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Abstract: We consider the three-dimensional Navier-Stokes equations whose
initial data may have infinite kinetic energy. We establish the unique existence
of the mild solution to the Navier-Stokes equations for small initial data in the
whole space R3 and a vertically periodic space R,Ql x T} which may be constant
in vertical direction so that it includes Oseen vortex. We further discuss its
asymptotic stability under arbitrarily large three dimensional perturbation in
R? x T;.
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1 Introduction

Let ©Q be R? or R? x T!, where T' = R/Z is one dimensional flat torus. We
consider the incompressible Navier-Stokes equations

u—Au+u-Vu+Vp=0 in Qx(0,00),
divu =0 in Qx(0,00), (1.1)
u(0) = ug in Q,

where u = (uy(x,t),u2(x,t),us(x,t)) and p(x,t) respectively stand for an un-
known velocity field and a pressure. The functions ug denote a given initial
velocity. 0¢, A denotes partial derivative in time and Laplace operator on the
Euclidean space respectively. The differential operator u-V denotes 21 <j<3 U 0;.
Let us recall a special self-similar solution called the three dimensional Oseen
vortex or Lamb-Oseen vortex:
o L (_~T23 €1, 0)
2w |l’h‘2

7\’I;L|2

(1 —e at )7 Th = (.CC17.iL'2), Ty = T3, (12)

Os(zp, Ty, t)
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where I' is the total circulations. The two-dimensional Oseen vortex is the Navier-
Stokes flow whose initial vorticity is a Dirac measure supported at the origin,
and it stands for one of the simplest vortex. The three-dimensional Oseen vortex
is an extension of two-dimensional one.
The goal of our paper has two fields;
(1) We construct a unique solutions with non-smooth and singular initial data
so that the Oseen vortex is included as a three-dimensional flow,
(2) We discuss its asymptotic stability under large three-dimensional perturba-
tion periodic in vertical direction.

There are many results on the existence of the solution to (1.1). It is well known
that Leray [17] showed the existence of a global-in-time weak solution w in R™
to (1.1) satisfying the following energy estimate:

t
()2 + / IVu(r)|2dr < Juol2
0

for initial data ug € L2?. Unfortunately, the Oseen vortex is not a Leray’s weak
solution since the energy of the Oseen vortex is infinite, .

For non-L2-initial data, Kato [11] proved that (1.1) is globally well-posed
for small L™-initial data in R™ with m > 2 by using iteration to the integral
formulation of (1.1):

u(t) = ePug — /e(th)AP(u(T) - Vu(r))dr, (1.3)
0

t

where e'® and P are the heat kernel and the Helmholtz projection respectively.

The choice of function space is related to the scaling transformation:
v(z,t) = w(ha, A2t),  plz,t) = XN2p(Ax, A\2t),

which dose not change the equation. Scale-invariant function spaces are critical
ones that iteration method works. In this case L™ (R") and LPLI'(R™ x
(0, 00)) are scale-invariant function space under the above scaling transformation.
Independently, Giga and Miyakawa [7] proved the existence of the solutions in
L"(R") in bounded domains with the Dirichlet boundary condition. The result
of this paper was obtained even before [11] but it took long time to be published
after the paper was accepted.

In three-dimensional case, L3(R3) is the critical Lebesgue space, but it
does not include homogeneous functions like ﬁ This means that L3(R3) is
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too restrictive to construct a self-similar solution. In this direction, Giga and
Miyakawa [6] proved that the vorticity equations is well-posed for small initial
data and there is a unique self-similar solution by taking initial vorticity in
the Morrey space M2 (R3). The Morrey space is scale-invariant under natural
the above natural scaling and include homogeneous functions. Moreover, since
rotOs(-,0) € M %, the result of [6] provides generalized Navier-Stokes flows that
contain the three dimensional Oseen vortex provided that I' is sufficiently small.
However, in [6], smoothness for initial data is needed to define rotug. For instance,
for a bounded function ©(x) on the two dimensional unit sphere whose derivative
is not a Radon measure, 1rot(@(|;”—|)Os(x7 0)) is not in M2. On the other hand,
Kozono and Yamazaki [14] proved well-posedness for small initial data in weak-L?
space in two-dimensional exterior domains. Since the two-dimensional Oseen
vortex is in weak-L? space, the results of [14] provide its generalization. There
is no restriction on smoothness of initial data in [14]. In Cannone [2] and Koch
and Tataru [12], it was showed that (1.1) is globally well-posed for small initial
data in the Besov spaces B_;j%(]R") (1 < p < 0c0) and BMO~(R™) space
respectively. The result of [12] is the most general on the well-posedness to (1.1).

Our second aim is to show asymptotic stability to the solution that is con-
structed in the first aim under large three-dimensional perturbation. Asymptotic
stability for the Navier-Stokes equations has been widely studied. However, there
are few the results on the asymptotic stability under large perturbation. In
three-dimensional case, Schonbek [20] proved that 0 is asymptotically stable for
L?N L'-perturbation on R3. Subsequently, Miyakawa and Schonbek [19] study op-
timal decay rate. On the other hand, Kozono [13] proved asymptotic stability for
the Leray’s weak solution v € LYL% satisfying Serrin’s condition [21] (% + % =1
for 2 < p < oo and 3 < ¢ < oc) on uniformly C® domains. This result allows
unbounded domains such as a exterior domain or a domain with non-compact
boundbary. Karch, Pilarczyk and Schonbek [10] proved L?-asymptotic stability
for small mild solution V € X,, where X, is a function space of solenoidal
vector fields satisfying |(v- VV,w)| < C(sup;sol|V ()] x,)|| Vvl L2 | Vw]| L2 for all
v,w € LtooLi N LfH% This result allows many function spaces. For instance,
weak L3 space satisfies above estimate, and then it is a subspace of X,. The
decay rate to L°°-mild solutions was also studied by [8]. Although [10] is the
most comprehensive result for the asymptotic stability of small mild solutions to
(1.1), the three dimensional Oseen vortex is not included in this result.

In the two-dimensional case, Maekawa [18] proved asymptotic stability for
the solutions obtained by [14] under @Lz,m-large perturbation in the whole

space and the exterior domain. This result give us asymptotic stability to the
small two-dimensional Oseen vortex.
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Let us consider our two problems in more detail. For the first problem,
since the two-dimensional Oseen vortex is in L?*° and three dimensional Oseen
vortex is independent of x, variable, it is good idea to construct mild solu-
tion in an anisotropic function space Y? := L;”Li’oo with the norm || f|lyz =
NS (xh, xv)HLi,oo HL:3°- Note the three dimensional Oseen vortex is in Y2 at fixed
time. Moreover, Y2 is scale-invariant under the natural scaling and does not
require any smoothness. In fact, we are able to construct a mild solution in this
space for small initial data by using iteration. To this end it is needed to establish
some LP-L9-like estimates for the heat kernel and the composite operator. It
is well known that usual LP-L? estimate are hold for the heat kernel and the
composite operator, but they are less known on the anisotropic space. For that
reason we first show LP-L9-like estimates, after that, we construct mild solution
to (1.1). Althought the method is almost the same as [6] and [14], the choice
of function space is new. Moreover, it is possible to construct mild solution to
initial data which is not covered by [6] such as highly oscillating one.

Our second aim is to show asymptotic stability of mild solutions obtained
in the first aim under arbitrarily large perturbation v € L°Cg5, (R3 x Ty). We
call the mild solution constructed in the above procedure the basic flow with
initial data by. To prove asymptotic stability, there are several step. We first

200

R . —oo L .
decompose initial perturbation v € Ly°CgS, (R% x T}) into two parts;

vg = Do + bo,e,

where By € LyCop(R} x Tj,) and bo,e € V(R x Ty,) with [[bo,e[ly2 gz xr1) < €
for arbitrarily small € > 0. For the basic flow b with initial data by, we can
construct a new basic flow b with initial data by = by + bo,e so that the difference
lb(t) — b(t)“yz(RiXT}j) can be estimated small enough uniformly in ¢ since the
difference of by and bg is sufficiently small.

We then have to show the existence of a weak solution to the perturbed
Navier-Stokes equations:

o —Av+v-Vo+b-Vo+v-Vb+Vg=0, in RZxTLx (0,00),
dive=0, in RExT! x(0,00),
v(0) =79, on RZ xTL.

(1.4)

For the vertor field v that satisfies above eqations, we find that v + b satisfies
(1.1) with initial data @ + bo. Since the fifth term of the left-hand side of the
above equation v - Vb has singularity at ¢ = 0, it is difficult to get the energy
inequality by integration on R? x T} x (0,¢) and show the existece of a weak
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solution to (1.4) directly. To avoid this, we construct a unique local-in-time mild
solution v to (1.4) on (0,7 for some T > 0 with initial data @y in a subspace of
L%(R? x T}!), after that, we show the existence of global-in-time weak solution
with initial data v(T). The local-in-time mild solution is constructed as in [18]
for two-dimensional case. we follow his approach. To show the existence of a
weak solution with initial data v(T"), we first construct a unique solution to
approximated equations to (1.4) with energy inequality that is independent of
approximation parameter. Next, taking limit to the approximated solution, we
obtain a weak solution to (1.4).

Finally, we prove the decay of Hv(t)HLQ(RiX’H‘},) as t — oo. To prove this,
since the domain is vertically periodic, we can apply the Fourier expansion to v
with respect to x, variable:

v(zp, Ty, t) = 00 (2, t) + Zvj(xh,t) o2mij
J#0

=: 0 =+ Vps-

Using orthogonality of the Fourier series, we can derive the equation that »°

0 is independent of x,, we can apply two-

satisfies. Since the averaged term v
dimensional argument as in [18] to get the decay of ||ug (t)HL2(R}zle11J) as t — oo.
Unfortunately, because of the non-linearity of (1.4) and dependence of v, on
x, variable, it is difficult to show the decay to the oscillating term by using
same way as the averaged term. However, we can avoid this difficulty using
Poincére-type inequality and get the decay of H'UOSHLZ(R%LXT%]). It is worth to
mention that there was no result on asymptotic stability to the three-dimensional
Oseen vortex under three-dimensional perturbation, even if basic flows or initial
perturbation are small, and domain has no boundary. Our result is somewhat
restrictive in terms of domain. We hope to get similar result on R? under large
L?-initial perturbation in future work.

This paper is organized as follows. In first section, we define notations and
notions and state our main theorem. In section 2 the solutions to NS that contain
the three dimensional Oseen vortex are constructed by using the Fujita-Kato
iteration method. We state Maekawa’s decomposition to the Oseen type flows in
section 3. The existence of the solutions to the perturbed Navier-Stokes equations
with logarithmic energy estimate is proved in section 4. In section 5 we establish
energy estimate for the low-frequency part to the zero Fourier mode. In this
section some lemmas that leads the energy decay to the oscillating part are
shown. The final section we establish the energy decay which implies the the
asymptotic stability for the solution that constructed in second section.
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2 Notations and Main results

In this section, we firstly define some notations and notions to state our two
main theorem. Secondly, we mention them.
Notations
The norm in a Banach space B is denoted by ||| 5.
—  C§°(M) denotes the set of all smooth and compactly supported functions in
a manifold M.
— S denotes the space of all rapidly decreasing functions in the sense of Schwartz.
S’ denotes its topological dual, i.e. the space of tempered distribution.
—  Ff and f denote the Fourier transform

N 1 o
FHO =€) = g [,
(2m)%
R”L
—  LP(R™) denotes the Lebesgue spaces for 1 < p < oo with the standard norm.
—  LP9(R™) denotes the Lorentz spaces for 1 < p < oo and 1 < ¢ < oo with the

quasi norm

11 Lo :p%</tq|{x eR™: |f(@)| > )} D)k

t
0
1
[fllzroe = supt|{z € R" : [f(x)] > t}]7.

For s € R, H*(R™) denotes the Bessel potential spaces H*(R") := {f € §’:
£l == [|(1 4 |€))* fll 2 < oo} and the Riesz potential space HS := {f €
S flgge = NIE1 fll 2 < o0}

We define vertically anisotropic function spaces to define the mild solutions to
(2.3) that include the three dimensional Oseen vortex.

Definition 2.1. Let Q = R? or R? x T1. The vertically anisotropic space X?(£2),
Xp(Q) (1 <p<o0), YI((2)) and Yg(R2) (1 < g < 00) are the space of functions
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that are locally L' and satisfy

[fllxe == sup ([ [f(zn, z)|Pdep)? < oo,

T, ER
R
1
1611, = f (su 1 an,lPdan) < oc,
i z,ER
1
Il fllye := sup sup A(|{zn € R? : | f(xn,z0)| > A})7 < oo,
T, ERA>0
||f\|yq :=sup AM(|{zp, € R? : sup [f(xh, )| > )\}\)q < 00
A>0 zp €R

respectively, where |S| denotes the Lebesgue measure of S.

Remark 2.2. Y9 is larger than Yj. Indeed, for x, € R and A > 0, we find

{zp € R? : sup |f(zh,x0)| > A} D {zp € R?: |f(zp,x0)| > A}.
Ty ER
This implies
1
[ fllye = sup sup A{zn € R? - | f(zn, x0)| > A}

Ty €

1
< sup sup A(|{z), € R?: sup |f(zh,x0)] > N}|)
T, ERA>0

= [1fllv,-

Definition 2.3. Let T > 0. Let vg € L2(R? x T!) and b € L{Y,2((0,T) x (R? x
T!)) be a solution to (1.1) with initial data by € Y2 satisfying following estimates

0<SUP 16(7) ly2 211y < Cllbolly2®2xT1) (2.1)
sup TZHb(T)||X4(R2><T1) < Cllbolly2(r2 x11)- (2.2)
0<r<T

A functions v € L L2 N LEH;((O,T) x (R? x T1)) is called a weak solution to
the perturbed Navier-Stokes equations by b with initial data v € L2(R? x TY) if

(2.3)

v —Av+divio@uv+vb+b®v)+Vg=0
dive =0

in (0,7) x (R? x T!) in the sense of distribution with ¢ € LlLL 10e((0,T) x (R? x
T™));
for all ¢ € C5°(R? x T1)

t— (v(t), o) (2.4)
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is continuous at any t € [0,T);
[v(t) — voll 22 xT1) — 0 (2.5)

as t — +0;

t
Collboll*
o()]22 g2 p1) +2 / V012 2 g2 ery @7 < CrllvolZagge spsy (1) 2102
1

(2.6)
for all ¢ > 1, where Cq,Cy > 0 is independent of .

Now, we state the main results in this paper : the existence of Oseen type
solutions and asymptotic stability for this solutions.

Theorem 2.4. Let Q = R3 or R?2 x T!. Let ug € Y?(Q). Then there exists a
positive number § such that, if [|uolly2(q) < 0, there evists a unique mild solutions
u € CrY2((2))z x (0,00)¢) of (1.1) satisfying

t
u(z,t) = e Pug — /e(t_T)APdivu(T) @u(r))dr in Y?(Q)
0

for all t € (0,T), where e and P are the heat kernel and the Helmholtz
projection respectively, and

sup_[[u(t)|ly2(q) < Clluolly2(q), (2.7)
0<t<T
1
sup 7 [[u(t)| x+) < Clluolly2(q), (2.8)
0<t<T
u(t) = ug weakly+x in Y23(Q)+ XP(Q) ast—0 (2.9)

1_ 1,1 1 _1_3
where;-;+1forall§<;<1.

Remark 2.5. For ug € Y2(2), unique existence of the unique mild solution to
(2.3) can be proved as in Theorem 2.4

The following corollary is the direct consequence of Theorem?2.4.

Corollary 2.6. Let ug € Y2(R3) satisfying Mug(Ax) = uo(x) for all A > 0.
Then there exists § > 0 such that, if |Juolly2(msy < 9, there exists a unique
self-similar mild solution u € L{PY,2(R? x (0,00)) to (1.1) satisfying (2.9) and
u(z,t) = du(Az, A2t).



e K. Furukawa, Asymptotic Stability of Small Oseen Type Navier-Stokes Flow =—— 9

Theorem 2.7. There exists a constant § > 0 such that for any ug € Y2 (]R,Ql X
2,00
TL) + L;jocgf (R? x T}) of the form

2o
uo =bo +vo, [lbolly2mzxr) <9, vo € LFCHT, RZ xT)  (2.10)

there exists a solutions u = b+ € LPY2((RZ x TL)g x (0,00);) + L L2 ((R? x
T1), x (0,00)¢) to (1.1) in the sense of distribution with initial data ug which
satisfies
. A
Tim [u(t) — b(t) — v 2az wry) = 0. (2.11)
where, for by € Y2(R? x T1) with ”BOHYz(RiXT%) < 6 and by € LPCES, (RE x Ty)
satisfying ug = by + T, b € Y2(R? x T1) is the solutions to (1.1) with initial
data l~)o which is constructed in Theorem2.4 and ¥ is the weak solution to the
perturbed Navier-Stokes equations defined in Definition 2.3 with b and v

3 Construction of Oseen type solutions

In this section, we prove 2.4 by constructing an Oseen type solution to the
Navier-Stokes equations.

The next estimates for the heat semigroup on our anisotropic spaces play a
key role in this paper.

Lemma 3.1. 1. Let 1 <q<r<oo and a = (a1,a2) be a multi-index. Then
_n=1lc1_1y_lal
|0 022 flxr < Ot F GO F | )l xa (3.1)

for allt >0 and f € X9, where the constant C > 0 depends only on n and
.
2. Letl<g<r<ooanda=(ay,az). Then

S S

_ 1y_lal
1052052t fllxr < Ct™ 7% G T F | £ xa (3.2)

for allt > 0 and f € Y9, where the constant C > 0 depends only on n and c.
e
3. Let1<qg<r<oo.Then

n—1
(e — ") fllxr < Ot — )20 T G| |l xa (33)

for all0 < s <t and f € X9, where the constant C > 0 depends only on n.
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4. Let1 < q < r < oo. Then the composite operator '™ Pdiv extends to a
bounded operator from X4 to X" with

1

[etA PdivF | x- < Ot G~ 7% || F| xa (3.4)

for allt >0 and F € X2, where the constant C > 0 depends only on n.
5. Letl<qg<r<ooand0 <6 <1.Then

(€52 — id)et2 PdivF || x» < Ct~ "7 G =0=3 50| F|| . (3.5)
for all s,t >0 and F' € X", where the constant C > 0 depends only on n.

Proof. Since

GAf =GP S, Gp(w) = (4m)F exp(~2D)
and
|G+ (G~ ) < (GE# (G« [ F)7) 7
Put x = (21, -+ ,Zp—1,2Tn) = (@', 2,). From the Young inequality
ey, = [ [ G- [ G -l 6 dgus

Rn—1 R Rn—1
r(n—=1) 1 _ 1
(

TN ) g de

r(n=1) 1_1

=t a1

This implies (3.1).(3.2) follows from interpolation. Let us prove (3.3). Since

d
EeTAde

o,
>
\
*
-
I
m\ﬁ
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then we find from (3.1) that

t
12 — ) f|xr < C / JAe™ fllxrdr

t

SCHfHXq/T*l*nT_l(%*%)dT
t

<Cos0 G >||f|\Xq/f1+9dr

S
< Cs_g_%(%_%)(t —s)?.
We write the composite operator as convolution form
("2 PdivF); Z et * F
1<k,1<3

where

o0

Kjp1(x) = 0GT ()05, + /afle?(x)dT.
t

11

Let a = (aq, a2) be a multi-index with length three. Then we find from (3.1)

that

||/ lGn l‘)dT*FleLr
< / 103G+ Fiall o dr
t

_ /||ag,laggc:¢  Fulr, dr

_leal_noia_1y g roAL
<C [ 2T O G (wn) * | Fia s on)lga)) 7 dr.
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Thus it follows that

||/ le"(m dr * Fi 1|l x-

oo

This implies (3.4). We find from (3.4) that
s+t
d
(e*2 —id)e!® PdivF = / d—eTAPdideT
T

t
s+t

= / Aez?e22 PdivEdr.

Therefore,

s+t
\|/ Ae3ReZ PdivEdr||xr

s+t
< C||F||xat 072" G D) /Te-ldT

n;l(%i%) 0

< O||F||xat ™02 0.

This implies (3.5)
Let T > 0 and ug € Y'2. We inductively define the function u; as follows.
tA

Uy =€ U

(3.6)

¢
ujy1 = ePuy — /e(th)APdiv(uj(T) ® uj(7))dr (3.7)
0
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for all ¢ € (0,7T) and positive integer j. First, we have to show uniform bounded-
ness of t%||uj(t)||x4 and |Ju;(¢)|ly2 on j to prove Theorem2.4,.

Lemma 3.2. There exists a positive constant C' and Cy such that, for any
positive integer j,

supt¥||u (1) x+ < Clluoy= (3.8)
t>0

1 1 1
sup 4 [|uj1(8)|xa < supt{lur (t)l|xs + Colsupt[|u;(t)l|lx+)®.  (3.9)
t>0 t>0 t>0

Proof. (3.8) is the direct consequence of (3.2). By definition of u;41, we find

llwj+1 ()] x4

t
< lua (8)] x4 +/He(t77)APdiV(uy‘(7) @ uj (7))l x2dr,
0

using (3.4), we get

t

< Jur(8) 1 + C / (t = 1) E 4 i (r) © s () | x2dr
0
t

< ur(8)]xs +C / (6= 1) 3 |y () Zadr
0

t
< s + Clowpr s ()xo)? [ (67 Erdar
0
< lus|lxa + C(sup 77 |Juy (7)]| xa)%t "
for all t € (0, 00). This prove the lemma. 0

Lemma 3.3. There exists a positive constant Cy such that, for any positive
integer j, then

suplui(t)[ly2 < [luolly2 (3.10)
>0

1
supl|uj+1(t)l|ly2 < supllur(t)]ly= + Cr(sup t1 u;(t)]| x+)*. (3.11)
>0 >0 >0
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Proof. (3.10) is the direct consequence of (3.2). Let us show (3.11). We use
duality argument. Let ¢ € C§7,, then we find

[{uj1(), )

t
< |<U1(t)»¢>>\+/|<e(t_T)APdiV(ug‘(T)®ug‘(7))7¢>|dT

0
t

< Kui(t), d)| + / |(e(t_T)APdivuj (1) @ uj(7), d)|dr

0
t

<t )|+ ol 20 [ 12 Pdivas (r) 9050 (3.12)
0

using (3.4), then we get

t
1 1 1
< a2 101320 + Cloup s Plolasy [ (¢ =)o bar
v R > h
0
1
< Nur@lly=119ll Ly 20 + C(igg“ g (7)) 160l 2y 2 (3.13)
for all t > 0. Since Cg*, is dense in L},Li’l, the above estimate leads (3.11). O
Next, we show the uniform bound of supt>0ti||uj+1(t) — uj(t)||x+ and
sup;solluj+1(t) — uj(t)|ly= for all j > 1.
Lemma 3.4. There exists a positive constant Ca, such that, for all positive
integer j,
1 1
sup ¢ [|ua(t) — us (t)]| x1 < Ca(supt flus (t)| x4)?, (3.14)
t>0 >0
1
sup 7 [|uj2(t) — wjp1(f)| xs
t>0
1 1 1
< Co(sup i |Juj ()|l xa +sup 7 [Jujp1 (8)][x4) sup £ [Jujp1 (8) — w;(t)| xa
>0 t>0 t>0
(3.15)
Proof. By definition of ug, we find

[z (t) — w1 (t)]| x+

t
< / [e®=™A Pdiv(uy (1) @ ui(7))]| xadr,
0
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using (3.1),

t

< / (t = )3 [lu ()| %y
0
t

1 3 1
< C’(sup7'1\|ul(r)||x4)2 /(t —T) 4T 2dr
7>0
0
1 2,—1
< C(sup 74 ||ug (7)]| xa)“t™ 4.
7>0

This lead (3.14). Similarly, we see

llwjr2(t) —ujr1(t)] xa
t

< /||e(t_T)APdiV(ug‘+1(T) ® uj1(7) = uj(7) @ w;(7))l| xadr- (3.16)
0
Using (3.4), we get

RHS(3.16) < C / =2 Pdiv((wji1(1) — uj (7)) ® ujrr (1) — ui(7)
0

® (uj1(7) — uj(7))|| xadr
< C/(t — )7 E (Jugar (7 xca + g (7)) g1 () — s (7) | xcadr

0
t

i 1
< C(sup 77 [|uy | x4) sup (77 [|ujq1 () — uj(7)l x4) /(t -7)
7>0 >0
0

it 2dr.

_1 1 1
< Ct73 (sup 77 [|uyf| xa) sup(7% [|ujg1 (7) — uj(7)llx4).
7>0 7>0

This estimate implies (3.15). O
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Lemma 3.5. There exists a positive constant Cs such that, for any positive
integer j, then

1 1
sup|lug(t) — u1(t)|ly2 < Cs(sup t |lus(t)]| xa)(supt[lus ()] x4)?,  (3.17)
t>0 t>0 t>0
sup|lujt2(t) — uj+1(t)|y2
t>0

1 1 1
< Cs(supt7|lug(t)|| xa +supt|lujyr(t)]| xa)supt? flujp1(t) — wj(t)] xa-
t>0 t>0 t>0

(3.18)

Proof. We use duality argument. Let ¢ € C§S,. Then (3.4) implies

[(uz(t) —ua(t), )

t

<| / (=72 Pdiv(uy (1) @ ui (1)), ¢)|dr

0
t

_1
<c [t-n HlulBaloldr

0
t

1 _1 _1
SCsup7'4(Hul(T)||X4)2||¢||L1L2,1 /(th) 31 3dT.
>0 vTh
0

This implies (3.17). Using (3.4) again, we get

[(ujt2(t) — ujr1(t), d)

< / (=T Pdiv(uji1(7) ® ujgr (1) — ui(7) © uj(7)), #)|dr
0

t

< /(t = 1) (e (Ml xs + g (Pl x) g1 (7) = s ()l x2 8l 2 dr
0

t
1 1 1
< Cloosup(r3 g (7) = i ()| x4) [ Ml y L2 /(t—T) 2T 2dr
S v
0

1
< CAool9ll gz sup (¥l +a(7) = i (7)llx4)
v >

for all t > 0. Since C§° is dense in L},Li’l, we have (3.18). O
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From Lemma 3.2, there exists some 0 < o < ﬁ, if supy~g 7 ||ug ()] xa < o
then

1—\/1—40004

TN (3.19)

1
supt7||u;(t)| xs < Aso 1=
t>0

Take ||bp|ly2 so small that 2034~ < 1 and 2C3A4 < 1, then we find from
Lemmad.4 and Lemma 3.5 that

1
E supt [luj+1(t) — uj(t)| xa < 00,
j20t>0

S suplluj(t) — wj (t) |y < oc.
>0 t>0

Then u; = ug + Zg;é(uﬁl — u;) converge in A and L°Y2. where A
is a vector valued measureable functions of f(x,t) in R3 x (0,00) such that
Iflla= supt>0t% | f(t)]|xs < co. We denote lim;_,oc u; as u.

Let us show continuity of ||u(t)| x4+ and ||u(¢)|y2.

Lemma 3.6. Let u be a mild solutions to (1.1) satisfying
1
sup|[u(t)[ly2 +sup 7 |lu(t)]| xs < oo.
t>0 >0
Then ||u(t)|| x4 is continuous on (0, 00)

Proof. Tt suffices to show limg_,¢—gl|u(t) — u(s)||xa = 0. Let 0 < s < t < o0.
Then we find

[[u(t) — u(s)llx

S HetAuo — eSAuo||X4

t
+ / [e®=TA Pdiv(u(t) ® u(r))|| xadr

+ / [e®= A Pdiv(u(t) @ u(r)) — e~ Pdiv(u(r) @ u(t))| xadr
0

=1+ I, + Is.
First, using (3.3), we find

I = ||~ —id)e*Pug]| x4

< Ot — )5~ Juol|x-
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Second, we see from (3.4) that

L<cC / (t = 1) u(r) | adr

>0

t
< C(supT4Hu( )|\X4)2/(t—7)*%f%d7
t
< C(sup 73 |Ju(r) x4)2s 2 /(t —7)"idr
>0
< O(sup(r u(r) ] x1))2s ™2 (t — )7

>0

Finally, using (3.5), we obtain

I3=C< / [(e=)2 —id)e*=DA Pdiv(u(r) @ u(r))|| xadr

Clt—s 9/ s—7)" 2 ||u(r) | Xadr
0

< =5 uprtlumlx)? [ (s =) 4t dar

1

< C(t—7)%(sup 77 |Ju(r)| xa)2s 2 1.
>0

Therefore, ||u(t) — u(s)||xs+ — 0 as s — ¢t — 0. The lemma is proved.

Lemma 3.7. Let u be a mild solution for (1.1) satisfying
1
sup|lu(t)|ly= + supt#|lu(t)[| xs < oo.
t>0 t>0

Then ||u(t)||yz is continuous on (0, 00).
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Proof. We use duality argument. It suffices to show lims_;—g. Let ¢ € C3° and
0 < s <t < oo. Then we find that

(t) = u(s), 9)]
|

(" Bug — " ug, ¢)|

t

(u
<

DA Pdiv(u(r) © u(7)), ¢)|dr

/ (=92 _id)e(s= DA Pdiv(u(r) @ u(r)), $)|dr.
0

=11+ I, + Is.
Decompose Gaussian kernel as Gs(xp,, ) = Gs(,)?Gs(xp)", then we find
1] < (GP_y * (% ug) — e*Pug, G, % 9)| + [(e*Pug, GY_y + ¢ — ¢)|
< C||Gy_g = (e*Pup) — e*Pugly2 |G, * ¢||L,1JLZ’1
+ Clle*Suolly2l|Gy ¢ = @ll 1 120
=:I11+ 12
The Lebesgue dominated convergence theorem yields I ; — 0 as s — t. Using

continuity of G _ x ¢ in Lth on t, we find I — 0 as s — t. Thus, |[;|
converge to 0 as s — t. It follows from (3.4) that

t
] < € [ I3 Paiv(utr) @ u(r) a0l 00

t

_1
< [ = Bl gdr
t

1 1 1
SC(SupT4||u(T)||X4)2H¢||L1L2,1 /(t—T) ST 2dr
>0 vh
S
t

1 1 1
<(Cs 2(sup7'4Hu(T)HX4)2H¢||L1L2,1 /(th) 2dr
>0 vTh

S

< Cs™3(t - 8)7 (sup 77 [[u(r) ]| x4) 2|l 1 21
>0 vTh
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This implies I — 0 as s — t. Let 0 < 6 < 1. Using (3.3), we find

S
JEIR /H(e(t_s)A — id)el* A Pdiv(u(r) ® u(r))| x2 ¢l 1 12 d7
0

<C [(s—m) 1701 — 8)|lu(r)|}adr
/

<C(t- s)e(sup ri ||u(T)||X4)2H¢HL1Lf’1 /(8 — T)igTiédT
>0 vh
0

_1 1
<Ot —5)"s™ T (sup 77 ||u(r) ]| x )10l 13 2.
>0 v h

This implies I3 — 0 as s — ¢. We have required continuity on (0, 0o). O

The following Lemma implies the continuity to the initial data.

Lemma 3.8. Let % <r<2and % = % + %. Let u be a mild solution for (1.1)
satisfying

1
supllu(®)ly= + sup 4 u(t) L x+ < oo.
>0 t>0
Then
u(t) = ug weakly* in Y?4+ XP.
Proof. We use duality argument. Let ¢ € C§°(R3) and ¢ > 0. Then
[(u(s) —u, ¢)]
< [(e*Pug — o, )|

+ [ (DA Pdiv(u(t) @ u(r)), ¢)|dr
/

=: 11 + I.
Decomposing the Gaussian kernel as Gs(xp, ) = GU(x,)G"(x), then we find
11| = [(GYuo — uo, Gl )| + (w0, GY % & — 9)].
Since

GY xug — ug weakly® in Y2 as t—0, (3.20)

Ghxp—o¢ in LLL2' as t—0, (3.21)
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we have

1| »0 as t—0. (3.22)

Next, let % <r < 2and % = % + i, then we obtain

L] < / (K (u(r) ® u(r)) : K"+ g)dr

0
t
< [IK2 ¢ () © urD o ol 6l 7y o
0
t

_1
<© [ (=7 Hlutr) © uo) o2 1613 7o
0

Using the Hélder inequality, we find

t

< © [l Oy oo o
0

t
< C/||U(T)||Y2||U(T)||X4||¢||L%LP/nLiL2dT
0

t

1 1 _1
< C(sup||(T)lly2)(sup 7% [[u(7) || x )10l L1 por L1 2 /(f—T) 2T AdT
7>0 >0 v v
0

1 1

< Cta(sup||(7)[ly2)(sup 77 [u(7) | x )16l L2 o L1 L2
>0 >0 v v

This implies I — 0 as t — 0. The Lemma is proved. O

The following proposition implies the uniqueness of wu.

Proposition 3.9. Let ug € Y? sufficiently small, then there exists at most one
solutions u to (1.1) with initial data ug € Y2 satisfying

1
sup lu(t)l|xs < Clluolly= (3.23)
>

Proof. Let u; and ug be two solution to the Navier-Stokes equations satisfying

1 .
sup ¢ [[u;(t)[[xs < Clluolly=, 7 =1,2.
t>0
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Then we obtain

t
lJur (8) — w2 (t)]|xs < /Ile(t’T)APdiV(m(T) ® ur (1) = u2(7) ® u(7))| xadr

1
< C(bupT‘L l[ur (7) [ x2 + bupﬂ l[uz(7)ll x4 Su%)“ [[ur (7) — ua(7) | x2
T>

/(t—T ~iridr

< Ot |ugly2 sup 7 [fur (1) — ua(7)| x4
>0

If |Jup||y2 is sufficiently small so that C’||uglly2 < 1, we find

sup 7% Jua (7) — ua ()| x4 = 0.
7>0

The Proposition is proved. O

Assume u; is periodic with respect to z,. By definition, u;;1 is also periodic
in z,. Since X9(R? x T.) is closed, we see that the limit function u is periodic
with respect to x,. We complete the proof of Theorem?2.4.

Now, we prove (1.1) is locally-in-time well-posed for large initial data if its
singularity is sufficiently small.

Theorem 3.10. Let 2 < g < oo. Then there exists a positive constant € > 0
such that for every ug € Y2(R3) satisfying

limsup M| {z € R? : |ug(x)| > A\}| < ¢ (3.24)
A—0

there exists T > 0 and a mild solution u € Y? to (1.1) on R3.
Proof. 1t is sufficient to show that there exists T' > 0 such that

1 A 1
sup t7 e Cugllxa < —.
0<t<T 20,

By assumption, ug can be decomposed as
up = o1 +up2, where ug; € Y2(R3), |lug1y> < € and ug o € X*(R3).

(3.4) implies supo<t<TtiHetAuo||X4 < Ce+ tiHuo,gHXz;). Put e = ﬁ. Let
1

1 1
Tz < 4CC1luo,2ll x4
proved. O

1 .
Then supg,ort1etPugllxs < 307 The Theorem is
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4 Maekawa’s decompotion of basic flow and
their estimate
In this section, we decompose the basic flow as in the Maekawa’s paper
[18] to show the asymptotic stability of the Oseen type Navier-Stokes flows. For

T > 0, Let denote Qqper, 7 the anisotropic space time set (RZ x Tg) x (0,T);.
Firstly, Let us recall Mackawa’s decomposition of basic flows in [18].

Proposition 4.1. (Macekawa’s decomposition of basic flow and their estimate
in two-dimensional case) There exists a constant § > 0 such that, for any by €
L?°°(R?) with ol L2, (r2y < & and T > 1, the solution b to two dimensional
Navier-Stokes equation (1.1) with initial data by is decomposed as b = by + b7,
where by and bT with by, bT € Cw*,tL?c’DO(R2 x (0,00)) satisfy

SuprT(t)HLQ,oo(R2) + sup(t + T)% ||bT(t)||L4(]R2) < CHbOHL2,oo(]R2) (4.1)
t>0 t>0
1
sup||br (¢)[| 2.0 2y + suptd[[br(t)]|Larz) < Cllboll L2, m2) — (4.2)
t>0 t>0

and b also satisfies the energy estimate
t
16T (ONZ2 (Re) + /||VbT(T)H%z(R2)dT < Olbo(R?)[[ 72,00 (z2) log(1 + T)  (4.3)
1

forallt > 1.

The following proposition is the Maekawa’s decomposition to the three dimen-
sional Oseen type solution.

Proposition 4.2. (Maekawa’s decomposition of the Oseen type basic flow and
its estimate) There exists a constant § > 0 such that, for any by € Y2(R? x T!)
with [|bo|ly2@2xT1)y < 6 and T > 1, the solution b to (1.1) with initial data by
is decomposed as b = by + bT, where by and bT with bp,bT € Cur 1 Y2((R? x
T1) x (0,00)) satisfy

1
iggHbT(t)HW(R?le) + igg(t +T)a|lbr ()| x1®2xT1) < Cllbolly2®2xt) (44)

1
iggl\bT(t)l\y:’(szw) +§1;13t4 0T ()l x2®2x11) < Cllbolly2(®exT1) (4.5)
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and b7 also satisfies the energy estimate

t
157 (D)1 2 2 r1) + /HVbT(T)H%Q(R?XTl)dT < Cllboll32(zz ) log(1 +T)
1

(4.6)

for allt > 1.

To show the Proposition 4.1, we have to decompose the initial data to the basic
flow b.

Lemma 4.3. LetT > 1 and b € YQ(R%L x TL). Then there exists a positive
constant C' such that by can be decomposed as by = by T + bOT satisfying

1
b0, 7lly2(r2xT1) + T% b0, 7 || x4 (R2XT1) < CllbOllY2(R2XT1) (4.7)
2—q 3
I hvaqeescm) + S L1 Ly < Cllollyaanesy, (49

for all q € [%, 2).
Proof. Tt follows from Lemma 3.2 in [18] that

1
HbO,T('JJv)HL}?Lm +7T1 HbO,T('vxv)HL‘}1 < CHbO('amv)HLivf’o

165 (-, ) 2o < Cllbo(s20) 2.0

1

1
Ta 2
(2—4q)

This inequalities imply the Lemma. O

166 (- 2o)ll s < C© 1B0 (-5 z0) [ 200 -

Nl=

proof of Proposition4.2. Let 6 > be sufficient small. Then, by definition,
oo, 7lly=2, Ibd ly= < 6. Using contraction principle as in [18], we can con-
struct a unique mild solution to the following integral equation with initial data
bo,T
t
br(t) = by — / e=TA PAiv(by () ® b(T))dr, (4.9)
0

where e*® and P are the heat semigroup and the Helmholtz projection on Ri x T}
respectively. Moreover, the solution br satisfies

1
igg”bT(t)HY?(R?le) + ?‘;E(t +T)a[lbr ()l x1(r2xT1) < Cllbo,Tlly2(®2xT?)-
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in Quper,7- Similarly, there exits a functions bT satisfying
t
b (t) = etAbg; — /et_TAPdiV(bT(T) ® b(7))dr,
0

and
1
sup||br (t)|ly2 (g2 x1) + supti HbT(t)HX“(RZ’XTl) < Cllbolly2(r2x11)-
t>0 t>0

Note that by and b7 satisfies b = by + bT. Now, we prove the energy estimate
(4.6). First, we have to check b7 (t) € L?(R? x T!) for all ¢ > 1. Indeed, it follows
from (3.4) that

A A
le* boT||L2(R2xT1) < [le"2b5 [l x2((r2xT1))

4
< Ot G |bF || xa(gz ey, forall g € (5:2) (4.10)

and

[ / =2 Pdiv(b” (1) @ b(7))dT | p2(r2 1)
t
<C / [e=™2 Pdiv(b” (1) @ b(T))l| x2 (2 71y dT

1 i i
SC(Sup7_4HbT(7_)HX4(]R2XTl))(supT4||b( ||X4(]R2><']1‘1 / “2r72dr
+>0 >0
0

< Cllboll 2 e sy (4.11)
Thus, we get b7 (t) € L?(R? x T'). Next, since b7 satisfies
T — AT +b- VT +Vg=0, divdT =0

it follows from integration by part that

T / I900) 2 5 ey = BT (D 2oy (112)

for all ¢ > 1. From (4.10) and (4.11), the right hand side of (4.12) satisfies
1

Ti 2
ot + lbolly2®2 xT1)) (4.13)

Ib(1)[172Raxr1) < Cllbolly2 (@2 xr) (
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1

= dlog(11T) Ve finally obtain

for all ¢ € [%72). Taking ¢ so that 2 — ¢

t
O / 1957 ()2 ey dr < Cllbolly2(lbolly= + log(1 + 7).
1

O

5 Logarithmic energy estimates for perturbed
equations with their construction

In this section, we construct a weak solution to the perturbed Navier-Stoks
equations v defined in the second section with initial data vy € Lg° C&"h(R}QL xTL).
Firstly, we construct a local-in-time mild solution on (0, 7% ). Secondly, we establish
the global-in-time weak solution with initial data v(7%).

Proposition 5.1. Let 6 > 0 be sufficiently small and vy € X%(Ri x TH) N
XY (R? x TY). Let us assume that b € L°Y2(R? x TLT,) satisfies

1
sup|[b(t)ly2(rz xr1) + sup % [b(t) || x 2 x11) < 6.
t>0 : t>0 .

Then there exist T, > 0 and a unique mild solution v € Y%(R% x TL x (0,7%)) N
X4(R? x T x (0,T%)) to (1.1) satisfying

t
v(t) = by — / =2 Pdiv(v(r) @ v() + v(7) @ b(7) + b(T) @ v(7))dr
0

(5.1)
and
s I g ) < Ol 52
OSBET*HU(T)HX%RfoT},) < Cllvoll xa w2 xt1)- (5.3)
Proof. Put

N(v,w,t) := /e(th)APdiv(v(T) @ w(T) +v(r) @ b(T) + b(1) @ v(7))dT,
0
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where v, w € L‘t)o(X% N X*%),. Tt is sufficient to show that there exist constants
C7 and (5 such that

1
IV, w0, e dxcay, S OV o 40y, + Collbolly2lloll e g say
(5.4)
for v,w € L{(X3 N X*),(Qy. per). Using (3.4), we find
[N (v,w,1)]] (5.5)

4
X3 (RZxTL)

< /He(tf‘r)APdiV(U(T) @ w(T) + (1) @ b(T) + b(T) ® 1}(7’))||X%(R’21X,E11))d7

t

_3
<c / (=) R gy 0D sz em) (5.6)
0

+ 200 4 e sep 1Ml @3 <1 )
< Cltz(Oigr;tllv(T)HXg(Rixm))(oigp lw(T)ll x+®2 x71))
+ Ca( sup [|o(7) HXS(szT1))(SupT4Hb(T)HX‘l(]RQx’JI‘l)) (5.7)

Similarly, we find

[N (v, w,t)llxa®2 xT1) < /||e(t_T)APdiV(U(T) @w(r)+v(r)@b(r) (5.8)
0

+b(7) @ (7))l x4 (r2 x13)dT

t
<C [ 6= 7 () xscagcmn b sy (59)

0

o) s [ o)

< Gtk (Csup () s (B2 x T)( sup ()l xages cryy) (5.10)

o<r<t o<r<t v
1

+ Cal sup (D)l ez xmyy) (U7 I L xa ez ) (5.11)

o<r<t >0

Let T, be sufficiently small. Using contraction principle, we get the proof as in
the proof of Theorem?2.4. O

We construct a global-in-time weak solution to the perturbed Navier-Stokes
equations on (0, c0) with initial data v(T%) € L?(RZ x T}). Firstly, we construct
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a solution to the mollified perturbed Navier-Stokes equations. Secondly, taking
limit for it, we get a solution to the perturbed Navier-Stokes equations.

Let ¢ be the standard mollifier and (f),(z) denote p%z/)(;) * f. The following
proposition assert that there exist a weak solutions to the mollified perturbed
Navier-Stokes equations with initial data vy € L?(RZ x T1).

Proposition 5.2. Let 0 < p <1 and T > 0. Let b € LY} (Quper,T) and be a
mild solution to (1.1) with non-zero initial data by € Y? satisfying

1
§1>118||b(t)||y2(mgx1r7g) + i;lg(t + Db xa®z 1) < Cllbolly2(rz x13)- (5.12)

Then there exists a unique weak solution vP € (L{°L2 N L2HL N HL2)(Quper,T)
to the mollified perturbed Navier-Stokes equation

O — AvP 4 (vP), - VUl +b- Vo + 0P - Vb+ Vg =0, (5.13)
divo=0 (5.14)

with initial data vy € L*(R3 x T4) satisfying

¢
/—(v”,at(z)) +(Vv? : V¢) — (v¥ @ (v°), + (b), @ v + 0P ® (b), : V)dr
0

= (vo, ) (5.15)

for any ¢ € Cgfa(vaer,T). Moreover, vP satisfies the energy estimate

t
12O egcrny + IV a3 empy
0

Callbolly
<141 2llbolly2 g2 11 HUOH%Q(R? XT1) (5.16)
for allt € (0,T), where constants C1 and Co are independent of p.

Proof. Let v,w € L L2(Quper,T). We define N, as

Np(v,w, 1) (5.17)
t
- / =12 Pdiv(o(r) @ (w),(r) + v(r) ® (B),(r) + (b), () @ v(r))dr.

0
(5.18)
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First, we show that there exits a positive constant 0 < T, < 1 and v* €
L L2 (Quper,.) N LZHY(Quper,1.) such that

vP(t) = ePug — N,(vP, 0P, t), in (LPLEN L?Hlx)(vaer’T*). (5.19)
It follows from integration by parts that
A A
1" voll e 12 (Quperz) F 1€ V0l L2471 (@ porzy < V0Nl L2 2xT)-

Since

t

( / [0(r) © () ()2 g2 ey + 1B)p(7) © 022 e em)
0

1
+l0(r) @ (1) (P72 (g2 w11y 47)
t
< Cl(/||U(T)HL2(R§><’I[‘%)”(w)p(T)”Lm(Rix’H‘}J)
0

1
+ ”(b)P(T)HLOO(RfoT}J) \|U(T)||L2(Rﬁx1r;)d7') 2
R
< Cip 2T¢ (HU||Lf°L§(vaer,T*)”w”LfoLi(QvPeT‘sT*)
+ 1100l 2o x2(Quperr) 1V L0 L2 (Quper.z) )

it follows from energy estimate that

1N w012 Qo) + IN 0. Dl 2 gir o)

_3, 1
< Cip 2 T2 (Ivll e 2 (Quper ) Wl L2 L2 (Quper )

+ bl 222 X3 (Quper ) 101 L322 (Quperr )
Thus, if we take T so small that

1 s 1Bl 250 X4(Quperz) T 200l L2(R2 xT1)
T2 < min(1, p2 Lo e h v
(Lp A

bll Lo X4 (Quper )

\/(Hb||L;’°X;%(Qum,T*) + 2llvoll 2 (g2 xT1))? — HbHLgox;%(QWT,T*))
3
4CIHb”L§cX§(

)
QU})&T,T* )

there exists a unique mild solution v to

VP (t) = e'Bug — /e(t*T)APdiV(v"(T) ® (v7)p(7) +0P(7) @ (b)p(7) + (b)p(7) @ 0P (7))dT
0
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ont e (0,T).
Next, we show the a priori bound for v. This leads the existence of global-in-
time weak solution to (5.16). Integration by parts to (5.13) yields

1

iatHUp(t)Hiz(Rixm) + vap(t)H%z(RiXT%)

< [{b(t) @ vP(2) : VoP(1))]

< ClIb(t) @ 0P ()l 2@z xm1) VP ()| L2 (R2 x11)- (5.20)

Using interpolation inequality and the Young inequality, we get

1 3
(5:20) < CIBO xsca em 10”0 e emy 1997 e
1
< C||b(t)||§(4(R}21X1r11))va(t)”iz(Rixm) + §||V’Up(t)||%2(]1{ix’]]‘1l))' (5.21)

Applying the Gronwall inequality to (5.20) and (5.21), we obtain

t
1P (6) 122 + / 190 () 2 dr
0

t
4
< exp(C / 16(T)[4adr)l|vol|Z2 < Ca(1 + )5 1%0lv2 [y 12,
0

4
Thus, we get a priori estimate ||u(t)|| 2 < Ca(1 + T)“8I%lv2jyg| 2. Using this
estimate, we can extend the maximal existence time by

1B = x1 + 2C2(1 + T) 2l vz g 2
4C1[|b]| e x 2
Csl|bol|*
Ul s + 2050+ 1) ST g 2)2 - %
401Hb||%tooxé .

min(1, p3(

Since T is finite, we can use same argument until the existence time become
greater than T. The proposition is proved. O

Now, let us prove the existence of the perturbed Navier-Stokes equation for
L?-initial data.

Proposition 5.3. Let T >0, vg € L2(R? x T}) and b € LPY2((0,T) x (R? x
TL)) be a mild solution to (1.1) with initial data by € Y? satisfying

1
§1>118||b(t)||y2(k,21x1r})) + igg(t + DEb(@) | xa®z 1) < Cllbolly2(®z ). (5-22)
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Then there exists a weak solution v to the perturbed Navier-Stokes equation

oo —Av+divo@uv+v®b+b®v)+Vg=0
div v =0 (5.23)
v(0) = vo
in (0,T) x (R2x T with q € L,}L;,loc((o, T) x (R2 xTY)) satisfying the following
properties;
(i) For all ¢ € C§°(R? x T1)

t— (v(t), 9) (5.24)
is continuous at any t € [0,T).
(@) (Continuity att =0)
[v(t) — vollL2r2xT1) = 0 (5.25)

ast — +0
(iii) (Energy estimate)

t
o (t)22 g rry + 2 / 2o —
1

Callbol|

4
< Cillvol|72 ey (1 +1) YAER (5.26)

for allt > 1, where C1,Cy > 0 is independent of t.

Proof. We have shown the existence of a solution to the mollified equations with
energy estimate. We have to get uniform estimate in p to ||0zv?|| L2H for s > 3
to take limit to the mollified equations. Let ¢ € L? HS(QyperT)- Then, using the
Holder inequality and embedding L*° — H®, we find that

(0P (1), 0(t))| < {VP(2), Vo(t))| + [(v”(t) @ (v),(t) : Vo(t))]
+[{(0)(t) @ vP(t) - V(£))| + [(v°(t) @ (b),(t) : V(1))
S IVoP )l 22 x13) VOl L2 R2 x11) (5.27)
+ 10°(8) © (0°)p (Ol L1 R2 x11) VO] oo (R2 T2
F1(0)p () @ v* ()l 22 x11) IVE(D) | L2 (R2 xT3) (5.28)
+ [1v” @ (0)p ()l 22 x11) V()| L2 (R2 xT3)

(5.29)
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< IVoP ()l Lz g2 x11) VO oo (2 12 (5.30)
+ (va(t)H%%Rixm) + 2[[1b@) | 22 ey 17 )l L3 (2 1 L2) IV S| L2 (2 573
< C(IVeP @)l L2z xr1) + ||Up(t)||2L2(Rixqr}J) (5.31)

1 3
200 s a2y 1P O s erpy |70 (O g oms NSO (22 ey
< OV ()l age sems) + 1070 3 gaa oy (5.32)
IO g ey 107 O3 a2 rsy + 17020 s IS0 L
(5.33)

Therefore, from (5.16), the above estimate and the Aubin-Lions theorem, we can
select subsequence {v”i}, C {v”}, such that

vP — v weakly® in LtooLi(vaer,T) (5.34)
Vi — v weakly in L%Li(vaer,T) (5.35)
vPi sy in LtQLIQOC7$(vaer,T)~ (5.36)

Moreover, the limit functions v satisfies the energy estimate
t

ol ez + [ IV sy
0

Callbol?
< Ci(1+1) Y2(R5XT“I\UOH%z(Rixm)’ (5.37)

and the perturbed Navier-Stokes equation. From the estimates above, it follows
that

t— (v(t), ¢) (5.38)

is continuous on [0,T) for all ¢ € L*(R? x T.), and
lv(t) —vollpz =0 as ¢ — 0. (5.39)
The proposition is proved. O

Fix T > 0. Then, from Proposition 5.1 and Proposition 5.3, we have a global weak
solutions v € LfoLi(QT)Uper) to the perturbed Navier-Stokes equations with
initial data vy € (X3 NX4)(R2 xT2). Moreover, since v(1T}) € (X3 NX4)(R2xTL)
for all 0 < T < Ty, it follows that

t
4
()72 22 1) + / IV0(7) 32 2 ey dr < CL(1+ )10l o(T1) 1 g2 o
T
(5.40)
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for all Th <t < T, where C' > 0 is independent of t. Hereafter, we denote T} as
1 for simplicity.

2,00

——L
Let us assume that vo € LPCE°,  (R? x T1) with diveg = 0. Then for
small € > 0 the initial perturbation vy can be decomposed into

L2
Vg = V0,e + Wo,e, Where Hw07€||yz(RixT71J) <€, vp,e € Ly7CR°, (RZ x T2).
(5.41)

Therefore, the initial data ug to the Navier-Stokes equation in Theorem 2.7 can
be decomposed into

uo = bo + vo = by + (wo,e + vo,e) (5.42)
= (b() + woye) =+ V0, ¢ (5.43)
=: by + B, (5.44)

Let € sufficiently small, then there exits a unique mild solution b with initial data

bo. Moreover, let T' > 1, then using Proposition 5.1 and Proposition 5.3, we see

that there exists a weak solution to the perturbed Navier-Stokes equations with

initial data 75. Now, we write band 7 as b and v respectively for simplicity.
The following proposition is the logarithmic energy estimate for v.

Proposition 5.4. Fiz sufficiently small € > 0 and 6 > 0. Let by € Y(R? x T})
satisfy |[bolly=2(rz x11) < 6+ € and b € Y2(R? x T}) be the mild solution with
initial data by such that

1

SuP”b(t)”Y?(RiXT})) +supts HSUPHX‘l(]Rix'JI‘},) < CHbO”Y?(RixT},)

t>0 t>0  t>0
for some constant C. Then a solution v to the perturbed Navier-Stokes with b
obtained by Proposition 5.1 and Proposition 5.3 with initial data vy satisfies

t
@)1z g2 r) + / IVo(r)|Z2emydr < Ce+ Co?log(1+1)  (5.45)
1

fort > 1 where C¢c and C' are independent of t.

Proof. First, from Proposition 4.2 there exist by and b7 such that b = by + b7
satisfying (4.4), (4.5) and (4.6). Put v? := v — bT, then we find that v’ satisfies

T — AvT +divwT @ vT + 0T @ by + by @ 0T —br @ b7) + Vg =0, (5.46)
div v? = 0. (5.47)
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It follows from integration by parts that

1
5000 T2 g2 xmyy + 1YV 17282 sy = (07 @ br =T @ b 2 Vo).

Using the Hoélder inequality and the Young inequality, we find
(" @bp: Vo) < Clv" @ bTHL?(RixT%)||VUT||L2(JR§XM)
< C||bT||§(4(R§L><T}J) HUTHiz(RiXm)) + EHVUT”%z(Rinr%)
and
(6" @ br : V)| < [lbr @ bT||L2(R§x1r},)HUTHLz(RixT},)
< IV Peaqa my ol sy + 1107 W22 ey

Using the Gronwall inequality, we find for ¢ € (1,7 that

t
”/UT(t)H%?(Rix’]F})) "'/HVUT(T)H%z(RiXH)dT
1
t
4 T 2
< Coxp( [ 1) s gz erpy @) (D ey
1

n / 167 () e b () 2 )
1

t

< CeXp(Cl/(T+T)ildT)(”UT(l)”%?(Rix'ﬂ‘}))
1

t

+ HbTH%/Q(R% XT})) \/Tﬁé(T + T)iédT)
1
< OO ()22 g3y + )

Since v = vT + b7, it follows from energy inequality (4.6) that

" N7 < 201722 w1y + 167 Ol 22 1))

< Ce+ C||b0|\§(4(RiXm) log(1 +T).

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)
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Then we obtain

t
IOz ery + [ IV sy
1
t
< C(HUT(t)H%Z(RiXT})) T /HVUT(T)H%Z(R%TDCZT
1

t
IO ey + [ 197 agcmy )
1

< C.+C8%log(1+T). (5.53)

Teke t = T, then we have (5.45). O

6 Estimates for vertically averaged part

In this section, we show some lemmas that enable us to get the L2-decay for
the weak solution to the perturbed Navier-Stokes equations. The decay estimate
of v in this section is possible for any v that is constructed as the limit function
of solutions v” obtained by Proposition 5.2.

Applying the Fourier expansion to v with respect to x,, we can decompose
v into averaged part v, and oscillating part v,s;

’U({Eh,xv,t) = ka(xh’t)e%rika = UO(mh,t) + Z'Uk(ib'h,t)e%m“k
keZ k0

=: Ua(xh,t)+vos(1'haxvat)'

Because of orthogonality of the Fourier series, it follows from (5.45) that

t
lva(®)172 g2 +/||vhva|\i2(R2) < Ce 4 C6%log(1 + 1) (6.1)
1

t
H’UOS(”H%Z(R}%X'E})) + / HVUOS”%/Z(R%LXT}) <C¢+ 0(52 log(l —+ t). (6,2)
1

We first show the following proposition to prove the decay of averaged part.
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Proposition 6.1. Let T' > 0. Put w, := (—Ah)_iva, where (—=Ap)*f =
FY(&n |5 Ff) for s € R. Then there exist constants C > 0 and M > 0 such that

t
||wa(t)‘|i2(R2) + / thwa(t)HZL?(R?)dT
1
<C(1+ t)M‘SQ(l +log(1+t)+ sup HUOS(T)HLz(R? «11)log(1+1))  (6.3)
1<7<t v

foralll <t <T.

Proof. Integrate (2.3) with respect to z,, then

ot — Apvl + div/(vlv + b'v + vlb)dz, + 1 =0 (6.4)
’]I‘l

o2 — Apv? + diV/(UQU + b%v + v2b)dxy + Doqg =0 (6.5)
T

O3 — Apvd + div /(v3v + b2 + v3b)dz, = 0. (6.6)
T1

(6.4) (6.5) are the two dimensional perturbed Navier-Stokes system and (6.6) is
two dimensional heat equation respectively. It follows from integration by parts
that

1

iatnwa“%?(R?) + ||vwa‘|%2(R2)

<| //(v RU+bRu+v®b)dr, : Vh(—Ah)_%wad:pM
R2 T

= | //((ya + Vos) ® (Vg + Vos) + bR (Vg + Vos)
R2 T?
+ (Vg + Vos) ® D)z : V(—Ap) ™ Twaday|

:|//('Ua®Ua+U05®U05+b®va+b®vos+va®b
R2 T!
+ vos ® b)dzy : V(—Ah)fiwadxﬂ
=L+ L+13+ 14+ I5 + Is. (6.7)

Estimate for I; The Sobolev embedding

1
[vallpa2y < CI(=AR) " vallL2®2) (6.8)
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and the interpolation inequality
1 1 1
||(_Ah)4UaHL2(]R2) < CH”asz(W)||vh”a||22(]R2) (6.9)
yield

|11] < Cllvall3s gz 1 (—An) S wall p2re)

< C(=An) 5 valF2 g2y | (—An) S wal| L2 g2y

< CHUGHLQ(R2)||(_Ah)%va“L2(R2)H(_Ah)%waHLz(HW)
< Ol Vhvall 2@ Il(=A) T a2 gy

< Cl|VhvallL2®2) lwall L2 (r2) IV hwal L2 (R2)-

Applying the Young inequality to the last inequality, we find
2 2 1 2
1] < C||tha||L2(R2)Hwa||L2(R2) + g“vhwa”m(ﬂ@?)

Estimate for I, Using the Schwarz inequality, (6.8), (6.9) and the Young
inequality, we find

1] < CI [ vox ® vonds e ey [~ wall ey
‘]1‘1
1 1

< © | Poollpaerdonlal eI Vit ey

T

1 1 1

< C [ 1=80) vl ey dnlal | Ve e

T

1 1
< C/||”05||Li(R2)dvavhvos‘|Li(R2)dxv||wa||z2(R2)thwaHiz(Rz)
T

1 1
wa”zz(ﬂp) ||Vhwa|‘[2,2(R2)

< CH”OS”H(R%XM) VUOSHL’L’(RixT%)

< Cl||vOSH%Q(Rixﬂ‘%)||vv05‘|L2(Ri><T%})
2 2 1 2
+ Ol Vvos|IZ m2 ser) 1wall 2 me) + §”vhwa||L2(R2)
2
< Chllvos [l L2 @z xm1) IV 0llZ2 (g2 s

1
+ 02\|VUH2L2(RZXM) lwall 2 (gey + §||Vhwa||%2(ua2)-
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Estimate for I3 and I5. Using the Holder inequality,(6.8), (6.9) and the
Young inequality, we find

1
I3] + 15 < © / 18] 2 vl 2 a2y o | (D) Frwall 2 ey
Tl

1 1
< CHbHX‘*(RixT}j)||va||L4(R2)HwaHfg(Rz)||vhwa||zz(R2)7
1 1 1
< CHbHX‘*(]R?LxT},)||(7A)4Ua||L2(]R2)Hwasz(Rz)||vhwa|‘i2(R2)
1 3
< CHbHX‘l(RfoTg)||waH22(R2)thwauzz(ugz)

1
< CHbH§(4(RiXT%)”waH%2(R2) + g”vhwa|‘%2(R2)~

Estimate for Iy and Is. Using the Holder inequality, (6.8), (6.9) and the
Pincaré inequality, we find

1
a1+ Vil < € [ 18] cp ooy Pl sy (- B0) 200
Tl

1 1
SC/Hb\|L;§(R2)||(—Ah)4Uos\|L§(R2)d$v||(—Ah)4wa\|L2(R2)
']I‘l

1 1 1
§C”b”X‘l(RixT}))/||U03||2i(R2)||thosHzi(W)dwv”(*Ah)4waHL2(R2)
T1

1 1 1 1
< CHbHX‘l(Rix'ﬂ'}J)HUOSsz(RixT}))”vaSsz(RiXm})HwaHz%R%thwaHbf}(R?)
< ClHbHizx(RiXT}))HUOSHL2(RfL><T},)

AN loall3aqee) + 5 19wl
2 osllL2(r2 xT1)[WallL2(R2) T 3 hWallL2(R2)
2
< ClHbHX4(]Ri><’]I‘11))||VUOSI|L2(R§L><T},)
+ G| Ve ol ey + 5 1Vnwall?
2 osllL2(R2 xT1)IMallL2(R?) T g hWall12(R2)"
Thus, from (6.7), above estimates and the Gronwall inequality, we get

t

||wa(t)||i’21 + vaa(T)H%idT < exp((b(t))Hwa(l)H%i + [ U(r)dr (6.10)
/ /
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where

t
e / IVo(r) 122 + () &a)dr
1
t

U(t) = Co exp(/@(S)dS)(Hvos(t)HL?I\Wos(f)llia + )5l Vs ()] 2)-

T

Using (6.2) and (2.8), we find

®(t) < O1(1 + 6% log(1 + ).

and
t

[ wivir

1

2
< Ca(1+ 097 ( sup. [l / IV v0s(r)|Pdr + / 15024V 0s (7) | )

1<r<

2
< Co(14+ 1)1 (sup ||vos(T) ||L2/|\wos )||2dr
1<r<t

T / 1) adr) / |08 () [22r) )

< Co(1+ t)c1 (1 +1log(l+1t)+ sup |[vos(T)| 2 log(l +t)).
1<7<t

Thus, we obtain

t
e (8)12 2 g + / IV (6)2: gy
1

<O+ 1M (1 +log(1+1)+ sup [v0s (T)l| L2 (2 xT1) log (L + 1)) (6.11)
1<7r<t

O

7 Decay estimates for perturbation

In this section, we show the decay of ||v(t)|| 2 — 0 as t — co. The Poincaré
inequality is useful to derive the decay to the oscillating part.
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Proposition 7.1. Let by € Y?(R? x T1), vy € LﬁOCgf’h(]Ri x TL) and § > 0 be
sufficiently small. Let b be a mild with initial data by and v is a weak solution
to the perturbed Navier-Stokes equations obtained by Proposition 5.4 with initial
data vg. Then there exists a constant C¢ and C which are independent of t such
that

[0t L2 (g2 xm1) < Ct 3 {Ce + Cr (1 + )M (1 + log(1 + t) + log? (1 + 1)}

fort>1.

Proof. Let t > 1. From (6.2) and (6.11), there exists to € [%,t] such that
lwa(to)lIZ2 + llvos (to)lIZ2 + to(Vewa(to)lIZ2 + llves(to)lIZ2)
< C+ Cr(1+10) M5 (1 + log(1 + 2to) + log? (1 + 2to)). (7.1)

Therefore using interpolation the inequality, (7.1) and the Poincaré inequality,

we have

lo(to)|72 < 2(l[va(to)lIZz + lvos (to)lIZ)

< lwa(to)ll 22 [[Viwa(to)ll 2 + [[vosl 22 |V vos| L2

< to_%{C’e + Oy (1 + o) MO (1 + log(1 + 2to) + log? (1 + 2t0)}. (7.2)
Since v solves the perturbed Navier-Stokes equations

v —Av+divv@v+v®b+b®v)+Vg=0, (7.3)
div v =0,

then it follows from integration by parts and the Gronwall inequality that

t t
[v(t)22 +/||Vv(7-)||%2d7 < exp(/C||b(s)||§(4ds)Hv(to)Hzp- (7.5)
to to
Since

t
/\|b(s)\|x4ds < mogti < Clog2, toe (%,t),
to 0
we finally obtain from (7.2) and (7.5) that
lo(®)[72 < Cllvo(to)l|7

<Ct 2 {C + Oy (1 + )M (1 + log(1 +t) + log? (1 + £)}.
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Proof of theorem2.7. Fix arbitrarily small n > 0. Let ug = vg + by = 0 + bo. By

definition v = ¥ + (b — b), where ¢ is a solution of the perturbed Navier-Stokes
equation with initial data 4 and b is the solution to (1.1) with initial data by as
in Theorem 2.4, then we find

[v(t) — emUOHB(Rfom) <o)l 22 1) + 1b(t) = b(t) — etAUOHLZ(]RfoTD
Put wo,c = vo — (bo — bo) and we(t) = b(t) — b(t) — " wvy. It follows that
lwe ()|l L2 2 x11)

(t—7) "2 |b(r) ® (b(r) — b(T))

< [le"*woell L2 (g2 x11) + C

o—_ .

S

+ (b(7) = b(7)) @ b(7) + (b(7) = b(7)) @ (b(7) = b(7))| L2 (2 11 dT
1 1.~
< Hemwo,eHLz(Rixm) + C(S‘i%“ 16(T)ll x4 (®z2 xcr1) + sup 74 16(T) || x4 2 xT1))

1.7 1%
X (sup TH[[b(7) = b(r)llxamg xmy) + (sup TH[[B(T) — b(7)ll x1(2 xT1))%)

t

X /(t - 7')7%7'7%617'

0
< Hemwo,eHLz(Rgxm) +C(E+6+€)(e+€?)

< Jle"Swoell L2z xmy) + C(0+€)(e +€%)
Choose € so small that C(J + €)(e + €*) < ¥ and ¢ > 0 so large that

Ct™2{Ce + C1(1 + )M (1 + log(1 + t) +log? (1 + 1)} < g

and
A n
Ie* wo,ell L2 (r2 xT1) < 3

then we obtain

A A

() — e voll L2z xr1) = [[u(t) —b(t) — ! vollz2®2 xr1) < 7-

This implies Theorem 2.7. O
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