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Abstract. A Hamilton-Jacobi equation with Caputo’s time-fractional deriv-
ative of order less than one is considered. The notion of a viscosity solution is

introduced to prove unique existence of a solution to the initial value problem
under periodic boundary conditions. For this purpose comparison principle as
well as Perron’s method is established. Stability with respect to the order of

derivative as well as the standard one is studied. Regularity of a solution is
also discussed. Our results in particular apply to a linear transport equation
with time-fractional derivatives with variable coefficients.

1. Introduction

Let α ∈ (0, 1] and 0 < T < ∞ be given constants. We consider the initial-value
problem for the Hamilton-Jacobi equation of the form

(1.1) ∂αt u+H(t, x, u,Du) = 0 in (0, T ]× Td =: QT

and

(1.2) u|t=0 = u0 in Td.

Here Td := Rd/Zd is a d-dimensional torus, u : QT → R is an unknown function
and H : QT × R × Rd → R is a given function called a Hamiltonian. Moreover,
Du denotes the spatial gradient, i.e., Du = (∂u/∂x1, · · · , ∂u/∂xd) and ∂αt u denotes
Caputo’s (time-)fractional derivative which is defined by

(1.3) (∂αt f)(t) :=


1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds for α ∈ (0, 1),

f ′(t) for α = 1,

where Γ(·) is the usual gamma function. Here, throughout this paper, a function v
on Td is regarded as a function defined on Rd with Zd-periodically, i.e., v(x+ z) =
v(x) for all x ∈ Rd and z ∈ Zd. Although some part of our arguments can be
easily extended to other boundary conditions we now restrict ourselves only under
periodic boundary conditions.

The goal of this paper is to extend a notion of viscosity solutions to (1.1)-(1.2)
and to establish unique existence, stability and some regularity results of viscosity
solutions for (1.1)-(1.2). Here we will consider only for α ∈ (0, 1) since the case of
α = 1 has been well studied. All results excepts for Section 6 and Section 7 will be
established under the following assumptions:

(A1) H : QT × R× Rd → R is continuous,
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(A2) there is a modulus ω : [0,∞) → [0,∞) such that

|H(t, x, r, p)−H(t, y, r, p)| ≤ ω(|x− y|(1 + |p|))
for all (t, x, y, r, p) ∈ [0, T ]× Rd × Rd × R× Rd,

(A3) r 7→ H(t, x, r, p) is nondecreasing for all (t, x, p) ∈ [0, T ]× Td × Rd,
(A4) u0 : Td → R is continuous.

We emphasize that these assumptions are fairly standard for α = 1. Of course
there might be several generalizations but we do not touch them. Note that we do
not assume coercivity, i.e.,

(1.4) lim inf
r→∞

{H(t, x, r, p) | (t, x, r) ∈ QT × R, |p| ≥ r} = +∞.

Hence our results apply to a transport equation

(1.5) ∂αt u+ b ·Du = 0

for b = b(t, x) : QT → Rd.
Since a notion of viscosity solutions was introduced by Crandall and Lions [8], its

theory has developed rapidly and by now there is a large number of literature. The
reader is referred to [1], [4] and [24] for basic theory and to [7] and [12] for more
advanced theory. The theory of viscosity solutions had been applied initially to
local partial differential equations (pdes for short) and soon has been extended by
Soner [39] to pdes with space-fractional derivatives which are defined non-locally.
See also [5], [2] and references therein. In these papers the authors are commonly
interested in Lévy operators, which can be represented (formally) as

(1.6) g[f ](x) = −
∫
Rd

(
f(x+ z)− f(x)− Df(x) · z

1 + |z|2

)
dµ(z),

where dµ is the Lévy measure. An example of Lévy operators is the fractional
Laplacian:

(1.7) (−∆)αf(x) = C

∫
Rd

f(x)− f(y)

|x− y|d+2α
dy,

where C is a constant depending on d and α.
Above works are motivated from applied fields such as physics, engineering and

finances. Applicabilities of pdes with time-fractional derivatives has been discussed
by many researchers in wide fields as well; [10], [11], [38] and [40] for instance. We
here refer to several mathematical works for pdes with Caputo’s time-fractional
derivative (CTFD for short) in order to motivate our research. Although many
definitions of a different kind of fractional derivatives have been suggested, we will
not touch them in this paper and instead the reader is referred to [9], [13], [23],
[22], [35], [37] and [44]. A typical example of pdes with CTFD is

(1.8) ∂αt u+ L(u) = F,

where L consists of a symmetric uniformly elliptic operator and a transport term
and F = F (t, x) is a given function. This can be considered as a equation describing
diffusion phenomena in complex media like fractals and then is called anomalous
diffusion or singular diffusion. There seem to be several previous works for (1.8) (see
[36] and references therein) and Luchko’s works have a close relationship with ours.
He established a maximum principle for Caputo’s fractional derivative in [30] and,
based on it, proved a uniqueness of classical solutions for an initial-boundary value
problem of (1.8) with the type of L(u) = − div(p(x)Du) + q(x)u, where typically
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p is smooth and uniformly positive with continuous q. In [31] he established an
existence of classical solutions for same equations as well. His research has been
continued in a work by Sakamoto and Yamamoto [36], which is a pioneer work in
the theory of weak solutions for (1.8). They defined weak solutions in the sense of
distribution for a similar equation as one Luchko considered and established well-
posedness in order to consider inverse problems. Researches on this line have been
growing rapidly; see, e.g., [29] for multi-term time-fractional derivatives and [32]
for (1.1) with nonlinear source terms.

Anomalous diffusion equations are modelled by the continuous-time random
walk (CTRW for short) introduced by Montroll and Weiss ([34]). More recently,
Kolokoltsov and Veretennikova ([25]) extended the notion of CTRW so that its pro-
cesses can be controlled and then derived (heuristically) Hamilton-Jacobi-Bellman
equations with CTFD, fractional Laplacian and some additional term. We note
that this does not include second order spatial-derivative. In [26] they also defined
mild solutions that belong to C1([0, T ];C1

∞(Rd)) and proved well-posedness for an
initial-value problem of

∂αt u = −a(−∆)β/2u+H(t, x,Du).

Here C1
∞(Rd) is a set of C1 functions that decreasing rapidly at infinity and β ∈

(1, 2] and a > 0 are given constants. In the case of [26] it is assumed that mild
solutions can be defined thanks to fractional Laplacian. On the other hand we need
to deal with solutions in the weak sense also in the space direction, so viscosity
solutions are expected to be reasonable in our case. However, for this direction
there seems to be only one result by Allen ([3]) for CTFD by a viscosity approach
as far as we know. He has discussed regularity problems of viscosity solutions for
space-time nonlocal equations of the form

∂αt u− sup
i

inf
j

(∫
Rd

u(x+ y)− u(x)

|y|d+2σ
aij(t, x, y)dy

)
= f,

where aij is positive, bounded function that is symmetric with respect to the third
variable and f is a given function. His definition of viscosity solutions seems to be
based on one of pdes with space-fractional derivatives mentioned above. However,
the form of Caputo’s fractional derivative is different from (1.6) or (1.7). Thus, it
was not clear why Allen’s definition of viscosity solutions is useful.

We explained so far second-order pdes or first-order pdes including fractional
Laplacian with CTFD. For first-order pdes with CTFD but without any higher-
order terms than one such as (1.5), a formula of solution for (1.5) is given by
Mainardi, Mura and Pagnini ([33]) for instance, but for equations with constant
coefficients. However, there seems to be no theoretical studies. Our aim of this
research is to construct the synthetic theory of viscosity solutions so that (fully
nonlinear) pdes with CTFD mentioned above can be considered. However, exten-
sions to second order equations expects some technical issues, so we only treat first
order equations in this paper as the first step. For second order problems the reader
is referred to one of forthcoming papers of the second author.

We motivate our definition of viscosity solutions (Definition 2.5) by recalling the
case of α = 1. Let us suppose that u is a classical subsolution of (1.1), that is,

(∂αt u)(t, x) +H(t, x, u(t, x), Du(t, x)) ≤ 0
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for all (t, x) ∈ QT and that

(1.9) max
[0,T ]×Rd

(u− ϕ) = (u− ϕ)(t̂, x̂)

for a text function ϕ. The classical maximum principle in space implies that Du =
Dϕ at (t̂, x̂). With respect to time, the maximum principle for CTFD ([30, Theorem
1]) implies that ∂αt u ≥ ∂αt ϕ at (t̂, x̂). Hence, that u is a classical subsolution yields
to

(1.10) (∂αt ϕ)(t̂, x̂) +H(t̂, x̂, u(t̂, x̂), Dϕ(t̂, x̂)) ≤ 0.

In the spirit of the case of α = 1, it is natural to define weak subsolutions of
(1.1) by (1.10). Let us call it provisional subsolutions in this paper. Similarly, if u
is a classical supersolution and we replace the maximum by a minimum in (1.9),
then the converse inequality of (1.10) is led. Then let us call such u provisional
supersolutions of (1.1). Let us call u a provisional solution of (1.1) if it is a both
provisional sub- and supersolution of (1.1).

Provisional solutions looks easy to deal with but it is technically difficult to
establish a comparison principle, so we do not know whether it is a proper notion
of solution or not (see Section 7 for detail). One reason is that the so-called doubling
variable method (see, e.g., [12, Section 3.3]) does not work and a main problem is,
roughly speaking, that (∂αt ϕ)(t̂, x̂) in (1.10) is not an appropriate substitute of
(∂αt u)(t̂, x̂). In a proof of comparison principle in the theory of viscosity solutions,
we often aim to derive a contradiction by using the doubling variable method under
a suitable supposition. For provisional sub/supersolutions, we cannot derive a
contradiction because of unnecessary values caused by ∂αt ϕ.

This fact makes us realize that it is necessary to bring a function that has a closer
value to ∂αt u at each point. After integration by parts and changing the variable of
integration, we get another form of ∂αt u of the form

(1.11) K0[u](t, x) =
u(t, x)− u(0, x)

tαΓ(1− α)
+

α

Γ(1− α)

∫ t

0

(u(t, x)− u(t− τ, x))
dτ

τα+1
.

Here the integral is interpreted as an improper integral

(1.12)

∫ t

0

(u(t, x)− u(t− τ, x))
dτ

τα+1
= lim

r↘0

∫ t

r

(u(t, x)− u(t− τ, x))
dτ

τα+1
.

It is easy to see that ∂αt u = K0[u] if u is smooth. Since the convergence of (im-
proper) integration (1.12) is not trivial, we apply test functions instead of unknown
functions near the singular time, i.e., the lower end of interval. This idea is taken
in our definition. By the way, the integral term in (1.11) is close to the frac-
tional Laplacian (1.7) (or Lévy operators (1.6) without a derivative term in an
integrand). Our definition is able to be regarded as an analogy of one for pdes with
space-fractional derivatives referred above. It is worth clarifying a relationship be-
tween our way to handle CTFD and Allen’s ([3]). To give a definition of viscosity
solutions he introduced the function

K̃0[u](t, x) =
α

Γ(1− α)

∫ t

−∞

ũ(t, x)− ũ(τ, x)

(t− τ)α
dτ,

where ũ : (−∞, T ] × Rd → R is an extension of u defined by ũ(t, ·) = u(0, ·) for
t < 0. He defined a viscosity sub/supersolution by substituting a test function near
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the singularity of the integral. As a result, our way is the same as Allen’s since

clearly K0[u] = K̃0[u].
Let us give our strategy of proofs in this paper. We will show that (1.12) exists

as a finite number at points such that u−ϕ attains a maximum/minimum (Lemma
2.9), where ϕ is a test function. This is an analogy of [5] or [6, Lemma 3.3] and it is
a key fact in a proof of our comparison principle. An idea of the proof of compar-
ison principle is the same as usual ones, that is, doubling variable method under
contradiction. We get a term that yields a contradiction from a non-integration
term in a difference of (1.11) for viscosity sub- and supersolutions.

A proof of existence of viscosity solutions follows Perron’s method, that is, a con-
struction of maximal subsolutions. Since (1.1) is nonlocal, we need some efforts to
handle nonlocal terms compared with the case of local equations. For this purpose
we will employ the idea used in [16, Theorem 3] for example.

We will establish stability results under limit operation from two perspectives.
One of them is for a family of solutions of (1.1) with a Hamiltonian depending on
a parameter. Our statement and proof are almost the same as for α = 1 (see, e.g.,
[4]). The other stability discussed here is the case when time-derivative’s orders
are regarded as parameters. The latter can be proved under the same idea as the
former by defining analogous functions of half-relaxed limits.

We will show that viscosity solutions are Lipschitz continuous in space and α-
Hölder continuous in time under some additional assumptions on H and u0. When
the regularity problems for viscosity solutions are discussed, the coercivity con-
dition is often assumed. However, transport equations are not coercive. In view
of applications we will derive the above regularity results without the coercivity
assumption. Our proofs follow basically ones for α = 1 ([1]) but a proof of the
temporal regularity may be not standard. We will construct a viscosity solution
of (1.1)-(1.2) that is α-Hölder continuous in time by Perron’s method for a family
of viscosity subsolutions of (1.1)-(1.2) that is α-Hölder continuous in time. In this
argument we should be carefully for a dependence of the Hölder constant of vis-
cosity subsolutions. We will show that viscosity solutions are Hölder continuous in
time at the initial time, where its Hölder constant depends only on T , α, H and
u0. By restricting viscosity subsolutions to Hölder continuous functions with such
a constant, we will obtain viscosity solution with the desired regularity.

Our results are new even for transport equations (1.5) with variable coefficients
although a formula of solution for constant coefficients is known only in the one
dimensional case (see Section 6). For this reason it is worth summarizing here.

Theorem 1.1. Let b : QT → Rd be a continuous function. Assume that there is
constants C1 > 0 and C2 > 0 such that

(1.13) |b(t, x)− b(t, y)| ≤ C1|x− y|

and

(1.14) |u0(x)− u0(y)| ≤ C2|x− y|

for all (t, x, y) ∈ (0, T ]×Rd ×Rd. Then there exists at most one viscosity solution
u ∈ C(QT ) of (1.5)-(1.2). Moreover there exists a constant C3 > 0 such that

(1.15) |u(t, x)− u(s, y)| ≤ C3(|t− s|α + |x− y|)

for all (t, x, s, y) ∈ ([0, T ]× Rd)2.
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If one does not require (1.15), conditions (1.13) and (1.14) can be weakened so
that Hamiltonian H(t, x, p) = b(t, x) · p satisfies (A1) and (A2).

We finally compare with viscosity solutions with weak solutions in the sense of
distribution (weak solution for short) and mention several open problems. A weak
solution for linear second order problems (1.8) given by Sakamoto and Yamamoto
([36]) was constructed by Galerkin method. Since approximate equations have
no comparison principle, it is difficult to compare two notions under the current
circumstances. Of course, the case of α = 1 has the same difficulty and, even such
simple looking case, there seems to be few literatures ([15], [19], [20] and [21]). In
order to overcome such a difficulty, analyses for further regularities of weak solutions
in the both senses will be needed.

As another direction of researches for weak solutions of pdes with CTFD, we
should mention fractional derivative of the form

(1.16) (Dα
t f)(t) :=

1

Γ(1− α)

d

dt

∫ t

0

f(τ)− f(0)

(t− τ)α+1
dτ.

The original definition of Caputo’s fractional derivative by himself was actually
given as this form and hence this derivative is also called Caputo’s fractional de-
rivative. We note that Dα

t f = ∂αt f almost everywhere on [0, T ] if f is absolutely
continuous on [0, T ]. See [9, Chapter 3] for a brief history of Caputo’s fractional de-
rivative and the above relationship between two definitions. There are some works
for weak solutions of pdes with (1.16). Zacher ([41]) considered abstract evolutional
equations of parabolic type including

Dα
t u− div(ADu) + b ·Du+ cu = 0

and, by introducing a notion of a weak solution, he established a unique existence.
Here, A = A(t, x) is a symmetric and positive defined matrix-valued function with
L∞ elements and b = b(t, x) and c = c(t, x) are L∞ functions. See [42], [43] and
[28] for related works. An analysis of weak solutions for pdes with (1.16) involves
the problem of the trace u(0, ·) of u up to t = 0 since Dα

t u includes the value u(0, ·).
This needs some regularity up to t = 0 which forced as to restrict range of α, say,
for example α > 1/2 or regularity of some of given functions A, b and c compared
with the case α = 1 ([27]). We note that such a trace problem was not considered in
[41]; moreover, assumptions of [41] seem to be too weak to get necessary regularity.
In view of such restrictions, our viscosity solutions might look a better notion of
weak solutions since we are able to obtain a continuous (viscosity) solution for
every α ∈ (0, 1) with no special assumptions on H. However, we cannot compare
two notions since it is not guaranteed that our solution u is absolutely continuous
in time, so it is not clear whether or not Dα

t u = ∂αt u for our solution. Even for
this problem, further analyses from both aspects of viscosity solutions and weak
solutions are needed.

This paper is organized as follows: In Section 2 we give a definition of viscosity
solutions after and summarize some facts used in the other sections. In Section 3 we
prove a comparison principle and in Section 4 we establish an existence result. In
Section 5 we prove two types of stability results and in Section 6 we study regularity
problem for (1.1). Finally, in Section 7 we give a definition of provisional solutions
as another possible notion of weak solutions and mention the technical difficulty
for them.



HJ EQUATIONS WITH TIME-FRACTIONAL DERIVATIVE 7

2. Definition and properties of solutions

In this section we assume that Hamiltonian H is merely continuous on QT ×R×
Rd.

2.1. Preliminaries. To give a definition of viscosity solutions we first introduce a
function space of the type

C1([a, b]×O) := {ϕ ∈ C1((a, b]×O)∩C([a, b]×O) | ∂tϕ(·, x) ∈ L1(a, b) for every x ∈ O}.

Here a, b ∈ R are constants such that a < b, O is a domain in Rd, Td and Rd × Rd

and L1(a, b) is the space of Lebesgue integrable functions on (a, b). Note that
u ∈ C1([a, b]×O) may not be C1 up to t = a. This space will be used as a space of
test functions as well as of classical solutions of (1.1)-(1.2). Here we define classical
solutions of (1.1)-(1.2) as follows:

Definition 2.1 (Classical solutions). A function u ∈ C1(QT ) is called a classical
solution of (1.1)-(1.2) if u(0, ·) = u0 on Td and

(∂αt u)(t, x) +H(t, x, u(t, x), Du(t, x)) = 0

for all (t, x) ∈ QT .

Note that ∂αt ϕ is bounded in (0, T ]× Rd if ϕ ∈ C1([0, T ]× Rd); see [9, Theorem
2.1]. We are tempted to use C1([a, b]×O) as a space of classical solutions since the
integrability condition for ∂tϕ(·, x) is satisfied if ϕ belongs to it: C1([a, b] × O) ⊂
C1([a, b] × O). However, the class C1([a, b] × O) is too narrow to define classical
solutions since it is necessary to include functions that have a fractional power with
respect to time at the initial time such as tα. That is why we do not assume the
differentiability at the initial time.

Example 2.2. As an example let us consider a simple ordinary differential equation
of the form

∂αt f + f = 0 in (0,∞)

with prescribed data f(0) = c ∈ R. According to [9, Theorem 4.3] a solution of
this equation is given as f(t) = cEα(−tα), where Eα is the Mittag-Leffler function
defined by

Eα(z) :=
∞∑
j=0

zj

Γ(jα+ 1)
.

In particular, E1/2(−
√
t) = et erfc(

√
t), where erfc is the complementary error

function defined by

erfc(z) :=
2√
π

∫ ∞

z

e−t2dt.

The function f is not differentiable at t = 0 though it is continuous up to t = 0; we
leave the verification to the reader. Therefore classical solutions of equations with
Caputo’s (time-)fractional derivative are not always differentiable at the initial time
even if an initial datum is smooth.

For a measurable function f : [0, T ] → R we define functions Jr[f ],Kr[f ] :
(0, T ] → R by

Jr[f ](t) :=
α

Γ(1− α)

∫ r

0

(f(t)− f(t− τ))
dτ

τα+1
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and

Kr[f ](t) :=
f(t)− f(0)

tαΓ(1− α)
+

α

Γ(1− α)

∫ t

r

(f(t)− f(t− τ))
dτ

τα+1

with a parameter r ∈ (0, t). For a measurable function f : [0, T ] × Rℓ → R with
ℓ ≥ 1 we define Jr[f ],Kr[f ] : (0, T ] × Rℓ → R by Jr[f ](t, x) := Jr[f(·, x)](t) and
Kr[f ](t, x) := Kr[f(·, x)](t) for (t, x) ∈ (0, T ]× Rℓ.

Proposition 2.3 (Integration by parts). Let f : [a, T ] → R be a function such that
f ∈ C1((a, T ]) ∩ C([a, T ]) and f ′ ∈ L1(a, T ), where a < T . Then

1

Γ(1− α)

∫ t

a

f ′(τ)

(t− τ)α
dτ =

f(t)− f(a)

(t− a)αΓ(1− α)
+

α

Γ(1− α)

∫ t−a

0

(f(t)−f(t−τ)) dτ

τα+1
.

Proof. The left-hand side (multiplied by Γ(1− α)) can be calculated as∫ t

a

f ′(τ)

(t− τ)α
dτ =

∫ t

a

d
dτ (f(τ)− f(t))

(t− τ)α
dτ

=

[
f(τ)− f(t)

(t− τ)α

]t
a

− α

∫ t

a

f(τ)− f(t)

(t− τ)α+1
dτ

= lim
τ→t

f(τ)− f(t)

(t− τ)α
+
f(t)− f(a)

(t− a)α
+ α

∫ t

a

f(t)− f(τ)

(t− τ)α+1
dτ.

Thanks to the smoothness of f , the first term vanishes. By the change of variable
s := t− τ we obtain the desired result. □

Let us share some words for an integral

I[f ](t) :=

∫ b

a

f(t, τ)
dτ

τα+1

for constants a, b ∈ R with 0 ≤ a < b ≤ T and a measurable function f : [0, T ] ×
[0, T ] → R. We say that the integral I[f ] makes sense if either I[f+] or I[f−] is
finite (in the sense of Lebesgue integrals) and that I[f ] exists if both I[f±] are
finite. Here f± := max{±f, 0}. It is necessary to pay attention when a = 0. Then
we regard I[f ] as an improper integral by I[f ](t) = limr↘0 Ir[f ], where

Ir[f ](t) =

∫ b

r

f(t, τ)
dτ

τα+1
.

Thus I[f ] exists if Ir[f
±] are finite for each r and limr↘0 Ir[f

±] exist as a finite
number. Note that, if τ 7→ |f(t, τ)|/τα+1 is integrable on (0, b), then I[f ] exits and
it agrees with the Lebesgue integral; this is a direct consequence of the dominated
convergence theorem. We abuse above words not only for Jr but also for Kr

including a non-integration term.
For a set E ⊂ Rℓ with ℓ ≥ 1, let USC(E) and LSC(E) be sets of real-valued

upper and lower semicontinuous functions on E, respectively. Note that semicon-
tinuous functions are measurable.

Proposition 2.4 (Properties of Jr andKr). Let f ∈ USC([0, T ]) (resp. LSC([0, T ]))
and g ∈ C1((0, T ]). Then

(i) for each t ∈ (0, T ], Jr[g](t) exists for all r ∈ (0, t),
(ii) for each t ∈ (0, T ], Kr[f ](t) makes sense and is bounded from below (resp.

above) for all r ∈ (0, t),
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(iii) K0[f ](t̂) makes sense and is bounded from below (resp. above) if f − g
attains a maximum (resp. minimum) at t̂ ∈ (0, T ] over (0, T ], i.e.,

sup
(0,T ]

(f − g) = (f − g)(t̂) (resp. inf
(0,T ]

(f − g) = (f − g)(t̂)),

Moreover for each j ≥ 0 let tj ∈ (0, T ], rj ∈ (0, tj) and αj ∈ (0, 1) be sequences

such that limj→∞(tj , rj , αj) = (t̂, r̂, α) ∈ (0, T ]×Rd× [0, t̂)× (0, 1). Let J
αj
r denote

a function Jr associated with α = αj. Then

(iv) limj→∞ J
αj
rj [g](tj) = Jα

r̂ [g](t̂).

Proof. (i) Fix t ∈ (0, T ] and r ∈ (0, t) arbitrarily. Since g is Lipschitz continuous
near t due to the smoothness of g, for some constant C > 0∫ r

0

|g(t)− g(t− τ)| dτ
τα+1

≤
∫ r

0

Cτ
dτ

τα+1
=
Cr1−α

1− α
.

Our assertion follows immediately from this.
(ii) Fix t ∈ (0, T ] and r ∈ (0, t) arbitrarily. Assume that f ∈ USC([0, T ]). Then

f attains a maximum and hence

f(t)−max
[0,T ]

f ≤ f(t)− f(t− τ)

for all τ ∈ (r, t). The left-hand side multiplied by τ−α−1 is integrable on (r, t) since
we integrate away from τ = 0. Therefore the negative part [f(t)− f(t− τ)]−/τα+1

is integrable on (r, t). This implies that Kr[f ](t) makes sense and is bounded from
below. The similar argument is applied for f ∈ LSC([0, T ]). The above yields our
assertion.

(iii) Define h := g + (f − g)(t̂) and

(2.1) v(τ) :=

{
h(t̂)− h(t̂− τ) for τ ∈ [0, t̂/2],

f(t̂)− f(t̂− τ) for τ ∈ (t̂/2, t̂].

Since f −h attains a maximum at t̂ over (0, T ], we see f ≤ h on (0, T ]. In addition,
(f − h)(t̂) = 0 and thus

h(t̂)− h(t̂− τ) ≤ f(t̂)− f(t̂− τ)

on (0, t̂). By (i) and a similar argument as the proof of (ii) with r = t̂/2 it turns out
that the negative part v−(τ)/τα+1 in integrable on (0, t̂), so is [f(t̂)−f(t̂−τ)]−/τα+1

since v(τ) ≤ f(t̂)− f(t̂− τ) on (0, t̂). This yields our assertion for f ∈ USC([0, T ]).
Another can be proved similarly.

(iv) Thanks to the smoothness of g the dominated convergence theorem can be
applied and ensures our assertion. More precisely, since infj≥0(tj − rj) > 0 and
g ∈ C1((0, T ]), there exists a constant C1 > 0 such that |g(tj) − g(tj − τ)| ≤ C1τ
on (0, rj). In particular, we may assume that C1 does not depend on j since

limj→∞ tj = t̂ > 0. Thus we have

(2.2) sup
j≥0

(|g(tj)− g(tj − τ)|1(0,rj)(τ))τ
−α−1 ≤ C11(0,r̂)(τ)τ

−α

for all τ ∈ [0, T ]. Here 1I is the indicator function on an interval I, i.e., 1I = 1 in
I and 0 elsewhere. The right-hand side is integrable on [0, T ]. It remains to check
the convergence of (g(tj)− g(tj − ·))1[0,rj ](·) but this is obvious. □
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2.2. Definition of solutions. We now give our definition of viscosity solutions for
(1.1).

Definition 2.5 (Viscosity solutions). A function u ∈ USC(QT ) (resp. LSC(QT ))
is called a viscosity subsolution of (1.1) if, for any constants a, b ∈ [0, T ] with a < b
and an open ball B in Rd,

(2.3) Jt̂−a[ϕ](t̂, x̂) +Kt̂−a[u](t̂, x̂) +H(t̂, x̂, u(t̂, x̂), Dϕ(t̂, x̂)) ≤ 0 (resp. ≥ 0)

whenever u − ϕ attains a maximum (resp. minimum) at (t̂, x̂) ∈ (a, b] × B over
[a, b]×B for ϕ ∈ C1([0, T ]× Rd).

If u ∈ C(QT ) is both a viscosity sub- and supersolution of (1.1), then we call u
a viscosity solution of (1.1).

Remark 2.6. (i) For an arbitrary function u : QT → R an upper semicontinuous
envelope u∗ : QT → R ∪ {±∞} and a lower semicontinuous envelope u∗ : QT →
R ∪ {±∞} are defined by

u∗(t, x) := lim
δ↘0

sup{u(s, y) | (s, y) ∈ QT ∩Bδ(t, x)}

and u∗ := −(−u)∗. Here Bδ(t, x) is an open ball of radius δ centered at (t, x) and

Bδ(t, x) is its closure. As for α = 1 a viscosity sub- and subsolution of (1.1) can be
defined for arbitrary functions u : QT → R by using u∗ (for a subsolution) and u∗
(for a supersolution) in Definition 2.5, where it is further assumed that u∗ < +∞
and u∗ > −∞ on QT ; cf. [12, Definition 2.1.1]. Note that functions u∗ and u∗ are
upper semicontinuous and lower semicontinuous on QT , respectively (see, e.g., [4,
Proposition V.2.1]) so they are measurable.

(ii) Although we restrict ourselves for spatially periodic functions, our definition
can be easily extended for (0, T ]×Ω, where Ω is a domain in Rd. In fact, the com-
parison principle holds for a general bounded domain with necessary modifications.

If a viscosity subsolution (resp. supersolution) u of (1.1) satisfies u(0, ·) ≤ u0
(resp. u(0, ·) ≥ u0) on Td, u is called a viscosity subsolution (resp. viscosity su-
persolution) of (1.1)-(1.2). We often suppress the word “viscosity” unless confusion
occurs.

2.3. Properties and equivalences of solutions.

Proposition 2.7 (Replacement of test functions). A function u ∈ USC(QT ) (resp.
LSC(QT )) is a subsolution (resp. supersolution) of (1.1) if and only if, for any
a, b ∈ [0, T ] with a < b and an open ball B in Rd, (2.3) holds whenever

(i) u− ϕ attains a zero maximum (resp. minimum) at (t̂, x̂) ∈ (a, b]×B over
[a, b]×B for ϕ ∈ C1([0, T ]× Rd) such that (u− ϕ)(t̂, x̂) = 0, or

(ii) u−ϕ attains a strict maximum (resp. minimum) at (t̂, x̂) ∈ (a, b]×B over
[a, b]×B for ϕ ∈ C1([0, T ]× Rd), i.e.,

max
[a,b]×B

(u− ϕ) = (u− ϕ)(t̂, x̂) > (u− ϕ)(t, x)

(resp. min
[a,b]×B

(u− ϕ) = (u− ϕ)(t̂, x̂) < (u− ϕ)(t, x))

for all (t, x) ∈ [a, b]×B.
(iii) u − ϕ attains a maximum (resp. minimum) at (t̂, x̂) ∈ (a, b] × B over

[a, b]×B for ϕ ∈ C1([a, b]×B).
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Proof. We only prove for a subsolution since a similar argument is applied for a
supersolution. It is enough to prove ‘only if’ parts of both assertions since ‘if’ parts
are obvious.

(i) Set ψ := ϕ + (u − ϕ)(t̂, x̂). Then u − ψ attains a maximum at (t̂, x̂) over
[a, b]×B and (u− ψ)(t̂, x̂) = 0. Since u is a subsolution of (1.1),

Jt̂−a[ψ](t̂, x̂) +Kt̂−a[u](t̂, x̂) +H(t̂, x̂, u(t̂, x̂), Dψ(t̂, x̂)) ≤ 0.

It is easy to verify from the definition of Jr[ϕ] that Jt̂−a[ψ](t̂, x̂) = Jt̂−a[ϕ](t̂, x̂).

Clearly, Dψ(t̂, x̂) = Dϕ(t̂, x̂), so that (2.3) holds.
(ii) For j ≥ 0 we set ϕj(t, x) := ϕ(t, x) + j−1|t − t̂|2 + |x − x̂|2 on (0, T ] × Rd.

Then ϕj ∈ C1([0, T ] × Rd) and u − ϕj attains a maximum at (t̂, x̂) over [a, b] × B.
Since u is a subsolution of (1.1),

Jt̂−a[ϕj ](t̂, x̂) +Kt̂−a[u](t̂, x̂) +H(t̂, x̂, u(t̂, x̂), Dϕj(t̂, x̂)) ≤ 0.

By the definition of ϕj we have

Jt̂−a[ϕj ](t̂, x̂) = Jt̂−a[ϕ](t̂, x̂)−
α

jΓ(1− α)

∫ t̂

0

τ2
dτ

τα+1

The last integral in the right-hand side is clearly finite, so vanishes as j → ∞. Since
Dϕj(t̂, x̂) = Dϕ(t̂, x̂), we reach (2.3).

(iii) Choose δ > 0 so that 2δ < t̂− a and B2δ(x̂) ⊂ B. Let ξ1, ξ2 : [0, T ]× Rd →
[0, 1] be C∞ functions such that ξ1+ξ2 = 1 in [0, T ]×Rd, ξ1 = 1 on [t̂−δ, t̂]×Bδ(x̂)
and ξ2 = 1 on ([0, T ]×Rd)\ ([t̂−2δ, t̂]×B2δ(x̂)). Set ψ := ξ1ϕ+ξ2M +(u−ϕ)(t̂, x̂)
on [0, T ]×Rd, whereM := maxQT

u+1. Then ψ ∈ C1([0, T ]×Rd) and u−ψ attains

a zero maximum (t̂, x̂) over [t̂ − δ, t̂] × B ⊂ [a, b] × B. Since u is a subsolution of
(1.1),

Jδ[ψ](t̂, x̂) +Kδ[u](t̂, x̂) +H(t̂, x̂, u(t̂, x̂), Dψ(t̂, x̂)) ≤ 0.

It is easy that Jδ[ψ](t̂, x̂) = Jδ[ϕ](t̂, x̂) and Dψ(t̂, x̂) = Dϕ(t̂, x̂). Moreover, since
u(t̂, x̂)− u(t̂− τ) ≥ ϕ(t̂, x̂)− ϕ(t̂− τ, x̂) on [0, t̂− a],

Kδ[u](t̂, x̂) ≥ Kt̂−a[u](t̂, x̂) +
α

Γ(1− α)

∫ t̂−a

δ

(ϕ(t̂, x̂)− ϕ(t̂− τ, x̂))
dτ

τα+1
.

Thus we have Jδ[ψ](t̂, x̂)+Kδ[u](t̂, x̂) ≥ Jt̂−a[ϕ](t̂, x̂)+Kt̂−a[u](t̂, x̂), which is noth-
ing but (2.3). □

Remark 2.8. By the similar way in the proof of (i) it turns out that, if u is a
subsolution (resp. supersolution) of (1.1), then u−C (resp. u+C) is a subsolution
(resp. supersolution) of (1.1) for any positive constant C > 0. This is valid even
for sub/supersolutions of (1.1)-(1.2). Here a proof needs (A3).

Lemma 2.9 (Equivalence). A function u ∈ USC(QT ) (resp. LSC(QT )) is a
subsolution (resp. supersolution) of (1.1) if and only if K0[u](t̂, x̂) exists and

(2.4) K0[u](t̂, x̂) +H(t̂, x̂, u(t̂, x̂), Dϕ(t̂, x̂)) ≤ 0 (resp. ≥ 0)

whenever u − ϕ attains a maximum (resp. minimum) at (t̂, x̂) ∈ (0, T ] × Rd over
[0, T ]× Rd for ϕ ∈ C1([0, T ]× Rd).
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Proof. We only prove for subsolutions since the similar argument is applied for
supersolutions.

We first prove the ‘if’ part. To do so, let a, b ∈ [0, T ] with a < b and an open ball
B in Rd fix arbitrarily. Assume that u−ϕ attains a maximum at (t̂, x̂) ∈ (a, b]×B
over [a, b] × B for ϕ ∈ C1((0, T ] × Rd). Define ψ ∈ C1([0, T ] × Rd) similarly as in
the proof of Proposition 2.7 (iii). Then u − ψ attains a zero maximum (t̂, x̂) over
[0, T ]× Rd. Thus K0[u](t̂, x̂) exists and

(2.5) K0[u](t̂, x̂) +H(t̂, x̂, u(t̂, x̂), Dψ(t̂, x̂)) ≤ 0.

The relationship between u and ϕ implies that

u(t̂, x̂)− u(t̂− τ, x̂) ≥ ϕ(t̂, x̂)− ϕ(t̂− τ, x̂)

for all [0, t̂− a], which further yields Jt̂−a[u](t̂, x̂) ≥ Jt̂−a[ϕ](t̂, x̂). Since Dψ(t̂, x̂) =

Dϕ(t̂, x̂) and K0[u](t̂, x̂) = Jt̂−a[u](t̂, x̂)+Kt̂−a[u](t̂, x̂), the assertion follows imme-
diately.

To prove the ‘only if’ part we assume that u− ϕ attains a maximum at (t̂, x̂) ∈
(0, T ] × Rd over [0, T ] × Rd for ϕ ∈ C1([0, T ] × Rd). Set ψ := ϕ + (u − ϕ)(t̂, x̂) on
(0, T ] × Rd. Let r > 0 be a parameter such that t̂ − r > 0. Then u − ψ attains a

zero maximum at (t̂, x̂) over [t̂ − r, t̂] × B(x̂) for all r, where B(x̂) is an open ball
centered at x̂ in Rd. Since u is a subsolution of (1.1),

(2.6) Jr[ψ](t̂, x̂) +Kr[u](t̂, x̂) +H(t̂, x̂, u(t̂, x̂), Dψ(t̂, x̂)) ≤ 0

for all r. From Proposition 2.4 and its proof we know that Jr[ψ](t̂, x̂) andKr[u
−](t̂, x̂)

exist for each r and moreover limr→0 Jr[ψ](t̂, x̂) = 0. Thus it is enough to show
that Kr[u

+] exists for each small r and limr→0Kr[u
±] = K0[u

±] exist as a finite
number. Indeed, if this is proved, it means that K0[u](t̂, x̂) exists and (2.4) follows
by passing to the limit r → 0 in (2.6).

Define a function vr : [0, T ] → R by

vr(τ) =

{
ψ(t̂, x̂)− ψ(t̂− τ, x̂) for τ ∈ [0, t̂− r)× Td,

u(t̂, x̂)− u(t̂− τ, x̂) for τ ∈ [t̂− r, t̂]× Td.

We rewrite (2.6) as

(2.7) I[vr] ≤
Γ(1− α)

α

(
−H(t̂, x̂, u(t̂, x̂), Dψ(t̂, x̂))− u(t̂, x̂)− u(0, x̂)

t̂αΓ(1− α)

)
=: C,

where

I[vr](t̂, x̂) =

∫ t̂

0

vr(τ)
dτ

τα+1
.

From the relationship between u and ψ we see

(2.8) ψ(t̂, x̂)− ψ(t̂− τ, x̂) ≤ u(t̂, x̂)− u(t̂− τ, x̂)

on [0, t̂ − r]. Then it suffices to prove that I[v+r ] exists for each small r and
limr→0 I[v

±
r ] = I[v±0 ] exists as a finite number.

By the definition of vr and (2.8), v+r is monotone increasing with respect to
r in the sense that v+r1 ≤ v+r2 on [0, t̂] if r1 ≥ r2. The monotone convergence

theorem implies thatlimr→0 I[v
+
r ] = I[v+0 ]. It is verified similarly as for v+r that
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v−r is monotone decreasing with respect to r in the sense that v−r1 ≤ v−r2 on [0, t̂] if
r1 ≤ r2. Thus we have from (2.7)

(2.9) I[v+r1 ](t̂, x̂) ≤ I[v−r1 ](t̂, x̂) + C ≤ I[v−r2 ](t̂, x̂) + C.

This implies that I[v+r ] exists for each small r and I[v+0 ] exists (as a finite number)
by passing to the limit r1 → 0. The monotone convergence theorem for I[v−r ]
implies that limr→0 I[v

−
r ] = I[v−0 ]. Therefore (2.9) ensures that I[v−0 ] exists (as a

finite number). The proof is now complete.
□

Proposition 2.10 (Consistency). Assume that u ∈ C1(QT ). Then u is a classical
solution of (1.1)-(1.2) if and only if u is a viscosity solution of (1.1)-(1.2).

Proof. Assume that u is a viscosity subsolution. We may take ϕ ≡ u so that u− ϕ
attains a maximum at every point in QT . Since u is a viscosity subsolution of (1.1),
Lemma 2.9 implies that

(2.10) K0[u](t, x) +H(t, x, u(t, x), Du(t, x)) ≤ 0

for all (t, x) ∈ QT . Similarly, we have the reverse inequality of (2.10) from an
inequality by viscosity supersolution. This shows that u is a classical solution since
K0[u] = ∂αt u by Proposition 2.3 (ii).

On the contrary we assume that u is a classical solution and that u− ϕ attains
a maximum at (t̂, x̂) ∈ (a, b]×B over [a, b]×B for ϕ ∈ C1([0, T ]×Rd), where a, b ∈
(0, T ] are constants and B is an open ball in Rd. Since (∂αt u)(t̂, x̂) = K0[u](t̂, x̂) ≥
Jt̂−a[ϕ](t̂, x̂) + Kt̂−a[u](t̂, x̂), to combine the maximum principle in space implies
that u is a viscosity subsolution. It is similar for viscosity supersolutions.

Since an initial condition is easily verified, we obtain the conclusion. □

3. Comparison Principle

Theorem 3.1 (Comparison principle). Assume that (A1)-(A3). Let u ∈ USC(QT )
and v ∈ LSC(QT ) be a subsolution and a supersolution of (1.1), respectively. If
u(0, ·) ≤ v(0, ·) on Td, then u ≤ v on QT .

We shall prepare one lemma for a proof of Theorem 3.1; see [8, Lemma 2], [17,
Lemma 3.3] and [18, Lemma 1] for similar results for α = 1. To do so we invoke
a limit inferior/superior inequality of product of constant sequences that one of
sequences is allowed to be negative. The statement looks fundamental and the
proof is standard but we give for the reader’s convenience.

Proposition 3.2. Let {fε}ε>0 and {gε}ε>0 be constant sequences. Assume that gε
is nonnegative, lim infε→0 fε ≥ f0 (resp. lim supε→0 fε ≤ f0) and limε→0 gε = g0
for some constants f0 and g0. Then

lim inf
ε→0

fεgε ≥ f0g0, (resp. lim sup
ε→0

fεgε ≤ f0g0.)

Proof. It is enough to prove the case when lim infε→0 fε ≥ f0 since another case is
proved by changing a sign of fε. Then for any δ > 0 there exists εδ > 0 such that
fε ≥ f0 − δ for all ε < εδ. It is fundamental that

lim inf
ε→0

hεgε ≥ lim inf
ε→0

hε lim inf
ε→0

gε
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for nonnegative constants hε, gε. Applying this fact as hε := fε − f0 − δ(≥ 0) we
see

lim inf
ε→0

fεgε ≥ lim inf
ε→0

(fε − f0 − δ)gε + lim inf
ε→0

(f0 + δ)gε

≥ −δg0 + (f0 + δ)g0 = f0g0.

□

Lemma 3.3. Assume (A1). Let u ∈ USC(QT ) and v ∈ LSC(QT ) be a subsolution
and a supersolution of (1.1), respectively. Assume that (t, x, y) 7→ u(t, x)− v(t, y)−
ϕ(t, x, y) attains a maximum at (t̂, x̂, ŷ) ∈ (0, T ]×Rd×Rd over [0, T ]×Rd×Rd for
ϕ ∈ C1([0, T ]× Rd × Rd). Then

K0[u](t̂, x̂)−K0[v](t̂, ŷ)+H(t̂, x̂, u(t̂, x̂), Dxϕ(t̂, x̂, ŷ))−H(t̂, ŷ, v(t̂, ŷ),−Dyϕ(t̂, x̂, ŷ)) ≤ 0.

Proof. We shall show that there exists a constant Cr > 0 such that Cr → 0 as
r → 0 and

(3.1)
− Cr + Jr[ϕ](t̂, x̂, ŷ) +Kr[u](t̂, x̂) +Kr[v](t̂, ŷ)

+H(t̂, x̂, u(t̂, x̂), Dxϕ(t̂, x̂, ŷ))−H(t̂, ŷ, v(t̂, ŷ),−Dyϕ(t̂, x̂, ŷ)) ≤ 0

for all r ∈ (0, t̂). If this is clarified, passing to the limit r → 0 in (3.1) yields the
desired result by repeating the ‘only if’ in the proof of Lemma (2.9). Henceforth,
let r ∈ (0, t̂) fix arbitrarily.

For ε > 0 we consider a function Φ : [0, T ]× [0, T ]× Rd × Rd → R defined by

Φ(t, s, x, y) = u(t, x)− v(s, y)− ϕ(t, x, y)− |t− s|2

2ε
− |t− t̂|2 − |x− x̂|2 − |y − ŷ|2.

Since Φ → −∞ as |x|, |y| → +∞ and Φ is bounded from above, it attains a
maximum at a point (tε, sε, xε, yε) ∈ [0, T ] × [0, T ] × Rd × Rd. By following the
standard argument of the theory of viscosity solutions we obtain

(3.2)

{
(tε, sε, xε, yε) → (t̂, t̂, x̂, ŷ),

u(tε, xε) → u(t̂, x̂) and v(sε, yε) → v(t̂, ŷ)

as ε → 0 by taking a subsequence if necessary; see [4, Theorem II.3.1] and [7,
Lemma 3.1] for detail. Note that tε > 0 for sufficiently small ε since t̂ > 0.

For such a small parameter ε, (t, x) 7→ Φ(t, sε, x, yε) attains a maximum at
(tε, xε) ∈ (0, T ]×Rd over [0, T ]×Rd and (s, y) 7→ −Φ(tε, s, xε, y) attains a minimum
at (sε, yε) ∈ (0, T ]×Rd over [0, T ]×Rd. Since u and v are respectively a subsolution
and a supersolution of (1.1), Lemma 2.9 implies that K0[u](tε, xε),K0[v](sε, yε)
exist for each ε and

K0[u](tε, xε) +H(tε, xε, u(tε, xε), Dxϕ(tε, xε, yε) + 2(xε − x̂)) ≤ 0,(3.3)

K0[v](sε, yε) +H(sε, yε, v(sε, yε),−Dyϕ(sε, xε, yε)− 2(yε − ŷ)) ≥ 0.(3.4)

Thus, by subtracting (3.4) from (3.3), we see

(3.5)

K0[u](tε, xε)−K0[v](sε, yε)

+H(tε, xε, u(tε, xε), Dxϕ(tε, xε, yε) + 2(xε − x̂))

−H(sε, yε, v(sε, yε),−Dyϕ(sε, xε, yε)− 2(yε − ŷ)) ≤ 0

for each ε.
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We shall pass to the limit ε → 0 in (3.5). For Hamiltonians it is easily seen
thanks to (A1), (3.2) and the smoothness of ϕ that

H(tε, xε, u(tε, xε), Dxϕ(tε, xε, yε) + 2(xε − x̂))

−H(sε, yε, v(sε, yε),−Dyϕ(sε, xε, yε)− 2(yε − ŷ))

→ H(t̂, x̂, u(t̂, x̂), Dxϕ(t̂, x̂, ŷ))−H(t̂, ŷ, v(t̂, ŷ),−Dyϕ(t̂, x̂, ŷ))

as ε → 0. Let us focus on K0[u](tε, xε) − K0[v](sε, yε). Assume hereafter that ε
is so small that r < min{tε, sε} for all ε, which is possible since (tε, sε) → (t̂, t̂) as
ε→ 0 (see (3.2)). Set

I1,ε :=
u(tε, xε)− u(0, xε)

tαε Γ(1− α)
− v(sε, yε)− v(0, yε)

sαε Γ(1− α)
,

I2,ε :=

∫ r

0

(u(tε, xε)− u(tε − τ, xε))
dτ

τα+1
−
∫ r

0

(v(sε, yε)− v(sε − τ, yε))
dτ

τ1+α
,

and

I3,ε :=

∫ tε

r

(u(tε, xε)− u(tε − τ, xε))
dτ

τα+1
−
∫ sε

r

(v(sε, yε)− v(sε − τ, yε))
dτ

τ1+α

so that K0[u](tε, xε)−K0[v](sε, yε) = I3,ε + α(I1,ε + I2,ε)/Γ(1− α).
First, for I1,ε, Proposition 3.2 with fε := u(tε, xε)−u(0, xε)− v(sε, yε)+ v(0, yε)

and gε := (tαε Γ(1− α))−1 implies that

(3.6) lim inf
ε→0

I1,ε ≥
u(t̂, x̂)− u(0, x̂)

t̂αΓ(1− α)
− v(t̂, ŷ)− v(0, ŷ)

t̂αΓ(1− α)
.

Next, since

u(tε, xε)− u(tε − τ, xε)− (v(sε, yε)− v(sε − τ, yε))

≥ ϕ(tε, xε, yε)− ϕ(tε − τ, xε, yε) + |tε − t̂|2 − |tε − τ − t̂|2

for all τ ∈ [0, r] by the inequality Φ(tε, sε, xε, yε) ≥ Φ(tε − τ, sε − τ, xε, yε), we see

α

Γ(1− α)
I2,ε ≥ Jr[ϕ](tε, xε, yε) + Jr[|tε − t̂− ·|2](tε).

Proposition 2.4 (iv) ensures that limε→0 Jr[ϕ](tε, xε, yε) = Jr[ϕ](t̂, x̂, ŷ). Besides,
Jr[|tε − t̂− ·|2](tε) can be calculated precisely as

Jr[|tε − t̂− ·|2](tε) =
α

Γ(1− α)

∫ r

0

(|tε − t̂|2 − |tε − t̂− τ |2) dτ

τ1+α

=
α

Γ(1− α)

∫ r

0

(2(tε − t̂)τ − τ2)
dτ

τ1+α

=
α

Γ(1− α)

(
2(tε − t̂)r1−α

1− α
− r2−α

2− α

)
.

Hence

lim
ε→0

Jr[|tε − t̂− ·|2](tε) = − αr2−α

(2− α)Γ(1− α)
=: −Cr.

Note that Cr → 0 as r → 0. Therefore we know for I2,ε that

(3.7) lim inf
ε→0

α

Γ(1− α)
I2,ε ≥ −Cr + Jr[ϕ](t̂, x̂, ŷ).
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Finally, for I3,ε, we first see an existence of constants C1, C2 > 0 independent of
ε such that

(3.8)
(u(tε, xε)− u(tε − τ, xε))1(r,tε)(τ) ≥ −C11(r,T )(τ),

(v(sε, yε)− v(sε − τ, yε))1(r,sε)(τ) ≤ C21(r,T )(τ)

on [0, T ]. Indeed, since limε→0 u(tε, xε) = u(t̂, x̂), there is a constant C > 0 inde-
pendent of ε

(u(tε, xε)− u(tε − τ, xε))1(r,tε)(τ) ≥ (u(t̂, x̂)− C −max
QT

u)1(r,tε)(τ)

≥ −|u(t̂, x̂)− C −max
QT

u|1(r,T ).

This shows the above one of (3.8) and another is proved similarly. Note that both
right-hand sides of (3.8) multiplied by τ−α−1 is integrable on [0, T ]. Proposition
3.2 implies that

lim inf
ε→0

(u(tε, xε)− u(tε − ·, xε))1(r,tε)(·) ≥ (u(t̂, x̂)− u(t̂− ·, x̂))1(r,t̂)(·),

lim sup
ε→0

(v(sε, yε)− v(sε − ·, yε))1(r,sε)(·) ≤ (v(t̂, x̂)− v(t̂− ·, x̂))1(r,t̂)(·)

for each τ ∈ (0, T ). Thus Fatou’s lemma yields

(3.9) lim inf
ε→0

I3,ε ≥
∫ t̂

r

(u(t̂, x̂)− u(t̂− τ, x̂))
dτ

τ1+α
−
∫ t̂

r

(v(t̂, ŷ)− v(t̂− τ, ŷ))
dτ

τ1+α
.

Summing up (3.6), (3.7) and (3.9) we reach

lim inf
ε→0

(K0[u](tε, xε)−K0[v](sε, yε)) ≥ −Cr+Jr[ϕ](t̂, x̂, ŷ)+Kr[u](t̂, x̂)−Kr[v](t̂, x̂).

Consequently, taking the limit inferior to both sides of (3.5) yields the desired
inequality (3.1). □

Proof of Theorem 3.1. Suppose that the conclusion were false: maxQT
(u − v) =:

θ > 0. For ε > 0 we consider a function Φ : [0, T ]× Rd × Rd → R defined by

Φ(t, x, y) := u(t, x)− v(t, y)− |x− y|2

2ε
.

Let (tε, xε, yε) ∈ [0, T ] × Rd × Rd be a maximum point of Φ. Then there is a
point (t̂, x̂) ∈ (0, T ]× Rd such that

(3.10)


(tε, xε, yε) → (t̂, x̂, x̂),

|xε − yε|2/ε→ 0,

u(tε, xε) → u(t̂, x̂) and v(sε, yε) → v(t̂, x̂).

as ε → 0 by taking a subsequence if necessary; see, e.g., [4, Theorem II.3.1]. The
above permits to use Lemma 3.3 and we know that K0[u](tε, xε),K0[v](tε, yε) exists
for each ε and
(3.11)
K0[u](tε, xε)−K0[v](tε, yε) +H(tε, xε, u(tε, xε), pε)−H(tε, yε, v(tε, yε), pε) ≤ 0.

Here pε = (xε − yε)/ε.
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Since u(tε, xε)−u(tε−·, xε)−v(tε, yε)+v(tε−·, yε) ≥ 0 on [0, tε] by the inequality
Φ(tε, xε, yε) ≥ Φ(tε−τ, xε, yε), the term of integration inK0[u](tε, xε)−K0[v](tε, yε)
is estimated from below by zero, that is,

K0[u](tε, xε)−K0[v](tε, yε) ≥
u(tε, xε)− v(tε, yε)− u(0, xε) + v(0, yε)

tαε Γ(1− α)

Since u(tε, xε) > v(tε, yε) by the inequality Φ(tε, xε, yε) ≥ θ > 0, Hamiltonians in
(3.11) are estimated as

H(tε, xε, u(tε, xε), pε)−H(tε, yε, v(tε, yε), pε)

≥ H(tε, xε, v(tε, yε), pε)−H(tε, yε, v(tε, yε), pε) ≥ −ω(|xε − yε|(1 + |pε|))

by (A2) and (A3). From these, (3.11) is led to

u(tε, xε)− v(tε, yε)− u(0, xε) + v(0, yε)

tαε Γ(1− α)
≤ ω(|xε − yε|(1 + |pε|)).

Taking the limit inferior ε→ 0 implies that

θ − u(0, x̂) + v(0, x̂)

t̂αΓ(1− α)
≤ 0

by Proposition 3.2. Since u(0, ·) ≤ v(0, ·) on Td and θ > 0, this is a contradiction.
□

Corollary 3.4 (Uniqueness). Assume (A1)-(A4). Let u ∈ C(QT ) and v ∈ C(QT )
be solutions of (1.1). Then

(3.12) max
(t,x)∈QT

|u(t, x)− v(t, x)| ≤ max
x∈Td

|u(0, x)− v(0, x)|.

Moreover, if u and v are solutions of (1.1)-(1.2), then u ≡ v on QT .

Proof. It suffices to prove (3.12). Set C := maxx∈Td |u(0, x)− v(0, x)|. Then v−C
and v +C are a subsolution and a supersolution of (1.1), respectively; see Remark
2.8. Moreover

v(0, ·)− C ≤ u(0, ·) ≤ v(0, ·) + C on Td

by the definition of C. Thus, from Theorem 3.1, we have |u− v| ≤ C on QT . The
proof is complete by taking the maximum over QT to both sides. □

For the reader’s convenience we give a statement of the comparison principle for
a general bounded domain Ω without a proof.

Theorem 3.5. Let Ω be a bounded domain in Rd. Let u ∈ USC([0, T ]×Ω;R) and
v ∈ LSC([0, T ]×Ω;R) be a subsolution and a supersolution of (1.1) on (0, T ]×Ω,
respectively. If u ≤ v on ({0} × Ω) ∪ ([0, T ]× ∂Ω), then u ≤ v on [0, T ]× Ω.

4. Existence result

Let denote by S− and S+ a set of upper semicontinuous subsolutions and lower
semicontinuous supersolutions of (1.1), respectively. Note that S± ̸= ∅ as will be
observed in Corollary 4.3 later.
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Lemma 4.1 (Closedness under supremum/infimum operator). Assume (A1). Let
X be a nonempty subset of S− (resp. S+). Define

u(t, x) := sup{v(t, x) | v ∈ X} (resp. inf{v(t, x) | v ∈ X})
for (t, x) ∈ QT . Assume that u∗ < +∞ (resp. u∗ > −∞) on QT . Then u∗ (resp.
u∗) is a subsolution (resp. supersolution) of (1.1).

Proof. We only prove for a subsolution since the argument for a supersolution is
similar. Fix [a, b] × B ⊂ (0, T ] × Rd arbitrarily, where a < b and B is an open in
Rd. Assume that u∗ −ϕ attains a maximum at (t̂, x̂) ∈ (a, b]×B over [a, b]×B for
ϕ ∈ C1([0, T ]× Rd). Then we must show that

(4.1) Jt̂−a[ϕ](t̂, x̂) +Kt̂−a[u
∗](t̂, x̂) +H(t̂, x̂, u∗(t̂, x̂), Dϕ(t̂, x̂)) ≤ 0.

By Proposition 2.7 we may assume that (t̂, x̂) is a strict maximum point of u∗ − ϕ
such that (u∗ − ϕ)(t̂, x̂) = 0.

By arguing similarly as for α = 1 we find sequences {(tj , xj)}j≥0 and {vj}j≥0 ⊂
X such that, for each j ≥ 0, vj − ϕ attains a maximum at (tj , xj) ∈ (a, b]×B over

[a, b]× B and (tj , xj , vj(tj , xj)) → (t̂, x̂, u∗(t̂, x̂)) as j → ∞. Indeed it is enough to
translate slightly the proof of [12, Lemma 2.4.1] to the current situation. This is
not difficult, so the detail is safely omitted. Since vj is a subsolution of (1.1),

(4.2) Jtj−a[ϕ](tj , xj) +Ktj−a[vj ](tj , xj) +H(tj , xj , vj(tj , xj), Dϕ(tj , xj)) ≤ 0

for each j ≥ 0.
We shall pass to the limit j → ∞ in (4.2). The continuity of Hamiltonian (A1)

ensures that

lim
j→∞

H(tj , xj , vj(tj , xj), Dϕ(tj , xj)) = H(t̂, x̂, u∗(t̂, x̂), Dϕ(t̂, x̂)).

Proposition 2.4 implies that

lim
j→∞

Jtj−a[ϕ](tj , xj) = Jt̂−a[ϕ](t̂, x̂).

Henceforth, let us focus on Ktj−a[vj ](tj , xj). Since vj ≤ u ≤ u∗ on QT by the
definition of u and u∗, Proposition 3.2 implies that

(4.3)

lim inf
j→∞

vj(tj , xj)− vj(0, xj)

tαj Γ(1− α)
≥ lim inf

j→∞

vj(tj , xj)− u∗(0, xj)

tαj Γ(1− α)

≥ u∗(t̂, x̂)− u∗(0, x̂)

t̂αΓ(1− α)
.

To handle the term of integration we first see the existence of a constant C2 > 0
independent of j such that

(vj(tj , xj)− vj(tj − ·, xj))1[tj−a,tj ](·) ≥ −C21[r,T ](·)
on [0, T ] for sufficiently large j, where r := minj≥0(tj − a) > 0. Indeed, since

supj≥0 vj ≤ u ≤ u∗ and u∗ < +∞ on QT , there is a constant C3 > 0 such that

supj≥0 vj ≤ C3 on QT . Since vj(tj , xj) → u∗(t̂, x̂) as j → ∞, for a constant

C4 > 0 (independent of j), vj(tj , xj) ≥ u∗(t̂, x̂) − C4 for large j. Thus, if we set

C2 := |u∗(t̂, x̂)− C4 − C3|, then
(vj(tj , xj)− vj(tj − ·, xj))1[tj−a,tj ](·) ≥ (u∗(t̂, x̂)− C4 − C3)1[tj−a,tj ](·)

≥ −C21[r,T ](·)
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on [0, T ] for sufficiently large j, which is the desired fact. Note that−C21[r,T ](τ)/τ
α+1

is integrable on [0, T ]. Proposition 3.2 also implies that

lim inf
j→∞

(vj(tj , xj)− vj(tj − ·, xj))1[tj−a,tj ](·)

≥ lim inf
j→∞

(vj(tj , xj)− u∗(tj − ·, xj))1[tj−a,tj ](·)

≥ (u∗(t̂, x̂)− u∗(t̂− ·, x̂))1[t̂−a,t̂](·).

Therefore Fatou’s lemma can be applied and consequently

lim inf
j→∞

Ktj−a[vj ](tj , xj) ≥ Kt̂−a[u
∗](t̂, x̂)

by combining with (4.3).
Taking the limit inferior j → ∞ to both sides in (4.2) yields (4.1). □

Theorem 4.2 (Existence). Assume (A1). Let u− ∈ USC(QT ) and u
+ ∈ LSC(QT )

be a supersolution and a subsolution of (1.1) such that (u−)∗ > −∞ and (u+)∗ <
+∞ on QT . Suppose that u− ≤ u+ in QT . Then there exists a solution u of (1.1)
that satisfies u− ≤ u ≤ u+ in QT .

Proof. Define

(4.4) u(t, x) := sup{v(t, x) | v ∈ X}

for (t, x) ∈ QT , where

X := {v ∈ S− | v ≤ u+ on QT }.

Note that X ̸= ∅ since u− ∈ X. Also, since u− ≤ u ≤ u+ on QT by the definition
of u, −∞ < (u−)∗ ≤ u∗ ≤ u∗ ≤ (u+)∗ < +∞ on QT . Our goal in this proof is
to show that u defined by (4.4) is actually a solution of (1.1). Since we know that
u∗ is a subsolution of (1.1) from Lemma 4.1, so it suffices to show that u∗ is a
supersolution of (1.1).

Suppose by contradiction that u∗ were not a supersolution of (1.1). Then there
would be a function ϕ ∈ C1([0, T ]×Rd), a point (t̂, x̂) ∈ (0, T ]×Rd and a constant
θ > 0 such that u∗ − ϕ attains a minimum at (t̂, x̂) ∈ (0, T ] × Rd over (0, T ] × Rd

and

K0[u∗](t̂, x̂) +H(t̂, x̂, u∗(t̂, x̂), Dϕ(t̂, x̂)) < −2θ.

Notice that K0[u∗](t̂, x̂) may be −∞, while K0[u∗](t̂, x̂) makes sense and is bounded
from above by Proposition 2.4.

Let ρ > 0 be a small parameter so that ρ < t̂ and B2ρ(x̂) ⊂ (x̂ − 1
2 , x̂ + 1

2 ]
d.

Define functions w : (0, T ]× Rd → R and U : [0, T ]× (x̂− 1
2 , x̂+ 1

2 ]
d → R by

w(s, y) := ϕ(s, y) +
ρ2

2
− |s− t̂|2 − |y − x̂|2

and

U =

{
max{u∗, w} in ((t̂− ρ, t̂+ ρ)×B2ρ(x̂)) ∩ ([0, T ]× (x̂− 1

2 , x̂+ 1
2 ]

d),

u∗ in ([0, T ]× (x̂− 1
2 , x̂+ 1

2 ]
d) \ ((t̂− ρ, t̂+ ρ)×B2ρ(x̂)),

respectively. We regard B2ρ(x̂) and, for each s ∈ [0, T ], U(s, ·) as a open ball in Td

and a function on Td by extending it periodically, respectively. We shall show that
U ∈ X and that there exists a point (s, y) ∈ QT such that U(s, y) > u(s, y). Once
these were proved, we would obtain a contradiction due to the maximality of u.
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Set

Ω :=

{
(s, y) ∈ (t̂− ρ, t̂+ ρ)×B2ρ(x̂) | |s− t̂|2 + |y − x̂|2 ≤ ρ2

2

}
⊂ QT .

Then Ω ⊂ (t̂− ρ, t̂+ ρ)×B2ρ(x̂) and

(4.5) u∗(s, y) ≥ u∗(s, y) ≥ ϕ(s, y) = w(s, y)− ρ2

2
+ |s− t̂|2 + |y − x̂|2 > w(s, y)

for all (s, y) ∈ ((t̂− ρ, t̂+ ρ)×B2ρ(x̂)) \Ω. Thus U is upper semicontinuous on QT

by its definition.
Assume that U − ψ attains a maximum at (ŝ, ŷ) ∈ (0, T ] × Rd over (0, T ] × Rd

for ψ ∈ C1([0, T ]× Rd). We may assume that (U − ψ)(ŝ, ŷ) = 0.
Case 1: Suppose that U(ŝ, ŷ) = u∗(ŝ, ŷ). Then, since U ≥ u∗ on QT , it turns

out that u∗ − ψ attains a maximum at (ŝ, ŷ) over (0, T ]× Rd and that

(4.6) U(ŝ, ŷ)− U(ŝ− τ, ŷ) ≤ u∗(ŝ, ŷ)− u∗(ŝ− τ, ŷ)

for all τ ∈ [0, ŝ]. Recall that u∗ is a subsolution of (1.1), so that

K0[u
∗](ŝ, ŷ) +H(ŝ, ŷ, u(ŝ, ŷ), Dψ(ŝ, ŷ)) ≤ 0.

Proposition 2.4 (iii) with (4.6) ensures that K0[U ](ŝ, ŷ) exists and simultaneously
K0[U ](ŝ, ŷ) ≤ K0[u

∗](ŝ, ŷ). This implies that U is a subsolution of (1.1).
Case 2: Suppose that U(ŝ, ŷ) = w(ŝ, ŷ) > u(ŝ, ŷ). Then, from (4.5), we see

(ŝ, ŷ) ∈ Ω, which yields limρ→0(ŝ, ŷ) = (t̂, x̂). By employing the idea in [16, Theo-
rem 3] for example, we shall show that

(4.7) lim sup
ρ→0

K0[U ](ŝ, ŷ) ≤ K0[u∗](t̂, x̂).

Since U ≥ u∗ ≥ u∗ on QT the non-integration term is estimated as

U(ŝ, ŷ)− U(0, ŷ)

ŝαΓ(1− α)
≤ w(ŝ, ŷ)− u∗(0, ŷ)

ŝαΓ(1− α)
.

Recalling that limρ→0 w(ŝ, ŷ) = ϕ(t̂, x̂) = u∗(t̂, x̂) we see

lim sup
ρ→0

U(ŝ, ŷ)− U(0, ŷ)

ŝαΓ(1− α)
≤ u∗(t̂, x̂)− u∗(0, x̂)

t̂αΓ(1− α)
.

To handle the term of integration let us divide the term of integration inK0[U ](ŝ, ŷ)
multiplied by Γ(1− α)/α into two integrations as follows:

I1,ρ[U ] :=

∫ ρ2

0

(U(ŝ, ŷ)− U(ŝ− τ, ŷ))
dτ

τα+1

and

I2,ρ[U ] :=

∫ ŝ

ρ2

(U(ŝ, ŷ)− U(ŝ− τ, ŷ))
dτ

τα+1
.

By definitions of U and w we have

U(ŝ, ŷ)− U(ŝ− τ, ŷ) ≤ w(ŝ, ŷ)− w(ŝ− τ, ŷ)

= ϕ(ŝ, ŷ)− ϕ(ŝ− τ, ŷ) + τ2 − 2(ŝ− ŷ)τ
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for all τ ∈ [0, ρ2]. Hence I1,ρ[U ] ≤ I1,ρ[ϕ] + Cρ with a constant Cρ such that
limρ→0 Cρ = 0. By Proposition 2.4 (iv), we see that limρ→0 I1,ρ[ϕ] = 0, so that

lim sup
ρ→0

I1,ρ[U ] ≤ 0.

Since U ≥ u∗ on QT ,

(4.8)

U(ŝ, ŷ)− U(ŝ− τ, ŷ) ≤ w(ŝ, ŷ)− u∗(ŝ− τ, ŷ)

≤ ϕ(ŝ, ŷ)− u∗(ŝ− τ, ŷ) +
ρ2

2

on [ρ2, ŝ]. Moreover, the relationship between u∗ and ϕ yields

ϕ(ŝ, ŷ)− u∗(ŝ− τ, ŷ) +
ρ2

2
≤ ϕ(ŝ, ŷ)− ϕ(ŝ− τ, ŷ) +

ρ2

2
.

Since ϕ(·, x) is continuous on [0, T ], we are able to find a large constant C1 > 0
such that

ϕ(ŝ, ŷ)− ϕ(ŝ− τ, ŷ) ≤ C1τ

for all τ ∈ [ρ2, ŝ]. In addition we may assume that C1 does not depend on ρ. Notice
that there exists a constant C2 > 0 such that C1τ

2 + ρ2/2 ≤ C2τ for all τ ∈ [ρ2, ŝ].
Consequently (4.8) is lead to

U(ŝ, ŷ)− U(ŝ− τ, ŷ) ≤ C2τ

on [ρ2, ŝ]. The right-hand side with τ−α−1 is integrable on [0, T ], so that Fatou’s
lemma yields

lim sup
ρ→0

I2,ρ[U ](ŝ, ŷ) ≤ I2,0[u∗](t̂, x̂).

The above ensures (4.7) and thus we see

K0[U ](ŝ, ŷ)−K0[u∗](t̂, x̂) ≤ θ

for sufficiently small ρ. Notice that this means K0[U ] and K0[u∗] actually exist.
Since the maximizer (ŝ, ŷ) of U − ψ is of w − ψ (on Ω) as well, the classical

maximum principle for w − ψ implies that Dϕ(ŝ, ŷ)− 2(ŷ − x̂) = Dψ(ŝ, ŷ). Hence
we see limρ→0Dψ(ŝ, ŷ) = Dϕ(t̂, x̂). Moreover, limρ→0 U(ŝ, ŷ) = limρ→0 w(ŝ, ŷ) =

ϕ(t̂, x̂) = u∗(t̂, x̂). Therefore

H(ŝ, ŷ, U(ŝ, ŷ), Dψ(ŝ, ŷ))−H(t̂, x̂, u∗(t̂, ŝ), Dϕ(t̂, x̂)) ≤ θ

if ρ is sufficiently small. Summing up the above we obtain for sufficiently small ρ
that

K0[U ](ŝ, ŷ) +H(ŝ, ŷ, U(ŝ, ŷ), Dψ(ŝ, ŷ))

≤ −2θ +K0[U ](ŝ, ŷ)−K0[u∗](t̂, x̂)

+H(ŝ, ŷ, U(ŝ, ŷ), Dψ(ŝ, ŷ))−H(t̂, x̂, u∗(t̂, ŝ), Dϕ(t̂, x̂)) ≤ 0,

which shows that U is a subsolution of (1.1).
Theorem 3.1 implies that U ≤ u+. Let {(tj , xj)}j≥0 be a sequence such that

(tj , xj , u(tj , xj)) → (t̂, x̂, u∗(t̂, x̂)) as j → ∞. Then

lim inf
j→∞

(U(tj , xj)− u(tj , xj)) ≥ lim
j→∞

(w(tj , xj)− u(tj , xj)) =
ρ2

2
> 0.

In other words there exists a point (s, y) such that U(s, y) > u(s, y). Therefore the
proof is complete. □
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Corollary 4.3 (Unique existence for (1.1)-(1.2)). Assume (A1)-(A4). Then there
exists at most one solution u of (1.1)-(1.2).

Proof. The uniqueness of a solution is guaranteed by Theorem 3.1. Henceforth, it
is enough to construct u− and u+ in Theorem 4.2 so that u defined by (4.4) satisfies
u(0, ·) = u0 on Td.

Set ω(ℓ) := sup{|u0(ζ) − u0(η)| | ζ, η ∈ Td, |ζ − η| ≤ ℓ} for ℓ ≥ 0 and fy(x) :=∑d
i=1(1 − cos(2π(xi − yi))) for x, y ∈ Td, where xi and yi are i-th components

of each variable. Then for each ε > 0 there exists a constant Cε > 0 such that
ω(|x − y|) ≤ ε + Cεfy(x) for all x, y ∈ Td. For ε ∈ (0, 1) and y ∈ Td we define a

function u−ε,y : QT → R by

u−ε,y(t, x) := u0(y)− ε− Cεfy(x)−
Ctα

Γ(1 + α)
,

where C > 0 is a large constant. Then u−ε,y ∈ C1(QT ). Moreover u−ε,y ≤ u0(y) by

the non-negativity of fy and |Du−ε,y| is bounded on QT . It is well-known that

(4.9)
1

Γ(1− α)

∫ t

a

[(s− a)β ]′

(t− s)α
ds =

Γ(β + 1)

Γ(β − α+ 1)
(t− a)β−α

for given constants a ∈ R and β ∈ (0, 1); see [35, (2.56)] for the proof. From this
formula with (a, β) = (0, α) and the above, we see

−C +H(t, x, u−ε,y(t, x), Du
−
ε,y(t, x)) ≤ 0

for all (t, x) ∈ QT . Thus Proposition 2.10 implies that u−ε,y is a (viscosity) subsolu-
tion of (1.1).

We also see

u−ε,y(t, x) ≤ u0(x) + ω(|x− y|)− ε− Cεfy(x)−
Ctα

Γ(1− α)
≤ u0(x)

for all (t, x) ∈ QT . Therefore, Lemma 4.1 ensures that

u−(t, x) := (sup{u−ε,y(t, x) | ε ∈ (0, 1), y ∈ Td})∗

is a subsolution of (1.1) and satisfies u−(t, x) ≤ u0(x) for all (t, x) ∈ QT . The
definition of u− yields u−(0, ·) ≥ u0 on Td, which guarantees that (u−)∗ > −∞ on
QT and u−(0, ·) = u0 on Td. Similarly, a supersolution with desired properties is
constructed. Moreover, it turns out that u± satisfy u0(x) = lim(t,y)→(x,0) u

±(t, y)

but we leave the verification to the reader; cf. [12]. With u± above, we obtain a
solution u by Theorem 4.2, and it satisfies u(0, ·) = u0 on Td. The proof is now
complete. □

5. Some stability results

Two main theorems in this section are in what follows:

Theorem 5.1 (Stability I). Let Hε and H satisfy (A1)-(A3), where ε > 0. Let
uε ∈ USC(QT ) (resp. LSC(QT )) be a subsolution (resp. supersolution) of

∂αt uε +Hε(t, x, uε, Duε) = 0 in QT .
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Assume that Hε converges to H as ε→ 0 locally uniformly in (0, T ]×Td×R×Rd.
Assume that {uε}ε>0 is locally uniformly bounded. Then u := lim sup ∗uε (resp.
lim inf ∗uε) is a subsolution (resp. supersolution) of

∂αt u+H(t, x, u,Du) = 0 in QT .

Here lim sup ∗uε appears above is the upper relaxed limit defined by

(5.1) (lim sup
ε→0

∗uε)(t, x) := lim
δ↘0

sup{uε(s, y) | (s, y) ∈ QT ∩Bδ(t, x), 0 < ε < δ}

for (t, x) ∈ QT and lim inf ∗uε := − lim sup ∗(−uε) is the lower relaxed limit.

Theorem 5.2 (Stability II). Assume that (A1)-(A4). Let uα ∈ C(QT ) be a solution
of (1.1)-(1.2) whose time-derivative’s order is α ∈ (0, 1). Then uα converges to uβ
locally uniformly in QT as α → β, where uβ is a solution of (1.1)-(1.2) whose
time-derivative’s order is β ∈ (0, 1].

A same idea as for the proof of [4, Theorem V.1.7] is used for Theorem 5.1 and
Theorem 5.2. A deal for the term of time-derivative is the only difference between
Theorem 5.1 and [4, Theorem V.1.7] but it is similar between Theorem 5.1 and
Theorem 5.2. For this reason we only prove Theorem 5.2.

Proof. As the analogy of the upper/lower relaxed limits, for β ∈ (0, 1], we define
functions u♯ and u♯ by

u♯(t, x) := lim
δ↘0

sup{uα(s, y) | (s, y) ∈ Bδ(t, x) ∩QT , α ∈ (β − δ, β + δ) ∩ (0, 1)}

and u♯ := −(−u)♯ on QT . In Remark 6.3 later we will mention that {uα}α∈(0,1] of

(1.1)-(1.2) is uniformly bounded on QT . Hence u♯ and u♯ are bounded on QT . Note
also that u♯ is an upper semicontinuous function, so u♯ is a lower semicontinuous
function.

We shall show that u♯ and u♯ are a subsolution and a supersolution of (1.1)-(1.2)
whose time-derivative’s order is β. It suffices to show that u♯ is a subsolution of
(1.1) since the similar argument is applied for u♯ and it is clear that u♯(0, ·) ≤ u0
and u♯(0, ·) ≥ u0 on Td.

Fix [a, b] × B ⊂ (0, T ] × Rd arbitrarily, where a < b and B is an open set in
Rd. Assume that u♯ − ϕ attains a maximum at (t̂, x̂) ∈ (a, b]×B over [a, b]×B for
ϕ ∈ C1([0, T ]× Rd). Let {αj}j≥0 and {(tj , xj)}j≥0 be sequences such that uαj − ϕ

attains a maximum at (tj , xj) ∈ (a, b]×B over [a, b]×B and

(αj , tj , xj , uαj (tj , xj)) → (β, t̂, x̂, u♯(t̂, x̂))

as j → ∞. A proof of existence of such sequences is essentially same as for [4,
Lemma V.1.6] and not difficult, so we omit it.

Case 1: β ̸= 1. Since uαj is a subsolution of (1.1),

(5.2) J
αj

tj−a[ψj ](tj , xj) +K
αj

tj−a[uαj ](tj , xj) +H(tj , xj , uαj (tj , xj), Dϕ(tj , xj)) ≤ 0.

Here J
αj
r and K

αj
r are associated with α = αj . By similar arguments in previous

sections it can be turns out that

(5.3) lim inf
j→∞

(J
αj

tj−a[ψj ](tj , xj)+K
αj

tj−a[uαj ](tj , xj)) ≥ Jβ

t̂−a
[ϕ](t̂, x̂)+Kβ

t̂−a
[u♯](t̂, x̂).

Since

lim
j→∞

H(tj , xj , uαj (tj , xj), Dϕ(tj , xj)) = H(t̂, x̂, u♯(t̂, x̂), Dϕ(t̂, x̂)),
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we find that u♯ is a subsolution of (1.1).
Case 2: β = 1. There are similar sequences {αj}j and {(tj , xj)}j even for

φ ∈ C1((0, T ]×Rd) instead of ϕ ∈ C1([0, T ]×Rd). Since (tj , xj) → (t̂, x̂) ∈ (a, b]×B
as j → ∞, we may assume that {(tj , xj)}j ⊂ (t̂ − 3δ, t̂] × B2δ(x̂) by considering

large j, where δ > 0 is a constant such that [t̂ − 3δ, t̂] × B2δ(x̂) ⊂ (a, b] × B. Let
ξ1, ξ2 : [0, T ]×Rd → R be C∞ functions such that ξ1+ ξ2 = 1 on [0, T ]×Rd, ξ1 = 1
on [t̂−δ, t̂]×Bδ(x̂) and ξ2 = 1 on ([0, T ]×Rd)\([t̂−2δ, t̂]×B2δ(x̂)). Since {uα}α∈(0,1]

is uniformly bounded on QT , there is a constant C > 0 such that maxQT
|uαj | ≤ C

for all j. Set ψ = ξ1ϕ + ξ2M , where M := C + 1. Then ψ ∈ C1([0, T ] × Rd) ⊂
C1([0, T ]× Rd) and uαj − ψ attains a maximum at (tj , xj) ∈ (0, T ]× Rd. Thus we
have

(5.4) K0[uαj ](tj , xj) +H(tj , xj , uαj (tj , xj), Dψ(tj , xj)) ≤ 0.

Note that K0[uαj ](tj , xj) ≥ ∂
αj

t ψ(tj , xj). According to [9, Theorem 2.10] we notice
that

lim
j→∞

∂
αj

t ψ(tj , xj) = ∂tψ(t̂, x̂).

Thus estimating K0[uαj ](tj , xj) by ∂
αj

t ψ(tj , xj) in (5.4) and then passing to the
limit j → ∞ implies that

∂tψ(t̂, x̂) +H(t̂, x̂, u♯(t̂, x̂), Dψ(t̂, x̂)) ≤ 0.

Since ∂tψ(t̂, x̂) = ∂tϕ(t̂, x̂) and Dψ(t̂, x̂) = Dϕ(t̂, x̂), u♯ is a subsolution of (1.1)
with α = 1.

The comparison principle implies that u♯ ≤ u♯ on QT but u♯ ≤ u♯ by their
definition. We hence see that u := u♯ = u♯ is a solution of (1.1) and u(0, ·) = u0 on
Td. Corollary 3.4 ensures that u = uβ , a conclusion. □

6. Regularity results

Let consider one-dimensional transport equations of the form

∂αt u+ ∂xu = 0 in (0,∞)× R

with prescribed initial value u|t=0 = u0 ∈ C(R). In [33] for instance, a solution of
this equation was given as

(6.1) u(t, x) =
1

tα

∫ ∞

0

W−α,1−α

(
− z

tα

)
u0(x− z)dz

through the Laplace and the inverse Laplace transformation. Here W−α,1−α is
Wright function defined by

W−α,1−α(z) :=
∞∑
j=0

zj

j!Γ(−αj + 1− α)
.

For properties and formulae for Wright function, see [35] and references therein. It
can be verified that this solution is indeed a unique viscosity solution. We leave the
detail of calculations to the reader.

Let us assume that

(A4’) u0 is a Lipschitz continuous function with the Lipschitz constant Lip[u0].
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We shall prove a continuity of solutions with respect to each variable. In space,
since W−α,1−α ≥ 0 on (0,∞) and∫ ∞

0

W−α,1−α(−z)dz = 1,

we have

|u(t, x)− u(t, y)| ≤ 1

tα

∫ ∞

0

W−α,1−α

(
− z

tα

)
|u0(x− z)− u0(y − z)|dz

≤ 1

tα

∫ ∞

0

W−α,1−α

(
− z

tα

)
dz Lip[u0]|x− y| = Lip[u0]|x− y|

for (t, x, y) ∈ [0, T ]× R× R. In time, since∫ ∞

0

W−α,1−α(−z)zdz =
1

Γ(α+ 1)

and u given by (6.1) is rewritten as

u(t, x) =

∫ ∞

0

W−α,1−α(−z)u0(x− tαz)dz,

we have

|u(t, x)− u(s, x)| ≤
∫ ∞

0

W−α,1−α(−z)|u0(x− tαz)− u0(x− sαz)|dz

≤
∫ ∞

0

W−α,1−α(−z)zdz Lip[u0]|tα − sα| ≤ Lip[u0]

Γ(α+ 1)
|t− s|α

for (t, s, x) ∈ [0, T ]× [0, T ]×R. These regularity results hold for solutions of (1.1)-
(1.2) with some general Hamiltonians H under some Lipschitz continuity in x for
H as for α = 1.

Lemma 6.1 (Lipschitz preserving). Assume (A1), (A3), (A4’) and that there exist
constants L1 ≥ 0 and L2 > 0 such that

|H(t, x, r, p)−H(t, y, r, p)| ≤ L1|x− y|+ L2|x− y||p|

for all (t, x, y, r, p) ∈ (0, T ] × Rd × Rd × R × Rd. Let u ∈ C(QT ) be a solution of
(1.1)-(1.2). Then |u(t, x)− u(t, y)| ≤ L(t)|x− y| for all (t, x, y) ∈ [0, T ]× Rd × Rd

with

L(t) =

(
Lip[u0] +

L1

L2

)
Eα(L2t

α)− L1

L2
.

Proof. For δ we set

Φδ(t, x, y) := u(t, x)− u(t, y)− Lδ(t)|x− y|,

where

Lδ(t) =

(
Lip[u0] +

L1 + δ

L2

)
Eα(L2t

α)− L1 + δ

L2
.

Note that Lδ ∈ C1((0, T ])∩C([0, T ]) and L′
δ ∈ L1(0, T ). Suppose by contradiction

that there would exit δ > 0 such that max[0,T ]×Rd×Rd Φδ > 0.

Let (t̂, x̂, ŷ) ∈ [0, T ] × Rd × Rd be a maximum point of Φ. Note that t̂ > 0
and x̂ ̸= ŷ; otherwise 0 < Φ(t̂, x̂, x̂) = 0 or 0 < Φ(0, x̂, ŷ) ≤ 0 since u(0, ·) = u0 is
Lipschitz continuous and Eα(0) = 1. Moreover u(t̂, x̂) ≥ u(t̂, ŷ) from Φδ(t̂, x̂, ŷ) > 0.
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Since u is a solution of (1.1), we have from Lemma 3.3

(6.2) K0[u](t̂, x̂)−K0[u](t̂, ŷ)+H(t̂, x̂, u(t̂, x̂), Lδ(t̂)p̂)−H(t̂, ŷ, u(t̂, ŷ), Lδ(t̂)p̂) ≤ 0,

where p̂ := (x̂− ŷ)/|x̂− ŷ|. It follows from the definition of Φ that

K0[u](t̂, x̂)−K0[u](t̂, ŷ) ≥ K0[Lδ](t̂)|x̂− ŷ| = (∂αt Lδ)(t̂)|x̂− ŷ|.

Hamiltonians are estimates as

H(t̂, x̂, u(t̂, x̂), Lδ(t̂)p̂)−H(t̂, ŷ, u(t̂, ŷ), Lδ(t̂)p̂)

≥ H(t̂, x̂, u(t̂, ŷ), Lδ(t̂)p̂)−H(t̂, ŷ, u(t̂, ŷ), Lδ(t̂)p̂)

≥ −L1|x̂− ŷ| − L2Lδ(t̂)|x̂− ŷ|

by (A3) and (A2’) with |p̂| = 1. Thus (6.2) is led to

[(∂αt Lδ)(t̂)− L2Lδ(t̂)− L1]|x̂− ŷ| ≤ 0.

Since Lδ satisfies

∂αt Lδ − L2Lδ − L1 = δ

according to [9, Theorem 7.2, Remark 7.1], we obtain

δ|x̂− ŷ| ≤ 0,

a contradiction.
Consequently for any δ > 0 we see that |u(t, x) − u(t, y)| ≤ Lδ|x − y| for all

(t, x, y) ∈ [0, T ]× Rd × Rd. Letting δ → 0 yields the conclusion. □

Lemma 6.2. Assume (A1), (A2), (A3) and (A4’). Let u ∈ C(QT ) be a solution
of (1.1)-(1.2). Then there exists a constant M > 0 depending only on H, u0, α and
T such that

|u(t, x)− u0(x)| ≤Mtα

for all (t, x) ∈ QT .

Proof. We find that u−(t, x) := u0(x) −Mtα and u+(t, x) := u0(x) +Mtα are a
subsolution and a supersolution of (1.1)-(1.2), respectively, where the constant M
is chosen so large that

M ≥ sup{Γ−1(α+ 1)|H(t, x,max
Td

|u0|, p)| | (t, x) ∈ QT , |p| ≤ Lip[u0], α ∈ (0, 1)}.

In fact, if u− − ϕ attains a maximum at (t̂, x̂) ∈ (0, T ]×Rd for ϕ ∈ C1([0, T ]×Rd),
then |Dϕ(t̂, x̂)| ≤ Lip[u0] and K0[u

−](t̂, x̂) = −M∂αt t
α|t=t̂ = Γ(1 + α)M by using

the formula ∂αt t
α = Γ(1 + α) derived from (4.9). Therefore

K0[u
−](t̂, x̂)+H(t̂, x̂, u−(t̂, x̂), Dϕ(t̂, x̂)) ≤ −Γ(1+α)M+H(t̂, x̂,max

Td
|u0|, Dϕ(t̂, x̂)) ≤ 0.

by (A3) and the choice of M since u−(t, x) = u0(x)−Mtα ≤ maxTd |u0|. Similarly,
it is verified that u+ is a supersolution of (1.1).

Theorem 3.1 (comparison principle) yields to

u0(x)−Mtα = u−(t, x) ≤ u(t, x) ≤ u+(t, x) = u0(x) +Mtα

on QT , which is noting but the desired estimate. □
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Remark 6.3. Let uα be a solution of (1.1)-(1.2) whose time-derivative’s order is
α ∈ (0, 1]. For u0 ∈ C(Td) not necessarily Lipschitz continuous, we observe that

(6.3) sup{|uα(t, x)| | (t, x) ∈ QT , α ∈ (0, 1]} ≤ max
Td

|u0|+ Cmax{1, T}.

Here C > 0 is a large constant so that

C ≥ sup{Γ−1(α+ 1)|H(t, x,max
Td

|u0|, 0)| | (t, x) ∈ QT , α ∈ (0, 1]}.

Indeed, maxTd |u0|−Ctα and −maxTd |u0|+Ctα are a (classical) subsolution and a
(classical) supersolution of (1.1)-(1.2), respectively. Thus the comparison principle
implies (6.3) once one realizes that tα ≤ Tα ≤ max{1, T} for all t, T and α ∈ (0, 1].

Lemma 6.4 (Temporal Hölder continuity). Assume (A1), (A2), (A3) and (A4’).
Let u ∈ C(QT ) be a solution of (1.1)-(1.2). Then for the same constant M > 0 as
in Lemma 6.2

(6.4) |u(t, x)− u(s, x)| ≤M |t− s|α

for all (t, s, x) ∈ [0, T ]× [0, T ]× Td.

Proof. Let X be a set of subsolutions v of (1.1)-(1.2) such that v satisfy (6.4) and
u0 −Mtα ≤ v ≤ u0 +Mtα on QT . Notice that X ̸= ∅ since u0(x) −Mtα ∈ X
due to Lemma 6.2. Define u = sup{v | v ∈ X}. We show by Perron’s method that
u is a solution of (1.1)-(1.2) satifying (6.4). In view of Corollary 4.3 it is enough
to prove that u is a solution of (1.1) satisfying (6.4). In this proof we use same
notations associated to the above u as in Theorem 4.2.

It is not hard to see that

(6.5) |u(t, x)− u(s, x)| ≤ sup{|v(t, x)− v(s, x)| | v ∈ X}

for all t, s ∈ [0, T ] and x ∈ Td. Since M does not depend unknown functions and
v satisfies (6.4), we see that u satisfies (6.4). Let us prove that u is a solution of
(1.1).

To do so we must show that the function U satisfies (6.4). All processes except
for this step work to the current situation. We first show that the function w
satisfies (6.4) near (t̂, x̂). Expanding w by Taylor formula, we have

w(s, y)− w(t̂, x̂) = ϕ(s, y)− ϕ(t̂, x̂)− |s− t̂|2 − |y − x̂|2

= a(s− t̂) + p · (y − x̂) + o(|s− t̂|+ |y − x̂|)− |s− t̂|2 − |y − x̂|2

for QT ∋ (s, y) → (t̂, x̂), where a = ∂tϕ(t̂, x̂) and p = Dϕ(t̂, x̂). For every η > 0
there exists δ > 0 such that

|w(s, y)−w(t̂, x̂)| ≤ ((|a|+η)|s− t̂|1−α+ |s− t̂|2−α)|s− t̂|α+(|p|+η)|y− x̂|+ |y− x̂|2

for all (s, y) ∈ Bδ(t̂, x̂). Fix such η > 0. For δ so that (|a|+ η)δ1−α + δ2−α ≤M , w

satisfies (6.4) on Bδ(t̂, x̂).

Let ρ be taken so small that ρ ≤
√
2δ. Then Ω ⊂ Bδ(t̂, x̂). Since u and w satisfy

(6.4) in ((t̂− ρ, t̂+ ρ)× B2ρ(x̂)) ∩ Bδ(t̂, x̂), it turns out by a similar inequality for
the function max{u∗, w} as (6.5) that max{u∗, w} satisfies (6.4) in the same region.
Since u∗ > w in ((t̂ − ρ, t̂ + ρ) × B2ρ(x̂)) \ Ω, in consequence, U satisfies (6.4) in

QT , a conclusion. □
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7. Another possible definition

In this section, for simplicity, we only treat Hamiltonians independent of t and r,
i.e., H = H(x, p) and assume (A1)-(A2). Following to the usual style for viscosity
solutions we are also able to define weak solutions of (1.1) as follows:

Definition 7.1 (Provisional solutions). For a function u ∈ C(QT ) we call u a
provisional subsolution (resp. provisional supersolution) of (1.1) if

(∂αt ϕ)(t̂, x̂) +H(x̂,Dϕ(t̂, x̂)) ≤ 0 (resp. ≥ 0)

whenever u − ϕ attains a maximum (resp. minimum) at (t̂, x̂) ∈ QT over QT for
ϕ ∈ C1([0, T ] × Rd). If u ∈ C(QT ) is a both provisional sub- and supersolution of
(1.1), then we call u a provisional solution of (1.1).

It is no difficulties to prove that provisional solutions of (1.1) are consistent with
classical solutions of (1.1) if they belong to C1(QT ); cf. Proposition 2.10 and [30,
Theorem 1]. Although Definition 7.1 looks good, there are some technical difficulties
to handle provisional solutions. We conclude this paper by sharing a main part of
such difficulties.

They occurs in a proof of comparison principle. Let u and v be respectively a
provisional subsolution and a provisional supersolution of (1.1) such that u(0, ·) ≤
v(0, ·) on Td. Suppose that maxQT

(u− v) > 0 and aim to derive a contradiction.
There is a small constant η > 0 such that

max
(t,x)∈QT

((u− v)(t, x)− ηtα) =: θ > 0.

For ε > 0 and δ > 0 we consider the function

Φ(t, s, x, y) := u(t, x)− v(s, y)− |x− y|2

2ε
− |t− s|2

2δ
− ηtα.

on [0, T ]2 × T2d. Let (t̄, s̄, x̄, ȳ) be a maximum point of Φ. From inequalities for
provisional sub- and supersolutions, we have

(7.1)

(
∂αt

| · −s̄|2

2δ

)
(t̄, s̄) +

(
∂αs

|t̄− ·|
2δ

)
(t̄, s̄) + ηΓ(1+ α) +H(x̄, p̄)−H(ȳ, p̄) ≤ 0.

Here p̄ := (x̄ − ȳ)/ε. A similar argument is found in Section 3 of this paper. The
third term comes from the last term of Φ, i.e, ηtα. Let us focus on the first and
second terms. A direct calculation implies that

∂αt |t− s|2 =
2(t− (2− α)s)t1−α

Γ(3− α)

by the formula (4.9). By changing the role of t and s, consequently, we get
(7.2)(

∂αt
| · −s̄|2

2δ

)
(t̄) +

(
∂αs

|t̄− ·|2

2δ

)
(s̄) =

(t̄− (2− α)s̄)t̄1−α + (s̄− (2− α)t̄)s̄1−α

δΓ(1− α)

=
t̄2−α + s̄2−α − (2− α)(s̄t̄1−α + t̄s̄1−α)

δΓ(3− α)
.

When α = 1, (7.2) vanishes. Thus estimating Hamiltonians suitably (see the
proof of Theorem 3.1 in this paper) and then passing to the limit ε, δ → 0 in (7.1)
yields the contradiction thanks to the third term. On the other hand, the situation
for α ∈ (0, 1) is completely different. Indeed, (7.2) possibly does not vanish and it
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is hard to control (t̄, s̄) so that (7.2) is sufficiently small comparing to ηΓ(1+α) as
δ → 0. There is a possibility that (7.2) diverges as δ → 0 as well.

To solve above difficulties let us consider the following problem:

Problem 7.2. Find a function ψ ∈ C1((0, T ]2;R)∩C([0, T ]2) satisfying ∂tψ(·, s) ∈
L1(0, T ) for every s ∈ [0, T ] and ∂sψ(t, ·) ∈ L1(0, T ) for every t ∈ [0, T ] such that

(7.3)


∂αt ψ(·, s) + ∂αs ψ(t, ·) ≥ 0 on (0, T )2,

ψ = 0 on {t = s} and

ψ > 0 on [0, T ]2 \ {t = s}.

If we could find such a function, then the contradiction would be obtained by
handling

Ψ(t, s, x, y) := u(t, x)− v(s, y)− |x− y|2

2ε
− ψ(t, s)

2δ
− ηtα

instead of Φ. However, such a modification unfortunately does not overcome the
difficulty yet.

Proposition 7.3. There is no function ψ solving Problem 7.2.

Proof. Suppose by contradiction that there is a function ψ solves Problem 7.2.
Then ψ should satisfy

(∂αt ψ)(t, t) + (∂αs ψ)(t, t) ≥ 0,

that is,

(7.4)

∫ t

0

(∂tψ)(τ, t)

(t− τ)α
dτ +

∫ t

0

(∂sψ)(t, τ)

(t− τ)α
dτ ≥ 0.

Since ψ(t, t) = 0 and ψ(·, t) ∈ C1(0, T ), integration by parts implies that∫ t

0

(∂tψ)(τ, t)

(t− τ)α
dτ = −ψ(0, t)

tα
− α

∫ t

0

ψ(t, τ)

(t− τ)α+1
dτ.

Thus (7.4) is rewritten as

ψ(0, t) + ψ(t, 0)

tα
+ α

∫ t

0

ψ(t, τ) + ψ(τ, t)

(t− τ)α+1
dτ ≤ 0.

However the left-hand side is positive since ψ > 0 on [0, T ]2 \ {t = s}, a contradic-
tion. □
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