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ON A RESOLVENT ESTIMATE FOR BIDOMAIN OPERATORS

AND ITS APPLICATIONS

YOSHIKAZU GIGA AND NAOTO KAJIWARA

Abstract. We study bidomain equations that are commonly used as a model
to represent the electrophysiological wave propagation in the heart. We prove

existence, uniqueness and regularity of a strong solution in Lp spaces. For
this purpose we derive an L∞ resolvent estimate for the bidomain operator by
using a contradiction argument based on a blow-up argument. Interpolating

with the standard L2-theory, we conclude that bidomain operators generate
C0-analytic semigroups in Lp spaces, which leads to construct a strong solution
to a bidomain equation in Lp spaces.

1. Introduction

The bidomain model is a system related to intra- and extra-cellular electric
potentials and some ionic variables. Mathematically, bidomain equations can be
written as two partial differential equations coupled with a system of m ordinary
differential equations:

∂tu+ f(u,w)−∇ · (σi∇ui) = si in (0,∞)× Ω,(1)

∂tu+ f(u,w) +∇ · (σe∇ue) = −se in (0,∞)× Ω,(2)

∂tw + g(u,w) = 0 in (0,∞)× Ω,(3)

u = ui − ue in (0,∞)× Ω,(4)

σi∇ui · n = 0, σe∇ue · n = 0 on (0,∞)× ∂Ω,(5)

u(0) = u0, w(0) = w0 in Ω.(6)

Here, functions ui and ue are intra- and extra-cellular electric potentials, u is
the transmembrane potential (or the action potential) and w = w(t, x) ∈ Rm(m ∈
N) is some ionic variables (current, gating variables, concentrations, etc.). All
these functions are unknown. On the other hand, the physical region occupied by
the heart Ω ⊂ Rd, conductivity matrices σi,e = σi,e(x), external applied current
sources si,e = si,e(t, x), total transmembrane ionic currents f : R × Rm → R and
g : R×Rm → Rm and initial data u0 and w0 are given. The symbol n denotes the
unit outward normal vector to ∂Ω. The reader is referred to the books [14] and [23]
about mathematical physiology including bidomain models.

There are some literature about well-posedness of bidomain equations. First
pioneering work is due to P. Colli-Franzone and G. Savaré [13]. They introduced
a variational formulation and derived existence, uniqueness and some regularity
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results in Hilbert spaces. Here, they assumed nonlinear terms f, g are forms of
f(u,w) = k(u) + αw, g(u,w) = −βu + γw (α, β, γ ≥ 0) with a suitable growth
condition on k. Examples include cubic-like FitzHugh-Nagumo model, which is
the most fundamental electrophysiological model. However, other realistic models
cannot be handled by their approach because nonlinear terms are limited. Later
M. Veneroni [39] extended to their results by using fixed point argument and es-
tablished well-posedness of more general and more realistic ionic models. These
two papers discussed strong solutions by deriving further regularity of weak solu-
tions. In 2009, Y. Bourgault, Y. Coudiére and C. Pierre [11] showed well-posedness
of a strong solution in L2 spaces. They transformed bidomain equations into an
abstract evolution equation of the form{

∂tu+Au+ f(u,w) = s,

∂tw + g(u,w) = 0

by introducing the bidomain operator A in L2 and modified source term s. Formally
the bidomain operator is the harmonic mean of two elliptic operators, i.e. (A−1

i +
A−1

e )−1 or Ai(Ai+Ae)
−1Ae, where Ai,e is the elliptic operator −∇· (σi,e∇ · ) with

the homogeneous Neumann boundary condition. They proved that the bidomain
operator is a non-negative self-adjoint operator by considering corresponding weak
formulations. Since their framework is in L2, well-posedness was only proved for
d ≤ 3 in L2 spaces.

The main goal of this paper is to establish Lp-theory (1 < p < ∞) and L∞-
theory for the bidomain operator with applications to bidomain equations. More
explicitly, we shall prove that the bidomain operator forms an analytic semigroup
e−tA both in Lp and L∞. By this result we are able to construct a strong solution
in Lp for any space dimension d (by taking p large if necessary). Our result allows
any locally Lipschitz nonlinear terms.

To derive analyticity it is sufficient to derive resolvent estimates. For Lp resolvent
estimates a standard way is to use the Agmon’s method (e.g. [24], [37]). The main
idea of the method is as follows. If we have a W 2,p(Ω×R) a priori estimate for the
operator A− eiθ∂tt, then A has an Lp resolvent estimate. Unfortunately, it seems
difficult to derive such a W 2,p a priori estimate because of nonlocal structure of the
bidomain operator. Thus we argue in a different way.

We first establish an L∞ resolvent estimate for the bidomain operator by a con-
tradiction argument including a blow-up argument. We then derive an Lp resolvent
estimate for 2 ≤ p ≤ ∞ by interpolating L2 and L∞ results. The Lp-theory for
1 < p < 2 is established by a duality argument. Note that a standard idea to derive
an L∞ resolvent estimate due to Masuda-Stewart (see the third next paragraph)
does not apply because their method is based on an Lp resolvent estimate, which
we would like to prove.

A blow-up argument was first introduced by E. De Giorgi [16] in order to study
regularity of a minimal surface. It is also efficient to derive a priori estimates for
solutions of a semilinear elliptic problem [18] and a semilinear parabolic problem
[19], [20]. Recently, K. Abe and the first author [1], [2] showed that the Stokes
operator is a generator of an analytic semigroup on C0,σ(Ω), the L∞-closure of
C∞

c,σ(Ω) (the space of smooth solenoidal vector fields with compact support in Ω) for
some class of domains Ω including bounded and exterior domains by using a blow-up
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argument for a nonstationary problem. For a direct proof extending the Masuda-
Stewart method for resolvent estimates, see [3]. Suzuki [35] showed analyticity of
semigroups generated by higher order elliptic operators in L∞ spaces by a blow-up
method even if the domain has only uniformly C1 regularity for resolvent equations.
Our approach is similar to his approach, but boundary conditions are different and
our equations are systems. For the Dirichlet boundary condition, we can easily
take a cut-off function and a test function. However, for the Neumann boundary
condition, we have to take a cut-off function and a test function carefully so that
we does not violate boundary conditions.

Our method is based on a contradiction argument together with a blow-up ar-
gument. Let us explain a heuristic idea. Suppose that we would like to prove
that

|λ|∥u∥∞ ≤ C∥s∥∞
with some C > 0 independent of sufficiently large λ, u and s which satisfy the
resolvent equation λu + Au = s in Ω. Here, ∥ · ∥∞ denotes the L∞(Ω) norm.
Suppose that the estimate were false. Then there would exists a sequence {λk}∞k=1,
|λk| → ∞ and {uk, sk} satisfy λkuk+Auk = sk in Ω such that |λk|∥uk∥∞ > k∥sk∥∞.
By normalizing uk to introduce vk = uk/∥uk∥∞, we observe that ∥vk∥∞ = 1. We
take {xk}∞k=1 ⊂ Ω such that |vk(xk)| > 1/2. We rescale wk(x) = vk(xk+x/|λk|1/2).
This function solves the equation eiθkwk+Akwk = tk in Ωk with Ak → A0 if A has a
nice scaling property, where eiθk = λk/|λk|, tk(x) = sk(xk + x/|λk|1/2)/|λk|∥uk∥∞
and Ωk := |λk|1/2(Ω − xk). Here, A0 is the bidomain operator with a constant
coefficient. Since |λk| → ∞, the rescaled domain Ωk converges to either the whole
space or the half space. If wk converges to some w, then w solves the limit equation
eiθ∞w + A0w = 0 since ∥tk∥∞ < 1/k. If the convergence is strong enough, then
the assumption |wk(0)| > 1/2 implies |w(0)| ≥ 1/2. However, if the solution of the
limit equation eiθ∞w+A0w = 0 is unique, i.e. w = 0, then we get a contradiction.
The key step is a local ‘Compactness’ of the blow-up sequence {wk}∞k=1 near zero
to conclude |w(0)| ≥ 1/2 and ‘Uniqueness’ of a blow-up limit.

Let us explain some literatures for L∞-theory. For the Laplace operator or gen-
eral elliptic operators it is well known that the corresponding semigroup is analytic
in L∞-type spaces. K. Yosida [42] considered the second order elliptic operator on
R. It was difficult to extend his method for multi-dimensional elliptic operators.
K. Masuda [25], [26] (see also [27]) first proved the analyticity of the semigroup
generated by a general elliptic operator (even for higher-order elliptic operators)
in C0(Rd), the space of continuous functions vanishing at the space-infinity. For
general domains, H. B. Stewart treated Dirichlet conditions [33] and general bound-
ary conditions [34]. Their methods are based on a localization with Lp results and
interpolation inequalities. The reader may refer to the comprehensive book written
by A. Lunardi [24, Chapter 3] for the Masuda-Stewart method which applies to
many other cases. However, in our situations, we cannot apply these methods since
we do not have Lp estimates.

Originally, bidomain equations were derived at a microscopic level. The cardiac
cellular structure of the tissue can be viewed by disjoint unions of two regions
separated by the interface, i.e. Ω = Ωi∪Ωe∪Γ, where Ωi and Ωe are disjoint intra-
and extra cellular domains and Γ = ∂Ωi ∩ ∂Ωe is their interface called the active
membrane. When we consider this model, the intra- and extra cellular potential
ui,e are functions in Ωi,e respectively, and transmembrane potential u = ui − ue is
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the function on Γ. Bidomain equations are replaced to equations on Ωi, Ωe and Γ in
this microscopic model. The dynamics inside the heart is much complicated. There
are only a few papers (e.g. [13], [40]) because of standard techniques and results
on reaction diffusion equation systems cannot be directly applied. H. Matano and
Y. Mori [28] showed existence and uniqueness of a global classical solution for 3D
cable model which is one of the microscopic cellular model by proving a uniform
L∞ bound of solutions.

Conversely at a macroscopic model, the cardiac tissue can be represented by a
continuous model (called “bi”domain model), i.e. Ω = Ωi = Ωe = Γ though each
point of the heart Ω is one of the interior part Ωi or exterior part Ωe or their
boundary Γ. Formal derivation from microscopic model to macroscopic model was
shown by a homogenization process when a periodic cardiac structure [23], [30].
The authors of [15] showed a rigorous mathematical derivation of the macroscopic
model by using the tools of the Γ-convergence theory. The paper [7] studied the
asymptotic behavior of the family of vectorial integral functionals, which is con-
cerned with bidomain model, in the framework of Γ-convergence. The bidomain
model is also used to analyze nonconvex mean curvature flow as a diffuse interface
approximation [6], [9], [10]. Nonconvexity leads to the gradient flow of a noncon-
vex functional, which corresponds in general to an ill-posed parabolic problem. To
study an ill-posed problem, it is often efficient to regularize it, for example by
adding some higher order term, and then passing to the limit as the regularizing
parameter goes to zero. However, papers [6], [9], [10] introduced completely differ-
ent regularization, namely, to use bidomain equations, where hidden anisotrophy
plays a key role. Recently in [29], interesting phenomena about stability of trav-
eling wave solutions was found for bidomain Allen-Cahn equations, which is quite
different from classical Allen-Cahn equations. This is also relevant to the hidden
anisotropy of the bidomain model.

The outline of this paper is as follows. In Section 2 after preparing a few no-
tations, we state an L∞ resolvent estimate for bidomain equations, which is a key
estimate of analyticity in Lp and L∞ spaces. In Section 3 we give our proof of an
L∞ resolvent estimate by using a blow-up argument. In Section 4 the system of
bidomain equations is replaced by a single equation by using bidomain operators
in Lp spaces. Then we show existence and uniqueness of the solution. The method
is based on a continuity method [21]. We also establish Lp and L∞ resolvent es-
timates for bidomain operators based in our analysis in Section 3. In Section 5 to
solve original problem (1)-(6) in Lp we define bidomain operators and domains of
their fractional powers in order to handle nonlinear terms f, g having only locally
Lipschitz continuity. From an Lp resolvent estimate, we show bidomain operators
are sectorial operators and then we derive existence, uniqueness and regularity of
a strong solution to (1)-(6) in Lp spaces.

The authors are grateful to Professor Yoichiro Mori for guiding them to this
problem.

2. Resolvent estimate for bidomain equations

2.1. Preliminaries, notations and definitions. In this subsection we give a
rigorous setting in order to state an L∞ resolvent estimate. We first recall the
definition of uniformly Ck-domain for k ≥ 1 and function spaces W 2,p

loc (Ω).
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Let B(x0, r) be an open ball with center x0, radius r > 0, i.e. B(x0, r) = {x ∈
Rd | |x− x0| < r}.

Definition 2.1 (Uniformly Ck-domain). Let Ω ⊂ Rd be a domain with d ≥ 2. We
say that Ω is a uniformly Ck-domain (k ≥ 1) if there exist K > 0 and r > 0 such
that for each point x0 ∈ ∂Ω there exists a Ck function γ of d− 1 variables x′ such
that -upon relabeling, reorienting and rotation the coordinates axes if necessary- we
have

Ω ∩B(x0, r) = {x = (x′, xd) ∈ B(x0, r) | xd > γ(x′)} ,
∥γ∥Ck(Rd−1) = sup

|α|≤k, x′∈Rd−1

|∂αx′γ(x′)| ≤ K.

Definition 2.2. We say u ∈W 2,p
loc (Ω) if there exists v ∈W 2,p

loc (Rd) such that u = v

a.e. in Ω.

The conductivity matrices σi,e are functions of the space variable x ∈ Ω with

coefficients C1(Ω) and satisfy the uniform ellipticity condition. Namely, we assume
that there exist constants 0 < σ < σ such that

σ|ξ|2 ≤ ⟨σi,e(x)ξ, ξ⟩ ≤ σ|ξ|2(7)

for all x ∈ Ω and ξ ∈ Rd. Let a = a(x) denote unit tangent vector at the point
x ∈ ∂Ω. Set the longitudinal conductances kli,e : ∂Ω → R and the transverse

conductances kti,e : ∂Ω → R along the fibers. Commonly used conductance tensors
are of the form ([12])

σi,e(x) = kti,e(x)I + (kli,e(x)− kti,e(x))a(x)⊗ a(x) (x ∈ ∂Ω).

By this form we have the normal n is the eigenvector of σi,e whose eigenvalue is
kti,e(x):

σi,e(x)n(x) = kti,e(x)n(x) (x ∈ ∂Ω).

When the model is constructed, these are naturally considered. Under these as-
sumptions of σi,e, we have the property of boundary conditions:

σi,e∇u · n = 0 ⇔ ∇u · n = 0 on ∂Ω.(8)

Source terms si,e also have important property. In physiology no current flow
outside through boundary ∂Ω and the intra- and extra-cellular media communicate
electrically through the transmembrane. Hereafter we assume current conservation;∫

Ω

(si(t) + se(t))dx = 0 (t ≥ 0).

This is nothing but the compatibility condition for bidomain equations. This aver-
aging zero condition is used when we transform the system of bidomain equations
(1)-(6) into single equation (28)-(29).

2.2. Resolvent estimate. We consider the following resolvent equations

(∗)


λu−∇ · (σi∇ui) = s in Ω,

λu+∇ · (σe∇ue) = s in Ω,

u = ui − ue in Ω,

σi∇ui · n = 0, σe∇ue · n = 0 on ∂Ω,
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corresponding to (1)-(6). These equations come from the Laplace transformation
of linear part of bidomain equations.

Let us state an L∞ resolvent estimate. We set Σθ,M := {λ ∈ C \ {0} | | arg λ| <
θ,M < |λ|} and N(u, ui, ue, λ) of the form

N(u, ui, ue, λ) := sup
x∈Ω

(
|λ||u(x)|+ |λ|1/2 (|∇u(x)|+ |∇ui(x)|+ |∇ue(x)|)

)
.

Theorem 2.3 (L∞ resolvent estimate for bidomain equations). Let Ω ⊂ Rd be
a uniformly C2-domain and σi,e ∈ C1(Ω, Sd) satisfy (7) and (8). Then for each
ε ∈ (0, π/2) there exist C > 0 and M > 0 such that

N(u, ui, ue, λ) ≤ C∥s∥L∞(Ω)

for all λ ∈ Σπ−ε,M , s ∈ L∞(Ω) and strong solutions u, ui,e ∈
∩

n<p<∞W 2,p
loc (Ω) ∩

W 1,∞(Ω) of (∗).

Remark 2.4. (i) It is impossible to derive an estimate |λ|∥ui,e∥∞ ≤ C∥s∥L∞(Ω)

because if (u, ui, ue) is a triplet of strong solutions then so is (u, ui + c, ue + c) for
all c ∈ R.
(ii) By the Sobolev embedding theorem [5],∩

n<p<∞
W 2,p

loc (Ω) ∩W
1,∞(Ω) ⊂

∩
0<α<1

C1+α(Ω).

Hence (u, ui, ue) are C1 functions and the left-hand side of the resolvent estimate
makes sense.

3. Proof of an L∞ resolvent estimate

Proof of Theorem 2.3. We divide the proof into five steps. The first two steps
are reformulation of equations and estimates. The last three steps (compactness,
characterization of the limit and uniqueness) are crucial.

Step 1 (Normalization)

We argue by contradiction. Suppose that the statement were false. Then there
would exist ε ∈ (0, π/2), for any k ∈ N there would exist λk = |λk|eiθk ∈ Σπ−ε,k,

sk ∈ L∞(Ω) and uk, uik, uek ∈
∩

n<p<∞W 2,p
loc (Ω) ∩ W 1,∞(Ω) which are strong

solutions of resolvent equations
λkuk −∇ · (σi∇uik) = sk in Ω,

λkuk +∇ · (σe∇uek) = sk in Ω,

uk = uik − uek in Ω,

σi∇uik · n = 0, σe∇uek · n = 0 on ∂Ω,

with an L∞ estimate N(uk, uik, uek, λk) > k∥sk∥L∞(Ω).
We set 

vk
vik
vek
s̃k

 :=
1

N(uk, uik, uek, λk)


|λk|uk
|λk|uik
|λk|uek
sk

 .
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Then we get normalized resolvent equations of the form
eiθkvk − 1

|λk|∇ · (σi∇vik) = s̃k in Ω,

eiθkvk + 1
|λk|∇ · (σe∇vek) = s̃k in Ω,

vk = vik − vek in Ω,

σi∇vik · n = 0, σe∇vek · n = 0 on ∂Ω,

with estimates 1
k > ∥s̃k∥L∞(Ω) and

N

(
vk
|λk|

,
vik
|λk|

,
vek
|λk|

, λk

)
= sup

x∈Ω

(
|vk(x)|+ |λk|−1/2 (|∇vk(x)|+ |∇vik(x)|+ |∇vek(x)|)

)
=1.

Step 2 (Rescaling)

Secondly, we rescale variables near maximum points of normalized N . By defi-
nition of supremum there exists {xk}∞k=1 ⊂ Ω such that

|vk(xk)|+ |λk|−1/2 (|∇vk(xk)|+ |∇vik(xk)|+ |∇vek(xk)|) >
1

2

for all k ∈ N. We rescale functions {(wk, wik, wek)}∞k=1, {tk}∞k=1, matrices {(σik, σek)}∞k=1

and domain Ωk with respect to xk. Namely, we set wk

wik

wek

 (x) :=

 vk
vik
vek

(xk +
x

|λk|1/2

)
,

tk(x) :=s̃k

(
xk +

x

|λk|1/2

)
,

σik(x) := σi

(
xk +

x

|λk|1/2

)
, σek(x) := σe

(
xk +

x

|λk|1/2

)
,

Ωk :=|λk|1/2(Ω− xk).

By changing variables Ω ∋ x 7→ |λk|1/2(x− xk) ∈ Ωk, we notice that our equations
and our estimates can be rewritten of the form

eiθkwk −∇ · (σik∇wik) = tk in Ωk,

eiθkwk +∇ · (σek∇wek) = tk in Ωk,

wk = wik − wek in Ωk,

σik∇wik · nk = 0, σek∇wek · nk = 0 on ∂Ωk,

with estimates

1

k
> ∥tk∥L∞(Ωk),

|wk(0)|+ |∇wk(0)|+ |∇wik(0)|+ |∇wek(0)| >
1

2
,

sup
x∈Ωk

(|wk(x)|+ |∇wk(x)|+ |∇wik(x)|+ |∇wek(x)|) = 1,
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where nk denotes the unit outer normal vector to Ωk. Here, we remark that un-
known functions wik and wek are defined up to an additive constant. So without
loss of generality we may assume that wik(0) := 0.

Step 3 (Compactness)

In this step, we will show local uniform boundedness for {(wk, wik, wek)}∞k=1.
If these sequences are bounded, one can take subsequences {(wkl

, wikl
, wekl

)}∞l=1

which uniformly convergences in the norm C1 on each compact set. We need to
divide two cases. One is the case Ω∞ = Rd and the other is the case Ω∞ = Rd

+ up
to translation and rotation, where Ω∞ is the limit of Ωk.
We set dk = dist(0, ∂Ωk) = |λk|1/2dist(xk, ∂Ω) and D := lim inf

k→∞
dk.

Case(3-i) D = ∞

In this case Ω∞ = Rd (See [35]). Let cut-off function ρ ∈ C∞
0 (Rd) be such that

ρ(x) ≡ 1 for |x| ≤ 1 and ρ(x) ≡ 0 for |x| ≥ 3/2. We localize functions wk, wik, wek

as follows  wρ
k

wρ
ik

wρ
ek

 := ρ

 wk

wik

wek

 in Ωk.

By multiplying rescaled resolvent equations by ρ, we consider the following localized
equations

eiθkwρ
k −∇ · (σik∇wρ

ik) = tkρ+ Iik in Ωk,(9)

eiθkwρ
k +∇ · (σek∇wρ

ek) = tkρ+ Iek in Ωk,(10)

wρ
k = wρ

ik − wρ
ek in Ωk,(11)

σik∇wρ
ik · nk = 0, σek∇wρ

ek · nk = 0 on ∂Ωk,(12)

where

Iik = −
∑

1≤m,n≤d

{(
(σik)mn

)
xm
ρxnwik + (σik)mnρxmxnwik

+(σik)mnρxn(wik)xm + (σik)mnρxm(wik)xn

}
,

Iek =
∑

1≤m,n≤d

{(
(σek)mn

)
xm
ρxnwek + (σek)mnρxmxnwek

+(σek)mnρxn
(wek)xm

+ (σek)mnρxm
(wek)xn

}
are lower order terms of wik and wek. Here, we take sufficiently large k such that
B(0, 2) ⊂ Ωk.

Take some p > n and apply W 2,p(Ωk) a priori estimate for second order elliptic
operators −∇ · (σik∇·), which have the oblique boundary (12). By (9) there exists
C > 0 independent of k ∈ N such that

∥wρ
ik∥W 2,p(Ωk)

≤C
(
∥wρ

ik∥Lp(Ωk) + ∥wρ
k∥Lp(Ωk) + ∥tkρ∥Lp(Ωk) + ∥Iik∥Lp(Ωk)

)
≤C|B(0, 2)|1/p

(
∥wρ

ik∥L∞(Ωk) + ∥wρ
k∥L∞(Ωk) + ∥tkρ∥L∞(Ωk) + ∥Iik∥L∞(Ωk)

)
=:C|B(0, 2)|1/p (I + II + III + IV ) ,
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where we use Hölder inequality in the second inequality. The first term I is uni-
formly bounded in k since wik(0) = 0 and ∥∇wik∥L∞(Ωk) ≤ 1. The second term
II and the third term III are also uniformly bounded in k since ∥wk∥L∞(Ωk) ≤ 1,
∥ρ∥L∞(Ωk) ≤ 1 and ∥tk∥L∞(Ωk) < 1/k. Finally the forth term IV is also uniformly
bounded in k since

IV ≤ C(d, sup
k

∥σik∥W 1,∞(Ωk))∥wik∥W 1,∞(Ωk)

≤ C.

Here, the constant C may differ from line to line. Therefore the sequence {wρ
ik}∞k=1

is uniformly bounded in W 2,p(Ωk). Functions {wρ
ek}∞k=1 and {wρ

k}∞k=1 are also uni-
formly bounded inW 2,p(Ωk) since the same calculation as above and (11). Here, Ωk

depends on k ∈ N. By zero extension from Ωk to Rd, we have {(wρ
k, w

ρ
ik, w

ρ
ek)}∞k=1 is

uniform bounded in the norm
(
W 2,p(Rd)

)3
. Thus we are able to take subsequences

{(wρ
kl
, wρ

ikl
, wρ

ekl
)}∞l=1 and w,wi, we ∈W 2,p(Rd) such that wρ

kl

wρ
ikl

wρ
ekl

→

 w
wi

we

 in the norm C1(Rd) as l → ∞,

by Rellich’s compactness theorem [5]. Since

|wkl
(0)|+ |∇wkl

(0)|+ |∇wikl
(0)|+ |∇wekl

(0)| > 1

2
,

we get

|w(0)|+ |∇w(0)|+ |∇wi(0)|+ |∇we(0)| ≥
1

2
.

Case(3-ii) D <∞

In this case Ω∞ = Rd
+ up to translation and rotation (See [35]). Let cut-off

functions {ρk}∞k=1 ⊂ C∞
0 (B(0, 2)) satisfy 0 ≤ ρk ≤ 1, ∂ρk/∂nk = 0 on ∂Ωk, ρk ≡ 1

on B(0, 1) and there exists K > 0 such that supk∈N ∥ρk∥W 2,∞(B(0,2)) ≤ K. This is

of course possible [4, Appendix B]. Take a bounded C2-domain Ω′
k with the unit

outer normal vector ñk such that Ω′
k ⊂ Ωk ∩ B(0, 2), B(0, 1) ∩ ∂Ωk ⊂ ∂Ω′

k and
∂ρk/∂ñk = 0 on ∂Ω′

k.
We argue in the same way as Case(3-i), we localize (wk, wik, wek) by multiply-

ing ρk and get W 2,p(Ω′
k) a priori estimate for (wρk

k , wρk

ik , w
ρk

ek ). We consider some

neighborhood U ⊂ Ω′
k near the origin such that ∂(U ∩Rd

+) is smooth. Then we can

take subsequences {(wρkl

kl
, w

ρkl

ikl
, w

ρkl

ekl
)}∞l=1 and w,wi, we ∈W 2,p(U ∩ Rd

+) such that w
ρkl

kl

w
ρkl

ikl

w
ρkl

ekl

→

 w
wi

we

 in the norm C1(U ∩ Rd
+) as l → ∞.

As in Case (3-i), we get the same inequality.
In this step, we are able to conclude that w ̸≡ 0 and wi,e are not constants on

some neighborhood near the origin.

Step 4 (Characterization of the limit)
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Let us explain resolvent equations of wkl
, wikl

, wekl
tend to the limit equation

(13)


eiθ∞w −∇ · (σi∞∇wi) = 0 in Ω∞,

eiθ∞w +∇ · (σe∞∇we) = 0 in Ω∞,

w = wi − we in Ω∞,

σi∞∇wi · n∞ = 0, σe∞∇we · n∞ = 0 on ∂Ω∞,

in the weak sense, where θ∞ = limk→∞ θk, σi∞, σe∞ are constant coefficients ma-
trices defined as below which satisfy uniform ellipticity condition and n∞ is unit
outer normal vector (0, · · · , 0,−1) when Ω∞ = Rd

+. If Ω∞ = Rd, we do not need
to consider boundary conditions.

We have w,wi, we ∈
∩

n<p<∞W 2,p
loc (Ω∞) ∩W 1,∞(Ω∞) and wkl

∇wikl

∇wekl

→

 w
∇wi

∇we

 weak ∗ in L∞(Ω∞) as l → ∞

since sup
x∈Ωk

(|wk(x)|+ |∇wk(x)|+ |∇wik(x)|+ |∇wek(x)|) = 1.

Case(4-i) Ω∞ = Rd

Proposition 3.1. The limit w,wi, we ∈
∩

n<p<∞W 2,p
loc (Rd) ∩ W 1,∞(Rd) satisfy

that for any ϕi,e ∈ C∞
0 (Rd)

eiθ∞(w, ϕi)L2(Rd) + (σi∞∇wi,∇ϕi)L2(Rd) = 0,

eiθ∞(w, ϕe)L2(Rd) − (σe∞∇we,∇ϕe)L2(Rd) = 0,

w = wi − we,

where θ∞ = limk→∞ θk and σi∞, σe∞ are constant coefficients matrices which sat-
isfy uniform ellipticity condition. Here, (·, ·)L2(Rd) denotes L2-inner product.

Proof of Proposition 3.1. For each function η ∈ C∞
0 (Rd), there exists kη ∈ N such

that supp η ⊂ Ωk for kη ≤ k. Since supp η is compact, there exist wkl
, wikl

, wekl

such that  wkl

wikl

wekl

→

 w
wi

we

 weakly on W 2,p(supp η) as l → ∞

for all n < p < ∞. Now we have to determine σi∞ and σe∞. For matrix A =
{amn}1≤m,n≤d, set ∥A∥ := max1≤m,n≤d |amn|. Since σi is uniformly continuous,

for each ε > 0 there exists δ > 0 such that if
∣∣∣xk + x

|λk|1/2
− xk

∣∣∣ = ∣∣∣ x
|λk|1/2

∣∣∣ < δ

then
∥∥∥σi (xk + x

|λk|1/2

)
− σi(xk)

∥∥∥ = ∥σik(x) − σik(0)∥ < ε. We can take k0 ∈ N

such that
∣∣∣ x
|λk|1/2

∣∣∣ < δ for k0 ≤ k since x ∈ supp η and |λk| → ∞. Since ∥σi(xk)∥ ≤
supx∈Ω ∥σi(x)∥, there exists a subsequence {σikl

}∞l=1 and a constant matrix σi∞
such that σikl

(0) = σi(xkl
) → σi∞ (l → ∞). Then for k0 ≤ k

∥σikl
(x)− σi∞∥ ≤ ∥σikl

(x)− σikl
(0)∥+ ∥σikl

(0)− σi∞∥
≤ ε+ ∥σikl

(0)− σi∞∥
→ ε (l → ∞).



ON A RESOLVENT ESTIMATE FOR BIDOMAIN OPERATORS AND ITS APPLICATIONS 11

Since ε > 0 and x ∈ supp η are arbitrary, we get ∥σikl
− σi∞∥ → 0 (l → ∞). The

above calculation is also valid for σe. Naturally, σi∞ and σe∞ are positive definite
constant matrices.

We consider the weak formulation of the resolvent equation under oblique bound-
ary condition. For any test functions ϕi,e ∈ C∞

0 (Rd),
eiθkl (wkl

, ϕi)L2(Ωkl
) + (σikl

∇wikl
,∇ϕi)L2(Ωkl

) = (tkl
, ϕi)L2(Ωkl

),

eiθkl (wkl
, ϕe)L2(Ωkl

) − (σekl
∇wekl

,∇ϕe)L2(Ωkl
) = (tkl

, ϕe)L2(Ωkl
),

wkl
= wkl

− wkl
.

As l → ∞, 
eiθ∞(w, ϕi)L2(Rd) + (σi∞∇wi,∇ϕi)L2(Rd) = 0,

eiθ∞(w, ϕe)L2(Rd) − (σe∞∇we,∇ϕe)L2(Rd) = 0,

w = wi − we.

□

Case(4-ii) Ω∞ = Rd
+

Proposition 3.2. The limit w,wi, we ∈
∩

n<p<∞W 2,p
loc (Rd

+) ∩W 1,∞(Rd
+) satisfy

that for any ϕi,e ∈ C∞
0 (Rd)|Rd

+
eiθ∞(w, ϕi)L2(Rd

+) + (σi∞∇wi,∇ϕi)L2(Rd
+) = 0,

eiθ∞(w, ϕe)L2(Rd
+) − (σe∞∇we,∇ϕe)L2(Rd

+) = 0,

w = wi − we,

where θ∞ = limk→∞ θk and σi∞, σe∞ are constant coefficients matrices which sat-
isfy (7) and (8).

We can prove this proposition by similar calculation to Case (4-i).

Step 5 (Uniqueness)

In this last step we prove that limit functions are unique. The method is to reduce
existence of solution to dual problems and use the fundamental lemma of calculus of
variation. In order to solve the dual problem we use the Fourier transform. In the
half space case we extend to the whole space. However, we have to pay attention
to the boundary condition. We overcome the difficulty by using the condition (8).

Case(5-i) Ω∞ = Rd

Lemma 3.3. Let w,wi, we ∈
∩

n<p<∞W 2,p
loc (Rd) ∩W 1,∞(Rd) satisfy

eiθ∞(w, ϕi)L2(Rd) + (σi∞∇wi,∇ϕi)L2(Rd) = 0 (∀ϕi ∈ C∞
0 (Rd)),

eiθ∞(w, ϕe)L2(Rd) − (σe∞∇we,∇ϕe)L2(Rd) = 0 (∀ϕe ∈ C∞
0 (Rd)),

w = wi − we,

(14)

then w = 0 and wi = we =constant.

Proof of Lemma 3.3. Equations (14) implies the following equations{(
wi, e

iθ∞ϕi −∇ · (σi∞∇ϕi)
)
L2(Rd)

− (we, e
iθ∞ϕi)L2(Rd) = 0,

(wi, e
iθ∞ϕe)L2(Rd) −

(
we, e

iθ∞ϕe −∇ · (σe∞∇ϕe)
)
L2(Rd)

= 0,
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wi, e

iθ∞(ϕi + ϕe)−∇ · (σi∞∇ϕi)
)
L2(Rd)

−
(
we, e

iθ∞(ϕi + ϕe)−∇ · (σe∞∇ϕe)
)
L2(Rd)

= 0.

Since C∞
0 (Rd) is dense in S(Rd), we can take ϕi,e in S(Rd) as test functions. So we

consider the dual problem of the limit equation. For all ψi,e ∈ C∞
0 (Rd) satisfying∫

Rd(ψi − ψe)dx = 0, we would like to find solutions ϕi,e ∈ S(Rd) such that

eiθ∞(ϕi + ϕe)−∇ · (σi∞∇ϕi) = ψi in Rd,

eiθ∞(ϕi + ϕe)−∇ · (σe∞∇ϕe) = ψe in Rd.

We are able to solve these equations by the Fourier transform. Solutions ϕi,e ∈
S(Rd) are of the form

ϕi = F−1

( (
⟨σe∞ξ, ξ⟩+ eiθ∞

)
Fψi − eiθ∞Fψe

⟨σi∞ξ, ξ⟩⟨σe∞ξ, ξ⟩+ eiθ∞ (⟨σi∞ξ, ξ⟩+ ⟨σe∞ξ, ξ⟩)

)
,

ϕe = F−1

( (
⟨σi∞ξ, ξ⟩+ eiθ∞

)
Fψe − eiθ∞Fψi

⟨σi∞ξ, ξ⟩⟨σe∞ξ, ξ⟩+ eiθ∞ (⟨σi∞ξ, ξ⟩+ ⟨σe∞ξ, ξ⟩)

)
,

where F and F−1 denote the Fourier transform and its inverse. Therefore, we have
for all ψi,e ∈ C∞

0 (Rd) satisfying
∫
Rd(ψi − ψe)dx = 0,

(wi, ψi)L2(Rd) − (we, ψe)L2(Rd) = 0.

Let ψi = ψe then (w,ψi)L2(Rd) = 0 for all ψi ∈ C∞
0 (Rd). By fundamental lemma

of calculus of variations, we get w ≡ 0. Let ψe ≡ 0 then (wi, ψi)L2(Rd) = 0 for

all ψi ∈ C∞
0 (Rd) satisfying

∫
Rd ψidx = 0. This means wi ≡ constant. Obviously

we = wi since w = wi − we. □

Lemma 3.4. Let w,wi, we ∈
∩

n<p<∞W 2,p
loc (Rd

+) ∩W 1,∞(Rd
+) satisfy

eiθ∞(w, ϕi)L2(Rd
+) + (σi∞∇wi,∇ϕi)L2(Rd

+) = 0 (∀ϕi ∈ C∞
0 (Rd)|Rd

+
),

eiθ∞(w, ϕe)L2(Rd) − (σe∞∇we,∇ϕe)L2(Rd
+) = 0 (∀ϕe ∈ C∞

0 (Rd)|Rd
+
),

w = wi − we,

(15)

then w = 0 and wi = we =constant.

Proof of lemma 3.4. Equations (15) implies the following equations;

(
wi, e

iθ∞ϕi −∇ · (σi∞∇ϕi)
)
L2(Rd

+)
− (we, e

iθ∞ϕi)L2(Rd
+) = 0

(∀ϕi ∈ C∞
0 (Rd)|Rd

+
s.t. σi∞∇ϕi · n∞ = 0),

(wi, e
iθ∞ϕe)L2(Rd

+) −
(
we, e

iθ∞ϕe −∇ · (σe∞∇ϕe)
)
L2(Rd

+)
= 0

(∀ϕe ∈ C∞
0 (Rd)|Rd

+
s.t. σe∞∇ϕe · n∞ = 0),

(
wi, e

iθ∞(ϕi + ϕe)−∇ · (σi∞∇ϕi)
)
L2(Rd

+)

−
(
we, e

iθ∞(ϕi + ϕe)−∇ · (σe∞∇ϕe)
)
L2(Rd

+)
= 0.
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The problem can be reduced to the whole space. Let Ewi,e be an even extension
to the whole space Rd, i.e.

Ewi,e(x) :=

{
wi,e(x

′, xd) (xd ≥ 0)

wi,e(x
′,−xd) (xd < 0).

Matrices σi∞ and σe∞ are constant so we extend these to whole space Rd, which
we simply write by σi∞ and σe∞. Since σi∞∇wi · n∞ = ∇wi · n∞ = 0, σe∞∇we ·
n∞ = ∇we · n∞ = 0 and wi,e ∈

∩
n<p<∞W 2,p

loc (Rd
+) ∩W 1,∞(Rd

+), we have Ewi,e ∈∩
n<p<∞W 2,p

loc (Rd) ∩W 1,∞(Rd). For arbitrary φi,e ∈ C∞
0 (Rd), let φeven

i,e and φodd
i,e

be the even and odd parts of φi,e, i.e.

φeven
i,e (x) :=

φi,e(x
′, xd) + φi,e(x

′,−xd)
2

,

φodd
i,e (x) :=

φi,e(x
′, xd)− φi,e(x

′,−xd)
2

.

For simplicity, set a linear operator Li· := eiθ∞ ·−∇·(σi∞∇·). From the assumption

of σi, note σi∞ have the form of σi∞ =

(
σ̃i∞ 0
0 τi

)
for some constant (d− 1)×

(d− 1) matrix σ̃i∞ and τi > 0 because (0, · · · , 0,−1) is eigenvector of σi∞. So we
have that Liφ

even
i is even function and Liφ

odd
e is odd function. Consider Le same

as Li. Naturally, Le also has the same property. Then we have

(Ewi, e
iθ∞φe + Liφi)L2(Rd) − (Ewe, e

iθ∞φi + Leφe)L2(Rd)

=
(
Ewi, e

iθ∞(φeven
e + φodd

e ) + Li(φ
even
i + φodd

i )
)
L2(Rd)

−
(
Ewe, e

iθ∞(φeven
i + φodd

i ) + Le(φ
even
e + φodd

e )
)
L2(Rd)

=(Ewi, e
iθ∞φeven

e + Liφ
even
i )L2(Rd) − (Ewe, e

iθ∞φeven
i + Leφ

even
e )L2(Rd)

=2
{
(wi, e

iθ∞φeven
e + Liφ

even
i )L2(Rd

+) − (we, e
iθ∞φeven

i + Leφ
even
e )L2(Rd

+)

}
.

The function φeven
i satisfies σi∞∇φeven

i ·n∞ = ∇φeven
i ·n∞ = 0. Function φeven

e also
satisfies same boundary condition. Since the last term of above calculation equals
to zero, we conclude that for any φi,e ∈ C∞

0 (Rd)

(Ewi, e
iθ∞φe + Liφi)L2(Rd) − (Ewe, e

iθ∞φi + Leφe)L2(Rd) = 0.

This means Ewi = Ewe = constant by the Case(4-i). Therefore we have w = 0 and
wi = we = constant. □

Results of Step 3 and Step 5 are contradictory, so the proof of Theorem 2.3 is
now complete. □

4. Bidomain operators

4.1. Definition of bidomain operators in Lp spaces. In this subsection we
define bidomain operators in Lp spaces for 1 < p <∞. To avoid technical difficulties
we assume that Ω is a bounded C2-domain. We reformulate resolvent equations
corresponding to the parabolic and elliptic system as are derived in [11]. The new
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system contains only u and ue as unknown functions. Since ui = u+ue by (4), the
new system is of the form:

λu−∇ · (σi∇u)−∇ · (σi∇ue) = s in Ω,(16)

−∇ · (σi∇u+ (σi + σe)∇ue) = 0 in Ω,(17)

σi∇u · n+ σi∇ue · n = 0 on ∂Ω,(18)

σi∇u · n+ (σi + σe)∇ue · n = 0 on ∂Ω.(19)

Let 1 < p < ∞ and Ω be a bounded C2-domain. Set Lp
av(Ω) := {u ∈ Lp(Ω) |∫

Ω
udx = 0} and the operator Pav defined by Pavu := u− 1

|Ω|
∫
Ω
udx, which is the

orthogonal projection. Evidently, Lp
av(Ω) is a closed subspace in Lp(Ω) and Pav is

a bounded linear operator on Lp(Ω). We similarly define a function spaceW 2,p
av (Ω),

i.e. W 2,p
av (Ω) = W 2,p(Ω) ∩ Lp

av(Ω). We define an operator Ai,e in Lp
av(Ω) with the

domain D(Ai,e) corresponding to a uniformly elliptic operator −∇ · (σi,e∇·) with
the oblique boundary condition. It is explicitly defined as

u ∈ D(Ai,e) :=
{
u ∈W 2,p

av (Ω) | σi,e∇u · n = 0 a.e. in ∂Ω
}
⊂ Lp

av(Ω),

Ai,eu := −∇ · (σi,e∇u).

Lemma 4.1 ([32]). Let 1 < p < ∞ and let Ω be a bounded C2-domain. Assume
that σi,e ∈ C1(Ω) satisfies (7). Then the operator Ai is densely defined closed linear
operator on Lp

av(Ω) and for any f ∈ Lp
av(Ω) there uniquely exists u ∈ D(Ai) such

that Aiu = f . The operator Ae also has the same property.

If we assume that σi,e∇u · n = 0 is equivalent to ∇u · n = 0, then D(Ai) ={
u ∈W 2,p

av (Ω) | ∇u · n = 0 a.e. in ∂Ω
}
= D(Ae). So we are able to define the oper-

ator Ai+Ae with the domainD(Ai)(= D(Ae)) and we observe that inverse operator
(Ai+Ae)

−1 on Lp
av is a bounded linear operator. Under

∫
Ω
uedx = 0, which is often

used assumption to study bidomain equations, from (17),

AiPavu+ (Ai +Ae)ue = 0

⇔(Ai +Ae)ue = −AiPavu (∈ Lp
av(Ω))

⇔ue = −(Ai +Ae)
−1AiPavu (∈ D(Ai)).

We substitute this into (16) to set

λu+AiPavu−Ai(Ai +Ae)
−1AiPavu = s

⇔λu+Ai(Ai +Ae)
−1AePavu = s.

We are ready to define bidomain operators A.

Definition 4.2 ([11, Definition 12(p = 2)]). For 1 < p <∞, we define the bidomain
operator A : D(A) := {u ∈W 2,p(Ω) | ∇u · n = 0 a.e. in ∂Ω} ⊂ Lp(Ω) → Lp(Ω) by

A = Ai(Ai +Ae)
−1AePav.(20)

Under
∫
Ω
uedx = 0, equations (16)-(19) for the function u can be written in a

single resolvent equation of the form

(λ+A)u = s in Ω.(21)

Once we solve this equation, we are able to derive ue = −(Ai +Ae)
−1AiPavu.



ON A RESOLVENT ESTIMATE FOR BIDOMAIN OPERATORS AND ITS APPLICATIONS 15

4.2. Resolvent set of bidomain operators. We study existence and uniqueness
of the solution for bidomain equations (21). We derive W 2,p a priori estimate for
fixed λ by W 2,p a priori estimate for the usual elliptic operator Ae. To define
the bidomain operator A, we now assume that Ω is a bounded C2-domain and
σi,e ∈ C1(Ω) satisfy (7) and (8), which will be used throughout.

Theorem 4.3 (A priori estimate for bidomain operators). Let 1 < p < ∞. For
each λ ∈ Σπ,0 there exists Cλ > 0 such that

∥u∥W 2,p(Ω) ≤ Cλ

(
∥(λ+A)u∥Lp(Ω) + ∥u∥Lp(Ω)

)
for all u ∈ D(A).

Proof. We operate (Ai + Ae)A
−1
i Pav to (λ + A)u = s to get (λ + Ae)Pavu =

(Ai +Ae)A
−1
i Pavs− λAeA

−1
i Pavu. Since Ae has a resolvent estimate [36], for each

ε ∈ (0, π/2) there exists C > 0 such that

|λ|∥Pavu∥Lp(Ω) + |λ|1/2∥∇Pavu∥Lp(Ω) + ∥∇2Pavu∥Lp(Ω)

≤ C∥(Ai +Ae)A
−1
i Pavs− λAeA

−1
i Pavu∥Lp(Ω)

≤ C∥s∥Lp(Ω) + C|λ|∥u∥Lp(Ω) · · · (∗∗)

for all λ ∈ Σπ−ε,0. Here, note that (Ai + Ae)A
−1
i Pav and AeA

−1
i Pav are bounded

operators in Lp(Ω). From above inequality we have for any λ ∈ Σπ,0 there exists
Cλ > 0 independent of u (may depend on λ) such that

∥u∥W 2,p(Ω) ≤ Cλ

(
∥(λ+A)u∥Lp(Ω) + ∥u∥Lp(Ω)

)
.

□

By this theorem we observe that the bidomain operator A in Lp spaces is a
densely defined closed linear operator.

Let Ap be the bidomain operator in Lp spaces. We characterize the resolvent set
of bidomain operator Ap in L

p spaces from the previous result [11] that the bidomain
operator A2 is non-negative self-adjoint operator in L2 spaces, i.e. Σπ,0 ⊂ ρ(−A2).

Lemma 4.4. Let 1 < p < ∞. Let λ ∈ Σπ,0. Assume that (λ + Ap)u = 0 implies
u = 0, then the inequality ∥u∥W 2,p(Ω) ≤ Cλ∥(λ + Ap)u∥Lp(Ω) holds, where Cλ > 0
is the constant independent of u ∈ D(Ap).

Proof. We argue by contradiction. If the inequality were false, there would exist a
sequence {uk}∞k=1 ⊂ D(Ap) satisfying

∥uk∥W 2,p(Ω) = 1, ∥(λ+Ap)uk∥Lp(Ω) < 1/k.

By the compactness of the imbedding W 2,p(Ω) → W 1,p(Ω) (Rellich’s compactness
theorem), there exists a subsequence {ukl

}∞l=1 converging strongly in W 1,p(Ω) to a
function u ∈ D(Ap). Define ũkl

= (Ai + Ae)
−1AePavukl

, ũ = (Ai + Ae)
−1AePavu

and the conjugate exponent p′ of p, 1
p + 1

p′ = 1 for 1 < p < ∞. We have {ũkl
}∞l=1

are uniform bounded in W 2,p(Ω) converging to a function ũ ∈ D(Ap). Since∫
Ω

λukl
v + σi∇ũkl

· ∇v →
∫
Ω

λuv + σi∇ũ · ∇v

for all v ∈ Lp′
(Ω), we must have

∫
Ω
λuv + σi∇ũ · ∇v = 0 for all v ∈ Lp′

(Ω). Hence
(λ + Ap)u = 0. The uniqueness implies u = 0. However, the estimate in Theorem
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4.3 implies

1 = ∥ukl
∥W 2,p(Ω) ≤ C

(
∥(λ+Ap)ukl

∥Lp(Ω) + ∥ukl
∥Lp(Ω)

)
.

Sending l → ∞ implies 1 ≤ C lim infk→∞ ∥ukl
∥Lp(Ω). This would contradict that

ukl
→ u = 0 strongly in W 1,p(Ω). □

Theorem 4.5. Let 2 ≤ p < ∞. Then for any λ ∈ Σπ,0 and s ∈ Lp(Ω), there
uniquely exists u ∈ D(Ap) such that (λ+Ap)u = s.

Proof. If λ ∈ Σπ,0 and u ∈ D(Ap) satisfy (λ + Ap)u = 0 then u = 0 since u ∈
D(Ap) ⊂ D(A2) and λ ∈ ρ(−A2). For existence of a solution to a bidomain
equation we use the continuity method [21]. For each t ∈ [0, 1] we set

Lt := λ+Ai(tAi +Ae)
−1AePav : D(Ap) → Lp(Ω).

By Lemma 4.4 we see there is a constant Cλ > 0 such that ∥u∥W 2,p(Ω) ≤ Cλ∥Ltu∥Lp(Ω)

for all u ∈ D(Ap) and t ∈ [0, 1]. Suppose that Lt̃ : D(Ap) → Lp(Ω) is onto
for some t̃ ∈ [0, 1], then Lt̃ is one-to-one. Hence there exists inverse mapping
L−1
t̃

: Lp(Ω) → D(Ap).

For t ∈ [0, 1] and s ∈ Lp(Ω), the equation Ltu = s is equivalent to the equation

Ltu = s

Lt̃u = s+ (Lt̃ − Lt)u

= s+ (t− t̃)Ai(t̃Ai +Ae)
−1Ai(tAi +Ae)

−1AePavu

u = L−1
t̃

{s+ (t− t̃)Ai(t̃Ai +Ae)
−1Ai(tAi +Ae)

−1AePavu}.

Set the mapping T : D(Ap) → D(Ap) and δ > 0 of the form

Tu = L−1
t̃

{s+ (t− t̃)Ai(t̃Ai +Ae)
−1Ai(tAi +Ae)

−1AePavu},

δ =

{
sup

t,t̃∈[0,1]

∥L−1
t̃

{Ai(t̃Ai +Ae)
−1Ai(tAi +Ae)

−1AePav∥L(W 2,p(Ω))

}−1

.

The mapping T is a contraction mapping if |t − t̃| < δ and hence the mapping
Lt : D(Ap) → Lp(Ω) is onto for all t ∈ [0, 1] satisfying |t − t̃| < δ because of δ
is independent of t, t̃. By dividing the interval [0, 1] into subintervals of length
less than δ, we see that the mapping Lt is onto for all t ∈ [0, 1] because of L0 =
λ+AiPav : D(Ap) → Lp(Ω) is onto when λ ∈ Σπ,0. □

Lemma 4.6. Let 1 < p <∞. The adjoint of the bidomain operator Ap is Ap′ .
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Proof. Let u ∈ D(Ap), v ∈ D(Ap′) and 2 ≤ p < ∞. For simplicity, we write
⟨·, ·⟩ := ⟨·, ·⟩Lp(Ω)×Lp′ (Ω).

⟨Apu, v⟩
= ⟨AiPavu−Ai(Ai +Ae)

−1AiPavu, v⟩
= ⟨AiPavu−Ai(Ai +Ae)

−1AiPavu, v⟩
− ⟨AiPavu− (Ai +Ae)(Ai +Ae)

−1AiPavu, (Ai +Ae)
−1AiPavv⟩

= ⟨AiPavu−Ai(Ai +Ae)
−1AiPavu, v − (Ai +Ae)

−1AiPavv⟩
+ ⟨Ae(Ai +Ae)

−1AiPavu, (Ai +Ae)
−1AiPavv⟩

= ⟨u− (Ai +Ae)
−1AiPavu,AiPavv −Ai(Ai +Ae)AiPavv⟩

+ ⟨(Ai +Ae)
−1AiPavu,Ae(Ai +Ae)

−1AiPavv⟩
= ⟨u,Ap′v⟩
− ⟨(Ai +Ae)

−1AiPavu,AiPavv −Ai(Ai +Ae)
−1AiPavv −Ae(Ai +Ae)

−1AiPavv⟩
= ⟨u,Ap′v⟩.

So we get Ap ⊂ A∗
p′ . In order to show D(Ap) ⊃ D(A∗

p′), we first show that λ ∈
ρ(−Ap) implies λ ∈ ρ(−A∗

p′). Remark that D(A2) ⊂ D(Ap′) and Ap′u = A2u (u ∈
D(A2)). For λ ∈ ρ(−Ap), (λ+ Ap′)D(Ap′) ⊃ (λ+ Ap′)D(A2) = (λ+ A2)D(A2) =

L2(Ω). So R (λ+Ap′) is dense in Lp′
(Ω). Therefore λ+A∗

p′ is one-to-one in Lp(Ω).

Since Ap ⊂ A∗
p′ and λ+Ap is surjection in Lp(Ω), we get λ+A∗

p′ is surjection. This

means λ ∈ ρ(−A∗
p′).

Take u ∈ D(A∗
p′) and for some λ ∈ ρ(−Ap) ∩ ρ(−A∗

p′) ̸= ∅, then

v := (λ+Ap)
−1(λ+A∗

p′)u ∈ D(Ap)

(λ+Ap)v = (λ+A∗
p′)u

(λ+A∗
p′)v = (λ+A∗

p′)u

v = u.

Therefore D(A∗
p′) ⊂ D(Ap) and A

∗
p′ = Ap. Since Ap′ is a closed linear operator, we

have Ap′ = A∗∗
p′ = A∗

p. This means for all 1 < p < ∞ the adjoint of the bidomain
operator Ap is Ap′ . □

So we have for all 1 < p <∞, ρ(−Ap) = ρ(−A∗
p) = ρ(−Ap′) = Σπ,0.

Our Theorem 4.5 implies existence and uniqueness of the resolvent bidomain
equation since it is equivalent to the equation (21).

Theorem 4.7 (Existence and Uniqueness). Let 1 < p < ∞, Ω be a bounded C2-
domain and σi,e ∈ C1(Ω, Sd) satisfy (7) and (8). Then for any λ ∈ Σπ,0, s ∈ Lp(Ω),
the resolvent problem

λu−∇ · (σi∇ui) = s in Ω,

λu+∇ · (σe∇ue) = s in Ω,

u = ui − ue in Ω,

σi∇ui · n = 0, σe∇ue · n = 0 on ∂Ω,

has a unique solution u, ui,e ∈W 2,p(Ω) satisfying
∫
Ω
uedx = 0.
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4.3. Analyticity of semigroup generated by bidomain operators. We will
study bidomain equations in the framework of an analytic semigroup, so let us
recall the definition of a sectorial operator. Let X be a complex Banach space and
A : D(A) ⊂ X → X be a linear operator, may not have a dense domain.

Definition 4.8. The operator A is said to be a sectorial operator with angle θ(∈
[0, π/2) if for each ε ∈ (0, π/2) there exist C > 0 and M ≥ 0 such that

(1) ρ(−A) ⊃ Σπ−θ,M , (2) sup
λ∈Σπ−θ−ε,M

|λ|∥(λ+A)−1∥L(X) ≤ C.

We do not assume that the operator A has a dense domain. So it may happen
that the analytic semigroup {e−tA}t≥0 generated by the operator A may not be
strongly continuous, that is for each x ∈ X the function t 7→ e−tAx is not necessarily
continuous on [0,∞). We call {e−tA}t≥0 C0-analytic semigroup if for each x ∈ X,
t 7→ e−tAx is continuous on [0,∞). We have that if the operator A is a sectorial
operator with angle θ, then t 7→ e−tA is analytic in [0,∞) and it can be extended
holomorphically in a sector with opening angle 2(π/2− θ). For sectorial operators,
it is known that

{e−tA}t≥0 : strongly continuous ⇔ ∀x ∈ X, lim
t→0

e−tAx = x⇔ D(A) = X.

Therefore, {e−tA}t≥0 is C0-analytic semigroup if and only if the operator A is a
sectorial operator with dense domain D(A) in X (See [24]).

Let us go back to consider bidomain operators. Note that [11] showed the bido-
main operator A is a non-negative self-adjoint operator in L2(Ω) so that it is a
sectorial operator. Namely, ρ(−A2) ⊃ Σπ,0 and for each ε ∈ (0, π/2) there exists
C > 0 such that

sup
λ∈Σπ−ε,0

|λ|∥u∥L2(Ω) ≤ C∥s∥L2(Ω)

for all s ∈ L2(Ω). We derived an L∞ resolvent estimate (Theorem 2.3); for each
ε ∈ (0, π/2) there exist C > 0 and M ≥ 0 such that ρ(−A) ⊃ Σπ,M

sup
λ∈Σπ−ε,M

|λ|∥u∥L∞(Ω) ≤ C∥s∥L∞(Ω)

and for all s ∈ L∞(Ω).
By using Riesz-Thorin interpolation theorem, we are able to derive an Lp resol-

vent estimate, i.e. for each ε ∈ (0, π/2) and 2 ≤ p ≤ ∞ there exist C > 0 and
M ≥ 0 such that ρ(−Ap) ⊃ Σπ,M and that

sup
λ∈Σπ−ε,M

|λ|∥u∥Lp(Ω) ≤ C∥s∥Lp(Ω)

and for all s ∈ Lp(Ω),
For 2 ≤ p <∞ and its conjugate exponent p′(∈ (1, 2]), we have

∥(λ+Ap′)−1∥L(Lp′ (Ω)) = ∥((λ+Ap)
−1)∗∥L(Lp′ (Ω)) = ∥(λ+Ap)

−1∥L(Lp(Ω)) ≤
C

|λ|
.

We derived the resolvent estimate for bidomain operators −Ap in Lp spaces for
the sufficiently large λ. However, in the next theorem, we estimate the resolvent
for all λ ∈ Σπ−ε,0 and higher order derivatives ∥∇u∥Lp(Ω) and ∥∇2u∥Lp(Ω), which
is similar to an elliptic operator in Lp spaces.
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Theorem 4.9 (Lp resolvent estimates for bidomain operators). Let 1 < p < ∞.
For each ε ∈ (0, π/2) there exists C > 0 depending only on ε such that the unique
solution u ∈ D(Ap) of the resolvent equation (λ+Ap)u = s satisfies

|λ|∥u∥Lp(Ω) + |λ|1/2∥∇u∥Lp(Ω) + ∥∇2u∥Lp(Ω) ≤ C∥s∥Lp(Ω)

for all λ ∈ Σπ−ε,0 and s ∈ Lp(Ω).

Proof. We divide the resolvent estimate (λ + Ap)u = s into (λ + Ap)u1 = Pavs
and (λ + Ap)u2 = s − Pavs. Note that u = u1 + u2, Pavs ∈ Lp

av(Ω), s − Pavs is a
constant and the origin 0 belongs to ρ(−Ap|Lp

av(Ω)). For each ε ∈ (0, π/2) we fix

M ≥ 0 which is the constant in the above explanation. Since (λ + Ap)
−1Pavs =

(λ + Ap|Lp
av(Ω))

−1Pavs and the resolvent operator (λ + Ap|Lp
av(Ω))

−1 is uniform

bounded in a compact subset Σπ−ε,0 ∩ B(0, 2M), we have there exists C > 0
depending on ε such that

∥u1∥Lp(Ω) = ∥(λ+Ap)
−1Pavs∥Lp(Ω)

= ∥(λ+Ap|Lp
av(Ω))

−1Pavs∥Lp(Ω)

≤ C

|λ|+ 1
∥Pavs∥Lp(Ω)

for all λ ∈ Σπ−ε,0 ∩ B(0, 2M). On the other hand we have u2 = 1
λ (s − Pavs), so

there exists C > 0 such that

∥u2∥Lp(Ω) = ∥ 1
λ
(s− Pavs)∥Lp(Ω)

≤ C

|λ|
∥s− Pavs∥Lp(Ω)

for all λ ∈ Σπ−ε,0. We use the operator Pav is a bounded linear operator and
combine two estimates. We have that there exists C > 0 such that ∥u∥Lp(Ω) ≤
C
|λ|∥s∥Lp(Ω) for all λ ∈ Σπ−ε,0 ∩ B(0, 2M). Since we have already proved the re-

solvent estimate for |λ| > M , the resolvent estimate holds for all λ ∈ Σπ−ε,0.
Estimates for higher order derivatives it follows from the key estimate (∗∗) of the
proof of Theorem 4.3. □

We can also define the bidomain operator in L∞(Ω). When the domain Ω is
bounded, L∞(Ω) is contained in

∩
n<p<∞ Lp(Ω). So for all s ∈ L∞(Ω) we can take

a unique solution of (16)-(19) u, ui,e ∈
∩

n<p<∞W 2,p(Ω) satisfying
∫
Ω
uedx = 0.

Here, note that we cannot expect a W 2,∞(Ω) solution such as a usual elliptic
problem.

For λ ∈ Σπ−ε,M let R∞(λ) be the solution operator from s ∈ L∞(Ω) to u ∈∩
n<p<∞W 2,p(Ω)(⊂ L∞(Ω)) such that u is a solution of the resolvent bidomain

equation (16)-(19). We warn that the abstract equation (21) is not available for
L∞ at this moment. The operator R∞(λ) is a bounded operator whose operator
norm is dominated by C/|λ|, i.e.,

∥R∞(λ)s∥L∞(Ω) ≤
C

|λ|
∥s∥L∞(Ω).

The operator R∞(λ) may be regarded as a bijection operator from L∞(Ω) to
R∞(λ)L∞(Ω). The operator R∞ : Σπ−ε,M → L(L∞(Ω)) satisfy the following
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resolvent equation;

R∞(λ)−R∞(µ) = (µ− λ)R∞(λ)R∞(µ) (λ, µ ∈ Σπ−ε,M ).

Namely the operator R∞(λ) is a pseudo-resolvent. We use the following proposition.

Proposition 4.10 ([8, Proposition B.6.]). Set a subset U ⊂ C and a Banach space
X. Let a function R : U → L(X) be a pseudo-resolvent. Then
(a) KerR(λ) and RanR(λ) are independent of λ ∈ U .
(b) There is an operator A on X such that R(λ) = (λ+A)−1 for all λ ∈ U if and
only if KerR(λ) = {0}.

By this proposition, there exists a operator A∞ with the domain D(A∞) =
R∞(λ)L∞(Ω)(⊂ ∩n<p<∞W

2,p(Ω)) such that (λ+A∞)−1s = u, i.e. (λ+A∞)u = s.
We call A∞ the bidomain operator in L∞(Ω). We have the bidomain operator A∞
in L∞(Ω) is a sectorial operator. However, it is easy to see that D(A∞) is not

dense. Indeed,
∩

n<p<∞W 2,p(Ω) ⊂ C(Ω) and hence D(A∞)
L∞(Ω)

⊂ C(Ω), where

D(A∞)
L∞(Ω)

is the closure of D(A∞) in the L∞(Ω) norm. Since C(Ω) is not
dense in L∞(Ω), D(A∞) is not dense in L∞(Ω). We restrict the dense domain

D(A∞)
L∞(Ω)

. We also have D(A∞)
L∞(Ω)

= {u ∈ UC(Ω) | ∇u · n = 0}, where
UC(Ω) denotes the space of all the uniformly continuous functions in Ω (see [24]).
So we consider again such that

D(Ã∞) := {u ∈ D(A∞) | A∞u ∈ UC(Ω)},

Ã∞u := A∞u.

Then the operator Ã∞ is a densely defined sectorial operator in UC(Ω). Our
resolvent estimates (Theorem 4.9 for Lp, Theorem 2.3 for L∞) yields the following
theorem.

Theorem 4.11 (Analyticity of bidomain operators). For 1 < p < ∞ bidomain
operators Ap in Lp(Ω) generate C0-analytic semigroups with angle π/2. The oper-
ator A∞ generates a non-C0-analytic semigroup with angle π/2 in L∞(Ω), and the

operator Ã∞ generates a C0-analytic semigroup with angle π/2 in UC(Ω).

5. Strong solutions in Lp spaces

By discussion in the previous section, we are able to study nonstationary state
bidomain equations by using the bidomain operator A. Let us state the definition
of a strong solution. Assume that Ω is a bounded C2-domain, 1 < p < ∞, si,e ∈
Cν

loc([0,∞);Lp(Ω)) (for some 0 < ν < 1) such that si(t) + se(t) ∈ Lp
av(Ω) (∀t ≥ 0)

and f : R × Rm → Rm and g : R × Rm → Rm are locally Lipschitz continuous
functions. Before giving the definition of a strong solution, we recall parabolic-
elliptic type bidomain equations.

∂tu+ f(u,w)−∇ · (σi∇u)−∇ · (σi∇ue) = si in (0,∞)× Ω,(22)

−∇ · (σi∇u+ (σi + σe)∇ue) = si + se in (0,∞)× Ω,(23)

∂tw + g(u,w) = 0 in (0,∞)× Ω,(24)

σi∇u · n+ σi∇ue · n = 0 on (0,∞)× ∂Ω,(25)

σi∇u · n+ (σi + σe)∇ue · n = 0 on (0,∞)× ∂Ω,(26)

u(0) = u0, w(0) = w0 in Ω.(27)
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Definition 5.1 ([11, Definition 18] Strong solution). For τ > 0 consider the func-
tions z : t ∈ [0, τ) 7→ z(t) = (u(t), w(t)) ∈ Z := Lp(Ω)×Bm (B = L∞(Ω) or Cν(Ω))
and ue : t ∈ [0, τ) 7→ ue(t) ∈ Lp(Ω). Given z0 = (u0, w0) ∈ Z, we say that (u, ue, w)
is a strong solution to (22) to (27) if

(1) z : [0, τ) → Z is continuous and z(0) = (u0, w0) in Z,
(2) z : (0, τ) → Z is Fréchet differentiable,

(3) t ∈ [0, τ) 7→
(
f
(
u(t), w(t)

)
, g
(
u(t), w(t)

))
∈ Z is well-defined, locally ν-Hölder

continuous on (0, τ) and is continuous at t = 0,
(4) for all t ∈ (0, τ), u(t) ∈W 2,p(Ω), ue(t) ∈W 2,p

av (Ω),

and (u, ue, w) verify (22)-(24) for all t ∈ (0, τ) and for a.e. x ∈ Ω, and the boundary
conditions (25) and (26) for all t ∈ (0, τ) and for a.e. x ∈ ∂Ω.

Let us consider bidomain equations as an abstract parabolic evolution equation
on some Cartesian product spaces. We set

Az := (Au, 0) for z = (u,w) ∈ D(A) := D(A)×Bm,

F : z ∈ Z 7→ (f(z), g(z)) ∈ Z,

S : t ∈ [0,∞) 7→ (s(t), 0) =
(
si(t)−Ai(Ai +Ae)

−1(si(t) + se(t)), 0
)
∈ Z,

F(t, z) = S(t)− F (z).

If one collects all calculation, then bidomain equations is transformed into

dz

dt
(t) +Az(t) = F(t, z(t)) in Z,(28)

ue(t) = (Ai +Ae)
−1 {(si(t) + se(t))−AiPavu(t)} ∈ D(Ae),(29)

z(0) = z0 in Z.

Lemma 5.2 ([11, Lemma 19]). The function z = (u,w) with ue is a strong solution
(22)-(27) if and only if conditions (1)-(3) of Definition 5.1 and condition (4’) below
is satisfied;

(4’) for all t ∈ (0, τ), u(t) ∈ D(A) satisfies (28) and (29).

We will use the general theory in Henry’s book [22]. We have to control the
nonlinear term f, g. The key idea is to use fractional powers Aα and related space
Zα with 0 ≤ α ≤ 1.

Definition 5.3 ([22]). If A is a sectorial operator in a Banach space Z and if there
is a ≥ 0 such that Reσ(A+ a) > 0, then for each α > 0 we define the operator

(A+ a)−α :=
1

Γ(α)

∫ ∞

0

tα−1e−(A+a)tdt.

For α > 0, we see (A + a)−α is a bounded linear operator on Z which is one-
to-one. By using this operator with fractional power, we define the domain Zα of
fractional power;

Zα := R((A+ a)−α) (α > 0),

∥x∥Zα := ∥((A+ a)−α)−1x∥Z .

For α = 0, we define Z0 := Z, ∥x∥Z0 := ∥x∥Z .

Remark 5.4 ([22]). • Different choices of a give equivalent norms on Zα.
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• (Zα, ∥ · ∥Zα) is a Banach space, Z1 = D(A) and for 0 ≤ β ≤ α ≤ 1, Zα is
a dense subspace of Zβ with continuous inclusion.

Lemma 5.5 ([22, Theorem 1.6.1]). If B = L∞(Ω) and f, g are locally Lipschitz
continuous on R× Rm, then

Zα ⊂ L∞(Ω)×Bm if
d

2p
< α ≤ 1,

and in that case, F : z ∈ Zα 7→ F (z) ∈ Z is locally Lipschitz continuous.
If B = Cν(Ω) and f, g are C2 functions on R× Rm, then

Zα ⊂ Cν(Ω)×Bm if
1

2

(
ν +

d

p

)
< α ≤ 1,

and in that case, F : z ∈ Zα 7→ F (z) ∈ Z is locally Lipschitz continuous.

We are ready to state existence and uniqueness of the strong solution for bido-
main equations. When p = 2, d = 2, 3, this was proved in [11, Theorem 20] so our
result is regarded as an extension of their result.

Theorem 5.6 (Local existence and uniqueness). Let 0 ≤ α < 1 and 1 < p < ∞
satisfying the relation in Lemma 5.5. Then for any z0 = (u0, w0) ∈ Zα, there exists
T > 0 such that bidomain equations have a unique strong solution on [0, T ).

Proof. It is enough to show

• A is a sectorial operator,
• F : [0,∞) × Zα → Z is a locally Hölder continuous function in t and a
locally Lipschitz continuous function in z,

because of existence and uniqueness theorem [22, Theorem 3.3.3]. First part is
obvious since A = (A, 0), A is a sectorial operator and 0 is a bounded linear
operator. Note that a bounded linear operator is a sectorial operator and direct
sum of a sectorial operator is a sectorial operator [22]. Second part follows from
the calculation as below. We need to show s : [0,∞) → Lp(Ω) is locally ν-Hölder
continuous in time. For any compact set M ⊂ [0,∞) there exists C > 0 such that
for all t1, t2 ∈M , we have

∥s(t1)− s(t2)∥Lp(Ω)

=∥si(t1)− si(t2)−Ai(Ai +Ae)
−1(si(t1)− si(t2) + se(t1)− se(t2))∥Lp(Ω)

≤∥si(t1)− si(t2)∥Lp(Ω) + C(∥si(t1)− si(t2)∥Lp(Ω) + ∥se(t1)− se(t2)∥Lp(Ω))

≤C|t1 − t2|ν .

Here, we invoked the fact that Ai(Ai+Ae)
−1 is a bounded linear operator and that

si,e are locally ν-Hölder continuous functions. □

We conclude this paper by studying regularity of a strong solution. Let 0 < ν <
1, Ω be a bounded C2+ν-domain, f, g be C2 regularity, and coefficient of σi,e be

C1+ν(Ω).

Theorem 5.7 (Regularity of a strong solution). Consider the case B = Cν(Ω)
in Definition 5.1 and 0 ≤ α < 1 defined by Lemma 5.5. Assume that si,e ∈
Cν

loc([0,∞);Lp(Ω)) such that si,e(t) ∈ Cν(Ω) and
∫
Ω
(si(t) + se(t))dx = 0(∀t ≥ 0).

For z0 = (u0, w0) ∈ Zα the unique strong solution z of bidomain equations defined
on [0, T ) for some T > 0 satisfies furthermore:
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(1) For any x ∈ Ω, u(x, ·) ∈ C1((0, T );R) and w(x, ·) ∈ C1((0, T );Rm).
(2) For any t ∈ (0, T ), u(·, t), ui,e(·, t) ∈ C2(Ω).

Proof. We see that t ∈ (0, T ) 7→ z(t) ∈ Cν(Ω)× (Cν(Ω))m is continuous (Fréchet)
differentiable. This actually implies that (t, x) ∈ (0, T )×Ω 7→ z(x, t) = (u(x, t), w(t, x))
is continuously differentiable in t. By [22, Theorem 3.5.2], we have t ∈ (0, T ) 7→
z(t) ∈ Zν is continuously (Fréchet) differentiable. This means du/dt(t) ∈ Cν(Ω).
From (28),

Pavu(t) = A−1
e (Ai +Ae)A

−1
i

{
−du
dt

(t)− f(u(t), w(t)) + s(t)

}
.

By elliptic regularity theorem for Hölder spaces, Pavu(·, t) is (2+ ν)-Hölder contin-
uous since −du/dt(t)− f(u(t), w(t))+ s(t) is ν-Hölder continuous. Therefore u(·, t)
is in C2(Ω). The function ue is also in C2(Ω) by (29). □
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