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1. Introduction

The porpose of this paper is to prove the second main theorem for a holomor-
phic map from the complex plane C to the product space of the one-dimentional
projective spaces P1(C) × P1(C). Let [X0 : X1] and [Y0 : Y1] be the homogenious
cordinates in the first and second factors of the product space of the P1(C)×P1(C).
Let m′, n′,m′′, n′′ be positive integers. We define the effective divisors D′, D′′ on
P1(C) × P1(C) by the polynomials Xm′

0 Y n′

0 −Xm′

1 Y n′

1 , Xm′′

0 Y n′′

1 −Xm′′

1 Y n′′

0 . We
prove the second main theorem for divisors D′ and D′′.

The second main theorem for hyperplanes in Pn(C) is proved by Cartan [1].
The case of non-linear hypersurfaces had been studied by many authors. Although
P2(C) and P1(C)×P1(C) are birationally equivallent, the second main theorem for
P1(C)× P1(C) has not been obtained.

Let i : C∗×C∗ → P1(C)×P1(C) be the inclusion map where C∗ = C\{0}. Then
Zk is the compactification of semi-Abelian variety C∗ × C∗.

In Noguchi, Winkelmann and Yamanoi [5], [6], the second main theorem for a
holomorphic map f from C to a semi-Abelian variety A with D is proved, where
D is an effective reduced divisor on A.

Theorem 1 ([6]). Let f : C → A be a holomorphic map such that the image of f
is Zariski dense in A. There is the compactification of A such that A is smooth,
equivalent with respect to the A-action, independent of f , and it follows that

Tf (r, [D]) ≤ N1(r, f
∗D) + εTf (r, [D])∥ε,

for all ε > 0, where D is the closure of D in A.

If A = C∗ × C∗, and D = D′ +D′′ in Theorem 1, our main theorem deals with
the holomorphic curves into A.
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2 YUSAKU TIBA

Now we state our main theorem precisely. Let H1,0, H1,1, H2,0 and H2,1 be the
hyperplanes in P1(C)× P1(C) which are defined by the monomials X0, X1, Y0 and
Y1. Put Z0 = P1(C)× P1(C). Then there exists the sequence of the blowing-up

π1,0 : Z1 → Z0,
π2,1 : Z2 → Z1,

...
πk,k−1 : Zk → Zk−1.

which satisfies the following condition (∗):
Put πj,i = πi+1,i ◦· · ·◦πj,j−1 for i < j. Let D̃′, D̃′′ and H̃i,j , 1 ≤ i ≤ 2, 0 ≤ j ≤ 1

be the proper transform of D′, D′′, and Hi,j under πk,0. Let Ei, 1 ≤ i ≤ k be the

exceptional divisor of the blowing-up πi,i−1, and let Ẽi be the proper transform of
Ei under πk,i. Then

(∗) D̃′ + D̃′′ +
∑2

i=1

∑1
j=0 H̃i,j +

∑k
i=1 Ẽi is simple normal crossing in Zk.

Our goal is the following theorem.

Theorem 2 (Main Theorem). Let f : C → P1(C) × P1(C) be a non-constant

holomorphic map. Let f̃ : C → Zk be the lift of f . Assume that

f(C) ̸⊂ {([X0 : X1], [Y0 : Y1]) ∈ P1(C)× P1(C) | C0X
r1
0 Y r2

0 − C1X
r1
1 Y r2

1 = 0},

for all (r1, r2) ∈ Z×Z\{(0, 0)} and all (C0, C1) ∈ C×C\{(0, 0)}, and assume that
there exist no holomorphic functions g1, g2 on C and no (a, b) ∈ C × C \ {(0, 0)}
such that

f = (exp g1, exp g2),

ag1 + bg2 = (constant),

on C. Then D̃′ + D̃′′ is a big divisor on Zk, and it follows that

Tf̃ (r, [D̃
′ + D̃′′]) ≤ N2(r, f̃

∗D̃′) +N2(r, f̃
∗D̃′′)

+ 2
2∑

i=1

1∑
j=0

N1(r, f̃
∗H̃i,j) + 2

k∑
i=1

N1(r, f̃
∗Ẽi) + Sf (r),

where Sf (r) = O(log+ Tf (r) + log+ r)∥. Here “ ∥” means that the inequality holds
for all r ∈ (0,+∞) possibly except for subset with finite Lebesgue measure.

In Siu [7], a meromorphic connection is used to prove the second main theorem.
In this paper, we also use the meromorphic connection on P1(C)× P1(C). Because
C∗ × C∗ is a Lie group, there exists the canonical connection on P1(C) × P1(C).
We extend this connection to the meromorphic connection on P1(C)×P1(C). This
connection does not “vary” under the blowing-up. This meromorphic connection
plays an important role in our arguments.

Acknowledgement. I would like to express my sincere gratitude to Professor
Junjiro Noguchi. He gave me a lot of fruitful ideas and suggestions, and he inspired
me a lot.
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2. Notation and Preliminaries

We introduce some functions which play an important role in the Nevanlinna
theory. Let E be an effective divisor on C. We write E =

∑
mjPj , where {Pj}

is a set of discrete points in C and mj are positive integers. Put nk(r,E) =∑
|Pj |<r min{k,mj}. We define the counting function of E by

Nk(r, E) =

∫ r

1

nk(t, E)

t
dt.

Let X be a complex projective algebraic manifold, and let D be divisors on X. Let
[D] be the holomorphic line bundle on X which is defined by the divisor D, and let
suppD be the support of D. Let f : C → X be a non-constant holomorphic map.
We define the proximity function of D by

mf (r,D) =

∫ 2π

0

log
1

∥σ(f(reiθ))∥
dθ

2π
,

where ∥ · ∥ is a Hermitian metric in L. Let R(L, ∥ · ∥) be the curvature form of the
metrized line bundle (L, ∥ · ∥) representing the first Chern class. Then we define
the characteristic function of L by

Tf (r, L) =

∫ r

1

dt

t

∫
∆(t)

f∗R(L, ∥ · ∥),

where ∆(t) = {z ∈ C | |z| < t}. We set Tf (r) = Tf (r, L) if L is an ample line bundle
on X. The equation

Tf (r, L) = N(r, f∗D) +mf (r,D) +O(1)

is called the First Main Theorem (cf. Noguchi and Ochiai [4], Chapter V, §2).
If X = P1(C), f is a meromorphic function on C. Then we have the lemma on
logarithmic derivative (cf. Noguchi and Ochiai [4], Chapter VI, §1)∫ 2π

0

log+
∣∣∣∣f ′(reiθ)

f(reiθ)

∣∣∣∣ dθ ≤ Sf (r),

where log+ r = max{0, log r}, and Sf (r) = O(log+ Tf (r) + log+ r)∥. Here “ ∥”
means that the inequality holds for all r ∈ (0,+∞) possibly except for a subset
with finite Lebesgue measure.

The following lemma is also fundamental in Nevanlinna theory.

Lemma 1. Let h(r) > 0 be a monotone increasing function in r ≥ 1. Then, for
arbitrary δ > 0, we have

dh(r)

dr
≤ (h(r))1+δ∥.

Proof. See Noguchi-Ochiai [4], Chapter V, §5. �

Let X be a complex projective algebraic manifold, and let Y be the smooth
hypersurface of X. Let s be the holomorphic function on an open subset U ⊂ X
such that Y ∩ U = {x ∈ U | s(x) = 0}. Let ∇ be a holomorphic connection on U .
We write

∇(m) =

m−times︷ ︸︸ ︷
∇ ◦ · · · ◦ ∇ .

Then the following lemma holds (see the proof of Lemma 11.13. of J.-P. Demailly
[2]).
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Lemma 2. Let f : C → U be a holomorphic function. Assume that Y is totally geo-
desic with respect to ∇ on U . Then there exist holomorphic functions h0, h1, · · · , hm

on U such that

ds · ∇(m)
f ′ f ′(z) = h0(f(z))s ◦ f(z) +

m∑
i=1

hi(f(z))
di(s ◦ f)

dzi
(z) +

dm+1(s ◦ f)
dzm+1

(z),

for z ∈ f−1(U).

Let X and X̃ be n-dimensional complex projective algebraic manifolds. Let

π : X̃ → X be a surjective holomorphic map. Then there exists a proper subvariety

S of X such that X̃ \ π−1(S) and X \ S are locally biholomorphic. Let ∇ be a

meromorphic connection on X. Let V be a small neighborhood of p ∈ X̃, and let
u, v be holomorphic vector fields on a small neighborhood V of p. Then V \π−1(S)
is locally biholomorphic with π(V )\S. We define the meromorphic connection π∗∇
on X̃ \ π−1(S) by

(π∗∇)uv|V \π−1(S) = (π∗|V \π−1S)
−1 ∇π∗uπ∗v.

Then the meromorphic vector field (π∗∇)uv on V \π−1S is uniquely extended to the
meromorphic vector field (π∗∇uv) on V . In this way, we define the meromorphic

connection π∗∇ on X̃.

3. Meromorphic connection and Blowing-up

Let i : C∗ × C∗ → P1(C) × P1(C) be the inclusion map. Then supp i∗D′ is
a subgroup of C∗ × C∗. Therefore there exists the canonical connection ∇ on
C∗ ×C∗ such that supp i∗D′ is totally geodesic with respect to ∇. This connection
is extended to the meromorphic connection on P1(C)×P1(C). We also denote this
extended connection by ∇. Let Ui,j = {([X0 : X1], [Y0 : Y1]) ∈ P1(C)× P1(C)|Xi ̸=
0, Yj ̸= 0}, 0 ≤ i, j ≤ 1. Take the canonical local cordinate system (z, w) on
Ui,j ≃ C× C. Then, the meromorphic connection ∇ is written by

d+

(
−dz

z 0
0 −dw

w

)
,

on Ui,j . It is easy to see that supp i∗D′′ is also totally geodesic with respect to ∇.

Lemma 3. Let f : C → P1(C) × P1(C) be a non-constant holomorphic map such
that f(C) is not contained in the support of Hi,j, i = 1, 2, j = 0, 1. Then f satisfies

f ′ ∧∇f ′f ′ ≡ 0,

if and only if f satisfies the following condition (i) or (ii):
(i)

f(C) ⊂ {([X0 : X1], [Y0 : Y1]) ∈ P1(C)× P1(C) |Xr1
0 Y r2

0 − CXr1
1 Y r2

1 = 0},
for some (r1, r2) ∈ Z× Z \ {(0, 0)} and some C ∈ C \ {0}.
(ii)
There exist holomorphic functions g1, g2 on C and (a, b) ∈ C×C\{(0, 0)} such that

f = (exp g1, exp g2) : C → P1(C)× P1(C),

ag1 + bg2 = (constant),

on C.
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Proof. Without loss of generality, we may assume that f(0) ∈ C∗ × C∗. The
holomorphic map(

exp(2π
√
−1 · ), exp(2π

√
−1 · )

)
: C× C → C∗ × C∗,

is the univeral covering of C∗ ×C∗. The induced connection on the covering space
C × C by ∇ is the flat connection d. We put f = (f1, f2) where f1 and f2 are
meromorphic functions on C. Let

hi =
1

2π
√
−1

log fi, i = 1, 2.

Assume that f ′ ∧ ∇f ′f ′ ≡ 0. Then there exists a meromorphic function h on C
such that (

h′′
1(z)

h′′
2(z)

)
= h(z)

(
h′
1(z)

h′
2(z)

)
,

on C.
This means that

h′
i(z) = h′

i(0) expH(z), i = 1, 2,

in a simple connected neighborhood U of 0 ∈ C. Here

H(z) =

∫ z

0

h(t)dt.

If h′
i(0) = 0, it follows that hi is a constant function. So (h′

1(0), h
′
2(0)) ∈ C × C \

{(0, 0)}. It holds that

hi(z) = h′
i(0)

∫ z

0

expH(t)dt+ hi(0), i = 1, 2.

It follows that

h′
2(0)h1(z)− h′

1(0)h2(z) = h′
2(0)h1(0)− h′

1(0)h2(0).

Conversely, assume that there exist (a, b) ∈ C× C \ {(0, 0)} such that

ah1(z) + bh2(z) = (constant),

on C. Then ah′
1(z)+bh′

2(z) = 0, ah′′
1(z)+bh′′

2(z) = 0. So it follows that f ′∧∇f ′f ′ ≡
0.

Therefore f ′ ∧ ∇f ′f ′ ≡ 0 if and only if there exist (a, b) ∈ C× C \ {(0, 0)} such
that

a log f1(z) + b log f2(z) = (constant),

on C.
Assume that

(1) a log f1(z) + b log f2(z) = c,

for some (a, b) ∈ C×C\{(0, 0)}, c ∈ C. Without loss of generality, we may assume
that a = 1. For x ∈ C, we put

fi(z) = (z − x)rihi(z), i = 1, 2,

where ri ∈ Z, hi(z) is a holomorphic function on an open neighborhood of x such
that hi(x) ̸= 0. Then, by (1), we have r1 + br2 = 0. When r2 ̸= 0 for some x ∈ C,
it follows that

log(f1(z))
r2 + log(f2(z))

−r1 = r2c.
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Then it holds that the meromorphic function (f1(z))
r2(f2(z))

−r1 is a constant func-
tion on C. This means that

f(C) ⊂ {([X0 : X1], [Y0 : Y1]) ∈ P1(C)× P1(C) |Xr2
1 Y r1

0 − CXr2
0 Y r1

1 = 0},

for r1 ∈ Z, r2 ∈ Z \ {0}, C ∈ C. When r2 = 0 for all x ∈ C, we have r1 = 0 for
all x ∈ C. This means that there exist holomorphic functions g1, g2 on C such that
fi = exp gi, i = 1, 2. Then g1 + bg2 = c.

Conversely, if f satisfies the condition (i) or (ii). It is easy to see that there exist
(a, b) ∈ C× C \ {(0, 0)} such that

a log f1(z) + b log f2(z) = (constant),

on C. �

Remark 1. The condition of (b) in Lemma 4 does not mean the algebraical degen-
eracy of f(C). For example, take

f(z) = (exp z, exp
√
−1z) : C → P1(C)× P1(C).

The divisor

D′ +D′′ +

2∑
i=1

1∑
j=0

Hi,j ,

is not simple normal crossing at {([0 : 1], [0 : 1]), ([0 : 1], [1 : 0]), ([1 : 0], [0 : 1]), ([1 :
0], [1 : 0])} ⊂ P1(C)× P1(C). Put Z0 = P1(C)× P1(C). Let π1,0 : Z1 → Z0 be the
blowing-up of Z0 at the center {([0 : 1], [0 : 1]), ([0 : 1], [1 : 0]), ([1 : 0], [0 : 1]), ([1 :
0], [1 : 0])}. Let D′

1, D
′′
1 ,Hi,j,1 be the strict transform of D′, D′′,Hi,j under π1,0,

and let E1 be the exceptional divisor of π1,0.
If the divisor

D′
1 +D′′

1 +
2∑

i=1

1∑
j=0

Hi,j,1 + E1,

is not simple normal crossing in Z1, we blow up Z1 at the points where that divisor
is not simple normal crossing. We repeat this process for several times. We put the
l-th blowing-up πl,l−1 : Zl → Zl−1. Let El be the exceptional divisor of πl,l−1. We
define

πj,i = πi+1,i ◦ πi+2,i+1 ◦ · · · ◦ πj,j−1,

for i ≤ j ( we define πi,i = Id). Let D′
l, D

′′
l , Hi,j,l be the strict transform of D′,

D′′, Hi,j under πl,0, and let Ei,l, 1 ≤ i ≤ l, be the strict transform of Ei under πl,i.
Then there exists a positive integer k such that

D′
k +D′′

k +

2∑
i=1

1∑
j=0

Hi,j,k +

k∑
i=1

Ei,k,

is simple normal crossing. We put D̃′ = D′
k, D̃

′′ = D′′
k , H̃i,j = Hi,j,k, and Ẽi = Ei,k.

Example 1. Let D′, D′′ be the divisor which are defined by the polynomials

X2
0Y0 −X2

1Y1, X3
0Y

2
1 −X3

1Y
2
0 .

Let π1,0 : Z1 → Z0 be the blowing-up as above. Then D′
1+D′′

1+
∑2

i=1

∑1
j=0 Hi,j,1+

E1 is not simple normal crossing at four points in Z1. So π2,1 : Z2 → Z1 is the

blowing-up at these four points. We see thatD′
2+D′′

2+
∑2

i=1

∑1
j=0 Hi,j,2+

∑2
i=1 Ei,2
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is not simple normal crossing at two points in Z2. So π3,2 : Z3 → Z2 is the blowing-

up at these two points. Then D′
2 +D′′

2 +
∑2

i=1

∑1
j=0 Hi,j,2 +

∑2
i=1 Ei,2 is normal

crossing.
Let E′

i and E′′
i be irreducible components of Ei such that πi,0(suppE

′
i) ⊂ suppD′

and πi,0(suppE
′′
i ) ⊂ suppD′′. Then E1 = E′

1 + E′′
1 , E2 = E′

2 + E′′
2 and E3 = E′′

3 .

Let Ẽ′
i and Ẽ′′

i be the proper transform of E′
i and E′′

i . Then it follows that

π∗
3,0D

′ = D̃′ + Ẽ′
1 + 2Ẽ′

2,

and

π∗
3,0D

′ = D̃′′ + 2Ẽ′′
1 + 3Ẽ′′

2 + 6Ẽ′′
3 .

Lemma 4. There exist affine open covering {U l
s}1≤s≤Nl

of Zl, for 0 ≤ l ≤ k, such
that every U l

s satisfies the following five conditions:
(i)

U l
s ≃ C× C.

Take the canonical local coordinate system (z, w) of U l
s.

(ii)
2∑

i=1

1∑
j=0

Hi,j,l|U l
s
+
∑

1≤i≤l

Ei,l|U l
s
= (z) + (w),

on U l
s.

(iii)

D′
l|U l

s
= (zp

′
− wq′) (or (1− zp

′
wq′) respectively),

on U l
s, where p′ and q′ are non-negative integers (p′, q′ may depend on l and s).

(iv)

D′′
l |U l

s
= (1− zp

′′
wq′′) (or (zp

′′
− wq′′) respectively),

on U l
s, where p′′ and q′′ are non-negative integers (p′′, q′′ may depend on l and s).

(v)

π∗
l,0∇|U l

s
= d+

(
−dz

z 0
0 −dw

w

)
,

on U l
s.

Proof. We take affine open coverings {U l
s}1≤s≤Nl

by induction over l. For l = 0,
we put {U0

s }1≤s≤4 = {Ui,j}0≤i,j≤1. Here Ui,j = {[X0 : Y0], [X1 : Y1] ∈ P1(C) ×
P1(C)|Xi ̸= 0, Yj ̸= 0}. Then {U0

s }1≤s≤4 satisfies above five conditions. Assume
that we take the affine open covering {U l−1

s }1≤s≤Nl−1
of Zl−1 for l ≤ k which

satisfies the above five conditions. Let U l−1
t ∈ {U l−1

s }1≤s≤Nl−1
. Take the canonical

local coordinate system (z, w) of U l−1
t ≃ C× C.

If D′
l−1|U l−1

t
= (zp

′ − wq′) for some positive integers p′, q′. Then

D′′
l−1|U l−1

t
= (1− zp

′′
wq′′),

for some non-negative integers p′′, q′′. The divisor

D′
l−1 +D′′

l−1 +
2∑

i=1

1∑
j=0

Hi,j,l−1 +
∑

1≤i≤l−1

Ei,l−1,
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in Zl−1, is not normal crossing at (0, 0) ∈ U l−1
t . Then (0, 0) is contained in the

center of the blowing-up πl,l−1. We have

π−1
l,l−1(U

l−1
t ) = {((z, w), [W0 : W1]) ∈ U l−1

t × P1(C) | zW1 = wW0}.

Let Vi = {((z, w), [W0 : W1]) ∈ π−1
l,l−1(U

l−1
t ) |Wi ̸= 0}, i = 0, 1. Then {V0, V1}

are affine open covering of π−1
l,l−1(U

l−1
t ). We show that affine open sets V0 and V1

satisfy the five conditions of lemma. Let u = W1/W0 be the holomorphic function
on V0. Then (z, u) is the local cordinate system of V0. It is easy to verify that V0

satisfies (i), (ii), (iii) and (iv). Since

π∗
l,l−1z = z, π∗

l,l−1w = zu,

we have

πl,l−1 ∗

(
∂

∂z

∂

∂u

)
=

(
∂

∂z

∂

∂w

)(
1 0
u z

)
.

Let Γ be the connection form of π∗
l,l−1∇|V0 with respect to the frame ∂/∂z, ∂/∂u.

Then it follows that

Γ =

(
1 0
u z

)−1

d

(
1 0
u z

)
+

(
1 0
u z

)−1

π∗
l,l−1

(
−dz

z 0
0 −dw

w

)(
1 0
u z

)
.

Since (
1 0
u z

)−1

=

(
1 0
−u

z
1
z

)
,

we have

Γ =

(
0 0
du
z

dz
z

)
+

(
1 0
−u

z
1
z

)(
−dz

z 0
0 −dz

z − du
u

)(
1 0
u z

)

=

(
0 0
du
z

dz
z

)
+

 −dz
z 0

u
z
dz
z − 1

z

(
dz
z + du

u

) ( 1 0
u z

)

=

(
0 0
du
z

dz
z

)
+

 −dz
z 0

u
z
dz
z − u

z

(
dz
z + du

u

)
−dz

z − du
u


=

(
−dz

z 0
0 −du

u

)
.

So V0 satisfies (v). In the same way, we can show that V1 satisfies the conditions
of the lemma.

If
D′

l−1|U l−1
t

= (1− zp
′
wq′), D′′

l−1|U l−1
t

= (zp
′′
− wq′′),

for some non-negative integers p′, q′ and some positive integers p′′, q′′. In the same
way as above, we can take the affine open sets in π−1

l,l−1(U
l−1
t ) which satisfy the five

conditions of the lemma.
If

D′
l−1|U l−1

t
= (1− zp

′
wq′), D′′

l−1|U l−1
t

= (1− zp
′′
wq′′),

for some non-negative integers p′, q′, p′′, q′′. Then U l−1
t ≃ π−1

l,l−1(U
l−1
t ) because

U l−1
t does not contain the center of the blowing-up πl,l−1. By the assumption of

induction, the affine open subset π−1
l,l−1(U

l−1
t ) satisfies the five conditions of the

lemma.
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This completes the proof. �

4. Proof of the bigness of D̃′ + D̃′′

In this section, we show that D̃′ + D̃′′ is big in Zk. We note that there exists
the proof of the bigness for more general cases in Proposition 3.9. of [6].

To prove the bigness of the line bundle D̃′ + D̃′′, it is sufficient to show the
following lemma (cf. Theorem 2.2.16. of R. Lazarsfeld [3]).

Lemma 5. The divisor D̃′ + D̃′′ is nef and (D̃′ + D̃′′)2 > 0.

Proof. Because

(D̃′ + D̃′′)2 = (D̃′)2 + 2D̃′ · D̃′′ + (D̃′′)2,

it is enough to show that (D̃′)2 = (D̃′′)2 = 0 and D̃′ and D̃′′ are nef. Without loss
of generality, we may assume that m′ ≤ n′. Let E′

1 be the reduced divisor on Z1

such that
π∗
1,0D

′ = D′
1 +m′E′

1.

Let F ′ be the divisor on Zk such that

π∗
k,1D

′
1 = D̃′ + F ′.

It follows that

(D̃′)2 = (π∗
k,0D

′ − F ′ −m′π∗
k,1E

′
1)

2

= (π∗
k,0D

′)2 + (F ′)2 +m′2(π∗
k,1E

′
1)

2 − 2π∗
k,0D

′ · F ′

+ 2m′F ′ · π∗
k,1E

′
1 − 2m′π∗

k,1E
′
1 · π∗

k,0D
′

= 2m′n′ + (F ′)2 − 2m′2 − 2(D̃′ + F ′ +m′π∗
k,1E

′
1) · F ′

+ 2m′F ′ · π∗
k,1E

′
1 − 2m′π∗

k,1E
′
1 · (π∗

k,1D
′
1 +m′π∗

k,1E
′
1)

= 2m′n′ − 2m′2 − (F ′)2 − 2D̃′ · F ′ − 2m′D′
1 · E′

1 − 2m′2(E′
1)

2.

Because D′
1 · E′

1 = 2m′, we have

(2) (D̃′)2 = 2m′n′ − 2m′2 − (F ′)2 − 2D̃′ · F ′.

If m′ = n′, then D̃′ = D′
1, F

′ = 0 and we have (D̃′)2 = 0.

Now we prove (D̃′)2 = 0 by the induction over the positive integer m′ + n′. Let
E′

i, i = 2, · · · k be reduced effective divisors on Zi such that

supp (π∗
i,i−1D

′
i−1 −D′

i) = suppE′
i.

Let Ẽ′
i be the strict transform of E′

i under πk,i. There exist non-negative integers
a2, a3, · · · , ak such that

F = a2Ẽ
′
2 + a3Ẽ

′
3 + · · ·+ akẼ

′
k.

Now we take another divisor A′ on P1(C)×P1(C) which is defined by the polynomial

Xm′

0 Y n′−m′

0 −Xm′

1 Y n′−m′

1 .

There is, as in Section 3, the sequence of the blowing-up

σ1,0 : W1 → P1(C)× P1(C),
...

σk−1,k−2 : Wk−1 → Wk−2,



10 YUSAKU TIBA

such that the following condition (∗∗) satisfies:
Let S be the reduced divisor such that

supp

σ∗
k−1,0

A′ +

2∑
i=1

1∑
j=0

Hi,j

 = suppS,

where σk−1,1 = σ1,0 ◦ · · · ◦ σk−1,k−2. Then
(∗∗) S is normal crossing in Wk−1.

Let B′
i be the exceptional divisor of σi,i−1, and let B̃′

i be the strict transform

of B′
i under σi+1,i ◦ · · · ◦ σk−1,k−2. Let Ã′ be the strict transform of A′ under

σ1,0 ◦ · · · ◦ σk−1,k−2. It follows that

(σ1,0 ◦ · · · ◦ σk−1,k−2)
∗A′ = Ã′ + a2B̃

′
1 + a3B̃

′
2 + · · ·+ akB̃

′
k−1,

and

Ẽ′
i · Ẽ′

j = B̃′
i−1 · B̃′

j−1, D̃′ · Ẽ′
i = Ã′ · B̃′

i−1,

for all 2 ≤ i, j ≤ k. Put G′ = a2B̃
′
1 + a3B̃

′
2 + · · ·+ akB̃

′
k−1. We have

(3) (F ′)2 = (G′)2, D̃′ · F ′ = Ã′ ·G′.

It follows that

(Ã′)2 = (σ∗
k−1,0A

′ −G′)2

= 2m′(n′ −m′)− 2σ∗
k−1,0A

′ ·G′ + (G′)2

= 2m′(n′ −m′)− 2(Ã′ +G′) ·G′ + (G′)2

= 2m′(n′ −m′)− (G′)2 − 2Ã′ ·G′.

By the assumption of the induction, we have

(4) (G′)2 + 2Ã′ ·G′ − 2m′(n′ −m′) = 0.

. By (2), (3) and (4), it follows that

(D̃′)2 = 2m′n′ − 2m′2 − (F ′)2 − 2D̃′ · F ′ = 2m′(n′ −m′)− (G′)2 − 2Ã′ ·G′ = 0.

Then we complete the induction. By the same way, we can show that (D̃′′)2 = 0.

Now we show that D̃′ is nef. Let m′ = dp, n′ = dq, where d is the greatest
common divisor of m′ and n′. Then it follows that

Xm′

0 Y n′

0 −Xm′

1 Y n′

1 =
d−1∏
i=0

(
Xp

0Y
q
0 − (εd)

iXp
1Y

q
1

)
,

where εd = exp((2π
√
−1)/d). Let Ci be the irreducible divisor on P1(C) × P1(C)

which is defined by the polynomial Xp
0Y

q
0 − (εd)

iXp
1Y

q
1 , and let C̃i be the strict

transform of Ci under πk,0. By the above arguments, we have (C̃0)
2 = 0. Because

C̃0 and C̃i, 1 ≤ i ≤ d− 1, are linearly equivalent, we have

C̃i · D̃′ = (C̃i)
2 = (C̃0)

2 = 0.

Therefore D′ is nef. By the same way, we can show that D̃′′ is nef. �
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5. Proof of the main theorem

Let f : C → P1(C)× P1(C) be the holomorphic map, let f̃ : C → Zk be the lift

of f , and let ∇̃ = π∗
k,0∇.

Z0 Z1

π1,0oo Z2

π2,1oo . . .
π3,2oo Zk

πk,k−1oo

C

f

OO

f̃

33ffffffffffffffff

Let σ̃′ ∈ Γ(Zk, [D̃
′]), σ̃′′ ∈ Γ(Zk, [D̃

′′]), h̃i,j ∈ Γ(Zk, [H̃i,j ]), ẽi ∈ Γ(Zk, Ẽi) be the
holomorphic section such that

(σ̃′) = D̃′, (σ̃′′) = D̃′′, (h̃i,j) = H̃i,j , (ẽi) = Ẽi.

Lemma 6. Assume that

f(C) ̸⊂ supp

D′ +D′′ +
2∑

i=1

1∑
j=0

Hi,j

 ,

and assume that

f ′ ∧∇f ′f ′ ̸≡ 0.

Then it follows that∫
|z|=r

log+
∥f̃ ′ ∧ ∇̃f̃ ′ f̃

′(z)∥∧2 TZk

∥σ̃′(f̃)∥[D̃′]∥σ̃′′(f̃)∥[D̃′′]

∏2
i=1

∏1
j=0 ∥h̃i,j(f̃)∥[H̃i,j ]

∏k
i=1 ∥ẽi(f̃)∥[Ẽi]

dθ

2π

= Sf (r).

Proof. For the convinience of the notation, we assume that D′ and D′′ are irre-
ducible. Put

A = D̃′ + D̃′′ +
2∑

i=1

1∑
j=0

H̃i,j +
k∑

i=1

Ẽi,

and put

ξ(z) =
∥f̃ ′ ∧ ∇̃f̃ ′ f̃

′(z)∥∧2 TZk

∥σ̃′(f̃)∥[D̃′]∥σ̃′′(f̃)∥[D̃′′]

∏2
i=1

∏1
j=0 ∥h̃i,j(f̃)∥[H̃i,j ]

∏k
i=1 ∥ẽi(f̃)∥[Ẽi]

.

Note that A is simple normal crossing in Zk.
Let

x ∈
2∪

i=1

1∪
j=0

supp H̃i,j ∩
k∪

i=1

supp Ẽl.

By Lemma 4, there exist an affine open neighborhood Ux of x and local cordinate
system zx, wx on Ux which satisfies the five conditions of Lemma 4. We put

Vx = Ux \ supp (D̃′ + D̃′′),

and put

f̃1 = zx ◦ f̃ , f̃2 = wx ◦ f̃ ,
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on f̃−1(Vx). It follows that

f̃ ′ ∧ ∇̃f̃ ′ f̃
′ =

(
f̃ ′
1f̃

′′
2 − f̃ ′′

1 f̃
′
2 + f̃ ′

1f̃
′
2

f̃ ′
1

f̃1
− f̃ ′

1f̃
′
2

f̃ ′
2

f̃2

)
∂

∂zx
∧ ∂

∂wx
.

on f̃−1(Vx). Then it follows that

(5) ξ(z) =

 f̃ ′
1

f̃1

f̃ ′′
2

f̃2
− f̃ ′′

1

f̃1

f̃ ′
2

f̃2
+

(
f̃ ′
1

f̃1

)2
f̃ ′
2

f̃2
− f̃ ′

1

f̃1

(
f̃ ′
2

f̃2

)2
Φx(f(z)),

on f̃−1(Vx), where Φx is a smooth function on Vx.
Let

x ∈ supp D̃′ ∩

 2∪
i=1

1∪
j=0

supp H̃i,j ∪
k∪

i=1

supp Ẽi


or x ∈ supp D̃′′ ∩

 2∪
i=1

1∪
j=0

supp H̃i,j ∪
k∪

i=1

supp Ẽi

 , respectively


By Lemma 4, there exists an affine open neighborhood Ux of x and local cordinate
system zx, wx on Ux which satisfies the five condition of Lemma 4. Because D′ and
D′′ are irreducible, it follows that

D′|Ux = (zx − 1) ( or D′′|Ux = (zx − 1), respectively),

and zx(x) = 1, wx(x) = 0. We take z′x = zx − 1. Let Vx be an affine open subset of
Ux such that

A|Vx = (z′x) + (wx),

and

∇|Vx = d+

(
−(dz′x)/(z

′
x + 1) 0

0 −(dwx)/wx

)
.

We note that z′x(x) + 1 ̸= 0 on f̃−1(Vx). We put

f̃1 = z′x ◦ f̃ , f̃2 = wx ◦ f̃ ,

on f̃−1(Vx). It follows that

ξ(z) =

 f̃ ′
1

f̃1

f̃ ′′
2

f̃2
− f̃ ′′

1

f̃1

f̃ ′
2

f̃2
− f̃ ′

1

f̃1

(
f̃ ′
2

f̃2

)2
Φx(f(z))(6)

+ f̃ ′
1

f̃ ′
1

f̃1

f̃ ′
2

f̃2
Ψx(f(z)),

on f̃−1(Vx), where Φx and Ψx are smooth functions on Vx.

Let x ∈ supp D̃′ ∩ supp D̃′′. There exists an affine open neighborhood Vx of x
and holomorphic functions zx, wx on Vx such that

D̃′|Vx = (zx), D̃′′|Vx = (wx),

A|Vx = (zx) + (wx),

on Vx. It follows that dzx and dwx are linearly independent on Vx. We put

f̃1 = zx ◦ f̃ , f̃2 = wx ◦ f̃ .
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By Lemma 2, there exist holomorphic functions g0, g1, h0, h1 on Vx such that

dzx · ∇f̃ ′ f̃
′(γ) = g0(f̃(γ))f̃1(γ) + g1(f̃(γ))f̃

′
1(γ) + f̃ ′′

1 (γ),

for all γ ∈ f̃−1(Vx), and

dwx · ∇f̃ ′ f̃
′(γ) = h0(f̃(γ))f̃2(γ) + h1(f̃(γ))f̃

′
2(γ) + f̃ ′′

2 (γ),

for all γ ∈ f̃−1(Vx). It follows that

f̃ ′ ∧ ∇̃f̃ ′ f̃
′

=
[
f̃ ′
1

(
h0(f̃)f̃2 + h1(f̃)f̃

′
2 + f̃ ′′

2

)
− f̃ ′

2

(
g0(f̃)f̃1 + g1(f̃)f̃

′
1 + f̃ ′′

2

)] ∂

∂zx
∧ ∂

∂wx
.

Then it follows that

ξ(z) =Φx,1(f̃)
f̃ ′
1

f̃1
+Φx,2(f̃)

f̃ ′
2

f̃2
(7)

+ Φx,3(f̃)
f̃ ′
1

f̃1

f̃ ′
2

f̃2
+Φx,4(f̃)

f̃ ′
1

f̃1

f̃ ′′
2

f̃2
+Φx,5(f̃)

f̃ ′′
1

f̃1

f̃ ′
2

f̃2
,

on f̃−1(Vx), where Φx,1, . . . ,Φx,5 are smooth functions on Vx.
Let R = {x ∈ Zk| x is contained in two irreducible components of A }. Note that

R is a finite subset of Zk. For x ∈ R, we take affine open subset Vx and holomorphic
functions zx, wx as above arguments. Then {Vx}x∈R is an open covering of Zk. We
take an open covering {V ′

x}x∈R of Zk such that V ′
x ⊂ Vx and V ′

x is relatively compact
in Vx. We take a partition of unity {ϕx}x∈R which is subordinate to the covering

{V ′
x}x∈R. Fix x ∈ R. Let f̃1 = zx ◦ f̃ , f̃2 = wx ◦ f̃ be a holomorphic function on

f̃−1(Vx). Then f̃1 and f̃2 are extended to meromorphic functions on C. By (5), (6)
and (7), we have∫

|z|=r

ϕi(f̃(z)) log
+ ξ(z)

dθ

2π

≤
∫
|z|=r

Γ(f̃(z))
dθ

2π
+ 4

2∑
i=1

∫
|z|=r

log+
|f̃ ′

i(z)|
|f̃i(z)|

dθ

2π

+
2∑

i=1

∫
|z|=r

log+
|f̃ ′′

i (z)|
|f̃i(z)|

dθ

2π
+

∫
|z|=r

log+ |f̃ ′
1(z)|

dθ

2π
,

where Γ is a bounded smooth function on Zk. By using the lemma on logarithmic
derivative, it follows that ∫

|γ|=r

log+
|f̃ ′

i(γ)|
|f̃i(γ)|

dθ

2π
≤ Sf̃ (r).

It holds that∫
|z|=r

log+ |f̃ ′
1(z)|

dθ

2π
=

1

2

∫
|z|=r

log+ |f̃ ′
1(z)|2

dθ

2π

≤ 1

2

∫
|z|=r

log+ ∥f̃ ′(z)∥2TZk

dθ

2π
+O(1),
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where ∥ · ∥TZk
is a hermitian metric of TZk. By Lemma 1 and the concavity of log,

we have that

1

2

∫
|z|=r

log+ ∥f̃ ′(z)∥2TZk

dθ

2π

≤ 1

2

∫
|z|=r

log{∥f̃ ′(z)∥2TZk
+ 1} dθ

2π

≤ 1

2
log

(
1 +

∫
|z|=r

∥f̃ ′(z)∥2TZk

dθ

2π

)
+O(1)

≤ 1

2
log

(
1 +

1

2πr

d

dr

∫
|z|≤r

∥f̃ ′(z)∥2TZk

√
−1

2
dz ∧ dz̄

)
+O(1)

≤ 1

2
log

(
1 +

1

2πr

(∫
|z|≤r

∥f̃ ′(z)∥2TZk

√
−1

2
dz ∧ dz̄

)1+δ)
+O(1)∥

=
1

2
log

(
1 +

rδ

2π

(
d

dr

∫ r

1

dt

t

∫
|z|≤r

∥f̃ ′(z)∥2TZk

√
−1

2
dz ∧ dz̄

)1+δ)
+O(1)∥

≤ 1

2
log

(
1 +

rδ

2π

(∫ r

1

dt

t

∫
|z|≤r

∥f̃ ′(z)∥2TZk

√
−1

2
dz ∧ dz̄

)(1+δ)2)
+O(1)∥

≤ Sf (r),

where δ is any positive number.

Because
∑

x∈R ϕx(f̃) = 1 on C, it follows that∫
|z|=r

log+ ξ(z)
dθ

2π
=
∑
x∈R

∫
|z|=r

ϕx(f̃(z)) log
+ ξ(z)

dθ

2π
≤ Sf (r).

�

The following lemma is useful.

Lemma 7. It follows that

2∑
i=1

1∑
j=0

π∗
k,0Hi,j =

2∑
i=1

1∑
j=0

H̃i,j +
k∑

i=1

π∗
k,iEi +

k∑
i=1

Ẽi.

Proof. Let the divisor Hi,j,l on Zl be the strict transform of Hi,j under πl,0, and
let Ei,l, i ≤ l, be the strict transform of Ei under πl,i, where El,l = El.

We show

2∑
i=1

1∑
j=0

π∗
l,0Hi,j =

2∑
i=1

1∑
j=0

Hi,j,l +

l∑
i=1

π∗
l,iEi +

l∑
i=1

Ei,l,

by induction over l. If l = 1, we have

2∑
i=1

1∑
j=0

π∗
1,0Hi,j =

2∑
i=1

1∑
j=0

Hi,j,1 + 2Ei.

Therefore the statement of the induction holds for l = 1. Assume that the statement
holds for l− 1, 1 < l ≤ k. Let Ci i = 1, 2, . . . , r be irreducible divisor on Zl−1 such
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that

supp

 2∑
i=1

1∑
j=0

π∗
l−1,0Hi,j

 =

r∪
i=1

suppCi.

There exist positive integers a1, a2, . . . , ar such that

2∑
i=1

1∑
j=0

π∗
l−1,0Hi,j =

r∑
i=1

aiCi.

By the assumption of the induction, we have

l∑
i=1

π∗
l,iEi =

r∑
i=1

(ai − 1)Ci.

Let x ∈ Zl−1 be one of the points of the center of πl,l−1, and let Fl be the irreducible
component of El such that πl,l−1(suppFl) = x. Assume that x ∈ suppCp∩suppCq

for 1 ≤ p < q ≤ r. Then the coefficients of Fl in
∑2

i=1

∑1
j=0 π

∗
l,0Hi,j is ap+aq, and

the coefficient of Fl in
∑l−1

i=1 π
∗
l,iEi is ap + aq − 2. Therefore we have

2∑
i=1

1∑
j=0

π∗
l,0Hi,j −

l∑
i=1

π∗
l,iEi =

2∑
i=1

1∑
j=0

Hi,j,l +
∑
i=1

Ei,l.

This complete the induction, and the lemma follows. �

Proof of the Main Theorem. We put W∇̃(f̃) = f̃ ′ ∧ ∇̃f̃ ′ f̃
′. We denote by ordz g

the order of zero of g, where g is a holomorphic section of a line bundle on a
neighborhood of z. By (5), (6) and (7) in Lemma 6, it follows that

ordz

σ̃′(f̃)σ̃′′(f̃)

2∏
i=1

1∏
j=0

h̃i,j(f̃)

k∏
i=1

ẽi(f̃)

− ordz

(
W∇̃(f̃)

)
≤ min{ordz σ̃′(f̃), 2}+min{ordz σ̃′′(f̃), 2}

+ 2
2∑

i=1

1∑
j=0

min{ordz h̃i,j(f̃), 1}+ 2
k∑

i=1

min{ordz ẽi(f̃), 1}.

Therefore it follows that

Tf̃ (r,KZk
) + Tf̃ (r, [D̃

′ + D̃′′]) +

2∑
i=1

1∑
j=0

Tf̃ (r, H̃i,j) +

k∑
i=1

Tf̃ (r, Ẽi)(8)

≤N2(r, f̃
∗D̃′) +N2(r, f̃

∗D̃′′) + 2
2∑

i=1

1∑
j=0

N1(r, f̃
∗H̃i,j)

+ 2
∑

1≤i≤k

N1(r, f̃
∗Ẽi) + Sf (r),

where KZk
is the canonical line bundle of Zk. The canonical line bundle of Zk is

equal to

π∗
k,0KP1(C)×P1(C) + π∗

k,1E1 + π∗
k,2E2 + · · ·+ Ek.
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By Lemma 7, it follows that

−Tf (r,KP1(C)×P1(C)) = Tf (r,O(2, 2)) =
2∑

i=1

1∑
j=0

Tf̃ (r, π
∗
k,0Hi,j)(9)

=

2∑
i=1

1∑
j=0

Tf̃ (r, H̃i,j) +

k∑
i=1

Tf̃ (r, π
∗
k,iEi)

+
k∑

i=1

Tf̃ (r, Ẽi)

By (8), (9), it follows that

Tf̃ (r, [D̃
′ + D̃′′]) ≤ N2(r, f̃

∗D̃′) +N2(r, f̃
∗D̃′′)

+ 2
2∑

i=1

1∑
j=0

N1(r, f̃
∗H̃i,j) + 2

k∑
i=1

N1(r, f̃
∗Ẽi) + Sf (r).

By Lemma 4 and Lemma 5, our main theorem follows. �

Corollary 1. Let f : C → C∗ × C∗ ⊂ P1(C) × P1(C) be a non-constant map.
Assume that

f(C) ̸⊂ {([X0 : X1], [Y0 : Y1]) ∈ P1(C)× P1(C) |C0X
r1
0 Y r2

0 − C1X
r1
1 Y r2

1 = 0},
for all (r1, r2) ∈ Z × Z \ {(0, 0)} and all (C0, C1) ∈ C × C \ {(0, 0)}, and assume
that there exist no (a, b) ∈ C× C \ {(0, 0)} such that

a log f1 + b log f2 = (constant),

on C. Then it follows that

Tf̃ (r, [D̃]) ≤ N2(r, f
∗D′) +N2(r, f

∗D′′) + Sf (r).

Proof. Because N2(r, f̃
∗H̃i,j) = 0 and N2(r, f̃

∗Ẽi) = 0, we have the corollary. �

Example 2. Let D′, D′′ be the divisor which are defined by the polynomials

X0Y0 −X1Y1, X0Y1 −X1Y0.

Then

D′
1 +D′′

1 +

2∑
i=1

1∑
j=0

Hi,j,1 + E1,

is normal crossing in Z1. Therefore D̃
′ = D′

1, D̃
′′ = D′′

1 . Let E(0,0), E(0,∞), E(∞,0), E(∞,∞)

be irreducible components of E1 such that

π1,0(suppE(0,0)) = ([0 : 1], [0 : 1]), π1,0(suppE(0,∞)) = ([0 : 1], [1 : 0]),

π1,0(suppE(∞,0)) = ([1 : 0], [0 : 1]), π1,0(suppE(∞,∞)) = ([1 : 0], [1 : 0]).

Let f = (f1, f2) : C → Z0 be a non-constant holomorphic map, and let f̃ : C → Z1

be the lift of f . It follows that

Tf̃ (r, [D̃
′]) = Tf̃ (r, [π

∗
1,0D

′])− Tf̃ (r, [E(0,∞)])− Tf̃ (r, [E(∞,0)]),

and

Tf̃ (r, [π
∗
1,0D

′]) = Tf (r,O(1, 1)) = T (r, f1) + T (r, f2),



HOLOMORPHIC CURVES INTO THE PRODUCT SPACE OF THE RIEMANN SPHERES 17

where

T (r, fi) =

∫
|z|=r

log+ |fi|
dθ

2π
+N(r, (fi)∞),

for i = 1, 2. By the first main theorem, we have

Tf̃ (r, E(0,∞)) = N(r, f̃∗E(0,∞)) +mf̃ (r, E(0,∞)),

Tf̃ (r, E(∞,0)) = N(r, f̃∗E(∞,0)) +mf̃ (r, E(∞,0)).

It holds that

mf̃ (r, E(0,∞)) =

∫
|z|=r

log+
1√

|f1|2 + |f−1
2 |2

dθ

2π
,

and

mf̃ (r, E(∞,0)) =

∫
|z|=r

log+
1√

|f−1
1 |2 + |f2|2

dθ

2π
.

By these equations, we have

Tf̃ (r, D̃
′) = N(r, (f1)∞) +N(r, (f2)∞)−N(r, f̃∗E(0,∞))−N(r, f̃∗E(∞,0))

+

∫
|z|=r

(
log+ |f1|+ log+ |f2|

) dθ
2π

−
∫
|z|=r

log+
1√

|f1|2 + |f−1
2 |2

+ log+
1√

|f−1
1 |2 + |f2|2

 dθ

2π

Let f1 = P (z), f2 = exp z, where P (z) is a polynomial of degree p on C. Then
T (r, f1) = p log r +O(1), and T (r, f2) = |r|+O(1). Because

log+
1√

|f1|2 + |f−1
2 |2

≤ log+
1

|f1|
,

it follows that

mf̃ (r, E(0,∞)) ≤ T (r, f−1
1 ) = T (r, f1) +O(1) = p log |r|+O(1).

So we have

mf̃ (r, E(0,∞)) = o(r).

By the same arguments, we have

mf̃ (r, E(∞,0)) = o(r).

Then it holds that

Tf̃ (r, D̃
′) = r + o(r).

LetD′ andD′′ be divisors on P1(C)×P1(C) which are defined by the polynomials

Xm
0 Y n

0 −Xm
1 Y n

1 , Xn
0 Y

m
1 −Xn

1 Y
m
0 .

(i,e,. m = m′ = n′′ and n = n′ = m′′. ) We have the following theorem.
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Theorem 3. Let f : C → P1(C) × P1(C) be non-constant holomorphic map such

Let f̃ : C → Zk be the lift of f . Assume that

f(C) ̸⊂ {([X0 : X1], [Y0 : Y1]) ∈ P1(C)× P1(C) |C0X
r1
0 Y r2

0 − C1X
r1
1 Y r2

1 = 0},
for all (r1, r2) ∈ Z×Z\{(0, 0)} and all (C0, C1) ∈ C×C\{(0, 0)}, and assume that
there exists no holomorphic functions g1, g2 on C and no (a, b) ∈ C × C \ {(0, 0)}
such that

f = (exp g1, exp g2) : C → P1(C)× P1(C),
ag1 + bg2 = (constant),

on C. Then it follows that(
1− 4

m+ n

)
Tf̃ (r, [D̃

′ + D̃′′]) ≤ N2(r, f̃
∗D̃′) +N2(r, f̃

∗D̃′′) + Sf (r).

Proof. Let a1 = min{m,n}. It follows that
π∗
1,0(D

′ +D′′) = D′
1 +D′′

1 + a1E1,

on Z1, where D′
1 and D′′

1 are proper transform of D′ and D′′ under π1,0. Let
a2 = min{max{m,n} − a1, a1} ≤ a1. It follows that

π∗
2,0(D

′ +D′′) = D′
2 +D′′

2 + a2E2 + a1π
∗
2,1E1,

on Z2, where D
′
2 and D′′

2 are proper transform of D′ and D′′ under π2,0. Repeating
this process, there exist positive integers a3 · · · , ak such that

π∗
k,0(D

′ +D′′) = D̃′ + D̃′′ +
k∑

i=1

aiπ
∗
k,iEi.

Without loss of generality, we may assume that m ≤ n. Then it holds that
m ≥ a1 ≥ a2 ≥ · · · ≥ ak. It follows that

Tf̃ (r, [D̃
′ + D̃′′]) ≥ Tf̃ (r, π

∗
k,0O(m+ n,m+ n))−m

k∑
i=1

Tf̃ (r, π
∗
k,iEi).

By Lemma 7, we have

Tf̃ (r, π
∗
k,0O(2, 2)) =

2∑
i=1

1∑
j=0

Tf̃ (r, H̃i,j) +
k∑

i=1

Tf̃ (r, π
∗
k,iEi) +

k∑
i=1

Tf̃ (r, Ẽi)

Then we have

Tf̃ (r, [D̃
′ + D̃′′])

≥ m+ n

2

(
Tf̃ (r, π

∗
k,0O(2, 2))−

k∑
i=1

Tf̃ (r, π
∗
k,iEi)

)
+

(
m+ n

2
−m

) k∑
i=1

Tf̃ (r, π
∗
k,iEi)

≥ m+ n

2

 2∑
i=1

1∑
j=0

Tf̃ (r, H̃i,j) +
k∑

i=1

Tf̃ (r, Ẽi)

 .

By Theorem 2, it follows that

Tf̃ (r, [D̃
′ + D̃′′]) ≤ N2(r, f̃

∗D̃′) +N2(r, f̃
∗D̃′′)) +

4

m+ n
Tf̃ (r, [D̃

′ + D̃′′]) + Sf (r).

Then the theorem follows. �
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Corollary 2. Assume the hypothesis of Theorem 3, and assume that

f(C) ⊂ P1(C)× P1(C) \ supp (D′ +D′′).

If m+ n ≥ 5, then it follows that f(C) ⊂ suppHi,j for i = 1, 2 and j = 0, 1.

Proof. Assume that f(C) is not contained in the support of
∑2

i=1

∑1
j=0 Hi,j . By

Theorem 3, f satisfies the following condition (i) or condition (ii):

(i) f(C) ⊂ {([X0 : X1], [Y0 : Y1]) ∈ P1(C)× P1(C) |Xr1
0 Y r2

0 − C1X
r1
1 Y r2

1 = 0},
for some (r1, r2) ∈ Z× Z \ {(0, 0)} and some C1 ∈ C \ {(0)}.
(ii) There exists holomorphic functions g1, g2 on C and (a, b) ∈ C× C \ {(0, 0)}
such that

f = (exp g1, exp g2) : C → P1(C)× P1(C),
ag1 + bg2 = (constant),

on C.
If f satisfies condition (i), without loss of generality, we may assume that r1 >

0, r2 ≥ 0. Assume that r2 > 0. Let R be an irreducible component of {Xr1
0 Y r2

0 −
CXr1

1 Y r2
1 = 0}. Then ([0 : 1], [1 : 0]), ([1 : 0], [0 : 1]) ∈ suppR ∩ suppD′, and

suppR ∩ suppD′′ contains at least one point which is not ([0 : 1], [1 : 0]) nor
([1 : 0], [0 : 1]). Therefore the holomorphic map

f : C → suppR \ supp (D′ +D′′)

is a constant map.
Assume that r2 = 0. We have

f(C) ⊂ {([X0 : X1], [Y0 : Y1]) ∈ P(C)× P(C) |Xr1
0 − CXr1

1 = 0}.
Let S be an irreducible component of {Xr1

0 − CXr1
1 = 0}. Because m + n ≥ 5, m

or n is more than 2, it follows that suppS ∩ suppD′ or suppS ∩ suppD′′ contains
at least three points. Then f is a constant map.

If f satisfies condition (ii), it is easy to see that f is a constant map. �

Remark 2. Let x1,0 = ([0 : 1], [1 : 1]), x1,1 = ([1 : 0], [1 : 1]), x2,0 = ([1 : 1], [0 :
1]), x2,1 = ([1 : 1], [1 : 0]) ∈ Z0 = P1(C)× P1(C). Let W = Z0 \ suppD′ ∪ suppD′′,
and letW ∗ = W \{x1,0, x1,1, x2,0, x2,1}. By Corollary 2, there exist no non-constant
holomorphic map from C to W ∗.

Let i : W ∗ → W be the inclusion map, and let dW∗ , dW be the Kobayashi pseudo
distance of W ∗,W (see Noguchi-Ochiai [4]). By Proposition 1.3.14. of [4], we have
i∗dW = dW∗. Therefore W ∗ is Brody hyperbolic but not Kobayashi hyperbolic.
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