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1 Introduction

Let W0 = {w ∈ C([0,∞);Rd); w(0) = 0}, G be the Borel algebra over W0 and µ be the
Wiener measure on (W0,G). Let Bi : [0,∞) ×W0 → R, i = 1, . . . , d, be given by Bi(t, w) =
wi(t), (t, w) ∈ [0,∞) ×W0. Then {(B1(t), . . . , Bd(t)); t ∈ [0,∞)} is a d-dimensional Brownian
motion under µ. Let B0(t) = t, t ∈ [0,∞). Let {Ft}t≧0 be the Brownian filtration generated by

{(B1(t), . . . , Bd(t); t ∈ [0,∞)}.
Let V0, V1, . . . , Vd ∈ C∞

b (RN ;RN ).Here C∞
b (RN ;Rn) denotes the space ofRn-valued smooth

functions defined in RN whose devivatives of any order are bounded. We regard elements in
C∞
b (RN ;RN ) as vector fields on RN .
Now let X(t, x), t ∈ [0,∞), x ∈ RN , be the solution to the Stratonovich stochastic integral

equation

X(t, x) = x+

d∑
i=0

∫ t

0
Vi(X(s, x)) ◦ dBi(s). (1)

Then there is a unique solution to this equation. Moreover we may assume that X(t, x) is
continuous in t and smooth in x and X(t, ·) : RN → RN , t ∈ [0,∞), is a diffeomorphism with
probability one.

Let A = Ad = {v0, v1, . . . , vd}, be an alphabet, a set of letters, and A∗ be the set of words
consisting of A including the empty word which is denoted by 1. For u = u1 · · ·uk ∈ A∗, uj ∈ A,
j = 1, . . . , k, k ≧ 0, we denote by ni(u), i = 0, . . . , d, the cardinal of {j ∈ {1, . . . , k};uj = vi}.
Let |u| = n0(u)+ . . .+nd(u), a length of u, and ∥ u ∥ = |u|+n0(u) for u ∈ A∗. Let R⟨A⟩ be the
R-algebra of non-commutative polynomials on A, R⟨⟨A⟩⟩ be the R-algebra of non-commutative
formal power series on A.

Let r : A∗ \ {1} → L(A) denote the right normed bracketing operator inductively given by

r(vi) = vi, i = 0, 1, . . . , d,

and
r(viu) = [vi, r(u)] = vir(u)− r(u)vi, i = 0, 1, . . . , d, u ∈ A∗ \ {1}.

Let A∗∗ = {u ∈ A∗; u ̸= 1, v0}, A∗∗
m = {u ∈ A∗∗; ||u|| = m}, and A∗∗

≦m = {u ∈ A∗∗; ∥ u ∥≦
m}, m ≧ 1.

We can regard vector fields V0, V1, . . . , Vd as first differential operators overR
N . Let DO(RN )

denotes the set of linear differential operators with smooth coefficients over RN . Then DO(RN )
is a non-commutative algebra over R. Let Φ : R⟨A⟩ → DO(RN ) be a homomorphism given by

Φ(1) = Identity, Φ(vi1 · · · vin) = Vi1 · · ·Vin , n ≧ 1, i1, . . . , in = 0, 1, . . . , d.
∗Graduate School of Mathematical Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-

8914, Japan,
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Then we see that

Φ(r(viu)) = [Vi,Φ(r(u))], i = 0, 1, . . . , d, u ∈ A∗ \ {1}.

Now we introduce a condition (UFG) for a system of vector field {V0, V1, . . . , Vd} as follows.
(UFG) There are an integer ℓ0 ≧ 1 and φu,u′ ∈ C∞

b (RN ), u ∈ A∗∗, u′ ∈ A∗∗
≦ℓ0

, satisfying the
following.

Φ(r(u)) =
∑

u′∈A∗∗
≦ℓ0

φu,u′Φ(r(u′)), u ∈ A∗∗.

Let Pt, t ∈ [0,∞) be a diffusion semigroup given by

Ptf(x) = E[f(X(t, x))], f ∈ C∞
b (RN ).

Then Pt’s are regarded as a linear operators in C∞
b (RN ). We also have the following.

Theorem 1 Assume that (UFG) condition is satisfied. For any n,m ≧ 0, and u1, . . . , un+m ∈
A∗∗, there is a C ∈ (0,∞) such that

||Φ(r(u1), · · · r(un))PtΦ(r(un+1) · · · r(un+m))f ||∞ ≦ Ct−(||u1||+···||un+m)/2||f ||∞

for any t ∈ (0, 1), and f ∈ C∞
b (RN ). Here

||f ||∞ = sup
x∈RN

|f(x)|.

This theorem was shown by [5] under a uniform Hörmander condition and was shown by [3]
in general case.

In the present paper, we assume (UFG) and the following assumptions (A1) and (A2)
throughout.

(A1) V 1
1 (x) = 1, V i

1 (x) = 0, i = 2, . . . , N, for any x ∈ RN .
(A2) V 1

k (x) = 0, k = 0, 2, . . . , d, for any x ∈ RN .

Then X1(t, x) = x1 +B1(t), t ≧ 0. Let h ∈ C∞(RN ) be given by h(x) = x1, x ∈ RN . Then
we see that Φ(r(v1))h = 1, and Φ(r(u))h = 0, u ∈ A∗ \{1, v1}. So we see that if (UFG) condition
is satisfied, we see that φu,v1 = 0, for u ∈ A∗ \ {1, v1}.

Let bk ∈ C∞
b (RN ), k = 0, . . . , d, and let

P 0
t f(x) = E[exp(

d∑
k=0

∫ t

0
bk(X(r, x)) ◦ dBk(r))f(X(t, x)), min

r∈[0,t]
X1(r)) > 0].

Then we see that

∂

∂t
P 0
t f(x) = L0Ptf(x), t > 0, x ∈ (0,∞)×RN−1

as generalized functions, and

P 0
t f(x) = 0, t > 0, x ∈ {0} ×RN−1.

Here

L0 =
1

2

d∑
k=1

V 2
k + V0 +

N∑
k=1

bkVk + (b0 +
1

2

d∑
k=1

(b2k + Vkbk)).

Our final purpose is to show the following.
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Theorem 2 Assume that (UFG) condition is satisfied. Then for any n,m, r ≧ 0 and u1, . . . , un+m ∈
A∗∗, there is a C ∈ (0,∞) such that

sup
x∈(0,∞)×RN−1

|Φ(r(u1) · · · r(un))adj(V0)r(P 0
t )Φ(r(un+1) · · · r(un+m))f(x)|

≦ Ct−(||u1||+···||un+m||/2)−r sup
x∈(0,∞)×RN−1

|f(x)|

and ∫
(0,∞)×RN−1

|Φ(r(u1) · · · r(un))adj(V0)r(P 0
t )Φ(r(un+1) · · · r(un+m))f(x)|dx

≦ Ct−(||u1||+···||un+m||/2)−r

∫
(0,∞)×RN−1

|f(x)|dx

for any t ∈ (0, 1] and f ∈ C∞
b (RN ).

Here adj0(V0)(P
0
t ) = P 0

t , and

adjn+1(V0)(P
0
t ) = V0 adj(V0)

n(P 0
t )− adj(V0)

n(P 0
t )V0, n = 0, 1, . . . .

In the present paper, we prove the following theorem.

Theorem 3 Assume that (UFG) condition is satisfied. Let A∗∗∗ = A∗∗ \ {v1}. Then we have
the following.
(1) For any n,m, r ≧ 0 and u1, . . . , un+m ∈ A∗∗∗, there is a C ∈ (0,∞) such that

sup
x∈(0,∞)×RN−1

|Φ(r(u1) · · · r(un))adj(V0)rP 0
t Φ(r(un+1) · · · r(un+m))f(x)|

≦ Ct−(||u1||+···||un+m||/2)−r sup
x∈(0,∞)×RN−1

|f(x)|

for any t ∈ (0, 1] and f ∈ C∞
b (RN ).

(2) For any n,m, r ≧ 0 and u1, . . . , un+m ∈ A∗∗∗, there is a C ∈ (0,∞) such that∫
(0,∞)×RN−1

|Φ(r(u1) · · · r(un))adj(V0)r(P 0
t )Φ(r(un+1) · · · r(un+m))f(x)|dx

≦ Ct−(||u1||+···||un+m||/2)−r

∫
(0,∞)×RN−1

|f(x)|dx

for any t ∈ (0, 1] and f ∈ C∞
0 (RN ).

We will prove Theorem 2 in the forthcoming paper.

2 Normed spaces and Interpolation

From now on, we assume that (UFG) is satisfied. Let (W0,G, µ) be a Wiener space as in
Introduction. Let H denote the associated Cameron-Martin space, L denote the associated
Ornstein-Uhlenbeck operator, and W r,p(E), r ∈ R, p ∈ (1,∞), be Watanabe-Sobolev spaces,
i.e. W r,p = (I−L)−r/2(Lp(W0;E, dµ)) for any separable real Hilbert space E. Let D denote the
gradient operator. Then D is a bounded linear operator from W r,p(E) to W r−1,p(H ⊗ E). Let
D∗ denote the adjoint operator of D. ( See Shigekawa [6] for details. )

Let Ã = A∗∗
≦ℓ0

\ {v1}. Let V (s)
u ∈ C∞

b (RN ;RN ), u ∈ Ã, s ∈ (0, 1], be given by

V (s)
u (x) = s||u||/2Φ(r(u))(x), x ∈ RN .

Note that (V
(u)
u h)(x) = 0, x ∈ RN , u ∈ Ã, s ∈ (0, 1], where h(x) = x1, x = (x1, . . . , xN ) ∈ RN .
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Proposition 4 There are φ̃u1,u2,u3 ∈ C∞
b (RN ), u1, u2, u3 ∈ Ã, such that

[V (s)
u1
, V (s)

u2
] =

∑
u3∈Ã

s0∨(||u1||+||u2||−||u3||)/2φ̃u1,u2,u3V
(s)
u3
, u1, u2 ∈ Ã.

Proof. Note that there are cu1,u2,u3 ∈ R, u1, u2 ∈ Ã, u3 ∈ A∗∗ such that

[r(u1), r(u2)] =
∑

u3∈A∗∗,||u3||=||u1||+||u2||

cu1,u2,u3r(u3).

So if ||u1||+ ||u2|| ≦ ℓ0, we have

[V (s)
u1
, V (s)

u2
](x) = s(||u1||+||u2||)/2Φ([r(u1), r(u2)])(x)

=
∑

u3∈Ã,||u3||=||u1||+||u2||

cu1,u2,u3s
||u3||/2Φ(r(u3))(x)

=
∑

u3∈Ã,||u3||=||u1||+||u2||

cu1,u2,u3ψ0(x
1)V (s)

u3
(x).

Also, if ||u1||+ ||u2|| > ℓ0, we have

[V (s)
u1
, V (s)

u2
](x) =

∑
u3∈Ã,||u3||=||u1||+||u2||

cu1,u2,u3s
(||u1||+||u2||)/2Φ(r(u3))(x)

=
∑

u4∈Ã,||u3||=||u1||+||u2||

cu1,u2,u3s
(||u1||+||u2||)/2φu3,u4(x)Φ(r(u4))(x)

=
∑

u4∈Ã,||u3||=||u1||+||u2||

cu1,u2,u3s
(||u1||+||u2||−||u4||)/2φu3,u4(x)V

(s)
u4

(x).

These imply our assertion.

Now let B̃u(t), t ∈ [0,∞), u ∈ Ã, be independent standard Brownian motions defined on a
certain probability space and let X(s)(t, x), t ∈ [0,∞), x ∈ RN , s ∈ (0, 1], be a solution to the
following stochastic differential equation.

dX(s)(t, x) =
∑
u∈Ã

V (s)
u (X(s)(t, x)) ◦ dB̃u(t),

X(s)(0, x) = x.

Note that h(X(s)(t, x)) = h(x), t ≧ 0, x ∈ RN . Now let Q
(s)
t , t ∈ [0,∞), s ∈ (0, 1], be linear

operators on C∞
b (RN ) given by

(Q
(s)
t f)(x) = E[f(X(s)(t, x))], f ∈ C∞

b (RN ).

Let

L(s) =
1

2

∑
u∈Ã

s||u||Φ(r(u))2.

Then we see that

Q
(s)
t f = f +

∫ t

0
L(s)Q(s)

r fdr, f ∈ C∞
b (RN ).

By Theorem 1 in [4] we have the following.
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Proposition 5 For any n,m ≧ 0, and u1, . . . un+m ∈ Ã, there eists a C ∈ (0,∞) such that

s(||u1||+···||un+m||)/2||Φ(r(u1)) · · ·Φ(r(un))Q(s)
t Φ(r(un+1)) · · ·Φ(r(un+m))f ||∞

≦ Ct−(||u1||+···||un+m||)/2||f ||∞
for any f ∈ C∞

b (RN ) and s, t ∈ (0, 1].

Let C be the set of bounded measurable functions f defined inRN such that f(x1, x2, . . . , xN )
is smooth in (x2, . . . , xN ), and that

sup
x∈RN

| ∂α2+...+αN f

(∂x2)α2 · · · (∂xN )αN
(x)| <∞

for any α2, . . . , αN ≧ 0.
Note thatQ(s)f ∈ C for any f ∈ C. Then the following is an easy consequence of Proposition 5.

Corollary 6 For any n,m ≧ 0, and u1, . . . un+m ∈ Ã, there eists a C ∈ (0,∞) such that

s(||u1||+···||un+m||)/2||Φ(r(u1)) · · ·Φ(r(un))Q(s)
t Φ(r(un+1)) · · ·Φ(r(un+m))f ||∞

≦ Ct−(||u1||+···||un+m||)/2||f ||∞
for any f ∈ C and s, t ∈ (0, 1].

Let us define normed spaces D1
(s), s ∈ (0, 1], and H−α

(s) , s ∈ [0, 1], α ∈ [0, 1), by the following.

D1
(s) = H−α

(s) = C as sets, and their norms are given by

||f ||D1
(s)

= ||f ||∞ +
∑
u∈Ã

s||u||/2||Φ(r(u))f ||∞

and
||f ||H−α

(s)
= sup

t∈(0,1]
tα/2||Q(s)

t f ||∞

for f ∈ C. Note that
||f ||H0

(s)
= ||f ||∞, f ∈ C.

We have the following as an easy consequence of Corollary 6,

Proposition 7 There is a C0 ∈ (0,∞) such that

||L(s)Q
(s)
t f ||∞ ≦ C0t

−1||f ||∞

and
||Q(s)

t f ||D1
(s)

≦ C0t
−1/2||f ||∞

for any f ∈ C and s, t ∈ (0, 1].

Then we have the following.

Proposition 8 Let α ∈ (0, 1) and θ ∈ (0, 1). If β = (1− θ)α− θ ≧ 0, then there is a C ∈ (0,∞)
such that

sup
t∈(0,∞)

t−θK(t; f,H−α
(s) ,D

1
(s)) ≦ C||f ||H−β

(s)

for f ∈ C and s ∈ (0, 1]. Here

K(t; f,H−α
(s) ,D

1
(s)) = inf{||g||H−α

(s)
+ t||f − g||D1

(s)
; g ∈ C}, t ∈ (0,∞).
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Remark 9 K(t; f,H−α
(s) ,D

1
(s)) is a real interpolation (c.f. Berph-Löfström [1]).

Proof. Let f ∈ C. Note that

||Q(s)
t (Q(s)

r f − f)||∞ ≦
∫ r

0
||L(s)Q

(s)
t/2Q

(s)
(t+2z)/2f ||∞dz

≦ C0(t/2)
−1

∫ r

0
||Q(s)

(t+2z)/2f ||∞dz ≦ C0(t/2)
−1−β/2r||f ||H−β

(s)
.

Here C0 is as in Corollary 6 .
On the other hand,

||Q(s)
t (Q(s)

r f − f)||∞ ≦ 2||Q(s)
t f ||∞ ≦ 2t−β/2||f ||H−β

(s)
.

Therefore
||Q(s)

t (Q(s)
r f − f)||∞ ≦ (2 + 4C0)t

−β/2(1 ∧ (rt−1))||f ||H−β
(s)

≦ (2 + 4C0)t
−β/2(rt−1)γ/2||f ||H−β

(s)
.

Here γ = θ(1 + α) = α− β ∈ (0, 1). Therefore we see that

||Q(s)
r f − f ||H−α

(s)
≦ (2 + 4C0)r

γ/2||f ||H−β
(s)
.

Also we have

||Q(s)
r f ||D1

(s)
≦ C0(r/2)

−1/2||Q(s)
r/2f ||∞ ≦ 4C0r

−(1+β)/2||f ||H−β
(s)

.

Since we have
f = Q(s)

r f + f −Q(s)
r f, f ∈ C,

we see that for t ∈ (0, 1]

t−θK(t; f,H−α
(s) ,D

1
(s)) ≦ t1−θ||Q(s)

r f ||D1
(s)

+ t−θ||Q(s)
r f − f ||H−α

(s)

≦ (2 + 4C0)(t
1−θr−(1+β)/2 + t−θrγ/2)||f ||H−β

(s)
.

Let r = t2θ/γ . Since (1− θ)(1 + α) = 1 + β, we see that

sup
t∈(0,1]

t−θK(t; f,H−α
(s) ,D

1
(s)) ≦ 4(1 + 2C0)||f ||H−β

(s)

.

It is obvious that
sup

t∈[1,∞)
t−θK(t; f,H−α

(s) ,D
1
(s)) ≦ ||f ||H−α

(s)
≦ ||f ||H−β

(s)

Therefore we have our assertion.
The following has been proved by Watanabe [7], but we give a proof.

Proposition 10 Let θ ∈ (0, 1), p ∈ (1,∞) and r0, r1 ∈ [−1, 0]. If r2 < (1 − θ)r0 + θr1, then
there is a C ∈ (0,∞) such that

||F ||W r2,p ≦ C sup
t∈(0,∞)

t−θK(t;F,W r0,p,W r1,p)

for any F ∈W∞,∞− =
∩

r∈R,p∈(1,∞)W
r,p. Here

K(t;F,W r0,p,W r1,p) = inf{||G||W r0,p + t||F −G||W r1,p ; G ∈W∞
∞−}.
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Proof. Let us take an F ∈W∞,∞− and fix it. Let Tt be the Ornstein-Uhlenbeck semi-group on
W0, and let

a = sup
t∈(0,∞)

t−θK(t;F,W r0,p,W r1,p)

Then we see that
||F ||W r0∧r1,p ≦ a.

So we have our assertion if r2 ≦ r1 ∧ r2. Theerefore we may assume that r2 > r1 ∧ r2 ≧ −1.
Note that for any r ≧ 0, there is a Cr > 0 such that

||(I − L)rTtg||W 0,p ≦ Crt
−r||g||W 0,p

for any t ∈ (0, 1] and g ∈W∞,∞−.
For any t ∈ (0, 1] and ε > 0, there is an Gt ∈W∞

∞− such that

(t(r1−r0)/2)−θ||Gt||W r0,p + (t(r1−r0)/2)1−θ||F −Gt||W r1,p ≦ a+ ε.

Let γ = ((1 − θ)r0 + θr1 − r2)/2 > 0. Then we have r2 − r1 = −(1 − θ)(r1 − r0) − 2γ, and
r2 − r0 = θ(r1 − r0)− 2γ. So we see that

t−(γ+(r2−r0)/2||Gt||W r0,p + t−(γ+(r2−r0)/2)||F −Gt||W r1,p ≦ a+ ε.

Then we have
||(I − L)TtF ||W r2,p = ||(I − L)1+(r2/2)TtF ||W 0,p

≦ ||(I − L)1+(r2/2)TtGt||W 0,p + ||(I − L)1+(r2/2)Tt(F −Gt)||W 0,p

≦ ||(I − L)1+((r2−r0)/2)Tt(I − L)r0/2Gt||W 0,p + ||(I − L)1+((r2−r1)/2)Tt(I − L)r1/2(F −Gt)||W 0,p

≦ C(t−(1+(r2−r0)/2)||Gt||W r0,p + t−(1+(r2−r1)/2)||F −Gt||W r1,p) ≦ Ct−1+γ(a+ ε)

for any t ∈ (0, 1]. Note that

F =

∫ 1

0
e−t(I − L)TtFdt+ e−1T1F.

Then we see that

||F ||W r2,p ≦ C(a+ ε)

∫ 1

0
t−1+γdt+ ae−1||T1||W r0∧r1,p→W r2,p .

So we have the assertion.

Proposition 11 Let p ∈ (1,∞) and ε ∈ (0, 1]. If p(1− ε) < 1, then

sup
s∈(0,1],x1>0

||1(0,∞)( min
t∈[0,1]

(x1 + s1/2B1(t)))||W 1−ε,p <∞

Proof. Let Y = mint∈[0,1]B
1(r). Then

|Y (w + h)− Y (w)| ≦ max
t∈[0,1]

|h(t)| ≦
∫ 1

0
|dh

1

dr
(r)|dr ≦ ||h||H

for any w ∈W0 and h ∈ H. Therefore ||DY ||H ≦ 1 µ− a.s.
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Let φ ∈ C∞
0 (R) such that φ ≧ 0, φ(z) = 0, |z| > 1, and

∫
R φ(z)dz = 1. Also, let

ψr(z) =
1

r

∫ z

−∞
φ(r−1y)dy, r ∈ (0, 1], z ∈ R,

and
Gr(s, x

1) = ψr(s
−1/2x1 + Y ), r, s ∈ (0, 1], x1 > 0.

Then we see that 0 ≦ ψr ≦ 1, ψr(z) = 0, z ∈ (−∞,−r], and ψr(z) = 1, z ∈ [r,∞). Also, we see
that

DGr(s, x
1) =

1

r
φ(r−1(s−1/2x1 + Y ))DY,

and so
Eµ[||DGr(s, x

1)||pH ] ≦ r−pEµ[φ(r−1(s−1/2x1 + Y ))p]

≦ r−p||φ||p∞Pµ(|s−1/2x1 + Y | ≦ r).

Note that
µ(|s−1/2x1 + Y | ≦ r) = µ(Y ∈ [−s−1/2x1 − r,−s−1/2x1 + r])

≦ 4(2π)−1/2r ≦ 2r.

So we have
Eµ[||DGr(s, x

1)||pH ]1/p ≦ 2r−(1−1/p)||φ||∞.

Also, note that
|1(0,∞)( min

t∈[0,1]
(x1 + s1/2B1(t)))−Gr(s, x

1)|

= |1(0,∞)(s
−1/2x1 + Y )− ψr(s

−1/2x1 + Y )| ≦ 1(−r,r)(s
−1/2x1 + Y )

and so
||1(0,∞)(x

1 + s1/2Y )−Gr(s, x
1)||pLp(dµ) ≦ 2r.

So we see that

sup
r∈(0,1]

(r−1/p||1(0,∞)( min
t∈[0,1]

(x1 + s1/2B1(t)))−Gr(s, x
1)||W 0,p + r1−1/p||Gr(s, x

1)||W 1,p)

≦ 2 + (2 + 2||φ||∞).

Also, it is obvious that

sup
r∈[1,∞)

r−1/p||1(0,∞)(max
s∈[0,t]

(x1 +B1(s))||W 0,p ≦ 1.

Since 1− ε < 1/p, we have our assertiin by Proposition 10.
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3 Basic Results

Let Vs,0(x) = sV0(x), Vs,i(x) = s1/2Vi(x), i = 1, . . . , d, s ∈ (0, 1]. Let us think of the following
SDE with a parameter s ∈ (0, 1].

dXs(t, x) =

d∑
i=0

Vs,i(Xs(t, x)) ◦ dBi(t),

Xs(0, x) = x ∈ RN .

Let us define a homomorphism Φs : R⟨A⟩ → DO(RN ), s ∈ (0, 1], by

Φs(1) = Identity, Φs(vi1 · · · vin) = Vs,i1 · · ·Vs,in , n ≧ 1, i1, . . . , in = 0, 1, . . . , d.

Then we see the following.

Φs(r(u))(x) =
∑

u′∈A∗∗
≦ℓ0

s(||u||−||u′||)/2φu,u′(x)Φs(r(u
′))(x), s ∈ (0, 1], x ∈ RN

for any u ∈ A∗∗ \A∗∗
≦ℓ0

. Here φvku,u′ ’s are as in the assumption (UFG).

From now on, we follow results in [4] basically . For any C∞
b vector fieldW on RN , we define

(Xs(t)∗W )(X(t, x)) =
∑N

i,j=1
∂

∂xjX
i
s(t, x)W

j(x) ∂
∂xi . ThenXs(t)∗ is a push-forward operator with

respect to the diffeomorphism Xs(t, ·) : RN → RN for any s ∈ (0, 1]. Also we see that

d(Xs(t)
−1
∗ Φs(r(u)))(x)

=
d∑

i=0

(Xs(t)
−1
∗ Φs(r(viu)))(x) ◦ dBi(t)

for any u ∈ A∗ \ {1}.
Let c

(s)
k (·, u, u′) ∈ C∞

b (RN ,R), k = 0, 1, . . . , d, u, u′ ∈ A∗∗
≦ℓ0

, be given by

c
(s)
k (x;u, u′) =


1, if ||vku|| ≦ ℓ0 and u′ = vku,

s(||vku||−||u′||)/2φvku,u′(x), if ||vku|| > ℓ0 and ||u′|| ≦ ℓ0,
0, otherwise.

Then we have
d(Xs(t)

−1
∗ Φs(r(u)))(x)

=

d∑
k=0

∑
u′∈A∗∗

≦ℓ0

c
(s)
k (X(t, x);u, u′)(Xs(t)

−1
∗ Φs(r(u

′)))(x) ◦ dBk(t), u ∈ A∗∗
≦ℓ0

.

There exists a unique solution as(t, x;u, u
′), u, u′ ∈ A∗∗

≦ℓ0
, s ∈ (0, 1], to the following SDE

das(t, x;u, u
′) =

d∑
k=0

∑
u′′∈A∗∗

≦ℓ0

(c
(s)
k (Xs(t, x);u, u

′′)as(t, x;u
′′, u′)) ◦ dBk(t) (2)

as(0, x;u, u
′) = δu,u′ .

Then the uniqueness of SDE implies

(Xs(t)
−1
∗ Φs(r(u)))(x) =

∑
u′∈A∗∗

≦ℓ0

as(t, x;u, u
′)Φs(r(u

′))(x), u ∈ A∗∗
≦ℓ0

, s ∈ (0, 1]. (3)

9



Similarly we see that there exists a unique solution bs(t, x;u, u
′), u, u′ ∈ A∗∗

≦ℓ0
, to the SDE

bs(t, x;u, u
′) = δu,u′ −

d∑
k=0

∑
u′′∈A∗∗

≦ℓ0

∫ t

0
(bs(r, x;u, u

′′)c
(s)
k (Xs(r, x);u

′′, u′)) ◦ dBk(r). (4)

Then we see that∑
u′′∈A∗∗

≦ℓ0

as(t, x, u, u
′′)bs(t, x, u

′′, u′) = δu,u′ , u, u′ ∈ A∗∗
≦ℓ0

,

and that

Φs(r(u))(x) =
∑

u′∈A∗∗
≦ℓ0

bs(t, x;u, u
′)(Xs(t)

−1
∗ Φs(r(u

′)))(x), u ∈ A∗∗
≦ℓ0

. (5)

Furthermore we see by Proposition 4 (1) that

as(t, x, u, v1) = bs(t, x, u, v1) = 0, a.s. u ∈ Ã.

Also, we see that
(Xs(t)

−1
∗ Φs(v0))(x)

= Φs(v0) +

d∑
k=1

∫ t

0
(Xs(r)

−1
∗ Φs(r(vkv0))) ◦ dBk(r).

So we have
(Xs(t)

−1
∗ Φs(v0))(x) = Φs(v0)(x) +

∑
u∈Ã

âs(t, x;u)Φs(r(u))(x), (6)

and
Φs(v0)(x) = (Xs(t)

−1
∗ Φs(v0))(x) +

∑
u∈Ã

b̂s(t, x;u)(Xs(t)
−1
∗ Φs(r(u))(x), (7)

where

âs(t, x;u) =

d∑
k=1

∫ t

0
as(r, x; vkv0, u) ◦ dBk(r)

and
b̂s(t, x;u) = −

∑
u′∈Ã

bs(t, x;u, u
′)â(t, x;u′).

Note that
Φs(r(u))(f(Xs(t, x)) = ⟨Xs(t)

∗df,Φs(r(u))⟩x.

So we have

Φs(r(u))(f(Xs(t, x))) =
∑

u′∈A∗∗
≦ℓ0

bs(t, x;u, u
′)(Φs(r(u

′))f)(Xs(t, x)), u ∈ A∗∗
≦ℓ0

, (8)

(Φs(r(u))f)(Xs(t, x)) =
∑

u′∈A∗∗
≦ℓ0

as(t, x;u, u
′)Φs(r(u

′))(f(Xs(t, x))), u ∈ A∗∗
≦ℓ0

, (9)

and
Φs(v0)(f(Xs(t, x))− (Φs(v0)f)(Xs(t, x))

10



=
∑

u′∈A∗∗
≦ℓ0

b̂s(t, x;u
′)(Φs(r(u

′))f)(Xs(t, x)). (10)

Let us define ks : [0,∞)×RN ×A∗∗
≦ℓ0

×W0 → H by

ks(t, x;u) = (

∫ t∧·

0
as(r, x; vk, u)dr)k=1,...d.

Let Ms(t, x) = {Ms(t, x;u, u
′)}u,u′∈A∗∗

≦ℓ0
be a matrix-valued random variable given by

Ms(t, x;u, u
′) = t−(||u||+||u′||)/2(ks(t, x;u), ks(t, x;u

′))H .

Then we have

sup
s∈(0,1]

sup
t∈(0,T ]

sup
x∈RN

Eµ[| detMs(t, x)|−p] <∞ for any p ∈ (1,∞) and T > 0.

Let M−1
s (t, x) = {M−1

s (t, x;u, u′)}u,u′∈A∗∗
≦ℓ0

be the inverse matrix of Ms(t, x).

For any separable real Hilbert space E, let K̂0(E) be the set of {Fs}s∈(0,1] such that

(1) Fs : (0,∞)×RN ×W0 → E is measurable map for all s ∈ (0, 1],
(2) Fs(t, ·, w) : RN → E is smooth for any s ∈ (0, 1], t ∈ (0,∞) and w ∈W0,
(3) (∂αFs/∂x

α)(·, ∗, w) : (0,∞)×RN → E is continuous for any s ∈ (0, 1], w ∈W0 and α ∈ ZN
≧0,

(4) (∂αFs/∂x
α)(t, x, ·) ∈W r,p for any s ∈ (0, 1], r, p ∈ (1,∞), α ∈ ZN

≧0, t ∈ (0,∞) and x ∈ RN ,
and
(5) for any r, p ∈ (1,∞), α ∈ ZN

≧0, and T > 0

sup
s∈(0,1],t∈(0,T ]

sup
x∈RN

|| ∂
α

∂xα
Fs(t, x)||W r,p <∞.

Then we have the following.

Proposition 12 (1) {t−(||u′||−||u||)/2as(t, x;u, u
′)}s∈(0,1] and {t−(||u′||−||u||)/2bs(t, x;u, u

′)}s∈(0,1]
belong to K̂0(R) for any u, u′ ∈ A∗∗

≦ℓ0
.

(2) {t−||u||/2ks(t, x;u)}s∈(0,1] belongs to K̂0(H) for any u ∈ A∗∗
≦ℓ0

.

(3) {Ms(t, x;u, u
′)}s∈(0,1], and {M−1

s (t, x;u, u′)}s∈(0,1] belong to K̂0(R) for any u, u′ ∈ A∗∗
≦ℓ0

.

(4) {âs(t, x;u)}s∈(0,1] and {b̂s(t, x;u)}s∈(0,1] belong to K̂0(R) for any u ∈ Ã.

Finally we have the following basic equation.

t||u||/2(Φs(u)f)(Xs(t, x))

=
∑

u1,u2∈A∗∗
≦ℓ0

as(t, x;u, u1)M
−1
s (t, x;u1, u2)(D(f(Xs(t, x)), t

−||u2||/2ks(t, x;u2))H (11)

for any f ∈ C and u ∈ Ã.

By Proposition 12 and Equation (11), we easily see the following.

Proposition 13 For any p ∈ (1,∞), there is a constant C ∈ (0,∞) such that

||(Φs(u)f)(Xs(t, x))||W 0,p ≦ C||f ||D1
(s)
,

and
||t||u||/2(Φs(u)f)(Xs(t, x))||W−1,p ≦ C||f ||∞,

for any u ∈ Ã, f ∈ C and s, t ∈ (0, 1].
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Proposition 14 For any α ∈ [0, 1) and p ∈ (1,∞), there is a constant C ∈ (0,∞) such that

||f(Xs(t, x))||W−1,p ≦ Ct−ℓ0/2||f ||H−α
(s)

for any f ∈ C, s, t ∈ (0, 1] and x ∈ RN .

Proof. Note that

f = Q
(s)
1 f −

∫ 1

0
L(s)Q(s)

r fdr = Q
(s)
1 f − 1

2

∑
u∈Ã

Φs(r(u))fu,

where

fu =

∫ 1

0
Φs(r(u))Q

(s)
t fdt.

By definition, we have

||Q(s)
1 f ||∞ ≦ ||f ||H−α

(s)
,

and

||fu||∞ ≦
∫ 1

0
||Φs(r(u))Q

(s)
t/2Q

(s)
t/2f ||∞dt

≦ C0

∫ 1

0
(
t

2
)−1/2||Q(s)

t/2f ||∞dt ≦ C0(

∫ 1

0
(
t

2
)−(1+α)/2dt)||f ||H−α

(s)
.

Since

f(Xs(t, x)) = (Q
(s)
1 f)(Xs(t, x))−

1

2

∑
u∈Ã

(Φs(r(u))fu)(Xs(t, x)).

we have our assertion from Proposition 13.

4 Main Lemma

For any K = {Ks}s∈(0,1] ∈ K̂0(R), let P s,K
(t) , t > 0, be linear operators defined in C given by

(P s,K
(t) f)(x) = E[Ks(t, x)fs(Xs(t, x)), min

r∈[0,t]
X1

s (t, x) > 0], f ∈ C.

Since minr∈[0,t](X
1
s (t, x)) = minr∈[0,t](s

1/2B1(t) + x1) and it does not depend on x2, . . . , xN , we

see that P s,K
(t) f ∈ C for any f ∈ C and t ≧ 0.

In this section, we prove the following.

Lemma 15 For any K1,K2 ∈ K̂0(R), there is a C ∈ (0,∞) such that

||P s,K1

(t) P s,K2

(t) Φs(r(u))f ||∞ ≦ Ct−ℓ0/2||f ||∞

for any s, t ∈ (0, 1], f ∈ C and u ∈ Ã.

We need some preparations to prove this lemma.

Proposition 16 For any K ∈ K̂0(R), ε ∈ (0, 1) and p ∈ (1/ε,∞), there is a C ∈ (0,∞) such
that

||P s,K
(t) f ||∞ ≦ C||f(Xs(t, x))||W−1+ε,p , s, t ∈ (0, 1], f ∈ C.
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Proof. There is a q ∈ (1, (1− ε)−1) and r ∈ (1,∞) such that q−1 + r−1 + p−1 = 1. Then there is
a C1 ∈ (0,∞) such that

|P s,K
(t) f(x)|

≦ C1||1(0,∞)( min
r∈[0,t]

(s−1/2x1 +B1(t)))||W 1−ε,q ||Ks(t, x)||W 1,r ||f(Xs(t, x))||W−1+ε,p

for any s, t ∈ (0, 1], x ∈ RN and f ∈ C. So we have our assertion from Proposition 11.

Proposition 17 Let K ∈ K̂0(R). Then for any α ∈ (0, 1) there is a C ∈ (0,∞) such that

||P s,K
(t) f ||∞ ≦ Ct−ℓ0/2||f ||H−α

(s)

for any s, t ∈ (0, 1] and f ∈ C.

Proof. Let α ∈ (0, 1). Then if we take a sufficiently small θ ∈ (0, 1), there is a β ∈ (0, 1) such
that α = (1− θ)β − θ. Take an ε ∈ (0, θ). Then −1 + ε < −(1− θ). Let us take a p ∈ (1/ε,∞).

First note that
||f(Xs(t, x))||W 0,p ≦ ||f ||∞ ≦ ||f ||D1

(s)
.

for any s ∈ (0, 1], p ∈ (1,∞) and f ∈ C.
Also, by Proposition 14 there is a constant C1 ∈ (0,∞) such that

||f(Xs(t, x))||W−1,p ≦ C1t
−ℓ0/2||f ||H−β

(s)

for any f ∈ C, s, t ∈ (0, 1] and x ∈ RN . Then by Propositions 7, 10, 12, and 13, we see that
there are constants C2, C3 ∈ (0,∞) such that

||f(Xs(t, x))||W−1+ε,p ≦ C2 sup
r∈(0,∞)

r−θK(r; f(Xs(t, x));W
−1,p,W−0,p)

≦ C1C2t
−ℓ0/2 sup

r∈(0,∞)
r−θK(r; f ;H−β

(s) ,D
1
(s)) ≦ C3t

−ℓ0/2||f ||H−α
(s)

for any f ∈ C, s, t ∈ (0, 1] and x ∈ RN . Then by Proposition 16 we have our assetion.

Now by Equations (8),(9) we have

(Φs(r(u))P
s,K
(t) f)(x) = (P

s,K00(u)
(t) f)(x) +

∑
u′∈Ã

(P
s,K0(u;u′)
(t) Φs(r(u

′))f)(x) (12)

and
(P s,K

(t) Φs(r(u))f)(x) = (P
s,K10(u)
(t) f)(x) +

∑
u′∈Ã

(Φs(r(u
′)P

s,K1(u;u′)
(t) f)(x), (13)

for any u ∈ Ã, f ∈ C, s, t ∈ (0, 1] and x ∈ RN . Here

K00(u)s(t, x) = (Φs(r(u))Ks(t, ·))|·=x,

K0(u;u
′)s(t, x) = bs(t, x;u, u

′)Ks(t, x), u′ ∈ Ã.

K10(u)s(t, x) = −
∑
u′∈Ã

(Φs(r(u))(as(t, ·;u, u′)K(t, ·))|·=x,
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and
K1(u;u

′)s(t, x) = as(t, x;u, u
′)K(t, x), u′ ∈ Ã.

Also, note that by Equation (10)

(adj(Φs(v0))(P
s,K
(t) )f)(x) = (Φs(v0)P

s,K
(t) f)(x)− (P s,K

(t) Φs(v0)f)(x)

= (P s,K̂0

(t) f)(x) +
∑
u∈Ã

(P
s,K̂(u)
(t) Φs(r(u))f)(x) (14)

for any f ∈ C, s, t ∈ (0, 1] and x ∈ RN . Here

K̂0s(t, x) = (Φs(v0)Ks(t, ·))|·=x,

K̂(u)s(t, x) = b̂s(t, x;u)Ks(t, x), u′ ∈ Ã.

By Proposition 12, we see that K00(u), K0(u;u
′), K10(u), K1(u;u

′), K̂0, K̂(u) ∈ K̂0(R) for
any u, u′ ∈ Ã.

Now let us prove Lemma 15.
Let K1,K2 ∈ K̂0(R). By Propositions 13, 17, and Equation (13) we see that for any p ∈

(1,∞) and α ∈ [0, 1), there is a constant C1 ∈ (0,∞) such that

||(P s,K2

(t) Φs(r(u))f)(Xs(t, x))||W−1,p ≦ C1t
−ℓ0/2||f ||H−1/2

(s)

,

for any u ∈ Ã, f ∈ C and s ∈ (0, 1]. It is obvious that for any p ∈ (1,∞), there is a constant
C > 0 such that

||(P s,K2

(t) Φs(r(u))f)(Xs(t, x))||W 0,p ≦ ||f ||D1
(s)
,

for any u ∈ Ã, f ∈ C, and s ∈ (0, 1].
Take an ε ∈ (0, 1/3). Then −1+ε < −(1−1/3). Let us take a p ∈ (1/ε,∞). By Propositions 8

and 10, we see that there are constants C2, C3 ∈ (0,∞) such that

||(P s,K2

(t) Φs(r(u))f)(Xs(t, x))||W−1+ε,p

≦ C2t
−ℓ0/2 sup

r∈(0,∞)
r−1/3K(r; (P s,K2

(t) Φs(r(u))f)(Xs(t, x));W
−1,p,W 0,p)

≦ C2t
−ℓ0 sup

r∈(0,∞)
r−1/3K(r; f ;H−1/2

(s) ,D1
(s)) ≦ C3t

−ℓ0 ||f ||∞

for any f ∈ C, s, t ∈ (0, 1] and x ∈ RN . Then by Proposition 16 we have Lemma 15.
This completes the proof of Lemma 15.

5 Proof of Theorem 3(1)

The following is an easy consequence of Lemma 15, Equations (12) and (13).

Corollary 18 Let K1,K2 ∈ K̂0(R). Then for any n ≧ 0 there is a C > 0 such that

n+1∑
k=0

∑
u1,...,uk∈Ã

||Φs(r(u1)) . . .Φs(r(uk))P
s,K1

(t) P s,K2

(t) f ||∞

≦ Ct−ℓ0

n∑
k=0

∑
u1,...,uk∈Ã

||Φs(r(u1)) . . .Φs(r(uk))f)||∞

for any s, t ∈ (0, 1] and f ∈ C.
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For linear operators A and B in C we define adj(A)n(B), n = 0, 1, . . . , inductively by
adj(A)0(B) = B, and

adj(A)n(B) = A(adj(A)n−1(B))− (adj(A)n−1(B))A.

Then we see that for linear operators A,B,C in C

adj(A)n(BC) =

n∑
k=0

(
n

k

)
adj(A)k(B)adj(A)n−k(C).

So by using Equations (12), (13) and (14) we have the following.

Lemma 19 Let n ≧ 0 and K1, . . . ,K6n ∈ K̂0(R). Then there is a C ∈ (0,∞) such that

n∑
k,j,ℓ=0

∑
u1,...,uk∈Ã

∑
u′
1,...,u

′
ℓ∈Ã

||Φs(r(u1) . . . r(uk))adj(Φs(v0))
j(P s,K1

(t) · · ·P s,K6n

(t) )Φs(r(u
′
1) . . . r(u

′
ℓ))f ||∞

≦ Ct−3nℓ0 ||f ||∞
for any s, t ∈ (0, 1] and f ∈ C.

Now we introduce the following notion.

Definition 20 We say that {Ks}s∈(0,1] ∈ K̂0(R) is multiplicative, if for any m ≧ 1 there are

n ≧ 1 and {Kij
s } ∈ K̂0(R), i = 1, . . . , n, j = 1, . . . ,m, such that

Ks(tm, x, w)

=

n∑
i=1

Ki,1
s (t1, x, w)K

i2
s (t2 − t1, Xs(t1, x), θt1w) · · ·Ki,m

s (tm − tm−1, Xs(tm−1, x), θtm−1w)

for any s ∈ (0, 1] 0 < t1 < . . . < tm and x ∈ RN .
Here θr :W0 →W0, r ∈ [0,∞), is given by (θrw)(t) = w(t+ r)− w(r), w ∈W0, t ∈ [0,∞).

Proposition 21 Let {Ks}s∈(0,1], {Ls}s∈(0,1] ∈ K̂0(R) be multiplicative. Then {Ks + Ls}s∈(0,1]
and {KsLs}s∈(0,1] are multiplicative.

Proof. Let m ≧ 2. Since Ks and Ls are multiplicative, there are n1, n2 ≧ 1, {Kij
s } ∈ K̂0(R),

i = 1, . . . n1, j = 1, . . . ,m, and {Lij
s } ∈ K̂0(R), i = 1, . . . n2, j = 1, . . . ,m, such that

Ks(tn, x, w)

=

n1∑
i=1

Ki,1
s (t1, x, w)K

i2
s (t2 − t1, Xs(t1, x), θt1w) · · ·Ki,m

s (tm − tm−1, Xs(tm−1, x), θtm−1w),

and
Ls(tn, x, w)

=

n2∑
i=1

Li,1
s (t1, x, w)K

i2
s (t2 − t1, Xs(t1, x), θt1w) · · ·Li,m

s (tm − tm−1, Xs(tm−1, x), θtm−1w),

for any s ∈ (0, 1] 0 < t1 < . . . < tm and x ∈ RN .
Then we have

Ks(tn, x, w) + Ls(tn, x, w)
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=

n1∑
i=1

Ki,1
s (t1, x, w)K

i2
s (t2 − t1, Xs(t1, x), θt1w) · · ·Ki,m

s (tm − tm−1, Xs(tm−1, x), θtm−1w),

+

n2∑
i=1

Li,1
s (t1, x, w)K

i2
s (t2 − t1, Xs(t1, x), θt1w) · · ·Li,m

s (tm − tm−1, Xs(tm−1, x), θtm−1w),

and
Ks(tn, x, w)Ls(tn, x, w)

=

n1∑
i=1

n2∑
j=1

(Ki,1
s (t1, x, w)L

i,1
s (t1, x, w))(K

i,2
s (t2 − t1, Xs(t1, x), θt1w)L

j,2
s (t2 − t1, Xs(t1, x), θt1w)))

· · · (Ki,m
s (tm − tm−1, Xs(tm−1, x), θtm−1w)L

j,m
s (tm − tm−1, Xs(tm−1, x), θtm−1w))).

So we have our assertion.

Proposition 22 Let M ≧ 1 and dijks ∈ C∞
b (RN ), i, j = 1, . . . ,M, k = 0, 1, . . . , d, s ∈ (0, 1].

and assume that

sup
s∈(0,1]

sup
x∈RN

| ∂
|α|

∂xα
dijks (x)| <∞

for any α ∈ ZN
≧0.

Let yi ∈ R, and Y i
s (t, x), i = 1, . . . ,M, s ∈ (0, 1], t ≧ 0, x ∈ RN , be the solution to the

following SDE.

Y i
s (t, x) = yi +

d∑
k=0

M∑
ℓ=1

∫ t

0
diℓks (Xs(r, x))Y

ℓ
s (r, x) ◦ dBk(r), i = 1, . . . ,M.

Then we see that {Y i
s }s∈(0,1] belongs to K̂0, and is multiplicative for i, j = 1, . . . ,M.

Also, {
∫ t
0 Y

i
s (r, x)dr} belongs to K̂0, and is multiplicative.

Proof. Let Ei,j
s (t, x), i, j = 1, . . . ,M, s ∈ (0, 1], t ≧ 0, x ∈ RN , be the solution to the following

SDE.

Ei,j
s (t, x) = δij +

d∑
k=0

M∑
ℓ=1

∫ t

0
diℓks (Xs(r, x))E

ℓ,j
s (r, x) ◦ dBk(r) i, j = 1, . . . ,M.

Then it is easy to see that {Ei,j
s }s∈(0,1] ∈ K̂0, and

Y i
s (t, x) =

M∑
j=1

Ei,j
s (t, x)yj .

Note that for t2 > t1 ≧ 0,

Eij
s (t2, x, w) =

M∑
ℓ=1

Eiℓ
s (t2 − t1, X(t1, x, w), θt1w)E

ℓj
s (t1, x, w), i, j = 1, . . . ,M.

So we see that {Eij
s }s∈(0,1], i, j = 1, . . . ,M, are multiplicative.
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Also, we see that ∫ t2

0
Eij

s (r, x, w)dr

=

∫ t1

0
Eij

s (r, x, w)dr +

M∑
ℓ=1

(

∫ t2−t1

0
Eiℓ

s (r,X(t2 − t1, x, w), θt1w)dr)E
ℓj
s (t1, x, w), i, j = 1, . . . ,M.

So we see that {
∫ t
0 E

ij
s (r, x)dr}s∈(0,1], i, j = 1, . . . ,M, are multiplicative. These imply our asser-

tion.

Proposition 23 Let {Ks}s∈(0,1] ∈ K̂0(R). be multiplicative. Then { ∂
∂xiKs}s∈(0,1] is multiplica-

tive for any i = 1, 2, . . . , N.

Proof. Let m ≧ 1, and 0 < t1 < . . . < tm and x ∈ RN . Then from the assumption there are
n ≧ 1 and {Kij

s } ∈ K̂0(R), i = 1, . . .m, j = 1, . . . , n, such that

Ks(tm, x, w)

=
n∑

i=1

Ki,1
s (t1, x, w)K

i2
s (t2 − t1, Xs(t1, x), θt1w) · · ·Ki,m

s (tm − tm−1, Xs(tm−1, x), θtm−1w).

Note that

X(tk+1, x) = X(tk+1 − tk, X(tk, x), θtkw), k = 0, 1, . . . ,m− 1.

Here t0 = 0. Then we have
∂

∂xj
Xi(tk+1, x)

=

N∑
ℓ=1

∂Xi

∂xℓ
(tk+1 − tk, X(tk, x), θtkw)

∂Xℓ

∂xj
(tk+1, x).

This implies that
∂

∂xj
Xi(tk+1, x)

=
N∑

ℓk,ℓk−1,...ℓ1=1

∂Xℓ1

∂xj
(t1, x)(

k−1∏
r=1

∂Xℓr

∂xℓr−1
(tr+1 − tr, X(tr, x), θtrw))

∂Xi

∂xℓk
(tk+1 − tk, X(tk, x), θtkw).

Also, we see that
∂

∂xj
Ks(tn, x, w)

=
n∑

k=1

N∑
ℓ=1

m1∑
i=1

Ki,1
s (t1, x, w)K

i2
s (t2 − t1, Xs(t1, x), θt1w) · · ·Ki,k−1

s (tn − tn−1, Xs(tn−1, x), θtn−1w)

×∂K
i,k
s

∂xℓ
(tk − tk−1, Xs(tk−1, x), θt1w)

∂Xℓ
s

∂xj
(tk − tk−1, x)

×Ki2
s (t2 − t1, Xs(t1, x), θt1w) · · ·Ki,n

s (tn − tn−1, Xs(tn−1, x), θtn−1w).

These observation imply our assertion .
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We see that if {Ks}s∈(0,1] ∈ K̂0(R) is multiplicative, then

P s,K
(nt) =

m∑
i=1

P s,Ki,1
s

(t) P s,Ki,2
s

(t) · · ·P s,Ki,n
s

(t) ,

where {Kij
s } ∈ K0(R), i = 1, . . .m, j = 1, . . . , n, are as in Definition 20.

So by Lemma 19 we have the following.

Theorem 24 Suppose that {Ks}s∈(0,1] ∈ K̂0(R) is multiplicative. Then for any n,m, r ≧ 0,

and u1, . . . , un+m ∈ Ã, there is a C ∈ (0,∞) such that

||Φs(u1) . . .Φs(un)(adj(Φs(v0))
r(P s,K

(t) )Φs(un+1) . . .Φs(un+m)f)||∞ ≦ Ct−(n+m+r)ℓ0 ||f ||∞

for any s, t ∈ (0, 1] and f ∈ C.

Now let us prove Theorem 3(1). Let ρs(t, x) be the solution to the following SDE.

ρs(t, x)

= exp(s1/2
d∑

k=1

∫ t

0
bk(Xs(r, x))dB

k(r)) + s

∫ t

0
b0(Xs(r, x))dB

0(r)), x ∈ RN , t ≧ 0.

Then we see that

ρs(t, x) = 1 + s1/2
d∑

k=1

∫ t

0
bk(Xs(r, x))ρs(r, x) ◦ dBk(r))

+s

∫ t

0
(b0(Xs(r, x)) +

1

2

d∑
k=1

bk(Xs(r, x))
2)ρs(r, x)dB

0(r)).

So we see that {ρs}s∈(0,1] ∈ K̂0 and is multiplicative. Moreover, by using scale invariance of
Wiener process, we can easily see that

P 0
s f(x) = E[ρs(1, x)f(Xs(1, x)), min

r∈[0,1]
X1

s (r, x)) > 0] = (P s,ρ
(1) f)(x)

for any s ∈ (0, 1], and f ∈ C∞
b (RN ).

This observation and Theorem 24 imply that for any n,m, r ≧ 0, u1, . . . , un+m ∈ Ã there is
a C ∈ (0,∞) such that

s(||u1||+·+||un+m||)/2+r||Φ(r(u1)) · · ·Φ(r(un)) adj(V0)r(P 0
s )Φ(r(un+1)) · · ·Φ(r(un+m))f ||∞

≦ C||f ||∞
for any s ∈ (0, 1] and f ∈ C∞

b .
This proves Theorem 3 (1).
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6 Dual Operators

Let T ∈ (0, 1], and B̂k(w)(t) = Bk(T − t), t ∈ [0, T ], k = 0, 1, . . . , d. Also, let X̂ : [0, T ]×RN ×
W d → RN be the solution of the following SDE.

X̂(t, x) = x−
d∑

k=0

∫ t

0
Vk(X̂(t, x)) ◦ dB̂k(t), t ∈ [0, T ], x ∈ RN .

We may assume that X̂(·, ∗, w) : [0, T ]×RN → RN is continuous for µ− a.s. Then we see that
with probability one

X(t, x) = X̂(T − t,X(T, x)), t ∈ [0, T ], x ∈ RN

(c.f. Kunita [2]). So we see that for any f, g ∈ C∞
0 (RN )∫

(0,∞)×RN−1

g(x)(P 0
T f)(x)dx

= Eµ[

∫
(0,∞)×RN−1

dx g(x) exp(

d∑
k=0

∫ T

0
bk(X(r, x)) ◦ dBk(r))

×f(X(T, x))1(0,∞)( min
r∈[0,T ]

(y1 + B̂(r)))].

= Eµ[

∫
(0,∞)×RN−1

dy g(X̂(T, y)) exp(−
d∑

k=0

∫ T

0
bk(X̂(r, y)) ◦ dB̂k(r))f(y)

×det({∂X̂
i

∂yj
(T, y)}i,j=1,...,N1(0,∞)( min

r∈[0,T ]
(y1 + B̂(r)))].

Let X̄ : [0,∞)×RN ×W d → RN be the solution of the following SDE.

X̄(t, x) = x−
d∑

k=0

∫ t

0
Vk(X̄(t, x)) ◦ dBk(t), t ∈ [0,∞), x ∈ RN .

Then we have ∫
(0,∞)×RN−1

g(x)(P 0
T f)(x)dx

=

∫
(0,∞)×RN−1

f(x)Eµ[exp(−
d∑

k=0

∫ T

0
bk(X̄(r, x)) ◦ dBk(r)) det(J̄(T, x))g(X̄(T, x)),

min
r∈[0,T ]

(x1 + s1/2B1(r)) > 0].

Here

J̄(t, x) = {J̄ i
j(t, x)}i,j=1,...,N ) = {

∂X̄i
k

∂xj
(t, x)}i,j=1,...,N .

Since we have

dJ̄ j
i (t, x) = −

N∑
ℓ=1

d∑
k=0

∂V i
k

∂xℓ
(X̄(t, x))J̄ ℓ

j (t, x) ◦ dBk(t),
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we see that

ddet J̄(t, x) = −
d∑

k=0

(div Vk)(X̄(t, x)) det J̄(t, x) ◦ dBk(t),

where

div Vk(x) =
N∑
i=1

∂V i
k

∂xi
(x), x ∈ RN .

So we have

det J̄(t, x) = exp(−
d∑

k=0

∫ t

0
(div Vk)(X̄(r, X̄(t, x)) ◦ dBk(r)).

Let b̄k ∈ C∞
b (RN ), k = 0, 1, . . . , d, be given by

b̄k(x) = −bk(x)− div Vk(x),

and let P̄ 0
t , t ∈ [0,∞) be a linear operator given by

(P̄ 0
t f)(x)

= Eµ[exp(

d∑
k=0

∫ t

0
b̄k(X̄(r, x)) ◦ dBk(r))f(X̄(t, x)), min

r∈[0,t]
(x1 −B1(r)) > 0], f ∈ C∞

b (RN ).

Then we have∫
(0,∞)×RN−1

g(x)(P 0
t f)(x)dx =

∫
(0,∞)×RN−1

f(x)(P̄ 0
t g)(x)dx, t > 0, f, g ∈ C∞

0 (RN ).

Now let X̂ : [0,∞)×RN ×W d → RN be the solution of the following SDE.

X̂(t, x) = x+

d∑
k=1

∫ t

0
Vk(X̂(t, x)) ◦ dBk(t)−

∫ t

0
V0(X̄(t, x)) ◦ dB0(t) t ∈ [0, T ], x ∈ RN .

Also, let b̃k ∈ C∞
b (RN ), k = 0, 1, . . . , d, be given by b̂0 = b̄0, and b̂k = −b̄k, k = 1, . . . , d. Then

we see that
(P̄ 0

t f)(x)

= Eµ[exp(
d∑

k=0

∫ t

0
b̂k(X̂(r, x)) ◦ dBk(r))f(X̂(t, x)), min

r∈[0,t]
(x1 +B1(r)) > 0], f ∈ C∞

b (RN ).

Since a system of {−V0, V1, . . . , Vd} satisfies the assumptions (UFG), (A1) and (A2), we see
by Theorem 24, that for any n,m, r ≧ 0, u1, . . . , un+m ∈ Ã, there is a C ∈ (0,∞) such that

t(||u1||+·+||un+m||)/2+r sup
x∈(0,∞)×RN−1

|(Φ(r(u1)) · · ·Φ(r(un)) adj(V0)r(P̄ 0
t )

Φ(r(un+1)) · · ·Φ(r(un+m))f)(x)|

≦ C sup
x∈(0,∞)×RN−1

|f(x)| t ∈ (0, 1], f ∈ C∞
b (RN ).

for any t ∈ (0, 1] and f ∈ C∞
b .
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Let us denote by Dn, n ≧ 0, the space of linear differential operators A in RN such that there
are c0 ∈ C∞

b (RN ), au1,...,uk
∈ C∞

b (RN ), k ≦ n, u1, . . . , uk ∈ A∗∗∗, with ||u1|| + · · · + ||uk|| ≦ n,
such that

(Af)(x) = c0(x)f(x) +
n∑

k=1

∑
u1,...,uk∈A∗∗∗,||u1||+···+||uk||≦n

au1,...,uk
(x)(Φ(r(u1) · · · r(uk))f)(x),

for x ∈ RN and f ∈ C∞
b (RN ).

It is easy to see the following.

Proposition 25 (1) If A ∈ Dn, and B ∈ Dm, n,m ≧ 0, then AB ∈ Dn+m.
(2) If A ∈ Dn, n ≧ 0, then [V1, A] ∈ Dn+1, and [V0, A] ∈ Dn+2.
(2) If A ∈ Dn, n ≧ 0, then a formal dual operator A∗ ∈ Dn.

Also, we have the following by Proposition 24.

Proposition 26 Let ni ≧ 0, i = 1, 2, m ≧ 0, and Ai ∈ Dni , i = 1, 2. Then there is a C ∈ (0,∞)
such that

sup
x∈(0,∞)×RN−1

|(A1 adj
m(V0)(P̄

0
t )A2f)(x)|

≦ Ct−m−(n1+n2)/2) sup
x∈(0,∞)×RN−1

|f(x)|.

for any t ∈ (0, 1] and f ∈ C∞
0 (RN ).

Note that if W ∈ C∞
b (RN ;RN ) and if we regard W as a vector field over RN , then the

formal adjoint operator W ∗ is given by

W ∗ = −W −
N∑
i=1

∂W i

∂xi
.

Let h ∈ C∞(RN ) be given by h(x) = x1, x ∈ RN . Note that if Wh = 0, we see that∫
(0,∞)×RN−1

g(x)(Wf)(x)dx =

∫
(0,∞)×RN−1

(W ∗g)(x)f(x)dx

for any f, g ∈ C∞
0 (RN ).

Then we have the following.

Proposition 27 Letm ≧ 0. Then there are for any linear operator B in C, there are nm,k,i, n
′
m,k,i ≧

0, k = 0, . . . ,m − 1, i = 1, . . . , 5m, and Am,k,i ∈ Dnm,k,i
, A′

m,k,i ∈ Dn′
m,k,i

, i = 1, . . . , 5m, such

that nm,k,i + n′m,k,i + 2k ≦ 2m, k = 0, . . . ,m− 1, i = 1, . . . , 5m, and that

adj(V ∗
0 )

m(B)

= (−1)madj(V0)
m(B) +

m−1∑
k=0

5m∑
i=1

Am,k,iadj(V0)
k(B)A′

m,k,i.

Proof. It is obvious that our assertion is valid for m = 0. Note that

adj(V ∗
0 )

m+1(B)

= −adj(V0)(adj(V ∗
0 )

m(B))− (div V0)(adj(V
∗
0 )

m(B)) + adj(V ∗
0 )

m(B)(div V0)
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So if our assertion is valid for m, we have

adj(V0)(adj(V
∗
0 )

m(B))

= (−1)madj(V0)
m+1(B) +

m−1∑
k=0

5m∑
i=1

(adj(V0)(Am,k,i)adj(V0)
k(B)A′

m,k,i

+

m−1∑
k=0

5m∑
i=1

Am,k,iadj(V0)
k+1(B)A′

m,k,i +

m−1∑
k=0

5m∑
i=1

Am,k,iadj(V0)
k(B)adj(V0)(A

′
m,k,i).

So we see that our assertion is valid for m+ 1. This completes the proof.

Now let us prove Theorem 3 (2).
Let ni ≧ 0, i = 1, 2, and Bi ∈ Dni , i = 1, 2. Then we see that for f, g ∈ C0(R

N )∫
(0,∞)×RN−1

g(x)(B1 adj(V0)
m(P 0

t )B2f)(x)dx

=

m∑
k=0

(−1)k
(
n

k

)∫
(0,∞)×RN−1

g(x)(B1V
k
0 P

0
t V

m−k
0 B2f)(x)dx

=

m∑
k=0

(−1)k
(
n

k

)∫
(0,∞)×RN−1

((V ∗
0 )

kB∗
1g)(x)(P

0
t V

m−k
0 B2f)(x)dx

=

m∑
k=0

(−1)k
(
n

k

)∫
(0,∞)×RN−1

(B∗
2(V

∗
0 )

n−kP̂ 0
t (V

∗
0 )

m−kB∗
1g)(x)f(x)dx

= (−1)m
∫
(0,∞)×RN−1

(B∗
2adj(V

∗
0 )P̂

0
t )B

∗
1g)(x)f(x)dx.

So by Propositions ??, ??, we see that there is a C ∈ (0,∞) such that

|
∫
(0,∞)×RN−1

g(x)(B1 adj(V0)
m(P 0

t )B2f)(x)dx|

≦ Ct−m−(n1+n2)/2( sup
x∈(0,∞)×RN−1

|g(x)|)(
∫
(0,∞)×RN−1

|f(x)|dx)

for any t ∈ (0, 1), and f, g ∈ C∞
0 (RN ). This implies that∫

(0,∞)×RN−1

|(B1 adj(V0)
m(P 0

t )B2f)(x)|dx

≦ Ct−m−(n1+n2)/2(

∫
(0,∞)×RN−1

|f(x)|dx)

for any t ∈ (0, 1), and f ∈ C∞
0 (RN ).

This proves Theorem 3 (2).
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