a metrizable compact space
X decomposes into an integral of ergodic invariant Borel probability measures in the
following sense: There is a partition (modulo null sets) of X into ®-invariant subsets
Xa, a € A,called the ergodic components of (®, i), with A a Lebesgue space, and
each X, carrying a ®-invariant ergodic measure o such that [ fdu= [[ fdu, da

for any function f.

Remark 3.3.38. In metric spaces there is explicit description of the ergodic de-
composition: For each ergodic measure consider the G set of typical points with
respect to all continuous functions, for example, points for which the Birkhoff
averages for each continuous function converge to the integral of this function
with respect to the measure in question (Theorem 3.2.16). This is a null set for all
other ergodic measures and these sets are evidently pairwise disjoint. They are
called ergodic sets. This essential uniqueness of the ergodic decomposition shows
that 91(®) is essentially a simplex.

4. Mixing

As the circle flow (Example 1.1.6) illustrates, ergodicity is compatible with fairly
uncomplicated behavior. Notions of mixing provide stronger stochastic properties,
and the relation to ergodicity is most apparent by comparison with (3.3.2).

Unlike in the topological setting there are various notions of mixing used in
the measure theoretic setting. We first review the various definitions and list them
in order of increasing strength.

Definition 3.4.1 (Mixing). A measure-preserving flow ¢’: (X, u) — (X, y) is said to
be weakly mixing or to have continuous spectrum (Remark 3.7.15) if for any two
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measurable sets A, B

1T -
(3.4.1) ?f |WAng@ ' (B)) — w(AuB)|dt 7== 0.
0
It is said to be mixing if for any two measurable sets A, B

(3.4.2) wAN @~ (B)) == (A - u(B).

It is said to be mixing of order N if for any N + 1 measurable sets A; and with =0

N N
(3.4.3) ,U( ﬂ (P_ti (Ai)) Ty H H(A).

i=0 i=0
It is said to be multiply mixing or mixing of all orders if it is mixing of order N for
all NeN.

The next notion was introduced by Kolmogorov (under a different name) and
is thus often referred to as the Kolmogorov property, or K-property for a flow8

Definition 3.4.2 (K-mixing). It is said to be K-mixing or to be a K-flow if for any
measurable sets Ay, ..., A;; we have

lim sup |u(Ap N B) — u(Aog)u(B)| =0,

=00 Be oty (A1, Am)
where «/;(Ay, ..., Ap) is the o-algebra generated by the ¢°(A;) fors=rand 1<i <
m. Equivalently (Definition 11.1.16),

N .
dim sup{|u(An B) - pAuB)| | Bed(\ T'O} 7= 0

I=n

for every measurable A and finite partition ¢.

Definition 3.4.3. A flow ® is Bernoulli or said to have the Bernoulli property if for
all ¢ # 0 the time-¢ map is measure-theoretically isomorphic to a Bernoulli shift
(Example 3.1.26).

Remark 3.4.4. A few comments on these notions and the relations between them:

¢ The circle flow (Example 1.1.6) is not weakly mixing: for A= B=1[0,1/2)
and T €N, the integral in (3.4.1) is 1/8 # 0.

« Mixing is mixing of order 1.

e One can restate (3.4.2) as up (¢~ '(A)) == p(A), that is, asymptotically
¢~ !(A) and B are independent sets.

¢ Clearly mixing implies weak mixing, so weak mixing is a weakened (aver-
age) version of the statement about asymptotic independence.

16Kolmogorov used “K” as an abbreviation for “quasiregular,” which begins with a “K” in Russian,
but it was quickly interpreted as the first letter of “Kolmogorov”
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By taking A invariant and B := X \. A (or by comparing (3.4.1) and (3.3.1))
we find that weak mixing implies ergodicity. Thus, ergodicity is the weak-
est statement of this sort.

One sharp distinction between ergodicity and these mixing notions is
that ergodicity is a purely “transverse” property, whereas “longitudinal”
issues (such as time-changes) affect mixing. This step up from ergodicity
comes into sharp relief in Proposition 3.4.9: suspensions are never even
weakly mixing.

To clarify the intent of (3.4.3), we rewrite it for N =2 as

1o~ (AN~ (B) N C) =mmmar MAUB)L(C).

K-mixing means that the evolution of Ay is eventually independent of
anything involving the other A;; this implies mixing of all orders but does
not follow from it.

The most effective criterion for the K-property is existence of a o-algebra
of measurable sets of such that of < ¢'sf for t >0, ;o @'« is dense in
the o-algebra 9 of all measurable sets, and ;s ¢~ '/ = &, the trivial
subalgebra of null sets and their complements. Equivalently, one can
show the existence of a generator (Definition 11.3.6) with trivial tail.
The K-property is also equivalent to triviality of the Pinsker algebra from
entropy theory. We will have an opportunity to show how this is useful
(Remark 8.3.19).

The Kolmogorov zero-one law for independent random variables can be
used to show that the Bernoulli property implies K-mixing. There are,
however, K-mixing flows that are not Bernoulli [223].

Weak mixing does not imply mixing, and there is a significant gap be-
tween these. If one uses the weak topology on the space of measure-
preserving flows on a given probability space, then the weakly mixing
ones form a set of second Baire category, while mixing ones form a set of
first category, that is, in this sense most flows are weakly mixing and few
are (strongly) mixing.

However, for hyperbolic flows these mixing notions are usually conflated,
that is, once a hyperbolic flow is known to be weakly mixing, the various
stronger mixing properties hold as well (Remark 8.3.19, Theorem 8.4.17,
Remark 8.4.18)—because, for instance, there is a generator with trivial
tail. Accordingly readers focused on hyperbolic flows might choose to
skip, for instance, the discussion of weak mixing on the following pages
(for example, Propositions 3.4.5, 3.4.18, 3.4.19, 3.4.38, 3.4.40), save for
statements that have implications for mixing.
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+ We nonetheless explore these notions with some care because there
are occasions when we can explain how specifically a stronger mixing
property can be proved directly (for example, in Theorem 8.1.13), and
because at times weak mixing can be obtained with no additional effort
over establishing ergodicity (such as in Proposition 8.3.16 or Theorem
3.4.44). This relies on some of the characterizations of weak mixing that
we develop here (notably, Proposition 3.4.19, Proposition 3.4.40).

o It turns out that up to constant rescaling of time, any 2 Bernoulli flows
are measure-theoretically isomorphic (Ornstein Isomorphism Theorem).

We mention the next result without proof as it provides a good interpretation
of weak mixing as a mixing condition away from a “negligible” set of times:

Proposition 3.4.5. A measure-preserving flow is weakly mixing if and only if for
any two measurable sets A, B

(3.4.4) thereisan E cR* of density 0 such that E;itm i~ "(A)NB) = u(A)-u(B).
—00

Here we used the following notion and fact:

Definition 3.4.6. If A(EN [0, s]) — ds = 0, then we say that E < R* has density d.
In particular, it has density 0 if A(EN [0, $]) +== 0.

For later use we note:

Proposition 3.4.7. If f is bounded, then
1T 1T,
1. f— = A j l — = 0.
Jim T Jo |f1=0 ifandonlyif Lim Tfo f°=0

PROOF. Invoke Lemma3.4.8: lim f(f)=0iff lim f(t)2 =0. O
EZFt—o0 EFt—o0

1 T
Lemma3.4.8. Iff: RT — R is bounded, then Tlim T f |f| =0 iffthereisan E c R*
—oo T Jo

f) ifteE
0 ifteE.

t—o00

of density O such that lim f(¢) =0, thatis, 0 = lim {
EFt—o0

PROOF. “If”: For M:=| fllo and € > 0 there is an S € R* such that for T = S we have
€

. Mldet <
f[O,T]\E'f | M+1

e dr(E):= %A(Em [0,T]) <

and

€
M+1’
50 lfT|f|dt:l(f |f(t)|dt+f |f(t)|dt)<MdT(E)+

T Jo T Y| [ M

0,TINE 0,TINE

€
+1

<E€.
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“Only if”: Since Ex:={t € R | |f(1)|=1/k} < Ej,, satisfies

1 T k (G
dT(Ek):—f mdts—f (D) dt 7= 0,
T Jo T Jo

recursively take I = Ix_; such that dr(Ex) < 1/k for T = Ij. Let E:=Ugen Ex N
k-1, lx)ande>0. If k>1/eand l;_; < T ¢ E, then T ¢ Eg, and |f(T)| < 1/k <e.
To show d,,(E) — 0 take K > 2/¢, T = Iy and k = K such that I < T < l;,;. Since

EN(0,7) = (EN[0,10) U (ENlk, 1) = (Egn10, 1) U (Bt 0 Lk, 1),

B0 CErnn0D)
we etd(E)<1(Td (Ep) + Tdr(E ))<1+ 1 .2, O
g T =T T(Ek T(Ek+1 PRI .

Unlike ergodicity, mixing properties are sensitive to timing. This is starkly
illustrated by the contrast between Remark 3.3.5 and the next result.

Proposition 3.4.9. Suspensions are not weakly mixing.

PROOF. For A=B=Xx[0,1/2) and T € N, the integral in (3.4.1) is 1/8 # 0. O

Corollary 3.4.10. Linear flows on tori are not weakly mixing.

PROOF. They are suspensions of translations. (|

Clearly, mixing and weak mixing are invariants of measure-theoretic isomor-
phism. The next result shows a stronger statement; this is an interesting result, but
one we will not use later on and so state without proof.

Proposition 3.4.11. If a flow is mixing (or weakly mixing), then so is any factor
(Definition 3.1.1).

This is another reason suspensions are not weakly mixing: they have circle
flows (Example 1.1.6) as a factor (Proposition 1.3.3).
The next result relates the measure theoretic and topological notions of mixing.

Proposition 3.4.12. If u is a mixing invariant measure for a continuous flow ®,

then @ lsuppy S topologically mixing.

PROOF. If A, B < supp u are open, then (¢~ (A) N B) > 0 for all large ¢. O
Now we prove a criterion for mixing that allows us to use particularly conve-

nient sets when checking mixing for specific dynamical systems.

Definition 3.4.13. A collection ¢ <. in a measure space (X,.%, ) is said to be
sufficient if finite disjoint unions of elements of € form a dense collection with
respect to the symmetric-difference metric

(3.4.5) d(A,B)=d,(A,B)=u(AA B) € (0,00].



4. MIXING 165

Remark 3.4.14. This is closely related to the Rokhlin metric from (11.2.9), see
Proposition 11.2.20 and Remark 11.2.21.
Proposition 3.4.15. Suppose € is a sufficient collection of sets. Then
(1) @ is mixing if (3.4.2) holds forany A,B€ €,
(2) @ is weakly mixing if (3.4.1) or (3.4.4) holds for any A,B€ 6,
(3) @ isergodicif(3.3.1) holds forany A,B€ €,
(4) @ is mixing of order N if (3.4.3) holds for any A; € 6.
PROOF. We prove (1) using Proposition 3.3.24, the other parts have like proofs. Let
Al,..., Al Bi,...,Bi€€, AinAy =@ fori#i', BjnBy = for j# '
and A=UJ, A, B=U\_, Bj. Then u(A) = X1, p(A), u(B) = X'_, u(B)), and by
assumption
k 1 k1
e ' ANB) =) Y we "(A)NB)) == ) ) H(A) - u(Bj) = p(A) - u(B).
i=1j=1 i=1j=1
Thus (3.4.2) holds for any elements of the dense collection 4l formed by finite

disjoint unions of elements of ¥. Now let A, B be arbitrary measurable sets. Find
A’, B e {lsuch that u(A A A') <e/4, u(B A B') < /4. Then by the triangle inequality

I~ (A N B) - w(AuB)| < ue " (Ar AYNB) +pulp™ (A)n (B A B
+ule~ (AYnB) - (A (B
+u(A) - u(B A B)+ (B - uwAA A)
<@ "(AYNB") - wA) - u(B"| +e.
Since € > 0 can be chosen arbitrarily small, this implies (3.4.2). O

It is not only with respect to the sets in question, but also in the conclusion
that a suitable approximation is good enough.

Proposition 3.4.16. Let @ be a continuous flow on a compact metric space X and
1 a ®-invariant Borel probability measure for which there exist constants c,C >0
such that

(346)  cu(P)p(Q) = lim (P~ (Q) = im p(Pne™"(Q) < Cu(P)u(Q)

t—o0

for all Borel sets P,Q < X. Then u is mixing.

PROOEF. The left inequality in (3.4.6) implies that ® x ® is ergodic with respect to
pxp:If A,B,C,D c X are Borel sets, then

lim (4 x 1) (9 x )" (Ax Q) (Bx D)) = ¢ {(A) - p(B) - p(C) - (D).
oo @ (ANB) R (C)nD) —(uxi)(AxB) =(ux(CxD)




166 3. ERGODIC THEORY

The same inequality holds if we replace A x C and B x D by finite disjoint unions of
product sets, and such sets approximate every measurable P, Q < X x X. Thus,

lim (ux @) (@ x ) (P)N Q) = ¢®(ux () (P) - (1 x W (Q),

t—oo
and @ x @ is ergodic with respect to u x u. (So ® is weakly mixing by Proposition
3.4.19 below.)

Now let v be the diagonal measure in X x X given by v(E) = u(m1(ENnA)), where
A={(x,x) | xe€X}and m: X x X — X is the projection to the first coordinate.
The measure v as well as its shift v; under the map ¢’ x Id are (® x ®)-invariant.
Explicitly, v¢(A x B) = (¢’ (A) n B). By the right inequality in (3.4.6) we have

3.4.7) th} vi(AxB) = th} (@' (A) N B) < Cu(A) - w(B) = C(l x ) (A x B).

Let n be any weak limit point of the sequence v;. If A, B c X are closed sets then
1N(Ax B) = C(u x u)(A x B) by (3.4.7). Approximation by disjoint unions of products
of closed sets gives n(P) < C(u x p) (P) for any Borel set P X x X, son <« px u, and
1 = u x 1 by Proposition 3.3.12 since 1 is (® x ®)-invariant and p x p is ergodic. For
closed A, B with p(0A) = p(0B) = 0 we have

@ (AN B)=v(AxB) = (ux p)(Ax B) = u(A) - u(B).

Since the collection of all such sets is sufficient, ® is mixing with respect to u by
Proposition 3.4.15. (|

The notions of mixing and weak mixing are remarkably well-behaved when
passing to products:

Proposition 3.4.17. A measure-preserving flow ® on (X, p) is mixing (weakly mix-
ing) ifand only if ® x @ is.

PROOFE. If ® x @ is weakly mixing and A, B < X then by Proposition 3.4.5 there is a
set E c N of density 0 such that

1o~ (AN B) = (ux W(Ax X) - (ux @) (B x X) = u(A)u(B),
S|
=(uxp)((pxp) ™ (AxX)N(Bx X))
so @ is weakly mixing. Taking E = & proves that ® x ® mixing = ® mixing.

Suppose now that @ is weakly mixing. Then for measurable A;, A, B;,Bo € X
there exist sets E;, B, < R* of density 0 such that

Ei;igoo:u((p_t(Ai) N B;) = p(A;) - pu(Bi)
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for i =1,2. Taking E = E U E; we find that
=(¢~ (A)NB1)x (@' (A2)NBy)
(uxw((@x @) (A1 x A) N (B1 x Bp)) == !.t(Al)p(Bl)p(Az)y(Bz)l )

=p(p~ (A)NB1) (@~ (A2)NB2) =(px 1) (A1 x Az) (x 1) (By x Bz)

Since sets of the form A x B form a sufficient collection, Proposition 3.4.15.2 implies
that @ x @ is weakly mixing. Taking E; = E» = & gives ® mixing = ® x ® mixing. [J

One of the implications in Proposition 3.4.17 is easy to strengthen:

Proposition 3.4.18. If ®: X — X is a measure-preserving flow and ® x @ is ergodic,
then ® is weakly mixing.

PROOF. Take A, B measurable and suppose @ x @ is ergodic. Then
1 T
—f p@ " (A NB) == (ux w)(Ax X)(ux p)(Bx X) = u(A)u(B)
TJo — 1

=(ux ) (@)~ (Ax X)N(Bx X))

and

1 T
7ﬁ W@ (AN B)? == (ux 1) (Ax A)(ux t)(B x B) = u(A)*u(B)>.
 —
=(uxp) ((pxp)~ ' (Ax A)N(Bx B))

by Proposition 3.3.24. Thus,

| 2
?L(m¢(mnm—mmmm)ﬁg&

=pulep~ " (ANB)? -2u(p~ " (ANB) (A (B)+u(A)* w(B)?

This implies the claim by Proposition 3.3.24 and Proposition 3.4.7. ]

In fact, we have:

Proposition 3.4.19. The following are equivalent:

(1) @ is weakly mixing,

(2) @ x D is weakly mixing,

(3) @ x D is ergodic,

(4) ® x ¥ is ergodic whenever ¥ is.

PROOF. The first 3 properties are equivalent by Propositions 3.4.17 and 3.4.18.
(4)=(3): If ® x ¥ is ergodic whenever ¥ is, then for the constant flow ¥ on a single
point, this implies ergodicity of @, so with ¥ = ® we find that ® x @ is ergodic.
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To show (1)=(4), we use Proposition 3.4.15.

=Xt =Vt

T r 1 I_I:X |_|::y
=p(p~ " (A)NB) vy~ (A2)NBy) =(AD)p(B1) V(A2)v(Ba)

1 Tr 1 | 1
|? A (uxv)((wxw)‘t(Alez)ﬂBlsz)—(uxv)(AlXAz)(uxv)(leBz)|

1, (T 1 (T 1T
:?|\/(; xtyt—xydt|sl?f0 |Xt_x|.ytdtl+x.|l?_/(; yt—ydtl|m>0 O

<(sup; y1) % fOT |x¢—x| dt—0 (@ weakly mixing) —0 (¥ ergodic)

Remark 3.4.20. (4) motivates saying that a flow ® is mildly mixing if ® x ¥ is
ergodic whenever ¥ has a possibly infinite ergodic invariant measure.

Corollary 3.4.21. If ® is weakly mixing then so is ® x ® x --- x ® for any finite
number of products.

PROOF. Recursively taking ¥ = ® x ®, ¥ = ® x ® x ® and so on in Proposition
3.4.19(4) shows that if ® is mixing, then ® x ® x --- x ® is ergodic. Using (3)=(1)
with 27n copies of @ then shows that the product of n copies is weakly mixing. O

It may be interesting to give an evidently equivalent formulation:

Corollary 3.4.22. If ® x ® is ergodic then so is® x ® x --- x ® for any finite number
of products.

Just as ergodicity can be expressed in terms of functions rather than sets, so
can the various notions of mixing. In probabilistic terms, sets are events and
functions are random variables. The preceding notions of ergodicity and mixing
involve various forms of eventual independence of events, and they can be recast
in terms of eventual independence of random variables using the covariance of
L?-functions.

Definition 3.4.23. The covariance of f, g € L? is defined as
cov(f,g)=(f—({f,1),g— (g, 1)) =(f,8) —{/, 1){L,8).

=1 (r-s1)(e-s2) Jre-fflg

That is, we project both functions to the orthocomplement 1+ c L? of the
constant functions by subtracting their average (to focus on their variation) and
then take the inner product.

Remark 3.4.24. Like the inner product, the covariance is sesquilinear (linear in
the first entry and and antilinear in the second) and invariant under isometric
operators (thatis, (U-,U-) = (:,-) = cov(U-, U-) = cov). If either of the functions is
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constant, then the covariance is zero, so it is unaffected by the addition of constants
to either function. For many statements about covariance, this allows us to assume
without loss of generality that the functions in question have zero average, that is,
arein 1+. Indeed, “ ;oolarization"17 allows us to consider the same function in both
entries:

1
cov(f,g) = Z[cov(f+g,f+g) —cov(f—-g,f—-9l
The covariance also satisfies the Cauchy-Schwarz inequality: |cov(f, @) < | fll gl

Proposition 3.4.25. If = c L? is a complete system, that is, span(Z) = L?, then
1 T
e @ isergodic if and only if ?f cov(th) (f),8) 7= 0forallf,ge =,
0

o @ is weakly mixing if and only if
1 T
(3.4.8) :_rj(; |cov(Ug(f), 8)| == 0

forallf,geE,
o @ is weakly mixing if and only if for all f,g € =, there exists an E < R* of
density 0 (Definition 3.4.6) such that

cov(th,(f),g) TFi—o 0,
o @ is mixing if and only if
(3.4.9) cov(Uy(f),8) == 0

forall f,ge=.
¢ ® jsmixing of order N if

N ) N
[1fico"dp === [1] fidu
i=0 i=0

forany{fy,..., fn} < E.

PROOF. To see how to pass from a complete system to L? note first that sesquilin-

earity of covariance means that checking any of these statements for all f,ge =

implies the same for all f, g € span(Z). Now take arbitrary f,g € L?> and f’,g’ €

span(®) such that ||g— gl <e/2||flland || f — f'll <€/2]g'|l. Then

lcov(Ug (), &) = Icov(Ug(f), g — &) + cov(Ug (f) = Ug (f1), 8 + cov(Ug (f1), &
<|cov(U§(f), 8"l +e.

Now, for each of these statements, knowing it for all f,g € L? implies the corre-

sponding mixing property by taking f = y 4 and g = yp for measurable sets A, B.

) ut vl = lu— vl = 4u, v)
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To see the converse note that characteristic functions of measurable sets (or
linear combinations of those of a sufficient collection) form a complete system in
L? for which the statement about covariance boils down to the respective mixing
property. |

Remark 3.4.26. Note that we have in particular reproved Proposition 3.4.15.

Remark 3.4.27. The characterization of mixing in (3.4.9) invites the question of
how fast the covariance goes to 0 with ¢. This depends on the 2 functions involved,
and the convergence can be arbitrarily slow. However, for a smooth dynamical
system and functions selected from a suitable class—smooth, Lipschitz or Holder
continuous (Definition 1.8.4), for instance—hyperbolicity can produce exponen-
tial convergence to 0. This is known as exponential decay of correlations. Since
the classes of functions needed for this are not preserved by measure-theoretic
isomorphism, neither is this property, so it is a meaningful property of a smooth
dynamical system rather than of its measure-theoretic isomorphism class. Note
that this is sensitive to time-changes; for instance, suspensions are not mixing and
hence have no correlation decay at all. We elaborate on this in Section 8.5.

Parsing Definition 3.4.23, this characterization of mixing can be restated thus:

Proposition 3.4.28. If = c I%isa complete system, that is, span(Z) is dense in 12,
then @ is mixing if and only if UL (f) ¥ [ f forall f € E.

Likewise we have:

Proposition 3.4.29. An ®-invariant probability measure u is N-mixing if and only
if given any f; € L?>(w), any weak accumulation point y, “2% y of ]‘[f.‘il fiogt
(with t; — t;_1 == 00) is constant.

PROOE. “Only if” is clear. To get “if”, we recursively verify that the constant is
correct.

First, take f; =1 for i # 1, including taking the test function fy = 1. Then the
weak-accumulation statement becomes

ffl:ffIO(p[-l—»const.flzconst.,

so the constant is [ fj for each such subsequence, and thus fj o’ **% [ fi By
symmetry, fiop' > [ f; forall i. In particular, o2~ 2 [ £, Supposing
next that f; =1 for i ¢ {1,2}, this implies

fﬁo(l)[1 f20<,0t2'1=ff2°<.0t2_t1 f1m[(ffz)f1=ff1ffz

$0 Lo foph 2 [ fi [ fo with like statements for any pair of the f;. This
can be continued. |
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Remark 3.4.24 suggests

Proposition 3.4.30. In each of the statements in Proposition 3.4.25 one can replace
cov(U§ (f), 8) by cov(Ug (f), ) or by (UL (f), f) if f L 1. For instance, ® is mixing if
and only if

cov(Uy(f), f) == 0
for all f in a complete set L2, which happens if and only if
(U, f) == 0
for all f in a complete set for 1+.

PROOF. While Remark 3.4.24 applies if the hypothesis is known for all f € L2, the
step from a complete system to L? requires attention because f — cov(U§ (), f)
is not linear. The following lemma covers the mixing case, and the others are
analogous. The last statement follows directly from Remark 3.4.24. |

Lemma 3.4.31. If cov(Ug (), f) == 0, then cov(th)(f),g) == 0 forall g e L.

PROOF. My:={geL*| cov(UL(f),8) = 0} isa closed subspace of L* that con-
tains 1 and f, and Up My < My: If g € M and ¢ € R*, then, since Uy is an isometry,
(UL, Us(8)) = (Ua (UL ()), Us(8))y = (UL (f),8) — 0. Thus,
Mgomyp=({Ec L*closed | 1,f€E, Up(E)c E} > Ug(my).
Ifge m]l,, then (1,g) = 0 and (U} (f), g) = 0 for all  since UL (f) € Ui (my) < my,
soger.Thus,Lzszeam}-cheBMszf. O
As an application of Proposition 3.4.28 and (2.2.3) we show:

Theorem 3.4.32. The geodesic flow on a finite-volume factor of the Poincaré disk
(Section 2.3) is mixing.

Lemma 3.4.33 (Mautner phenomenon). fog'i 344 fi e [2 = fyoh® = f;.

PROOF. | fog"ht - fg" | 22 | fonse gl — foghi = fonse - f 32T 0 [
L —| -

Y foohs — fo

PROOF OF THEOREM 3.4.32. If fo g/l +<%%. f, € I?, then f; is h_-invariant, hence
by Corollary 3.3.20 constant, so fy = [ f. Thus, fog’ ¥ [ f, which gives the
claim by Proposition 3.4.28. ]

The mixing property has applications in this case. First, we obtain:
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Proposition 3.4.34. If f: S — R is continuous on the unit tangent bundle of a
compatct factor Z of the Poincaré disk (Section 2.3), then for x € ST

1t fols uniformly
) Fog s T [ s

PROOF OUTLINE. To apply mixing thicken the arc =11 (x) to U= B¢* x h=11 (x)
of positive volume (using local product coordinates); here B¢ ~ h[fe’e] (x)x gl=e€l(x).

1
Then area(B”‘)-%flfogt(hf(x))ds:/fog“(y))w(y) 2 vol(U)ff. Itis

o0
essential here that g~ does not expand in the B°“-direction; this ensures unifor-
mity of the approximation in ¢ and equicontinuity of x — % f_ll fogl(h®(x))ds for
t = 0. Since vol(U) = area(B“%), the claim follows by letting € — 0. O

mixin;
t—+

Corollary 3.4.35. The horocycle flow on a compact factor of the Poincaré disk is
uniquely ergodic.
Remark 3.4.36. Compactness is not needed [265].

PROOF OUTLINE. By Theorem 3.3.32 we check uniform convergence of Birkhoff

averages to a constant using (2.2.3) and Proposition 3.4.34:
1 el . B 1 1 .
gﬁethh,(g (X))dszif,lfog(h*(x))ds

We now take a spectral point of view.

uniformly

f. O
S

t—+o00

Definition 3.4.37. A complex f € L?(u) . {0} is said to be an eigenfunction of a
measure-preserving flow ¢’: X — X on a probability space (X, p) if fop! = e?7¢! f
for all ¢ € R; in this case w is called the corresponding eigenfrequency and e?" the
corresponding eigenvalue.

Thus, a flow is ergodic if 1 is a simple eigenvalue, and weakly mixing if every
eigenfunction is constant almost everywhere:

Proposition 3.4.38. Eigenfunctions of a weakly mixing measure-preserving flow are
constant, that is, if f € L? and f o p' = €'’ f for some w € R, then f = const.—and
hence w =0, so ® has only one eigenvalue.

PROOF. If f € L? and fo ¢! = e!™ f, then either ¢/ =1 and f = const. by ergodic-
ity (which follows from weak mixing), or w # 0, in which case

<f’1>sz=ff°<ﬂt=fe”‘”f=e”’”(f,1)
implies (f,1) = 0 and hence

flfl2=%fOTe”‘”Ifffdt:%fOT‘fe”‘”fﬂdt:%fOTU(fo(pt)f)dtmo
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by (3.4.8) since @ is weakly mixing. O

Remark 3.4.39. This provides yet another reason linear flows on tori are not weakly
mixing: the coordinate projections are nonconstant eigenfunctions.

Proposition 3.4.40. A flow is weakly mixing iff every time-t map for t # 0 is ergodic.
Remark 3.4.41. Compare this with Theorem 3.3.13.

PROOE. “<”:If fop! = 2™’ f for all ¢ € R then either w = 0 and f is an invariant
function for ¢! (say), or  # 0 and f is an invariant function for ¢'/“. Either way,
f = const..

“>” If fop = f L1, then gi = [y e?"*'T fo ! dt is ¢'-invariant, hence
equals fgk — ffOT eZﬂikt/Tfo(pt dt = fOT eznikt/T(j‘fo(pt) dt = 0, so fx(t) :=f((,0[(x))
satisfies 02 g (x) = [y ¥ k17§ () dt for all k € Z, s0 f 20, and f20. O

Remark 3.4.42. This is another reason why suspensions are not weakly mixing.
Together with Theorem 3.3.16, this has the following corollary:

Theorem 3.4.43. The geodesic flow on a compact factor of the Poincaré disk is
weakly mixing with respect to the Liouville measure (hence not a suspension).

Likewise, Proposition 3.4.40 and Proposition 3.3.19 give weak mixing of the
horocycle flow.

Theorem 3.4.44. The horocycle flow from Remark 2.1.15 is weakly mixing with
respect to Lebesgue measure (hence not a suspension,).

Of course, we already saw that stronger mixing holds for the geodesic flow
(Theorem 3.4.32). Theorem 8.1.13 and even more so Theorem 8.4.17 go further,
and this is a good time to lay some of the ground work. We will do more with the
horocycle flow later on to find that it is indeed mixing of all orders with respect to
Lebesgue measure, and that this is not tied to the algebraic nature of this flow but
to the “commutation” relation with the geodesic flow (Section 9.6).

The Bernoulli property differs from the other mixing notions in that verifying
it appears to require finding a symbolic flow as well as a measure-theoretic isomor-
phism to it. It is easy to believe that this can be challenging, so it is important to
have criteria for the Bernoulli property that can be verified in ways more in line
with the other mixing properties. We here provide an important one without proof.

To define this new notion, we first weaken the notion of “almost everywhere”
to an approximate one: we say that a property holds for e-a.e. point of a set E
in a measure space (X, p) if the set B where it fails satisfies yg(B) < €, using the
conditional measure from (3.3.3). Likewise, an invertible map f: (X,u) — (Y,v)
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of measure spaces (not necessarily probability spaces) is said to be e-measure-
preserving if there is a B ¢ X with ux(B) < € and |[v(f(A))/u(A) — 1| < € for all
Ac X\ B. Using the notions and notations from Definition 11.1.6 we then make
the definition.

Definition 3.4.45. A measure-preserving flow @ is said to be very weak Bernoulli
if f:=¢" is very weak Bernoulli for every ¢ # 0 which in turn means that f admits
arbitrarily fine partitions (or a generating partition) ¢ = {Cy, ..., Cy} that are very
weak Bernoulli as follows: Define a: X — {1,..., k} by {(x) = Cy(x) and suppose that
for € > 0 there is an N € N such that for all # > N and e-a.e. atom E of V;?:N fj (9]
there is an e-measure-preserving map 6: (E x [0,1], ug x m) — (X, u) with

— k . :
Jim D la(f! () —a(f! O, w)l<e
—o0

fore-a.e. (x,u) € E x [0,1].

This says that x and 6(x, u) have on average almost exactly the same future
as described by itineraries with respect to . With respect to 6, the extra flexibility
from considering E x [0, 1] is helpful.

Remark 3.4.46. This notion was introduced as a broader condition under which
two systems with the same entropy are measurably isomorphic [222]; previously
Ornstein had shown this for Bernoulli shifts. Specifically, the new development was
that if a generating partition is very weak Bernoulli, then it is “finitely determined;
another notion original to that paper, and that if two measure-preserving transfor-
mations acting on Lebesgue spaces have finitely determined generating partitions
and the same entropy, then they are isomorphic. 4 years later, Ornstein proved the
following result, which reveals this property to provide an easier way of establishing
the Bernoulli property.

Theorem 3.4.47 ([223]). A measure is Bernoulli if it has the very weak Bernoulli
property (Definition 3.4.45).

5. Invariant measures under time-change

Time-changes of flows were first described in Proposition 1.2.2. Definition
1.2.1 explained that this is equivalent to scaling the generating vector field, that
is, passing from a generating vector field V to the generating vector field W = pV
for some p: X — (0,00). While this is straightforward for smooth flows, we now
make this explicit for measurable flows and furthermore examine how an invariant
measure for a flow corresponds to an (absolutely continuous) invariant measure
for a time-change of that flow.
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Let us first do the straightforward calculation for smooth flows. A volume form
w is preserved by a flow generated by X if Zxw = 0, and we have

Proposition 3.5.1. If V preserves the volume w, then W = pV preserves the volume
wlp: Loy (w/p)=0.

PROOF. For scalar functions «, the Cartan formula

Zx(aw) =1xd(aw)+d(ixaw) =d(atxw) =da Aixw
1
=0 (maximum rank)

implies that

ZLyv(aw) = p{."fv(aw)l+dp Aix(aw) = (pda+adp) ANixw =0

=daniyw =adpAlyw =d(ap)

when ap = const. g

Remark 3.5.2. The last line reflects the fact that constant rescaling of a vector field
does not affect whether it preserves a given volume, and constant rescalings of a
volume do not affect invariance under a given vector field.

In the measurable context, we first note that such “scaling of the generating
vector field” gives a cocycle a as in Proposition 1.2.2 in the context of a y-preserving
flow @ on X. Since Proposition 1.2.2 produces a cocycle over the time-changed
flow, we here effectively study a “backwards” time-change, which explains the
apparent mismatch between Theorem 3.5.4 and Proposition 3.5.1. It is easiest
to read Theorem 3.5.4 as saying that Proposition 3.5.1 holds in the measurable
context.

Proposition 3.5.3. If0 < p € L' (X, u), then for t =0 and a.e. x € X the equation
a
f plp'(x)dr =t
0

has a unique solution a = a(t,x) = 0. So then does —f(fp((pf(x)) dr =t fort<
0, here with a < 0, and clearly t — «a(t, x) is strictly increasing, a(0,x) = 0, and
lim— 1o (£, x) = +o00.

PROOF. Since a — foa p(p*(x)) dt = t is continuous and strictly increasing, the
conclusion holds for all x such that limg_.o foa (" (x)) dt = 0o, and we show that
this is a set of full measure by showing that pg :==1limg_. é foa p(P*(x))dt >0a.e.

By the Birkhoff Ergodic Theorem, this latter limit exists on a ®-invariant conull
set X', and we claim that the (®-invariant) set E:={x€ X' | pg(x) =0} is a null set:
We have [y, po dp = [y p dp, and by the Birkhoff Ergodic Theorem

f Pd)d,u:f(PXX’\E)fDdﬂ:f pxX’\Edu=f pdu,
X'\E X X X'\E
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so [ppdu= [rpedp=0. This implies u(E) = 0 since p > 0. O
Note that x — a/(t, x) is measurable since

a
fxeX| at,x)<a}l={xeX | f (@ (X)) dt > t} for a > 0.
0

Then the “backwards” time change, (p}fJ (x)= (p"‘(t"” (x), defines a measurable flow

because a(t1, x) + a(tz, @™ (x)) = a(ty + t2, x) by uniqueness:18
a(t,x)+a(tz,@f(x)) a(ty+12,x)

fo ple" () dr=t+1 =f0 ple" (x)dr.

_ palty,x)

—Jo

15
P dr+ [ 2 T (o) dr

Theorem 3.5.4 (Measurable Proposition 3.5.1). If ® preserves uand0 < p € L' (u),
then the time-change ®,, preserves the probability measure dp, = pdu/ [ p du.

Corollary 3.5.5. A continuous time change of a uniquely ergodic continuous flow
on a compact metric space is itself uniquely ergodic (Definition 3.1.17).

PROOF. We show that [ fogp du, = [ fdpu, for f € L®(up).

| I

1 1t 1 rex)
fi(x) :=—f flpp(x) dr = —f F@"))plp” () dv
tJo tJo
f((pa(T'X)(x)) L I

= _da@x) 4o dr
v=a(r,x), dv="4 d‘[—p((p,,(x))

lim 4 =—L1_ (time average
t—oo a—00 félp(qﬂ(x))dr P (x) ( verage)

1
Ioc(t, X)

1 a(t,x)
= ;a(t,x) fo (N’ x)dv,

== (0f)o(x) (time average)

$0 po ft 2% (0 f)e and hence

f[)@ftdlvtmf(pf)qndﬂ:f Pfdﬂ:f Pdﬂf fdpyp.
X X X X X
Applying this to f o ¢y instead of f gives

fP@fto(P,ngﬂm’f Pduf fO(p,TJdup.
X X X
The right-hand sides agree because the two left-hand sides have the same limit:
1 t
U pq’ft"‘/’/rad”_[ P®ftdﬂ‘5—f Pcb‘f fopp™ ~fop,ds|dp 0. O
X X tJx o ]

=27[| flloo

18And because (x, 1) — (x,a(t, x)) is measurable on X x R.
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6. Flows under a function
We introduce special flows (Definition 1.2.7) in the measurable context.

Definition 3.6.1. Let F be an invertible measure-preserving transformation of a
finite measure space (Y,u) and 0 < r € LY(Y) a “roof” function. On X = {9 e
Y x(0,00) | s<r(y)} with the measure v induced by p x m recursively define the
flow under r by

(y,s+1) if0ss+t<r(y),
0 (1,5)=L ¢ TTVE),0) ifs+t>r(y),
@S FHETETONET(1),0) i s+ <0,

This is a v-preserving flow on X. Note that v may not be a probability measure
even if u is, but v is finite. The measure v is given by the formula

r(x)
(3.6.1) ffdv:f U f(x,t)dt)du(x)
X Y \Jo

where f is any bounded measurable function.

Also, such a flow has no fixed points, or at least the set of these has measure 0.
It turns out that this property of having essentially no fixed point is sufficient for
being of this form. This next theorem has no counterpart for special flows in the
topological setting.

Theorem 3.6.2 (Ambrose-Rokhlin Special-Flow Representation [6]). Let ® be a
measure-preserving flow on a Lebesgue space (Definition 11.1.1) with essentially no
fixed points. Then ® is measure-theoretically isomorphic to a special flow (that is,
represented as a special flow).

Remark 3.6.3. For an aperiodic flow (that is, it has essentially no closed orbits)
one can choose this special representation in such a way that the roof function is
arbitrarily close to a given constant in the uniform topology.

This can be viewed as a global counterpart to the local construction of flow
boxes in Proposition 1.1.14, but even locally, this is a nontrivial insight into the
structure of a flow. Notably, it implies that the time-dependence is quite regular,
which is not apparent from the definition of a measurable flow. In particular, this
implies that the orbit of a.e. point is a measurable set. We note, however, that being
global, this is very different from topological dynamics, where being a special flow
constrains the topology of the underlying manifold and important fixed-point free
flows are not of this type, for example, geodesic flows.

We mention without proof (see [89] for one) that it is possible to strengthen
this result as follows.
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Theorem 3.6.4 (Rudolph). If @ is ergodic and p,q,s >0 withp/q ¢ Q and s <1,
then the roof function in the representation as a special flow can be chosen such that
r(Y) = {p,q} and p(r~'({p}) = s.

The proof of the Ambrose-Rokhlin Special-Flow Representation Theorem
proceeds in two main steps. Proposition 3.6.6 produces the “geometry” of a special
flow, that is, the partition of the space by the orbit segments which (a posteriori) run
from the base to the roof. Proposition 3.6.7 then builds the dynamics accordingly.
The needed properties of the partition are as follows.

Definition 3.6.5. A partition ¢ of X is said to be an orbit-segment partition for @ if
(1) each partition element is an orbit segment C = {p’(x) | 0<7 < [} in
such a way that the representation of any ye Cas y = ¢" (x) with0< 1</
is unique (we call x the bottom endpoint and [ the length of the orbit
segment), and
(2) the function C 3 ¢" (x) = y— (L, T)(y) == (I, 1) is measurable.

Proposition 3.6.6. A measure-preserving flow ® on a Lebesgue space (X, 1) with
essentially no fixed points admits an invariant set of positive measure with an
orbit-segment partition for which L = ¢ for some ¢ > 0.

Proposition 3.6.7. If a Lebesgue space (X, 1) with a u-preserving flow ® has an
orbit-segment partition, then ® is measure-theoretically isomorphic to a special

flow.

PROOF OF THEOREM 3.6.2. Proposition 3.6.6 gives an invariant set E of positive
measure with an orbit-segment partition, on which the flow then is measure-
theoretically isomorphic to a special flow by Proposition 3.6.7. We now apply this
recursively.

Let Cyp = @, and for i = 1 there either is a set E c X Uj<i Cj of measure at
least 1/i on which @ is measure-theoretically isomorphic to a special flow, and
we let C; be the (without loss of generality countable) union of such E, or else
we set C; = &. Then the restriction of @ to C:=;en C; is measure-theoretically
isomorphic to a special flow, and C has full measure: Otherwise, Proposition 3.6.6
and Proposition 3.6.7 yield an E ¢ X \ C with u(E) > 1/i for some i € N, hence
En C # & by construction of C, a contradiction. O

PROOF OF PROPOSITION 3.6.6. We will find two disjoint sets both of which orbits
revisit indefinitely; the “exit points” from one of these on the way to the other form
a good candidate for the base of a special flow. We will use averaging in the flow
direction:

1 r¢ 2
(3.6.2) 70— avgy (1, x) = — f xao@ T (x)dt is =-Lipschitzfor x € X
aJo a
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1 a a 2
because —’f yao' ™M dt—f xa0@' 2 dt| < =|1; —15|. Since @ has essen-
alJo 0 a
L 1

_rTta To+a

=[] xacptdt—[i; xacp'dt
tially no fixed points, there is a measurable A and a #, € R with 6 := u((X \ A n
@™ (A) >0. Let

Ey={xe X | avg4(0,x) <1/4}, Ex={xe X | avg}(0,x)>3/4}, E=E1n@"(Ey),
with (by Lemma 3.6.8) a > 0 small enough that
LIXNA)AE) <d/2 and u(AAE;) <d/2.

12 & in measure f
L~ &inmeasure

1 t
Lemma 3.6.8 (Wiener). If f € L°(X, ), then ;/ fop®ds
0

PROOF. It suffices to prove convergence in L?, and to that end we use the spectral
measure o with (UL f, ) = [y fop'- f= [ e do (M) (Definition 3.7.8) to get

H;fotfoq)sds—fuz:j;(l(%f()ffo¢sds_f)(%foth(des_f)l

:%2 Jo fog* dsm_% Jo Frow®ds—1 [y ffog" dr+ff
=(Ug [ Up [

| — |
ubini 1 t t i —
—Lﬁf f fem“ " do(A) dsdr
0 JOo JR

=(Ug /> /) =USf.f)
1 [t - 1 [t .
—-f fe““da(/l) ds—- fe’“ da(/l)dr+fdcr(/1)
tJo Jr tJo Jr R
Fubinif |el/‘lt_]. —]_|2d0'(/1) Lebesgue Dominated-Convergence Theorem 0
R iAt t—0
1 rtrt ., — 11t . 11t .
because —2[ [ eMeilrgsdr = —f e’“ds—f eirrdr. O
= Jo Jo tJo tJo
i t il

Asa consequence,
ty _ _
(E) = p((X ~ AN " (A) —u((X ~ A)AE)) — W(AAEy) >0,
~E gl (ky)

so there is an invariant set E’ with positive measure of points that visit E for arbi-
trarily large positive and negative times. Also,

Ei :=¢[O,a/8] (El) and Eé — (p[O,a’/B] (EZ)
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are disjoint because if x € E] N E;, then x; := ¢"(x) € E; for suitable 7; € [0,a/8], so

L < Javg? (0,x1) - avgl (0, 1) | < 27y ol < = S = 1
= <|av ,x1) —av )| <2t —Tls ===
p S 2veam BaTh XN = T2l= e Ty

=avgy (-71,x)—avg4 (~72,%)

by (3.6.2), a contradiction.'® The “points of exit from E} on the way to E,” now
form the base Y of a special-flow representation as follows.

For any orbit in E’, the set of times when it hits E] is open and without upper
or lower bound, and its connected components (“Ei -intervals”) have length at least
a/8. Likewise for E}-intervals, and no E]-interval overlaps with any E;-interval,
so for every point in E’ there is a well-defined nearest such interval “below” and
likewise “above.” We then take Y c E’ to be the set of top endpoints of E| -intervals
with the additional property that the nearest interval above is an E,-interval. This
ensures that it takes more time than a/8 to return to Y, that is, f(x) :=min{t >
0] o'x)eYl=a/8forxeY.

The desired partition elements are now given by ¢!%/®(x) for x € Y, and
(L, T)(p*(x)) = (f(x), 8), so it only remains to show measurability of L and T. For T
this follows from measurability of

k k+1
By ={xeX| —<Tx)<——} for n=8/a, keN,
n n

which reduces to that of By since B,1 = (p” "(By) ~ Bg. By is measurable because
x € By means that x just exited E] on the way to EJ, thatis, x ¢ E; 3¢~ /" (x) and
there is an i € N with ¢'/"(x),¢*'"(x),...,¢""(x) ¢ E} UE, but ¢'*1"(x) € E}. Fi-
nally, Lis measurable because L1 ((c,00)) = (me[O,c] (T ((c, oo)))u(p’C(T’1 ([¢,00))).
This completes the proof of Proposition 3.6.6 O

Remark 3.6.9. We could arrange for L to be bounded by refining the partition
elements ¢'%L) () into the /¢ *+D) (x) and *L) (x), where c:=infL < L(x) —
kc < 2¢. The new roof function L' then satisfies ¢ < L' < 2c.

PROOF OF PROPOSITION 3.6.7. The essence of the argument is that the bottom
endpoints of the partition elements form the base. For checking the details of why
this works it is convenient to reparametrize the flow in a piecewise linear way so all
partition elements are traversed in unit time, that is, by multiplying the “speed” by
L(x) on the partition element containing x. Another way of putting this is to write

19The E; are measurable: continuity of 7 — avg%(o,(pf(x)) = avg‘f‘(—r,x) implies E; =
(ﬂQn[O,aIB](Ei).
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(for y:= "™ ~T™ (x), and ¢ (x) = L9
@™ (1) for0<t<1t'(x)
@'(x) = /
(p(t—t (D)) L) (y) forl>t= ' (x).

This defines a measurable flow ® on (X, <) with the same orbit-segment partition,
and by Theorem 3.5.4 it preserves the measure i = Ly/ [ Ldy. It suffices to show
that this flow is measure-theoretically isomorphic to a special flow with T = T/L
and roof function L = 1, that is, a suspension.

To that end note that the map n: X — X; that sends each point to the bottom
endpoint of its partition element makes (X}, o/ =7,/ ={Ac X; | n7'(A) €
o}, 1 =1, (f1)) a measure space, where u1 (A) = fi(r ' (A)) is preserved by the base
transformation F:= . This is represented as a suspension flow ¢/ = ho @’ oh™!
via the bijection h: X — X":=X; x [0,1), @' (x) — (x, 1).

Lemma 3.6.10. u':=h(u) = u; x Lebesgue=:v on of' = h(f) = o) x B, the product
o-algebra in X' = X; x [0,1).

Up to reversing the above time-change, this proves Proposition 3.6.7 O

The proof of Lemma 3.6.10 involves careful applications of the basic notions
of measure theory more than dynamical ideas, and the main effort is to show that
o) x B =<' The inclusion o) x B c of " is clear: If o) x B> A= Ay x [t1, 12)
with A; € o, then h™1(A) = {y | n(y) € A1, t; < T(y) < b} € o/. Therefore the
main effort is the reverse inclusion, and here it is central that we are dealing with
Lebesgue spaces. This is put to use via notions of “open” and “boundary” in the
absence of any topology by using the flow parameter as follows: If E < R and
x € X, then the (flow-)closure of C:=¢F(x) is C:=¢F(x) and C = ¢ (x) is the
(flow-)boundary of C. More generally, then, the flow-closure and flow-boundary of
A c X are defined by

PR NA=pRx)NA and ¢R(x)NAA=3(R(x)N A)
forall x€ X. Ac X is said to be (flow-)openiif {z | ¢’(x) € A}is openforall x € X.
Then we can approximate measurable sets by flow-open ones as follows.
Lemma 3.6.11. For A€ of ande > 0 thereis an Ac € f such that

(1) Ag is flow-open,
(2) u0Ae) =0, and
(3) H(AAA) <e.

PROOF. Wetake A=Ay g={xe X | avg}L‘/”(O, x)> B} forneNand B € (0,1) to be
determined. Note that {f | ¢(x) € A, g} is open for all x € X by (3.6.2), and that
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0Appcixe X | avgl™(0,x) = B}, so thereis a f € (0,1) with 1(0A, p) = 0 for all
n €N. By Lemma 3.6.8 we can choose n such that y(AA A, g) <e. O

Lemma 3.6.12. If A€ < is flow-open, then m(A) € &y, that is, A=~ (1(A)) € .

PROOF. This, and y; ((A)) = ﬂ(A), follows from

_ oo 212 oo 2"-1 _
A=(U Ane)u (U U Akrzn)
n=1 k=1 n=1 k=1
—_ k+1
where Ay =/ 0 T (Grps )

Apg= ‘l(n(An,k))

R (G

,OO))ﬁ(p@n[O 1-

— k+1
znﬂ’(An,k)]U[T’l(lo,l— NN@? %4, ol

on+l on+l

k ko q__k_
and Agpni=of 0 T ({01, Agggmn =7 1 Aggna) = @ T (A ).
O
We note also that
2n+1 k k+ 1 00 21171

AeD= [ﬂU U 7 (Ap, k)% ( i’ n+1) ) U U Ak/zn]CA (flow-closure).
leNnzl k=1 2 2 as1 ko

The point is that i(D) € o) x 98 since the n(A,, ;) € «/; by Lemma 3.6.12 since the
Ay i are flow-open.

PROOF OF LEMMA 3.6.10. [i(A) =v(h(A)) forevery Ae 4 = (h"1(A) | Aea x
) < 2% because the o-algebra ./ is generated by sets A for which h(A) = A; x I,
where A; € of; and I c [0,1) is an interval, and for such sets this is clear. Thus,
M is complete with respect to . The preceding observation and Lemma 3.6.12
imply that for any A € « and € > 0 there is an A, € .4 with u(AAA.) <e. Since X
is a Lebesgue space and .« is complete, this implies .4 = «/—and we also have
v = h(). g

Even though the proof of Theorem 3.6.2 is not entirely constructive and hence
does not give a straightforward explicit representation as a special flow, the mere
existence of such a representation is useful, notably with respect to studying the
interplay between entropy and time-changes (Theorem 4.1.8 and Theorem 4.1.9).

As mentioned at the beginning of the section the measure v given by (3.6.1) is
not necessarily a probability measure. Therefore, an invariant probability measure
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for the special flow can be defined by
r(x)
f (| feonde)due
v \Jo

f r(x)du(x)
Y

for any bounded measurable function f.

In the context of special flows it is possible to produce a flow-counterpart
to the Kac Lemma 11.3.35, a basic result in discrete-time ergodic theory, which
involves the return time. For measure-preserving flows this issue is far trickier
than in discrete time because for a set that is far from open, closed or convex,
even defining “return time” is challenging. For returns to the base of a special flow,
however, there is a simple analog of the Kac Lemma.

(3.6.3) f fdu, =
X

Proposition 3.6.13 (Flow Kac Lemma [284, Corollary 1]). If F is a u-preserving
map on a topological probability space (X, ), 0 < r € L' (1), u(A) > 0, then

1
TA(x)d :—f du,
fAA(X) A= )

with 4 the conditional measure from (3.3.3) and T4 (x):=min{r >0 | ¢.(x,0)€ A}.

7. Spectral theory*

Although we will hardly use it in our study of hyperbolic flows, we describe
here some elements of the spectral approach to ergodic theory. The central idea is
to connect properties of the Koopman operator (Definition 3.2.5) for a flow with
dynamical properties of the flow. or to use them for the classification problem.

Note first that for a u-preserving flow ® on X the operators U(f) = U, associ-
ated with a flow form a 1-parameter group of unitary operators on L?(X, u)—and
here it is useful to consider complex-valued functions?. 1 is always an eigenvalue,
because constant functions are invariant. Therefore it is often natural to restrict
attention to 1+ c L?, the space of functions with integral 0. We will usually assume
that u is a Borel probability measure, in which case L?(X, u) is separable. This
turns out to imply that U}, is a continuous group of unitary operators. One useful
simple property of these operators that makes them special beyond linearity is that
Us(f8) =Ua(NUa(8).

An easy connection to the classification problem is that if a flow ® on (X, y)
and a flow ¥ on (Y, v) are measure-theoretically isomorphic, then their Koopman

20The results we obtain in this context can be used for real linear spaces E by passing to the
complexification Eg (that is, the space E ® C obtained by allowing complex scalars) and then suitably
restricting attention to the real part.
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operators are conjugate (or, as one says in this context, unitarily equivalent): let
h: X — Y be an isomorphism such that ho ¢’ =y’ o h, then Uyt o Up, = Upopt =
Uyton = UpoUy:. Itis interesting when one can go the other way around: If one can
show that the unitary operators for ® and ¥ are conjugate, then one may hope to
utilize this somehow to show that ® and ¥ are measure-theoretically isomorphic.
This is, of course, not always so.

Thus spectral invariants of Uy, for example, eigenvalues with their multiplici-
ties or the spectrum, are invariants of measure-theoretic isomorphism of f.

Definition 3.7.1. Two measure-preserving transformations are said to be spectrally
isomorphic if their Koopman operators are unitarily equivalent. An invariant of
spectral isomorphism is called a spectral invariant.

Let us illustrate how dynamical properties might be expressible in terms of the
spectrum of the Koopman operator.

Proposition 3.7.2. A u-preserving flow ® on X is ergodic if and only if 1 is a simple
eigenvalue of the associated Koopman operator.

PROOF. We noted that 1 is always an eigenvalue, and simplicity of this eigenvalue is
equivalent to saying that U, -invariant functions are constant, which is equivalent
to ergodicity. ]

From this, we conclude
Proposition 3.7.3. Ergodicity is a spectral invariant.
Definition 12.3.1 formally introduces the spectrum in this context.

Proposition 3.7.4. If @ is a probability-preserving flow, then

(1) The eigenvalues of Uy lie on the unit circle.

(2) The spectrum of Uy lies on the unit circle.

(3) The eigenvalues of Ug form a subgroup of the unit circle.
(4) The eigenspaces of Uy are pairwise orthogonal.

PROOF. 1.:If Aisanisometry and Av = Av, then |[v]| = [[Av] = [[Av] = [Allv].

2.: If Ais unitary then r(A*!) < |[A*!| = 1,s00(A*) c {A | |A|<1}. A€ Aut(V)
implies 0 ¢ 0(A) and hence o(A ) =11 | A€ o(A)} because (1/A1)1— A lis
invertible if and only if —AA[(1/A)] — A N1=AI-Ais.

3.:If Up(f) = Af and Ugp(g) = ug, then uA~! is also an eigenvalue:

Usp(f-8) =Us(HUp(g =pd-f-g=pA ' - f-&,

This shows closure under inverses (take ¢ = 1 = g) and then under multiplication.
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4. Up(f) = Af and Up(g) = ug, then

(f,8 = Ua(f),Up(g)) = (Af, ug) = Milf, g) = Au” [, &),
soAu~t=1or(f,g) =0. O

Remark 3.7.5. We emphasize that we are here considering eigenvalues of Ug =
Uy . If e'® is an eigenvalue of Uy, then there is an eigenfunction f with Uy (f) =

e'®! f for all t € R. This itself produces a multiplicative subgroup, so for 1-parameter
roups of unitary operators it is conventional to call a € R an eigenvalue of (U") e
if e/ is an eigenvalue of U'. Then Proposition 3.7.4 tells us that the eigenvalues
of a 1-parameter group of unitary operators are an additive subgroup of R (with
pairwise orthogonal eigenspaces). See also Definition 3.4.37.

Ergodicity easily provides information about other eigenspaces.

Proposition 3.7.6. A probability-preserving flow ® is ergodic iff
(1) All eigenfunctions have constant absolute value.
(2) All eigenspaces are 1-dimensional.

PROOF. 1.: Up(If) =Us(f)I = IAlIfI=Ifl, so | f]is invariant.
2.:1f f, g are nonzero eigenfunctions for A, then they are nonzero a.e. by 1., so
f1g is awell-defined invariant function. O

It is also easy to see the following.
Proposition 3.7.7. Mixing is a spectral invariant (Definition 3.7.1).

PROOF. Suppose ® on (X, u) is mixing, ¥ v-preservingon Y, WoUg =Uyo W, W
unitary, and f; = W(g;) € L>(Y,v) for i = 1,2. Then W1 = 1 by Proposition 3.7.3,
and

(Uy(f), f2) = (UG (W(g1)), W(g2)) = (W (Ug (81)), W(g2)) = (Ug (81), 82
== (81, 1)(g, 1) = (Wg, WI(Wgs, W1) = (fi, 1){fo,1). O

Both because this was used in the proof of Lemma 3.6.8 and because it is
an important aspect of studying spectral properties, we now introduce spectral
measures, which are defined by something much like a Fourier transform.

Definition 3.7.8. If @ is a measure-preserving flow on a Lebesgue space (X, 1) and
f € L?(X, w), the spectral measure o rof fonRis defined by

st = [ etdoy.
R
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By taking ¢ = 0 we find that o ¢ (R) = || f |I§. That such a measure exists is due to
a theorem of Bochner.?!

Example 3.7.9. If f is an eigenfunction of Ug with eigenvalue A = e!%, then
(3.7.1) e”“||f||§=<U(,,z(f),f>=fRe""‘ﬂdaf(A),

which is equivalent to o r=1 f ||§6a, a Dirac measure at @. Conversely, (3.7.1)
implies [(Uy: (f), /Y1 = I f15 = Uy (DI Il s0 Uy (f) and f are proportional by
the equality case of the Cauchy-Schwarz inequality, so f is an eigenfunction—with
the eigenvalue given by (3.7.1). Thus, weak mixing is equivalent to the following:
Every f € L?(X, u) whose spectral measure is a point mass is constant. Likewise,
ergodicity is equivalent to the following: Every f € L?(X, ) whose spectral measure
is 0 is constant.

The following notion is natural for describing a situation in which a measure-
preserving transformation is “spectrally rigid”

Definition 3.7.10. We say that ® has pure point spectrum or discrete spectrum if ®
is ergodic and there is a basis of eigenfunctions of Ug.

Remark 3.7.11. The terminology goes back to that in Definition 12.3.1 in that
the spectrum consists entirely of eigenvalues. Note also that by Proposition 3.7.6
these A are pairwise distinct; this produces enough information for spectral iso-
morphism.

Proposition 3.7.12. Ergodic measure-preserving flows with discrete spectrum and
with the same eigenvalues are spectrally isomorphic.

PROOE. For each eigenvalue map the corresponding eigenfunction for one trans-
formation to that for the other (see Proposition 3.7.6); extend by linearity and
continuity. O

Remark 3.7.13. In this case the dynamics of Ug consists of a product of rotations
of the eigenspaces; the essential information is contained in what happens to
normalized eigenfunctions. This can be exploited to show that, in fact, here the
eigenvalues determine @ up to a measure-theoretic isomorphism.

Although we omit the proof (other than Proposition 3.4.38), one can charac-
terize weakly mixing flows analogously to the way we previously characterized
ergodicity.

21 and that t — <Ué)f,f> is “positive definite”: if (z1,...,zm,) € C™ and (1,..., t;n) € R™, then

2 . t; ti—1t;
o=| =, 2P| = (E0, 2Ug (LTI, 2108 (H) =E_ WUy . Pziz;.
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Proposition 3.7.14. For a measure-preserving flow ® the following are equivalent:
o O is weakly mixing,
o all eigenfunctions are constant,
* 0 is nonatomic (“continuous”) for every f 1 1.

Remark 3.7.15. The third of these versions is the reason one also describes this
property as having continuous spectrum.

Exercises

3.1. Determine 9t(®) in Examples 1.1.5,1.1.7, 1.3.5, 1.3.6, 1.3.9, 1.3.11, 1.4.14 and
Figures 1.4.1, 1.5.4, 1.5.11, 1.1.4.

3.2. Prove: If p is an ergodic invariant measure for a continuous flow @, then

lsuppy: is topologically transitive. (Compare Proposition 3.4.12.)

3.3. Show that measurable isomorphism (Definition 3.1.1) and monotone equiva-
lence (Definition 3.1.23) of flows are equivalence relations.

3.4. Prove: If p1is an ergodic invariant measure for a continuous flow @, then the
orbit of p-a.e. x is dense in supp u.

3.5. Theorem 3.3.13 and Proposition 3.4.40 combine to imply that for a suspension
of an ergodic probability-preserving transformation there is countable set of 7 € R
for which the time-7-map is not ergodic. Describe this exceptional set.

3.6. Show that K-mixing implies mixing (Definition 3.4.1).

3.7. Show that K-mixing implies multiple mixing (Definition 3.4.1).

3.8. Show that the Bernoulli property implies mixing (Definition 3.4.1).

3.9. Show that the Bernoulli property implies multiple mixing (Definition 3.4.1).

3.10. Show that the Bernoulli property implies K-mixing (Definition 3.4.1).






CHAPTER 4

Entropy, pressure, and equilibrium states

The preceding chapters developed important notions for the study of qual-
itative features of dynamical systems in topological and probabilistic ways. We
now introduce quantitative notions for describing the complexity of a dynamical
system. The principal notion is entropy. Its probabilistic version measures com-
plexity on an exponential scale by an approach modeled on information theory.
The topological version was developed in analogy to measure-theoretic entropy
and turns out to bo closely connected to other measures of orbit complexity, such
as growth of periodic orbits. Inspired by the study of thermodynamics, a notion
of pressure builds on these notions, and connecting these various notions in turn
provides new ways of constructing measures of particular dynamical interest.

1. Measure-theoretic entropy

The measure-theoretic entropy of a flow is usually defined in terms of the
action of its time-1 map.!

Definition 4.1.1 (Measure-theoretic entropy). If @ is a u-preserving flow, then the
measure-theoretic (or Kolmogorov-Sinai) entropy of @ is defined by h, (®):=h, (¢
(see Definition 11.2.27).

While it would be desirable to have a definition for flows that avoids passing to
the time-1 map, the definition of entropy in terms of the action on measurable par-
titions of a measure space (X,.#, u) does not translate naturally to continuous time.
We outline this approach to illustrate this. The entropy of a partition is defined by

Hy(&) ==Y p(Clogu(C),
Ceé
where 0log0:=0. We denote by &2 the collection of measurable partitions (mod
0) with finite entropy, and we refer to these as finite-entropy partitions.
For two measurable partitions ¢ and 1 of X the joint partition is

(4.1.1) {vn={CnD | Ce¢,Den}
10r as sup=q Lhueh.

189
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For a measurable partition ¢ and a measure-preserving (not necessarily invert-
ible) transformation f we define the joint partition for f of ¢ as follows. For I c R
set

g=\ flo, =t =,
ielnZ

The measure-theoretic entropy of a measure preserving transformation f :
X — X relative to the partition ¢ is h(f,§) = hy,(f,$) =lim; H(éfn)/n. The en-
tropy of f with respect to u (or the entropy of ) is

h(f)=hy(f)=sup{hu(f,&) | &Py}

The difficulty with continuous-time systems is that the join of a partition over
an interval in R does not lend itself to defining a natural notion of complexity.
Accordingly, we outline the definitions and properties of entropy for maps in
Chapter 11. Readers unfamiliar with measure-theoretic entropy for maps will want
to refer to the concepts, definitions, and results there.

The focus of this book is on continuous fixed-point free flows on compact
metric spaces, and for these we can take a different approach to define measure-
theoretic entropy directly rather than via time-one maps.

Definition 4.1.2 (Measure-theoretic entropy of a flow [280]). For a continuous
fixed-point free flow ® on a compact metric space X and ¢ € R define the (t,¢,®)-
ball around x € M as

B(x,t,e,®):={ye X | JaecRep([0,1]), d(@*x,p'y)<eforo<s<1j},
where
Rep([0, a]) :={a : [0, a] — R strictly increasing continuous with a(0) = 0}

is the set of all reparametrizations.

For an ergodic ®-invariant Borel measure 2 and 6 € (0,1) let N(6, t,€,®) be
the minimum number of (¢,¢e, ®)-balls whose union has measure at least 1 —§ and
define

hy (@) =lim lim % log N(8, t,€, D).
(This is indeed independent of §.)

This formulation of measure-theoretic entropy for flows does not require using
the time-1 map, and for a continuous flow on a compact metric space without fixed
points coincides with h, (®), see [280].

Theorem 4.1.3. Let®: X — X be a continuous flow on a compact metric space. If
v eM(®) and p € 10,1], then

Rt (1= pyv (@) = phy (@) + (1 - p) By (D).
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PROOF. If¢ is a finite partition, then Lemma 11.2.15 gives

0= Hp,u+(1—p)v(‘f) - pHp@) -1 -p)Hy()
< —(plogp+(1-p)log(l—p))
<log2.

When 7 is a finite partition and ¢ := V'.l’o1 ¢~ 'n, this implies that

i=
hpp+a-pv(@,n) = phy(@,m) + (1 - p)hy (@, n).

One one hand, taking the supremum over 7 gives.
hpy+(1—p)v(q)) = Phy @+0-p) hy (D).

For the reverse inequality, take ¢, < h,(®), ¢y < hy(®) and partitions ¢,y such
that h,(®,¢1) > ¢y and hy (P,¢1) > ¢,. Then { =&, v ¢, satisfies

hpura-pv(®@,8) = phy(@,8) + (1 - p)hy (D)
= phy(®,&mu) + (1= p)hy(@,Enu) > pey + (1= pley.

Thus, hpyra-pyv(@,8) = phy(®) + (1 - p)hy (P) since ¢y, ¢, were arbitrary. O

We now describe how to obtain the entropy of a flow under a function (De-
finition 3.6.1) from the entropy of the base map and relevant information about
the function. (If the invariant measure is not normalized, then the entropy will be
computed using the associated normalized measure (3.6.3).)

Theorem 4.1.4 (Abramov). With the notations from Definition 3.6.1, consider a
W-preserving transformation F: (Y, u) — (Y, 1), where p is a probability measure,
and let ® = O, be the special flow under the roof function r. Suppose there is an
ro >0 suchthatr(y)=ry forallyeY. Then

4.1.2) hy, (®) = hu(F)/[rd/.L.

PROOF. Proposition 11.3.15(4) lets us scale ¢ by any rational number, so assume
without loss of generality that 0 < ¢ < ry and set X;:=Y x [0, ) < X. The map of
X; induced by @ is of the form ®x, (y,s) = (F(y),s+ r(y) — tlr(y)/t]). So Theo-
rem 11.3.36 and Proposition 11.3.32 give hy, (¢') = hox, (@x)pr (Xe) = hy(F) -

t
i 0

For the special case of suspensions (that is, 7 = 1) we have

Corollary 4.1.5. hyxm(Fo) = hy(F).
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Example 4.1.6. Consider F acting on two copies A = B = (Y, ), and write h:=h,,(F).
Setr=aon A, r=bonB,and ®4:=0 e b= 5 Then, with self-explanatory
notation, hy, (® ) = h/a, hy, (®p) = h/b, and Proposition 11.3.15(2) gives
vaX)hy (@) +vp(X)hy(®a) 2 (ah bh 2h h
h'u((l)): = (——+——):—:—
v(X) a+b\2a 2b) a+b [r
by Abramov’s formula (4.1.2).

= (@)

The context of the Kac Lemma (Proposition 3.6.13) provides an application of
Abramov’s formula to special flows..

Proposition 4.1.7 ([284, Corollary 1]). If F is a y-preserving map on a topological
probability space (X, ), 0<r € e (W), w(A) >0, then

Ry, (Fa)

By, (@)

f Ta(x)dpa =
A

where U 4 is the conditional measure from (3.3.3), Ta(x) :=min{z >0 | (pﬁ (x,0) € A},
and F 4 the return map from (11.3.6).

Abramov’s formula also provides insights into the effect of time-changes.
Theorem 4.1.8 (Abramov). I[f0<pe€ LY(X,v), then the time-change ®, (Theorem
3.5.4) of the special flow ® = O, satisfies

hy, (®@p) = hv(tb)fpdv.

PROOF. @, is measure-theoretically isomorphic to a special flow over F with a roof
function r,, that satisfies
Tp(y)
r(y) = f s
0

which is the “distance” traveled by ®, in time r,(y). By Fubini’s Theorem we have

rp(y)
frdy:ff pdy:fpdv.
v Jo

Now apply Abramov’s formula (4.1.2). O

By the Ambrose-Kakutani—-Rokhlin Special-Flow Representation Theorem
3.6.2, every measurable flow with essentially no fixed points and with an invariant
Borel probability measure is measure-theoretically isomorphic to a special flow, so
the preceding result implies one for time-changes in full generality.

Theorem 4.1.9 (Abramov). If ® is a measurable flow on (X, 1) with essentially no
fixed points and 0 < p € L' (u), then hy, (@p) = hy(P) Jpdu.
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Corollary 4.1.10. If ® is a measurable flow on (X, ), then hu((pT) =|TIhu(eh.

PROOF. ¢ is the time-1 map of the flow W: t — = 'T, so if T >0, then

Theorem 4.1.9

hu(p") = hy(P) Thy(®) = Thy(p"). O

Corollary 4.1.5 puts us in a position to study the entropy in a familiar example.

Example 4.1.11. Consider the toral automorphism from Example 1.5.23 with
Lebesgue measure m as the invariant Borel probability measure. To simplify no-
tation write F for this hyperbolic toral automorphism and denote the maximal
eigenvalue by 1. Let ¢ be a finite partition of T? into elements of diameter less than
1/10. We estimate H(sz_n Fk@) = H(fsz_l) from below by estimating from
above the diameter and hence the Lebesgue measure of the elements of ¢ F on—1"
LetCeVi__, Fk(&) and x, y € C. Consider the line parallel to the eigenvector with
eigenvalue A > 1 passing through the point x and the line parallel to the second
eigenvector passing through y. Define z as the first point of intersection of these
lines. Then d(F*(x), F*(y) < d(F*(x), F*(2)) + d(F*(2), F*(y)). First, let k > 0.
Then d(F¥(z), F¥(y)) = A~ %d(z,y) < A *d(x,y) < A7%/10. Since for k = 1,...,n
the points Fk(x), Fk(y) belong to the same element of the partition ¢ we have
d(F*(x), F*()) < 1/10 and hence d(F*(x), F*(2)) <1/10 + A~%/10 < 1/5. This im-
plies by induction that the length of the line segment connecting F¥(x) and F¥(z)
is also less than 1/5. Hence d(x, z) = A7"d(F"(x), F"*(z)) < A™"/5. A similar argu-
ment for negative k shows that d(y, z) < A7"*/5 and hence we have d(x, y) <217 "/5.
Thus the diameter of any element of \/",, F~¥(¢) is at most 2A~"*/5 and hence by
the isoperimetric inequality its Lebesgue measure is at most 27172"/25. Thus the
left inequality in Proposition 11.3.1(1) gives h(F,¢) =logA and hence

i (F) = log A

for Lebesgue measure m. This is also the entropy of the suspension. Furthermore,
comparison with Proposition 4.2.17 and Corollary 4.3.8 implies that we actually
have equality.

2. Topological entropy

We now return to topological dynamics to introduce a counterpart of entropy
in this setting, topological entropy. One way of looking at it is to ask naively “how
many orbits are there?” Since we have already studied periodic points as anchors
for nearby dynamical behavior, counting periodic orbits is a way to seek additional
information. This plays out in slightly different ways for flows than for discrete-
time dynamical systems because in the latter case the lengths of periodic orbits are
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integers, so one can simply note how many periodic points there are for a given
integer.

Furthermore, for a flow it makes no sense to try to count periodic points
because there are either none or uncountably many of them, so we count periodic
orbits instead. This can be done in two different ways. It would be closest to the
discrete-time case to count periodic orbits weighted by their length, which is what
counting of periodic points amounts to in that case (Corollary 1.8.6). On the other
hand one can count just the number of periodic orbits without weighting by their
lengths. If, however, the number of periodic orbits grows exponentially then the
distinction is immaterial because most orbits of length up to T have length close
to T, so the growth rate is the same.

Definition 4.2.1 (Periodic orbit growth). Let Pr(®) be the number of all periodic
orbits of period up to T and

p@) = Jim %log(maX(PT(CD), 1)

the exponential growth rate of the number of periodic orbits for a flow.

Going beyond periodic points, topological entropy is the most important
numerical invariant related to the orbit growth and represents the exponential
growth rate of the number of orbit segments distinguishable with arbitrarily fine
but finite precision. In a sense, the topological entropy describes in a crude but
suggestive way the total (rather than average) exponential complexity of the orbit
structure with a single number.

Let @ = {¢'} be a continuous flow on a compact metric space (X, d). The family
of metrics d? defined by

dy(x,y):= max d(g’ (x),¢" ()
measures the distance between the orbit segments ¢'®?! (x) and ¢'*?(y) and de-
fines the Bowen balls

4.2.1) Bo(x,e,)={ye X | dP(x,y)<e}.

A set E c X is said to be (t,€)-spanning or (t,€)-dense if X ¢ Uyeg Bo(x,€,1). Let
S4(®,¢€, t) be the minimal cardinality of a (¢,€)-spanning set, or equivalently the
cardinality of a minimal (¢, €)-spanning set. This is the minimal number of initial
conditions whose behavior up to time ¢ approximates the behavior of any initial
condition up to €. Consider its exponential growth rate

— 1
(4.2.2) hq(®@,€) = lim —logS;(®,¢, 1).
t—oo [

Obviously h;(®,€) does not decrease with €.
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Definition 4.2.2. The fopological entropy of @ is
hiop (@) := h(P) = hg(D) = lll% ha(®,¢).

Remark 4.2.3. For future reference we note that for compact K < X we can like-
wise define the entropy hop (P, K) of ® on K: replace S;(®,¢, t) by the minimal
cardinality of an E c K that s (¢,€)-dense in K, then take the exponential growth
rate and lete — 0.

Topological entropy is defined in terms of the metric d but does not depend
onit:

Proposition 4.2.4. Ifd' is another metric on X which defines the same topology as
d, then hy (D) = hy(D).

ProOOEF. Consider the set D, of all pairs (x1, x2) € X x X for which d(x1, x2) = €. This
is a compact subset of X x X with the product topology. The function d’ is continu-
ous on X x X in that topology and consequently it reaches its minimum 6 (¢) on
D¢. This minimum is positive; otherwise there would be points x; # x» such that
d'(x1,x2) =0. Thus, if d’ (x1, x2) < 6(€), then d(x1, x2) <€, that is, any 6 (¢)-ball in the
metric d’ is contained in an e-ball in the metric d. This argument extends immedi-
ately to the metrics d’ ? and d?. Thus for every ¢ we have S,/ (®,5(€), ) = S;(D,€, 1)
S0 hg (@,5(€)) = hy(®,€) and hy (@) = lime_g hy (D,6(€)) = lime—g hyg(D,€) = hy(D).
Interchanging the metrics d and d' one obtains h;(®) = hy (). O

Corollary 4.2.5. The topological entropy is an invariant of topological conjugacy.

PROOF. Let ®: X — X, ¥: Y — Y be topologically conjugate via a homeomor-
phism h: X — Y. Fix a metric d on X and define d’ on Y as the pullback of d, that
is, d'(y1,y2) = d(h™1(31), h"1(32)). Then h is an isometry so hy(®) = hy (¥). O

There are several quantities similar to S;(®,¢, t) that can be used to define
topological entropy. For example, let D;(®,¢, t) be the minimal number of sets
whose d?-diameter is at most € and whose union covers X. The diameter of an
e-ball is at most 2¢ so every covering by e-balls is a covering by sets of diameter
< 2¢, that s,

4.2.3) Dy(®,2¢,1) < Sy(®,¢, 1)

On the other hand, any set of diameter < ¢ is contained in the e-ball around each
of its points so

4.2.4) Sy(®,€,1) < Da(®,€, 1).

Lemma 4.2.6. For anye >0 the limitlim;_..,(1/t)1logD4(®,¢, t) < co exists.
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PROOF. We show that the sequence a,, :=1logD;(®,¢€,n) is subadditive: a4+, <
an + amym. Then lim,_., a,/n exists by Lemma 4.2.7. This implies the claim by
monotonicity of t — D4 (d,¢, t).

To prove that D;(®D,e,s+ 1) < Dg(®D,¢,t) - Dy (D¢, s) for all s, ¢, note that if A
has d?—diameter less than € and B has df—diameter less than ¢, then An ¢~ !(B)

t
has df+t-diameter less than €. Thus if 2 is a cover of X by Dy (®,€, 1) sets of d{*-
diameter less than ¢ and ®B is a cover of X by D;(®,¢, s) sets of d?-diameter less

than ¢, then the cover by all sets An¢~!(B), where A € 2, B € B, which contains at

t
®  _diameter less thane. O

most Dg(®,¢, 1) - Dg(D,¢, s) sets, is a cover by sets of d ., ,

Lemma 4.2.7 (Bowen-Fekete Lemma, subadditivity). If there are k, L such that

a a +L

Amin < Am + apii+ L forallm,n eN then LN 1nfL € [—00,00).
n neN n

L. . a ar+ila +L) .
PROOF. l=r+mw1th05r<ng1vesTlS%.Ifl—»oo(wnhnﬁxed,
r+in
. — a . apskt+L . ap+k+L . ap,
S0 i — 00), then lim;_, o, T <inf, — < hm’Poo - hmlHoo — |

From (4.2.3) and (4.2.4) we see that
hg(®@,6):= lim (1/6)log Da(®,€, 1) = ha(®,€) = hy(®,2€),

and similarly for s ;(®,¢€) :=lim (1/9)1ogS;(®,€, t) instead of hy(P,e€). Thus,

t—oo
lim 714(®,€) =lim h;(®,€) = h(®),
e—0 e—0

and lime_¢ (hq(®,€) - b, (®,¢)) = 0. So the topological entropy can be defined in
terms of the number of open sets whose d -diameter is at most € and whose union
covers X.

One more way to define topological entropy is via the numbers N;(®,¢, 1),
the maximal number of points in X with pairwise d?-distances at least . We call
such a set of points (,¢€)-separated. Such points generate the maximal number
of orbit segments of length ¢ that are distinguishable with precision €. A maximal
(t,e)-separated set is a (,€)-spanning set, that is, for any such set of points the
e-balls around them cover X, because otherwise it would be possible to increase
the set by adding any point not covered. Thus

(4.2.5) Ny(@,¢,8) = S;(D,€,1).
On the other hand, no e-ball can contain two points 2¢ apart. Thus
(4.2.6) Sq(®@,€,t) = Ny(D,2¢, 1).

2This extends to k, L= 0 depending on n so long as both are o(n).



2. TOPOLOGICAL ENTROPY 197

FIGURE4.2.1. A separated Set  [©Cambridge University Press, reprinted from [149]

with permission]

Using (4.2.5) and (4.2.6) we obtain
1 — 1
h,;(®,¢) < lim ;logNd(CD, 26, 1) < }Lg;logNd(Q, 2¢,t) < hy(®,€)
—00
and hence

— 1 1
hiop (@) = llil(l) thllgo; logN;(D,¢€, t) =1lim lim ;logNd(QD,e, 1),

=0 "

justifying the description as “the exponential growth rate of the number of orbit
segments distinguishable with arbitrarily fine but finite precision.”

Foramap f: X — X the family of metrics d£ is defined, similar to flows, by

4.2.7) dl(x,y) = max d(f' (%), f' ()

0<i<n
Then the topological entropy is similarly defined as
. o1
hiop (f) = ha(f) =limhy(f,€) = lg%r}ggo;long@,e, n).
Equicontinuity of {¢°® | [|s| <1} implies
Proposition 4.2.8. hop () = hyep ().
Remark 4.2.9. See also Proposition 4.3.6.

PROOFE. Lete > 0. Fix§ > 0such that d(@’x,¢’y) <eforall0 <t <1whend(x,y) <
4. Let E be an (n,8)-spanning set for ¢!, then E is (¢, €)-spanning for ® where ¢ < n.
Then S4(®,¢, t) < Sz(¢', 8, n) for t < n. Hence,

=—1 =— 1 1

tlggo;long(tb,e, 1) snlgrolcﬁlogsd((p ,0,1).

From this we see that hiop (P) < hop (o).
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The other direction follows directly from the definitions. Indeed,
— 1 — 1 — 1 1
}Lr&;logsd(Q,e, )= r}l_{goﬁlong(q),e, n)= r}grgo;logsd((p JE, 1),
$0 hg(®,€) = ha(g',e€) for each € > 0, and hop (D) = hiop (¢1). O

Corollary 4.2.10. For t € R we have hiop(¢") = |t heop (1) = [t| hiop (P).

PROOF. For e > 0 there exists §(€) > 0 such that d(x, y) <d(€) = d(@” (x), 9" (¥)) <€
for0<r <s. If E is (n,8)-spanning for ¢°, then E is (m,€)-spanning for ¢’ so long

t
as mt < ns. So Sq(p',m,e) < Sqg',8, [ij +1), hence
s

- 1 t - ]. s mt
nlllinooalogsd((p J€,mM) < n%ll%oglogsd((p )0, [TJ +1)
— (1 mt t
=1i —(|—]+1) | ha@®,8) = —ha(¢®,d).
mlg(l)o(m([ . ] )) a(@",0) = <ha(¢*,0)
S0 $hiop (") < thiop(@®). By symmetry we have equality, and setting s = 1 gives the
claim for £ = 0.
Finally, the image of a (¢, €)-separated set for @ is (¢,€)-separated for the inverse
flow and vice versa. So hyop (<p‘1) = htop(q)l). The result now follows. U

Proposition 4.2.11. If ¥ is a factor (Definition 1.3.1) of @, then hyop (V) < hiop (D).

PROOE. Let®: X - X, V. Y ->Y, m: X—>Y,n0®=%omu, n(X)=Y,and dx, dy
be the distance functions in X and Y, correspondingly.

7 is uniformly continuous, so for any € > 0 there is §(¢) > 0 such that if
dx(x1,x2) < 6(e), then dy (m(x1),m(x2)) < €. Thus the image of any (dx)? ball of
radius 0 (¢) lies inside a (dy)\tl' ball of radius ¢, that is,

Sax (@,6(€), 1) = Sq,, (V)€ 1).
Taking logarithms and limits, we obtain the result. ]

We amplify this with Theorem 4.2.13 below.

The following proposition contains an incomplete list of standard elemen-
tary properties of topological entropy. The proofs demonstrate the usefulness of
switching back and forth from one of the three definitions to another.

Proposition 4.2.12. (1) If A is closed and ®-invariant, then hyp(® i A) <
Riop ().
2 IfX = Ul’.’ilAi, where A, (i = 1,...,m) are closed ®-invariant sets, then
htop (@) =maxj<i=m htop(q) [‘Ai ).

(3) hiop (‘Pmt) = |m|htop((,0t)-
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(4 hiop(@ x V) = hiop (D) + hop (P).
Hereif ®: X - X,¥Y: Y - Y, then®x¥: X x Y — X x Y is defined by (¢! x
vH(x, y) = (@' (x), w' ().

We note that (3) is the best we can do: there is no Abramov-like theorem for
topological entropy as in the measurable case.

PROOF. (1): every cover of X by sets of d*-diameter less than € is a cover of A.
(2): the union of covers of Ay, ..., A;; by sets of diameter less than € is a cover
of X, so

m
Da(@,e,0)< ) Da(®}, ,€,1),
i=1 !
that is, for at least one i

1
Da(®}, ,€,1) 2 —Da(®,e,1).

Since there are only finitely many i, at least one i works for infinitely many ¢, so

logD4(® I € 1)
lim ———
t—o0 t t—o0 t

— logDy(®,e, 1) —1 )
> Tim 28Pa(®.c.)—logm _ ;0 o)

This proves (2).

For positive m (3) follows from d;pmt = d,‘f;. If m = -1 note that B (x,¢, 1) =
By, (p'(x),€,8) and S4(p,€,) = Sq(p™" €, 1), 50 hop (@) = heop (™).

For negative m (3) follows from the statement for m >0and m = -1.

(4): balls in the product metric

d((x1,y1), (x2, ¥2)) =max(dx (x1, x2), dy (y1,y2))

on X x Y are products of balls on X and Y. The same is true for balls in d‘tptw[.
Thus

Sa(@xY,¢,1) < Sq, (D,€,1)Sq, (V,€,1)
and hop (@ x W) < hiop () + hyop(W). On the other hand, the product of any (#,€)-
separated set in X for ® and any (¢,€)-separated setin Y for W is a (¢, €)-separated
set for ® x ¥. Thus

Ng(®@xV¥,¢,1) = Ny, (D,€,1) x Ny, (€, 1)
and hence hop (P x V) = hop (P) + hop (V). O

We will see later that in the case of hyperbolic flows one of the standard meth-
ods to compute entropy is to find an extension that is uniformly finite-to-one and
whose entropy is easier to compute. This works because the entropies of the two
systems are equal:
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Theorem 4.2.13. If ®: X — X and ¥ : Y — Y are continuous flows on compact
metric spaces and n : X — Y is a semiconjugacy from ® to ¥ that is uniformly
finite-to-one, then hyop (®) = hiop (V).

PROOF. Proposition 4.2.11 gives h(®) = h(¥). Proposition 4.2.8 reduces showing
that h(®) < h(¥) to proving that k(') = h(y'), and using time-1 maps lets us set
up a combinatorial argument in discrete time for effective control of the number
of orbits. X, Y come with metrics d, d’, respectively.
Fore>0,C= maxyey#ﬂ_l(y), meN, yeYlet
Uy = Uy pe ={xeX]| dﬁl (x,2) <eforsome zen ' (y)}>a ().

Since ¢ is continuous there is an open neighborhood W), of y such that P Wy) c
Uy.
Since Y is compact there is a finite cover {Wy,, .., Wy, }. Let f > 0 be a Lebesgue

number of this cover (that is, if y € Y there exists W), i such that Bg(y) < Wyj). For
sufficiently small € > 0 we will show that

(4.2.8) Lo (Ny( 12(-;n))<llo (Sa( 1ﬁn))+ilo c+Lioge
-2 ,, [o8lNaly:, 2€6,m) = —108(Sa W, P, oy 08C+logl.
This completes the proof because then
1
ha(pt,2€) < hg (Wt p) + Elogc, hence hg(¢p!,2¢) < hgy (y', B)

since m is arbitrary. If e — 0, then  — 0, so indeed h(¢p') < h(y?).
So, for ne Nlet £ e Nsuch that (( —1)m < n < ¥¢m. Let Ac X be a maximal
(n,2¢)-separated set for (pl and B c Y be a minimal (n, §)-spanning set for 1//1.

For y € Blet q(j,y) € {y1,.... yp} such that Bs(p/ (y)) € Wy,,). Now define
my:A— Bx x¢ by m,(x) = (¥, X0, ..., X¢—1)

where d/,(y,7(x)) < B, y € B, and x; € 171 (q(sm, y)) such that d, (¢*™(x), xs) <€
for all 0 < s < ¢; this is possible since

o (x) =y M om(x) € W < Wy(sm,y)
implies
@*" (x) € 7 Wosm,) € Ugism,p),me-
Claim 4.2.14. 7, is1-1.
PROOF. If mp(x) =7ms(x"),0<t<m,and 0 < s< /¢, then
A" (%), 3" X)) < di (@™ (), X)) + i (X5, 05 (X)) < € +€ = 2.

Since m¢ = n we get d,(x, x') < 2¢, hence x = x’ since A is 2¢-separating. O
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This gives (4.2.8): If y € B, then

#(ng(A) n ({y} x Xf)) < [T#(x "(q(sm,») = C’.
L 1 s=0

<#(mg(A)=Ng(p",2¢,n)

There are #(B) = Sy (', B, n) choices of y, so Ny (¢',2¢,n) < Sy, B,n)CY, and

1 1 1
—1og(Na(p",2¢,n)) < —log(Sz (', B, n)) + —logC? . O
n n n

‘
=l Jog C< 2t |og C

From Theorem 4.2.13 and Proposition 1.8.19 we see that the suspension of
the symbolic flow constructed for the toral automorphism F4 in (1.8.4) and the
suspension of F, itself have the same entropy. We will see later that this is a more
general result for codings of hyperbolic flows. In the more general setting it can be
difficult to compute the entropy for the hyperbolic flow, but easier to compute the
entropy for the symbolic coding.

Furthermore, from Proposition 11.3.15(4) we have a nice connection between
measure theoretic entropy of a map and the special flow with a roof function. For
topological entropy there is not such a nice connection between the topological
entropy of the special flow and the topological entropy of the base. However, for
(constant-time) suspensions there is a direct correspondence between flow and
base.

Proposition 4.2.15. The topological entropy of a suspension flow equals that of the
base.

PROOF. By Proposition 4.2.8 we want to show that the entropy of the time-1 map
is that of the base. The time-1 map is the cartesian product of the base and the
identity; the latter has zero entropy because there is no dependence on 7 in (4.2.7),
so the discrete-time counterpart of Proposition 4.2.12(4) yields the claim. |

This helps compute the topological entropy for several suspensions. Notably,
we can apply the following to the corresponding suspensions (compare Corollary
1.8.6):

Proposition 4.2.16. (0 Is ) =1og|A}*| for any topological Markov chain X .
A

PrROOF. We endow the space Xy with the metric d = djon given by

2wy~ o)
dioy (@, 0") = —
10N ( ) n:z—'oo QON)!
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Thenfora = (a_p,..., &) thesymmetric cylinder C = {we Xy | w; =a; forlil <
my} is at the same time the ball of radius €,, = (10N)7"/2 around each of its points.
Similarly if we fix numbers a_y, ..., @ m+n, the cylinder

(4.2.9) C Mt _yy ey | wi=ajfor —-m<i<m+n}

A—my--yXn+m

is at the same time the ball of radius €, around each of its points with respect
to the metric d,, associated with the shift 0. Thus, any two d, balls of radius
€ are either identical or disjoint and there are exactly N"+2"*! different ones
of the form (4.2.9). The covering of Xy by those balls is obviously minimal, so
Sdyon (O, €m, 1) = N7F2m+L a4

1
im lim —logN""2M*1 —JogN.

hmp(a rZN) - rrlzﬂoo n—oo n

Similarly, for the topological Markov chain X 4, we have S;(0,€,,, 1) equals the
number of those cylinders (4.2.9) that have nonempty intersection with the set
2 4. Assume each row of the matrix A contains at least one 1. Since the number of
admissible paths of length n that begin with the symbol i and end with the symbol
j is equal to the entry al."j of the matrix A", the number of nonempty cylinders
hi=0
other hand, since all numbers afj are nonnegative, ).
constant ¢ > 0. Thus, we have

ofrank n+1in X, is equal to ), a?j < C-||A"| for some constant C. On the

N-1 _n n
ij=0a1;> c||A"| for another

N-1
_ n+2m
Sayon (0,€m, 1) = Z aij

i,j=0
and
log|AM¥| =logr(A) = lim Lo A" = lim Lo | A2
. 1
= nh—I}(}O ;log SleN (U’ €m» n) = htOp (0 rZA)’
where r(A) is the spectral radius of the matrix A (Definition 12.3.1). |

As we noted before, Theorem 4.2.13 and Proposition 1.8.19 imply that the
suspension of the symbolic flow constructed for the toral automorphism F, in
(1.8.4) and the suspension of F, itself have the same entropy, so Proposition 4.2.16
now enables us to compute the entropy of the latter. We can at the same time
determine the growth of the number of periodic orbits (Definition 4.2.1).
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Proposition 4.2.17. IfF = Fy: T?> — T? isgiven by F(x,y) = 2x+y,x+y) (mod 1),
then its suspension F, satisfies

3+v5
2 )

htop (Fo) = p(Fo) = 10g

the larger eigenvalue of A = (2 }) from Example 1.5.23.

1

PROOE. To show that hop (F,) = 3+2‘/§ we show that (? i) and A=

(1.8.3) have the same maximal eigenvalue (in fact, the same set of nonzero eigen-
values): subtract column 4 of A — AId from the first two columns and column 5
from the third, then add rows 1 and 2 to row 4 and row 3 to row 5:

11010
11010
11010 | from
00101
0101

(=]

1-2 1 01 0 -A 0 0 1 0 -A 0 0 1 0
1 1-20 1 0 0-4 0 1 0 0-2 0 1 0
1 1 - 1 0 |- 0 O0-2 1 0 |—-|]0 0-2 1 0
0 0 1-1 1 A A 0-1 1 0 0 02-211
0 0 1 01-4 0 0 A 01-A4 0 0 0 1 1-2

To determine the growth of periodic orbits, let A = %5 and G = F"—1d. Then
Fix(F) = G~1(0,0) is parametrized by Z% n (A" —1d) ([0, 1) x [0, 1)). The cardinality
is

area((A" —=1d)([0,1] x [0,1])) = |det(A" = Id)| = |A" - DA "= D= A"+ 17" -2,
which has exponential growth rate log A. g

The coincidence of topological entropy with the growth rate of periodic orbits
(Definition 4.2.1) is not accidental but due to expansivity (Remark 4.2.25).

Proposition 4.2.18. Let ® be a continuous expansive flow on a compact metric
space X, 2n an expansivity constant. Then for € € (0,n), 6 > 0 there is a Cs such
that Ng(®,0,1) < C5 Ny (D,€, 1) forall t > 0.

PROOEF. Proposition 1.7.4 and equicontinuity qu)f IeX give T,a > 0 with

-T,T
dg’T((p_T(x),(p_T(y)) <2¢e=>d(x,y)<dandd(x,y)<a= dg’T@p_T(x),(p_T(y)) <90.

Let E be a maximal (¢,6)-separated set and F a maximal (t,€)-separated set. For
x € E thereis a z = S(x) € F with d?(x, z)<e socardE <) ,cp cardS~1({z}), and
we bound card S~!({z}) as follows.
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If x # y€ S\ ({z}), then d® (x, ) < 2¢ by definition of S, so d(¢*(x),p*(y)) <&
for se [T, t— T] by choice of T, and the choice of @ implies that either d(x, y) > a
or d(@'(x),¢'(y)) > a. Thus,

card S7({z}) = card{(x, 9’ (x)) | S(x) =z}
<max{cardA | AcXxXandd(a,b)>aforabe A}=Csg,

since the (x, ¢!(x)) form just such a separated set. U

With (4.2.2), (4.2.5), (4.2.6), and Definition 4.2.2 this implies:

Theorem 4.2.19. If ® is a continuous expansive flow on a compact metric space
and 46 is an expansivity constant, then hiop(®) = hq(®,6).

Remark 4.2.20 (Entropy-expansiveness). Although we do not prove it, expansivity
can be replaced in these applications to entropy (and pressure) by a broader notion
called entropy-expansiveness (or h-expansiveness) defined as follows. ® is entropy-
expansive if

hiop(@,€) :=sup fiop (@, [ ¢~ (Be (9" (x))) = 0

xeX teR

(Remark 4.2.3) for some € > 0, which is then called an h-expansivity constant.
(Expansivity is a special case in which the intersection is a short orbit segment of
x.) In particular, Theorem 4.2.19 has the following counterpart.

Theorem 4.2.21 ([52, Corollary 2.5]). hiop(®) < hy(®,€) + ht*op(d),e), soifeisanh-
expansivity constant, then hyop (®) = hg (D, ¢).

It is useful to augment our notation beyond Definition 4.2.1:

Definition 4.2.22. Denote by O(T) the set of periodic orbits y of ® for which a
period n(y) isin [T — ¢, T + t] (this is finite by expansivity, and = is well defined
on 0;(7)), and let P,(T) = Uyeo,.m Y be the set of points with these periods. For a
periodic orbit y denote by 7' (y) its shortest or prime period and O (T) = (7") “I(qr-
t, T+1]).

Proposition 4.2.23 (Periodic points are separated). With a as in Theorem 1.7.5(3),
taking one point from eachy € Py 2 (t) gives a (t, a)-separated set.

PROOF. If x,y € Py/2(t) with periods a, b, respectively, are not (¢, a)-separated, set
tpmiq = pa+qaand upmiqg=pb+qawith0<sg<m=1+ [%;”ZJ to get

d(@'rm+a(x), "+ (y) = d (% (x), 7% (1) < a,

so x, y are on the same orbit by Theorem 1.7.5(3). ]
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Theorem 4.2.24. If ® is an expansive flow, then p(®) < htop((b)?‘

PROOEF. If a is as in Theorem 1.7.5(3), then card Q42 () < Ni(®, @/2, t) by Proposi-
tion 4.2.23, so with the notation of Definition 4.2.1,

lt/al t
P(®) < ) cardOq2(na) <
n=1

—Ng(®,a/2,1),

a

since t — Ny (®,a/2, t) is nondecreasing. As t — oo invoke Theorem 4.2.19. ]
Remark 4.2.25. Remark 8.3.13 gives a sufficient condition for equality in Theorem
4.2.24, the specification property. This means that for hyperbolic flows, topological

entropy is the exponential growth rate of periodic orbits. Theorem 8.7.9 refines this
substantially.

Theorem 4.2.26. Let @ be a continuous flow on a compact metric space, NW(®) its

nonwandering set. Then hiop(®) = hyop (O fNW(qa))'

Remark 4.2.27. Looking ahead, this is a corollary of the Variational Principle (The-
orem 4.3.7) because ®-invariant probability measures are supported on NW (®).

PROOF. hyop (P I q))) < hop (®) since NW(®) < X. To show the other inequality
we use a combinatorial argument, so we switch to the time-1 map as in the proof
of Theorem 4.2.13.

Fix n=1and e > 0. Let A be an (n,€)-spanning set of minimum cardinality for

1
@ [NW((D).Let
U={xeX|d,(x,y) <eforsome yc A}

So U is an open neighborhood of NW(®). Since U° = X \ U is compact and all its
points are wandering, there exists a uniform > 0 such that 0 < § < € and for all
y € U® we have

@™ (Bg(y))NBg(y) = forall m = 1.

Now take a minimal (#, 8)-spanning set B for U°. Then C:= Au B is an (n,¢)-
spanning set for X. Let [ € N and define 7; : X — C' by 7;(x) = (o, ..., y1—1) with

(" (), ) < candy; € A ifp"(x)eU,
" d Bandy;e B if " (x) e U

Claim 4.2.28. Ifm;(x) = (yo,..., ¥1-1), then y; € B does not repeat in the l-tuple.
PROOF. Since Bg(y;) is wandering the result follows. O

Claim 4.2.29. Ifln = m, thenn; is 1-1 for (m,2¢)-separated points.

3In particular, ® has only countably many closed orbits.
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PROOF. If 7;(x) = m;(x), thenfor0 < j <nand0<i <[ wehave

A" (0,0 (X)) < du(@™ (%), yi) + dn(yi, 0" (X)) <€ +€ = 2¢,
50 dp(x,x") = dj, (x,x") < 2e. O
Claim 4.2.30. Let g be the minimum cardinality of an (n, B)-spanning set of U¢ for
@' and p be the minimum cardinality of an (n,e)-spanning set of NW(®) for ¢'.
Then#(m;(E)) < (g + 1)!19p" for an (n,2¢)-separated set E.
PROOE. Let I; be the subset of I-tuples in 7;(E) with exactly j of the y; € B. Since

y; cannot be repeated in 7;(x) we have j < g, and there are (;7) ways of picking the

J points y; € B, I!/(I - j)! ways of arranging the choices of positions, and at most

p!~J < p! ways of picking the remaining terms. So

g ! Lofg\_ 1 I
#(Ij)S(.) —p' and #(nl(E)):Z[jSZ(_) —pl<(g+DI9p!. O
J) (= j=0 j=0 7 -
| I | R |
=q! =l;j=l9
We now return to the proof of the theorem. Since (g + 1)!!9 grows at most
polynomially in /, wandering points do not contribute to the entropy:

hac(gp") = nliFolO%log(Nd(wl,ze, n)
7— log((g + DY) + qlog(D) + llog(p))

< lim

-0 (l— n
1
_log(p) _ log(Sa(p Inw) € ) - :
- n - n T—00 € (P rNW((D) )
80 hiop (@) = htop ((pl) < htop((p1 fNW(qn)) = hop (P fNW(qn)) by letting € — 0. O

Example 4.2.31. Example 1.1.8 is a flow of isometries, so d; = d for all t = 0, and
Sq(®@,¢,1) =S;(D,¢,0) for all £ = 0. Hence, the topological entropy is zero.

Example 1.3.6 and Example 1.3.9 are flows for which the nonwandering set is
finite. By Theorem 4.2.26, the entropy is zero.

We now show that if the flow is sufficiently regular and the dimension of the
space is finite that the topological entropy is finite and bounded by a product of
the dimension of the space and the Lipschitz constant of the map.

Definition 4.2.32. Let (X,d) be a metric space. A flow ® : X — X is Lipschitz
continuous if

t t
(d((P (%), p (y)))}<oo

1
L(®) = exp{ sup sup —log a0x,y)

0<t<1x#y L
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The constant L(®) is the Lipschitz constant of ®.
This definition implies d(@’x, ¢’y) < L(®)'d(x, y) for x,y € X and ¢ € [0, 1].

Remark 4.2.33. If V is a Lipschitz continuous vector field on a compact Riemann-
ian manifold, then it generates a flow @ via (1.1.1) for which

d(@'(x),9' ) <1
d(x,y) -

where L is a Lipschitz constant of V. Then a straightforward computation shows
that the flow @ is Lipschitz continuous. Here, orbits are solutions of (1.1.1) and
hence C! curves, which makes the Lipschitz assumption on V a more stringent
condition than Definition 4.2.32.

i

Definition 4.2.34. Let (X, d) be a compact metric space and #B(€) be the mini-

mum cardinality of a covering of X by e-balls. The box dimension® of X is
—log#B
BD(X) :=Tm 28754 14 o).
e—0 |loge|

Remark 4.2.35. Itis easy to see that this is invariant under bi-Lipschitz maps and
that BDWU!"_, X;) = max; BD(X;). Thus, BD([0,1]") = n, so the box dimension of a
Riemannian manifold is the topological dimension.

Theorem 4.2.36. Let (X, d) be a compact metric space with finite box dimension
BD(X) and ® : X — X a Lipschitz continuous flow on X. Then

htop (@) = BD(X)logmax{1, L(®)}.

PROOF. Let L =max{1,L(®)}. Then B;(x,L %e) c Bd;p (x,e)forallxe X, t=0,e>0.
This implies Sy (®, ¢, 1) < #B4 (L "¢). Now |log(L ™ "¢)| = tlogL +loge, so

—ta —t -t
[ [logL™"e|—loge _ |llogL™ "€l (1 loge )_ [log L™ "e| (1+O(1)),

logL logL - [log L~ te| logL
and
— 1 ®,¢, —  #By(L7? — log#By(L7"
fim 0854@.6.0) _ 1o PBaL O o0y T 08FBAL O _ by j0er.
t—o0 t t—o0 t r—oo  |logL~te|

Corollary 4.2.37. If @ is a Lipschitz continuous flow on a compact Riemannian
manifold M, then hyop(®) < co.

4or box-counting dimension, Minkowski dimension, upper box dimension, entropy dimension,
Kolmogorov dimension, Kolmogorov capacity, limit capacity, upper Minkowski dimension



208 4. ENTROPY, PRESSURE, AND EQUILIBRIUM STATES

The topological entropy for a flow is obviously invariant under flow equiv-
alence. It changes under time change and hence under orbit equivalence in a
rather complicated way. However, arguing similarly to the proof of Proposition
8.7.15 one can show that if a continuous flow without fixed points has zero (or
finite) topological entropy, then so does any time-change (Theorem 4.3.14). Let us
comment on the much harder question of how topological entropy changes under
perturbation of a flow. This dependence need not even be continuous® and even
in discrete time the picture is quite subtle [171, p. 584]. For hyperbolic flows, the
subject of this book, this plays out exceptionally well, however (Theorem 5.4.26).

As a preview of theory to be presented further on, we present its historic
precursor here. In 1964 William Parry proved:

Theorem 4.2.38 (Parry). The topological entropy of a topologically mixing (Pro-
position 1.8.13) shift X 4 (Definition 1.8.1) is the maximal eigenvalue A of A (Pro-
position 4.2.16). If v is a corresponding positive right eigenvector, P is defined by
AiviP;j = A;jvj and p is the probability vector with pP = p, then the o -invariant
Markov measure mp defined on cylinders (1.8.1) by

0,k Y _ .. D. . o
mP(Cil,...,ik) - ploploh "'Plk_llk

has entropy A, and all other o z-invariant Borel probability measure have smaller
entropy. It is called the Parry measure.

Thus, in this case the entropy of each measure is at most the topological
entropy, this upper bound is attained, and by a unique invariant Borel probability
measure.

3. Topological pressure and equilibrium states

To extend the notion of entropy recall that it is calculated by counting the
elements of a maximal (,€)-separated set, that is, by summing 1 over the elements
of the set. It is natural to instead allow weighted sums over separating or spanning
sets. This leads to the notion of pressure, a term motivated by statistical mechanics.

One of the fundamental laws of thermodynamics is that the entropy of an
isolated system can never decrease in time. An isolated system then approaches
a state where the entropy cannot increase and so therefore remains constant.
This relates to the notion of a measure of maximal entropy and the states in the
support of the measure are the points in the state space where the energy has been
maximized.

5The easiest example is in discrete time and noninvertible: z — Az% on the unit disk in C has
entropy log2 forA=1and 0 for A <1.
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If a system is not isolated, for instance, if the system is placed inside a heat
bath, then it will tend towards an equilibrium that is called a thermodynamic equi-
librium. The free energy of a system is the amount of work that a thermodynamic
system can perform, so the free energy is the internal energy of a system minus the
amount of energy that cannot perform work. In thermodynamics the entropy is
just the unusable energy multiplied by the temperature. So in an isolated system
maximizing the entropy is equivalent to minimizing the free energy. The system
will then evolve to a state where the free energy cannot decrease and so remains
constant. The measures associated with this equilibrium are a generalization of
the measures of maximal entropy and are called equilibrium states.

In our context, this notion is defined using a continuous f : X — R, called a
potential or observable. The term “observable” reflects the fact that an observation
of a system usually yields a real number (the measurement) that depends on the
state of the system, that is, a point in phase space. We use these functions as
weights in sums over spanning sets:

Definition 4.3.1. Let X be a compact metric space and ®: X — X be a continuous
flow. For f € C%(X),and t=0set S, f:= foth(pT dr and

Nd (q)’ f)ey t) = Sup{ Z eSlf(x)

x€E

Sa(@, f,e,1)= inf{ > eStf ™)
xeE

EcXis (t, e)-separated},

X = Bo(x,e, 0},

x€E
Dy(®, f,€, 1) ‘:inf{z inf 5t/ ™ Xc | C and diam 4 (C) <ef0rC€Ec2X}
d » )G B *eC o d? = .
CeE

The expressions ¥ .z €5t/ ) are sometimes called statistical sums® Then
— 1
P(f)=P(®, f)=lim lim —1logS; (D, f,€,1)
e—0t—oo [
is called the topological pressure of ® with respect to f.

Remark 4.3.2. The definition implies that P(f + ¢) = P(f) + c for any ¢ € R, and if
f and g are cohomologous (Definition 1.3.20), then P(f) = P(g).
Analogously to (4.2.5), (4.2.6), (4.2.3) and (4.2.4) we have

(4.3.1) Ng(@, f,2¢,1) = S4(D, f,€,8) < Nyg(D, f €, 1),
Dgi(®, f,26,1) = Sq(®, f,e,1) = Dg(D, f,€, 1),
which shows that

— 1 1
(4.3.2) P, f)= liné tlim ;logNd (@, f,e, 1) =1lim lim —log N, (®, f,€, 1),
€— —00 €

~0;m0 t

60or partition sums.
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and
Lo 1
P(®, f) =lim lim —logD4(®, f,¢, 1)
e—0t—oo

by an argument similar to that following Lemma 4.2.6, since D;(®, f,€, t) is sub-
multiplicative similarly to Lemma 4.2.6.

Remark 4.3.3. When f = 0, Definition 4.3.1 gives topological entropy: P(®,0) =
hiop(®). If c € R, then S;(f +¢) = tc+ S f, 50 Sq(@, f + c,€6,1) = e°S4(®,0,¢, 1) and
P(f+c)=P(f)+c. We also have S4(®, f,¢,1) < IIeS‘fIICo -S4(D,€, t) and thus

—1 — 1
lim ~logSy(®, f,e,8) < || fllco + lim —log Sy (@€, 1).
t—oo f—oo [
Thus, if @ is a smooth flow on a compact manifold and f is continuous, then
— 1 — 1
lim ~logSy(®, f,€,8) < [l fllco + lim —log Sy (@€, ) < co.
t—oo t t—oo f
Finally, £ — Ng(®, f,€,t) and t — S;(D, f,¢, t) are nondecreasing, so S4 (P, f,€, [£]) <
Sa(@, f,e,t) = S4(D, f,e,t]) and hence
— 1
P(®, f) =1lim lim —logS,(®, f,¢, 1).
e—0t—oo

Remark 4.3.4. The proof of Proposition 4.2.4 extends to show that pressure is
independent of the metric (inducing a given topology) used to define it, thus
justifying some of our notation. This implies that pressure is invariant under
topological conjugacy, that is, if ¢! = 771 oy’ om and g = f ox then P(¢', f) =
Py’ g).

For what follows it is convenient to work with the time-1 map for a while.

Definition 4.3.5. P((pl, f)=lim,_ Enﬁoo % log Sy ((pl, fre,n), where’

X=Byxem}.
XEE e 1

ol k k
={yeX | d (xy)=maxo<g<, d@" (x),9" (y))<e}

Salpl, f,e,n) ::inf{ > eSnf®)

xeE

Proposition 4.3.6. P(®, f) = P(®,S1f) = P(¢l, f).
PROOF. Equicontinuity of {¢’ | || < s} implies P(®, f) = P(®, fop®) forany s€ R,
and a computation shows that ||S;S1 f — S;—2f o (,01 loo < I flleo forall £ = 2. ]

7Although we did not adapt the notation accordingly, this is a definition of pressure for a
homeomorphism.
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Theorem 4.3.7 (Variational Principle). If @ is a continuous flow on a compact
metric space X and f : X — R is continuous, then

(4.3.3) P(®,f)= sup h#(CD)+ffd,u].

LEM (D)
Corollary 4.3.8. If @ is a continuous flow on a compact metric space X, then
htop (@) = sup hy, (D).
HEIM (D)

Before we prove this theorem we explore some related results. The quantity
hy(®) + [ fdu is called the free energy. The topological pressure then tries to
maximize the free energy. Up to a change in sign this is the same as the free
energy as we described previously. Due to the change in sign thermodynamics
tries to minimize the free energy. When f = 0 this gives the Variational Principle
for entropy.

Definition 4.3.9. A measure p € MM(®) such that P(®, f) = hy(P) + [ fdu is an
equilibrium measure or equilibrium state for ® associated with f. A measure
1 € IM(P) such that hep (@) = hy, (D) is a measure of maximal entropy for .

Example 4.3.10. Example 4.1.11 and Proposition 4.2.17 show that Lebesgue mea-
sure is a measure of maximal entropy for the suspension of the toral automorphism
from Example 1.5.23; in particular, the supremum in Corollary 4.3.8 is attained in
this case.

We briefly describe the collection of equilibrium states.
Theorem 4.3.11. Let®: X — X be a continuous flow of a compact metric space and
f: X — R be continuous. Then
(1) the set M (®) of equilibrium states for f is convex,
(2) if f—g iscohomologous to c € R (Definition 1.3.20), then M ¢ (®) = Mg (@)®
(3) if hiop(P) < 0o and M (D) # &, then then the extreme points of M ¢(D)
are exactly the ergodic equilibrium states, and
(4) If the entropy map u — hy,(®) is upper semicontinuous’ then imf(d)) is
nonempty and compact.

PROOF. (1) follows from the affine property of entropy (see Theorem 4.1.3). Indeed,
let p,v € M¢(®) and p € [0,1]. Then

hpu+a-pyv(®@) +ffd(pu+ (1-pv)=pP®,)+1-p)P@,f)=P@,f).
I —

=phy@)+1-p)hy (@) b I
Ph @)+ (=) (@) e T Fav

8The converse is Theorem 8.3.21.
9This is the case if @ is expansive (Corollary 11.3.14).
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(2): The assumption is that f is cohomologous to g + ¢, so on both sides of
(4.3.3) replacing f by g + ¢ amounts to adding c.

B): IfueM (@) is ergodic, then it is an extreme point of 2t(®) and hence of
M (). Conversely, if = ppy + (1 — p)uz € M (P) is an extreme point of N 7 (P)
with yy, o € M(P), then

P(@,f):hu(fDHffdp:phm (<I>)+(1—p)hyz(d>)+pffdu1+(l - p)ffd/.tg <P, [),

SO U1, U2 € Dﬁf((D). Thus, p = p; = 2, and p is an extreme point of 971(®), hence
ergodic by Theorem 3.1.16.

(4): If g — hy (@) is upper semicontinuous, then so is y— hy(®) + [ fdu. An
upper semicontinuous function on a compact space has a maximum, so 91 ¢(®) #
&, and upper semicontinuity further implies that 91 ¢(®) is compact. (|

Proposition 4.3.12 (High-pressure measure). Let (X, d) be a compact metric space,
® a continuous flowon X, f € C%X), E,c X an (n,€) -separated set,

n
V= (Y S /N S/ W and ””::%f @pSvnds.
0

x€E, x€Ey,

Then there exists a weak*-accumulation point pi € IM(®) of {,} nen that satisfies

lim llogZeS"f(X) < h#(q>)+ffdp.

n—oon x€Ey,
Corollary 4.3.13. P(®, f) <sup,eon(a) u(®) + [ fdp.
PROOF. Fix d >0 and let {E,;} ,eny be (12,€)-separated sets in X such that

Z eS"f(X) = Ny (D, f,€, n)=o.

x€Ey,

Proposition 4.3.12 then gives
— 1
r}l_r&;logNd(@,f,e, n) < h”(d>)+ffdu

for an accumulation point p of . Taking the supremum over u and letting e — 0
gives the claim. ]

Corollary 4.3.13 is half of the Variational Principle.

PROOF OF PROPOSITION 4.3.12. Let nj be a subsequence such that

: Sn f(x) T Snf(x)
lim log ) e —y}l_{glologZe .

k—o0 X€Ep, x€E,
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Let u be an accumulation point of y,,. Notice that although we are allowing
n € N'we choose u, = %fon @Svyds, and so as in the proof of Theorem 3.1.15 the
weak*-accumulation point is ® invariant.

Let ¢ be a partition whose elements have diameter less than € and p(9¢) = 0.
Let E;, = {x1,..., Xy} be an (n,¢€)-separated set. Then (see (11.1.1) and Definition
11.2.1)

1 1 xeE, xeE,

Here the last equality is a simple computation or an application of (the easy “="
part of) Lemma 11.2.14 below. If a(k) = [(n—k)/q] for 0 < k < g < n, then this gives

1
%log Y S = %Hv,,(f(fn)"'q[fd“n

xeE,

1 1
=Ly Hy, @)
qg-1 a(k)-1

L) ! 2
[Proposition 11.2.6(4) =] < kZ:o( rZ:0 —H o, (349 +7qlog#(f)) +q f fdupn

242
[Proposition 11.2.6(6) =] < Hy,, (f(f;) + %log#(f) + qffd,un.

1 1 1
Hence, klim —log Z Sl W) < Ekh—r»goH“”k (f(f;)+ffdpnk = ;Hﬂ(f(f;Hffdu

—oo N x€Ep,

— 1 Snf(x) 1 1 _
and r}l_{lgozlog Y e < hu(p ,§)+ffdpshu(<p )+ffd/¢—PH(f,<D). O

xeEy,

PROOF OF THEOREM 4.3.7. In light of Corollary 4.3.13, it remains to show that
(4.3.4) hy (@) + ffdu < P(®,f) foreverypueIM®).

Let { = {Cy, ..., C¢} be a measurable partition of X. Then u(C;) =sup{u(B) | Bc
C; is closed}, so there are compact B; < C; (think of these as the “islands”) such
that H,(§198) < 1 for B = {By, ..., Bx} with B = X \ (U;?zl B;) (think of this as “the
sea”’). Then

hu(®,¢) < hy (O, 98) + H, (¢|B) < hy,(D,8) +1.
Now let d = min{d(B;,B;) | i,j€{l,..,k},i # j} >0 and 6 € (0,d/2) such that
|f(x) = f(| <1 whenever d(x,y) < 0. Let E c X be an (n,6)-spanning set. For
1 J—
Ce %?n there is an x¢ € C such that (S, f)(xc) =sup{S, f(x) | xeClandayceE
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such that d,(f(xc,yc) <08,50 S, f(xc) =S, f(yc)+n. Then

1
Hy(82,) + f Snfdus ) pu(C)(~logu(C) + S, f(x)) < n+log2" Y 5/ ™)
! — xeE
CeRB”, <Suf(yc)+n

]
<logy. 1e5nf0+" by Lemma 11.2.14
cen?

-n

1
5<di2, yeE=>#{CeB?, | yc=yi<2n

and X )
1
_Hp(%?n) +ffd,u <1+log2+ —log Z eSnf0),
n L 1 n xeE
:%fsnfdll

Therefore, hy, (P,<) +/fd,u < hy(®,%8)+1 +/fdu <2+log2+P(®, f), and hence
h#((pl) + [ fdu<2+log2+ P(®, f). Applying this to ¢™ and S, f gives

hH(QD)+ffd,usP(<D,f)+(2+log2)/nWP(dD,f). 0

If @, is a special flow, then the Variational Principle (Theorem 4.3.7) and the
Abramov Theorem 4.1.4 imply

(4.3.5) hiop (@) = sup by, (@,) = sup (@)
. top (7 u,esm(@,ﬁtr r yggm(g)frdu'

This is useful with respect to an earlier question.

Theorem 4.3.14. Ifa continuous flow without fixed points has zero (or finite) topo-
logical entropy, then so does any time-change.

PROOF OUTLINE. Because there are no fixed points assume without loss of gen-
erality that the flows ®, ¥ are special flows (Theorem 3.6.2) over the same base
transformation o under roof functions rg, ry with (by compactness) bounded loga-
rithms. Then the right-hand of (4.3.5) is the same for both ® and . If hop (P) < oo,
then this supremum is finite, and hence hp (V) < 00; if hop (P) = 0 then likewise,
hiop (W) = 0. O

We next relate the pressure of a special flow to the pressure of the base dynam-
ics, provided there is a unique equilibrium state for the base dynamics (for which
the discrete-time counterpart of Theorem 8.3.6 gives sufficient conditions).

Proposition 4.3.15. Let X be a compact metric space, F a homeomorphism on X
with hyop (F) < oo, 1 : X — (0,00) continuous, ®, the special flow on X;, G € C(X;),
and g(x):= [§¥ G(x, ndt € C(X).

o There is a unique c € R with P(F,g —cr) =0.



3. TOPOLOGICAL PRESSURE AND EQUILIBRIUM STATES 215

o If F has a unique equilibrium state m for g — cr, then m, (from (3.6.3)) is
the unique equilibrium state of G for ®,, and c = P(®,,G).

e If F has a unique equilibrium state m for —hyop(®;)r, then m; is the
unique measure of maximal entropy for ®, on X;.

PROOF. We first show that the continuous map ¢ — P(F, g — cr) is strictly decreas-
ing. If 1 is an F-invariant measure and c; < ¢, then continuity of r together with
r >0 and hyop (F) < oo imply

hﬂ(F)+f(g—clr)du=hH(F)+fgdu—clfrdu

>hM(F)+fgdu—02frd,u=hﬂ(F)+f(g—czr)du-

Let py, be a sequence of F-invariant probability measures with limy, . ki, (F) +
[ g—cardu, = P(F, g—c,r). By taking a subsequence we can assume that p,, # .
Then

P(FEg—cn= Aiigoh”n(F) +f(g— andy,

r}ilgohﬂn(F)+f(g—02r)dun+(cz—cl)frdun

P(Eg-cor)+(co— cl)frd;» P(Fg—cor),

so ¢ — P(F, g — cr) is strictly decreasing. Furthermore, lim;_..., P(F, g — cr) = Foo
since hiop (F) < 00, so there is a unique ¢ € R with P(F, g —cr) =0.
If m is an equilibrium state of F for g—cr, then h,,,(F)+ [(g—cr)dm = P(F, g—
cr) =0, hence
c= hm(F) n fgdm (Theorem 4.1.4)
Srdm  [rdm
If m is the unique equilibrium state of F for g — cr, then m, is the unique equilib-

rium state of ®, for G because for any F-invariant probability measure p # m we
have 0> hy(F) + [(g—cr)dp, so

hy(F) + /841 theorem a1
Jraup
This also implies that ¢ = Ay, (®;) + J Gdm, = P(®,,G). Furthermore, from Theo-
rem 3.6.2 we know that each measure p, arises from a measure p concluding the
proof of the second part of the theorem.
If G=0, then g =0, so P(F,0~ cr) =0 when ¢ = P(®;,0) = hyop(P;). So, if there
is a unique equilibrium state m for —hp (F) 7, then m; is a unique measure of
maximal entropy. ]

;Mg@ﬁ+demp

hmg@»+fcdm,=c> lmg®n+deMu
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Remark 4.3.16. Under the assumptions of Theorem 4.3.11 and Theorem 4.3.7,
h,(®) and hence h,(®) + [ fdu on the right-hand side of (4.3.3) is upper semi-
continuous if @ is expansive (Corollary 11.3.14)—thus Theorem 4.3.11(4) gives
existence of an equilibrium measure. This is notable, but the importance of equi-
librium states rests in great part on our ability to study them carefully, and a
nonconstructive existence result is of limited use in this respect. Therefore, we now
give more restrictive sufficient conditions for the existence of equilibrium states
because they allow us to construct them explicitly (Theorem 4.3.21). These involve
controlling the “dynamical distortion” of the potential (Definition 4.3.17). We will
much later see that in the principal context of this book, equilibrium states are
unique (Theorem 8.3.6).

Definition 4.3.17. Let X be a metric space, ® a flow. With the notation from
Definition 4.3.1, the set V(®) of Bowen-bounded functions [55, p. 193] for ® is

43.6) {feC®X) | 3IK,e>0Vt>0:dP(x,y) <e= 1S, f(x) - S f(MI <K},
and the set V(D) of Walters-continuous functions [286, p. 125] for @ is
4.3.7) {feC’X)| Ve>036>0¥t>0:df(x,y) <8=S:f(x) =S f(y)| <e}.

These regularity conditions may look technical but arise naturally in hyper-
bolic flows: Holder continuous functions (Definition 1.8.4) are Walters-continuous
(and hence Bowen-bounded) for a hyperbolic flow (Proposition 8.3.1) due to a
quantitative (exponential) version of Proposition 1.7.4 (Proposition 6.2.4). Periodic
data determine a Walters-continuous function, or rather its cohomology (Theo-
rem 5.3.23). The utility of Bowen-boundedness lies in the following, which makes
Proposition 4.3.12 the main step in the construction of equilibrium states.

Lemma 4.3.18. Let ® be an expansive flow on a compact metric space X with
expansivity constant §y (cf. Definition 1.7.1). Then for f € V(®), € € (0,60/2), and
6 > 0 there exists Cs ¢ such that (forall t >0)

Nd(q)rf,éy t) = C5,€Nd(q),fy€y t)
Remark 4.3.19. If § > ¢ we can take Cs . = 1.

PROOF. For 0 <e€ < d(/2 expansivity gives a T > 0 such that

dyr (o~ T (x),97 T (y) <2¢ = d(x,7) <6,

and equicontinuity gives a > 0 such that d(x,y) < a = dy. (9~ T (x),¢™ T () < 6.
If E is a maximal (¢,9)-separated set and F a maximal (¢,€)-separated set, then
for x € E there is a z(x) € F such that d?(x, z(x)) < €. The cardinality of E; :={x €
E| z(x)=z}isbounded uniformly in ¢: If x, y € E, then d (x, y) < 2¢ by definition
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of E;, hence d(¢p®(x),¢°(y)) < 6 for s€ [T, t — T) by choice of T, and thus, by choice
of a and since {x, y} is (¢,8)-separated, d(x, y) > a or d(¢!(x),¢'(y)) > a. Therefore

card(E;) = card{(x, @' (x)) | x€ E,}
<max{cardA| AcXxXand(a,b)e A, a#b=>d(a,b)>a}=M

since the (x, ¢! (x)) form just such an a-separated set. Now take €, K as in (4.3.6) so
that [S; f(x) — S;f(2)| = K for x € E; and

> eStf) < Y cardE, eKeSt/@ < MeK Ny (@, fre,1). O
x€E 2eF——3r =Cp ¢

Together with (4.3.1) and (4.3.2) this gives

Proposition 4.3.20. If ® is expansive, 3¢ an expansivity constant, f € V(®), then
1
P(®, f) = lim —1logS;(®, f,e,1).
t—oo f

With Proposition 4.3.12, this in turn gives existence of equilibrium states:

Theorem 4.3.21. If ® be an expansive flow on a compact metric space, f € V(®),
and P(®, ) < oo (Definition 4.3.1), then every weak*-accumulation point of the y,
in Proposition 4.3.12 is an equilibrium state for ® associated with f .

While we will be able to establish uniqueness of equilibrium states for hyper-
bolic flows later, this may not hold for systems beyond this context, even though
much progress has recently been made for nonuniformly hyperbolic dynamical
systems. We note that systems with more than 1 equilibrium state are said to be in
a phase transition.

We will revisit Theorem 4.3.21 in a context where equilibrium states are unique
(Theorem 8.3.6). For that work and elsewhere, another way of singling out an
invariant Borel probability measure is important, and we now define this property
and connect it to equilibrium states.

Definition 4.3.22 (Gibbs measure). For a continuous flow ® on a compact metric
space X and a potential function f: X — R, a measure y € (®) is a Gibbs measure
for f with constant P if for § > 0 there is a constant C > 0 such that for x € X and
t >0 we have

1 u(Bo(x, t,0))

—<————<

C  exp(S;f(x)—1tP)

For hyperbolic @, Proposition 8.3.14 says that for each f € V(®) there is a Gibbs

measure with constant P = P(®, f) (Definition 4.3.1). Our present object is to show
that this is an alternate way of producing equilibrium states.
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Theorem 4.3.23. If @ is a continuous flow on a compact metric space X and f €
V (D), then a Gibbs measure with constant P = P(®, f) is an equilibrium state for f.

PROOF. Fix t>0and e > 0. Let f> 0 such that d(x, y) < f implies that d;(x, y) <e.
Let ¢ = {By,..., B} be a measurable partition of X such that diam(B;) < § for all

1 <i < m and hence diamg®(A) <eforall A€ E(f;, neNand s € [0,nt]. By the
Gibbs property we have p(A) < Cexp(Sy; f (x) — ntP).
We also have

1 t
")+ [ Sef 0= o'+ [ Siptodu=lim ~HE)+ [ Scfdn

H(E‘ftn) = —logC+ Pnt — [ Sy f(x)du by Proposition 11.2.6(1), and [ S;f(x)du =
L [8nif(0)dp, so hulph) + [ S f(x)dp = Pt. Hence, hyu(g) + [ fdp = P(g, f) since
hu(@") = thy(p") and [S,f(x)du=1t [ fdu. O

Additional assumptions on a flow imply uniqueness of equilibrium states (The-
orem 8.3.6) for Bowen-bounded potentials. Instead of presenting this strengthen-
ing here, we defer it to the context of hyperbolic flows, where Bowen-boundedness
is particularly natural—and invariant under topological equivalence, unlike in the
present context.

We close by remarking that while we gave a motivation for the study of equi-
librium states in terms of thermodynamical concepts that can be transferred to
dynamical systems, the principal motivation of dynamicists in studying them is
that they provide a collection of measures (rather than just the measure of maximal
entropy) that are deeply connected to the dynamics of a flow and have strong sto-
chastic properties (Remark 8.3.19). Furthermore, among these is the equilibrium
state for a special potential, the geometric potential, which is of exceptional interest
in its own right: This Sinai-Ruelle-Bowen measure is central to the description of
hyperbolic attractors (Theorem 8.4.7) and stands in for volume when this is not
invariant; as a corollary, volume is an equilibrium state if invariant, and enjoys
the stochastic properties we derive in full generality—and sometimes even more
(Theorem 8.4.17). Lastly, this Sinai-Ruelle-Bowen measure can be a tool for estab-
lishing results about smooth dynamics whose statements make no reference to
probabilistic aspects (Theorem 10.2.7), and the question of when it coincides with
the measure of maximal entropy leads to interesting rigidity results (Section 10.4).
This theory has recently been developed also for geodesic flows on noncompact
negatively curved manifolds [231].
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4. Equilibrium states for time- maps*

We digress to connect equilibrium states for a flow and for its time-¢ maps.
The problem is that the set of invariant measures for the time-¢ map of a flow may
be larger than the set of invariant measures for the flow. We begin with measures
of maximal entropy.

In Proposition 4.2.8 we showed that the topological entropy of a flow is equal
to the topological entropy of the time-1 map of the flow, and Corollary 4.2.10 gives
[ Atop (@) = hyop ((pt) for any ¢. Therefore, any measure of maximal entropy for @ is
a measure of maximal entropy ¢’. However, there may be measures of maximal
entropy for the time-# map that are not measures of maximal entropy for the flow.
For instance, if we start with a map f : X — X with a measure of maximal entropy
and a constant-time suspension with roof function 1, then the time-1 map will
have an invariant measure supported on each X x {c} for 0 < ¢ < 1, but these are
not flow-invariant and hence not measures of maximal entropy for the flow. Weak
mixing avoids this problem:

Theorem 4.4.1. If ® has a unique measure L of maximal entropy and i is weakly
mixing, and if t > 0, then p is the unique measure of maximal entropy for the time-t
map of .

ProoOF (Communicated by Federico Rodriguez Hertz). Let v be a measure of max-
imal entropy for the time-¢ map ¢’. Then the measure fot @i vdsis ®-invariant and
a measure of maximal entropy since @3 v is invariant under the time-t map and has
the same entropy as v and . So

t
f pvds=p,
0

and y is a linear combination (by the integral) of ¢’—invariant measures. But by
Proposition 3.4.40, ¢! is y-ergodic, so ¢3v = u for every s, in particular v=p. O

For an equilibrium state associated with a potential function f : X — R the
Variational Principle implies that for the time-1 map we have

P®,f)= sup hu(®)+ffdu
HEM (D)

= sup hu(<p1)+ffdp
HEM (D)

< sup hu(<p1)+ffdu
peM(ph)

=P, f).
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More generally, for the time-¢ map one usually replaces the potential function

f by fi = J§ f(@x)ds and considers P(¢’, f;) = SUp e pr) Pu(@") + [ frdp. The
pressure above does not readily relate to P(®, f) for general f.



Part 2

Hyperbolic flows



We now come to the principal subject matter of this book, hyperbolic dynamics
in continuous time. Chapter 5 defines hyperbolicity and develops its essential
features as well as a range of new examples. This leads to a definition not just of
what hyperbolic behavior is but of a hyperbolic flow. Chapter 6 refines the toolkit
and our understanding of hyperbolic dynamics by utilizing the manifold structure
of stable and unstable sets. Related regularity issues are refined in an optional
chapter (Chapter 7), at which point we are prepared to study the statistical aspects
of hyperbolic flows (Chapter 8). Hyperbolic dynamics is deterministic but of such
complexity that a probabilistic approach is natural. We finally pursue 2 topics
further. A study of Anosov flows (Chapter 9) explores dynamical and structural
features of these that have often proved interesting also to topologists. Chapter 10
explores a range of situations in which the generally rare circumstance of smooth
conjugacy (or orbit-equivalence) arises in natural contexts from the coincidence of
some dynamical features with those of a algebraic counterpart. Particularly these
latter chapters contain rather new mathematics, but so do several other ones in
this part; even among the first examples there are quite recent ones.



CHAPTER 5
Hyperbolicity

This chapter begins to home in on the main subject of the book with the defini-
tion of a hyperbolic set, that is, a definition of what we mean by hyperbolic behavior.
We almost immediately (with the Alekseev cone criterion) observe that this is a
robust property, which persists under perturbation. This criterion then also proves
effective in checking hyperbolicity in a collection of “physical” examples (geode-
sic flows, billiards, gases, and linkages). We then implement the Anosov—Katok
program to establish much of the qualitative dynamical features of a hyperbolic
flow from the shadowing property (175, § 2], also known as pseudo-orbit tracing
property (Section 5.3). A core result is that in the hyperbolic context the chain
decomposition, which in Section 1.5 seemed somewhat theoretical, comes into its
own as exactly the right tool for describing the overall orbit structure of a hyper-
bolic set: There are finitely many chain components, and each contains a dense
orbit as well as a dense collection of periodic orbits. This also leads us to a natural
global definition of hyperbolicity of a flow, which was at best implicit in earlier
literature (Definition 5.3.48). We are also able to dig much more deeply into the
issue of persistence of hyperbolicity: Shadowing implies that under perturbation
of a flow, not only does the presence of hyperbolic behavior persist, but the entire
orbit structure arising from hyperbolicity is indestructible even under C° perturba-
tions. More: C! perturbations can also not create additional hyperbolicity, and the
full dynamics of a hyperbolic set remains present in the perturbation (structural
stability), and even more, the recurrent part of the orbit structure is in its entirety
rigid under C! perturbations—the perturbation has exactly the same recurrent
dynamics, no more, and no less (Q-stability). We note that only hyperbolic flows
have this remarkable feature.

We emphasize that no part of this chapter uses (explicitly or implicitly) the
existence of stable and unstable manifolds. These are central to the hyperbolic
theory, but we chose to emphasize how much of the core dynamics can be obtained
from shadowing alone. The invariant foliations will be introduced and immediately
put to use in Chapter 6.

223
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1. Hyperbolic sets and basic properties

The geodesic flow on compact factors of the hyperbolic plane (Remark 2.2.2)
and its horizontal twin (Example 2.2.4) are iconic examples of the kind of flow in
which we are interested (Remark 5.1.3). This helps give context for the definition
and provides intuition for the defining properties of these sets.

Definition 5.1.1 (Hyperbolic set). Let M be a smooth manifold! and ® a smooth
flow on M. A compact ®-invariant set A is a hyperbolic set for @ if there exist a
finite number of hyperbolic fixed points {p;, ..., px} and a closed set A’ such that
A =N U{p,.., pr} and there exist a splitting Ty' M = E* @ E @ E* and constants
C=1,1€(0,1), p>1such that

e E°(x):=RV(x)# {0} for all x € A’, where V:=¢ asin (1.1.2)

o |Dg! s |<CAtforall t>0andall xe A/, and

. ”D(p_th" |<Cu "forallt>0andall xe A

A smooth flow ® on a closed? connected manifold M is said to be an Anosov flow
(or hyperbolic flow) if M is hyperbolic for ®. If dim M = 3, then such @ is called an
Anosov 3-flow.

Remark 5.1.2. This definition of a hyperbolic set allows the existence of (isolated!)
fixed points, in contrast to what is often done elsewhere. Allowing fixed points
gives greater generality, and we will find that the main results are no different.
The inclusion of fixed points is also a natural adaptation for the study of stability
properties later.

Remark 5.1.3 (Examples). Numerous prior examples are of this kind:

e The suspensions in Examples 1.5.23 and 1.5.24 are Anosov flows.

¢ By Theorem 5.1.16 below, so are time-changes of these, hence all special
flows over these automorphisms.

* So are geodesic flow on compact factors of the hyperbolic plane—the
discussion in Remark 2.2.2 establishes the requirements of Definition
5.1.1, and

* Example 2.2.4 does so for the horizontal flow generated by H, which
therefore gives yet another example of an Anosov flow.

¢ Other examples of hyperbolic flows will appear in Remark 5.1.12 and
Sections 6.3, 6.5, 9.3, 9.2, and 5.2b.

Anosov flows were conceived as a codification of the salient features of geodesic
flows of compact manifolds with negative curvature. These in turn were studied

1Implicitly assumed connected throughout this book.
2that is, compact and without boundary
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as the first examples of ergodic, indeed chaotic, mechanical systems and hence
remain the primary continuous-time example in this theory. Theorem 5.2.4 below
establishes that these are indeed Anosov flows, whether or not the curvature is
constant as in Chapter 2. Its proof addresses the fact that we usually cannot identify
the contracting and expanding subspaces as readily as in the algebraic case (for
example, as in Remark 2.2.2). This idea likewise underlies the other “physical”
examples in Section 5.2.

Proposition 5.1.4. Let A be a hyperbolic set for a flow ®, T € {u, s, ¢, cs,cu}. Then

o x— ET is ®-invariant and continuous,

o dim EZ, is locally constant,

» E7 are pairwise uniformly transverse for T = u, s, c: there is ay > 0 such
that for any x € A, the angle between ¢ € E. andn € E)TC' is at least oy when
T#T.

PROOE. This holds trivially at any fixed point in the hyperbolic set. Elsewhere,
the inequalities | D@’¢|| < CAY||¢| invariantly characterize E3, and similarly for
T € {u, cs, cu}. By continuity of D(pt the set of (x,¢) on which they hold is closed,
so limy_.y, E} < Ef . Then dimEY +dimE; = dimM —1 = EY + E implies that
neither inclusion is strict, so Ey = limy_. x, E}.

Since the angle between ¢ € E” and 7 € E is continuous and positive (E% N
ET = {0} it has a positive minimum. O

We note that one can do better than continuity: Theorem 7.4.1 establishes
Holder continuity (Definition 7.1.1). The next lemma produces a metric such that
we can take C = 1 in Definition 5.1.1. Such a metric is called an adapted metric or
Lyapunov metric.

Proposition 5.1.5 (Adapted metric). Let A be a hyperbolic set for a flow ® with
A 1, C as in Definition 5.1.1 and A € (A,1), p € (1, ). Then there is a continuous
Riemannian metric such that for the induced norm || - |*, for t = 0 and for x € A we
have
t * t -t * —t
Do s I"<A" and |Dg | g I =p.
ProOOF. We adapt the norm on each of the spaces E® and E“. For v € E} define
2. [ y-2s s 2
()™= LA (ID@ Vs ()" ds.
]

<P A2 CAZS vl cds<oo

As an integral of quadratic forms, this is a quadratic form and hence the norm
arises from an inner product. This is the desired norm on E$ because if v € E} and
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t >0, then

(IID vl )2— wﬂ‘“(HD Pl prrs)” ds
7] (p[x = , = (p (pst

L 1
:AZZf(?O&—Z(HX)(”D(pt+sl}”q)t+sx)2ds

_ 2t © -2s s 2 2t $\2
= A (IDQ Vi) ds< A7 (Ivll3)”.
t

<S5 A UID@ vl s ()2 ds

Similarly, the desired metric on E¥ is

(002 = [~ 2 1Dy vllye)’ s

For v = vs+ vy, € ES ® EY, where v; € EZ, let (| v15)? = (lvsl1$)? + (I v, 1)?; this is a
metric on E§ @ E¥ with E¥ 1 E“. For the nonfixed points in A one can extend this to
a metric in the center direction. For v = v; + vs + v, € Tx M where v € E3, v, € E¥,
and v, € ES, let (Iv)15)2 = (lvs$)? + (v 19? + (lvel ). This induces a metric on
T, M, which is continuous since the components are continuous.

Furthermore, this metric can be extended to a continuous metric on all of M
and changed into a smooth Riemannian metric on all of M by a perturbation so
small as to preserve the defining inequalities. |

Checking that a given set is hyperbolic for a flow involves the challenge of find-
ing the invariant subbundles E* and E°. Outside of algebraic situations, it is not
clear how to go about that. Fortunately, there it turns out that approximate knowl-
edge of these suffices, and in practice, one can establish that a set is hyperbolic by
using cone fields.

Definition 5.1.6. For a set X ¢ M with a splitting T,M = E, & F, for each x € X,
and for g € (0, 1) the B-cone field consists of the -cone

CpE,F)={v+w | veEweE|wl<plv}
of E, and Fy ateach x € X.

Proposition 5.1.7 (Alekseev Cone Field Criterion). A compact ®-invariant set A is
hyperbolic if and only if there exist constants A, B € (0,1), C = 1, and a decomposition
TxA = Sy ® ES® Uy for each x € A such that for all x € A and all t > 0 we have
e ES =RX(x) # {0} for all nonfixed points x € A and ES = {0} for the fixed
points, where X is the generating vector field,
o D' (Cp(Uy, ES @ Sy)) € Cp(Uypt vy, Egiio®Sptx),

e Do ' (Cp(Sx,ES®Uy)) © Cp(Sptix Egr ) @ Upt (),
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o | D@*ll < CAYIE|l foré € Cp(Sy, ES @ Uy), and
o D@~ ¢l < CAIEIl for & € Cp(Uy, ES @ Sy).

FIGURE 5.1.1. Invariant cones

PROOF. “Onlyif” is an easy consequence of the definitions. “If”: We show that

El:= Q)D(pr(cﬁ(uw_t(x),E(;_,(x) ®S,1(v)

and

E}= Q)DWt(Cﬂ(S(p’(x)’E&(x) ® Uyt (y))-

are as in Definition 5.1.1. By construction, they are expanded and contracted,
respectively, and equivariant, so we need only show that these are linear sub-
spaces of the right dimension. To that end, let S° be an accumulation point of
(D! (Sp-t(x))) >0 in the following sense: By compactness of the unit sphere, or-
thonormal bases in D¢’ (S,,-(y)) accumulate to a frame, and we denote its linear
hull by S° < E¥. Then dim S}’ = dim S,. Defining T¢° < Ej in like manner, we
now show that with the definitions above, E¥ = S, and a like argument then gives
E;=T.

If v € E¥, then v = v¥* + v, where v* € S and v® € E{ @ E¥, and there is a
K e R such that

vl = IDp" (Do~ (v —v*)Il < KD~ (v = v")|| == 0. O
—
=Dy~ () =D~ (W) I<CA (vl +1v* 1)

One can also express the Alekseev cone criterion in terms of Lorentz metrics
that behave analogously to Lyapunov functions or metrics.

Definition 5.1.8. A Lorentz metric is a nondegenerate bilinear form g with signa-
ture (n—1,1), that is, of the n values of the quadratic form Q(x) = g(x, x) on an
orthogonal basis, one is negative and all others are positive’

3By Sylvester’s law of inertia, this is independent of the choice of such basis. A Riemannian metric
is a like form of signature (n,0), that is, positive-definite.
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Proposition 5.1.9. A smooth flow ¢': M — M of a 3-manifold M is an Anosov
flow if and only if there are two continuous Lorentz metrics Q* and Q™ on M and
constants a,b,c, T > 0 such that

(1) forallve TyM, t> T, if Q*(v) > 0 then Q* (D p*'(v)) > ae’* Q*(v),
(2) C*NC™ =g, where C* is the Q* -positive cone,

(3) Q*(X) = —c where X is the generating vector field,

4 Dyp*" (C*(x)) N {0} < C*(9* (x)).

PROOE. If ¢! is an Anosov flow we can choose disjoint cones around the strong
stable and unstable directions, neither of which contains X. These define (up to
a factor) the Lorentz metrics, and choosing ¢ = 1 fixes the metrics; we omit the
details.

Assume now the above conditions for two continuous Lorentz metrics Q*
and constants a,b,c,T > 0. The cone fields C* induce fields &* of ellipses in
the projectivization PTM of TM, and ¢" acts on fields of ellipses by (p.&)(x) =
PD(p-z(x](pt(é’((p‘t(x))). Then

« condition (2) implies that & (x) N &; (x) =,
« condition (4) implies that &7 (x) ¢ int&* (x).

If we endow each &% (x) with the Hilbert metric then this last property (strict nest-
ing) implies that Dg*” induces contractions &*(x) — &*(¢*” (x)) of the Hilbert
metrics with a factor that can be chosen uniformly by compactness of M. Thus,
the diameter of & (x) « &* (x) as measured by the Hilbert metric on &* (x) goes to
0 exponentially, so A*(x) =7 é"f (x) are points, and A* (x) # A~ (x) forall xe M
since & (x) N&; (x) = 2.

Clearly A* define ¢’-invariant line fields E*, and since X ¢ C* by condition
(3), AT(x) # X (x) # A (x).

Now choose a continuous Riemannian metric on M whose unit spheres in-
tersect E* in points for which Q* = 1. Then condition (1) implies that E* are
exponentially expanding and contracting, respectively, as required. ]

Note that the subbundles S and T in Proposition 5.1.7 need not be invariant.
They simply need to be close to an invariant subbundle by a factor of 8. This
flexibility makes them easily extendible with the same defining properties, so
while it follows directly from the definitions that every closed invariant subset of
a hyperbolic set for @ is also a hyperbolic set, the cone field criterion allows us to
conclude more interestingly, that one can sometimes envelop a given hyperbolic
set by a larger one.
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Proposition 5.1.10 (Persistence of hyperbolicity). A compact hyperbolic set A c X
for a flow ® has a neighborhood U c X such that Ag =Nter @' (U) is a hyperbolic

set, and moreover, so is Ag =Nter Wz(l_f) when V¥ is sufficiently C!-close to ®.

PROOE. Let A be a hyperbolic set for a flow ®. First assume we have an adapted
metric on A with hyperbolic constants A € (0,1) and p > 1, and fix A € (4,1) and
@€ (1,u). Extend the splitting on A to a continuous splitting (not necessarily
invariant) in a sufficiently small neighborhood V of A, and fix 8 > 0 sufficiently
small and cones Cg (Ej,E{® EY¥) and Cﬁ(E}C‘, E{e®E;). If xe Aand ¢ >0, then

D¢~ 'Cy(Ey, Ex ® EY) c Crig(Ey, E; ® EY)
and
D¢'Cp(Ey, Ey @ Ey)  Cymip(Ey, Ey @ EY).
Also, we can choose V and f such that
IDp~"¢| < Eitllfll for & € C(EY, Ex @ Ey) & | Do'nll < A'In| forn € Cp(E3, Ex @ EY).

For a possibly smaller neighborhood U of A and x € U the conditions in Proposition
5.1.7 hold not only for @, but also any flow ¥ that is C! close to ®. ]

Although Proposition 5.1.10 does not assert that Af{, # (1), the next result is a
direct consequence.

Corollary 5.1.11. Any sufficiently small C' -perturbation of an Anosov flow is an
Anosov flow.

Remark 5.1.12. Thus, the magnetic flows from Remark 2.2.10 are Anosov flows
when the magnetic field is weak enough.

Unfortunately, in this observation and in Proposition 5.1.10 itself, there is no
control over how large a perturbation one can allow. We are a little more fortunate
in the context of magnetic flows, so let us elaborate on this observation. We first
define magnetic flows in more satisfying generality.

Definition 5.1.13 (Magnetic flow). On a Riemannian manifold M supposem: TM —
T M is antisymmetric tensor, that is, (mvy, v2) + (v, mvy) =0 for all vy, v, € TxM
and all x € M} and consider the flows defined on SM by the following counterpart
to the geodesic equation (5.2.1):

V7 =my.

4In Remark 2.2.10 this was a 90° rotation combined with a constant scaling.
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The size of m is a natural measure of the size of the magnetic perturbation
to the geodesic flow, and it is natural to ask how large this perturbation can be
without losing hyperbolicity. It turns out that here we have the rare case of explicit
control of the hyperbolicity domain.

Theorem 5.1.14 ([138, Théoréme 4.1]). If the sectional curvatures K of a closed
Riemannian manifold M satisfy —k% <K= —kf < 0, then magnetic flows with
2 lmli2, + |IV%OO < k? are Anosov flows.

In a variety of contexts it is useful that for symplectic systems the cone criterion
can be established merely by producing strictly invariant cone families; uniform
expansion and contraction is then a consequence. Geometrically, this is intuitive:

“squeezing” a cone should push points outward. We establish this in dimension 2
using convenient local coordinates.

b
Theorem 5.1.15 (Wojtkowski cones). Suppose Ay = (Zk dk) are matrices such
Ak

that for somee >0, allke Z and all v = (;) with xy >0 we have |det Ax| = 1 and

Akvecezz{(;)e[Rz | eysxsy/e}.

Then there are c >0 and A > 1 such that
1 Ak-1... Ag—ivl = cA v

forallkeZ,ieNandveC,.

PROOF (Wojtkowski, Kourganoff). Since %(x2 +y%) < P( (;) ) =xy< %(x2 +y?) for

(;) € C,, we check the conclusion for v/P instead of || - ||. Specifically, we show
P(Ayv) = 25 P(v) forve C.and k€ Z.
Without loss of generality det Ay > 0 (otherwise left-multiply Ay by ((1) (1)))

and all entries of Ay are positive (otherwise multiply by —1d), so

1.1 1
1< aydy — bycy < —br—cy — byc = (—2 - l)bkck
€ € €
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1 b 0
since (ik) = Ay (0) € Cc and ( dk) = Ay (1) € C, by continuity. This implies that
k k
2
€ 1 1/2 1 X
bicy = = = -1> ——.Forv= € C; we thus have
KRET T 1-e 1-e2 1-¢2 2 (y) ‘

P(Arv) = (arx+ bry)(ckx +dyy) = (ardy + brcp) xy
1
1-¢€2

= (axdi — bxc)xy +2bycrxy = (1 + 2bicy) P(v) =
e —

=1

Pw). O

The last “generic” application of the Alekseev cone criterion is rather basic:

Theorem 5.1.16 (Hyperbolicity of time-changes). Let A be a hyperbolic set for a
flow®. If ¥ is a smooth time-change of @, then A is a hyperbolic set for V.

PROOF. Write v (x) = p*(»?(x) as in Proposition 1.2.2 with a(0,-) = 0. Choose
for each x € A local coordinates x = (x°, x%, x%) centered at x and adapted to the
splitting TxM = E% ® E} @ E;; so that with respect to these coordinates

1 0 0
Do'0)=|0 A, 0
0 0 B

with | B¢l < A’ <1and [|A;!]| < p~! < 1. In these coordinates

1 ax”(t;x) axs(t;x)
D'l//t(o) =10 Agirxn 0 )
0 0 le(t,x)

where au(t, x) and ays(t, x) are the partial derivatives of a with respect to x* and
x*%, respectively. By compactness of A we may take K¢ > 0 as an upper bound for
their size when ¢ > 0. To prove hyperbolicity of 1? we use the cone criterion. We
write vectors in Ty A = Eg ®Ef o E; as (u,v,w) with ue Eg, veEf, we E; and let

2. 2 2 2 2
lu, v, wl==ellul”+ vl +lwl,

where a sufficiently small ¢ > 0 will be specified later. For y < y/u%—1 we now
check whether the y-cone given by

e lull® + lwl* < y*Iv)?
is Dy’ -invariant for ¢ € [0, 1]. Take € such that

K%12e? + 22409 < 1 for t e [0,1].
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If (', v, w') = Dy'(u, v, w) then
ENU 1P+ w1 = e llu+ axuv + axs wl* + | Bag, o wil*
e (lull + Ktlvl + Kelwl? + 222 E | w)|?
=e?ul® + (K* e + 2270w ?

+ KK el + 20wl o]+ 2]l [w] + 2K el vl | w])
2 2y?
=VIol? + e Ke(Kelvl? + Lo+ ol + 2ykefvl?)

> eKt 2
=71+ Kt +2) + 2y 1))l

2 2a(t, 2 2
<y P ) < 210

for sufficiently small € > 0 and ¢ € (0, 1]. Thus y-cones are 1//t -invariant. To check

that vectors in y-cones are expanded note that 12 + | w'||? = 5% (2| u||? +
llwl?) for some & > 0 and take v > 0 small enough so that

(5.1.1) WEEOL
1+7y2
for some i > 1 and all 8 > 0. Then if €? || u||? + |w|? < y?||v||? we have
N1+ 117 + w17 = 5459 @ ull® + w])) + | Agqr, o 11
=09 @ lul® + lw)?)
+ (6 — =) @) u)? + | w|?)
+IJ20c(t,x) Il l/||2
> na(t,x) (€2|| u”2 + w”Z)
[0 — )y 4 2D 2
= 0 @[ ull + w1 + | wl?),

where the last inequality follows from (5.1.1).
Since ¢! is a time change of ¢~! there is a corresponding cone family for
(/s O

Remark 5.1.17. We give another proof later; see page 294.

2. Physical flows: geodesic flows, billiards, gases, and linkages

While in the examples of Remark 5.1.3 the definition of hyperbolicity was
easily checkable directly, the cone criterion provides a convenient way to establish
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hyperbolicity in particular of various classes of “mechanical” flows (beyond Re-
mark 2.2.10), and these are explored in this section. Specifically, we show that
geodesic flows of negatively curved manifolds are Anosov flows (Theorem 5.2.4)
and substantially weaken the needed hypotheses in the case of surfaces (Theorem
5.2.8); the same approach then establishes hyperbolicity of dispersing billiards
(Theorem 5.2.18), and these are in turn connected to the gas models that motivated
Maxwell and Boltzmann (Theorem 5.2.31). Finally, we describe Anosov systems
that are mechanical in a way that could be made into an actual desktop model
(Theorem 5.2.36).

a. Geodesic flows. We begin with geodesic flows beyond the geodesic flow on
the hyperbolic plane and its compact factors in Chapter 2. This requires a little
differential geometry (which is less important for our purposes than the results).
Geodesic flows of negatively curved manifolds are an important example both
historically and mathematically. Indeed, as mentioned in Chapter 0, the concept of
an Anosov flow arose as Anosov axiomatized the arguments used in working with
geodesic flow on manifolds of negative sectional curvature.

To formally introduce the geodesic flow in full generality, let M be a compact
Riemannian manifold. The geodesic equation is a suitable way to write y = 0, that
is, zero acceleration, which corresponds to free-particle motion. y is the tangent
vector to a curve ¢ — y(t), and the second derivative can be expressed using the
Levi-Civita connection V or Riemannian covariant derivative as follows:

(5.2.1) Vyy =0.

This, then, defines a flow on the unit tangent bundle of M as before.
To introduce curvature, which has an essential effect on the dynamics, let R be
the curvature tensor defined by

Ru,Vw=V,Vyw-V,Vyw+Vy ,w.

Then (R(u, v)w,x) = (R(w, x)u,v) and R(u,u) = 0 for u,v,w,x € T,M. If u,v e
Ty M are linearly independent, then the sectional curvature

(R(u, V)u, v)
(u, uy(v, v) — (u, v)?

K(S) =

depends only on the 2-plane S « T, M spanned by the vectors® u and v and is the
Gaussian curvature at p of the 2-manifold exp,, S with respect to the Riemannian
metric induced from M, where exp is the Riemannian exponential map. We usually

5Because changing to a base (1, v") of S can be accomplished by repeated application of the steps
(u, v) — (v, u), (1, v) — (au,v) and (1, v) — (u+ av, v), none of which change K.
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assume that this is always negative and hence, by compactness, bounded from
above by —k? < 0.

Jacobi fields help discern the effect of curvature on the dynamics of the geode-
sic flow. For a geodesic y:R— M, aJacobifield Y: t— Y (¢) = %—‘s/ is an “infinitesi-
mal variation” of a geodesic variation V: R x (a, b) — M, thatis, each ys:=V (., s) is
a geodesic with yg =y

Proposition 5.2.1. An infinitesimal variation is a solution of the Jacobi equation
(5.2.2) Y+ K0 Y@ =0,
 S—
=R(y(2),)y(0)
where dots denote differentiation with respect to t.

PROOFE. Since [%—‘t/, %—‘s/] =0 we have Vv %—‘s/ =V %—‘;. Thus, for s = 0 we have
ot ds

7=V Y mvy vy Y- (Var v AMI A av)
TS S as 5 % ar U VSar % %oar %% 4t
| I
=0 (geodesic equation)
oV av., oV
:—R—,——Z—R ,Y D
(55 a0 3 0 Yy
Conversely,

Proposition 5.2.2. Solutions of the Jacobi equation are infinitesimal variations.

PROOF. IfY isasolution of the Jacobi equation along y let k; (s) for |s| < € be curves
with (#;(0), hg 0) = (y(t), Y () for i =1,2. If e and 1; — , are small enough then
for all s there is a unique shortest geodesic V (;, s) from £k, (s) to hy(s). Y and the
vector field X = %—‘s/ along y are solutions of the Jacobi equation that agree at
and f,, hence everywhere because they solve the same second-order differential
equation. O

Remark 5.2.3 (Orthogonal Jacobi fields). A tangential Jacobi field (sometimes re-
ferred to as a parallel Jacobi field) is of the form Y (#) = f(#)y(¢) with f (1) =0 (since
7(t) = 0= K(t)y(#)) and hence linear in time. On the other hand the projection
Y7 onto Ry of any Jacobi field Y is of the same form with f(#) = (Y (#),y(?)). But
f=(¥Y,y) = =(Ky,Y) = 0 and thus the tangential projection Y of Y is a Jacobi
field. By linearity of the Jacobi equation the same holds for Y+ := Y — Y7, which is
orthogonal to y. Another way to represent orthogonal Jacobi fields is to note that if
Y (¢) is a Jacobi field along a geodesic y and both Y (#) and Y () are orthogonal to
Y (ty) for some 1y, then Y (¢) and Y (t) are orthogonal to y(¢) for all £. We denote the
set of orthogonal Jacobi fields by _# (y).



2. PHYSICAL FLOWS: GEODESIC FLOWS, BILLIARDS, GASES, AND LINKAGES 235

If dim(M) = n and v is a geodesic in M, then the dimension of the space of
Jacobi fields along y is 2n. The space of orthogonal Jacobi fields is then 2n —2-
dimensional since the space of tangential Jacobi fields is 2-dimensional®

We now make more precise how the behavior of Jacobi fields reflects the
dynamics of the geodesic flow g*. For p € M, v € T, M denote by y, the geodesic
with y,(0) = p, ¥,(0) = v. Then there are isomorphisms

Yy: T,TM = TyMe TyM, &—(x,x") with ., (Dg'é) = (Y (1),Y (1),
where Y is the Jacobi field along y,, with Y (0) = x and Y (0) = x'.

Theorem 5.2.4. The geodesic flow of a compact Riemannian manifold with negative
sectional curvature is an Anosov flow.

PROOF. We establish the cone conditions for Proposition 5.1.7 by connecting
curvature and the Jacobi equation (5.2.2), with Lemma 5.2.5 as the key step.

Let M be a compact Riemannian manifold with tangent bundle T M, unit
tangent bundle SM:={v e TM | |v| =1}, and geodesic flow g’ : SM — SM. Its
dynamics can be described in terms of the evolution of Jacobi fields, that is, we can
describe an action of g’ (or Dg?, rather) on Jacobi fields. Two linearly independent
tangential Jacobi fields with linear growth correspond to affine reparameterizations
of the geodesic, that is, shifts of the initial point and uniform changes of speed. The
first variation corresponds to the flow direction for the geodesic flow in the unit
tangent bundle SM; the second is transverse to SM. Thus, in order to establish
that the geodesic flow in SM is an Anosov flow it is sufficient to show that the space
of orthogonal Jacobi fields admits a splitting into exponentially contracting and
exponentially expanding invariant subspaces.

To study orthogonal Jacobi fields it suffices to know that they are solutions of
the Jacobi equation (5.2.2) and that the operator K in that equation is negative-
definite and symmetric: the curvature assumption together with compactness
implies the existence of k,x > 0 such that —k? is an upper bound for the sectional
curvature and

1
(KY,Y)<-k*(Y,Y) when Y1y, and (KY,KY)< — for Y e SM.
K

To show hyperbolicity of the geodesic flow define a new norm on T, M & T, M by
lu, vl =v<{u, u) +e{v, v) for u, v € T, M and for some fixed € < 1/x, and note that
0<{(u-v,u—v)="_{u,uy—2{u,v)+{(v,v)and hence

2e{u, v) <e{u,uy+e{v,v) <|lu, v||2.
61f we restrict to the unit tangent bundle, that is, to unit-speed geodesics, then the dimension

of the space of Jacobi fields is 2n — 1 and the space of tangential Jacobi fields is 1-dimensional, so the
space of orthogonal Jacobi fields is 2n — 2-dimensional in either case.
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Then (Y, Y)/||Y, Y||* = § defines a cone in the sense of Definition 12.5.6, and from
the discussion above we see that the cone families C* ={Y € Z(y) | (Y,Y) =0}
and C" ={Y e #(y) | (Y,Y)<0}canbe equivalently defined by

Cipn =1, XN e T,Me TyM | (x,7,(0)) = 0,(x',74(0)) =0, (x,x") = 0}.

Lemma 5.2.5. The family of cones C; given by (Y,Y) = 0 is strictly invariant, and
vectors in it grow exponentially in time.

>0 unless Y=0=Y
PROOE. —(Y,Y) =(Y,YV)+(Y,Y)=(Y,Y)+ k2<Y, Y)=2k(Y,Y) = 0, therefore
dt — —_ 1

=—(R(Y, )T, Y)=—(K(DY,Y)=k*(Y,Y) 0<(Y—kY,Y—kY)=(Y,V)-2k(Y,V)+k2(Y,Y)
(dep"H(C*(x) c int(C;tx) and’

1Y (0, Y(DI2 2 (Y (), V(1)) = — (¥ (0), Y (0)) = Eez’“nY«)), Yolu O
2€ 2€ 2€

One could likewise show that C™ is strictly invariant and expanding in negative
time, but this follows from reversibility of the geodesic flow (Remark 1.1.29): by
definition

(5.2.3) gl =-g'(-v.

We thus obtain a splitting T, SM = S, & ES, @ U,, and cones satisfying the conditions
of Proposition 5.1.7 to obtain Theorem 5.2.4. |

Remark 5.2.6. Jacobi fields not only determine cone fields as above but also the
stable and unstable subbundles. To that end consider the orthogonal Jacobi vector
field determined (uniquely) by the boundary-value problem Y(0) = v, Y(s) =0
for any v L y(0). Then Y :=lim,_. ;1 Y5 (pointwise) is a stable Jacobi field, that is,
with Y (#) == 0. Stable Jacobi fields define infinitesimal variations of pairwise
forward-asymptotic geodesics, that is, stable vectors. A like construction gives
unstable Jacobi fields.

Later on (Section 6.2) we likewise obtain stable and unstable manifolds (sets
of positively or negatively asymptotic geodesics), whereas Proposition 2.1.10 and
Proposition 2.2.1 did so by using the algebraic structure in an essential way.

It is plausible that having negative curvature everywhere is not strictly needed
for Theorem 5.2.4, and in his seminal papers on ergodicity of geodesic flows of
negatively curved surfaces Hopf recognized the essential features of hyperbolicity

“Note that k appears below, when k? arose as a curvature bound; the dynamical growth and
contraction rates are indeed related to curvature data via square roots.
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and commented on the possibility of even allowing some positive curvature® We
instead explore how much flatness can be allowed for surfaces by developing more
carefully the mechanism that gives hyperbolicity (Theorem 5.2.8).

The technical ingredient is to “projectivize” the action on Jacobi fields. In
the 2-dimensional case orthogonal Jacobi fields are represented by the scalars
y = (Y, n), where n is a unit normal vector field to the geodesic, and the Jacobi
equation becomes j + Ky = 0. Where y # 0 we can projectivize this to u:=y/y,
which then satisfies the Riccati equation

d v N2
g AT W= e
dty y?

with K (#) the Gauss curvature at y(t), as before?

Proposition 5.2.7. The geodesic flow g' of a closed surface M is an Anosov flow
if there is an m > 0 such that for any solution u of the Riccati equation along any
geodesicy: [0,1] — M with u(0) = 0, we have u(1) = m (and u is defined on [0, 1]).

PROOF. For v € S;M let y =y, be the geodesic with y(0) = x and y(0) = v and
choose a smooth orthogonal basis (y, e;, e2) at each y(#). It suffices to check that

Ak = Doy v 8 on (k)

with respect to the basis (ej, ;) is as in Theorem 5.1.15, and since |det Ag| =1 (gt
is volume-preserving), it suffices to show that with €:=min(1/4, Kpax, m) > 0 all
solutions u of the Riccati equation along a geodesic y: [0,1] — M with u(0) >0
are defined on [0, 1] and satisfy € < u(1) < 1/¢. Here —Kpax is the minimum of the
Gauss curvature. (Theorem 5.1.15 gives expanding cones, and (5.2.3) then gives
the contracting ones.)

The easy direction is that u(1) = e: If yy is the solution with 1, (0) = 0, then
u(1) = up(1) = m = € by assumption.

The other inequality follows by contradiction: Suppose u(1) > 1/e. Then
u(r) > 1/e for t € [0, 1] because u(r) > 1/e = (1) < 1 — u(t)* < 0. Thus, i < 1 - ?
and hence

d1l u 1 1 1 1 1 1
———=—<—-1<S-=, S0 —— >—————2>—->¢,
dtu u?” eu? 2 u) " u@) u© 2
contrary to our assumption. O

811e specifically illustrated this by giving explicit finitary geometric criteria to control the effects of
positive curvature [163, p. 593f].

9This generalizes to higher dimension by considering a symmetric operator U defined by Y = UY
and obtaining a Riccati equation for it.
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We now give a curvature condition that implies the hypotheses of Propositi-
on 5.2.7 and hence hyperbolicity. If the Gauss curvature is zero at each point of
a geodesic, then the Jacobi equation shows that this geodesic is not hyperbolic.
Remarkably, the existence of such a geodesic is the only obstruction to hyperbolicity
of the geodesic flow:

Theorem 5.2.8 ([189]). The geodesic flow of a closed nonpositively curved Rie-
mannian surface is Anosov if every geodesic contains a point where the curvature is
negative.

Lemma 5.2.9. With this assumption there are M, T > 0 such that every unit-speed
t
geodesicy satisﬁes/ K(y(s)ds<—-Mfort=T.
0

PRroOOF. Otherwise there are geodesics y,, on [-n, n] with f_"n Ky)dt= —%. By
the Arzela-Ascoli Theorem a subsequence converges uniformly on each [-n, n] to
a geodesic y on R with [ K(y(#)) dt = 0 (Dominated-Convergence Theorem). [

PROOF OF THEOREM 5.2.8 (Kourganoff). Take M,T <1asinLemma5.29 (T <1
by possibly scaling the metric). To check the hypotheses of Proposition 5.2.7 let
u be the solution of the Riccati equation along a geodesic y for which u(0) = 0.
Showing that u is defined on (at least) [0, 1] is the main effort and yields a uniform
lower bound for u(1) as a byproduct.

If u is defined on [0, 1], then let #; = 1; otherwise there is a #; € (0,1] such that
[0, t1) is the maximal interval on which u is defined.

Let fp:=sup{t€[0,t;] | u(t)=M}€[0,5]and t€ [t 7). Then

t ¢ t
u(t) = u(t2)+f u(s)ds= u(tg)—f K(s)ds—f u?(s)ds.
t 15

2

If £, = 0, this gives

t t _MZ
u(t)=0—-| K(s) ds—f ut(s)ds = ) .
o =5 f M- M* ift=1 (Lemma5.2.9).

Otherwise,

t t
ul®) =ult)— | K(s) ds—f u?(s) ds= M — M?;
| I | I |

tp L— t
270 2 M2

thatis, u(#) = — M? in either case, which means that u is defined on an open interval
around ¢ of uniform size, so t; = 1, and u is defined on [0, 1].
With this in hand, the preceding shows that u(1) = M — M? >0, asneeded. O
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One reason one might in the case of surfaces be interested in the extent to
which positive curvature is allowed is that a compact surface isometrically em-
bedded in R® has points of positive curvature (for instance, any point touching a
smallest sphere that contains the embedded surface). Michael Herman asked: Are
there compact surfaces in R® with Anosov geodesic flow? The answer turns out to
be affirmative [108]: If one takes a sufficiently large, sufficiently thin spherical shell
with sufficiently hyperboloid-like holes drilled through from outside to inside in a
dense-enough pattern, the hyperbolicity produced from the negative curvature in
the holes outweighs the small positive curvature between encounters with such
holes. This raises a new question, of course: can this be done with surfaces of low
genus? Can it be done with genus 22 10

The following does not address the question as posed but provides a visually
appealing counterpart in S3. The spherical billiard shown on the left of Figure
5.2.1 is uniformly hyperbolic by Theorem 5.2.18 below, and Theorem 5.2.38 below
then implies that a sufficiently “thin” surface as shown on the right of Figure 5.2.1
(embedded isometrically in S* and presented here in stereographic projection to
R3) has Anosov geodesic flow [188]. Regrettably, one cannot make this construction
work in R3; there are necessarily conjugate points.

FIGURE 5.2.1. A genus-11 Anosov surface projected stereograph-
ically from S° [188]

10Progres.s towards bounding the needed genus has been made only just now [107].
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b. Benoist-Hilbert geodesic flows. We now introduce geodesic flows that differ
significantly from those we previously encountered—although Chapter 2 provides
good preparation. They do not arise from Riemannian metrics and manifest the
distinction in remarkable ways while at the same time being amenable to rather
pedestrian explicit computations. We will introduce them in the proper context
and establish that they are indeed Anosov flows. Without entering their study more
deeply, we point to some of their particularly interesting features.

Definition 5.2.10 (Projective convexity, divisibility). Let PGL(R™) be the group of
projective transformations of the projective space P®™! that is, GL(R™) modulo
homotheties. An open set Q < P(R™) is said to be convex if it intersects each pro-
jective line in a connected set, projectively (or properly) convex, if there is moreover
a projective hyperplane that does not intersect the closure of Q, and strictly convex
if every projective line intersects the boundary 0Q in at most 2 points. A projec-
tively convex Q is said to be divisible if there is a discrete torsion-free'? subgroup
I' < PGL(R™) that preserves Q and with compact quotient M = I''Q (following
Furstenberg and Benoist we say that I' divides Q).) One can prove and we will use
that 0Q is C'.

Example 5.2.11. The ellipsoid Qy:={[v] e P(R™) | g(v) > 0}, where q is a quadratic
form on R with signature (1, m—1) is strictly convex and divided by any cocompact
lattice in its isometry group SO(g).

Definition 5.2.12 (Hilbert distance and geodesic flow). The Hilbert distance dg on
a projectively convex Q c P(R™) is defined by dq (x, y) := |log((a, b; x, y)), where
x—a jy—-a (x—a)(y-b)

x—-b/ y—=b (x-b)(y-a)

is the cross ratiowith a, b € 6Q) such that a, b, x, y lie on the line (x, y) through x # y.
(This distance is invariant under all Q-preserving projective transformations.)
This implies that the shortest curve between any 2 points of Q is a line segment.
The geodesic flow on Q is defined by g (x,¢) being the unit tangent vector in the
direction of ¢ at the point x; at distance ¢ from x on the line through x defined by ¢.
Its projection g! is called the geodesic flow on M = T\Q.

(a,b;x,y) =

As promised, we will prove that these geodesic flows are in scope for us:

Theorem 5.2.13. The geodesic flow of a compact factor of a divisible strictly convex
subset of P(R™) is an Anosov flow.

HThis can be viewed as the space of lines through 0 € R™, the points on the unit sphere in R or
the equivalence classes of R™ \ {0{ modulo collinearity.
2hat s, only the identity has finite order
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We will prove this result later, but the point of this section is an exploration of
the dynamical features of these flows, analogously to Chapter 2. Theorem 5.2.13
will then be a rather easy consequence.

We begin by making the notions from Definition 5.2.12 more explicit and
amenable to computation. First we take a global affine chart, that is, we may
assume that Q « R™~! « P(R™), a suitable affine hyperplane, so Q is a bounded
convex subset of R”~!, and the tangent bundle is Q x R”~!. Define C! maps

p: TQ—Q,

pi; TQ —0Q, by 0'+(w)(p+(w) -x)=¢=0" (W) (x—-p~ (W) and p(IL_UI) =x.
o TQ — (0,00) =(x,0)ETQ~{0}

This allows us to define the Hilbert norm |w|q =0 (w) + 0~ (w) of vectors w =
(x,6) € TQAN{0}. p,p%, |l llq are independent of the affine chart, and the unir
tangent bundleis SM ={w e TQ | |lwlq = 1}. One can check that the geodesic
flow (unit-speed motion along lines) on SQ is thus given by

el —1 el

ot (w)et+o~(w)” (o+ (w)et +o~ (w))?

gw) =wr=(x,&) = (x+

§)-

Remark 5.2.14. This shows in particular, that this is a C! flow—and no more
regular than that unless the boundary is more smooth. One can improve this by
way of reparametrization as follows. For a smooth I'-invariant Riemannian metric
g on Q follow Hilbert-geodesics with constant g-speed.

The following will turn out to be the stable foliation for the geodesic flow:
WS w)=(p*) ) (pT(w) for wesQ,

the collection of unit vectors pointing to the same boundary point. Isolating strong
stable leaves geometrically requires a little extra work.

Claim 5.2.15.

WS w)={vy = (x1,6) e WS W) | wi=w or(x,x1) N {p~ (W), p~ (W)} € Tp+(w) }
|
=tangent space to the boundary

={v1 =1, €SQ | da (Ip(gf(w))l,lp(gf(wl))l) == 0}.

=Xt = X1t

ProoOF. This is a nice application of the fact that a cross ratio is naturally defined
for a set of lines in the following sense: If points a, b, x, y are collinear and 4 lines
are drawn from a distinct point {q} to these, then for any other line not through
g with corresponding intersection points A, B, X, Y, the cross-ratios agree, that is,
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(a,b;x,y) = (A, B; X,Y), and conversely, their agreement implies that the 4 lines
through a and A etc. are concurrent.

Note first that p*(w) # p*(w1) = dq(xt,x1,1) == 00, SO wWe may assume
p*(w) = p*(w)) = p;. Then

p(w)

FIGURE 5.2.2. Strong stable leaves and Busemann functions

(py P~ W) x,x0) =e' = (pf, p~ (w1); x1,%1,0)
implies (see Figure 5.2.2) that
(Xt X1,0) 3 q=(p~ (W), p~ (w1)) N{x, x1).
Since the line (x;, x;,;) converges to { pf, q», this implies the claim:
do (x¢, x1,) == 0 < (pT, @) is tangent to 0Q & G € T+ O
The (footpoint) projection in Q of a strong stable leaf is a horocycle, and we
now give alternate descriptions of this. One is as the limit of d — Q-spheres through

x € Q as their centers tend to p € 6Q. Another is as a 0-level set of a Busemann
function:

o ={n1€Q| bylx,p*(x,8)) =0},

where the Busemann function b is defined on Q x Q x 0Q by
by (%2, p) = lim (da(x1,x) — do(x2, %))

or equivalently (see Figure 5.2.2) as the logarithm of the cross ratio of the 4 lines
through q =9, n(py,p;) and p, p], x2, x1, respectively, where p; is the other
boundary point on (x;, p).
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While the definition of the stable subbundle E* as the tangent bundle of the
stable foliation is universal, the explicit formulas in this context give an equally
explicit representation of this subbundle:

Ey,={y,-0" Wy eTySQ | yeTxHuw}t, Ei={0" W)y €eTySQ| ye TyHy}.
By construction, these are I'- and gt-invariant, and TSQ =EoRX ® E¥.

PROOF OF THEOREM 5.2.13. The flip map v — —v conjugates the geodesic to its
reverse, so it suffices to check that vectors in E® contract exponentially. To that end
we reduce to considerations in TQ by observing that the existence of a compact
factor implies that for any Riemannian norm || - || on SQ there is a C = 1 such that

Iy, o @INI/C < lyla < Cl(y,—oF W)

Thus, it suffices to show that for A € (0, 1) thereisa T > 0 as follows: If (y, —o ™ (w)y) €
E3,, hence

D (y, -0 (w)y) = (yr,—o (" (W) yy),
then [lyrla < Alyla.

To that end an explicit description of y; suggested by Figure 5.2.2 helps: Writing
w = (x,&) and w; = g (w) = (x1,¢,), we find that y; is the unique vector tangent to
the horosphere #,, such that p*(w), x+ y and x; + y, lie on a line.

Since 4Q is strictly convex, the map ¢ — ||y:llqg = 0¥ (ys) + 07 (y) is strictly
decreasing, and indeed to 0 as t — oo since 0Q is C!. Thus, writing Ef ={veE’|
[lv]l = 1}, the function F: Ef xR—=R, (v,1) = llyclla/llyllq is continuous, decreasing
in t with F(-,0) = 1 and F(v, t) == 0, so there is a unique (and continuous and
I-invariant) 7: E} — (0,00) such that F(v,7(v)) = A. Take T := maxt. 0

Remark 5.2.16. It is nontrivial to show that there are examples of this type beyond
Example 5.2.11; this is a substantial part of the work of Benoist [36-42]. Another is
the investigation of what can occur if one does not require strict convexity. Benoist
showed that there are nontrivial instances of this and studied their features. From
the dynamical point of view, including their smooth ergodic theory, the definitive
study at this time is [60].

c. Billiards. Billiard flows provided our first example of a flow that is naturally rep-
resented as a flow under a function (Example 1.2.9) because in the cases that then
came to mind, the boundary of the billiard table is a global section (Figure 0.1.2).
To discuss billiards with hyperbolic behavior we begin with a formal definition of a
billiard.

Definition 5.2.17. A smooth billiard table B in R = T? (which is a good model
for motion in a periodic crystal) or R = R? is the closure of an open set B° of R
whose boundary is a finite disjoint union of smoothly embedded circles called the
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walls of B. A billiard is said to be dispersing if every wall y has negative curvature
(that is, if T is the tangent vector of y and N the normal vector pointing into the
table, then (5—5, N) <0, where s is the arc-length parameter; Figure 0.1.2 instead
has a boundary with positive curvature). The phase space of the billiard is the
unit tangent bundle SB° with the billiard flow ¢ defined as in Example 1.2.9
(straight-line motion with optical reflection) except for

« tsuch that ¢’ is at the boundary (while one could adjust the definition in
such a way as to make the flow continuous at such points, it cannot be
differentiable),

o t=Tif " is tangent to the boundary (this is a removable discontinuity
but necessarily a failure of differentiability).

We define the regular set Q) to be those points in SB° for which the second possibility
(grazing collisions) occurs for no positive or negative time; this is a residual conull
flow-invariant set, and ¢’ is smooth on it. B has finite horizon if the boundary is a
global section, that is, every orbit meets the boundary.

The Sinai billiard is T? minus a disk; it is dispersing with infinite horizon.
Removing instead disks of diameter 3/5 around (0, 0) and (1/2, 1/2) gives finite horizon.

O

FIGURE 5.2.3. Dispersing billiards on T? with infinite and finite
horizon (the particle moves in the shaded region)

Similarly to Theorem 5.2.8, one can show that finite-horizon dispersing bil-
liards are uniformly hyperbolic away from the collision singularities:

Theorem 5.2.18 ([189]). The regular set of a finite-horizon dispersing billiard is
uniformly hyperbolic, that is, it has all the required properties from Definition 5.1.1

except for compactness

13And there are no fixed points.
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This result is obtained by introducing Jacobi fields and a Riccati equation, but
in this case hyperbolicity comes from the collisions.

Let V: (a,b) x (c,d) — M be a variation of a billiard orbit y = V(:,0), that is,
V(.,s) is a unit-speed billiard orbit for each s with collision times ¢;(s). Then
Y= %V is called a Jacobi field where defined. Y =0 away from collisions, and we
now investigate the jump discontinuities at collisions. The reflection of a billiard
orbit rotates the tangent vector by 20, where 6 is the angle of incidence; we write

Ryg for rotation by 20 and now show the counterpart for Jacobi fields.

Lemma 5.2.19. If Y~ and Y™ are the values of the Jacobi field before and after
collision with incidence angle 6, then Y* = —Ryg Y ~.

Corollary 5.2.20. Orthogonal Jacobi fields remain orthogonal after a collision.

PROOF. Denote by 7(s) the time of collision of s — V (-, s) with a point I'(r(s))
of a boundary piece I parametrized by arc length. Denote by w*(s) the angle
between the horizontal axis and 2 ail,- V(t, s) (before and after collision). Then

=3 Lw*—w7), and Yi=3 Lwt+w)is the angle between the horizontal axis and
the tangent to I at the collision point. For small s and ¢* near 7, we then have

V(tF,8) =T(r(s)) + R+ (15 = 7(5)).

Differentiating with respect to s at s = 0 then gives

or 1\ o1 1 N dw*(s)
Yy (¢t )_ Ru,(s) 0 asti(S) 0 + Ryj2 Ryt (25 —1(9) 35
or 1\ ot 1
= ()2 )
or 1 ot 1
Y*+RyY = —Ry(Id+R —2—R,+[.|=0. O
S0 20 a5 w( 29)(0) 55 [ (0)
=2C0sOR+

Q)
o)‘m
3

=or
As with geodesic flows, orthogonal Jacobi fields are described by a scalar y

using a unit vector field orthogonal to the orbit, and writing u = y/y, we obtain the
Riccati equation iz = —u? between collisions, and:

2y
Lemma 5.2.21. Ata collision, y* =-y~, y*=-y"+ yg andu* =u" ~Sne’
where x is the curvature of T at the collision point (negatwe for dispersing billiards).

PROOF. y* = -y follows from the previous lemma. Next,

_ dwt+wT) oy 01// or ¥
.4 o T —2 7 _ -9 -
yory 0s 0s 6r ds Ksin@
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L L
andut —u- =L Y VY 2K 0

yt oy y sinf’
Corollary 5.2.22. In adispersing billiard, u(0) =0= u(¢) =0 forall t = 0.

2

PROOF. If there is no collision between time 0 and #;, then & = —u*=, so either

u(0 =0and hence u=0o0n [0, ;] or u(0) >0 and hence

dl _u .

dtu w2
so % is increasing, hence positive on [0, #;]. And the previous lemma shows that
collisions increase u. O

Analogously to Lemma 5.2.9 we here have

Lemma 5.2.23. For a finite-horizon billiard there is a T > such that every unit-speed
billiard orbit has a collision in [0, T1,

PRrOOEF. Otherwise, there are billiard orbits y,, without collision on [—n7, 1], and by
compactness (and suitable choice of parametrizations) a subsequence of (x,, v,) =
(Yn(0),71,(0)) converges to (x, v) € SB°, which then defines a limit geodesic y, nec-
essarily periodic, and with period 7, say (because it is contained in the billiard
table B, hence not dense in T2). If y has no collision, we are done. Otherwise,
there is a ball By c T? \. B tangent to y and also a ball B; < T2 \\ B tangent to y
on the other side because if not, then a geodesic with initial vector (x’, v) close to
(x, v) = (y(0),7(0)) for x’ close enough to x on that other side, is collision-free. If
v, = v for any n = 7, then y,, being 7-periodic, is collision-free, so v, # v for all
n € N. This, however implies that for large enough 7, y,, intersects By or B; on
[-27,27], contrary to their construction. O

PROOF OF THEOREM 5.2.18. For (x, v) € SB® write W(y, ;) = v1 < T4, B°. For an
orbit y and (w, w') € Wiy(g),j(0) there is an orthogonal Jacobi field Y along y with
(Y,Y) = (w, w"). Denoting by t; the collision times and #; := %(tk + tx+1), the linear
maps
— stk L ~ ~
Ak =Dy, i ® " WoGoy@o) = WG i)
have determinant +1 since the billiard flow ¢’ preserves volume, so uniform hy-
perbolicity follows from Theorem 5.1.15 once we show that u := y/y satisfies
1

1S —= =12
U(ti1) Kmax

)
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where 0 < T} < %(tk+1 —t;) < T < oo for all k, and xpax < 0 is the minimum
curvature of the boundary. To see this note that . = — u? on (%, k), SO %% =1, and

<—1/Kmax

1 1 »

= = +I+1 — 1 U
u(fer)  ulel,,

€[Ty,T»]

d. Gases of particles. So far billiards have appeared solely as “toy models,” and
while this is sufficient motivation for studying them, their role in dynamical systems
is much larger because, as we now show following [92], the natural microscopic
model of a gas of hard particles is itself a billiard problem. We first illustrate this in
the simplest nontrivial case.

Example 5.2.24 (2-disks billiard). Consider 2 disks of unit mass and with radius
r moving freely on T2 and colliding elastically with each other. With respect to a
frame with origin at their joint center of mass, their positions are opposites, so
one of them describes a configuration completely. The possible configurations
are those in which the disks do not overlap, that is, the centers are at least 2r
apart. In our choice of coordinates, this system is modeled by free motion of a
point mass in T2 with a disk of radius 2r removed. This is the configuration space
of a dispersing billiard, though it remains to check that the direction changes at
collisions correspond to reflection in this model.

To address the latter point in this example, let us formally define billiards in
arbitrary dimension.

Definition 5.2.25. A billiard table is a compact Riemannian manifold B with
boundary. A billiard orbit is a unit-speed geodesic with reflection in T,0B c T, B
at points p € dB. Here in an inner-product space E we define reflection in a
codimension-one subspace V by x — x —2(x, uyu for a unit vector u L V.

Our object in what follows is to verify that particles moving freely and with
elastic collisions are indeed billiard systems as in Definition 5.2.25. To that end it is
helpful to clealy describe what we mean by mechanical systems with collisions.

First, the configuration space for a mechanical system with collisions consists
of a subset B = ; D;I ([0,00)) of an n-manifold M, where the D;: M — R are
piecewise C!-functions with nonzero differential.

Collisions occur on 0B < [; Dl.‘1 (0), which has a well-defined tangent space
away from the intersections of 2 such level sets and away from those points where
a D; is not C!, the singular points. A collision at such a point is said to be singular,
and orbits are not defined beyond such times. other collisions are regular, and the
regular set consists of those orbits that never have a singular collision.
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In the case of a multi-particle systshoudle D; are the signed pairwise distances
between particles. Singularities correspond to multiple (simultaneous) particle
collisions or to collisions between 2 particles that involve more than one point of
contact.

Definition 5.2.26. Free motion in a mechanical system is geodesic motion with
respect to the Riemannian metric whose norm is the total kinetic energy of the
system, called the kinetic-energy metric.

Thus, conservation of energy corresponds to constant speed, which is essential
for optical reflection.

Collisions at regular points p € 0B are described in terms of the D; with D;(p) =
Obyamap R,: V. — V,,where Vs :={ve T,M | +dD(v)<0};thenR,(v)=V =
ve V_nV, =kerdD, and D; is decreasing before the collision and increasing
thereafter. We extend R, to T, M by imposing R, (—v) = —R(v) and now describe
further properties of R that determine it explicitly,

Definition 5.2.27 (Elastic collision). Alinear map R: E — E of an n-dimensional
inner product space E is an elastic collision if
(1) R preserves the norm,
(2) thereis a vector N such that R(V) = V¢ = {v eE| F(y,n)= 0},
(3) thereis a full-rank linear map L: E — R"~! with LR = L (called a sufficient
set of linear invariants).

As we indicated previously, the first property reflects conservation of (kinetic)
energy, and the second one says that N is not crossed. We will obtain the linear
invariants from conservation of momentum. For now we note that elastic collisions
are reflections in N*.

Proposition 5.2.28. An elastic collision is a reflection in N* (Definition 5.2.27).

PROOF. Fix a unit vector u € ker L. For v € E we have LRv = Lv, hence Rv—v =
T(v)u € ker L defines T € E*, so

5.24) (wvy=(Rv,Rv)=(v+1t(V)u,v+t(v)u) =(v,v)+2t(v){U, V) + (T(U))z,

thatis, 7(v) = 0 or 7(v) = —2(u, v). In light of Definition 5.2.25 we show that the
latter possibility holds for all v € E and that ker L =RN. The reason is that

(5.2.5) T(1)=0=>Rv=v=>veV,nV.=Nt

5.2.4
by Definition 5.2.27(2). Thus v L kerL = (u,v) =0 (:)> T(v)=0=v L N, so

(ker L)+ = N1 hence (ker L)1 = Nt since both are 1-dimensional. Thus, ker L = RN.
(5.2.5) also implies 7(v) =0 = v € N* = (kerl)* = (u,v) =0 = -17(v) =
T(v) = =2{u, v). O
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Corollary 5.2.29. A mechanical system with collisions whose regular collisions are
elastic can be modeled as a billiard system.

PROOEF. By definition of “mechanical” the motion is along geodesics, and by Propo-
sition 5.2.28 the boundary collisions are reflections in (ker dD; (p))* = (T (0B)*4,
where p is the collision point and D; is such that D;(p) = 0. ]

This has further implications. R preserves velocity components tangent to
0B, that is, if 7 is the projection to kerdDy, then 7o R, = 7. And F: T,M — R s
collision-invariant if and only if FRv = Rvifand only ifker F 3 Rv — v = -2(u, v)u
for all v if and only if (ker dD,,)l ckerF.

Example 5.2.30 (2 point masses on the interval). We illustrate this formalism in the
particularly simple example of 2 point masses m;, m, at x1, x» € [0, 1], respectively,
that collide elastically with each other and with the end-points. We describe the
configuration space as M = R% with D; = 1 - x; (thatis, x; < 1), D, = x, (that is,
X2 20), and D3 = x1 — x» (that s, x; is to the right of x,). Thus, B = ﬂf.‘:l Dl._1 ([0,00))
with inner product {(vy, v2), (W1, w2)) = My vy Wy + MV Wy.

A collision between the 2 masses is described by D3 = 0, and the linear-

invariants map is the linear momentum L(v) = m; vy +ma vz, so ker L = R(mg, —my),
1

and with u:= ————=(mjy, —m,) we get
\/mE+m3
movV1—my U2
R(W)=v=2Cu, v)u=(vy, v2) = 2—————(mz, —=my)=(1 = C(V)mz, v2+C (V) My).
m{ +ms;

=C(v)

We note that the more common approach to this example is to use the standard
inner product rather than the one giving kinetic energy and to accordingly change
the configuration space to a triangle with sides \/m; and \/m,.

The main result from these endeavors is:
Theorem 5.2.31 (Cowan [92]). The gas of hard particles is a point billiard.

Remark 5.2.32. The particles are not assumed to be spherical, so angular momen-
tum and its transfer between particles is in scope.

PROOF. The gas of hard particles is modeled by N piecewise smooth rigid bodies
B; moving freely in R? and having nonsingular intertial tensor. The “position”
of B; is a point in M; := F; x G;, where F; ~ R® parametrizes possible locations
of the center of mass and G; ~ SO(3) decribes the orientation of B;. Thus, the
configuration space is B:=={p € M:=M; x---x My | D;j(p)=z0forl<i,j=< N}
using the signed distances D;;: M — R between dB; and dB; chosen to be positive
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away from overlaps. If, furthermore, each B; is constrained to remain in A c R3
with piecewise smooth boundary A = U}, Ax we instead have

B={peM| D;j(p)=0,D} =0for1<i,j<N,1<k=<m},

where the D;. . are the signed distances between 0B; and Ag. Regular boundary
points are those where only one inequality among these fails to be strict; other
(singular) boundary points represent double collisions or configurations where
more than 1 point of a particle is in contact with another particle or with 6 A.

The total kinetic energy combines translational and rotational energy, and for
the latter, the intertial tensors I; of the B; are the counterparts of mass:

M
(vw), W, oy =) (mivvi+ Lww,.
i=1
We note that this defines free motion in a noneuclidean space, so the motion is not
along lines.

We finally show that the collisions between these particles are elastic. For
2-particle collisions consider B; and B; to fix ideas. We need to find the linear-
invariants map L: T, M — R®"~1. 6(N—2) obvious linear invariants are given by the
velocity components of the B; for i > 2. The needed 11 additional linear invariants
are

e 3 components Lj, Ly, L3 of total linear momentum,

¢ 3 components each (Ly,..., Lg) of angular momentum of B; and B, with
respect to the collision point because relative to that point the torque
from the collision is zero,

« 2 velocity components Lo, L1 of B; projected to the collision plane.

To check that the L built from these has maximal rank, we adduce the velocity L;»
of By normal to the collision plane, and show that the resulting extension L’ has
trivial kernel: the trivial invariants tell us that the B; for i > 2 have zero velocities. If
Lyg = L1 = L12 =0, then the translational velocity of B is zero,and Ly = L, = L3 =0
implies the same for By, so the angular momenta come from angular velocities,
which are therefore 0.

To conclude we note that collisions with d A play out the same way because the
5 nontrivial invariants are Ly, Ls, Lg, L19, L11 from the previous arguments. Thus,
Corollary 5.2.29 gives Theorem 5.2.31. O

We conclude with brief remarks on what are called no-slip billiards. This
particle-collision model also brings in exchanges of angular momentum, even be-
tween spherical particles [67]. While its governing rules are not quite as principled
as the one in the previous subsection, they have a sound physical justification
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and they have been studied significantly more, with some surprising results'* The
central definition is a little less abstract than Definition 5.2.27:

Definition 5.2.33. Let M be the configuration manifold of 2 rigid bodies with
smooth boundaries in R” endowed with the kinetic-energy metric. The collision
map C: TyM — T;M is said to be strict if

(1) Kinetic energy is preserved,

(2) linear and angular momentum are conserved,

(3) Cis an involution (time-reversibility),

(4) collision forces act only at the point of impact.

In R?, these requirements imply that collisions are either elastic or of the
no-slip type [94, Theorem 1.1] -15 this is a central motivation for the definition of
no-slip billiards, as is the fact that this system preserves the usual Liouville measure
[94, Theorem 1.2]. These systems have been studied to great effect by Feres and
collaborators, and we recomnend the richly illustrated introduction [94].

e. Linkages. We illustrate our next class of systems with a particularly salient
example. Linkages consist of rods connected by joints at each of which there
may or may not be a mass. Instead of formalizing that definition, we present the
instance of interest.

Definition 5.2.34 (Kourganoff linkage). The Kourganoff linkage consists of points
(a,0),(b,0),(0,0),(d,e), (-2, f),(2,g) € R? and connected by massless rods of lengths
1, I and r (Figure 5.2.4) subject to

r

1/2
(5.26)  (I-2*+r*<1,and3-1<r<1/2 T | , ‘

1 2 3 1

(for instance, [ = 11/4, r = 1/3) with mass €? at (0, ¢), no mass at (d, e), and unit

masses at the other joints. (Thus, the massive joints are constrained to motion

along lines.) Its configuration space € is the set of (a, b,c,d, e, f,g) € R’ with
(@+2)?%+f>=1=b-2°+g%
(a-d)?+e*=1?>=(b-d)*+é°,

(c—e?+d*=r?

14Eor instance, the motion of a “sticky” disk bouncing between parallel lines is bounded, and the
“stadium” billiard is not ergodic.

151 R", one obtains the disjoint union of orthogonal Grassmannian manifolds Gr(k,n — 1),
k=0,..,n—1, of all k-dimensional planes in R?1,
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and endowed with the kinetic-energy metric (Definition 5.2.26), whose geodesic
flow represents free motion of the linkage.

)(0, C) [mass ¢?]
r
(d, €) [mass 0]
1 I
(ll 0 [masp 1] 0) [mass 1]
y=0
1
(—Z,f) [mass 1]
2,8)
x=-2 x=0

FIGURE 5.2.4. The Kourganoff linkage

Remark 5.2.35. A look at Figure 5.2.4 shows that the configuration space is de-
scribed by the 2 circles that describe the orientation of the unit-length rods plus a
real parameter for the shortests rod. That is to say, this linkage has a 2-dimensional
configuration space: a 2-torus parametrizes the orientation of the 2 lower pairs of
vertices (the ends of the unit-length rods), and once these are fixed, (d, e) is fixed
modulo the sign of e (completely fixed if e = 0), and once that choice is made, there
are 2 possibilities for c. This naturally immerses the configuration space in T2 x R
and defines a natural projection to T2 with at most 4 preimages per point (Figure
5.2.6). More formally, since (a+2, f) and (b—2, g) lie on the unit circle (Figure 5.2.4),
the configuration space € in Definition 5.2.34 is contained in T? x R3 parametrized
by

@,¢,c,d,e)— (a,b,c,d,e, f,g) =(—cosf —2,cosp+2,c,d, e,sinb,sin¢).

One can imagine the physical construction of such a linkage using rotational
joints and with 5 vertices attached to prismatic joints, frictionless sleeves that slide
along the respective constraint lines (Figure 5.2.7). (Those sleeve joints are a mere
convenience, and linkage-purists can replace each by a massless Peaucellier or Hart
linkage (Figure 5.2.5), which produces straight-line motion using only rotational
joints, or they can instead be approximated by arcs of vast circles traced by the
ends of additional very long rods.)
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1 Modell Nr. 10
Jnversor von Peaucellier 1864 \

FIGURE 5.2.5. The Peaucellier linkage

at the University of Tokyo http://www.ms.u-tokyo.ac. jp/models/models/invertors.pdf

Theorem 5.2.36. For sufficiently small e the free motion of the Kourganoff linkage
is an Anosov flow.

Remark 5.2.37. This, finally, is a realistic physical system whose dynamics is Ano-
sov. Specifically, since the Anosov property is persistent, a Kourganoff linkage with
rods of sufficiently small (rather than zero) mass is Anosov, and if constructed
with sufficiently small friction will exhibit corresponding dynamics. It should be
noted that € itself arises from a like use of stability and is therefore not explicit.
Nonetheless, unlike any previously known Anosov linkages, the geometry of the
Kourganoff linkage is completely explicit [164, 187].

We note as well that the point of this is not merely the existence of an Anosov
linkage—a universality theorem asserts that any compact Riemannian manifold is
the configuration space of a linkage, and this includes negatively curved ones. How-
ever, the linkages obtained from the application of that theorem are astronomically
more complicated than the one here. This is a “realistic” linkage.

The proof strategy is to establish that for small enough € the configuration
space with the kinetic-energy metric is so close to a hyperbolic billiard that the
geodesic flow is necessarily Anosov. This involves a result to the effect that “com-
pressing” a surface in T2 x R along the z-direction asymptotically gives a billiard in
T2 in the sense that the geodesic flow uniformly converges to the billiard dynamics
under this procedure. If the limiting billiard is hyperbolic (such as by Theorem
5.2.18), then stability of hyperbolicity implies that the geodesic flow of the surface
is Anosov once it is sufficiently compressed towards T2.
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This “flattening idea” goes some time back. In the 1920s Birkhoff noted that
if one of the principal axes of an ellipsoid tends to 0, then the geodesic flow of
this ellipsoid appears to tend to the billiard flow of the limiting ellipse'® Arnold
suggested a reverse idea in the 1960s in hopes that it would establish hyperbolicity
of dispersing billiards: that a dispersing billiard in T? can be approximated by the
geodesic flow of a surface of negative curvature made by gluing together two copies
of the billiard (ergodicity of that billiard was later proved by Sinai using a different
approach)!” This makes these ideas explicit:

Theorem 5.2.38 ([187, Theorem 5]). Let B c T? be a finite-horizon dispersing
billiard with smooth scatterers and X c E = T? x R an immersed surface such that
B =n(X), where it is the natural projection to T2. Then the Euclidean metric on E
induces a Riemannian metric he on X, = f(X), where

f;;:E_'E, (X,y,Z)’—'(x’}’,Gz)y

which in turn induces the Riemannian metric g. = . (he) on Z. Suppose

(1) thesurface n~!(Int B)NX is transverse to the fibers of m (no vertical tangent
planes) and

(2) the curvatureof NV is nonzeroat q € n~' (0B)NX (nondegenerate bound-
ary projection)!®

where V is a neighborhood of q in the vertical affine plane through q that is per-
pendicular to T,Z. Then for small-enough e, the geodesic flow of (Z, g) is Anosov.

1641 order to see how the theorem of Poincaré and its generalization can be applied, we will
consider first a special but highly typical system of this sort, namely that afforded by the motion of
a billiard ball upon a convex billiard table. This system is very illuminating for the following reason:
Any Lagrangian system with two degrees of freedom is isomorphic with the motion of a particle on a
smooth surface rotating uniformly about a fixed axis and carrying a conservative field of force with it. In
particular if the surface is not rotating and if the field of force is lacking, the paths of the particle will be
geodesics. If the surface is now flattened to the form of a plane convex curve C, the ‘billiard ball problem’
results. But in this problem the formal side, usually so formidable in dynamics, almost completely
disappears, and only the interesting qualitative questions need to be considered. If C is an ellipse an
integrable problem results, namely the limiting ease of an ellipsoid treated by Jacobi’ [47, p. 169f]

17y precisely the same way a torus billiard table can be be regarded as a two-sided torus with a
hole on which the point moves along a geodesic. But if the two-sided ellipse is an oblate ellipsoid, the
two-sided torus with a hole will be an oblate “Kringel” [this is the northern German term for “pretzel”]
(of genus 2). Thus, motion on our torus billiard table is a limiting case of motion along a geodesic on the
knot-shaped surface. .. Thus, a two-sided torus billiard table can be regarded as an oblate surface with
negative curvature everywhere: on flattening, all the curvature is accumulated along the circumference”
[2, Chapter VI, §4].

18This ensures that any geodesic in that preimage is unstable, that is, has sensitive dependence
on initial conditions.
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PROOF OF THEOREM 5.2.36. Figure 5.2.6 makes it plausible that the hypotheses
of Theorem 5.2.38 hold. The proof consists of verifying this explicitly.

We first check that the configuration space ¥ is a smooth submanifold of
T2 x R as follows.

e Near p € € with ¢ # e #0, ¥ is the graph over T2 (that is, over 0,¢) of

d=_ cos 92+ cos¢

cos0 + cos 2
(5.2.7) e=i\/lz—(T¢ +2)

c:ei\/rz_((msﬂ—%b)z’

with “+” depending on p.

e Near p € € where ¢ # 0 mod 7 and (—cosf —2,0), (d,e) and (0, c) are
not aligned, € is a graph over 0 and c: d and e are simple roots of a
second-order polynomial, hence depend smoothly on 8 and ¢, and ¢ =
+cos~!(2d + cosB).

o Likewise, near p € € where 0 # 0 mod 7 and (cos8 +2,0), (d, e) and (0, ¢)
are not aligned, % is a graph over ¢ and c.

For each p € € atleast one of these scenarios applies: if the latter 2 scenarios do
not apply, suppose 8 =0 mod 7 and ¢ = 0 mod 7, so 8 = ¢ mod 27 since r <1/2,
hence 0 = ¢ = n mod 27 since I < 3, so ¢ # e # 0 contrary to our assumption. Thus
(by symmetry without loss of generality) instead (—cos8 —2,0), (d, e) and (0, ¢) are

FIGURE 5.2.6. The configuration space with € large, small, and zero
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aligned, and failure of the first scenario implies e € {0, c}, so (- cos0 —2,0), (d, e)
and (0, ¢) are all on the x-axis, contrary to [ +r > 3.
The kinetic-energy metric on ¥ is given by

ge=da* +df?+db* +dg* +e*dc® = do* + dp* +e*dc?,

and it is nondegenerate on ¥ because of the local embedding as a graph. As
mentioned before, its geodesic flow is the free motion of the Kourganoff linkage.
The nature or the embedding further implies that the projection

p:TPxRE - T?* xR, (0,¢,¢,d,e)— (6,p,c)

restricts to an isometric immersion of € to a surface X in T2 x R with the metric
ge = d0? + d¢p? +€*dc?. The projection 7: T x R — T2 maps X to

(5.2.8) B=m(€)=1{0,0) € T> | |cosh—cos¢|<2r, cosd+cos¢p <2]—4}
with boundary
{cosO—cos¢p=2r}u{fcosp —cosO =2r} u{cosO +cosp =21 —4}.

We later show that this is a finite-horizon dispersing billiard but first establish The-
orem 5.2.38(1) (this is clear) and Theorem 5.2.38(2). Consider one of the boundary
components and suppose 7(q) € {(6,¢) € T2 | cos@+cosp=21— 4}.

Denoting by N the normal vector at g and by subscripts 8 and ¢ the cor-

responding projections, parametrize the (6, ¢)-projection of a normal line by
cosf+cos¢p

0(1):=qp + tNp, P(1) == qp + t Ny, F(0,¢$) = ——— +2, and

c(t)=J_r\/lz—(F(G(tw(t)))zi\/rz—(cose(t);COS(p(t))z,

so that (8(1), (1), c(1)) € X according to (5.2.7) and (6(0), ¢(0), c¢(0)) = g by choosing
“+” appropriately. For ¢t near 0 we then have

d c0s0(0) —cos¢p(0))2
c(t):i\/t%h:OF(ﬁ(I),Qb(t))+O(t2)i\/rz—( > | +ow.

It suffices to show that ¢ — c¢(¢) is invertible near ¢(0) and that the inverse has
nonzero second derivative. To that end note that

(c(1) = c(0)* = £t a FO(0), 1) +o(1)

dtle=o
L 1
_{0'0 )
—(¢/ ) )VF(G(O),d)(O))#O since 2<1<3
1
and hence r = + (c() = ¢(0)? + o(c(t) — c(0))?, as required.

4, _JFOw,¢0)
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Finally, we show that B is a finite-horizon dispersing billiard—which is easy
to believe from Figure 5.2.6. As to dispersion, consider the boundary component
F(0,¢) :=cosO +cos¢p) =21-4€(0,2) (since 2 < I < 3). Its curvature is

v. Y _ 1 (sinQ) cosfsin? ¢ +sin? 0 cos ¢
. = — . . = — 3 .
IVEI \/sin0 +sin”¢ s \/sin? 6 +sin? ¢

As required, the numerator is positive because it equals
cosO(1— cos? ¢)+cosp(l— cos? 0) = (cos8 + cos ) cos®0

— (cos? 0 +2cos0 cos ¢ + cos? ) cos @
+ (cosO + cos )

=(21-4)[cos?0 — (21 —4)cosO +1] > 0.
| I | I
>0 <2

For the boundary component {cos¢ — cos6 = 2r} the corresponding numerator is

sin? cosd —sin® O cos ¢ = 2r [ cos* 0 +2rcos0 +1] >0,
<2
and similarly for {cosf — cos¢p = 2r}.

We conclude the proof by showing that if (I —2)? + r? <1 and r < 1/2, then B
has finite horizon.

Otherwise there is a bi-infinite geodesic (0(t), ¢(f), and we first show that it has
slope +1. Up to exchanging 6 and ¢ we may assume the slope is in [-1, 1], so there
is a o with 6(p) = 0 mod 27, so G:={¢(t) — () mod 27 | teR, 8(¢) =0 mod 27}
is a subgroup of R/27Z, and for t € G we have |cos8(f) —cos¢(t)| < 2r by (5.2.8), so
cos¢p(t) =2-2r >0and hence G < (-7, 7) mod 27, which means that G is a point
and the slope is in {0, +1}. The slope cannot be 0 because in that case taking ¢ such
that cos(#) = —1 and (5.2.8) give —1+2r = cos¢(t) =1 —-2r > 0, contrary to r < 1/2.

Thus, the slope is 1 (up to replacing 6 by —6). Therefore, there are 1;, £, with

¢(t) +6(11) = 7 mod 27,
¢(12) +0(12) =0 mod 27.

Averaging these 2 equations and using 8(#,) —0(#1) = ¢(£2) — (1) mod 27 (slope 1)
gives ¢(f2) — ¢(t1) = 3 mod 7, and hence cosp(f2) cosp(t1) = —sinp(f) sinp(17).
Squaring both sides here gives
cos? () cos? p(11) = (1 — cos® p(£2)) (1 - cos? (1))
=1-cos? ¢(t) — cos® () + cos? d(12) cos? ¢(t),
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FIGURE 5.2.7. The Kourganoff linkage, a mechanical Anosov

System animated by Jos Leys at http: //mickael . kourganoff.fr/videos/anosov-1linkage.mov;
see also https://icerm.brown.edu/video_archive/?play=1138

s0 cos? () + cos® (1) = 1. The choice of #; implies that

1 1
cosp(t)) = =(cos¢p(t1) —cosB(H)) < —2r=r
—_ 1 2 2
=—cosf(t)

by (5.2.8), and the choice of ; and (5.2.8) imply

cos(tr) = l(cosd)(z‘z) +cosf(fp)) < l(21—4) =]-2.
—_ 1 2 2

=cosf(t2)

Thus, 1 = cos? () + cos® ¢(t1) < r? + (I -2)? < 1 (by (5.2.6)), a contradiction. [J

3. Shadowing, expansivity, closing, specification, and Axiom A

The orbit structure of hyperbolic dynamical systems has a distinctive and
iconic richness and complexity, and these features can be derived from what
thereby appears as the very core feature of hyperbolic dynamics: The shadowing
of orbits. This feature is that in a hyperbolic system anything one can imagine
approximately happening is, to good approximation, actually happening in the sys-
tem. This section shows that the Shadowing Lemma (Theorem 5.3.2) produces the
essential richness of the orbit structure of a hyperbolic dynamical system: expan-
sivity (Corollary 5.3.4), the Anosov Closing Lemma (Theorem 5.3.10), specification


http://mickael.kourganoff.fr/videos/anosov-linkage.mov
https://icerm.brown.edu/video_archive/?play=1138
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(Theorem 5.3.59), spectral decomposition (Theorem 5.3.35), and a natural defini-
tion of hyperbolicity (Theorem 5.3.45) as well as topological stability (Theorem
5.3.6, Theorem 5.3.7).

The stronger Anosov Shadowing Theorem 5.4.1 further implies structural sta-
bility (Theorem 5.4.5)!° We reserve this for the next section and emphasize that
Section 5.4 (through Theorem 5.4.10) is independent of this one, that is, a reader
can learn about structural stability directly without working through the present
section first.

Definition 5.3.1. Let @ be a flow on a metric space M and g be an e-pseudo-orbit
for @ (Definition 1.5.26). Then g is said to be §-shadowed if there exists a point
p € M and a homeomorphism a : R — R such that a(#) — ¢ has Lipschitz constant
& and d(g(1), %P (p)) <6 forall t € R. Aset Y ¢ M has the shadowing property if
for any 6 > 0 there is an € > 0 such that any e-pseudo-orbit in Y is §-shadowed by
a point p € M. We say that ® has the shadowing property if this holds for Y = M.
Aset Y c M has L-Lipschitz shadowing for €y > 0 if any e-pseudo-orbit in Y with
€ < €p is Le-shadowed by a point p € M.

Theorem 5.4.1 below implies that hyperbolic sets have this property:

Theorem 5.3.2 (Shadowing Lemma). A hyperbolic set for a flow has a neighborhood
with L-Lipschitz shadowing for some €y > 0 and for some L > 0. The shadowing
point need not be unique because neither is the choice of the parameterization. But
the shadowing orbit is unique and any 2 parameterizations differ by a constant that
is at most Le/ min || X || in absolute value, where X is the generating vector field.

Remark 5.3.3. Implicitly Theorem 5.3.2, or, rather, Definition 5.3.1, controls the
timing of the shadowing orbit to within a percentage error, where the percentage is
small for small e.

The uniqueness assertion of Theorem 5.3.2 implies that no two orbits can
shadow each other:

Corollary 5.3.4. The restriction of a flow to a (sufficiently small neighborhood of a)
hyperbolic set is expansive (Definition 1.7.2).

PROOF. If0(x) and O(y) Leg-shadow each other, then both Leg-shadow the pseudo-
orbit @ (x) and hence agree by uniqueness. |

Remark 5.3.5. We continue to derive consequences of the Shadowing Lemma, but
the reader is encouraged to verify that these consequences can equivalently be
obtained by combining the Shadowing Property (without the uniqueness assertion)
with expansivity.

19 and symbolic descriptions, which we do not include here [181, Theorem 18.2.5].
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As a preview of coming attractions, we note that the Shadowing Lemma implies
stability:

Theorem 5.3.6 (Topological stability). Anosov flows are topologically stable, that is,
any sufficiently C°-close flow is an extension (Definition 1.3.1).

The proof idea is straightforward: The orbits of the perturbation are pseudo-
orbits for the given flow and hence shadowed by genuine orbits of the flow; this
correspondence between orbits of the perturbation and those of the given flow
gives the factor map—but one needs to check that it is continuous [287]. While this
is possible, we will instead step up from the Shadowing Lemma to the Shadowing
Theorem 5.4.1, where such continuous dependence is built into the conclusion. In
passing, we note that topological stability implies a nontrivial variant of structural
stability (Theorem 5.4.5) for CO-perturbations:

Theorem 5.3.7. Any 2 sufficiently C°-close Anosov flows are orbit equivalent.

PROOF. The factor map in Theorem 5.3.6 is injective because the orbit of the
perturbation that shadows a given one is unique by expansivity (from the Anosov
property) of the perturbation. (|

Remark 5.3.8. The argument actually shows, of course, that Anosov flows are C°
structurally stable (Definition 5.4.4) among expansive flows.

When the Anosov flows are geodesic flows, this last observation has a remark-
able refinement?®

Theorem 5.3.9 ([126, Théoreme B]). Any Anosov geodesic flows of a closed manifold
that supports a Riemannian metric with constant negative curvature are pairwise
topologically orbit-equivalent.

We now apply the Shadowing Lemma to study the structure of hyperbolic sets.
The uniqueness assertion of Theorem 5.3.2 implies not only expansivity but also
that the shadowing orbit is periodic when one starts with a periodic pseudo-orbit:

Theorem 5.3.10 (Anosov Closing Lemma). If A is a hyperbolic set for a flow ® then
there are a neighborhood U of A and numbers €y, L > 0 such that for € < €y any
periodic e-pseudo-orbit in U is Le-shadowed by a unique periodic orbit for ®.

Remark 5.3.11. The definition of hyperbolicity allows isolated hyperbolic fixed
points (Definition 5.1.1), and these are pseudo-orbits shadowed only by themselves,
so in the Closing Lemma and henceforth “periodic point” is meant to include fixed
points.

20Towards which the “averaging” idea underlying Proposition 1.3.27 was developed.
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PROOF. Except for “periodic,” this is just Lipschitz shadowing. Uniqueness forces
the shadowing orbit to close up: If the pseudo-orbit has period T and € (x) is a shad-
owing orbit, then so is @((p”T(x)) forne Z. if nT > Le/ min || X||, then uniqueness
gives T (x) = x for T’ near nT. O

This can also be proved directly rather than as a corollary of Theorem 5.3.2.

Remark 5.3.12. Except for particularly short pseudo-orbits one can take n =1
in the proof of Theorem 5.3.10, so the shadowing orbit has a length comparable
with that of the pseudo-orbit; the accuracy of shadowing controls a percentage
difference in orbit length beyond the “misparamatrization” of the pseudo-orbit
itself. The latter effect is apparent for a pseudo-orbit ¢ — ¢! (x) of ¢! for which
the shadowing orbit is £ +— ¢ (x), which has a 10% difference in speed. In important
applications, the pseudo-orbit is an almost periodic orbit segment, for which it
may be desirable to control the timing more finely, and Proposition 6.2.4 below (a
quantitative version of Proposition 1.7.4) does so by bounding an absolute error
instead (Remark 6.2.5), which is critical for several of those applications.

We have actually proved:

Proposition 5.3.13. Per(®) = Z (D), the chain recurrent set, if ® is expansive with
shadowing.

Corollary 5.3.14. Let ® be a smooth flow on a compact manifold M. Then:
(1) IfZ(®) is hyperbolic, then Per(®) = B(P) = L (D) = NW(D) = Z(D).
(2) IfNW(®) is hyperbolic, then Per(®) = NW(®|nw(@))-
(3) Ifthe limit set £ (D) is hyperbolic, then Per(®) = £ (D).
(4) If A is a hyperbolic set for ® and V a neighborhood of A such that Ag
(Proposition 5.1.10) is hyperbolic, then Per(® [Ag) =NW(® N ).

v
(]

PROOF. (1): V6 each x € Z(®) is in a periodic §-chain in Z(®) (Theorem 1.5.36),
which is Lé-shadowed by a periodic p (Theorem 5.3.10), so x € Per(®), and 2 (®)
Per(®) c B(®) € L(®) c NW(®) c Z(®) (Proposition 1.5.34).

(2): “c” is clear. “2”: x € NW(®|nw (o)) implies that x is arbitrarily near peri-
odic pseudo-orbits in NW(®), hence in Per(®) by Theorem 5.3.10 applied to the
hyperbolic set NW (®).

(3): “=”is Remark 1.5.10. “>”: it suffices to show that x € w(y) = x € Per(®) (De-
finition 1.5.1). d(¢'(y),w(y)) == 0 by Proposition 1.5.7(3). Given & > 0 there exist
fo, 11 > 0 with d(@ (1), 9+ (1) < 6, d(p®(y),x) <8, and d(@’(y),w(y)) < for
to < t < ty + t,. The periodic §-chain ¢! %*41(y) is within § of w(y) and shadowed
by a periodic orbit @ with d(x,0) <6 + L6. Thus, x € Per(®).
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(4). For € > 0 sufficiently small denote by U, the ¢/(2L + 1)-neighborhood of
xe NW(gp FAV) in Ag, where L is as in the Closing Lemma. For some T > 1 there
D

existsa y € ¢’ (U.) N Ue, and then d (¢’ (y), y) < 2¢/(2L+ 1), so the Closing Lemma
gives a periodic z € Ay with d(¢’(2),¢"(y)) < 2Le/(2L+1) for 0 < t < T. Then
(2L+1)e

j] = ’ ] =—_- - —C. D
dx,2)=dx,y)+d(y,2) < 2L+l €

A and Ag coincide in our examples, and this is useful.

Definition 5.3.15 (Local maximality, basic set). A hyperbolic set A for ® is said
to be locally maximal or isolated if there is a neighborhood V of A (an isolating
neighborhood) such that A = A(‘; (Proposition 5.1.10). If furthermore (pt Ia has a

positive semiorbit that is dense in A, then A is said to be a basic set>!

Remark 5.3.16 (Basic sets are regionally recurrent). NW (¢! I A) = Aif Ais abasic
set (Corollary 5.3.14(4)).

Example 5.3.17. A natural example of a closed invariant hyperbolic set that is not
locally maximal is given by a hyperbolic periodic orbit together with the orbit of a
transverse homoclinic point (see Figure 6.3.1; dynamically this is similar to Example
1.3.9 with a periodic orbit rather than a fixed point at the center of attention).

This situation appears in the horseshoe (Figure 1.5.6), for example, coded by
the set A of sequences of 0’s and 1’s that have no more than one 1. This set is not
locally maximal since for every N € N it is contained in the closed set Aé\’ consisting
of all sequences such that any two 1’s are separated by at least N 0’s and for any
open neighborhood V of Ay we have A(I)V c V for sufficiently large N.

It is not hard to see that A{)V is indeed locally maximal, so for any neighborhood
V of Ag there is an invariant locally maximal hyperbolic set A such that Agc Ac V.

Indeed, although any closed invariant subset of the horseshoe is hyperbolic
and may have an extremely complicated structure, it can always be enveloped by a
locally maximal one (such as, Aé for an appropriate open neighborhood V as in
Proposition 5.1.10).

In general however, if A is a hyperbolic set and V an open neighborhood
of A, there may not exist a locally maximal hyperbolic invariant set A such that
AcAcV (Theorem 6.5.1).

Remark 5.3.18 (Reader beware!). The literature quite frequently assumes implicitly
that a hyperbolic set is either locally maximal or included in a locally maximal set.

21This notion appears to go back to Anosov [11].
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As we noted, this does not always hold, so when these assumptions are not stated,
readers may want to check whether they are actually needed or not.

We do note that Theorem 5.3.35, one of the central results of this chapter,
implies local maximality.

Proposition 5.3.19. If A is a locally maximal hyperbolic set, then for 6 > 0 suffi-
ciently small there existy > 0 and € € (0,Y) such that any e-pseudo orbit that stays
withiny of A is §-shadowed by a point in A.

PROOF. Let U be an isolating neighborhood of A, and 17 > 0 such that Uyea By (x) =
U. Let 6 =n/2 and fix €; > 0 such that any €;-pseudo orbit in A is §/2-shadowed.
By uniform continuity of ® there exists y € (0,6/4) and € € (0,y) such that any
e-pseudo orbit g: I — X that stays within y of A has an ¢;-pseudo orbit g’': I — X
such that d(g(1),g'(¢)) <6/2 forall ¢ € I. Then g’ is 6/2-shadowed by a point in A,
and this implies that the pseudo orbit g is §-shadowed by a point in A. ]

We now have the following immediate consequence.

Corollary 5.3.20. The restriction of a flow to a locally maximal hyperbolic set has
the shadowing property.

This shows that if V is sufficiently small and A is locally maximal then the
shadowing orbits in all prior results are in A, so A has many periodic orbits.

Corollary 5.3.21. If A is a locally maximal hyperbolic set for @, then periodic points
are dense in NW(® I A). In particular, periodic points are dense in basic sets.

Arguing as in the proof of Theorem 5.3.25 shows

Proposition 5.3.22. A hyperbolic set is locally maximal if and only if the restriction
to it has the shadowing property.

To give another expression of the abundance of closed orbits, we show a precur-
sor of a result that periodic data determine a function®? (Theorem 7.2.1). Suppose
f is null-cohomologous (Definition 1.3.20). Then ¢’ (x) — x = fOT fleix)dt =
F(pT(x)) - F(x) = 0. For Walters-continuous functions, this obvious necessary
condition for being null-cohomologous is sufficient:

Theorem 5.3.23 (Topological Livshitz Theorem). Let A be a basic set for a flow ®
generated by a vector field X, f Walters-continuous for ® (Definition 4.3.17). If
(pT(x) =x= fOTf((pt(x)) dt =0, then f is null-cohomologous (Definition 1.3.20),
that is, there is a continuous F: A — R with f = XF, the derivative in the flow
direction. F is unique up to an additive constant.

zzor, rather, a cocycle.
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PROOF. Uniqueness is clear: If XF = XF', then X(F—F') =0, so F — F' is constant
on the dense orbit, hence constant. If A = m, set F(p'(x)) = fotf(q)s(xo)) ds.
We next show that F is uniformly continuous on @ (xp). This implies that F has a
unique continuous extension to A = @(xp), and since f and XF are continuous
and agree on a dense set, they coincide, concluding the proof.

Given € > 0 take § < €/2] f |l as in Bowen-boundedness (4.3.7) for ¢/2 and
1 = 6/L with L as in the Anosov Closing Lemma (Theorem 5.3.10). If #; < £, and
d(p" (xg), ¢ (x0)) <1, then @12 (xy) is 5-shadowed by a T-periodic point y with

|IT—t,+ 1] <8, s0 dg—n (x9,¥) < 6. Then

| Stg*l‘lf(x()) - Stz*tlf(y) | < 6/21
L ] L ]
=F(¢2 (x0))-F(@"1 (x0)) =ST-13+11 f()

and |F (@ (x0)) — F(p" (x0))| < €/2+|ST—py+1, f(W) <€/2+4 6] flloo <E. a

Remark 5.3.24. While interesting, this result does not have obvious applications
because we do not have a ready supply of Walters-continuous functions.

The next consequence of shadowing is that being asymptotic to a compact
locally maximal hyperbolic set implies being asymptotic to a specific point in that
set. To formalize this, the local counterparts of the stable and unstable sets of a
point (Definition 1.3.24) are defined by

Wix)={ye W) | d@"(x),¢'(y)<efort=0},

(5.3.1) ) ) Lo
WS ) ={ye W"x) | d(@ (x),¢"(y)<efort=0}.

Theorem 5.3.25 (In-Phase Theorem). If A is a compact locally maximal hyperbolic
set for ® on M, then with the terminology of Definition 1.5.5 and (1.3.1)
Wi =W and W)= W',
XEA XEA
and for eache > 0, A has a neighborhood U with [ ¢~ "(U) c WS (A) = | WS (%)

=0 XEA
(and analogously for W4).

Remark 5.3.26. Here “>” follows from the definition, and “c” says that a point
asymptotic to A approaches A in a way that is “in phase” with an orbit of A.

PROOE. If y € WS(A) and 1 > 0, then there is a T > 0 such that for all ¢t = T we
have an x; € A with d(¢’(y), x;) <n (Proposition 1.5.7(4)). If ¢ > 0 and § is as in
the Shadowing Lemma (Theorem 5.3.2), then by uniform continuity of ¢! we can
choose 7 such that

t+1

d(@! (x0), xr41) < d(@" (x), 0" (" (1)) +d (9" (1), x111) < 6,
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S0 (x;) s> is e-shadowed by some x € A. Then y € W*(x) because
t=T=d@'(y),0" (X)) <d@' @), x) +d(x, 9" (x) <6 +e. O
We note from this that attractors cannot have unstable sets “sticking out”:
Theorem 5.3.27. If A is a hyperbolic attractor for a flow ®, then W*(A) c A.

PROOF. There are a trapping region U for A and € > 0 such that W¥ (¢’ (x)) c U for
each x € A and ¢ € R. Then W¥(x) c ;=0 ¢’ (U) = A since

t20=> W'x) ="' (W@ ' (x) c o' (U). O
I — |
=Usz09* (WH(p™ 5"t (X)) U

In his seminal paper, Smale introduced the following property to focus on
dynamical systems for which hyperbolicity is the dominant feature:

Definition 5.3.28 (Axiom A). A flow ® satisfies Axiom Aif NW(®) is hyperbolic and
the closure of the periodic orbits.

Remark 5.3.29. Analogously to Remark 5.1.2, our definition of Axiom A allows for
hyperbolic fixed points, whereas Smale’s original definition of Axiom A excluded
singularities (he used “Axiom A’ ” as the name for our Axiom A). Our choice follows
Bowen’s terminology.

The second feature in this axiom is slightly stronger than what the Anosov
Closing Lemma would imply from the first one; Smale thought it possible that it
is a consequence of the hyperbolicity of NW(®), and he was “generically right”:
although any manifold of dimension at least 4 supports a flow whose nonwan-
dering set is hyperbolic, but which is not Axiom A [96], for C 1-generic flows the
nonwandering set is the closure of the periodic points (Theorem 1.5.19), so if the
nonwandering set is hyperbolic, then it generically satisfies Axiom A. Corollary
5.3.14(2) implies:

Proposition 5.3.30. Ifa flow ® satisfies Axiom A, then NW(® ' ) = NW(®).

NW(®)
Corollary 5.3.14(1) implies (see Definitions 1.5.30, 1.5.1, and 1.5.9):

Proposition 5.3.31. If Z(®) is hyperbolic, then ® satisfies Axiom A and Per(®) =
B(®) = L (D) = NW(®|nw(d)) = NW(D) = (D) (and more; see Theorem 5.3.42).

Transitive Anosov flows satisfy Axiom A by the Anosov Closing Lemma. The
suspension of an Axiom A diffeomorphism (defined analogously) is an Axiom A
flow.

The chain decomposition (Proposition 1.5.32) is particularly effective here
because of the following observation.
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Proposition 5.3.32. If Per(®) is hyperbolic? then there is an e > 0 such that any
periodic points p, q with d(p, q) < € are chain-equivalent. In particular, the chain-
decomposition of Per(®) is finite.

PROOF. Ifeissmall enough for Theorem 5.3.2, then the concatenation of (p(‘°°’°) (2]
and ¢! (q) is Le-shadowed by a (“heteroclinic”) @ (z). Uniqueness and Proposi-
tion 1.7.4 give a(z) N O (p) # D # w(z) NO(q). For any desired p > 0, concatenation
of =1 (p), !T1:12) (2) and ¢!72° (g) for suitable Tj, T» then includes a p-chain
from p to q. g

Remark 5.3.33. A pertinent variant of chain-equivalence (Definition 1.5.30) would
be x ~c y:o x € Z:(y) & y € Z.(x), and in this case the equivalence classes are
obviously open. Proposition 5.3.32 shows that this stabilizes in the present context,
that is, “~”="“~.” for small €.

Proposition 5.3.13, Theorem 1.5.36, and Proposition 5.3.32 imply

Corollary 5.3.34. Ifeither ® or ® (@) is expansive with shadowing, then the chain

components of ® are open in Z(®), so by compactness they are finite in number and
admit a filtration (Theorem 1.5.47).

We now show that the chain-components are basic sets:

Theorem 5.3.35 (Spectral Decomposition, Smale [279]). In each of the following
situations A is a finite disjoint union of basic sets A; (hence locally maximal).

() A=NW (@@ TK) for some compact locally maximal hyperbolic set K.
(2) A=NW(®) and O satisfies Axiom A.

3) A =Z(®) is hyperbolic.

4 A =ZL(®D) is hyperbolic.

PROOF. (1): The A; are the intersections of A with the chain components of ® 'k
(which is expansive with shadowing, so Corollary 5.3.34 applies). To see that they
are transitive suppose U, V c A; are open and € > 0. There is a periodic e-chain in
K that meets both, and for small-enough ¢, so does the shadowing periodic orbit &
from Theorem 5.3.10, which lies in an isolating neighborhood, hence in K by local
maximality, then in A = NW(® I o) by periodicity. Thus, Proposition 1.6.9(4) holds.

Local maximality of A;: If the orbit of x is in a sufficiently small neighborhood
of A;, which is also disjoint from the other A, then x € K by local maximality of K,
80 @ # w(x) < K, that is, 0" (x) accumulates on a y* € A = NW(® ) K); likewise with
a y~ in the a-limit set, so with a segment of a dense orbitin A; from near y~ to near

Bordis expansive with shadowing
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y* we get a closed chain, and by Theorem 5.3.10, x € Per(® TK) c NW (@ FK) =A,
hence x € A;.

In the remaining cases A = Per(®) (Corollary 5.3.14), so the chain-components
Ajof @ [, areopen (Proposition 5.3.32), hence finite in number. A; is topologically
transitive because if U,V < A; are open and € > 0, there is a periodic e-chain in
A that meets both, and for small-enough ¢, so does the shadowing periodic orbit
O c Per(®) c Per(®) = A from Theorem 5.3.10. Local maximality follows as in (1)
by obtaining w(x) U a(x) c A; from w(x) U a(x) c L(®) c A. O

Remark 5.3.36. The A; can also be described by an equivalence relation defined
in terms other than chain-equivalence (Section 6.2). A remarkable variant of the
spectral decomposition appears in Theorem 9.3.3 and the constructions described
thereafter.

Remark 5.3.37. This is a good moment to emphasize a distinction with the cor-
responding decomposition for discrete-time dynamics. In that context, the basic
sets are topologically transitive, but can be further decomposed into topologically
mixing components. For flows this is in general not possible, as illustrated by
suspensions.

Proposition 5.3.38. Let ®@ be a flow such that either £ (®) or Z(®) is hyperbolic
or @ is Axiom A (Definition 5.3.28). Then M = U;’il WS(A;) = U;’il WY (A;) with
each union disjoint, where {A ,-}{.‘:1 is the Spectral Decomposition (Theorem 5.3.35).

PROOF. There are pairwise disjoint open U; 2 A; fori € {1,...,k}. If x € M, then
(Proposition 1.5.15) w(x) c A = Ule A;jc U{le U; is connected (Proposition 1.5.7(4)),
so there is a unique i with w(x) c U; (and hence x € W¥(A;)). Reversing the flow
shows the same for W¥. U

Remark 5.3.39. Proposition 5.3.38 and Theorem 5.3.25 imply that if we have a
spectral decomposition of A (which is the case if £ (®) or Z(®) is hyperbolic or ®
is Axiom A) and x € M, then x € W*(y) and x € W¥(z) for some y,z € A. So there
are nontrivial stable and unstable sets for any point of M even if these points may
not be contained in A.

The last few results played out quite similarly when £ (®) or 2(®) is hyper-
bolic or @ is Axiom A, even though these are not equivalent. It turns out that
there is a common underlying notion—which then makes a natural definition of
hyperbolicity—obtained by adding an extra condition under which these 3 sce-
narios become equivalent. Specifically, we show that hyperbolicity of the chain
recurrent set is equivalent to the flow satisfying Axiom A (Definition 5.3.28) and
having no cycles among the basic sets as defined below.
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Definition 5.3.40 (Cycles). Suppose @ is a flow on a compact manifold M satisfying
Axiom A or such that either £ (®) or Z(®) is hyperbolic. Define a partial ordering
> on the basic sets Ay, ..., A, from the Spectral Decomposition Theorem 5.3.35 by

Ap> Ajif (W' AD N A) 0 (WA N Aj) # 2.

A k-cycle consists of a sequence A;; > Aj, > --- > A;, > A;; of basic sets. The flow
® has no cycles if this happens for no k.

!
(@) —]

r A

]
SR,

FIGURE 5.3.1. Axiom A with a cycle

/\

Remark 5.3.41. To see how the presence of a cycle is compatible with Axiom A,
note that for a flow with a section as shown in Figure 5.3.1 (suggested to us by
Hayashi) the nonwandering set is finite and includes a 3-cycle of saddles; the
intersections of stable and unstable manifolds of succesive saddles are either an
interval or a tangency; the attractors and repeller (including a repeller at co) are
strategically placed to keep the nonwandering set finite.

Cycles are precluded by having a filtration, so Corollary 5.3.34 gives

Theorem 5.3.42. If @ is a flow on a compact manifold M and Z(®) is hyperbolic,
then ® has no cycles.

Theorem 5.3.43. If £(®) is hyperbolic and ® has no cycles, then £ (®) = Z(D).

Lemma5.3.44. Ifp € Z(®)\ L (D), then p € W5(A;) forsomei€{l,..., k} (Remark
5.3.39), and there isa g € W*(A;) N (R(D) \ L (D)).

PROOF OF THEOREM 5.3.43. We proceed by contraposition: if there is an x; €
R(D) \ L (D), then x; € W¥(A;)) for some i € {1,...,k}. By Lemma 5.3.44 there
is an x, € W¥(A;) N (Z(®@) \ £ (®)) and hence an i, such that x € W¥(A). By
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Lemma 5.3.44, there is an x3 € W*(A;,) N (2(®) \ £(®))—and so on. Since there
are only finitely many A;, this sequence contains a cycle. O

PROOF OF LEMMA 5.3.44. We first pick a compact neighborhood U of A; such
that p¢ Uand " (U)nAj= for j#iand0<r<1.

For n € N we fix a 1/n-chain g, : I, — M that starts and ends at p, and a
point p,, in g, that is closest to A;. Since p € W*(A;), we know by possibly taking
a subsequence that d(p,,A;) — 0 as n — oco. For each n let ¢, € I, such that
gn(tn) = pn. Then for n large there exists some s, = 1 such that g, (¢, + s) € int(U)
for 0 < s < s, but g, = g, (t, + s,) € int(U).

Since p, n== A; we have s, === co. Let g be a limit point of q,. Then
q € R(®) . L(®). By construction, ¢’(q) € U for t < 0. So a(q) = A;, and g €
WH(A)). |

Theorem 5.3.45 (Axiom A, no cycles). ForaC' flow ®, the following are equivalent:

(1) @ satisfies Axiom A and has no cycles.
(2) £ (D) is hyperbolic and has no cycles.
(3) R () is hyperbolic.

Remark 5.3.46. By Proposition 5.3.31, the pertinent hyperbolic set is the same in
these 3 equivalent cases: Per(®) = B(P) = L (D) = NW(P|yw @) = NW (D) = 2 (D).

PROOF. (1)=(2) from the definition (Definition 5.3.28 and Proposition 1.5.34).
(2) implies that £ (®) is the closure of the periodic points, has a spectral
decomposition, and no cycles, so Theorem 5.3.43 gives £ (®) = Z(®P), hence (3).
(3)=(1) because Z(®) = Per(®) (Corollary 5.3.14) and has a spectral decom-
position (Theorem 5.3.35) without cycles (Theorem 5.3.42). ]

Remark 5.3.47. In the literature one variously finds the assumption of Axiom A
with no cycles, or of hyperbolic chain recurrent set, or of hyperbolic limit set with
no cycles. By Theorem 5.3.45 these are equivalent. The variety of such usage
also underscores the importance of this concept, so we make it our definition of
hyperbolicity.

Definition 5.3.48 (Hyperbolic flow). A flow @ is said to be hyperbolic if one of the
following equivalent conditions holds:

* @ satisfies Axiom A and has no cycles.
¢ Z(®d) is hyperbolic and has no cycles.
o Z(®) is hyperbolic.

Following Bowen, we write

(5.3.2) o ={® | @ ishyperbolic}.
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Remark 5.3.49. This notion is of a global nature compared to Definition 5.1.1.
Therefore, it is less apparent that this is an open condition. Our other results about
persistence of hyperbolicity are either potentially vacuous (Proposition 5.1.10),
highly specialized (Corollary 5.1.11), or only imply that the presence of hyperbolicity
is an open condition (Theorems 5.3.6, 5.4.5). However, a global counterpart (The-
orem 5.4.13) to Theorem 5.4.5 does control the entire chain-recurrent set and
thus finally establishes that C!-perturbations of hyperbolic flows are themselves
hyperbolic (Corollary 5.4.14).

We note an obvious consequence of spectral decomposition for Anosov flows:

Theorem 5.3.50. For an Anosov flow ® on a manifold M the following are equiva-
lent.

(1) The spectral decomposition of @ is {M}.

(2) ® isregionally recurrent (Definition 1.5.11).

(3) @ is topologically transitive.

(4) Periodic points are dense in M.

We develop this further in Theorem 6.2.11 but mention a related observation.

Theorem 5.3.51. The interior of the nonwandering set of an Anosov flow is either
empty or the whole manifold.

PROOF [240, Lemma 4.2]. If A is a basic set with nonempty interior, then it con-
tains a periodic point p and a neighborhood U of p. The weak stable and un-
stable leaf of p are dense in Ag, and W% (p) < U;=0 @ (U), W(p) < Us<o @' (U),
so W (p) u W(p) € Ag, and W (p) U W(p) < Ag, so Ag is W - and WS-
saturated. For any x € Ag we thus have W% (x) U W (x) c Ay, so density of W% (x)
in Ay, hence in W€ (x) implies that A¢ contains a product neighborhood of x, so
Ay is open and closed in M, hence Ay = M. ]

Meanwhile, we formalize an observation from Corollary 5.3.34:

Theorem 5.3.52. Let @ € of and Ay, ..., Ay the spectral decomposition. Then there
is a filtration M of M composed of My € M < --- € My. such that A\; = Kf’(M) for
eachie€{l,..., k}.

Thus, > is a total and linear order. In particular:

Theorem 5.3.53. IfAy,..., Ay is the spectral decomposition of a hyperbolic flow @,
then A; is an attractor if there is no j with A; > Aj.

Remark 5.3.54. The constructions in Theorem 9.3.11 virtually reverse-engineer
this by gluing together filtrating neighborhoods of hyperbolic sets in order to
produce examples of hyperbolic flows.
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Volume-preserving hyperbolic flows have neither an attractor nor any cycles:

Corollary 5.3.55. The spectral decomposition of a volume-preserving hyperbolic
flow has only one piece.

We have come a long way, and we repeat that the preceding are all conse-
quences of the Shadowing Lemma?* Of course, we also have yet to prove the
Shadowing Lemma. We will do so presently. First we combine shadowing with
transitivity.

Bowen introduced specification as a notion that formalizes how shadowing
and transitivity make it possible to prescribe the evolution of an orbit to the extent
of specifying a finite collection of arbitrarily long orbit segments and any fixed
precision: as long as one allows for enough time between the specified segments
one can find a single (periodic) orbit approximating this entire itinerary and the
time between the segments depends only on the quality of the approximation and
not on the length of the specified segments.

Definition 5.3.56 (Specification). Let X be a compact metric space and ® be a flow
on X. Then @ satisfies specification if for any € > 0 there exists some T, such that
given any finite collection of points xy, ..., x,, € X and times f, ..., , € [0,00) there
exists a point y € X, and sy, ..., S, € [0, T¢], and for each i € {0, ..., n} we have
i-1
Sixy<e for telo,t]+ Z tj+sj, and pri=olitSi(y) = .
j=0

i1,
=0t

'y,

Remark 5.3.57. The “transition” times s; here are controlled only to the extent
that they need not be very long—depending on the desired accuracy of the approx-
imation. With both more tools and stronger assumptions, we will later be able to
prescribe the transition times exactly (Theorem 8.3.4).

The idea is to associate the orbit segment (p[o'ti] (x;) with the pair (x;, ;) €

X x [0,00). Such a collection of orbit segments has specification if given € > 0 there
is a closed orbit that stays within € of each orbit segment in turn provided we allow
a transition time between the orbit segments, which can be chosen to be no more
than T.

There are variants of this definition in the literature. The orbit y might not
be required to be a closed orbit, or it is required that the transition time is equal
between each of the orbit segments. For the hyperbolic case any of the various
versions hold (possibly subject to assuming topological mixing), but in other situa-
tions one may need to choose one specific variant. A stronger counterpart requires
that the transition time (rather than bounds on it) is prescribed (Definition 8.3.2).

240y, alternatively, shadowing and expansivity.
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FIGURE 5.3.2. Specification of orbit segments

Combined with expansivity, specification forces exponential orbit complexity:

Proposition 5.3.58. An expansive continuous flow ® with specification on a com-
pact space X with more than 1 orbit has exponential growth of periodic orbits
(Definition 4.2.1) and hence positive topological entropy (Theorem 4.2.24).

PROOF. Since X # @ there is an xj € X, and by the specification property there is a
closed orbit p that starts near xy. Denote by Tj its least period. Suppose € > 0 is
an expansivity constant. With the notations of Definition 4.2.22 it suffices to show
that #@’TO o (T+2To+2T) = Z#tED’T0 +r.(D) forall T > Ty + T,. To see this, consider
qge C[D’TO +1.(D) and apply the specification property with the specifications g, p and

g, p, p to get 2 (by expansivity distinct) elements of @’To o1, (T+2To +2T). ]

Theorem 5.3.59 (Specification Theorem). Let A be a basic set for a flow ¢*. Then
@' Ia has the specification property.

PRrOOF. By Remark 1.6.11 the orbit segments of the specification can be interpo-
lated to a closed €/2L-orbit by orbit segments whose length is bounded in terms of
€ as follows. The first interpolating segment begins within /2L of ¢ (x1) and ends
after time #] within e/2L of x,. The next one begins within e/2L of " +iti (x2) and
ends within €/2L of x3. and so on; the last one ends within €/2L of x;. By Theorem
5.3.2, this pseudo-orbit is €/2-shadowed by an orbit, which is then as desired. [

Remark 5.3.60. The proof reveals that shadowing and transitivity together im-
ply specification (and that shadowing and specification both hold for basic sets),
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though more is needed for the stronger specification property in Theorem 8.3.4:
on one hand mixing rather than just transitivity is needed, and on the other hand,
finer control using the invariant foliations is essential. Conversely, however, speci-
fication implies transitivity but not shadowing because of the required transition
times (strong shadowing implies topological mixing, but also not shadowing).

Bowen’s Specification Theorem, suitably strengthened, is a useful tool for the
study of statistical properties of orbits within hyperbolic sets (Theorem 8.3.6).
Proposition 5.3.58 gives a much simpler application:

Proposition 5.3.61. Unless it is an orbit or empty, a basic set has exponential growth
of periodic orbits and hence positive topological entropy”

4. The Anosov Shadowing Theorem, Structural and Q-stability

We finally present the shadowing result, which makes the proof of Theorem
5.3.6 easier, implies the Shadowing Lemma (Theorem 5.3.2), and leads to structural
stability (Corollary 5.4.7).

Theorem 5.4.1 (Anosov Shadowing Theorem). If M is a Riemannian manifold, ¢’
a C! flow, then any compact hyperbolic set A = M for ® has a neighborhood V and
€0,00, C > 0 such that if

e w': V — M is generated by a vector field X,

o da(@hwh) <eg for|el <1,

e N isa topological space,

e o': N— N a continuous flow and

e a€CON,V) such that Y == %maoat exists and
e deo(Y,Xoa) <e<ey,

then there are p € C°(N, A‘uj) andt: N xR — R with
e fool= 1/17("” o B,
e dero(a,B) < Ce, and
e Lip(r(x,-) —1d) < Ce.

Moreover; f is locally transversely unique: Bool =y Do B and deo(a, B) < 5o =
B(x) = w9 (B(x)) for some continuousd: N — [-C8o, CSo].

Remark 5.4.2. The Shadowing Lemma (Theorem 5.3.2) follows by taking ¥ = @,
N =R, o'(x) = x+ 1, a(t) = g(¢) (differentiable with derivative near X o a, see
Remark 1.5.28).

255ee also Remark 4.2.25
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PROOF. By the Whitney embedding theorem M < R” for suitable n, so we take
M = R"™ without loss of generality: If the result is known for R”, embed M and
augment M to a tubular neighborhood U’ c R" while extending ® and a C'-close
¥ to U’ by the same contraction normal to M and apply the result. It gives a
consisting of full orbits of the extension of ¥, so B(N) € M because ¥ contracts
normally to M and indeed, B(N) c V, hence B(N) c A\‘I/’ because it consists of
orbits.

Hyperbolicity is the central ingredient in the proof, and it will be used in
a standard way to set up a contraction, whose fixed point is the desired object.
However, hyperbolicity plays out transversely to the flow direction, so we isolate
this transverse behavior with the following device. Let X + be the normal bundle,
that s, X; +p = X1 (p) is the hyperplane through p € V orthogonal to X, and X;-
denotes the e-ball around p in X (p). For small-enough ¢ this gives well-defined
projections 7, : w!"U(Xg) — X+, ' (x) — x for |£] < 1, x € X;-. We also denote by
CL(N,V) the space of continuous f: N — V such that f(x) € X*(a(x)) for x € N.

We then seek a fixed point of

F: Cz(N,V) = Cz(N,R"), pr—mqop' ofoo": x— man @' (Blo™ (x)) € X (a(x)).

Represent € C°(Y,R") by the vector field vp=p-aeX i(.) (a section of the bundle
{ Xi(y)) | y € N} over N). In these terms F is represented by

Fy: anaowl(aoa_l +voo H-—a= (DFa|O+II_iI)(v).

L—— higher-order terms
linear part

Then v=F,(v) = (DFg,+ H)(v) < v=-(DFy), 1) 'Hw) = TW).

Lemma 5.4.3. There are a neighborhood V > A, €y,€ >0, and R > 0 independent of
N, V¥, a with I((DFg), — Id)~ | < R when Ao (P,¥) <eg, dco (Y, Xoa) <e.

PROOE. For 6 > 0 there are €p > 0, u < 1 and a neighborhood V > A to which
the splitting TA M = E* @ E° & X extends (maybe not invariantly) for ¥ such that
de1 (D,P) < €p. Then with respect to E¥ @ E* @ X, we have

Ayy Ayy *
1
Dy =|ays as *|,
* * b

where [ayull ™ < g, lassl < @, lagll < 82w, llaysl < 6%, and || * || < §2p. With
respect to the decomposition into unstable and stable vector fields in X+

Auu Auu)

_ 1 -1 e . _
((DFg)y€)(y) = dng Dy |a(0,1(y))5(0 (») splitsinto (DFy), = (Aus A,
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where deo (@, w'ac™!) <€ and dei (@, 'P) < €p imply

-1 1+ 1+
1 Al 1<T"‘, 1 Auall <8t 1 Ausll <8, ||Ass||<7“. O

To show that T contracts, we control H. If k;(f) = H; (v + th) (components with
respect to the canonical basis in R”) then k; (1) — k; (0) = fol k(1) dt gives

1 1
H(U+h)—H(v)=hf DH(v+th)dt=hf DFa| —DFa| dt.
0 0 v+th 0

w!, hence F,, is C', so there is a §¢ with IDFy),, ,, =~ DFay,ll < = iflvl, lv+hl <
80, t€10,1]%6 Thus

1
lval vzl <60 = 1T (v1) = T(v2)l < 5" v — vl

With 6 = min(6,8¢) and € < 6/(2R) as in Lemma 5.4.3, dco(@o!, ¢! a) < €, which
follows from do (Y, X o @) <, gives

0
1T <RIHO) =Rlly'oaco™ —all = Rdco(a,y'ac™") = Rdpo(act, y'a) < >

so T is a 1/2-contraction on the closed ball of X*-vector fields of norm up to &j.
By the Contraction Mapping Principle (Proposition 12.1.3), T has a unique fixed
point, which yields the desired . Uniqueness of the fixed point implies transverse
uniqueness; 0 in the statement of the theorem is continuous and small because S,
B and ¥ are continuous, ¥ has positive speed, and S, § are close. (|

As promised, we first use this to prove topological stability.

PROOF OF THEOREM 5.3.6. h:=f from Theorem 5.4.1 with A=M =N, ¥ =,
o = @' sufficiently C°-close to ®, and a = Id is the desired factor map (surjective
since it is a continuous perturbation of Id). O

If we could apply the same reasoning to @’ to get a factor map the other way
around, we would expect it to be the inverse of the & in Theorem 5.3.6, which would
then be a homeomorphism. This can indeed be done if @' is hyperbolic but that
requires C!-closeness, rather than C°-closeness. Accordingly, while the previous
application focused on approximate orbits by taking ® = ¥ in Theorem 5.4.1, we
now obtain a profound strengthening of Proposition 5.1.10 by C!-perturbing ®.
This is interesting in no small part because where applications motivate the study
of a dynamical system, those parts of its behavior are of particular interest that are
robust, that is, which persist under small perturbations of the system and hence are

2660 is determined by R alone, which is a measure of hyperbolicity. “More hyperbolicity” means
smaller R and hence less constraint on §y.
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not sensitive to the parameters of the model at hand. In this respect it is especially
interesting if the entire orbit structure is topologically unchanged under small
perturbations.

Definition 5.4.4 (Structural stability). A flow @ is said to be structurally stable if
there is a C! neighborhood (Definition 1.6.18) U of @ in the class of C! flows such
that any flow in U is orbit-equivalent to @ (see Definition 1.3.21).

We note that we have already encountered flows with this feature. This is
explicit in restricted form in Proposition 1.4.5 and suggested as an exercise (about
the damped pendulum) in Remark 1.6.17. When expressed globally rather than
locally, the Hartman-Grobman Theorem (Corollary 12.4.11 for continuous time
or Theorem 5.6.3 for perturbations of linear maps obtained from localization
(Theorem 12.4.12)) is a similar instance. In the present context, the dynamics is
incomparably more complicated, however.

Interest in structural stability first arose from Smale’s agenda of classifying
dynamical systems up to topological equivalence because this gives open (hence
manageable) equivalence classes. Theorem 5.4.1 implies that hyperbolic systems
are structurally stable, though not in the exact same sense, except in the case of
Anosov flows:

Theorem 5.4.5 (Strong structural stability of hyperbolic sets). Suppose A is a com-
pact hyperbolic set for a C' flow ® on M. Then there are
« aC'-neighborhood U of ®,
o aCP-neighborhood V of the inclusion i of A in M (which can be viewed as
the identity) and
e acontinuous map h: U — C(A,M), ¥ — hy
such that he =t and for each'¥ € U

(1) hy is a continuous embedding,

(2) hy is the transversely unique map in 'V for which v
whereT is as in Theorem 5.4.1,

(3) Ay =hy(A) is a hyperbolic set for V.

"Wohy =hyop',,

Definition 5.4.6. The map ¥ — Ay is called the continuation of A.

PROOF. We use symmetry and uniqueness by applying the Shadowing Theorem
5.4.1 three times.
With 0 <€ < §y/2 as in the Shadowing Theorem, Y = A, a =1d T D, we

get a transversely unique $: A — V and a monotone 7 with fo ¢’ =y o f. By
Proposition 5.1.10 A’ := (A) is hyperbolic.
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To show that S is injective apply the Shadowing Theorem the other way around:
With ¢ as before, Y = A, a’ =1d | , interchange ® and ¥ (which we can do if e is

small enough) to obtain ' with f'oy’} | = P"Dop.
To see that § is a homeomorphism note that i := ' o § satisfies

popog'=poy™of=¢" " opop,
where 7’(7(1)) is increasing and close to ¢. Since Id does the same (Idog’ = ' 01d),
transverse uniqueness in Theorem 5.4.1 implies that §'(8(x)) = 1//9(’“) Id(x), where
6 can be taken increasing by the last argument in the proof of Theorem 1.7.5, and
then B’ o § is surjective by continuity of 6. ]

Corollary 5.4.7. Anosov flows are structurally stable. The orbit-equivalence is
unique up to small time-shifts when chosen near the identity.

Remark 5.4.8. This proof of structural stability ultimately relies on the Contraction
Mapping Principle because this was the main device used in the proof of the
Shadowing Theorem. The fixed point of a contraction depends smoothly on the
contraction when this is meaningful in a given application, and accordingly, it turns
out that the conjugacy given by structural stability of a hyperbolic C¥*! embedding
depends C* on the perturbation (in the C° topology for conjugacies) [207]%’

Remark 5.4.9. It is natural to ask whether for small-enough perturbations the
conjugacy is more regular. A suggestive result by Palis—Viana [225] and de la Llave
(unpublished) says that in dimension 2 (and discrete time) the Holder exponent
of the conjugacy is close to 1, that is, for each a € (0, 1) there is a neighborhood of
the dynamical system such that the conjugacy between the respective hyperbolic
sets has Holder exponent « for each perturbation in this neighborhood. de la Llave
further showed, however, that this fails in higher dimension.

Another question about structural stability is how large a perturbation can
be without ceasing to be orbit-equivalent to the given flow. Numerous subjects
in dynamics would benefit from general results along these lines, but there are
few. Among them is a criterion for magnetic flows (Definition 5.1.13) that is easy

to apply.

Theorem 5.4.10 ([138, Théoréme 3.2]). If M is a Riemannian manifold whose
sectional curvatures K satisfy —k2? < K < —k% < 0, then all magnetic flows with
lmlleo < k1 are pairwise orbit-equivalent.

27Here the loss of one derivative is related to the fact that an operator such as — gofoc ! in the
proof of the Shadowing Theorem that involves a composition is ck if the maps in question are ck+1,
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We later address the question of how regular (beyond continuity) the orbit-
equivalence is (that is, the homeomorphism in its definition). Note that this is not
a well-defined question because it is not “the” homeomorphism—we only have
transverse uniqueness. Therefore the question is how regular this % can be chosen.
Proposition 1.3.27 describes the extent to which altering a given choice of orbit-
equivalence can improve the regularity of the dependence on time. Transverse regu-
larity is fixed by transverse uniqueness, and we will study that later (Theorem 7.3.3).

One of the crowning achievements in dynamical systems is well beyond the
scope of this text but we state it here to complete the picture: Hyperbolicity is
indeed equivalent to structural stability as follows:

Theorem 5.4.11 (Hayashi [153,154,288]). A C! flow @ is structurally stable iff ®
satisfies Axiom A and strong transversality.z8 WS (y1) N W¥(y2) = Wi (y1) th W¥(y)
for any orbitsy, andy, in NW(®).

We next produce a corresponding “global” stability result (Theorem 5.4.13),
albeit only the “if” part. (The major achievement of Hayashi is the much harder
“only if” direction.) This is a proper “global” counterpart to the Structural Stability
Theorem 5.4.5. Not only does a compact locally maximal hyperbolic set persist
under perturbation, and with topologically identical dynamics, but for an Axiom
A flow with the no-cycles property the nonwandering set of a perturbation is
topologically and dynamically the same as that for the original flow. This is called
Q-stability because the original notation for the nonwandering set was Q. Our
preceding work easily produces a nominally stronger version of this classical result
(stability of 22 (®) rather than just of NW(®)), but we refer to it by the original name.

Definition 5.4.12. For r =1 a C" flow @ is said to be (C"-)Q-stable, and Z(®) is
said to be (C”-)stable if for any flow W that is sufficiently C” close to ® (see Definiti-
on 1.6.18) there is an orbit-equivalence (in a given neighborhood of the identity)

between CD[ and ¥ i

R(D) RY)”

Theorem 5.4.13 (Q-Stability Theorem). C' hyperbolic flows*® are C'-Q-stable.
Corollary 5.4.14. Hyperbolicity (Definition 5.3.48) is a C' -open condition>°

PROOEF. By the Spectral Decomposition Theorem 5.3.35 there are disjoint basic
sets Ay, ..., Ay, for @ such that Z(®) = l”i Ay and without cycles. Furthermore,
A; = WH(A)) n WS(A;) for each i, and we choose isolating open sets U; for A; with
pairwise disjoint closures.

28This notion uses stable and unstable manifolds; see Theorem 6.1.1.
2935 in Definition 5.3.48
30gee also Theorem 6.1.6.
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If ¥ is a flow sufficiently C!-close to @, then by the Structural Stability Theorem
5.4.5 there are disjoint hyperbolic basic sets A; c U; for ¥ that are orbit equivalent
to A; for each i € {1,...,m}, and for which the U; are isolating neighborhoods.
Therefore, it suffices to show that Z(¥) < U?i Ui

We show NW(¥) c U:-Z Ui (with a proof different from [247]), so ¥ satisfies
Axiom A with no cycles, and Z(¥) = NW(¥) c Ui”il U; (Remark 5.3.46).

Suppose to the contrary that there is a sequence of flows @, —£ . @ such that
n—oo

for each n there is a nonwandering point of ®,, in M\Ulf”: U;. Since M\U:ﬁl U;is
compact, there exists a point p € M \U!”, U; and a sequence of points p,, g, € M
converging to p (by possibly replacing ®,, with a subsequence) and a sequence of
times t,, === co with ¢7(p,) = ¢,,. Then there exist some ig # i1 € {1, ..., m} with
p € W¥(A;,) N WS (A;)) by Proposition 5.3.38.

By continuity of the flow and passing to a subsequence there is a sequence

1
of times £}, € (0, t,,) such that (pf{’ (pn) === Aj,. Since @ (pn) = qn — p, thereis a
1 1 7l
sequence T} € (t},t,) such that (pg” (pn) €0U;, and (pEf”‘T")(pn) c U;. Since A;, is
1

®-invariant and (p,Tl" (pn) ¢ U;,, we have Té — t,ll T=s5> 00.

By compactness of 0U;, there is a subsequence with (p,f’; (pn) — x1 € 0U;;.
Since T, — £} — oo we know that @~ (x;) < U;, and so x; € W%(A;,). Since x; ¢ Z(®)
there is an i, with x; € W*(A;,) and i, ¢ {ip, i1} by construction: i, # i; because
X1 € WH(A) N Ay = x1 ¢ WS(A;)), and iy # iy because otherwise we have a cycle
and are done.

Arguing likewise with x; gives a sequence of times 2 7= oo such that 2 €

2
(T, t}) and ¢ (p,) === A;,, and a sequence of times T2 € (12, ,) such that

2
POl (pp) € 0U;, and ¢!, (p,) € Uy, for t € [t2, T2). Furthermore, as before we have
T2 - 2 — 0o as n — oo by possibly taking a subsequence.

As before by taking a subsequence as necessary we obtain (p,{’% (pn) 7= X2 €
0U;,, and xp € WH(A;,)NW?*(A;,) for some i3 ¢ {ig, i1, i2}: i3 # iz because WH*(A;,)N
W3(Ay,) = Ay, and i3 ¢ {ip, i1, i2} because otherwise we have a cycle and are done.

Continuing in this manner we obtain a sequence of points {x,}, which for n =
m contradicts the no-cycles assumption. Hence, Z(¥) = 7; 1 A for ¥ sufficiently
C'" close to . O

We previously mentioned the Structural-Stability Theorem 5.4.11 as a high
point in dynamics, and it comes with a counterpart to Theorem 5.4.13—C'-Q-
stability characterizes hyperbolicity:



280 5. HYPERBOLICITY

Theorem 5.4.15 (Hayashi [153,154,288]). C!-Q-stable flows are hyperbolic>!

These results (together with the discrete-time counterparts) were long known
as the (Palis—)Smale Stability conjectures. While a proof is far outside our scope,
we briefly discuss some of the ingredients.

PROOF INGREDIENTS. The principal contribution was Mafié’s proof of the discrete-
time counterpart to Theorem 5.4.11, on which Palis quickly built his proof of the
discrete-time counterpart of Theorem 5.4.15. Hayashi overcame the formidable
additional difficulties for flows.

A promising approach to Theorem 5.4.15 is to use contraposition: use any
failure of hyperbolicity to make a change in the orbit structure that disproves Q-
stability. This is still a formidable task, and Axiom A (for instance) also requires
density of periodic points NW(®).

To see this, a simple general principle is helpful: Any C!-generic property of
NW(®) that is invariant under orbit-equivalence holds for Q-stable flows—because
invariance means that it either holds for all flows in a C!-neighborhood (and hence
for the Q-stable flow itself) or it fails for every flow in a neighborhood—contrary to
its genericity. Applying this to the Pugh’s General Density Theorem 1.5.19 tells us
that one part of Axiom A automatically holds for Q-stable flows: Per(®) = NW(®).

With Theorem 6.1.6, this principle further tells us that fixed and periodic points
of Q-stable flows are hyperbolic. With this, it looks like we are close. Yet lots of hard
work awaits—eased, however by having much hyperbolicity at our disposal.

The fundamental hurdle in the case of flows, which has no discrete-time
counterpart, is the need to rule out fixed points in the closure of the periodic ones
(Definition 5.1.1). Thus, in order to otherwise follow the strategy implemented by
his predecessors in the discrete-time context, Hayashi needed to prove:

Theorem 5.4.16 ([154]). Per(®) contains no fixed points.
It is here where his most prominent contribution enters.

Theorem 5.4.17 (Hayashi Connecting Lemma [154]). Consider a flow ® with an
isolated hyperbolic set A which has an almost homoclinic point, that is to say,
(W) nWH*N)u (WA NWS(A))NA#D.

Then for every C' neighborhood U of ® thereisa ¥ € U that agrees with ® on a
neighborhood of A and has a homoclinic point, that is, (W*(A) N WS (A)) N A # 2.

The proof uses delicate perturbations along the lines of the Pugh Closing
Lemma (Theorem 1.5.18). This helps prove Theorem 5.4.16 as follows. If periodic
points accumulate on a fixed point, then that (hyperbolic) fixed point comes with
an almost-homoclinic point (Figure 5.4.1); the Connecting Lemma perturbs this

3145 in Definition 5.3.48
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FIGURE 5.4.1. A periodic orbit close to a hyperbolic fixed point

to a homoclinic point, which is nonwandering but not transverse, an unstable
phenomenon that thereby rules out Q-stability. |

Remark 5.4.18. We emphasized the shadowing property as an essential mecha-
nism for a number of core features of hyperbolic dynamics, and while we clarified
that what was mainly being used was the combination of shadowing and expansiv-
ity, we used them in the full strength provided by hyperbolicity in the first place.
(We note that Lipschitz Shadowing implies structural stability [237], but the proof
is on a completely different level from anything we have done here, in that it uses
Theorem 5.4.11.)

We recall that the exposition in this chapter was guided by wanting to show
the power of the Anosov—Katok approach in which shadowing (with uniqueness
or expansivity) are used to develop the topological dynamics and stability of hy-
perbolic sets [175]. Another approach to doing so without first introducing the
invariant foliations directly uses the contraction principle to produce the desired
structures and traces back to Moser and Mather; it is well-presented in the concise
introduction by Yoccoz [291]. Finally, we have on occasion brushed up against the
limitations of this approach, and these are averted by building on the invariant
foliations early on.

We conclude with brief remarks (without proof) on the implications of these
properties per se rather than with the additional strength in which we saw them,
in some cases with the additional strong requirement that these properties hold
robustly. That is, we examine the implications of expansivity, sometimes together
with shadowing without Lipschitz shadowing or uniqueness, and sometimes in
restriction to the interior of the set of systems possessing these features.

We first illustrate the potential power of expansivity alone:
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Theorem 5.4.19 (Maiié [209]). For a C'-residual set of flows on a given compact
manifold (that is, C' -generically)

o expansivity implies hyperbolicity [269] (in fact, a like conclusion holds
assuming only “measure-expansivity” [199], that is, one allows a null set
of exceptions to expansivity in a suitable way);

o if the homoclinic class of a hyperbolic periodic orbit is expansive and
isolated, then it is hyperbolic [200];

o a measure-expansive locally maximal homoclinic class is hyperbolic [199].

Since we have not discussed genericity results much, we should note that
genericity in the C!-topology is appealing in that it can produce interesting phe-
nomena as well as results like this one, but that genericity in finer topologies is
much harder, so there is often a desire to go from C!-genericity results either to
analogous results in a finer topology or a more explicit description of the exceptions
to the generic circumstance.

Results about all systems (rather than generic ones) can be obtained, for
instance, if instead of expansivity one assumes stable (or robust) expansivity. Put
differently, these would be results not about the collection of expansive systems
but about the interior of this collection, usually in the C'-topology. The first such
result is in the volume-preserving category:

Theorem 5.4.20 ([3,4]). C!-robustly expansive volume-preserving flows are Anosov.

Absent volume-preservation, there are a few characterizations of robust ex-
pansivity with or without shadowing:

Theorem 5.4.21 ([216]). Consider a flow ® on a compact manifold.
The following are equivalent:
o @ is C'-robustly expansive and has the shadowing property,
o @ is C' -robustly expansive and structurally stable,
e @ is Anosov.
The following are equivalent:
o @ is C' -robustly expansive,
o O is quasi-Anosov,
o ® has no fixed points and is Axiom A and quasi-transverse.

Here, we used:

Definition 5.4.22. An invariant set A of a flow @ is said to be quasi-hyperbolic if

D@’ ()|l ter is unbounded for TAM 3 v L dd—(ﬂtt li<o and quasi-transverseif Ty W (x)n
T, W5 (x) = {0} for x € A. If A = M, then @ is quasi-Anosov and quasi-transverse,

respectively.
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It should be noted that robustness of any dynamical property is a severe
strengthening over just assuming that property by itself, and this, rather than
merely the strength of expansivity, is manifest in the preceding results. We illustrate
this with a 3-dimensional counterpart that involves topological transitivity:

Theorem 5.4.23 ([102]). Robustly transitive 3-flows are Anosov.

We now remark on our definition of hyperbolicity of a flow as hyperbolicity
of the chain-recurrent set (Definition 5.3.48). It turns out that there is a sufficient
(and obviously necessary) criterion for this that may be easier to verify.

Theorem 5.4.24 ([86,264]). A compact ®-invariant set A is hyperbolic if it is quasi-
hyperbolic and ® 'a is chain-recurrent.

Indeed, this gives an alternative proof that the geodesic flow of a negatively
curved Riemannian manifold is Anosov [86, Theorem 4.1].

At the end of Section 4.2 we raised the question of how topological entropy
depends on a flow, promising that for hyperbolic flows this plays out better than it
does in general. Structural stability is the key ingredient.

Theorem 5.4.25 (Continuity of entropy). The topological entropy of a hyperbolic
flow changes continuously under C* -perturbations.

We should say that this is an aspect of dynamical systems that plays out rather
differently in discrete time: Structural stability gives a conjugacy in that case, so
topological entropy is locally constant. We are now investigating a subject that is
quite specific to flows.

For Anosov flows, one can go well beyond continuous dependence, and we
will describe some pertinent results now. Structural stability is a central ingredient,
though some pertinent results can be obtained without it. In this context, however,
our approach to structural stability shows a weakness: Our proof gives limited
information on how the orbit-equivalence depends on the perturbation, other
than continuously. Another proof does; it is due to Moser and obtains the orbit-
equivalence by applying the Contraction Principle/Implicit Function Theorem
directly to the problem rather than taking a detour through shadowing (see page
288). Corollary 12.4.11 is another exemplar of this approach, and the detailed
information on how the fixed point of a contraction varies with the contraction (Pro-
position 12.1.3) indicates that with this approach one expects the orbit-equivalence
to depend smoothly on an Anosov flow in a suitable sense—and when chosen
properly, of course; as we noted, there is flexibility in the orbit direction. The
implications for topological entropy are astonishing:

Theorem 5.4.26 (Smoothness of entropy [171, 172, 174]). Suppose s — @5 is a
1-parameter family of Anosov flows for s € (—¢€,€).
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o If s— @ and @y are C**! and 1 < k < oo, then s — hyop(®@y) is CF.
o If s— ®; and Dg are C!, then sois s — Piop (@s).
o If s— @4 and Og are analytic, then so is s — hiop (Ds) is ck.

That geodesic flows of negatively curved manifolds are Anosov flows gives
immediate applications in that context. However, for these, one can strengthen the
results.

Theorem 5.4.27 ([174, Theorem 1]). Suppose (M, g) is a C? closed Riemannian
manifold without conjugate points, and s — g is a C' () perturbation by metrics
without conjugate points. Then s — hyop(gs) is Lipschitz continuous>>

Theorem 5.4.28 ([174, Theorem 3 & Remark c) + [185]]). If (M, go) isa C2 closed
Riemannian manifold of nonpositive sectional curvature and s — gs is a C? pertur-
bation, then s — hiop(gs) is C'.

Once a function is differentiable, one can aim to compute and use the deriv-
ative. Indeed, [174] obtains derivative formulas, and criteria for vanishing of the
derivative give interesting precursors to rigidity results in Section 10.4.

5. The Mather-Moser method*

Sections 5.3 and 5.4 developed the topological orbit structure of hyperbolic
sets, including the notion of a hyperbolic flow itself, plus structural (and omega-)
stability, and an underlying agenda was to do so using shadowing and expansivity
as the source of all these phenomena. To give a fuller picture of the methods used in
hyperbolic dynamics we briefly show an alternate route to structural stability. The
most focused presentation of this approach due in large part to Moser and Mather
develops the core theory in a self-contained way and establishes the Hartman—
Grobman Theorem, expansivity, structural stability, the Shadowing Lemma, sta-
ble/unstable manifolds, local product structure, spectral decomposition in that
order (and in discrete time) [291] (see also [270]). In this section we limit ourselves
to structural stability for illustrative purposes, but we use the same approach to
establish Corollary 12.4.11, which we also use here to establish expansivity, and
which underlies the next section.

The beginning of this section introduces notation, terminology and basic facts
that will be useful elsewhere as well; the core starts with Remark 5.5.9 on page 287.

It is not essential but helpful to define partial hyperbolicity here (for the
discrete-time context). It will be convenient to use the following notation.

321ere we used shorthand: htop(gs) is the topological entropy of the geodesic flow of gs.
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Definition 5.5.1 (Conorm). We define the conorm | All of alinear map A by

LAl =inf{lAvil/Ilvl | llvI=1}.
This is complementary to the usual norm || Al :=sup {IIAUII Hvll | Nvll= 1}.
Definition 5.5.2. An embedding f is said to be partially hyperbolic on A (in the

narrow sense) if there exists a Riemannian metric called a Lyapunov metric in an
open neighborhood U of A for which there are numbers®3

(5.5.1) O<A<({=l<pwithA<l<p

and a pairwise orthogonal invariant splitting into stable, center and unstable
directions

(5.5.2) TxM=E*(x)® ES(x)® E"(x), dyfE'(x)=E"(f(x)), T=Ss,cu
such that
ldxf TEF)I =A<< ldxf TECON < lldf [ EC(X) <E<p<lldxf [ E*(0].
In this case we set E®*:== E° @ E® and E°* = E° & E*.
Remark 5.5.3. This is equivalent to requiring that for any Riemannian metric there
is a constant C for which there are numbers A;, u;, i =1,2,3 as in (5.5.1) and an
invariant splitting (5.5.2) such that
ldef" I E* ()] = CA™,
C¢" < Ldxf I EC(0)l < i f | E€(0)]l < CE",
Cl" < Ldxf 1 B (L.
Example 5.5.4. The time-1 map of an Anosov flow is partially hyperbolic.

It is useful to have a characterization of (partial) hyperbolicity in terms of the
action of the differential on vector fields.

Theorem 5.5.5 (Mather). Let M be a smooth manifold, U c M an open subset,
f: U — M aC" embedding, and A < U a compact f -invariant set. Denote by T}, the
set of bounded vector fields on A and by T'; c T'j, the set of continuous vector fields
on A (these are sections of the bundle T\M =TM Ia ), and for a vector field X on A
define % (X) by
F (X)) (f(x) =D fr(X ().

Then for ¢~ < ¢ the following are equivalent:

(1) Thereexist A< ¢~ and u> ¢* such that A is (partially) hyperbolic with

A, p as in Definition 5.5.2.

33We chose the letters ¢ and ¢ for the middle numbers because ¢ looks “just a little bigger” than .
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2 Sp(grrb)ﬂ{z€([: | ¢ <|zl<lt}=0.
3 Sp(firr yn{zeC| ¢ <l|z|l<¢}=0.

PROOF. (1)=(2): Check that the splitting I',(Ty M) = I'p(EM @ ' (E*) has the de-
sired properties.
(2)=(3): Since I'; c '}, is an invariant Banach subspace, sp(& frb) csp(F frb)'
(3)=(1): This involves 2 simple steps.

Lemma 5.5.6. The projections n* that define the splittingT'; = &* @ &* are CO(A)-
linear.

Amap L: T, — I is said to be C°(A)-linear if L(pX) = ¢-L(X) forall ¢ € C°(A).
This lets us apply a general fact about continuous maps of bundles.

Lemma 5.5.7. A C%(A)-linear map L: T'. — T is pointwise defined, that is, there
is a continuous family (Ly: TxyM — TyM)xen of linear maps such that L(X)(x) =
Ly (X(x)) forall x € A.

Now, Lemma 5.5.6 provides the hypotheses for Lemma 5.5.7 applied to 7%,
s0 we obtain fiberwise linear maps 7%, and these are complementary projections
since 7* are (check that (7%)? = n* and 7~ + 7" = Id imply the same for 7%). This
gives continuous subbundles E? := 77 (T, M) and EY := n; (T M) with the desired
properties. (|

PROOF OF LEMMA 5.5.6. The main point is that the subspaces &* and &* are
C%(A)-closed: If X € &} and ¢: A — Ris continuous (hence bounded), then ¢ X €
& because F"(@X) = po f"-F"(X). Thus T, = &} @ &* as C°(A)-modules; since
7t is CO(A)-linear on &} and &* (it is 0 or Id), the claim follows. O

PROOF OF LEMMA 5.5.7. If X =0 onan open set U then a¥(X)=0onU: Forxe U
take p € C%(A) such that ¢(x)=1and X =0 to get

= (X)) = 1- 75 (X) (x) = p(x) - 17 (X) (x) = 7 (9 X) (x) = 1 (0) (x) = 0.

If X €T, and X (x) = 0 take X,, — X with X, = 0 on B(x,1/n) and hence 7% (X)(x) =
lim7* (X,)(x) = 0.

If (x,v) € TAM, X € T and X (x) = v, then 7% (v) == 7% (X) (v) is thus indepen-
dent of such X. O

Definition 5.5.8 (Fibered linear automorphisms). Suppose K is a compact mertic
space, m: E — K afinite-dimensional vector bundle, f: K — K a homeomorphism.
Then F: E — E is called a linear automorphism of E fibered over f if for every x € K
the restriction Fy of F to Ey:=7~!(x) is a linear isomorphism onto E f(x) depending
continuously on x. We denote by I'; (E) and I'.(E) the (Banach) space of bounded,
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respectively continuous, sections of 7. The action & of F on sections X of 7 is
given by
Fr(X(x) = Z (X)) (f (x).

(& is linear and preserves I', and I';.)

Remark 5.5.9 (Transverse bundle). The setting of Theorem 5.5.5 is an instance
of this situation, with E being the tangent bundle and F = D f. For invariant sets
A c M of flows, a related useful bundle is the transverse bundle TEM defined by
T®M = T, M/, the linear space T M) modulo the flow direction, which inherits
a norm or inner product from TxM. Theorem 5.5.5 tells us that time-# maps of
hyperbolic flows induce a hyperbolic action F on the transverse bundle E, that is,
there is an invariant splitting

Ex)=E'(x)®E“(x), FE'(X)=E'(f(x)), T=s,u

such that

”FF ||S/1<1<,USU_Fr 1.

E*(x) E*(x)

Theorem 12.4.8 applied to ¢ defined by G, (X (x)) = ¢4 (X)(f(x)) gives

Theorem 5.5.10 (Invariant section). If F: E — E is a hyperbolic linear automor-
phism fibered over a homeomorphism f of K and G: E — E is fibered over f such
that ¢ :=L(G-F) <e:=min(1 - A,1 - u~") (see Definition 12.1.1), then there is a
unique bounded section X of E such that 4(X) = X, and X is continuous with
X1 < (€= )7 sup e |G (0) .

Localization (Theorem 12.4.12) provides applications of results like this to
a compact hyperbolic set of diffeomorphisms, with G being the localization of
D f—variously on the tangent bundle or the transverse bundle. For instance, the
Hartman-Grobman implies expansivity without first establishing shadowing with
uniqueness: With K := Ag (as in Proposition 5.1.10) hyperbolic, the localization G
on the transverse bundle of D¢’ from Theorem 12.4.12 is Lipschitz-close to D¢’ on
the transverse bundle, so we can apply the Hartman-Grobman Theorem (Corollary
12.4.11) to conclude that for x € K, v € E . {0} the ¢-orbit of the section X with
X(x) =v, X(y) =0 for y # x is unbounded, so the orbit of exp, v does not stay in
localization neighborhoods around the orbit of x.

Structural stability is a like application of Theorem 5.5.10.

MATHER-MOSER PROOF OF THEOREM 5.4.5. By assumption, we can localize ¥
to a fibered action on the transverse bundle which is Lipschitz-close to that of
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D®. The unique bounded (and then continuous) section X from Theorem 5.5.10 is
continuous in ¥ and gives the orbit-equivalence h by

(5.5.3) (h(x) = exp (X (x)).

As in Theorem 5.3.7, h is injective by expansivity ]

6. The Hartman-Grobman Theorem

Returning to a much more modest (and local) context, we now closely explore
how well the dynamics near a hyperbolic fixed point (Definition 1.1.24) is described
by the dynamics of the linearization. This can be viewed as a local counterpart
to structural stability, but there are interesting contrasts to point out. One is that
there is an extension that is not at all perturbative, and the other is that, being local,
this result can produce a conjugacy rather than an orbit-equivalence.

Specifically, we now show how the Hartman-Grobman Theorem 12.4.14 for
discrete-time systems translates to a corresponding result for flows. One such
translation is too straightforward to state as a separate result: the return map to a
transversal through a hyperbolic periodic point of a flow is a map with a hyperbolic
fixed point, so the Hartman-Grobman Theorem 12.4.14 applies directly to the
return map. We here develop the other application, to hyperbolic fixed points of
flows. The purpose is twofold: It provides insight into the dynamics of a flow near a
hyperbolic fixed point, but it also illustrates a mechanism by which conjugacies
between time-1 maps are conjugacies between flows in some generality.

Theorem 5.6.1 (Hartman-Grobman). Let M be a smooth manifold, ® a contin-
uously differentiable flow on M and p € M a hyperbolic fixed point of ®. Then
for each T > 0 there exist neighborhoods U of p and V of 0 € T,M as well as a
homeomorphism h: U — V such thato'=h"'o Dgj,ohonU forallte[-T,T].

PROOF. Without loss of generality (Theorem 12.4.12) assume that M =R", p =0,
L= Dy¢' is a hyperbolic linear map for ¢ # 0, with A:= ¢! — L! bounded, € as
in (12.4.1), and ¢ := L(A) < €. Corollary 12.4.11 gives a unique homeomorphism
h: E — E with h—Id bounded and ho L' = ¢! o h. It suffices to check t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>