
UTMS 2017–4 October 31, 2017

Asymptotic Stability of Small

Oseen Type Navier-Stokes Flow

under Three-Dimensional Large

Perturbation

by

Ken FURUKAWA

T
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



Ken Furukawa*
Asymptotic Stability of Small Oseen Type
Navier-Stokes Flow under
Three-Dimensional Large Perturbation

Abstract: We consider the three-dimensional Navier-Stokes equations whose
initial data may have infinite kinetic energy. We establish the unique existence
of the mild solution to the Navier-Stokes equations for small initial data in the
whole space R3 and a vertically periodic space R2

h × T1
v which may be constant

in vertical direction so that it includes Oseen vortex. We further discuss its
asymptotic stability under arbitrarily large three dimensional perturbation in
R2

h × T1
v.
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1 Introduction
Let Ω be R3 or R2 × T1, where T1 = R/Z is one dimensional flat torus. We
consider the incompressible Navier-Stokes equations

∂tu− Δu+ u · ∇u+ ∇p = 0 in Ω × (0,∞),
divu = 0 in Ω × (0,∞),
u(0) = u0 in Ω,

(1.1)

where u = (u1(x, t), u2(x, t), u3(x, t)) and p(x, t) respectively stand for an un-
known velocity field and a pressure. The functions u0 denote a given initial
velocity. ∂t, Δ denotes partial derivative in time and Laplace operator on the
Euclidean space respectively. The differential operator u·∇ denotes

∑
1≤j≤3 uj∂j .

Let us recall a special self-similar solution called the three dimensional Oseen
vortex or Lamb-Oseen vortex:

Os(xh, xv, t) = Γ
2π

(−x2, x1, 0)
|xh|2

(1 − e− |xh|2
4t ), xh = (x1, x2), xv = x3, (1.2)
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where Γ is the total circulations. The two-dimensional Oseen vortex is the Navier-
Stokes flow whose initial vorticity is a Dirac measure supported at the origin,
and it stands for one of the simplest vortex. The three-dimensional Oseen vortex
is an extension of two-dimensional one.

The goal of our paper has two fields;
(1) We construct a unique solutions with non-smooth and singular initial data

so that the Oseen vortex is included as a three-dimensional flow,
(2) We discuss its asymptotic stability under large three-dimensional perturba-

tion periodic in vertical direction.

There are many results on the existence of the solution to (1.1). It is well known
that Leray [17] showed the existence of a global-in-time weak solution u in Rn

to (1.1) satisfying the following energy estimate:

∥u(τ)∥2
L2 +

t∫
0

∥∇u(τ)∥2
L2dτ ≤ ∥u0∥2

L2

for initial data u0 ∈ L2. Unfortunately, the Oseen vortex is not a Leray’s weak
solution since the energy of the Oseen vortex is infinite, .

For non-L2-initial data, Kato [11] proved that (1.1) is globally well-posed
for small Lm-initial data in Rm with m ≥ 2 by using iteration to the integral
formulation of (1.1):

u(t) = etΔu0 −
t∫

0

e(t−τ)ΔP (u(τ) · ∇u(τ))dτ, (1.3)

where etΔ and P are the heat kernel and the Helmholtz projection respectively.
The choice of function space is related to the scaling transformation:

v(x, t) → λv(λx, λ2t), p(x, t) → λ2p(λx, λ2t),

which dose not change the equation. Scale-invariant function spaces are critical
ones that iteration method works. In this case Lm(Rm) and L∞

t Lm
x (Rm ×

(0,∞)) are scale-invariant function space under the above scaling transformation.
Independently, Giga and Miyakawa [7] proved the existence of the solutions in
Lr(Rr) in bounded domains with the Dirichlet boundary condition. The result
of this paper was obtained even before [11] but it took long time to be published
after the paper was accepted.

In three-dimensional case, L3(R3) is the critical Lebesgue space, but it
does not include homogeneous functions like 1

|x| . This means that L3(R3) is
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too restrictive to construct a self-similar solution. In this direction, Giga and
Miyakawa [6] proved that the vorticity equations is well-posed for small initial
data and there is a unique self-similar solution by taking initial vorticity in
the Morrey space M 3

2 (R3). The Morrey space is scale-invariant under natural
the above natural scaling and include homogeneous functions. Moreover, since
rotOs(·, 0) ∈ M

3
2 , the result of [6] provides generalized Navier-Stokes flows that

contain the three dimensional Oseen vortex provided that Γ is sufficiently small.
However, in [6], smoothness for initial data is needed to define rotu0. For instance,
for a bounded function Θ(x) on the two dimensional unit sphere whose derivative
is not a Radon measure, rot(Θ( x

|x| )Os(x, 0)) is not in M
3
2 . On the other hand,

Kozono and Yamazaki [14] proved well-posedness for small initial data in weak-L2

space in two-dimensional exterior domains. Since the two-dimensional Oseen
vortex is in weak-L2 space, the results of [14] provide its generalization. There
is no restriction on smoothness of initial data in [14]. In Cannone [2] and Koch
and Tataru [12], it was showed that (1.1) is globally well-posed for small initial
data in the Besov spaces B

−1+ n
p

p,∞ (Rn) (1 < p < ∞) and BMO−1(Rn) space
respectively. The result of [12] is the most general on the well-posedness to (1.1).

Our second aim is to show asymptotic stability to the solution that is con-
structed in the first aim under large three-dimensional perturbation. Asymptotic
stability for the Navier-Stokes equations has been widely studied. However, there
are few the results on the asymptotic stability under large perturbation. In
three-dimensional case, Schonbek [20] proved that 0 is asymptotically stable for
L2 ∩L1-perturbation on R3. Subsequently, Miyakawa and Schonbek [19] study op-
timal decay rate. On the other hand, Kozono [13] proved asymptotic stability for
the Leray’s weak solution u ∈ Lp

tL
q
x satisfying Serrin’s condition [21] ( 2

p + 3
q = 1

for 2 ≤ p < ∞ and 3 < q ≤ ∞) on uniformly C3 domains. This result allows
unbounded domains such as a exterior domain or a domain with non-compact
boundbary. Karch, Pilarczyk and Schonbek [10] proved L2-asymptotic stability
for small mild solution V ∈ Xσ, where Xσ is a function space of solenoidal
vector fields satisfying |⟨v · ∇V,w⟩| ≤ C(supt>0∥V (t)∥Xσ

)∥∇v∥L2∥∇w∥L2 for all
v, w ∈ L∞

t L2
x ∩ L2

t Ḣ
1
x. This result allows many function spaces. For instance,

weak L3 space satisfies above estimate, and then it is a subspace of Xσ. The
decay rate to L3,∞-mild solutions was also studied by [8]. Although [10] is the
most comprehensive result for the asymptotic stability of small mild solutions to
(1.1), the three dimensional Oseen vortex is not included in this result.

In the two-dimensional case, Maekawa [18] proved asymptotic stability for
the solutions obtained by [14] under C∞

0
L2,∞

-large perturbation in the whole
space and the exterior domain. This result give us asymptotic stability to the
small two-dimensional Oseen vortex.
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Let us consider our two problems in more detail. For the first problem,
since the two-dimensional Oseen vortex is in L2,∞ and three dimensional Oseen
vortex is independent of xv variable, it is good idea to construct mild solu-
tion in an anisotropic function space Y 2 := L∞

v L2,∞
h with the norm ∥f∥Y 2 =

∥∥f(xh, xv)∥L2,∞
h

∥L∞
v

. Note the three dimensional Oseen vortex is in Y 2 at fixed
time. Moreover, Y 2 is scale-invariant under the natural scaling and does not
require any smoothness. In fact, we are able to construct a mild solution in this
space for small initial data by using iteration. To this end it is needed to establish
some Lp-Lq-like estimates for the heat kernel and the composite operator. It
is well known that usual Lp-Lq estimate are hold for the heat kernel and the
composite operator, but they are less known on the anisotropic space. For that
reason we first show Lp-Lq-like estimates, after that, we construct mild solution
to (1.1). Althought the method is almost the same as [6] and [14], the choice
of function space is new. Moreover, it is possible to construct mild solution to
initial data which is not covered by [6] such as highly oscillating one.

Our second aim is to show asymptotic stability of mild solutions obtained
in the first aim under arbitrarily large perturbation v0 ∈ L∞

v C∞
0,h(R2

h × T1
v). We

call the mild solution constructed in the above procedure the basic flow with
initial data b0. To prove asymptotic stability, there are several step. We first
decompose initial perturbation v0 ∈ L∞

v C∞
0,h

L2∞

(R2
h × T1

v) into two parts;

v0 = ṽ0 + b0,ϵ,

where ṽ0 ∈ L∞
v C0,h(R2

h ×T1
v) and b0,ϵ ∈ Y 2(R2

h ×T1
v) with ∥b0,ϵ∥Y 2(R2

h
×T1

v) < ϵ

for arbitrarily small ϵ > 0. For the basic flow b with initial data b0, we can
construct a new basic flow b̃ with initial data b̃0 = b0 + b0,ϵ so that the difference
∥b̃(t) − b(t)∥Y 2(R2

h
×T1

v) can be estimated small enough uniformly in t since the
difference of b0 and b̃0 is sufficiently small.

We then have to show the existence of a weak solution to the perturbed
Navier-Stokes equations:

∂tv − Δv + v · ∇v + b̃ · ∇v + v · ∇b̃+ ∇q = 0, in R2
h × T1

v × (0,∞),
div v = 0, in R2

h × T1
v × (0,∞),

v(0) = ṽ0, on R2
h × T1

v.

(1.4)

For the vertor field v that satisfies above eqations, we find that v + b̃ satisfies
(1.1) with initial data ṽ0 + b̃0. Since the fifth term of the left-hand side of the
above equation v · ∇b̃ has singularity at t = 0, it is difficult to get the energy
inequality by integration on R2

h × T1
v × (0, t) and show the existece of a weak
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solution to (1.4) directly. To avoid this, we construct a unique local-in-time mild
solution v to (1.4) on (0, T ] for some T > 0 with initial data ṽ0 in a subspace of
L2(R2

h × T1
v), after that, we show the existence of global-in-time weak solution

with initial data v(T ). The local-in-time mild solution is constructed as in [18]
for two-dimensional case. we follow his approach. To show the existence of a
weak solution with initial data v(T ), we first construct a unique solution to
approximated equations to (1.4) with energy inequality that is independent of
approximation parameter. Next, taking limit to the approximated solution, we
obtain a weak solution to (1.4).

Finally, we prove the decay of ∥v(t)∥L2(R2
h

×T1
v) as t → ∞. To prove this,

since the domain is vertically periodic, we can apply the Fourier expansion to v
with respect to xv variable:

v(xh, xv, t) = v0(xh, t) +
∑
j ̸=0

vj(xh, t) e2πij

=: v0 + vos.

Using orthogonality of the Fourier series, we can derive the equation that v0

satisfies. Since the averaged term v0 is independent of xv, we can apply two-
dimensional argument as in [18] to get the decay of ∥v0(t)∥L2(R2

h
×T1

v) as t → ∞.
Unfortunately, because of the non-linearity of (1.4) and dependence of vos on
xv variable, it is difficult to show the decay to the oscillating term by using
same way as the averaged term. However, we can avoid this difficulty using
Poincáre-type inequality and get the decay of ∥vos∥L2(R2

h
×T1

v). It is worth to
mention that there was no result on asymptotic stability to the three-dimensional
Oseen vortex under three-dimensional perturbation, even if basic flows or initial
perturbation are small, and domain has no boundary. Our result is somewhat
restrictive in terms of domain. We hope to get similar result on R3 under large
L2-initial perturbation in future work.

This paper is organized as follows. In first section, we define notations and
notions and state our main theorem. In section 2 the solutions to NS that contain
the three dimensional Oseen vortex are constructed by using the Fujita-Kato
iteration method. We state Maekawa’s decomposition to the Oseen type flows in
section 3. The existence of the solutions to the perturbed Navier-Stokes equations
with logarithmic energy estimate is proved in section 4. In section 5 we establish
energy estimate for the low-frequency part to the zero Fourier mode. In this
section some lemmas that leads the energy decay to the oscillating part are
shown. The final section we establish the energy decay which implies the the
asymptotic stability for the solution that constructed in second section.
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2 Notations and Main results
In this section, we firstly define some notations and notions to state our two
main theorem. Secondly, we mention them.

Notations
– The norm in a Banach space B is denoted by ∥·∥B .
– C∞

0 (M) denotes the set of all smooth and compactly supported functions in
a manifold M.

– S denotes the space of all rapidly decreasing functions in the sense of Schwartz.
S ′ denotes its topological dual, i.e. the space of tempered distribution.

– Ff and f̂ denote the Fourier transform

Ff(ξ) = f̂(ξ) := 1
(2π) n

2

∫
Rn

e−x·ξf(x)dx.

– Lp(Rn) denotes the Lebesgue spaces for 1 ≤ p ≤ ∞ with the standard norm.
– Lp,q(Rn) denotes the Lorentz spaces for 1 < p < ∞ and 1 ≤ q ≤ ∞ with the

quasi norm

∥f∥Lp,q = p
1
q (

∞∫
0

tq|{x ∈ Rn : |f(x)| > t}|
q
p )dt

t
)

1
q

∥f∥Lp,∞ = sup t|{x ∈ Rn : |f(x)| > t}|
1
p .

– For s ∈ R, Hs(Rn) denotes the Bessel potential spaces Hs(Rn) := {f ∈ S ′ :
∥f∥Hs := ∥(1 + |ξ|)sf̂∥L2 < ∞} and the Riesz potential space Ḣs := {f ∈
S ′ : ∥f∥Ḣs := ∥|ξ|sf̂∥L2 < ∞}.

We define vertically anisotropic function spaces to define the mild solutions to
(2.3) that include the three dimensional Oseen vortex.

Definition 2.1. Let Ω = R3 or R2
h ×T1

v. The vertically anisotropic space Xp(Ω),
Xp(Ω) (1 ≤ p ≤ ∞), Y q((Ω)) and Yq(Ω) (1 < q < ∞) are the space of functions
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that are locally L1 and satisfy

∥f∥Xp := sup
xv∈R

(
∫
R2

h

|f(xh, xv)|pdxh)
1
p < ∞,

∥f∥Xq
:= (

∫
R2

( sup
xv∈R

|f(xh, xv)|)pdxh)
1
p < ∞,

∥f∥Y q := sup
xv∈R

sup
λ>0

λ(|{xh ∈ R2 : |f(xh, xv)| > λ}|)
1
q < ∞,

∥f∥Yq
:= sup

λ>0
λ(|{xh ∈ R2 : sup

xh∈R
|f(xh, xv)| > λ}|)

1
q < ∞

respectively, where |S| denotes the Lebesgue measure of S.

Remark 2.2. Y q is larger than Yq. Indeed, for xv ∈ R and λ > 0, we find

{xh ∈ R2 : sup
xv∈R

|f(xh, xv)| > λ} ⊃ {xh ∈ R2 : |f(xh, xv)| > λ}.

This implies

∥f∥Y q = sup
xv∈R

sup
λ>0

λ(|{xh ∈ R2 : |f(xh, xv)| > λ}|)
1
q

≤ sup
xv∈R

sup
λ>0

λ(|{xh ∈ R2 : sup
x∈R

|f(xh, xv)| > λ}|)
1
q

= ∥f∥Yq
.

Definition 2.3. Let T > 0. Let v0 ∈ L2
x(R2 ×T1) and b ∈ L∞

t Y 2
x ((0, T )× (R2 ×

T1)) be a solution to (1.1) with initial data b0 ∈ Y 2 satisfying following estimates

sup
0≤τ≤T

∥b(τ)∥Y 2(R2×T1) ≤ C∥b0∥Y 2(R2×T1) (2.1)

sup
0≤τ≤T

τ
1
4 ∥b(τ)∥X4(R2×T1) ≤ C∥b0∥Y 2(R2×T1). (2.2)

A functions v ∈ L∞
t L2

x ∩ L2
tH

1
x,((0, T ) × (R2 × T1)) is called a weak solution to

the perturbed Navier-Stokes equations by b̃ with initial data v0 ∈ L2
x(R2 ×T1) if{

∂tv − Δv + div(v ⊗ v + v ⊗ b+ b⊗ v) + ∇q = 0
divv = 0

(2.3)

in (0, T ) × (R2 ×T1) in the sense of distribution with q ∈ L1
tL

1
x,loc((0, T ) × (R2 ×

T1));
for all ϕ ∈ C∞

0 (R2 × T1)

t 7→ ⟨v(t), ϕ⟩ (2.4)
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is continuous at any t ∈ [0, T );

∥v(t) − v0∥L2(R2×T1) → 0 (2.5)

as t → +0;

∥v(t)∥2
L2(R2×T1)+2

t∫
1

∥∇v(τ)∥2
L2(R2×T1)dτ ≤ C1∥v0∥2

L2(R2×T1)(1+t)C2∥b0∥4
Y 2(R2×T1)

(2.6)
for all t > 1, where C1, C2 > 0 is independent of t.

Now, we state the main results in this paper : the existence of Oseen type
solutions and asymptotic stability for this solutions.

Theorem 2.4. Let Ω = R3 or R2 × T1. Let u0 ∈ Y 2(Ω). Then there exists a
positive number δ such that, if ∥u0∥Y 2(Ω) ≤ δ, there exists a unique mild solutions
u ∈ CtY

2
x ((Ω))x × (0,∞)t) of (1.1) satisfying

u(x, t) = etΔu0 −
t∫

0

e(t−τ)ΔPdivu(τ) ⊗ u(τ))dτ in Y 2(Ω)

for all t ∈ (0, T ), where etΔ and P are the heat kernel and the Helmholtz
projection respectively, and

sup
0<t<T

∥u(t)∥Y 2(Ω) ≤ C∥u0∥Y 2(Ω), (2.7)

sup
0<t<T

t
1
4 ∥u(t)∥X4(Ω) ≤ C∥u0∥Y 2(Ω), (2.8)

u(t) → u0 weakly ∗ in Y 2(Ω) +Xp(Ω) as t → 0 (2.9)

where 1
p = 1

r + 1
4 for all 1

2 <
1
r <

3
4 .

Remark 2.5. For u0 ∈ Y2(Ω), unique existence of the unique mild solution to
(2.3) can be proved as in Theorem 2.4

The following corollary is the direct consequence of Theorem2.4.

Corollary 2.6. Let u0 ∈ Y 2(R3) satisfying λu0(λx) = u0(x) for all λ > 0.
Then there exists δ > 0 such that, if ∥u0∥Y 2(R3) < δ, there exists a unique
self-similar mild solution u ∈ L∞

t Y 2
x (R3 × (0,∞)) to (1.1) satisfying (2.9) and

u(x, t) = λu(λx, λ2t).
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Theorem 2.7. There exists a constant δ > 0 such that for any u0 ∈ Y 2(R2
h ×

T1
v) + L∞

v C∞
0

L2,∞

h (R2
h × T1

v) of the form

u0 = b0 + v0, ∥b0∥Y 2(R2
h

×T1
v) < δ, v0 ∈ L∞

v C∞
0

L2,∞

h (R2
h × T1

v) (2.10)

there exists a solutions u = b̃+ ṽ ∈ L∞
t Y 2

x ((R2
h ×T1

v)x × (0,∞)t) +L∞
t L2

x((R2
h ×

T1
v)x × (0,∞)t) to (1.1) in the sense of distribution with initial data u0 which

satisfies

lim
t→∞

∥u(t) − b(t) − etΔv0∥L2(R2
h

×T1
v) = 0, (2.11)

where, for b̃0 ∈ Y 2(R2
h ×T1

v) with ∥b̃0∥Y 2(R2
h

×T1
v) < δ and ṽ0 ∈ L∞

v C∞
0,v(R2

h ×T1
v)

satisfying u0 = b̃0 + ṽ0, b̃ ∈ Y 2(R2
h × T1

v) is the solutions to (1.1) with initial
data b̃0 which is constructed in Theorem2.4 and ṽ is the weak solution to the
perturbed Navier-Stokes equations defined in Definition 2.3 with b̃ and ṽ0

3 Construction of Oseen type solutions
In this section, we prove 2.4 by constructing an Oseen type solution to the
Navier-Stokes equations.

The next estimates for the heat semigroup on our anisotropic spaces play a
key role in this paper.

Lemma 3.1. 1. Let 1 ≤ q ≤ r ≤ ∞ and α = (α1, α2) be a multi-index. Then

∥∂α1
h ∂α2

v etΔf∥Xr ≤ Ct−
n−1

2 ( 1
r − 1

q )− |α|
2 ∥f∥Xq (3.1)

for all t > 0 and f ∈ Xq, where the constant C > 0 depends only on n and
α.

2. Let 1 < q < r < ∞ and α = (α1, α2). Then

∥∂α1
h ∂α2

v etΔf∥Xr ≤ Ct−
n−1

2 ( 1
r − 1

q )− |α|
2 ∥f∥Xq (3.2)

for all t > 0 and f ∈ Y q, where the constant C > 0 depends only on n and α.
e

3. Let 1 ≤ q ≤ r ≤ ∞.Then

∥(etΔ − esΔ)f∥Xr ≤ C(t− s)θt−θ− n−1
2 ( 1

q − 1
r )∥f∥Xq (3.3)

for all 0 < s < t and f ∈ Xq, where the constant C > 0 depends only on n.
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4. Let 1 < q ≤ r < ∞. Then the composite operator etΔPdiv extends to a
bounded operator from Xq to Xr with

∥etΔPdivF∥Xr ≤ Ct
n−1

2 ( 1
r − 1

q )− 1
2 ∥F∥Xq (3.4)

for all t > 0 and F ∈ Xq, where the constant C > 0 depends only on n.
5. Let 1 < q ≤ r < ∞ and 0 < θ < 1.Then

∥(esΔ − id)etΔPdivF∥Xr ≤ Ct−
n−1

2 ( 1
q − 1

r )−θ− 1
2 sθ∥F∥Xq . (3.5)

for all s, t > 0 and F ∈ Xr, where the constant C > 0 depends only on n.

Proof. Since

etΔf = Gn
t ∗ f, Gn

t (x) := (4π)− n
2 exp(−|x|2

4t )

and

|G1
t ∗ (Gn−1

t ∗ f)| ≤ (G1
t ∗ (Gn−1

t ∗ |f |)r)
1
r .

Put x = (x1, · · · , xn−1, xn) = (x′, xn). From the Young inequality

∥etΔf(·, xv)∥r
Lr

x′
=

∫
Rn−1

∫
R

G1
t (xn − ξn)(

∫
Rn−1

Gn−1
t (x′ − ξ′)|f(ξ′, ξn)|dξ′)rdξndx

′

≤
∫
R

G1
t (xn − ξn)t−

r(n−1)
2 ( 1

q − 1
r )∥f(·, ξn)∥r

Lq
y
dζ

= t−
r(n−1)

2 ( 1
q − 1

r )G1
t ∗ ∥f(·, ξn)∥r

Lq
y
.

This implies (3.1).(3.2) follows from interpolation. Let us prove (3.3). Since

(etΔ − esΔ)f =
t∫

s

d

dτ
eτΔfdτ

=
t∫

s

ΔeτΔfdτ,
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then we find from (3.1) that

∥(etΔ − esΔ)f∥Xr ≤ C

t∫
s

∥ΔeτΔf∥Xrdτ

≤ C∥f∥Xq

t∫
s

τ−1− n−1
2 ( 1

q − 1
r )dτ

≤ Cs−θ− n−1
2 ( 1

q − 1
r )∥f∥Xq

t∫
s

τ−1+θdτ

≤ Cs−θ− n−1
2 ( 1

q − 1
r )(t− s)θ.

We write the composite operator as convolution form

(etΔPdivF )j =
∑

1≤k,l≤3

Kj,k,l,t ∗ Fk,l

where

Kj,k,l,t(x) = ∂lG
n
t (x)δj,k +

∞∫
t

∂3
jklG

n
τ (x)dτ.

Let α = (α1, α2) be a multi-index with length three. Then we find from (3.1)
that

∥
∞∫
t

∂3
jklG

n
τ (x)dτ ∗ Fk,l∥Lr

x′

≤
∞∫
t

∥∂3
jklG

n
τ ∗ Fkl∥Lr

x′
dτ

=
∞∫
t

∥∂α1
x′ ∂

α2
xn
Gn

τ ∗ Fkl∥Lr
x′
dτ

≤ C

∞∫
t

τ− |α2|
2 − n−1

2 ( 1
q − 1

r )(∂α1
x′ G

1
τ (xn) ∗ ∥Fk,l(·, xn)∥r

Lq

x′
)

1
r dτ.
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Thus it follows that

∥
∞∫
t

∂3
jklG

n
τ (x)dτ ∗ Fk,l∥Xr

≤ C∥Fk,l∥Xq

∞∫
t

τ− 3
2 − n−1

2 ( 1
q − 1

r )dτ

≤ Ct−
1
2 − n−1

2 ( 1
q − 1

r )∥Fj,k∥Xq .

This implies (3.4). We find from (3.4) that

(esΔ − id)etΔPdivF =
s+t∫
t

d

dτ
eτΔPdivFdτ

=
s+t∫
t

Δe
τ
2 Δe

τ
2 ΔPdivFdτ.

Therefore,

∥
s+t∫
t

Δe
τ
2 Δe

τ
2 ΔPdivFdτ∥Xr

≤ C

s+t∫
t

τ−1∥e
τ
2 ΔPdivF∥Xrdτ

≤ C∥F∥Xq

s+t∫
t

τ− 3
2 − n−1

2 ( 1
q − 1

r )dτ

≤ C∥F∥Xq t−θ− 1
2 − n−1

2 ( 1
q − 1

r )
s+t∫
t

τθ−1dτ

≤ C∥F∥Xq t−θ− 1
2 − n−1

2 ( 1
q − 1

r )sθ.

This implies (3.5)

Let T > 0 and u0 ∈ Y 2. We inductively define the function uj as follows.

u1 = etΔu0 (3.6)

uj+1 = etΔu1 −
t∫

0

e(t−τ)ΔPdiv(uj(τ) ⊗ uj(τ))dτ (3.7)
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for all t ∈ (0, T ) and positive integer j. First, we have to show uniform bounded-
ness of t 1

4 ∥uj(t)∥X4 and ∥uj(t)∥Y 2 on j to prove Theorem2.4,.

Lemma 3.2. There exists a positive constant C and C0 such that, for any
positive integer j,

sup
t>0

t
1
4 ∥u1(t)∥X4 ≤ C∥u0∥Y 2 (3.8)

sup
t>0

t
1
4 ∥uj+1(t)∥X4 ≤ sup

t>0
t

1
4 ∥u1(t)∥X4 + C0(sup

t>0
t

1
4 ∥uj(t)∥X4)2. (3.9)

Proof. (3.8) is the direct consequence of (3.2). By definition of uj+1, we find

∥uj+1(t)∥X4

≤ ∥u1(t)∥X4 +
t∫

0

∥e(t−τ)ΔPdiv(uj(τ) ⊗ uj(τ))∥X4dτ,

using (3.4), we get

≤ ∥u1(t)∥X4 + C

t∫
0

(t− τ)− 1
2 − 1

4 ∥uj(τ) ⊗ uj(τ)∥X2dτ

≤ ∥u1(t)∥X4 + C

t∫
0

(t− τ)− 1
2 − 1

4 ∥uj(τ)∥2
X4dτ

≤ ∥u1∥X4 + C(sup τ
1
4 ∥uj(τ)∥X4)2

t∫
0

(t− τ)− 3
4 τ− 1

2 dτ

≤ ∥u1∥X4 + C(sup τ
1
4 ∥uj(τ)∥X4)2t−

1
4

for all t ∈ (0,∞). This prove the lemma.

Lemma 3.3. There exists a positive constant C1 such that, for any positive
integer j, then

sup
t>0

∥u1(t)∥Y 2 ≤ ∥u0∥Y 2 (3.10)

sup
t>0

∥uj+1(t)∥Y 2 ≤ sup
t>0

∥u1(t)∥Y 2 + C1(sup
t>0

t
1
4 ∥uj(t)∥X4)2. (3.11)
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Proof. (3.10) is the direct consequence of (3.2). Let us show (3.11). We use
duality argument. Let ϕ ∈ C∞

0,∞, then we find

|⟨uj+1(t), ϕ⟩|

≤ |⟨u1(t), ϕ⟩| +
t∫

0

|⟨e(t−τ)ΔPdiv(uj(τ) ⊗ uj(τ)), ϕ⟩|dτ

≤ |⟨u1(t), ϕ⟩| +
t∫

0

|⟨e(t−τ)ΔPdivuj(τ) ⊗ uj(τ), ϕ⟩|dτ

≤ |⟨u1(t), ϕ⟩| + ∥ϕ∥L1
vL2,1

h

t∫
0

∥e(t−τ)ΔPdivuj(τ) ⊗ uj(τ)∥X4dτ (3.12)

using (3.4), then we get

≤ ∥u1(t)∥Y 2∥ϕ∥L1
vL2,1

h
+ C(sup

t>0
τ

1
4 ∥uj(τ)∥X4)2∥ϕ∥L1

vL2
h

t∫
0

(t− τ)− 1
2 τ− 1

2 dτ

≤ ∥u1(t)∥Y 2∥ϕ∥L1
vL2,1

h
+ C(sup

t>0
τ

1
4 ∥uj(τ)∥X4)2∥ϕ∥L1

vL2
h

(3.13)

for all t > 0. Since C∞
0,σ is dense in L1

vL
2,1
h , the above estimate leads (3.11).

Next, we show the uniform bound of supt>0 t
1
4 ∥uj+1(t) − uj(t)∥X4 and

supt>0∥uj+1(t) − uj(t)∥Y 2 for all j ≥ 1.

Lemma 3.4. There exists a positive constant C2, such that, for all positive
integer j,

sup
t>0

t
1
4 ∥u2(t) − u1(t)∥X4 ≤ C2(sup

t>0
t

1
4 ∥u1(t)∥X4)2, (3.14)

sup
t>0

t
1
4 ∥uj+2(t) − uj+1(t)∥X4

≤ C2(sup
t>0

t
1
4 ∥uj(t)∥X4 + sup

t>0
t

1
4 ∥uj+1(t)∥X4) sup

t>0
t

1
4 ∥uj+1(t) − uj(t)∥X4

(3.15)

Proof. By definition of u2, we find

∥u2(t) − u1(t)∥X4

≤
t∫

0

∥e(t−τ)ΔPdiv(u1(τ) ⊗ u1(τ))∥X4dτ,
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using (3.1),

≤
t∫

0

(t− τ)− 3
4 ∥u1(τ)∥2

X4dτ

≤ C(sup
τ>0

τ
1
4 ∥u1(τ)∥X4)2

t∫
0

(t− τ)− 3
4 τ− 1

2 dτ

≤ C(sup
τ>0

τ
1
4 ∥u1(τ)∥X4)2t−

1
4 .

This lead (3.14). Similarly, we see

∥uj+2(t) − uj+1(t)∥X4

≤
t∫

0

∥e(t−τ)ΔPdiv(uj+1(τ) ⊗ uj+1(τ) − uj(τ) ⊗ uj(τ))∥X4dτ. (3.16)

Using (3.4), we get

RHS(3.16) ≤ C

t∫
0

∥e(t−τ)ΔPdiv((uj+1(τ) − uj(τ)) ⊗ uj+1(τ) − uj(τ)

⊗ (uj+1(τ) − uj(τ))∥X4dτ

≤ C

t∫
0

(t− τ)− 3
4 (∥uj+1(τ)∥X4 + ∥uj(τ)∥X4)∥uj+1(τ) − uj(τ)∥X4dτ

≤ C(sup
τ>0

τ
1
4 ∥uj∥X4) sup

τ>0
(τ

1
4 ∥uj+1(τ) − uj(τ)∥X4)

t∫
0

(t− τ)− 3
4 τ− 1

2 dτ.

≤ Ct−
1
4 (sup

τ>0
τ

1
4 ∥uj∥X4) sup

τ>0
(τ

1
4 ∥uj+1(τ) − uj(τ)∥X4).

This estimate implies (3.15).
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Lemma 3.5. There exists a positive constant C3 such that, for any positive
integer j, then

sup
t>0

∥u2(t) − u1(t)∥Y 2 ≤ C3(sup
t>0

t
1
4 ∥u1(t)∥X4)(sup

t>0
t

1
4 ∥u1(t)∥X4)2, (3.17)

sup
t>0

∥uj+2(t) − uj+1(t)∥Y 2

≤ C3(sup
t>0

t
1
4 ∥uj(t)∥X4 + sup

t>0
t

1
4 ∥uj+1(t)∥X4) sup

t>0
t

1
4 ∥uj+1(t) − uj(t)∥X4 .

(3.18)

Proof. We use duality argument. Let ϕ ∈ C∞
0,σ. Then (3.4) implies

|⟨u2(t) − u1(t), ϕ⟩|

≤ |
t∫

0

⟨e(t−τ)ΔPdiv(u1(τ) ⊗ u1(τ)), ϕ⟩|dτ

≤ C

t∫
0

(t− τ)− 1
2 ∥u1(τ)∥2

X4∥ϕ∥L1
vL2

h
dτ

≤ C sup
τ>0

τ
1
4 (∥u1(τ)∥X4)2∥ϕ∥L1

vL2,1
h

t∫
0

(t− τ)− 1
2 τ− 1

2 dτ.

This implies (3.17). Using (3.4) again, we get

|⟨uj+2(t) − uj+1(t), ϕ⟩|

≤
t∫

0

|⟨e(t−τ)ΔPdiv(uj+1(τ) ⊗ uj+1(τ) − uj(τ) ⊗ uj(τ)), ϕ⟩|dτ

≤
t∫

0

(t− τ)− 1
2 (∥uj+1(τ)∥X4 + ∥uj(τ)∥X4)∥uj+1(τ) − uj(τ)∥X2∥ϕ∥L1

vL2
h
dτ

≤ CA∞ sup
t>0

(τ
1
4 ∥uj+1(τ) − uj(τ)∥X4)∥ϕ∥L1

vL2,1
h

t∫
0

(t− τ)− 1
2 τ− 1

2 dτ

≤ CA∞∥ϕ∥L1
vL2,1

h
sup
t>0

(τ
1
4 ∥uj+1(τ) − uj(τ)∥X4)

for all t > 0. Since C∞
0 is dense in L1

vL
2,1
h , we have (3.18).
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From Lemma 3.2, there exists some 0 < α < 1
4C0

, if supt>0 t
1
4 ∥u1(t)∥X4 < α,

then

sup
t>0

t
1
4 ∥uj(t)∥X4 ≤ A∞ := 1 −

√
1 − 4C0α

2C0
. (3.19)

Take ∥b0∥Y 2 so small that 2C2A∞ < 1 and 2C3A∞ < 1, then we find from
Lemma3.4 and Lemma 3.5 that∑

j≥0
sup
t>0

t
1
4 ∥uj+1(t) − uj(t)∥X4 < ∞,

∑
j≥0

sup
t>0

∥uj+1(t) − uj(t)∥Y 2 < ∞.

Then uj = u0 +
∑j−1

j=0(uj+1 − uj) converge in A and L∞
t Y 2

x . where A
is a vector valued measureable functions of f(x, t) in R3 × (0,∞) such that
∥f∥A = supt>0 t

1
4 ∥f(t)∥X4 < ∞. We denote limj→∞ uj as u.

Let us show continuity of ∥u(t)∥X4 and ∥u(t)∥Y 2 .

Lemma 3.6. Let u be a mild solutions to (1.1) satisfying

sup
t>0

∥u(t)∥Y 2 + sup
t>0

t
1
4 ∥u(t)∥X4 < ∞.

Then ∥u(t)∥X4 is continuous on (0,∞)

Proof. It suffices to show lims→t−0∥u(t) − u(s)∥X4 = 0. Let 0 < s < t < ∞.
Then we find

∥u(t) − u(s)∥X4

≤ ∥etΔu0 − esΔu0∥X4

+
t∫

s

∥e(t−τ)ΔPdiv(u(τ) ⊗ u(τ))∥X4dτ

+
s∫

0

∥e(t−τ)ΔPdiv(u(τ) ⊗ u(τ)) − e(s−τ)ΔPdiv(u(τ) ⊗ u(τ))∥X4dτ

=: I1 + I2 + I3.

First, using (3.3), we find

I1 = ∥(e(t−s)Δ − id)esΔu0∥X4

≤ C(t− s)θs−θ∥u0∥X4 .
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Second, we see from (3.4) that

I2 ≤ C

t∫
s

(t− τ)
1
4 ∥u(τ)∥2

X4dτ

≤ C(sup
τ>0

τ
1
4 ∥u(τ)∥X4)2

t∫
s

(t− τ)− 3
4 τ− 1

2 dτ

≤ C(sup
τ>0

τ
1
4 ∥u(τ)∥X4)2s− 1

2

t∫
s

(t− τ)− 3
4 dτ

≤ C(sup
τ>0

(τ
1
4 ∥u(τ)∥X4))2s− 1

2 (t− s)
1
4

.

Finally, using (3.5), we obtain

I3 = C ≤
s∫

0

∥(e(t−s)Δ − id)e(s−τ)ΔPdiv(u(τ) ⊗ u(τ))∥X4dτ

≤ C(t− s)θ

s∫
0

(s− τ)− θ
2 − 3

4 ∥u(τ)∥2
X4dτ

≤ C(t− s)θ(sup
τ>0

τ
1
4 ∥u(τ)∥X4)2

s∫
0

(s− τ)− θ
2 − 3

4 τ− 1
2 dτ

≤ C(t− τ)θ(sup
τ>0

τ
1
4 ∥u(τ)∥X4)2s− θ

2 − 1
4 .

Therefore, ∥u(t) − u(s)∥X4 → 0 as s → t− 0. The lemma is proved.

Lemma 3.7. Let u be a mild solution for (1.1) satisfying

sup
t>0

∥u(t)∥Y 2 + sup
t>0

t
1
4 ∥u(t)∥X4 < ∞.

Then ∥u(t)∥Y 2 is continuous on (0,∞).
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Proof. We use duality argument. It suffices to show lims→t−0. Let ϕ ∈ C∞
0 and

0 < s < t < ∞. Then we find that

|⟨u(t) − u(s), ϕ⟩|
≤ |⟨etΔu0 − esΔu0, ϕ⟩|

+
t∫

s

|⟨e(t−τ)ΔPdiv(u(τ) ⊗ u(τ)), ϕ⟩|dτ

+
s∫

0

|⟨(e(t−s)Δ − id)e(s−τ)ΔPdiv(u(τ) ⊗ u(τ)), ϕ⟩|dτ.

=: I1 + I2 + I3.

Decompose Gaussian kernel as Gs(xh, xv) = Gs(xv)vGs(xh)h, then we find

|I1| ≤ |⟨Gv
t−s ∗ (esΔu0) − esΔu0, G

v
t−s ∗ ϕ⟩| + |⟨esΔu0, G

v
t−s ∗ ϕ− ϕ⟩|

≤ C∥Gv
t−s ∗ (esΔu0) − esΔu0∥Y 2∥Gh

t−s ∗ ϕ∥L1
vL2,1

h

+ C∥esΔu0∥Y 2∥Gh
t−s ∗ ϕ− ϕ∥L1

vL2,1
h

=: I1,1 + I1,2.

The Lebesgue dominated convergence theorem yields I1,1 → 0 as s → t. Using
continuity of Gh

t−s ∗ ϕ in L1
vL

2,1
h on t, we find I2,1 → 0 as s → t. Thus, |I1|

converge to 0 as s → t. It follows from (3.4) that

|I2| ≤ C

t∫
s

∥e(t−τ)ΔPdiv(u(τ) ⊗ u(τ))∥X2∥ϕ∥L1
vL2,1

h
dτ

≤ C

t∫
s

(t− τ)− 1
2 ∥u(τ)∥2

X4∥ϕ∥L1
vL2,1

h
dτ

≤ C(sup
τ>0

τ
1
4 ∥u(τ)∥X4)2∥ϕ∥L1

vL2,1
h

t∫
s

(t− τ)− 1
2 τ− 1

2 dτ

≤ Cs− 1
2 (sup

τ>0
τ

1
4 ∥u(τ)∥X4)2∥ϕ∥L1

vL2,1
h

t∫
s

(t− τ)− 1
2 dτ

≤ Cs− 1
2 (t− s)

1
2 (sup

τ>0
τ

1
4 ∥u(τ)∥X4)2∥ϕ∥L1

vL2,1
h
.
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This implies I2 → 0 as s → t. Let 0 < θ < 1
4 . Using (3.3), we find

|I3| ≤
s∫

0

∥(e(t−s)Δ − id)e(s−τ)ΔPdiv(u(τ) ⊗ u(τ))∥X2∥ϕ∥L1
vL2

h
dτ

≤ C

s∫
0

(s− τ)− 3
4 −θ(t− s)θ∥u(τ)∥2

X4dτ

≤ C(t− s)θ(sup
τ>0

τ
1
4 ∥u(τ)∥X4)2∥ϕ∥L1

vL2,1
h

s∫
0

(s− τ)− 3
4 τ− 1

2 dτ

≤ C(t− s)θs− 1
4 (sup

τ>0
τ

1
4 ∥u(τ)∥X4)2∥ϕ∥L1

vL2,1
h
.

This implies I3 → 0 as s → t. We have required continuity on (0,∞).

The following Lemma implies the continuity to the initial data.

Lemma 3.8. Let 4
3 < r < 2 and 1

p = 1
r + 1

4 . Let u be a mild solution for (1.1)
satisfying

sup
t>0

∥u(t)∥Y 2 + sup
t>0

t
1
4 ∥u(t)∥X4 < ∞.

Then

u(t) → u0 weakly ∗ in Y 2 +Xp.

Proof. We use duality argument. Let ϕ ∈ C∞
0 (R3) and t > 0. Then

|⟨u(s) − u, ϕ⟩|
≤ |⟨esΔu0 − u0, ϕ⟩|

+
t∫

0

|⟨e(t−τ)ΔPdiv(u(τ) ⊗ u(τ)), ϕ⟩|dτ

=: I1 + I2.

Decomposing the Gaussian kernel as Gs(xh, xv) = Gv
s(xv)Gh

s (xh), then we find

|I1| = |⟨Gv
t u0 − u0, G

h
hϕ⟩| + |⟨u0, G

h
t ∗ ϕ− ϕ⟩|.

Since

Gv
t ∗ u0 → u0 weakly∗ in Y 2 as t → 0, (3.20)

Gh
t ∗ ϕ → ϕ in L1

vL
2,1
h as t → 0, (3.21)
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we have

|I1| → 0 as t → 0. (3.22)

Next, let 4
3 < r < 2 and 1

p = 1
r + 1

4 , then we obtain

|I2| ≤
t∫

0

⟨Kv
τ ∗ (u(τ) ⊗ u(τ)) : Kh

τ ∗ ϕ⟩dτ

≤
t∫

0

∥Kv
τ ∗ (u(τ) ⊗ u(τ))∥Xp+X2∥Kh

τ ∗ ϕ∥L1
vLp′ ∩L1

vL2dτ

≤ C

t∫
0

(t− τ)− 1
2 ∥u(τ) ⊗ u(τ)∥Xp+X2∥ϕ∥L1

vLp′ ∩L1
vL2dτ.

Using the Hölder inequality, we find

≤ C

t∫
0

∥u(τ)∥X4+Xr ∥u(τ)∥X4∥ϕ∥L1
vLp′ ∩L1

vL2dτ

≤ C

t∫
0

∥u(τ)∥Y 2∥u(τ)∥X4∥ϕ∥L1
vLp′ ∩L1

vL2dτ

≤ C(sup
τ>0

∥(τ)∥Y 2)(sup
τ>0

τ
1
4 ∥u(τ)∥X4)∥ϕ∥L1

vLp′ ∩L1
vL2

t∫
0

(t− τ)− 1
2 τ− 1

4 dτ

≤ Ct
1
4 (sup

τ>0
∥(τ)∥Y 2)(sup

τ>0
τ

1
4 ∥u(τ)∥X4)∥ϕ∥L1

vLp′ ∩L1
vL2 .

This implies I2 → 0 as t → 0. The Lemma is proved.

The following proposition implies the uniqueness of u.

Proposition 3.9. Let u0 ∈ Y 2 sufficiently small, then there exists at most one
solutions u to (1.1) with initial data u0 ∈ Y 2 satisfying

sup
t>0

t
1
4 ∥u(t)∥X4 ≤ C∥u0∥Y 2 (3.23)

Proof. Let u1 and u2 be two solution to the Navier-Stokes equations satisfying

sup
t>0

t
1
4 ∥uj(t)∥X4 ≤ C∥u0∥Y 2 , j = 1, 2.
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Then we obtain

∥u1(t) − u2(t)∥X4 ≤
t∫

0

∥e(t−τ)ΔPdiv(u1(τ) ⊗ u1(τ) − u2(τ) ⊗ u2(τ))∥X4dτ

≤ C(sup
τ>0

τ
1
4 ∥u1(τ)∥X4 + sup

τ>0
τ

1
4 ∥u2(τ)∥X4 sup

τ>0
)τ

1
4 ∥u1(τ) − u2(τ)∥X4

×
t∫

0

(t− τ)− 3
4 τ

1
2 dτ

≤ C′t−
1
4 ∥u0∥Y 2 sup

τ>0
τ

1
4 ∥u1(τ) − u2(τ)∥X4 .

If ∥u0∥Y 2 is sufficiently small so that C′∥u0∥Y 2 < 1, we find

sup
τ>0

τ
1
4 ∥u1(τ) − u2(τ)∥X4 ≡ 0.

The Proposition is proved.

Assume uj is periodic with respect to xv. By definition, uj+1 is also periodic
in xv. Since Xq(R2

h × T1
v) is closed, we see that the limit function u is periodic

with respect to xv. We complete the proof of Theorem2.4.
Now, we prove (1.1) is locally-in-time well-posed for large initial data if its

singularity is sufficiently small.

Theorem 3.10. Let 2 < q < ∞. Then there exists a positive constant ϵ > 0
such that for every u0 ∈ Y 2(R3) satisfying

lim sup
λ→0

λ|{x ∈ R3 : |u0(x)| > λ}| < ϵ (3.24)

there exists T > 0 and a mild solution u ∈ Y 2 to (1.1) on R3.

Proof. It is sufficient to show that there exists T > 0 such that

sup
0<t<T

t
1
4 ∥etΔu0∥X4 ≤ 1

2C1
.

By assumption, u0 can be decomposed as

u0 = u0,1 + u0,2, where u0,1 ∈ Y 2(R3), ∥u0,1∥Y 2 < ϵ and u0,2 ∈ X4(R3).

(3.4) implies sup0<t<T t
1
4 ∥etΔu0∥X4 ≤ C(ϵ + t

1
4 ∥u0,2∥X4). Put ϵ = 1

4CC1
. Let

T
1
4 < 1

4CC1∥u0,2∥X4
. Then sup0<t<T t

1
4 ∥etΔu0∥X4 < 1

2C1
. The Theorem is

proved.
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4 Maekawa’s decompotion of basic flow and
their estimate
In this section, we decompose the basic flow as in the Maekawa’s paper

[18] to show the asymptotic stability of the Oseen type Navier-Stokes flows. For
T > 0, Let denote Qvper,T the anisotropic space time set (R2

h × T1
v) × (0, T )t.

Firstly, Let us recall Maekawa’s decomposition of basic flows in [18].

Proposition 4.1. (Maekawa’s decomposition of basic flow and their estimate
in two-dimensional case) There exists a constant δ > 0 such that, for any b0 ∈
L2,∞(R2) with ∥b0∥L2,∞(R2) ≤ δ and T > 1, the solution b to two dimensional
Navier-Stokes equation (1.1) with initial data b0 is decomposed as b = bT + bT ,
where bT and bT with bT , b

T ∈ Cw∗,tL
2,∞
x (R2 × (0,∞)) satisfy

sup
t>0

∥bT (t)∥L2,∞(R2) + sup
t>0

(t+ T )
1
4 ∥bT (t)∥L4(R2) ≤ C∥b0∥L2,∞(R2) (4.1)

sup
t>0

∥bT (t)∥L2,∞(R2) + sup
t>0

t
1
4 ∥bT (t)∥L4(R2) ≤ C∥b0∥L2,∞(R2) (4.2)

and bT also satisfies the energy estimate

∥bT (t)∥2
L2(R2) +

t∫
1

∥∇bT (τ)∥2
L2(R2)dτ ≤ C∥b0(R2)∥2

L2,∞(R2) log(1 + T ) (4.3)

for all t > 1.

The following proposition is the Maekawa’s decomposition to the three dimen-
sional Oseen type solution.

Proposition 4.2. (Maekawa’s decomposition of the Oseen type basic flow and
its estimate) There exists a constant δ > 0 such that, for any b0 ∈ Y 2(R2 × T1)
with ∥b0∥Y 2(R2×T1) ≤ δ and T > 1, the solution b to (1.1) with initial data b0
is decomposed as b = bT + bT , where bT and bT with bT , b

T ∈ Cw∗,tY
2

x ((R2 ×
T1) × (0,∞)) satisfy

sup
t>0

∥bT (t)∥Y 2(R2×T1) + sup
t>0

(t+ T )
1
4 ∥bT (t)∥X4(R2×T1) ≤ C∥b0∥Y 2(R2×T1) (4.4)

sup
t>0

∥bT (t)∥Y 2(R2×T1) + sup
t>0

t
1
4 ∥bT (t)∥X4(R2×T1) ≤ C∥b0∥Y 2(R2×T1) (4.5)
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and bT also satisfies the energy estimate

∥bT (t)∥2
L2(R2×T1) +

t∫
1

∥∇bT (τ)∥2
L2(R2×T1)dτ ≤ C∥b0∥2

Y 2(R2×T1) log(1 + T )

(4.6)

for all t > 1.

To show the Proposition 4.1, we have to decompose the initial data to the basic
flow b.

Lemma 4.3. Let T > 1 and b ∈ Y 2(R2
h × T1

v). Then there exists a positive
constant C such that b0 can be decomposed as b0 = b0,T + bT

0 satisfying

∥b0,T ∥Y 2(R2×T1) + T
1
4 ∥b0,T ∥X4(R2×T1) ≤ C∥b0∥Y 2(R2×T1) (4.7)

∥bT
0 ∥Y 2(R2×T1) + (2 − q) 1

2

T
1
q − 1

2
∥bT

0 ∥Xq(R2×T1) ≤ C∥b0∥Y 2(R2×T1), (4.8)

for all q ∈ [ 4
3 , 2).

Proof. It follows from Lemma 3.2 in [18] that

∥b0,T (·, xv)∥L2,∞
h

+ T
1
4 ∥b0,T (·, xv)∥L4

h
≤ C∥b0(·, xv)∥L2,∞

h

∥bT
0 (·, xv)∥L2,∞ ≤ C∥b0(·, xv)∥L2,∞

h

∥bT
0 (·, xv)∥Lq

h
≤ C

T
1
q − 1

2

(2 − q) 1
2

∥b0(·, xv)∥L2,∞ .

This inequalities imply the Lemma.

proof of Proposition4.2. Let δ > be sufficient small. Then, by definition,
∥b0,T ∥Y 2 , ∥bT

0 ∥Y 2 ≤ δ. Using contraction principle as in [18], we can con-
struct a unique mild solution to the following integral equation with initial data
b0,T

bT (t) = etΔb0,T −
t∫

0

e(t−τ)ΔPdiv(bT (τ) ⊗ b(τ))dτ, (4.9)

where etΔ and P are the heat semigroup and the Helmholtz projection on R2
h ×T1

v

respectively. Moreover, the solution bT satisfies

sup
t>0

∥bT (t)∥Y 2(R2×T1) + sup
t>0

(t+ T )
1
4 ∥bT (t)∥X4(R2×T1) ≤ C∥b0,T ∥Y 2(R2×T1).
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in Qvper,T . Similarly, there exits a functions bT satisfying

bT (t) = etΔbT
0 −

t∫
0

et−τΔPdiv(bT (τ) ⊗ b(τ))dτ,

and

sup
t>0

∥bT (t)∥Y 2(R2×T1) + sup
t>0

t
1
4 ∥bT (t)∥X4(R2×T1) ≤ C∥b0∥Y 2(R2×T1).

Note that bT and bT satisfies b = bT + bT . Now, we prove the energy estimate
(4.6). First, we have to check bT (t) ∈ L2(R2 ×T1) for all t ≥ 1. Indeed, it follows
from (3.4) that

∥etΔbT
0 ∥L2(R2×T1) ≤ ∥etΔbT

0 ∥X2((R2×T1))

≤ Ct−( 1
q − 1

2 )∥bT
0 ∥Xq(R2×T1), for all q ∈ [ 43 , 2), (4.10)

and

∥
t∫

0

e(t−τ)ΔPdiv(bT (τ) ⊗ b(τ))dτ∥L2(R2×T1)

≤ C

t∫
0

∥e(t−τ)ΔPdiv(bT (τ) ⊗ b(τ))∥X2(R2×T1)dτ

≤ C(sup
t>0

τ
1
4 ∥bT (τ)∥X4(R2×T1))(sup

τ>0
τ

1
4 ∥b(τ)∥X4(R2×T1))

t∫
0

(T − τ)− 1
2 τ− 1

2 dτ

≤ C∥b0∥2
Y 2(R2×T1). (4.11)

Thus, we get bT (t) ∈ L2(R2 × T1). Next, since bT satisfies

∂tb
T − ΔbT + b · ∇bT + ∇q = 0, div bT = 0,

it follows from integration by part that

∥bT (t)∥2
L2(R2×T1) +

t∫
1

∥∇b(τ)∥2
L2(R2×T1)dτ = ∥bT (1)∥2

L2(R2×T1) (4.12)

for all t ≥ 1. From (4.10) and (4.11), the right hand side of (4.12) satisfies

∥b(1)∥2
L2(R2×T1) ≤ C∥b0∥Y 2(R2

h
×T1

v)(
T

1
q − 1

2

(2 − q) 1
2

+ ∥b0∥Y 2(R2
h

×T1
v)) (4.13)
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for all q ∈ [ 4
3 , 2). Taking q so that 2 − q = 1

4 log(1+T ) , we finally obtain

∥bT (t)∥2
L2(R2×T1) +

t∫
1

∥∇bT (τ)∥2
L2(R2×T1)dτ ≤ C∥b0∥Y 2(∥b0∥Y 2 + log(1 + T )).

5 Logarithmic energy estimates for perturbed
equations with their construction

In this section, we construct a weak solution to the perturbed Navier-Stoks
equations v defined in the second section with initial data v0 ∈ L∞

v C∞
0,h(R2

h ×T1
v).

Firstly, we construct a local-in-time mild solution on (0, T∗). Secondly, we establish
the global-in-time weak solution with initial data v(T∗).

Proposition 5.1. Let δ > 0 be sufficiently small and v0 ∈ X
4
3 (R2

h × T1
v) ∩

X4(R2
h × T1

v). Let us assume that b ∈ L∞
t Y 2

x (R2
h × T1

vT∗) satisfies

sup
t>0

∥b(t)∥Y 2(R2
h

×T1
v) + sup

t>0
t

1
4 ∥b(t)∥X(R2

h
×T1

v) ≤ δ.

Then there exist T∗ > 0 and a unique mild solution v ∈ Y
4
3 (R2

h × T1
v × (0, T∗)) ∩

X4(R2
h × T1

v × (0, T∗)) to (1.1) satisfying

v(t) = etΔb0 −
t∫

0

e(t−τ)ΔPdiv(v(τ) ⊗ v(τ) + v(τ) ⊗ b(τ) + b(τ) ⊗ v(τ))dτ

(5.1)

and

sup
0<τ<T∗

∥v(τ)∥
X

4
3 (R2

h
×T1

v)
≤ C∥v0∥

X
4
3 (R2

h
×T1

v)
(5.2)

sup
0<τ<T∗

∥v(τ)∥X4(R2
h

×T1
v) ≤ C∥v0∥X4(R2

h
×T1

v). (5.3)

Proof. Put

N(v, w, t) :=
t∫

0

e(t−τ)ΔPdiv(v(τ) ⊗ w(τ) + v(τ) ⊗ b(τ) + b(τ) ⊗ v(τ))dτ,
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where v, w ∈ L∞
t (X 4

3 ∩X4)x. It is sufficient to show that there exist constants
C1 and C2 such that

∥N(v, w, t)∥
L∞

t (X
4
3 ∩X4)x

≤ C1t
1
4 ∥v∥

L∞
t (X

4
3 ∩X4)x

+ C2∥b0∥Y 2∥v∥
L∞

t (X
4
3 ∩X4)x

(5.4)

for v, w ∈ L∞
t (X 4

3 ∩X4)x(QY∗,per). Using (3.4), we find

∥N(v, w, t)∥
X

4
3 (R2

h
×T1

v)
(5.5)

≤
t∫

0

∥e(t−τ)ΔPdiv(v(τ) ⊗ w(τ) + v(τ) ⊗ b(τ) + b(τ) ⊗ v(τ))∥
X

4
3 (R2

h
×T1

v)
dτ

≤ C

t∫
0

(t− τ)− 3
4 (∥v(τ)∥

X
4
3 (R2

h
×T1

v)
∥w(τ)∥X4(R2

h
×T1

v) (5.6)

+ 2∥v(τ)∥
X

4
3 (R2

h
×T1

v)
∥b(τ)∥X4(R2

h
×T1

v))dτ

≤ C1t
1
4 ( sup

0<τ<t
∥v(τ)∥

X
4
3 (R2

h
×T1

v)
)( sup

0<τ<t
∥w(τ)∥X4(R2

h
×T1

v))

+ C2( sup
0<τ<t

∥v(τ)∥
X

4
3 (R2

h
×T1

v)
)(sup

τ>0
τ

1
4 ∥b(τ)∥X4(R2

h
×T1

v)). (5.7)

Similarly, we find

∥N(v, w, t)∥X4(R2
h

×T1
v) ≤

t∫
0

∥e(t−τ)ΔPdiv(v(τ) ⊗ w(τ) + v(τ) ⊗ b(τ) (5.8)

+ b(τ) ⊗ v(τ))∥X4(R2
h

×T1
v)dτ

≤ C

t∫
0

(t− τ)− 3
4 (∥v(τ)∥X4(R2

h
×T1

v)∥w(τ)∥X4(R2
h

×T1
v) (5.9)

+ ∥v(τ)∥X4∥b(τ)∥X4)dτ

≤ C1t
1
4 ( sup

0<τ<t
∥v(τ)∥X4(R2

h × T1
v))( sup

0<τ<t
∥w(τ)∥X4(R2

h
×T1

v)) (5.10)

+ C2( sup
0<τ<t

∥v(τ)∥X4(R2
h

×T1
v))(sup

τ>0
τ

1
4 ∥b(τ)∥X4(R2

h
×T1

v)). (5.11)

Let T∗ be sufficiently small. Using contraction principle, we get the proof as in
the proof of Theorem2.4.

We construct a global-in-time weak solution to the perturbed Navier-Stokes
equations on (0,∞) with initial data v(T∗) ∈ L2(R2

h × T1
v). Firstly, we construct
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a solution to the mollified perturbed Navier-Stokes equations. Secondly, taking
limit for it, we get a solution to the perturbed Navier-Stokes equations.

Let ψ be the standard mollifier and (f)ρ(x) denote 1
ρ3ψ( ·

ρ )∗f . The following
proposition assert that there exist a weak solutions to the mollified perturbed
Navier-Stokes equations with initial data v0 ∈ L2(R2

h × T1
v).

Proposition 5.2. Let 0 < ρ < 1 and T > 0. Let b ∈ L∞
t Y 2

x (Qvper,T ) and be a
mild solution to (1.1) with non-zero initial data b0 ∈ Y 2 satisfying

sup
t>0

∥b(t)∥Y 2(R2
h

×T1
v) + sup

t>0
(t+ 1)

1
4 ∥b(t)∥X4(R2

h
×T1

v) ≤ C∥b0∥Y 2(R2
h

×T1
v). (5.12)

Then there exists a unique weak solution vρ ∈ (L∞
t L2

x ∩L2
tH

1
x ∩H1

t L
2
x)(Qvper,T )

to the mollified perturbed Navier-Stokes equation

∂tv
ρ − Δvρ + (vρ)ρ · ∇vρ + b · ∇vρ + vρ · ∇b+ ∇q = 0, (5.13)

div v = 0 (5.14)

with initial data v0 ∈ L2(R2
h × T1

v) satisfying

t∫
0

−⟨vρ, ∂tϕ⟩ + ⟨∇vρ : ∇ϕ⟩ − ⟨vρ ⊗ (vρ)ρ + (b)ρ ⊗ vρ + vρ ⊗ (b)ρ : ∇ϕ⟩dτ

= ⟨v0, ϕ⟩ (5.15)

for any ϕ ∈ C∞
0,σ(Qvper,T ). Moreover, vρ satisfies the energy estimate

∥vρ(t)∥L2(R2
h

×T1
v) +

t∫
0

∥∇vρ(τ)∥2
L2(R2

h
×T1

v)dτ

≤ C1(1 + t)
C2∥b0∥4

Y 2(R2
h

×T1
v)∥v0∥2

L2(R2
h

×T1
v) (5.16)

for all t ∈ (0, T ), where constants C1 and C2 are independent of ρ.

Proof. Let v, w ∈ L∞
t L2

x(Qvper,T ). We define Nρ as

Nρ(v, w, t) (5.17)

:=
t∫

0

e(t−τ)ΔPdiv(v(τ) ⊗ (w)ρ(τ) + v(τ) ⊗ (b)ρ(τ) + (b)ρ(τ) ⊗ v(τ))dτ.

(5.18)
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First, we show that there exits a positive constant 0 < T∗ < 1 and vρ ∈
L∞

t L2
x(Qvper,T∗) ∩ L2

tH
1
x(Qvper,T∗) such that

vρ(t) = etΔv0 −Nρ(vρ, vρ, t), in (L∞
t L2

x ∩ L2
t Ḣ

1
x)(Qvper,T∗). (5.19)

It follows from integration by parts that

∥etΔv0∥L∞
t L2

x(Qvper,T∗ ) + ∥etΔv0∥L2
t Ḣ1

x(Qvper,T∗ ) ≤ ∥v0∥L2(R2×T1).

Since

(
t∫

0

∥v(τ) ⊗ (w)ρ(τ)∥2
L2(R2

h
×T1

v) + ∥(b)ρ(τ) ⊗ v(τ)∥2
L2(R2

h
×T1

v)

+ ∥v(τ) ⊗ (b)ρ(τ)∥2
L2(R2

h
×T1

v)dτ)
1
2

≤ C1(
t∫

0

∥v(τ)∥L2(R2
h

×T1
v)∥(w)ρ(τ)∥L∞(R2

h
×T1

v)

+ ∥(b)ρ(τ)∥L∞(R2
h

×T1
v)∥v(τ)∥L2(R2

h
×T1

v)dτ)
1
2

≤ C1ρ
− 3

2 T
1
2

∗ (∥v∥L∞
t L2

x(Qvper,T∗ )∥w∥L∞
t L2

x(Qvper,T∗ )

+ ∥b∥L∞
t X4

x(Qvper,T∗ )∥v∥L∞
t L2

x(Qvper,T∗ )),

it follows from energy estimate that

∥Nρ(v, w, t)∥L∞
t L2

x(Qvper,T∗ ) + ∥N(v, w, t)∥L2
t Ḣ1

x(Qvper,T∗ )

≤ C1ρ
− 3

2 T
1
2

∗ (∥v∥L∞
t L2

x(Qvper,T∗ )∥w∥L∞
t L2

x(Qvper,T∗ )

+ ∥b∥L∞
t X4

x(Qvper,T∗ )∥v∥L∞
t L2

x(Qvper,T∗ )).

Thus, if we take T∗ so small that

T
1
2

∗ < min(1, ρ
3
2

∥b∥L∞
t X4

x(Qvper,T∗ ) + 2∥v0∥L2(R2
h

×T1
v)

4C1∥b∥L∞
t X4

x(Qvper,T∗ )

−

√
(∥b∥L∞

t X4
x(Qvper,T∗ ) + 2∥v0∥L2(R2

h
×T1

v))2 − ∥b∥L∞
t X4

x(Qvper,T∗ )

4C1∥b∥2
L∞

t X4
x(Qvper,T∗ )

),

there exists a unique mild solution v to

vρ(t) = etΔv0 −
t∫

0

e(t−τ)ΔPdiv(vρ(τ) ⊗ (vρ)ρ(τ) + vρ(τ) ⊗ (b)ρ(τ) + (b)ρ(τ) ⊗ vρ(τ))dτ
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on t ∈ (0, T∗).
Next, we show the a priori bound for v. This leads the existence of global-in-

time weak solution to (5.16). Integration by parts to (5.13) yields

1
2∂t∥vρ(t)∥2

L2(R2
h

×T1
v) + ∥∇vρ(t)∥2

L2(R2
h

×T1
v)

≤ |⟨b(t) ⊗ vρ(t) : ∇vρ(t)⟩|
≤ C∥b(t) ⊗ vρ(t)∥L2(R2

h
×T1

v)∥∇vρ(t)∥L2(R2
h

×T1
v). (5.20)

Using interpolation inequality and the Young inequality, we get

(5.20) ≤ C∥b(t)∥X4(R2
h

×T1
v)∥vρ(t)∥

1
2
L2(R2

h
×T1

v)∥∇vρ(t)∥
3
2
L2(R2

h
×T1

v)

≤ C∥b(t)∥4
X4(R2

h
×T1

v)∥v
ρ(t)∥2

L2(R2
h

×T1
v) + 1

2∥∇vρ(t)∥2
L2(R2

h
×T1

v). (5.21)

Applying the Gronwall inequality to (5.20) and (5.21), we obtain

∥vρ(t)∥2
L2 +

t∫
0

∥∇vρ(τ)∥2
L2dτ

≤ exp(C
t∫

0

∥b(τ)∥4
X4dτ)∥v0∥2

L2 ≤ C2(1 + t)C3∥b0∥4
Y 2 ∥v0∥2

L2 .

Thus, we get a priori estimate ∥u(t)∥L2 ≤ C2(1 + T )C3∥b0∥4
Y 2 ∥v0∥L2 . Using this

estimate, we can extend the maximal existence time by

min(1, ρ3(
∥b∥L∞

t X4
x

+ 2C2(1 + T )C3∥b0∥4
Y 2 ∥v0∥L2

4C1∥b∥L∞
t X4

x

−

√
(∥b∥L∞

t X4
x

+ 2C2(1 + T )C3∥b0∥4
Y 2 ∥v0∥L2)2 − ∥b∥2

L∞
t X4

x

4C1∥b∥2
L∞

t X4
x

).

Since T is finite, we can use same argument until the existence time become
greater than T . The proposition is proved.

Now, let us prove the existence of the perturbed Navier-Stokes equation for
L2-initial data.

Proposition 5.3. Let T > 0, v0 ∈ L2
x(R2

h × T1
v) and b ∈ L∞

t Y 2
x ((0, T ) × (R2

h ×
T1

v)) be a mild solution to (1.1) with initial data b0 ∈ Y 2 satisfying

sup
t>0

∥b(t)∥Y 2(R2
h

×T1
v) + sup

t>0
(t+ 1)

1
4 ∥b(t)∥X4(R2

h
×T1

v) ≤ C∥b0∥Y 2(R2
h

×T1
v). (5.22)
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Then there exists a weak solution v to the perturbed Navier-Stokes equation
∂tv − Δv + div(v ⊗ v + v ⊗ b+ b⊗ v) + ∇q = 0
div v = 0
v(0) = v0

(5.23)

in (0, T )×(R2 ×T1) with q ∈ L1
tL

1
x,loc((0, T )×(R2 ×T1)) satisfying the following

properties;
(i) For all ϕ ∈ C∞

0 (R2 × T1)

t 7→ ⟨v(t), ϕ⟩ (5.24)

is continuous at any t ∈ [0, T ).
(ii) (Continuity at t = 0)

∥v(t) − v0∥L2(R2×T1) → 0 (5.25)

as t → +0
(iii) (Energy estimate)

∥v(t)∥2
L2(R2×T1) + 2

t∫
1

∥∇v(τ)∥2
L2(R2×T1)dτ

≤ C1∥v0∥2
L2(R2×T1)(1 + t)C2∥b0∥4

Y 2(R2×T1) (5.26)

for all t > 1, where C1, C2 > 0 is independent of t.

Proof. We have shown the existence of a solution to the mollified equations with
energy estimate. We have to get uniform estimate in ρ to ∥∂tv

ρ∥L2
t Ḣ−s

x
for s > 3

2
to take limit to the mollified equations. Let ϕ ∈ L2

tH
s
x(Qvper,T ). Then, using the

Hölder inequality and embedding L∞ ↪→ Hs, we find that

|⟨∂tv
ρ(t), ϕ(t)⟩| ≤ |⟨∇vρ(t),∇ϕ(t)⟩| + |⟨vρ(t) ⊗ (v)ρ(t) : ∇ϕ(t)⟩|

+ |⟨(b)ρ(t) ⊗ vρ(t) : ∇ϕ(t)⟩| + |⟨vρ(t) ⊗ (b)ρ(t) : ∇ϕ(t)⟩|
≤ ∥∇vρ(t)∥L2(R2

h
×T1

v)∥∇ϕ(t)∥L2(R2
h

×T1
v) (5.27)

+ ∥vρ(t) ⊗ (vρ)ρ(t)∥L1(R2
h

×T1
v)∥∇ϕ(t)∥L∞(R2

h
×T1

v)

+ ∥(b)ρ(t) ⊗ vρ(t)∥L2(R2
h

×T1
v)∥∇ϕ(t)∥L2(R2

h
×T1

v) (5.28)

+ ∥vρ ⊗ (b)ρ(t)∥L2(R2
h

×T1
v)∥∇ϕ(t)∥L2(R2

h
×T1

v)

(5.29)



32 Ken Furukawa

≤ ∥∇vρ(t)∥L2(R2
h

×T1
v)∥∇ϕ(t)∥L∞(R2

h
×T1

v) (5.30)

+ (∥vρ(t)∥2
L2(R2

h
×T1

v) + 2∥∥b(t)∥L4
h

(R2)∥vρ(t)∥L4
h

(R2)∥L2
v
)∥∇ϕ(t)∥L2(R2

h
×T1

v)

≤ C(∥∇vρ(t)∥L2(R2
h

×T1
v) + ∥vρ(t)∥2

L2(R2
h

×T1
v) (5.31)

+ 2∥b(t)∥X4(R2
h

×T1
v)∥vρ(t)∥

1
2
L2(R2

h
×T1

v)∥∇vρ(t)∥
3
2
L2(R2

h
×T1

v))∥ϕ(t)∥H3(R2
h

×T1
v)

≤ C(∥∇vρ(t)∥L2(R2
h

×T1
v) + ∥vρ(t)∥2

L2(R2
h

×T1
v) (5.32)

+ ∥b(t)∥4
X4(R2

h
×T1

v)∥v
ρ(t)∥2

L2(R2
h

×T1
v) + ∥∇vρ(t)∥2

L2(R2
h

×T1
v))∥ϕ(t)∥H3(R2

h
×T1

v).

(5.33)

Therefore, from (5.16), the above estimate and the Aubin-Lions theorem, we can
select subsequence {vρj }ρj ⊂ {vρ}ρ such that

vρj → v weakly∗ in L∞
t L2

x(Qvper,T ) (5.34)
∇vρj → v weakly in L2

tL
2
x(Qvper,T ) (5.35)

vρj → v in L2
tL

2
loc,x(Qvper,T ). (5.36)

Moreover, the limit functions v satisfies the energy estimate

∥v(t)∥L2(R2
h

×T1
v) +

t∫
0

∥∇v(τ)∥2
L2(R2

h
×T1

v)dτ

≤ C1(1 + t)
C2∥b0∥4

Y 2(R2
h

×T1
v)∥v0∥2

L2(R2
h

×T1
v), (5.37)

and the perturbed Navier-Stokes equation. From the estimates above, it follows
that

t → ⟨v(t), ϕ⟩ (5.38)

is continuous on [0, T ) for all ϕ ∈ L2(R2
h × T1

v), and

∥v(t) − v0∥L2 → 0 as t → 0. (5.39)

The proposition is proved.

Fix T > 0. Then, from Proposition 5.1 and Proposition 5.3, we have a global weak
solutions v ∈ L∞

t L2
x(QT,vper) to the perturbed Navier-Stokes equations with

initial data v0 ∈ (X 4
3 ∩X4)(R2

h×T1
v). Moreover, since v(T1) ∈ (X 4

3 ∩X4)(R2
h×T1

v)
for all 0 < T1 < T∗, it follows that

∥v(t)∥2
L2(R2×T1) +

t∫
T1

∥∇v(τ)∥2
L2(R2×T1)dτ ≤ C1(1 + t)C2∥b0∥4

Y 2 ∥v(T1)∥2
L2(R2×T1)

(5.40)
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for all T1 < t < T , where C > 0 is independent of t. Hereafter, we denote T1 as
1 for simplicity.

Let us assume that v0 ∈ L∞
v C∞

0
L2,∞

h (R2
h × T1

v) with divv0 = 0. Then for
small ϵ > 0 the initial perturbation v0 can be decomposed into

v0 = v0,ϵ + w0,ϵ, where ∥w0,ϵ∥Y 2(R2
h

×T1
v) < ϵ, v0,ϵ ∈ L∞

v C∞
0

L2

h (R2
h × T1

v).
(5.41)

Therefore, the initial data u0 to the Navier-Stokes equation in Theorem 2.7 can
be decomposed into

u0 = b0 + v0 = b0 + (w0,ϵ + v0,ϵ) (5.42)
= (b0 + w0,ϵ) + v0,ϵ (5.43)
=: b̃0 + ṽ0, (5.44)

Let ϵ sufficiently small, then there exits a unique mild solution b̃ with initial data
b̃0. Moreover, let T > 1, then using Proposition 5.1 and Proposition 5.3, we see
that there exists a weak solution to the perturbed Navier-Stokes equations with
initial data ṽ0. Now, we write b̃ and ṽ as b and v respectively for simplicity.

The following proposition is the logarithmic energy estimate for v.

Proposition 5.4. Fix sufficiently small ϵ > 0 and δ > 0. Let b0 ∈ Y (R2
h × T1

v)
satisfy ∥b0∥Y 2(R2

h
×T1

v) < δ + ϵ and b ∈ Y 2(R2
h × T1

v) be the mild solution with
initial data b0 such that

sup
t>0

∥b(t)∥Y 2(R2
h

×T1
v) + sup

t>0
t

1
4 ∥sup

t>0
∥X4(R2

h
×T1

v) ≤ C∥b0∥Y 2(R2
h

×T1
v)

for some constant C. Then a solution v to the perturbed Navier-Stokes with b

obtained by Proposition 5.1 and Proposition 5.3 with initial data v0 satisfies

∥v(t)∥2
L2(R2×T1) +

t∫
1

∥∇v(τ)∥2
L2(R2×T1)dτ ≤ Cϵ + Cδ2 log(1 + t) (5.45)

for t > 1 where Cϵ and C are independent of t.

Proof. First, from Proposition 4.2 there exist bT and bT such that b = bT + bT

satisfying (4.4), (4.5) and (4.6). Put vT := v − bT , then we find that vT satisfies

∂tv
T − ΔvT + div(vT ⊗ vT + vT ⊗ bT + bT ⊗ vT − bT ⊗ bT ) + ∇q = 0, (5.46)

div vT = 0. (5.47)
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It follows from integration by parts that

1
2∂t∥vT ∥2

L2(R2
h

×T1
v) + ∥∇vT ∥2

L2(R2
h

×T1
v) = ⟨vT ⊗ bT − bT ⊗ bT : ∇v⟩. (5.48)

Using the Hölder inequality and the Young inequality, we find

|⟨vT ⊗ bT : ∇vT ⟩| ≤ C∥vT ⊗ bT ∥L2(R2
h

×T1
v)∥∇vT ∥L2(R2

h
×T1

v)

≤ C∥bT ∥4
X4(R2

h
×T1

v)∥v
T ∥2

L2(R2
h

×T1
v) + 1

4∥∇vT ∥2
L2(R2

h
×T1

v) (5.49)

and

|⟨bT ⊗ bT : ∇v⟩| ≤ ∥bT ⊗ bT ∥L2(R2
h

×T1
v)∥vT ∥L2(R2

h
×T1

v)

≤ C∥bT ∥2
X4(R2

h
×T1

v)∥bT ∥2
X4(R2

h
×T1

v) + 1
4∥vT ∥2

L2(R2
h

×T1
v), (5.50)

Using the Gronwall inequality, we find for t ∈ (1, T ] that

∥vT (t)∥2
L2(R2

h
×T1

v) +
t∫

1

∥∇vT (τ)∥2
L2(R2

h
×T1

v)dτ

≤ C exp(
t∫

1

∥bT (τ)∥4
X4(R2

h
×T1

v)dτ)(∥vT (1)∥2
L2(R2

h
×T1

v)

+
t∫

1

∥bT (τ)∥2
X4∥bT (τ)∥2

X4dτ)

≤ C exp(C1

t∫
1

(T + τ)−1dτ)(∥vT (1)∥2
L2(R2

h
×T1

v)

+ ∥bT ∥4
Y 2(R2

h
×T1

v)

t∫
1

τ− 1
2 (T + τ)− 1

2 dτ)

≤ C(∥vT (1)∥2
L2(R2

h
×T1

v) + δ4) (5.51)

Since v = vT + bT , it follows from energy inequality (4.6) that

∥vT (1)∥2
L2 ≤ 2(∥v(1)∥2

L2(R2
h

×T1
v) + ∥bT (t)∥2

L2(R2
h

×T1
v))

≤ Cϵ + C∥b0∥4
X4(R2

h
×T1

v) log(1 + T ). (5.52)
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Then we obtain

∥v(t)∥2
L2(R2

h
×T1

v) +
t∫

1

∥∇v(τ)∥2
L2(R2

h
×T1

v)dτ

≤ C(∥vT (t)∥2
L2(R2

h
×T1

v) +
t∫

1

∥∇vT (τ)∥2
L2(R2

h
×T1

v)dτ

+ ∥bT (t)∥2
L2(R2

h
×T1

v) +
t∫

1

∥bT (τ)∥2
L2(R2

h
×T1

v)dτ)

≤ Cϵ + Cδ2 log(1 + T ). (5.53)

Teke t = T , then we have (5.45).

6 Estimates for vertically averaged part
In this section, we show some lemmas that enable us to get the L2-decay for

the weak solution to the perturbed Navier-Stokes equations. The decay estimate
of v in this section is possible for any v that is constructed as the limit function
of solutions vρ obtained by Proposition 5.2.

Applying the Fourier expansion to v with respect to xv, we can decompose
v into averaged part va and oscillating part vos;

v(xh, xv, t) =
∑
k∈Z

vk(xh, t)e2πixvk = v0(xh, t) +
∑
k ̸=0

vk(xh, t)e2πxvk

=: va(xh, t) + vos(xh, xv, t).

Because of orthogonality of the Fourier series, it follows from (5.45) that

∥va(t)∥2
L2(R2) +

t∫
1

∥∇hva∥2
L2(R2) ≤ Cϵ + Cδ2 log(1 + t) (6.1)

∥vos(t)∥2
L2(R2

h
×T1

v) +
t∫

1

∥∇vos∥2
L2(R2

h
×T1

v) ≤ Cϵ + Cδ2 log(1 + t). (6.2)

We first show the following proposition to prove the decay of averaged part.
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Proposition 6.1. Let T > 0. Put wa := (−Δh)− 1
4 va, where (−Δh)sf =

F−1(|ξh|sFf) for s ∈ R. Then there exist constants C > 0 and M > 0 such that

∥wa(t)∥2
L2(R2) +

t∫
1

∥∇hwa(t)∥2
L2(R2)dτ

≤ C(1 + t)Mδ2
(1 + log(1 + t) + sup

1≤τ≤t
∥vos(τ)∥L2(R2

h
×T1

v) log(1 + t)) (6.3)

for all 1 < t ≤ T .

Proof. Integrate (2.3) with respect to xv, then

∂tv
1
a − Δhv

1
a + div

∫
T1

(v1v + b1v + v1b)dxv + ∂1q = 0 (6.4)

∂tv
2
a − Δhv

2
a + div

∫
T1

(v2v + b2v + v2b)dxv + ∂2q = 0 (6.5)

∂tv
3
a − Δhv

3
a + div

∫
T1

(v3v + b3v + v3b)dxv = 0. (6.6)

(6.4) (6.5) are the two dimensional perturbed Navier-Stokes system and (6.6) is
two dimensional heat equation respectively. It follows from integration by parts
that

1
2∂t∥wa∥2

L2(R2) + ∥∇wa∥2
L2(R2)

≤ |
∫
R2

∫
T1

(v ⊗ v + b⊗ v + v ⊗ b)dxv : ∇h(−Δh)− 1
4wadxh|

= |
∫
R2

∫
T1

((va + vos) ⊗ (va + vos) + b⊗ (va + vos)

+ (va + vos) ⊗ b)dxv : ∇(−Δh)− 1
4wadxh|

= |
∫
R2

∫
T1

(va ⊗ va + vos ⊗ vos + b⊗ va + b⊗ vos + va ⊗ b

+ vos ⊗ b)dxv : ∇(−Δh)− 1
4wadxh|

=: I1 + I2 + I3 + I4 + I5 + I6. (6.7)

Estimate for I1 The Sobolev embedding

∥va∥L4(R2) ≤ C∥(−Δh)
1
4 va∥L2(R2) (6.8)
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and the interpolation inequality

∥(−Δh)
1
4 va∥L2(R2) ≤ C∥va∥

1
2
L2(R2)∥∇hva∥

1
2
L2(R2) (6.9)

yield

|I1| ≤ C∥va∥2
L4(R2)∥(−Δh)

1
4wa∥L2(R2)

≤ C∥(−Δh)
1
4 va∥2

L2(R2)∥(−Δh)
1
4wa∥L2(R2)

≤ C∥va∥L2(R2)∥(−Δh)
1
2 va∥L2(R2)∥(−Δh)

1
4wa∥L2(R2)

≤ C∥∇hva∥L2(R2)∥(−Δh)
1
4wa∥2

L2(R2)

≤ C∥∇hva∥L2(R2)∥wa∥L2(R2)∥∇hwa∥L2(R2).

Applying the Young inequality to the last inequality, we find

|I1| ≤ C∥∇hva∥2
L2(R2)∥wa∥2

L2(R2) + 1
8∥∇hwa∥2

L2(R2)

Estimate for I2 Using the Schwarz inequality, (6.8), (6.9) and the Young
inequality, we find

|I2| ≤ C∥
∫
T1

vos ⊗ vosdxv∥L2(R2
h

×T1
v)∥(−Δh)

1
4wa∥L2(R2)

≤ C

∫
T

∥vos∥L4
h

(R2)dxv∥wa∥
1
2
L2(R2)∥∇hwa∥

1
2
L2(R2),

≤ C

∫
T

∥(−Δh)
1
4 vos∥2

L2
h

(R2)dxv∥wa∥
1
2
L2(R2)∥∇hwa∥

1
2
L2(R2)

≤ C

∫
T

∥vos∥L2
h

(R2)dxv∥∇hvos∥L2
h

(R2)dxv∥wa∥
1
2
L2(R2)∥∇hwa∥

1
2
L2(R2)

≤ C∥vos∥L2(R2
h

×T1
v)∥∇vos∥L2(R2

h
×T1

v)∥wa∥
1
2
L2(R2)∥∇hwa∥

1
2
L2(R2)

≤ C1∥vos∥2
L2(R2

h
×T1

v)∥∇vos∥L2(R2
h

×T1
v)

+ C2∥∇vos∥2
L2(R2

h
×T1

v)∥wa∥2
L2(R2) + 1

8∥∇hwa∥2
L2(R2)

≤ C1∥vos∥L2(R2
h

×T1
v)∥∇v∥2

L2(R2
h

×T1
v)

+ C2∥∇v∥2
L2(R2

h
×T1

v)∥wa∥2
L2(R2) + 1

8∥∇hwa∥2
L2(R2).
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Estimate for I3 and I5. Using the Hölder inequality,(6.8), (6.9) and the
Young inequality, we find

|I3| + |I5| ≤ C

∫
T1

∥b∥L4
h

(R2)∥va∥L4
h

(R2)dxv∥(Δh)
1
4wa∥L2(R2)

≤ C∥b∥X4(R2
h

×T1
v)∥va∥L4(R2)∥wa∥

1
2
L2(R2)∥∇hwa∥

1
2
L2(R2),

≤ C∥b∥X4(R2
h

×T1
v)∥(−Δ)

1
4 va∥L2(R2)∥wa∥

1
2
L2(R2)∥∇hwa∥

1
2
L2(R2)

≤ C∥b∥X4(R2
h

×T1
v)∥wa∥

1
2
L2(R2)∥∇hwa∥

3
2
L2(R2)

≤ C∥b∥4
X4(R2

h
×T1

v)∥wa∥2
L2(R2) + 1

8∥∇hwa∥2
L2(R2).

Estimate for I4 and I6. Using the Hölder inequality, (6.8), (6.9) and the
Pincaré inequality, we find

|I4| + |I6| ≤ C

∫
T1

∥b∥L4
h

(R2)∥vos∥L4
h

(R2)dxv∥(−Δh)
1
4wa∥L2(R2)

≤ C

∫
T1

∥b∥L4
h

(R2)∥(−Δh)
1
4 vos∥L2

h
(R2)dxv∥(−Δh)

1
4wa∥L2(R2)

≤ C∥b∥X4(R2
h

×T1
v)

∫
T1

∥vos∥
1
2
L2

h
(R2)∥∇hvos∥

1
2
L2

h
(R2)dxv∥(−Δh)

1
4wa∥L2(R2)

≤ C∥b∥X4(R2
h

×T1
v)∥vos∥

1
2
L2(R2

h
×T1

v)∥∇vos∥
1
2
L2(R2

h
×T1

v)∥wa∥
1
2
L2(R2)∥∇hwa∥b

1
2
L2(R2)

≤ C1∥b∥2
X4(R2

h
×T1

v)∥vos∥L2(R2
h

×T1
v)

+ C2∥∇vos∥2
L2(R2

h
×T1

v)∥wa∥2
L2(R2) + 1

8∥∇hwa∥2
L2(R2)

≤ C1∥b∥2
X4(R2

h
×T1

v)∥∇vos∥L2(R2
h

×T1
v)

+ C2∥∇vos∥2
L2(R2

h
×T1

v)∥wa∥2
L2(R2) + 1

8∥∇hwa∥2
L2(R2).

Thus, from (6.7), above estimates and the Gronwall inequality, we get

∥wa(t)∥2
L2

h
+

t∫
1

∥∇wa(τ)∥2
L2

h
dτ ≤ exp(Φ(t))∥wa(1)∥2

L2
h

+
t∫

1

Ψ(τ)dτ (6.10)
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where

Φ(t) = C1

t∫
1

(∥∇v(τ)∥2
L2 + ∥b(τ)∥4

X4)dτ

Ψ(t) = C2 exp(
t∫

τ

Φ(s)ds)(∥vos(t)∥L2∥∇vos(t)∥2
L2 + ∥b(t)∥2

X4∥∇vos(t)∥L2).

Using (6.2) and (2.8), we find

Φ(t) ≤ C1(1 + δ2 log(1 + t)).

and
t∫

1

Ψ(t)dτ

≤ C2(1 + t)C1δ2
( sup
1≤τ≤t

∥vos(τ)∥L2

t∫
1

∥∇vos(τ)∥2dτ +
t∫

1

∥b(τ)∥2
X4∥∇vos(τ)∥L2dτ)

≤ C2(1 + t)C1δ2
( sup
1≤τ≤t

∥vos(τ)∥L2

t∫
1

∥∇vos(τ)∥2dτ

+ (
t∫

1

∥b(τ)∥4
X4dτ)

1
2 (

t∫
1

∥∇vos(τ)∥2
L2dτ)

1
2 )

≤ C2(1 + t)C1δ2
(1 + log(1 + t) + sup

1≤τ≤t
∥vos(τ)∥L2 log(1 + t)).

Thus, we obtain

∥wa(t)∥2
L2(R2) +

t∫
1

∥∇wa(t)∥2
L2(R2)dτ

≤ C(1 + t)Mδ2
(1 + log(1 + t) + sup

1≤τ≤t
∥vos(τ)∥L2(R2

h
×T1

v) log(1 + t)) (6.11)

7 Decay estimates for perturbation
In this section, we show the decay of ∥v(t)∥L2 → 0 as t → ∞. The Poincaré

inequality is useful to derive the decay to the oscillating part.
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Proposition 7.1. Let b0 ∈ Y 2(R2
h × T1

v), v0 ∈ L∞
v C∞

0,h(R2
h × T1

v) and δ > 0 be
sufficiently small. Let b be a mild with initial data b0 and v is a weak solution
to the perturbed Navier-Stokes equations obtained by Proposition 5.4 with initial
data v0. Then there exists a constant Cϵ and C which are independent of t such
that

∥v(t)∥L2(R2×T1) ≤ Ct−
1
2 {Cϵ + C1(1 + t)Mδ2

(1 + log(1 + t) + log
3
2 (1 + t)}.

for t ≥ 1.

Proof. Let t ≥ 1. From (6.2) and (6.11), there exists t0 ∈ [ t
2 , t] such that

∥wa(t0)∥2
L2

h
+ ∥vos(t0)∥2

L2 + t0(∥∇wa(t0)∥2
L2

h
+ ∥vos(t0)∥2

L2)

≤ Cϵ + C1(1 + t0)Mδ2
(1 + log(1 + 2t0) + log

3
2 (1 + 2t0)). (7.1)

Therefore using interpolation the inequality, (7.1) and the Poincaré inequality,
we have

∥v(t0)∥2
L2 ≤ 2(∥va(t0)∥2

L2
h

+ ∥vos(t0)∥2
L2)

≤ ∥wa(t0)∥L2
h
∥∇hwa(t0)∥L2

h
+ ∥vos∥L2∥∇vos∥L2

≤ t
− 1

2
0 {Cϵ + C1(1 + t0)Mδ2

(1 + log(1 + 2t0) + log
3
2 (1 + 2t0)}. (7.2)

Since v solves the perturbed Navier-Stokes equations

∂tv − Δv + div(v ⊗ v + v ⊗ b+ b⊗ v) + ∇q = 0, (7.3)
div v = 0, (7.4)

then it follows from integration by parts and the Gronwall inequality that

∥v(t)∥2
L2 +

t∫
t0

∥∇v(τ)∥2
L2dτ ≤ exp(

t∫
t0

C∥b(s)∥4
X4ds)∥v(t0)∥2

L2 . (7.5)

Since
t∫

t0

∥b(s)∥X4ds ≤ C log t

t0
≤ C log 2, t0 ∈ ( t2 , t),

we finally obtain from (7.2) and (7.5) that

∥v(t)∥2
L2 ≤ C∥v0(t0)∥2

L2

≤ Ct−
1
2 {Cϵ + C1(1 + t)Mδ2

(1 + log(1 + t) + log
3
2 (1 + t)}.
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Proof of theorem2.7. Fix arbitrarily small η > 0. Let u0 = v0 + b0 = ṽ0 + b̃0. By
definition v = ṽ + (b̃− b), where ṽ is a solution of the perturbed Navier-Stokes
equation with initial data ṽ0 and b̃ is the solution to (1.1) with initial data b̃0 as
in Theorem 2.4, then we find

∥v(t) − etΔv0∥L2(R2
h

×T1
v) ≤ ∥ṽ(t)∥L2(R2

h
×T1

v) + ∥b̃(t) − b(t) − etΔv0∥L2(R2
h

×T1
v)

Put w0,ϵ = v0 − (b̃0 − b0) and wϵ(t) = b̃(t) − b(t) − etΔv0. It follows that

∥wϵ(t)∥L2(R2
h

×T1
v)

≤ ∥etΔw0,ϵ∥L2(R2
h

×T1
v) + C

t∫
0

(t− τ)− 1
2 ∥b(τ) ⊗ (b̃(τ) − b(τ))

+ (b̃(τ) − b(τ)) ⊗ b(τ) + (b̃(τ) − b(τ)) ⊗ (b̃(τ) − b(τ))∥L2(R2
h

×T1
v)dτ

≤ ∥etΔw0,ϵ∥L2(R2
h

×T1
v) + C(sup

τ>0
τ

1
4 ∥b(τ)∥X4(R2

h
×T1

v) + sup
τ>0

τ
1
4 ∥b̃(τ)∥X4(R2

h
×T1

v))

× (sup
τ>0

τ
1
4 ∥b̃(τ) − b(τ)∥X4(R2

h
×T1

v) + (sup
τ>0

τ
1
4 ∥b̃(τ) − b(τ)∥X4(R2

h
×T1

v))2)

×
t∫

0

(t− τ)− 1
2 τ− 1

2 dτ

≤ ∥etΔw0,ϵ∥L2(R2
h

×T1
v) + C(δ + δ + ϵ)(ϵ+ ϵ2)

≤ ∥etΔw0,ϵ∥L2(R2
h

×T1
v) + C(δ + ϵ)(ϵ+ ϵ2)

Choose ϵ so small that C(δ + ϵ)(ϵ+ ϵ2) < η
3 and t > 0 so large that

Ct−
1
2 {Cϵ + C1(1 + t)Mδ2

(1 + log(1 + t) + log
3
2 (1 + t)} < η

3

and

∥etΔw0,ϵ∥L2(R2
h

×T1
v) <

η

3 ,

then we obtain

∥v(t) − etΔv0∥L2(R2
h

×T1
v) = ∥u(t) − b(t) − etΔv0∥L2(R2

h
×T1

v) < η.

This implies Theorem 2.7.
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