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1 Introduction

Let Wo = {w € C(]0,00); RY); w(0) = 0}, G be the Borel algebra over Wy and p be the
Wiener measure on (Wy,G). Let B' : [0,00) x Wy — R, i = 1,...,d, be given by B'(t,w) =
w'(t), (t,w) € [0,00) x Woy. Then {(B*(t),...,B%t)); t € [0,00)} is a d-dimensional Brownian
motion under p. Let BY(t) = ¢, t € [0,00). Let {F;};>0 be the Brownian filtration generated by
{(BY(t),...,Bt);t € [0,00)}.

Let Vo, V4,..., V4 € Cg’o(RN; RY). Here Cye (RY;R") denotes the space of R"-valued smooth
functions defined in RY whose devivatives of any order are bounded. We regard elements in
C°(RN; RYN) as vector fields on RY.

Now let X (¢,7), t € [0,00), z € RY, be the solution to the Stratonovich stochastic integral
equation

d ¢
X(t,x):w—l—Z/ Vi(X(s,z)) o dB'(s). (1)
i=0 /0

Then there is a unique solution to this equation. Moreover we may assume that X (¢, x) is
continuous in ¢ and smooth in x and X (t,-) : RN — RY, ¢ € [0,00), is a diffeomorphism with
probability one.

Let A = Ay = {vo,v1,...,v4}, be an alphabet, a set of letters, and A* be the set of words
consisting of A including the empty word which is denoted by 1. For v = u'---u* € A*, vJ € A,
j=1,...,k k =0, we denote by n;(u), i = 0,...,d, the cardinal of {j € {1,...,k};u/ = v;}.
Let |u] = no(u) +...+ng(u), alength of u, and || u || = |u| + no(u) for u € A*. Let R(A) be the
R-algebra of non-commutative polynomials on A, R({A)) be the R-algebra of non-commutative
formal power series on A.

Let r: A*\ {1} — L(A) denote the right normed bracketing operator inductively given by

r(v;) = v, 1=0,1,...,d,
and
r(viu) = [vi,r(w)] = vir(u) — r(u)v;, i=0,1,...,d, ue A"\ {1}.
Let A* = {u € A*; u # Liv}, Ayy = {u € A ||ul| = m}, and AZ = {uec A" ||u =
m}, m 2 1.
We can regard vector fields Vg, Vi, . .., V; as first differential operators over RY. Let D(’)(RN )

denotes the set of linear differential operators with smooth coefficients over RY. Then DO(RY)
is a non-commutative algebra over R. Let ® : R(A) — DO(RY) be a homomorphism given by

®(1) = Identity, S(vgy --vi) =V - Vi, n=>1,4,...,i,=0,1,...,d.
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Then we see that
O(r(viu)) = [Vi, @(r(w))], i=0,1,...,d, ue A"\ {1}.

Now we introduce a condition (UFG) for a system of vector field {Vb, Vi,...,Vy} as follows.
(UFG) There are an integer £y = 1 and ¢, € Cg’o(RN), ue A u € Aq , satisfying the
following.

Y euuw(r@)),  ue A™.

! * %k
u EAEZO

Let P, t € [0,00) be a diffusion semigroup given by

Pif(e) = BIf(X(t2), | eCF®RY),
Then P;’s are regarded as a linear operators in Cp° (RY). We also have the following.

Theorem 1 Assume that (UFG) condition is satisfied. For any n,m = 0, and ui,...,Uptm €
A** | there is a C € (0,00) such that

||(I)(T(u1)7 T T(un))Ptq)(r(un+1) tee T(Un+m))f||oo g Ct_(||u1H+mHun+m)/2||f”oo

for any t € (0,1), and f € C°(RN). Here

1 flloo = sup [ f(z)]

zeRN

This theorem was shown by [5] under a uniform Hérmander condition and was shown by [3]
in general case.

In the present paper, we assume (UFG) and the following assumptions (Al) and (A2)
throughout.

(A1) Vii(z) =1, Vi(x) =0,i=2,...,N, for any z € R".
(A2) Vi(z) =0,k =0,2,...,d, for any z € R".

Then X!(t,z) = x' + B(t), t = 0. Let h € C°(RY) be given by h(z) = 2!, z € R". Then
we see that ®(r(v1))h =1, and (r(u))h = 0, u € A*\{1,v1}. So we see that if (UFG) condition
is satisfied, we see that ¢y, =0, for u € A*\ {1,v1}.

Let by, € C;;O(RN), k=0,...,d, and let

P2 £( Elexp Z/ bi(X (r,2)) o dB*(r)) f(X(t,2)), min X'(r)) > 0].

re(0,t]

Then we see that

0
ot

as generalized functions, and

—PYf(z) = L°P.f(z), t>0, z € (0,00) x RN "1

P2 f(z) =0, t>0, z€ {0} x RN "L

Here

N | —

d N d
1
=5 D Ve Vot DbVt (bo+ 5 (0 + Vi)
= k=1

Our final purpose is to show the following.



Theorem 2 Assume that (UFG) condition is satisfied. Then for anyn,m,r = 0 anduy, ..., Uptm €
A**, there is a C € (0,00) such that

sup | @(r(ur) -7 (un))adj (Vo) (PY)(r (un41) -+ (tngm)) f ()]

z€(0,00) xRN -1
< ot~ Ulwall+lluntmll/2)—r sup 1F(2)]
N 2€(0,00) xRN 1
and
/ | (r(u1) - - 7(un))adj (Vo) (P @ (r(uns1) - 7 (tngm)) f (x)|d
(0,00) xRN -1

< -l smll/2)r / |f (@)]da
= (07oo)><RN71

for any t € (0,1] and f € C°(RY).
Here adj®(Vy)(PP) = P?, and
adi" (Vo) () = Vo adj(Vo)"(PY) — adj (Vo)" (P)Vo,  n=0,1,....
In the present paper, we prove the following theorem.

Theorem 3 Assume that (UFG) condition is satisfied. Let A** = A** \ {v1}. Then we have
the following.
(1) For any n,m,r 20 and uy, ..., Uptm € A, there is a C € (0,00) such that

sup [ @(r(u1) 1 (un))adj (Vo) PP®(r(unt1) -+ (tnm)) f(2)]

z€(0,00)xRN~1
< op-(lml+llunimll/2=r g f(2)|
= z€(0,00) xRN 1

for any t € (0,1] and f € C°(RY).
(2) For any n,m,r =20 and uq, ..., Uptm € A, there is a C' € (0,00) such that

/ B () - (1)) adi (Vo) (POYB(r (1t 1) - (im sm)) ()
(0,00)xRN-1

(0,00)xRN-1
for any t € (0,1] and f € Cg°(RY).

We will prove Theorem 2 in the forthcoming paper.

2 Normed spaces and Interpolation

From now on, we assume that (UFG) is satisfied. Let (Wy,G,u) be a Wiener space as in
Introduction. Let H denote the associated Cameron-Martin space, £ denote the associated
Ornstein-Uhlenbeck operator, and W™P(E), r € R, p € (1,00), be Watanabe-Sobolev spaces,
ie. WP = (I —L£)~"/?(LP(Wy; E, dp)) for any separable real Hilbert space E. Let D denote the
gradient operator. Then D is a bounded linear operator from W™P(E) to W™ 'P(H ® E). Let
D* denote the adjoint operator of D. ( See Shigekawa [6] for details. )

Let A = A%, \ {vi}. Let Vi € Cp°(RV;RY), u € 4, s € (0,1], be given by
Vu(s)(x) — SHUH/2¢,(T(U))($)’ r e RN

Note that (Vu(u)h)(x) =0,z RN, ue A, se(0,1], where h(z) = 2!, z = (2*,...,2) ¢ RV.



Proposition 4 There are Guy uyus € CP(RY), i, ug, us € A, such that

), V8] Z sOVUhall+luzll=llusl)/2 5 o, us Vi)

u1 » Vo uz U, Uz € A.

U3EA

Proof. Note that there are ¢y, uyus € R, u1,u2 € [l, uz € A* such that
[r(u1),7(u2)] = > Cuyu,usT(U3)-
uz €A™, [[ug||=|u||+]|uzl|

So if ||u1]| + |Juz|| < Lo, we have

[V, Vi () = sUlallua) 2 (r(uy), r(ua)]) (o)

ur ) T u2

- > Curam s ™20 (u5) ()

uz€A|Jus||=us||+||uz|
1 s
= Z Curjuz,uz Y0 (z )Vu(g) (z).
us €A |Jus|=|luz||+||uz||

Also, if [|u1]] + ||uz|| > €o, we have

V) V) () = > Cur g g 8 HI2ID2@ (1 (ug) ) ()
us €A, |Jug||=||u1||+||uz]]
= > Cusugyg SU 220 ()@ (7 (ua) ) ()
us€A,||lug||=|u| |+ |uz|
= Z Cuhu%ugS(Ilm\|+Hu2|\*|\U4II)/2Q0u37u4(x)vu(j) (2).

ua €A |Jus|=luz ||+ |uz||

These imply our assertion.

1
Now let B“(t),t € [0,00), u € A, be independent standard Brownian motions defined on a

certain probability space and let X (¢, z), t € [0,00), z € RN, s € (0,1], be a solution to the
following stochastic differential equation.

=Y VE(XO(t,2)) 0 dBU(t),

ucA

X®(0,2) =
Note that h(X®)(t,2)) = h(z), t 2 0, z € RN. Now let Ql(fs), t € [0,00), s € (0,1], be linear
operators on Cgo(RN ) given by

@ N@) = BV, feCF®Y).
Let 1
L) = =3 " sl (r(w)).

2~
ucA

Then we see that .
QP =f+ / LOQW dr,  fe RN,
0

By Theorem 1 in [4] we have the following.



Proposition 5 For any n,m =0, and w1, ... unym € A, there eists a C € (0,00) such that
8(||u1||+|‘un+mH)/2 @ r(u . @ r(u (S)Q) r(u . @ riu
1 n Qt n+1 n+m f e
< ot~ UlllllunemlD/2)| 7|
for any f € C°(RYN) and s,t € (0,1].

Let C be the set of bounded measurable functions f defined in RY such that f(z!,z2,..., 2")
is smooth in (22,...,2"), and that

aﬂé2+-~-+OéNf

sup | (z)| < o0

2€RN (a$2)0‘2 R (amN)aN

for any ao,...,ay = 0.
Note that Q) f € C for any f € C. Then the following is an easy consequence of Proposition 5.

Corollary 6 For any n,m =0, and uy, ... Uptm € A, there eists a C € (0,00) such that

sl D21 1)) - B (1)) Q4 (r(tn41)) -~ @ (tngm)) e
< ot~ UlallHllunemlD/2)| 7] o
for any f € C and s,t € (0,1].
Let us define normed spaces D(ls), s € (0,1], and H(_S‘)x, s €0,1], « € [0,1), by the following.

D(ls) = "H(S = C as sets, and their norms are given by
11Dz, = [1fllec + > V2@ () £l
ucA
and

1 llpo = sup £272[1Q8 flloa
) te(0,1]

for f € C. Note that
11l = llflles  fEC.

We have the following as an easy consequence of Corollary 6,

Proposition 7 There is a Cy € (0,00) such that

1LDQ Lo = Cot™ 11100
and
187 Fllpe = Cot ™21 lloc
for any f € C and s,t € (0,1].
Then we have the following.

Proposition 8 Let a € (0,1) and § € (0,1). If B = (1 —0)a— 60 = 0, then there is a C € (0, 00)
such that
—0 —a pl
sup t K(t7f7H57Ds)§C||fH ~B
te(0,00) ()7 () HS

for f €C and s € (0,1]. Here

K (t f. 15, Dly) = int{llglly e 1 = glloy s 9 €Ch tE (0,00)



Remark 9 K(t; f,H(_S?,D(lS)) is a real interpolation (c.f. Berph-Lofstrom [1]).

Proof. Let f € C. Note that

1@ = Pl = [ IEDQAQE) 0 o

< Colt/2)™ [ 1QE) a0 ol < Calt/2™ =201y o

Here Cj is as in Corollary 6 .
On the other hand,

1@ F = Flloo < 201QF Flloo < 26711l
Therefore
Q8 Q) f = flloo < (2 +4Co)t™7/2(1 A (rt—l))|\f||,ﬂ(,£
< (2 4+ 4Co)t PR (rt1)/2)| Pl
Here y =0(1 + a) = a — 8 € (0,1). Therefore we see that
Q) F = Fllyyzg < 2+ 4C0) (1 fll--
Also we have

1QF Iy, = Colr/D ™ 211Q3 fllow = 4Cor ™I £l .

Since we have
F=QWf+f-Q¥f  fec,
we see that for t € (0, 1]

UK (6 £ Dly) SR fllpy + 7R = Sl
< (2+4C0) (1= (A2 4700 12) | £ .
(s)
Let r = t%0/7. Since (1 — 0)(1 4 o) = 1+ 3, we see that

sup ¢ OK (8 £, H S Diyy) S 4(1+2C0)||f]5,-5-
t€(0,1] (s)

It is obvious that

-0 —a 1
sup ¢t 'K (t; £, H S D) S fllay=a S f1],-0
te[1,00) ( (s) ) =l HH@ | HH(S)

Therefore we have our assertion. 1
The following has been proved by Watanabe [7], but we give a proof.

Proposition 10 Let § € (0,1), p € (1,00) and ro,m1 € [—1,0]. If ro < (1 — )¢ + Or1, then
there is a C € (0,00) such that

||F||Wr27p § C SU.p t_eK(t, F, WT’(),p’ W'rl,p)
te(0,00)

for any F € W™ = ﬂrGR,pE(l,oo) W™P. Here
K(t; F, WP WP) = inf{||G||wror + t|F — G|lwr»; G € WE_}.



Proof. Let us take an F' € W~ and fix it. Let T} be the Ornstein-Uhlenbeck semi-group on
Wy, and let

a= sup tOK(t; F, WP Wrp)
te(0,00)

Then we see that
HFHW'roArl,p é a.

So we have our assertion if 79 < rq A r9. Theerefore we may assume that ro > r; Arg 2 —1.
Note that for any r» = 0, there is a C,. > 0 such that
(I = £)"Trgllwor = Crt™"[|g]lwor

for any t € (0,1] and g € W,
For any ¢ € (0,1] and € > 0, there isan Gy € W

o0—

such that
(t(rl_m)/Q)_eHGt‘|WT0»P 4 (t(m—ro)/?)l—eHF o GtHW’“lvP é a+e.

Let v = ((1 — 0)rg + 0r1 — r2)/2 > 0. Then we have ro — 1y = —(1 — 0)(r1 — 19) — 27, and
ro — 19 = 6(r1 — r9) — 277. So we see that

t—(’7+(T2—T0)/2||Gt||WTO7p + t—(’7+(T2—T0)/2)||F — Gyllwrr La+e.

Then we have
11 = L)L Fllwraw = ||(T = £) 2D TF|fyyos

S (1 = £)FATG lwow + |11 = £)FCATE = G)llwos
S ||(1 = L)AL — L) G [wos + [|(1 = £)HCmIDTUL = £)2(F — Gy)llwos
< (DG lyrow + 7T F — Gyl lwrie) <O (a+e)
for any ¢ € (0, 1]. Note that

F= /01 e ' (I — L)T,Fdt + e 'Th F.
Then we see that
|| E||wrar < Cla+€) /01 t 1At + ae | T [wronr o yyrasm-
So we have the assertion. 1

Proposition 11 Let p € (1,00) and € € (0,1]. If p(1 —¢) < 1, then

b [[Lomey (i (& + V2B (0)) a2 < o0
s€(0,1],21>0 t€[0,1]

Proof. Let Y = minye[o 1) B*(r). Then

Y (w+h) =Y (w)] = max |h(t |</| r)ldr < [|hl|a
te(0,1]

for any w € Wy and h € H. Therefore || DY ||g £ 1 p— a.s.



Let ¢ € C§°(R) such that ¢ 20, ¢(z) =0, |z| > 1, and [{ ¢(2)dz = 1. Also, let

Ur(2) = 1/z gp(r_ly)dy, re (0,1],z € R,

—00

and
Gr(s, ') = (s V22! + V), rs € (0,1], 2 > 0.

Then we see that 0 < ¢, < 1, 1,(2) =0, z € (—o0, —7], and ¥,.(2) =1, z € [r,00). Also, we see
that 1
DG,(s,z') = =p(r Y (s /22! +Y))DY,
r

and so
E*[|| DG, (s, a)|[5] £ v P EF[p(r (sT 2t + V)]
< Pl [B (s 2 + Y| S ).
Note that
(s a + Y| S0y = u(Y € [-s V20 — 7, —s 221 4 1))
<42m) V2 < o
So we have

EM|| DG (s,a) )P < 27~ 0712 g o,
Also, note that
oo (i (@ + 5251 (1))) = Gy (s.")
= 1000y (s 22t +Y) =0y (s + V) S 1Ly (57 /22" +Y)

and so
11(0.00) (& + 8'2Y) = Gr(s, 2[4y S 2

So we see that

sup (1~ /P|[1(g,00) ( min (2! + s/2BY(1))) = Gr(s,2")[lwow + 117 VPGo(s, 21 lwr)
re(0,1] t€[0,1]

S 24 (24 2[[¢lloo)-

Also, it is obvious that

sup 1 P||1(0 ey (mie (! + BY(3))] o < 1.
re[1,00) s€[0,t]

Since 1 — € < 1/p, we have our assertiin by Proposition 10.



3 Basic Results

Let Vio(z) = sVo(x), Vii(x) = sV/2Vi(z), i = 1,...,d, s € (0,1]. Let us think of the following
SDE with a parameter s € (0, 1].

d
dX,(t,x) =Y Vii(Xs(t, ) o dB'(t),
=0

X,(0,z) =z € RV,
) =

Let us define a homomorphism @, : R(A) — DO(RY), s € (0,1], by

O (1) = Identity, Dy (viy -+ vip) = Vsiiy - Vs, n=1, 4,...,i,=0,1,...,d.

Then we see the following.

Oy(r(w) (@)= Y sUIEDPe, (@)@ (r(w))(x),  s€(0,1], xRV

/ * %
u EAézo

for any u € A™\ AZ, . Here py0’s are as in the assumption (UFG).
From now on, we follow results in [4] basically . For any C{° vector field W on RY, we define

(Xs(0) W) (X (t,x)) = Zf\; 1 8% Xi(t, 2)WI(z) ii. Then X(t)« is a push-forward operator with

respect to the diffeomorphism X,(t,-) : RN — RN for any s € (0,1]. Also we see that

d(Xs(1)7 @s(r(u)))(2)

d
= 3 (X0 B (r(viu))) () 0 dB(1)

=0
for any u € A*\ {1}.
Let ¢ (-, u,v/) € C°(RN,R), k = 0,1,....d, u,u’ € AZ} | be given by

1, if [lvgul| £ £y and v’ = vyu,
D (@yu ) = sUlowll=IID/2p (@), [jogul] > Lo and ||| < 4o,
0, otherwise.

Then we have

d(X ()7 s(r(u)))(2)

c,(cs) (X (t,z); u,u’)(Xs(t)gli)s(r(u’)))(:c) o dBk(t), u € A<£O

)

d
k=0

There exists a unique solution as(t, z;u,u’), u,u’ € A*S*zo’ s € (0,1], to the following SDE

u'€A

das(t, z;u,u') Z Z cx);u,u)ag(t, zyu” u)) o dBR(t) (2)

k=0u" €AY,
: 0
e o) —
as(0, 25U, u") = 6y -

Then the uniqueness of SDE implies

(X0 @s(r(@))(@) = D aslt,myu, ) @(r(u))(2), u € ALy, s € (0,1]. (3)

/ 0k
u €A§zo



Similarly we see that there exists a unique solution by (t, x;u,u’), u,u’ € Ag*eo, to the SDE

bs(t, z3u,u') = 8y Z Z / (r, 5 u,u” )(Xs(r,a:);u”,u')

k= Ou”eA

Then we see that

S altm ol ) = b, il € AZ,,

wEeAL,
and that

D, ( Z by (t, 5 u, ') (Xs(8) 71 0o (r(u)))) (2),

u' €A,
Furthermore we see by Proposition 4 (1) that

as(t,z,u,v1) = bs(t,z,u,v1) =0, a.s. u € A.

Also, we see that

ueA*g*g

)odB*(r).

0"

(Xs(t); @5 (v0)) ()
d ¢
= @)+ Y [ 0 0w0)) 0 4B
k=10
So we have
(Xs(1): @3 (v0)) (@) = Dy (v0) (@) + D s (b, 25 0) B (r(w)) (),
ueA
and
O (v0) () = (Xs(£)5 s (v0)) () + D bs(t w5u) (X (1)1 @ (r(w)) (2),
ueA
where .
as(t,z;u) = as(r, ; vpvo, u) o dB¥ (r
(i) ,;/o (1,3 05w, u) 0 B (r)
and
s(t, x5 u) Z bs(t, z;u, u')a(t, x;u').
weA
Note that
D, (r(uw))(f(Xs(t,2)) = (Xs(8)"df, Ps(r(w)))a-
So we have
(ﬁs(r(u))(f(XS(t?x))) = Z bs(tvx;u’ u’)(@s(r(u’))f)(Xs(t,x)),

and

u € A’g‘zo,

u € AT,

(4)

(8)

(9)



= > bultmu)(@s(r(W) )X, (). (10)

/ * %
u GAgzo

Let us define k; : [0, 00) x RV x AZ, x Wy — H by

A
ks(t, z;u) = (/ as(r, x5 v, w)dr)g=1,.. 4.
0

Let M(t,x) = {Ms(t, z;u, “')}u’u’eA?}O be a matrix-valued random variable given by

M(t, z;u,u') = t_(H“HJrH“,”)/Q(kS(t,:E;u), ks(t,z;u))m.
Then we have

sup sup sup EM[|det My(t,x)|"?] < oo for any p € (1,00) and T > 0.
s€(0,1] te(0,T] zeRN

Let M7 Y(t,x) = {M;71(t,z;u, U/)}u,u'eA*gz be the inverse matrix of M,(t, z).
=t0
For any separable real Hilbert space E, let Ko(E) be the set of {Fi}e(o,1) such that

)

) Fy(t,-,w) : RN — E is smooth for any s € (0,1], t € (0,00) and w € W,

(3) (0%F5/0x*)(-, %, w) : (0,00) x RN — E is continuous for any s € (0,1], w € Wy and o € ZY,
)

and
5) for any r,p € (1,00), « € ZY,, and T > 0

sup sup Ha—an(t,x)HWnp < 0.
s€(0,1],t€(0,T] zeRN 0T
Then we have the following.
Proposition 12 (1) {t_(”“"'_H“H)/QaS(t,a:;u, u') }oe0,1) and {t_(Hu/H_H"H)/Qbs(t,x;u,u’)}se(o,l]
belong to Ko(R) for any u,u’ € AZ, -
(2) {t el 2g (¢, ; u)}se(0,1) belongs to Ko(H) for any u € AL, -
(3) {Ms(t, z;u, ul)}s€(0,1]7 and {M;l(t,x;u,u’)}se(m] belong to ICO(R) for any u,u’ € Ag}o.
(4) {as(t, z3u) fse0,1) and {bs(t, z3u) }sc(0,1) belong to Ko(R) for any u € A.

Finally we have the following basic equation.
tI72 (@ (u) £)(Xs (8, 7))
= Z as(t7$;u7 ul)Mgl(tvx;ulaUQ)(D(f(XS(tv‘T))7t7||u2”/2k8(t7x;u2))H (11)

Ul ,u GA;*ZO

for any f € C and u € A.

By Proposition 12 and Equation (11), we easily see the following.

Proposition 13 For any p € (1,00), there is a constant C' € (0,00) such that
[1(@s(u) £)(Xs (8 2))llwor = Cllfllp2 s

and
[[1V2 (@ () 1) (X (8 2) w10 Z Cl floos
for anyu e A, f € C and s,t € (0,1].
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Proposition 14 For any a € [0,1) and p € (1,00), there is a constant C € (0,00) such that
[Lf (X () lw—10 = Ct_EO/QHfHH@?

for any f € C, s,t € (0,1] and x € RV.

Proof. Note that

1
F=Q = [ 196 i = Q' - 5 X @),

ueA
where

1
fu= /0 D, (r(u)) Q' fdt.

By definition, we have

195 Flloe < l1f1l5s-

and .
il < [ 104D QAQEA ot
Lt 12 A0 Lt 2
<o [ () 2IQU Nt = Cal [ (5) 20
0o 2 0 2 )
Since )
PO () = (@) ) (X(t ) = 5 30(@s(r() ) (Xo(1,2)).
u€A
we have our assertion from Proposition 13. 1

4 Main Lemma

For any K = {Ks}sc(0,] € Ko(R), let P(st)K t > 0, be linear operators defined in C given by

(B (@) = BIKL(t.2)f(X,(t,2), min XA(t,2) >0l fecC,

rel0,t]
Since min,.¢|y 4 (X1t z)) = minre[ovt](sl/zBl(t) + ') and it does not depend on 22, ..., 2V, we
see that P(st’)Kf eCforany feCandt =0.
In this section, we prove the following.

Lemma 15 For any K1, Ko € Ko(R), there is a C € (0,00) such that

[P35 PG ®s(r (u)) flloe < O £l

for any s,t € (0,1], f € C and u € A.
We need some preparations to prove this lemma.

Proposition 16 For any K € ICO(R), e € (0,1) and p € (1/e,00), there is a C € (0,00) such
that
1P flloe  CIF Xt )l r0ess s,t€(0,1], FEC.

12



Proof. There is a ¢ € (1,(1 —¢)~!) and r € (1,00) such that ¢!+ 7=t +p~1 = 1. Then there is
a Cy € (0,00) such that
K
‘P(st) f()]

< 1[N0 min (5772 + B0l -call Kot ) e L (X)) -5

for any s,t € (0,1], z € RY and f € C. So we have our assertion from Proposition 11.
Yy

Proposition 17 Let K € Ko(R). Then for any a € (0,1) there is a C € (0,00) such that

125" Flloe < CE]| |3y

for any s,t € (0,1] and f € C.

Proof. Let a € (0,1). Then if we take a sufficiently small § € (0,1), there is a 5 € (0,1) such
that « = (1 — 0)8 — 6. Take an € € (0,0). Then —1 4+ ¢ < —(1 — 0). Let us take a p € (1/g,00).
First note that
1 (X5t 2))llwow < I £llec = [1fllp2, -

for any s € (0,1], p € (1,00) and f € C.
Also, by Proposition 14 there is a constant C; € (0, 00) such that

£ (Xt 2Nl = Crt 2| £,

for any f € C, s,t € (0,1] and = € R™. Then by Propositions 7, 10, 12, and 13, we see that
there are constants Co, C3 € (0, 00) such that

1f(Xs(t, 2)llw-14e0 < Co sup 7 K (r; f(Xo(t,2)); W 1P, W0P)
re(0,00)

S Ot sup UK (s [ M DY) < Cst ™ Flly o
r€(0,00) 8

for any f € C, s,t € (0,1] and € R". Then by Proposition 16 we have our assetion.

Now by Equations (8),(9) we have I
(@3 (r(u) P (@) = (P () + > (B e (r (u)) £) () (12)
weA
and »
(P @u(r() () = (P (@) + 3 (@u(r(w) B (), (13)
weA

for any u € A, f €C, s,t € (0,1] and = € RN. Here
Koo(u)s(t, ) = (Ps(r(u) Ks(t,-))].=,
Ko(u;u)s(t, ) = bs(t, m;u, ') Ky(t, ), o € A
Kio(u)s(t,2) = = Y (@(r(w)(as(t, 5 u, o) K ()| =,

weA
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and

Ki(u;u)s(t, 2) = as(t, z;u, v’ ) K (¢, x), u' € A
Also, note that by Equation (10)

(adj(®@4(v0)) (P ) f) () = (q)s(vo)P(i’)Kf)( z) = (P @ (v0) ) ()
= (PR ) @) + 3 (B M (r(w) ) (@) (14)

ueA
for any f € C, s,t € (0,1] and x € RN. Here

ROS(tﬂ x) = (CI)S(UU)KS(tv '))":17
K(u)s(t, ) = bs(t, 25 u)Ky(t, ), u' € A

By Proposition 12, we see that Koo(u), Ko(u;u'), Kio(u), Ki(u;u'), Ko, K(u) € Ko(R) for
any u,u’ € A.

Now let us prove Lemma 15.
Let K1,Ks € Ko(R). By Propositions 13, 17, and Equation (13) we see that for any p €
(1,00) and « € [0, 1), there is a constant Cy € (0, 00) such that

| @) Xt )y £ Oy v

foranyu e A, f € Cand s € (0,1]. Tt is obvious that for any p € (1,00), there is a constant
C > 0 such that

(PG @a(r(u) )Xt )l lwow < I Iy,

for any u € A, f € C, and s € (0,1].
Takeane € (0,1/3). Then —1+¢ < —(1—1/3). Let us take a p € (1/¢, 00). By Propositions 8
and 10, we see that there are constants Cs, C3 € (0,00) such that

(P32 s (r () ) (X, 2)) 1020

< Cot™ % sup VK (r (B () ) (X, 2)); WHP, W0P)
re(0,00)

< Cot™™ sup r 1/3K(’r f; H 1/2 D(s)) < O3t f|]so
r€(0,00)

for any f € C, s,t € (0,1] and € R™. Then by Proposition 16 we have Lemma 15.
This completes the proof of Lemma 15.

5 Proof of Theorem 3(1)

The following is an easy consequence of Lemma 15, Equations (12) and (13).

Corollary 18 Let K1, K5 € ICO(R). Then for any n = 0 there is a C' > 0 such that

n+1

Yoo () Bu(r(un) Py P f Lo

k=0 ul,...,ukEA

<N S [ u(r(w) - By (r(w) )|

k=0 ul,...,ukEA
for any s,t € (0,1] and f € C.
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For linear operators A and B in C we define adj(A)"(B), n = 0,1,..., inductively by
adj(A)°(B) = B, and

adj(A)"(B) = A(adj(A)"H(B)) — (adj(A)""(B))A.

Then we see that for linear operators A, B,C in C

n

i (50) = Y- (7 )adita) (Bladi(4)~+(C)

k=0
So by using Equations (12), (13) and (14) we have the following.

Lemma 19 Letn =20 and Kq,...,Kg, € ICO(R). Then there is a C € (0,00) such that

. j s, K $,Ken
>y S0 N1®slr(un) v (un))adi (@4(v0)) (P - P o) @(r(uh) () flloo
k,jl=0q,,... upeA u’l,...,uzefi
< C| flloo
for any s,t € (0,1] and f € C.
Now we introduce the following notion.

Definition 20 We say that {Ks}eec0,] € Ko(R) is multiplicative, if for any m > 1 there are
n=1and {KJ} € ICO(R), i1=1,...,n,j=1,...,m, such that

KS(tm7 x? w)

n
= Z K;"l(tl? Z, w)K;2(t2 - tla Xs(tla l‘), 9t1w) o K;’m(tm - tm—la Xs(tm—lv JZ‘), etm_lw)
i=1

forany s € (0,1] 0<t; < ... <ty and x € RN,
Here 0, : Wy — Wo, 7 € [0,00), is given by (,w)(t) = w(t + 1) —w(r), w € Wy, t € [0, 0).

Proposition 21 Let {Ks}sc(0,1),{Ls}se(,1] € Ko(R) be multiplicative. Then {K, + Ls}se(0,1]
and {KsLs}e(0,1] are multiplicative.

Proof. Let m 2 2. Since K, and L, are multiplicative, there are ni,ny 2 1, {K;J} IS ICO(R),
i=1,...n1,j5=1,....m,and {LJ} € Ko(R),i=1,...n9, j=1,...,m, such that

KS(tTl7 x? w)

w),

m—1

ni
= Kt 2, w) K2 (ty — tr, Xo(ty, @), 00w) - KE™ (b — tin—1, Xo(tm—1,3), 64
=1

and
LS (trm x? w)

no
- Z L?l(tlv Z, w)K;Q(tQ - tlv Xs(tlv 33), Ht1w> e L?m(tm - tm—l: Xs(tm—h .fl]'), Htm711U),
i=1

for any s € (0,1] 0 <t; < ... <ty and z € R".
Then we have
K(tn, z,w) + Lg(tn, x,w)
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ni
= Z K;’I(tl’x’ w)K;Z(tQ - tleS(tlvx)v Htlw) e K;’m(tm - tmfleS(tm*17x)v‘9tm—1w)v
i=1

n2
+ Z L?l(tl? z, w)K;Q(tQ - t17 Xs(tb x)7 etlw) to L?m(tm - tm—h Xs(tm—la $>, Htm,lw),
i=1
and
Ks(tnv f]f, w)LS(tn7 1.7 'LU)
o N2 . .
=3 (KD (2, w) L (@, w)) (KPP (t — t1, Xo(ty, @), 00, w) L2 (b2 — 1, Xo(t1, @), 61, w)))
i=1 j=1

T (K;’m(tm —tm—1, Xs(tm—la :L')a th_lw)Lg’m(tm —tm—1, Xs(tm—la x)u etm_1w)))~

So we have our assertion.

Proposition 22 Let M > 1 and d?* € CP(RN), 4,5 = 1,...,M, k = 0,1,....d, s € (0,1].
and assume that
12 a4

sup sup |=—— x)| < oo

s€(01] zerN Oz °
for any o € Zg()'

Let y' € R, and Yi(t,x), i =1,...,M, s € (0,1], t 2 0, x € R, be the solution to the
following SDE.
' ) d M t
Vi) =y + 23 [ ) 0B, =1
k=0 ¢=1"0

Then we see that {YZ}SE(OJ] belongs to l@o, and is multiplicative fori,j =1,..., M.
Also, {f(f Yi(r,z)dr} belongs to Ko, and is multiplicative.

Proof. Let Eﬁ’j(t,x), i,j=1,...,M,s € (0,1, ¢t >0, z € R, be the solution to the following
SDE.

d M t
B (ta) =05+ 303 [ dM X (ra) B (ra) 0dBH ) ij =1, M.
k=0 ¢=1"0

Then it is easy to see that {Eﬁ’j}se(o’ﬂ € Ko, and

M
Yi(t,x) =Y EX(t,x)y;.
j=1

Note that for t5 > t1 = 0,

M
Ei(ty,x,w) = > Bif(ty — t1, X (t1, 2, w), 0, w)EY (tr, z,w), i,5=1,..., M.
/=1

So we see that {Eﬁj}se(071}, i,j =1,..., M, are multiplicative.
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Also, we see that
/ EY(r,x,w)dr
0

ta—t1

:/ E;J(r,x,w)dr+2(/ E(r, X (tg — t1, z, w), 0, w)dr)EY (t1, z,w), i,j =1,..., M.
0 —1 Y0

So we see that {fg Eéj(r, x)dr}seoa)s 4 = 1,..., M, are multiplicative. These imply our asser-

tion.
1

Proposition 23 Let {Ks}sc0,1] € Ko(R). be multiplicative. Then {%KS}SE(O,” is multiplica-
tive for anyt=1,2,..., N.

Proof. Let m 2 1, and 0 <1 < ... <ty and z € RY. Then from the assumption there are
n=1and {KJ} € Ko(R),i=1,...m, j=1,...,n, such that

KS(t’ITLJ x) w)

Z Lty 2, 0) K2 (ty — t1, Xs(t1, @), 0,0) - Ko™ (ty — ty—1, Xs(tm—1,2), 0, w).
=1
Note that

X(tk+1,x) = X(thrl - tk,X(tk,{L'),@tkw), k= 0, 1, e, — 1.

Here ty = 0. Then we have 5
@X (tkt1,2)

i BXZ
7 (k1 — %X(tkaﬂ«"%thw)@(tml,x)-

This implies that

9 i
@X (tht1, )
N k—1 .
oxh oXtr X!
= > W(tlaff)(n Hptrm (et = tr X(tr, @), 0, w)) o7 (tern =ty X (t, 2), O )
L li_1,...01=1 r=1
Also, we see that
0
@Ks(tnawi)
n N mi ) ) )
= Z K;J(tlvl'?w)Kf(tQ _tles(t17$)79t1w) "'ng_l(tn _tnflaXs(tnfla$)79tn_1w)
k=1 (=1 i=1
KL ax?
X Ol (ty — th—1, Xs(tp—1,7), 9t1w)ﬁ(tk —tp—1,)

XK2(ty —t1, Xs(t1,2),05,w0) - - K"ty — tn 1, Xs(tn_1,2), 0, ,w).

These observation imply our assertion .
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We see that if {K}se,1) € Ko(R) is multiplicative, then

s, K s, K51 sK s, Kb
Pl = ZP PRt PR

where {K;J} € Ko(R),i=1,...m, j=1,...,n, are as in Definition 20.
So by Lemma 19 we have the following.

Theorem 24 Suppose that {Ks}ec0,1] € ICO(R) is multiplicative. Then for any n,m,r = 0,
and uy,. .., Unsm € A, there is a C € (0,00) such that

||@s(ur) ... (I)S(un)(adj((I)S(UO))T(P&)K)(I)S(UH+1) o @s(tngm) oo = Ct_(“m”)gollf\loo
for any s,t € (0,1] and f € C.
Now let us prove Theorem 3(1). Let ps(¢,x) be the solution to the following SDE.

ps(t, )

0

d t t
—exp(sl/QZ/ bk(XS(r,m))dBk(r))—i—s/ bo(Xs(r,2))dB%(r)), x=e€RN, t>0.
k=1"0

Then we see that

d t
ps(t,x) =1+ s1/2 Z/ b (Xs(r,2))ps(r,x) o dBk(T))
k=1"0

/0 (bo(X Zbk )0, (r,)dBO(1)).

So we see that {ps}sc,1] € Ko and is multiplicative. Moreover, by using scale invariance of
Wiener process, we can easily see that

P f(2) = Elpa(1,2) f(X.(1,2)), min X1(r,x)) > 0] = (P )(x)

rel0,1]

for any s € (0,1], and f € C°(RY). .
This observation and Theorem 24 imply that for any n,m,r = 0, u, ..., Uptm € A there is
a C € (0,00) such that

sl llenem D B (r(ur)) - - @(r(un)) adj (Vo) (PR (r(unt1)) -+~ (r(unsm)) flo

< Ol fllo

for any s € (0,1] and f € C}°.
This proves Theorem 3 (1).
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6 Dual Operators
Let T € (0,1], and B*(w)(t) = B*(T —t), t € [0,T], k = 0,1,...,d. Also, let X : [0,T] x RN x
W< — RM be the solution of the following SDE.

tx—:v—Z/ Vi (X (t,x)) 0 dB*(t), te[0,T], € RV,

We may assume that X (-, %, w) : [0,7] x RN — R" is continuous for yz — a.s. Then we see that
with probability one

X(t,z)=X(T —t,X(T,z)), tel0,T], z€RY

(c.f. Kunita [2]). So we see that for any f,g € C°(RY)

/ 9(2)(PLf) () da
(0,00) x RN -1

d T
= X T )ex r,xr)) o k T
S e p(kZO/O (X (r,2)) 0 dBH(7))

A

<X (T, 2)) 1) min, (' + BO)))

d T .
Sl T LTS > | & o aBh o)

A

X' o
x det({ 5,7 (T ) big=1,..8 L 0.00) ( i (17 + B(r)))]:

Let X : [0,00) x RY x W? — RY be the solution of the following SDE.
X(t,x)=2— /Vk z)) o dBX(t), tel0,00), z € RV,

Then we have

/ o) (PR (@)
(0,00) xRN -1
_ o dB* (T a _—
_/(OOO)XRN ) x) E*[exp(— Z/ bk dB*(r)) det(J(T,z))g(X (T, z)),
rg[lti)%}(wl +s1/2B1(r)) > 0]
Here

T(t.2) = LT oot ) = {2}y,

Since we have

7J . vy 17 k
dJi(tx) ==Y > —E(X(t,2)) (¢, x) o dB*(2),

19



we see that

d
ddet J(t,z) = =Y (div Vi)(X (¢, x)) det J(t, ) o dB*(¢),
k=0

where

div Vi(x) = axl

(), ze RN,

So we have
det J(t,7) = exp(— Z/ (div Vi)(X (r, X (t,2)) o dB*(r)).
Let by, € C°(RN), k=0,1,...,d, be given by
bi(z) = —bi(v) — div Vi(z),

and let P?, t € [0,00) be a linear operator given by

(P2 f)(x)
expz / (X, 2) 0 dBH (1) (X(t,2)). min (o = B'(1)) >0}, ] € CF(RY)
Then we have
/ 9(2) (P2 ) (x)dz = / f@)(BPg)(@)de, >0, f.g € CFRY).
(0,00)xRN-1 (0,00) xRN -1

Now let X : [0,00) x RN x W® — RN be the solution of the following SDE.
t
X(t,z) = x—i—Z/ Vi(X (t,2)) o dB*(t) — / Vo(X(t,z))odB°(t)  te[0,T], z € RV,
0

Also, let by € C°(RN), k= 0,1,...,d, be given by by = by, and by = —bg, k = 1,...,d. Then
we see that

(PP f) ()
fexp( Z / (X () 0 B4 () (X (6,2), i (a1 + B1(r)) > 0], f € CR(RY),
re|0,
Since a system of {—Vp, V1,..., Va} satisfies the assumptions (UFG), (A1) and (A2), we see
by Theorem 24, that for any n,m,r 2 0, uy, ..., Up+m € A, there is a C € (0, 00) such that

gl Hunem DT gup (@ () - @(r(un)) adj (Vo) (FY)
z€(0,00) xRN -1

(r(unt1)) - P(r(unsm)) f) ()]
C  suwp  |f®)]  te(0,1], feCRY),

xz€(0,00) xRN -1

for any ¢ € (0,1] and f € C§°.

A
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Let us denote by D,,, n = 0, the space of linear differential operators A in RY such that there
are cg € C’,;X’(RN), Quyp,ouy, € C{)’O(RN), E<Sn,up,...,u, € A with [|ug|| 4+ - + ||uk|] < n,
such that

(Af)(@) = co(a) f(x) + > Gy ooy (2) (R (7 (1) - - - 7 () ) ) (),
k=1, ug €A [Ju||[+-+|lug || =n
for x € RN and f € C°(RY).
It is easy to see the following.
Proposition 25 (1) If A € D,,, and B € D,,, n,m = 0, then AB € Dy 1.

(2) If A€ Dy, n 20, then [V1, A] € Dypy1, and [Vy, A] € Dpyo.
(2) If A€ Dy, n 20, then a formal dual operator A* € D,,.

Also, we have the following by Proposition 24.

Proposition 26 Letn; 2 0,i=1,2, m 20, and A; € Dy,,i = 1,2. Then there is a C € (0,00)
such that B
sup (A1 adj™ (Vo) (PY) Ao f) ()]
z€(0,00) xRV —1

< ot (m4ne)/2) sup |f(z)].
x€(0,00) xRN -1

for any t € (0,1] and f € C*(RN).

Note that if W € C°(RY;RY) and if we regard W as a vector field over RY, then the
formal adjoint operator W* is given by

Let h € C®°(RY) be given by h(z) = 2!, z € RY. Note that if Wh = 0, we see that

/ (@)W f)(a)do = | (W) () ()
(0,00) xRN 1 (0,00) xRN =1

for any f,g € C°(RN).
Then we have the following.

Proposition 27 Letm 2 0. Then there are for any linear operator B in C, there are ny, i ;,n . >
0,k=0,....m—1,i=1,...,5™, andAmkﬂEDnmym,A’meeD/ _,z—l ., B™, such

thatnm,k,i—i—n’mki—i—2k§2m, k=0,....m—1,1=1,...,5™, and that
adj(Vy)™(B)

m

5
= (—1)™adj(Vy)™(B) + ZAmkzad]Vo )Y (B) A, ki
0

E

b
|
<.
—_

Proof. 1t is obvious that our assertion is valid for m = 0. Note that
adi (Vi)™ (B)

— —adj(Vo) (adj (V3™ (B)) — (div Vo) (adj(Vy")™(B)) + adj (V3 )™ (B)(div V)
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So if our assertion is valid for m, we have

adj(Vo)(adj(V5)™ (B))

m—1 5™
= (=1)™adj (Vo)™ (B) + Z adj(Vo)( mk,i)adj(%)k(B)A%@,k,i
k=0 =1
m—1 5™ m—1 5™
+ Z Z Am7k7iadj(%)k+1 m,k,i + Z ZAm kzad] ‘/E) (B)ad](vb)(‘Amk z)‘
k=0 =1 k=0 =1

So we see that our assertion is valid for m + 1. This completes the proof.

Now let us prove Theorem 3 (2).
Let n; 20,7 = 1,2, and B; € Dy,,i = 1,2. Then we see that for f,g € Co(R")

/ 9(2)(B1 adj(Ve)™ (PO)Ba f) () da
(0,00)xRN-1

S (G) [ BRI B @

k=0
. *\k p* z 0ty m—k 2)dx
=2 (- *(7) /m,oo)m_l“%) Big)(@)(PYVy" " Baf) (@)d

Z ( >/(0 ey PR TRV Big)(2) ()

=0
= (—pm / (B3adj(Vy) P) Big)() f (x)d.
(0,00)xRN-1

So by Propositions ??, 7?7, we see that there is a C' € (0, 00) such that

| 9(x)(B1 adj(Vo)™ (PY) Bz f)(«)de]
(0,00)xRN-1

< crm-mEn/2 g ,g(@‘)(/ \f(x)|dz)
z€(0,00) xRN -1 (0,00) xRN -1

for any ¢ € (0,1), and f,g € C°(RY). This implies that

/ ((By adj(Ve)™ (P) Ba ) (a)|de
(0,00)xRN-1

< comtwmare [ £(@)ldo)

(0,00)xRN-1

for any ¢ € (0,1), and f € CP(RY).
This proves Theorem 3 (2).
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