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We study a blow-up curve for the one dimensional wave equation 0%u—0%u =
|O¢ulP with p > 1. The purpose of this paper is to show that the blow-up
curve is a C! curve if the initial values are large and smooth enough. To
prove the result, we convert the equation into a first order system, and then
apply a modification of the method of Caffarelli and Friedman [2]. Moreover,
we present some numerical investigations of the blow-up curves. From the
numerical results, we were able to confirm that the blow-up curves are smooth
if the initial values are large and smooth enough. Moreover, we can predict
that the blow-up curves have singular points if the initial values are not large
enough even they are smooth enough.

1 Introduction

In this paper, we consider the nonlinear wave equation

2, _ A2 — P R
{@u Ozu = |Opul?, r€eR, t>0, (1.1)

u(a:,()) = uO(x)v atu(xa O) = ul(x)v z €R,

where
p > 1 is a constant such that the function |s|? is of class C*. (1.2)

Here, u is an unknown real-valued function.
Let R* and T* be any positive constants, and set

Bre ={z | |z| < R}, (1.3)

K_(xo,t0) = {(x,t) | [z — 20| <to —t, t >0}, (1.4)

KR*,T* = U K_(x,T*) (15)
rEBp=

We then consider the following function
T(x) =sup{t € (0,7*) | |O¢u(z,t)] < oo} forx € Bg-.

In this paper, we call the set I' = {(z,7(z)) | # € Br~} the blow-up curve. Below, we
identify T" with T itself. There are two purposes of this paper. First, we demonstrate
that T is continuously differentiable for the suitable initial values. Second, we present
some numerical examples of the various blow-up curves. From the numerical results, we
were able to confirm that the blow-up curves are smooth if the initial values are large
and smooth enough. Moreover, we can predict that the blow-up curves have singular
points if the initial values are not large enough even they are smooth enough.



We will state some analytical results from previous studies on the blow-up curves for
nonlinear wave equations. The majority of previous studies have considered the following
nonlinear wave equation:

02u — 0*u = F(u), xR, t>0,

and corresponding blow-up curve

T(z)=sup{t € (0,77) | |u(z,t)| < oo} forxz € Bp-.

We note that the definition of the blow-up curve is different from ours. The pioneering
study on this topic was done by Caffarelli and Friedman [1], [2]. They investigated the
case with F(u) = |ul?. They demonstrated that T in that case is continuously differen-
tiable under suitable initial conditions. Moreover, Godin [7] showed that the blow-up
curve with F(u) = e* is also continuously differentiable under appropriate initial condi-
tions. It was also shown that the blow-up curve can be C*°, in the case of F(u) = e*
(see Godin [8]). Furthermore, Uesaka [13] considered the blow-up curve for the system
of nonlinear wave equations.

On the other hand, Merle and Zagg [9] showed that there are cases where the blow-up
curve has singular points, while the above results concern the smoothness of the blow-up
curve.

As mentioned above, several results have been established on the blow-up curve when
there are no nonlinear terms involving the derivative of the solution. On the other hand,
to the best of our knowledge only one result has been found concerning the blow-up
curve with nonlinear terms involving the derivative of solution. Ohta and Takamura [11]
considered the nonlinear wave equation

Otu— 02u = (Ou)? — (0,u)?, z€R, tecR. (1.6)
This equation can be transformed into the wave equation 9?v — §%v = 0 by

v(z,t) =exp{—u(z,t)}, wu(z,t)=—log{v(z,t)}.

Thanks to the linearization of (1.6), we can study the blow-up curve of (1.6).

However, we cannot apply this linearization to (1.1). Therefore, we employ an al-
ternative method, which is to rewrite to (1.1) as a system that does not include the
derivative of the solution in nonlinear terms. We basically apply the method introduced
by Caffarelli and Friedman [2] to this system. However, we offer an alternative proof of
[2] for showing that the blow-up curve of the blow-up limits is an affine function (Section
5). Consequently, our proof is more elementary and easy to read. Our method would be
applied to the original equation of [2].

We define ¢ and 9 as
¢ = Oyu + Oypu, ¥ = Oyu — Ozu.
Then, we see that (1.1) is rewritten as

D_¢=27P|¢p+ P, xR, t>0,
Dy =27P|¢p + 9P, zeR, >0, (1.7)
¢(x,0) = f(z), (z,0)=g(z), z€R,

where D_v = 0w — 0,v, Div = 0w + 0,v and f = ug + Oyug, g = w1 — dpug. (The
equivalency of between (1.1) and (1.7) will be described in Remark 1.2.)



Let (¢~>, 1;) be the solution of

d -
A )

dip - - 1.8
% - 2_p|¢+¢\p7 t>0, ( )

Q;(O) =71 12)(0) =72

where v, and 72 are some positive constants which will be fixed later. Then, we see that
there exists a positive constant T such that

o) +U(t) » 00 ast— Ty
We make the following assumptions.
(A1) f>v, 9272 in Brejr-.
(A2) f.9 € CY(Breir-)-
(A3) There exists a constant €9 > 0 such that

27 +2)" 2 2t eo)  max {|fa(@)] + g2 (@)]}-

z€EB

(A4) T, < T*.

2
(A5.1) There exists a constant 1 > 5 3 such that

270+ )" 2 2t a) max {|0:f(@)] +|0:g(@)]}-

(We notice that it follows from (1.2) that p > 3/2.)

(A5.2) There exists a constant C®) > 0 such that

(f+9)* 1> C® max {|8}f(2)| +|07g()]}.

TEBR* 1T

(A5.3) There exists a constant C®) > 0 such that

(f+9*?>CP- max {|03f(w)] +|03g(z)}-
TEBR* {*

We now state the main results of this paper.

Theorem 1.1. Let R* and T* be arbitrary positive numbers. Assume that (A1)-(A5.3)
hold true. Then, there exists a unique C*(Bg+) function T such that 0 < T'(x) < T* (x €
Bp+) and a unique (C**(Q))? solution (¢,v) of (1.7) satisfying

¢(x,t), Y(x,t) 200 as t—T(x) (1.9
for any x € Bg-, where Q = {(z,t) e R? |z € Bg-, 0<t <T(2)}.
Remark 1.2. The equation (1.1) is equivalent to (1.7). We set
1t
u(x,t) = up(z) + 5/ (¢ + ) (x, s)ds.
0
Then, u satisfies (1.1).

Remark 1.3. The assertion (1.9) implies that dyu(z,t) — co ast — T(x) (x € Br~).



Next, we will mention numerical analysis of blow-up of nonlinear partial differential
equations. There are many previous works of computation of blow-up solutions of various
partial differential equations; See, for example, [10], [6], [3], [14], [12], [4] and [5].

We computed blow-up curve using the method of Cho [5] and obtained the various
numerical results of blow-up curves. We will show them in Section 7.

The remainder of this paper is organized as follows. In Section 2, we construct a
classical solution for (1.7) in the domain Q. In Section 3, we give the blow-up rates of the
solutions of (1.7). Moreover, we show that the blow-up curve is Lipschitz continuous. In
the course of Sections 46, we prove that the blow-up curve is continuously differentiable.
In Section 7, we show some numerical examples of blow-up curves.

2 Existence and regularity of solutions

In this section, we will demonstrate the existence and regularity of the solutions ¢ and
of (1.7) by successive approximation. Let us define {¢,,} and {¢,} by ¢og = 71, Yo = 72,
and

D_¢ppi1 =27P|¢n + P, (z,t) € Kp+ 1+,
Dithpgr =27P|dn + thn|?, (z,1) € KR- 1+, (2.1)
¢n+l(xa O) = f($)7 ¢n+l(xa O) = g(x)a S BR*+T*7

for n € NU{0}. Here, 71 and 7y, are initial values of (1.8). We note that (2.1) can be

rewritten as

t
nr1(z,t) = flz +1t) + /O 2P|y, + u|P(z + (t — s), s)ds, 22)

t
"/’nJrl(mﬂt) = g(x - t) + / 2_p|¢n + d)nlp(x - (t - 5)7 8>d8'
0
Remark 2.1. Consider a function F' € C'(K g~ 7+). We note that it follows from (2.1)
and (2.2) that F'(z,t) > 0 in Kg« p- if

D_F(z,t) >0
F(z,0) >0 in Br«y7r~, and or in Kp« 7.
D, F(z,t) >0

2.1 Lemmas

Now, we introduce two important lemmas.

Lemma 2.2. Assume that (A1) hold. Then, we have

¢n+1 Z (bn 2 07

Yyt >y > 0, in Kg« -, (2.3)

forn e NU{0}.

Proof. First, it follows from (A1) that

t
o1(z,t) = f(z+1) +/0 27P|po + o|P(z + (t — 5),s)ds > v1 = do(x,t) >0

in Kg- r+. Similarly, we have that ¢¥; > 19 > 0 in K- 7~.
Next, we assume that

¢n 2 ¢n71 2 0 and 'l/)n Z ’1/271,1 Z 0 in KR*,T*~



Then, we have
¢
Gni1(z,t) = f(z +1) + / 27P|py, + Y|P (x + (t — 5), 8)ds
0

> fle+t)+ /Ot 27P|pn—1 + Yn1fP(z + (t = 5), 5)ds
= ¢nlz,1) 20

in Kg~ 7+. Similarly, we have that ¥, 11 >, >0 in K« p-.

Lemma 2.3. Assume that (A1)-(A3) hold. Then, we have

at(bn > (1 + 50)|ax¢n|a
atwn Z (1 + 50)‘aa:wn‘7

in Kg+ -,
forn e NU{0}.
Proof. Set A =1+ ¢, and
Jn = 6t¢n + Aax(b'ru jn = at(bn - >\8x¢n7
Ln = 8t’(/)n + )\&Hﬁm Z/n = 8t’(/}n - Aamwna

(2.4)

for n € NU{0}. Then, it suffices to show that J,,, jﬂ, L, and ;n are nonnegative for
n € NU{0}, in Kg- p-. First, we note that Jy = Jo = Lo = Ly = 0 in Kg«p~. We

assume that
Jn Z 0, Ln Z 0 in KR*,T*-

Then, it follows from (A3) that

Jn-&-l(xa 0) = 8t¢n+1($7 0) + )‘8w¢n+1(xa 0)
= (1 4+ A)02bnt1(x,0) + 277|dn(x, 0) + ¢ (x, 0)”
> (24¢€0)0:f(x) +27P(y1+72)? > 0 in Breyp-.

Furthermore, it follows from Lemma 2.2 that

D_Jps1 = 0t(0ibns1 + Nubps1) — 0u(OrPns1 + ANy Ppy1)
= 04(0snt1 — OxPny1) + A0z (0rPng1 — OxPry1)
= (00 + A02)27 ¢ + Yon |’
= (0 + A02)27P(dn + )P
=27Pp(¢p + )P (Jp + Ly) >0 in Kpe g

Therefore, we obtain Jy, 11 > 0 in Kg- p«. Similarly, we obtain that L, > in Kg« p=.

In the same way of above, we can show that

Jn+1 Z 07 Ln+1 Z 0 in KR*,T*

if we assume that J, > 0, L, > 0 in Kpg- 7+. Therefore, we have obtained that

Jns Iy Ly Ly >0 for n € NU {0}, in K~ p~. This completes the proof.

2.2 Proof of existence and regularity of ¢ and 1

O

Fix (z,t) € Kg- p-. Since {¢,(z,t)} and {¢,(z,t)} are increasing sequences on n, we

have

lim ¢ (z,t) =supd,(z,t) and lim o, (z,t) = sup ¢, (z,1).
n—o0 neN n—o0 neN

(2.5)



We set

¢(I,t) = sup ¢n(x7t) and 1/)(:17,75) = sup 'l/)n(xvt)'
neN neN

It follows from Lemma 2.3 that ¢ and 1 are monotone increasing on t. Hence, there exists
a function T'(z) such that

T(xz) =sup{t € (0,T7*) | (¢ +¥)(zx,t) <o} for z € Bg-
and

1. t f B *
tTlTr&)(¢+w)(x,)—>oo or x € Bp

if T(x) <T*. Weset Q = {(x,t) | x € Bp«, 0 <t <T(x)}.
Remark 2.4. We will show that T is actually a blow-up curve of ¢ and v in Section 3.
We state the following local existence lemma.

Lemma 2.5. Assume that (A1)-(A83) hold. Then, (¢,%) is a unique (C**(Q2))? solution
of (1.7).

Proof. We set

B(t) = {z € Breyr-

v —z| <t—t} for ({,2)€.

(Proof of regularity.)
First, we will show that (¢,%) is a (C%1(2))? solution of (1.7). We split the proof into
2 steps.

(Step 1.) Fix (#,7) € Q. We will show that there exists a positive constant My such
that

¢+ ¥l LBty < Mo for t€[0,1] (2.6)

by showing a contradiction.
We set
Y, ={z€Bg- ||z -3 <t-T(2)}
and m is the 1-dimensional Lebesgue measure.
We assume that (2.6) does not hold. Then, there exists ¢ € (0,%) such that there
exist a’, b satisfying a’ < b’ and

(@',b')yCc B(t') and (2/,t')¢Q for ze€ (V).

By the monotonicity of ¢ + ¢ on t, we have T'(z) < ¢ for z € (a’,V"), which implies
(a/,v') € Y. Hence, we have m(Y,) > 0.
It follows from the monotonicity of ¢ + ¢ on t that

(xz,t) ¢ Q if z€Y, and (t=z+t—-% or t=-—x+t+7).

Moreover, we have m(Y; ;) > 0 or m(Y; _) > 0 if m(Y,) > 0. Here,

V; _={se€(0,f)|s=—a+i+i zeY,},
, T

Vi, ={se(0t)|s=a+i-%, zeY,}.

Then, we have

o0 >(¢n+1 + T,Dn—&—l)(fia t)

2/ 3P byt b P(E + F— 5, 5)ds +/ TPyt P(E — 4 5, 5)ds

Yi _ Vit
— 00, as n — oo.



It is a contradiction. Therefore, we obtain (2.6).

(Step 2.) We will show (¢,1) € (C*1(Q))2. Fix (#,f) € Q. It suffices to show

¢, v € CHH (K _(3,1)).

By (Step 1.), we have that there exists a positive constant Cy depending only on ¢
and Z such that

|6n + UnllLe(Br))) < Co for t€[0,f] and ne€N. (2.7)
Then, we have
lPnt1(-t) = dn(- )l By + 1Yns1 (o t) = Vn(-, D)l Lo (B2

< [t )l )]

L>(B(s1))
for t € [0,7] and n € N. By (2.7), we have that
|Pns1(-5t) = ol )l Lo (B)) + 1Vns1(-t) = Yn(- )l Lo (B))
-1
<057 [ (Jo 90 = 0a num(sm

+ ||7/}n ¢n 1 ||L°° B(S1)))d51

t S1
2182
+ ||'l/)n,1( 9 32) - ,l/}’n72(' ) SQ)HLOO(B(SQ)))dSQdSl'
for t € [0,7] and n € N. Repeating this argument, we obtain that

[Pn+1(-5t) = Pn(- s O)llLoe By + 1Pns1( ) = Yn (-, D)l Lo (B(r))

<oy /t [

(||¢1 ¢0( Sn ||L°°(B +||77[}1 '(/)0( Sn ||L°°(B( )d5n~-~d52d51~

pCé’l)

§4CO( —0 as n — 00,

n!
for ¢ € [0,7]. Hence, it follows from (2.5) that
[¢n — Bl ook (2,0 + 10 — Yl pee(x_z,0) = 0 asn— oo

Next, we will show that ¢, € Wh°(K_(%,1)). We see that

D—D9¢n+l = D92_p(¢n + "/’n)p = p2_p(q§n + ’L/)n)p_l(D9¢n + Dei/)n)’
D, Dgtpp1 = D92_p(¢n + ¢n)p = p2_p(¢n + wn)p_l(DQan + Dewn),

Dy¢1(x,0) = (cos b +sin ) f.(z) +sinf - 27P(y, + 72)?,
Dgtp1(2,0) = (cos @ — sin ) g, (z) + sinb - 27P(y; + 72)?,
Dydrni1(x,0) = (cos O +sin0)0, f(x) +sinf - 27P(f + g)P(x),
Do y1(2,0) = (cosf — sin0)d,g(x) +sinf - 27P(f + g)P(x),

(n e N)



for n € NU {0}. Here, Dgv = sin 00yv + cos 00,v.
We set W (t) = CF exp(pCh~'t). Then, we have

t
W(t)=CP? +/ pCl W (s)ds.
0
We will show
Do (-, )l Lo Bty S W (t),  [[Dotn(-, ) LBy < W(t)
for t € [0,#] and n € NU {0}.

We see
Dy = Dgrpg =0 < W(t)

for t > 0. Assume that (2.8) holds for n. Then, we have
||p2*p(¢n + djn)pil(' 7t)(D9¢n + D9¢n)( ?t)HLoo(B(t)) < ch_lw(t)

for t € [0,¢]. It follows that (A3) that

Do bri1 (-, )L (B(t))
< 2(|0a fllz=(B(0)) + 27PN + 9llT o 50y
t
+ A ||p2_p(¢n + wn)p_l(' 3 s)(D9¢n + D0¢n)( 3 s)||L°°(B(s)) ds

t
<CP +/ pCl "W (s)ds = W(t) for te [0,
0

Similarly, we have that || Dgtny1(-,1)| e (B(t)) < W(t) for t € [0,1]. Thus,
[Dodn (- )L (B(t)) < W), [Dotn(-,)llL(m(ty) < W()

for t € [0,7] and n € NU {0}. We set C; = C¥ exp(pCh~"T). Then, we have
[Dodn ()L (Br)) < C1 and  [[Doon (-, )| L= () < C1

for t € [0,7] and n € NU {0}.
We see that

[Dodnr1(-,t) = Do (-, )| Lo (B(t)) + 1 Dotbnt1(-,t) — Dotbn (-, )l L= (1))
= /Ot p2 || (@n + ¥0)* ™ (Dodn + Do)
— (¢n—1 + a1’ (Dopp—1 + Dewnq)] (.’S)HLOO(B(S))CZS
It follows from (2.7) and (2.11) that
[Dgns1(-,t) — Dodn (-, 1)L (B(t)) + [ Dotng1(- 1) — Dothn (-, )| Lo (B1))
< /Otpcg_l(HDe%(w&) — Doprn-1(-,51) |l (B(s1))
+ Dot (-, 51) — Doton—1(-, 81)||Lw(3(51)))d81

t
+/O 2p(p — 1)010572<||¢n(',51) = n—1(-,81) | oo (B(s1))

+ ||¢n( 5 Sl) - wn—l(- s Sl)HLOO(B(Sl)))dSl

(2.10)

(2.11)



t S1
—1\2
< (pCHY) /0/0 (||D9¢n—1(',82)—Decbn—z(-,82)||L°<>(B(52))

+ [[Dotpn—1(-, 82) — Dothr—a(-, 32)||L°°(B(32)))d32d31

t 51
+C2// ¢n— S *an— S oo s
2] (19naCos2) = bl 2l e ey
+ ||’¢n_1( s 32) - ¢n—2(- s 82)||Loo(B(52)))d32dS1

t
4o [ (1606150 = naC o8y

+ ||1/)n( s 51) - wn—l(' s 51)HL<>0(B(32))>d51

t S1 S2 Sn—1
< (pcr 1) /0/0 /0 /0

(||D9¢1(' y8n) = Dodo (-, 5n)|| Lo (B(s,))

Dot (- 5n) = Dot (-0l (s, ) ds1dsa . sy

+Z4CO j (G1)"

n*])

p 1 n
§4CL+Z4CO'(C’27)—>O as n — 0o
n! = =)t

for t € [0,4]. Here, Co = max{pCh~",2p(p — 1)C1CH~?}. Thus, there exist ¢9 , él)

L*>(K_(z,t)) such that

1 1
|wmww$mwK@m+wwwmeﬂﬁ@mao as n — co.

Therefore, (¢,1) € (W1>(K_(Z,t)))%. By repeating the same arguments, we obtain
ot ) OIS o T T i e (6o € (O B

(Proof of uniqueness.)

Next, we will show that (¢, ) is a unique solution of (1.7). We suppose (¢1,%1) and
(¢2,12) are solutions of (1.7) and 77 and T» are corresponding blow-up curves. Let

Q; ={(x,t) | v € Br-, 0<t < Tj(z)} for j=1,2.

Take (Z,%) € Q; N Qy arbitrarily. In the same way of proof of (Step 2.), we have

sup (||¢1(' ) = da(-, ) oo By + 101 ( 1) — '(/)2('at/)HL°°(B(t’))>

o<t/ <t
t/

S sup (/ 277 [lg1 + ¥ [P (-, 5) — 2 + o “Loo(B(e))ds)
0

StpC%_logggJ<H¢1(7ﬂ)—-¢2(,ﬂ)Hquxy»

1) = ol ) ey

for ¢ satisfying 0 < t < t. Thus,

sup (||¢1(' ) = b2 ) oo (mery) + 101 () — o 7t/)||L°°(B(t’))) =0

o<t/ <t



if ¢ is small enough. Since Cj does not depend on ¢, by repeating this argument, we
obtain

sup (||¢1(' ) = b2 ) oo (mery) + 101 (- 1)) — Yo ,t/)||L°°(B(t'))> =0.

o<t/ <i

Therefore, we have

(P1,91) = (P2,12) in Q3 Ny

and
Ty(x) =Ta(x) for x € Bp-.

This completes the proof. O
Lemma 2.6. Assume that (A1)-(A4) hold. Then, we have
T(x) <T* forx € Bp-.

Proof. Let us define {¢,,} and {1} by ¢o = 71, ¥o = 72 and

d - - -

%(b’l’%‘rl = 2_p‘¢n + wnlp’ t>0,
%djn—o—l = 27p|¢;n + J}n|pa t> Oa
Q;n-‘rl(o) =71, 7;n+1(0) =72

It suffices to show that ¢, (x,t) > ¢, (t) and ¥, (z,t) > b, (t) in K g« 7+, for n € N. First,
we see that

t
P1(w,t) — P1(t) = flx +t) —m +/ 27P[¢o + o"(x + (t — 5), 8)ds
0
t
= [ 2010+ dols)as
0
=fl@+t)—mn =0,
in Kpg+ p+. Similarly, we have that ¢4 (x,t) > 1 (t) in KR*’T*;

Next, we assume that ¢, (z,t) > ¢n(t) and 9, (x,t) > ¥, (t) in Kp- 7. Then, we
have that

t
bnar (£.) = Gnia(B) = Fl@+8) — 71 + / 3P|y + YulP(@ + (t— 5), 5)ds

t
= [ 2010+ G s)as

0
>0,
in Kp« p~. Similarly, we obtain that ¢, (x,t) > 1/~)n+1(t) in Kp« p~. Therefore, we have

¢n(xat) > an(t)v wn(xvt) Z qZ}n(t) in KR*,T*

for n € N.
This completes the proof. O

3 Blow-up rates of solutions and Lipschitz continuity
of T

Now, we will show that T is Lipschitz continuous in Bg+. To prove this fact, we first
introduce the following proposition.

10



Proposition 3.1. Assume that (A1)-(A4) hold. Then, there exist positive constants Cy
and Cy depending only on p and g such that

Cr(6+ )P < 016 < Cold + )P, (3.1)

Ci(T(x) —t)" 11 < 9p(x,t) < Co(T(z) — )71, (3.2)

Ci(p+ )P < 0pp < Ca(o+ )P, (3.3)

Ci(T(z) — )" < Opp(w,t) < Co(T(x) —t)~ 77" (3.4)

Ci(T(x) =)™ < (¢ + ) (z,t) < Co(T(x) — 1) 7, (3.5)

in Q. Here, g =1/(p —1).
Proof. First, we will show that (3.1) holds. We see that
Dfat¢n+1 = 8th¢n+1 = at2_p|§bn + ¢n|p = at2_p(¢n + wn)p
= 27pp(¢n + 1/)n)p71(8t¢n + atwn) in KR*,T*a (3'6)
for n € NU{0}. From Lemma 2.3, we obtain that
D727P(¢n + wn)p = 27pp(¢n + wn)pil(aﬂﬁn - ax¢n + atwn - aﬂ/’n)
S 27p+1p(¢n + ¢n)p71(8t¢n + at¢n) in KR*,T*; (37)

for n € NU{0}. We set Jy 41 = 20tPnt1 — 277 (¢r, + 1, )P. Then, by (3.6) and (3.7), we
have

D7J¢,n+1

> 27p+1p(¢n + @[}n)pil(aﬁbn =+ 61&1/}'@) - 27p+1p(¢n + ¢n)p71(at¢7L + at'wn)

=0 in KR*7T*7 (38)
for n € NU {0}. It follows from (A3) that

J¢,n+1(x, 0) = 2at¢n+1(xv O) - 27p(¢n + 1/}”)17(1,7 O)
= 2az¢n+1(wv 0) + 2_p(¢n + wn)p($7 0)
>2f+27P(11+72)" >0 in Brejr- (3.9)

for n € NU{0}. Then, by (3.9) and (3.8), we obtain that Jy , > 0 in K+ =+, for n € N.
On the other hand, it follows from Lemma 2.3 that

8tﬁbn-‘rl = 83:¢n+1 + 27p(¢n + 77[}");0 < at¢n+1 + 271)((25” + ¢n)p

1+¢9
in Kpg+ r+, for n € NU{0}. Hence,

1+¢9

Orpnt1 < 27P(¢p +Yn)?  in Kg« 1, (3.10)

for n € NU {0}. It follows from the fact that J,,, > 0 and (3.10) that

1+¢o

27PNy + V)P < Oppnyr < 27P(dny1 + Yng1)? in Kpe e, (3.11)

for n € NU {0}, which implies (3.1) holds. Similarly, we can prove that (3.3) holds.
Next, we will show that (3.5) holds. By considering (3.1), we see that

% <277 (1 eg)eg o+ )P in Q.
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Thus, we have

a((;;?j—’l/)) > 2p—1(1+€0)—160(¢+¢)—p in Q. (312)

Fix ¢ € Br~. By (3.12), we have

(¢+9)(z0,T (z0)—¢)
T(xg) —e—72> / 27711 + &) tegzPdz
(¢+9)(z0,7)

(64+)(z0,T(0)—¢)
= |—(p—1)"12r~1(1 4 ¢4) e z*(p’l)} .
{ »=1) (1+0) €0 (6+)(z0,7)

for 7 > 0 and e > 0 satisfying T'(z9) — e — 7 > 0. Hence, by letting ¢ — 0, we obtain

(o) — 7> [—(p— 1)"120" (1 + £9) tegz— @ D]
(r0) =7 > [~(p = )72 (1 teo) Heoz V]
=(p— 171227 (1 + &9) teo(d + )~ P (wg, 7).

Thus, we have that

(@+%)(@o.m) 22 ((p = Deg (1 +20) " (Tlao) =) VOD(3.13)
for 7 € [0,T(x)). Similarly, we obtain that
(2°(p = 1))V (T (o) = 7)Y > (¢ + ) (20, 7) (3.14)

for 7 € [0, T(zg)). It follows from (3.13) and (3.14) that (3.5) holds. Moreover, it follows
from (3.1) and (3.5) that (3.2) holds. Similarly, we have that (3.4) also holds. This
completes the proof. O

By combining the above Lemma 2.3 with Proposition 3.1, we obtain that the blow-up
curve T is Lipschitz continuous. That is, the following lemma holds.

Lemma 3.2. Suppose that (A1)-(A4) hold. Then, we have that

|T(z") — T(2")] < |z —2"| for a',2" € Bp-. (3.15)

14 ¢p

Proof. This proof is based on the Implicit Function Theorem. Let € > 0 be arbitrary.
By (3.5), we see that there exists a positive constant C; depending p and ¢g such that

Cie 1< (p+¢)(x,t) for x€ Br- and te[T(z)—e T(x)).

Thus, there exists a positive constant M satisfying M > C1e 4, and a function E(z) (z €
Bpg-) such that

(p+¥)(z,E(x)) =M and T(x)— E(z)<e forx &€ Bpg-.

First, we will demonstrate continuity of F in Bg+. That is, for 2’ € Bpr«, we will
show that t,, — E(z') if z,, — 2/, where t,, = E(z,).

We take an arbitrary converging subsequence {t,;} C {t,}, and denote its limit by 7.
Following from the definition of F, we have that (¢p+) (znk, tnk) = (0+0)(Xnk, E(xni)) =
M. Thus, it follows from continuity of ¢ and 1 that (¢+)(2’,n) = M. Since d;(¢p+1)) > 0
in Q, we have that n = E(z"). Therefore,

liminft, = limsupt, = E(z').
n—00 n—00

Thus, we have demonstrated the continuity of F at x’.

12



Next, we will prove Lipschitz continuity of E. We see that there exists a positive
constant h’ for 2’ € Bg+ such that

B(x' W) CQ,

where B(2/,1') = {(t,z) | \/(x — /)2 + (t — E(2’))? < I/}. Following from continuity
of F, there exits a positive constant h” such that 0 < h” < b’/ satisfying

(z1, E(21)), (22, E(22)) € B(a',h’) for 1,22 € (' — 1", 2" + 1").
Let k = E(x2) — E(z1) and
H(E) = (¢ + ) (w1 + E(wa — x1),t + £K),
where ¢ is a constant satisfying 0 < & < 1. Then, we have

H(0) = (¢ +¢)(z1,1),
H(1) = (¢ + ) (22t + k) = (¢ 4+ ¥) (w2, t + E(22) — E(21)).

Take t as t = E(x1). Then, we have H(0) = H(1) = M. By Rolle’s Theorem, there exists
& € (0,1) such that

H'(&) =(22 — 21)0:(¢ + ) (x1 + & (22 — 21), E(21) + £'F)
+ kO (¢ + ) (@1 + & (22 — 21), E(x1) + £'k) = 0. (3.16)

Hence, it follows from Lemma 2.3 and (3.16) that

—0x (¢ + ) (w1 + &' (w2 — 21), E(21) + k)
(¢ + ) (x1 + &' (22 — 21), E(21) + {'K)

|z — xa].

|E(21) — E(x2)| = [k =

1
<
“ 1+4+¢e9

|£U1 — X2

Thus, E is Lipschitz continuous in (2’ — h”,2’ + h”). Moreover, it follows from the
continuity of FE that

E(@+h) = E(x)  —h0:(¢+¢)(x+&h, E(x) + (E(x +h) — E(z)))
h hoi(¢ + ¢)(x + Eh, E(x) + E(E(z + h) — E(x)))
—0x(¢ +¥)(x, ( )

O(o + ) (x, E(x))

ash—0 for x¢& Bg-.

Hence, we have that

0 —0,(6+¥)(x E())
%"= 306+ 0@ E@)

By continuity of 9, (¢ + ), 8:(¢ +v) and E, we see that E € C'(Bg~). Hence, we have
that

for x € Bpr-.

|E<x’>E<x“>|§(sup |E'<x>|) o —a’| < ——Ja' —2] (3.7

reEBR* _1+€

for ', 2" € Bg+. Therefore, E is Lipschitz continuous in By-.
Finally, we will prove Lipschitz continuity of T' in Bg-. It follows from (3.17) that

T(z") = T(2")| < |T(2') = E(2")| + [E(2") = E(z")| + [E(z") = T(z")|

<2
= E-‘rl

/ III

1
|2" —2"| for a' 2" € Bg-.
€0

Since we let € > 0 take an arbitrary value, this completes the proof. O
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By applying Lemma 3.2, we obtain the following results.

Definition 3.3. By d(z,t), we denote the distance from a point (z,t) in Q to T’ =
{(z,T(z)) | € Bg+}-

Remark 3.4. It follows from Lemma 3.2 that
T(x)—t
V2

By replacing T'(x) —t by d(x,t) in Proposition 3.1, we obtain the following Corollary.

<d(z,t) <T(z)—t.

Corollary 3.5. Assume that (A1)-(A4) hold. Then, there exist positive constants Cy
and Cy depending only on p and g such that

Crd™(z,t) < (¢ + ) (@,t) < Cad™(,1), (3.18)
Cid™ " Nz, t) < Orop(z,t) < Cod 97 (2, 1), (3.19)
Crd™ "M (w,t) < Op(w,t) < Cod ™77z, t), (3.20)

where ¢ =1/(p — 1), in Q.

From Corollary 3.5, we obtain the following lemma, which states that 7" is the blow-up
curve of both ¢ and :

Lemma 3.6. Assume that (A1)-(A4) hold. Then, there exist positive constants Cy and
Cs depending on p and €y such that

CU(T(x) — )9 < p(x,t) < Co(T(x) — )79, (3.21)
Cu(T(x) — )79 < P(z,) < Oaf (3.22)

=
8
N~—
|
~
N~—
4

where ¢ =1/(p — 1), in Q.
Proof. We will only show that (3.21) holds. By Corollary 3.5 and Lemma 3.2, there exist
positive constants ¢; and ¢; depending p and €g such that

¢(@,T(x) —¢) = flx+T(x) —¢)

T(x)—e
F [ e e (@)~ o) - ss)ds
0

T(x)—e
> [ e P+ (1)~ 2) - s0)ds

T(z)—2¢

> inf d T(x)—¢)— —ap
B ClET(;c)—QEISI{egT(x)—E (LL' * ( (CL’) E) % S)

> coe-e 7 = oY,
On the other hand, it follows from Proposition 3.1 that there exists a positive constant
C5 depending only on p and g such that ¢(z,T(z) — €) < Cae 9. This completes the
proof. [
4 Blow-up limits of solutions
In the following, we will show that 7 € C*(Bg~). In order to achieve this, we will

consider limits of the scaled functions Ty, ¢y, and ¥, (we will define these later) and
their properties.
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4.1 Estimates of blow-up limits

We set Dy as
Dy = cos 00, + sin09;, where 0 <6 < 27.

First, we introduce the following lemma.

Lemma 4.1. Assume that (A1)-(A5.8) hold. Then, there exist positive constants Cl,
and C} depending only on p and €1 such that

max{| D ¢(x, )|, |D1h(z, )]} < Cale + )=, 1) (4.1)

< Crd(x,t)”Patla=1) (4.2)

for (z,t) € Q, where q=1/(p—1) and « =0,1,2,3.

Proof. We can easily obtain that (4.2) holds by Corollary 3.5 if we prove (4.1). So, we
will only prove (4.1).

We also obtain that (4.1) holds in the case of « = 0,1, by Lemmas 2.2, 2.3 and
Proposition 3.1.

First, we will show that (4.1) holds in the case of a = 2. It suffices to show that there
exists a positive constant Co depending only on p and &1 such that

max{| D ¢n(x,t)], | Djtbn (z,1)[}
< Colpp + 0p)*PH(a,t)  for n € NU {0}, (4.3)

in Kpg+ r+. We see that Dgdo = Dgtpg = 0 in Kg- p~. Hence, (4.1) holds for n = 0.
Assume

max{|Djn (z,t)], [Dgthn (2, t)|} < Co(dy + ¥n)*P '(2,t) in Kg- -
Then, it follows from (4.1) in the case @ = 1 and Proposition 3.1 that
|D—(Dg¢n+1)(xa t)'
=277 D§(¢n + vn)P (2, )]
<277p(p = 1)(¢n + )" (2, 1) (Dodn + Doton)* (. 1)
+27Pp(dp + Pn)P T (@, ) [(DG b + Dijthn) (1)
< 27p+1p(2(p - 1)012 + CQ) |(¢n + wn)3p72(xvt)| in KR*,TM (4'4)

where C,, is the constant in the case of a = 1,2 of (4.1). Moreover, it follows from
Lemma 2.3 and Proposition 3.1 that

D_C(¢pt1 + Vny1)? (2,
=Co(2p — 1)(dng1 + ¥ny1) (2, 6) D_(Pnp1 + ns1) (2, 1)

> 927PCy(2p — 1) (1 + ﬁ) (6 + n)P2(x,t) in Kpepe. (4.5)

Let
M, (z,t) = Codp + Pn)*P " (2, ) — Djp(, ).

Then, it follows from (A3) and (A5.2) that

M1 (,0) > (02 —4c®7t p2—2p+3) (f + 9)* 1 (z), (4.6)
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in Bg+17+. On the other hand, it follows from (4.4) and (4.5) that

D_Mya(a,t) > 277G {(2p - D) (1+ 5—1)) = 2} (6n + )P, 0)

2(1 +é1
— 27P4p(p — 1)C¥(pn + ¥n)*P"2(2,t) in Kge . (4.7)
By (A5.1), we have
(2p— 1)<1+ 571) —2p>0.
2(1+¢1)

We take Cy as

Cs5 > max {40(2)71 + p27 2P H3,

{ep-1(1+ ﬁ) - 2p}714p(p - 1)012} .

Then, it follows from (4.6) and (4.7) that M, +; > 0 in K« r-. Consequently, we obtain
that M, > 0 in Kp«+, for n € NU {0}. That is, there exists a positive constant Cy
depending p and &7 such that

Co(pn + 1n)?P~1 > D}b,, in Kpe 1
for n € NU {0}. Similarly, we have the following inequality by retaking Cs if necessary.

CQ(¢71 + wn)prl Z _Dgﬁbnv
CQ(¢71 + wn)2p_1 > Dg¢n7 in KR*,T*?
C2(¢n + ¢n>2p_1 Z _Dgwna

for n € NU{0}. This means (4.3) holds. In the same way, we can prove (4.1) in the case
of a = 3. O

Let xg € Bgr«. Then, we introduce the following scaled functions:
(b/\(y7 S) = )‘qd)(x() + )‘yv T(LL'()) + )‘S)? (48)
Ay, s) = Ab(xo + Ay, T'(wo) + As), (4.9)
where A > 0 and ¢ = 1/(p — 1). Any sequences {¢», } and {¢, } with A, | 0 are called

blow-up sequences (see. [2]). Now, we see that

{D_gb)\ =27P(pr + )P, (4.10)

D yipy =27P(px +Pa)?

for (y,s) € Qx, where Qy = {(y,s) € R? | (zo + Ay, T(z0) + As) € Q}. By di(y,s), we
denote the distance from a point (y,s) € Qx to T'x = {(y,s) | s = Tx(y)}. Here, T is a
blow-up curve of ¢,.

Lemma 4.2. For each fized A > 0,

Ty (y) = T(xo + )\g//\) - T(mo).

Proof. By Lemma 3.6, there exist positive constants C; and Cy depending on p and &
such that

NCy (T(x0 + Ay) — (T(xo) + As)) "7
< N(wo + Ay, T(xo) + As) < ACq (T(xo + Ay) — (T(o) + As)) ™.

(4.11)

We see that
_ —q
N (T(20 + Ny) — (T(x) + As)) 7 = (T(ZO + Ai) T(zo) _ 5> . (4.12)
Therefore, we obtain (4.11). O
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Similarly, we can show that the blow-up curve of ¥y (y, s) is Ta(y).
From Proposition 3.1 and Lemmas 2.3, 3.2 and 4.1, there exist positive constants Cf,
Cs, C3,4, and Cy 4, depending only on p and £; such that

Ci(ox +1r)P < 0shx < Ca(dn +90)?, (4.13)
Cr(Pa +12)P < Oshn < Cogn + )P, (4.14)
Ci(Ta(y) — 5)" 1 < daly,s) < Co(Tn(y) — s) 1, (4.15)
Ci(Ta(y) — )‘q <a(y,s) < CQ(TA( ) —s)7Y, (4.16)
|0yPa| < Ta‘?gb)\a |0y x| < ﬁaﬂ/o\, (4.17)

“R—z0 R—
13) = T < o) for g e (TSI
TA%‘S < da(y.5) < Ta(y) — (4.19)

max {|D3¢)\(y7 S)'v |D9a¢/\(y» S)|}

< Caa(da(y, 8) + ¥aly, 8))PT @D/ < Oy qdy(y, s)~Prre—b), (4.20)

where (y, s) € Q. Here « =0,1,2,3.

4.2 Strategy of proof of the differentiability of T’

We will consider the limits of the functions Ty,, ¢, , and ¥y, . It follows from (4.18)
that T, is equicontinuous.
We define I,, by a closed interval satisfying

o [, C I,y fornéeN,
o U L, . I Cl1y,.

By (4.18), there exists a positive constant M; such that
|T)\n(y)| < M, for y €.

By the Ascoli and Arzela theorem, there exist a sequence {)\,(11)} c {A\.} and To(l) e C(L)

(1)

such that T \() converges to T,,”/ uniformly in I;.

In the same manner as above, we can see that there exist a sequence {)\%2)} C {)\%1)}
and T0 € C(I2) such that T)\g) converges to TO(Q) uniformly in I5. By repeating the
same arguments, there exists Tp € C(R) such that Ty, converges to Ty locally uniformly
in R, where A,, = A

In the remainder of this paper, we will show that 7' € C'(Bg). We demonstrate this
proof through the following two steps.

(Step 1.) First (in Section 5), we will show that Ty, which is defined as above, is an
affine function. That is, there exists a constant a,, such that To(y) = ay,y for y € R.

(Step 2.) Next (in Section 6), we will demonstrate that a contradiction arises if we
assume that there exists xg € Br+ such that T is not differentiable at zo € Br«.

We start by assuming that T is not differentiable at g € Bg«. On the other hand,
by (Step 1), we have that for all y € R,

Ty, (y) _ T(xo + Apy) — T'(x0)
y Any

— ay, as A, =0,
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where {A,} C {\,} is the sequence appeared in (Step 1). This means that there exist
{An} C{A} and ¢ € R such that

limsup Ty ,(y') > liminf Ty , (y/). (4.21)

A —0 Apr—0
On the other hand, there exist {)\511/)} C {\} and {)\512,)} C {An} such that

hrn T <1>( ) = limsup T} , ),

>\n' —0 )\ 14)0
o D &) = Uminf T, ().

By repeating the above arguments, there exist {)\SZ} C {/\S,)} and {/\52)} C {)\512/)}, and
corresponding functions T; él), T (52) € C(R), such that

TA“,’ — To(l), T)\@,) — TO(Q) locally uniformly in R.
’”/k nk

It follows from (Step 1) that there exist constants 04%) and aé? such that To(l)( ) = aglo)y
and T(Z)( )= ozgfo)y, respectively. By (4.21), we see that axo) + a2

( )

In Section 6, We w1ll demonstrate that a contradiction arises 1f there exist ay, and

ag]) such that a 7é a and
TV =olly, TP ) =ally foryeR.

That is, we obtain that T is differentiable in Br~. Moreover, we can show that a contra-
diction arises if we assume that the derivative 7" is not continuous in Bg-.

In the remainder of this section, we prepare for our proof of (Step 1.). We consider
the limits of blow-up sequences ¢y, and ¥y, . We set Qo = {(y,3) |y € R, s < Tp(y)}.
Then, we set J,, as a closed subset of )y satisfying

o J, CJpy1 forneN,
[ ] Uzozl Jn = Qo.

It follows from the Ascoli and Arzela theorem that there exists a subsequence {S\n} C
{A,,}, such that there exist

U¢,vw,%a,v}ljemie,vie,via?vze € C(Q)
satisfying

?5, = Vg U3, Vs
1,0 1,0
D@(ﬁ;\ — ’U¢ N Dg’(ﬂ;\ — Ui/’ s

locally uniformly in Qg (4.22)
0 0
D92¢5\n — vi’ , ewx — vi ,
0 0
Dg’¢5\n — ’Ui’ , ewx — Uz?; ,

for 6 € [0,27). Thus, we have that vy, vy € C3(Qp). The functions v, and vy, are called
blow-up limits of ¢ and ¢ (see [2]). By (4.10), (4.13)—(4.20), we have that

D _v.—=9P P
v =2" (vg + vy)P, (4.23)
D+U¢ =2 p(’l)¢ + ’Uw)p,
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and there exist positive constants Cy,C2,C3 o and C4 o, depending only on p and €1,
such that

C1(vg +vy)" < Osv < Ca(vg + vy)?, (4.24)
1 (’U¢, + ’Uw)p < asvw < CQ(U¢ + U,p)p, (425)
C1(To(y) — 5)" 1 < wely,s) < Ca(To(y) — )79, (4.26)
C1(To(y) —5)" 1 < wy(y, s) < Co(Toly) —s)™ 7, (4.27)
1 1
< < 4.2
|0yvg| < 1+€185’U¢, |Oyvy| < 1+613svwa (4.28)
1
To(y) — To(y")| < 1—|y —y'| for y,y €R, (4.29)
+ &1
T — s
= < dofys) < Toly) — (430)
max {|Dgve(y, )|, [Dgvy(y, s)|}
< Cs,0(vg(y, ) + vy (y, 8))P T/ < Oy odo(y, )~ PTHeD), (4.31)

where (y, s) € Q. Here, dy(y, s) is the distance from a point (y,s) € Qg to Ty = {(y, s) |
s=To(y), ye<R}and a=0,1,2,3.

4.3 Convexity of blow-up limits

In order to demonstrate that Ty is an affine function, we will prove the following lemma.

Lemma 4.3. Assume that (A1)-(A5.3) hold. Then, we have that
Dgvy >0, Diuy, >0 in Q (4.32)
for 0 <0 < 2m.

Proof. We fix a point (7, 8) € Q. Let K_(9,5) = {(y,s) € Q| |§ —y| < §—s}. Then,
it suffices to show that D3v,, D3v, > 0 in K_(7, 3).
Let

J¢ = D3U¢ —+ n85v¢, Jw = ngw + 7785%,

where 7 is a positive constant.
In what follows, we will show that

Jy>0 and Jy>0 in K_(3,3). (4.33)
We see that
D_Jd’ == D+J¢
=27Pp(p — 1)(vg + vy)"*(Dgvy + Dovy)®
+27Pp(vg + vy)P (T + Jy). (4.34)

We consider Jy and Jy, in K_(g,5). By (4.30), we have

1 (To(y) - 5) < dolys) _ Toly) —s
V2 s R I £
Thus, we obtain that
1 do(y,s) - o~
— < <1 for (y,s)e K_(¢,5), ass— —oc. (4.35)
V2 5]
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By (4.31), (4.24), (4.26), (4.27) and (4.30), we have that there exist positive constants
c1 and ¢y, depending only on p and €1, such that

max{|Djvs(y, s)|, | Dgvy (y, 8)|} < c1(vg + vy)P(y, 8) (vg + vy) ' (y, s)
< 20,04 (y, 8)do(y, s) ™" (4.36)

Hence, it follows from (4.35) and (4.36) that
Jp = n0sve(1+O(1/]s])), Jyp =n0svy(1+0(1/]s])), ass— —o0 (4.37)

in K_(g,8). Since 0sv4,0svy >0 in Qq, we have that J4, Jy, > 0in K_(7,5) N{(y, s) |
s < —o} if o is large enough.
We assume that (4.33) does not hold. Then, there exists (v, s") € K_(7,§) such that

Js(y',s')=0 or Jyu(y',s')=0
and
Js(y,s) >0 and Jy(y,s) >0 for (y,s) € K_(§,5) N{(y,s) |y eR, s <s'}.
We assume Jy4(y', s’) = 0. Then, it follows from (4.34) that
0=Js(y',s")
= Jy(y' + M,s' — M)

M
4 / 2 Pp(p — 1)(vg + v)P*(Davs + Dyvy)2(y + M — s, 5)ds
0

M
+/ 27Pp(vg +vy)P " (Jp + Jy) (Y + M — s, 5)ds
0
>0 for M >0.

This is a contradiction. In the same manner as above, we can show that a contradiction
arises if we assume that Jy (v, s’) = 0. Therefore, we obtain that (4.33) holds.
By taking n — 0, we have

Djvy >0 and Djvy >0 in K_(3,3).

This completes the proof. O

5 Linearity of the blow-up curve of blow-up limits

In this section, we will prove (Step 1.) as stated in Section 4.2. In order to prove this,
we will consider

{D_V¢ = 277 (Vg + V)P, 51)
Dy Vy =272(Vy + Vy)P,
with some constant o € R and the corresponding blow-up curve
{(y,5) | s =0y, yeR}. (5.2)
We know that (5.1)—(5.2) yield the following special solution:
(Vo,a(y,8), Vya(y,8)) = (Csalay = 5)~% Cpalay —5)77), (5:3)
where

Coa= (@1 + )1 —a))?, Cyo=(q(1+a)’(l—a)).

In this section, we will prove the following lemma.
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Lemma 5.1. Assume that (A1)-(A5.8) hold. Then, there exists a positive constant
a € R such that

To(y) =ay foryeR. (5.4)
Moreover, the constant « satisfies —1 < a < 1 and
vy =Vpa and vy =Vya. (5.5)
In order to prove Lemma 5.1, we will first introduce some lemmas.

Lemma 5.2. Assume that (A1)-(A5.8) hold. Then, Ty is concave.

Proof. Let € > 0 be arbitrary. Then, by (4.26) we see that there exists a positive constant
c1, depending only on p and €7, such that

c1e” 1 <wy(y,s) for yeR and se[To(y) —e, To(y)).
Thus, there exist M > ¢1677 and Ey(y) such that
v(y, Eo(y)) =M and To(y) — Eo(y) <e for yeR.

We set Hyy = {(y,s) | s < Ep(y), yeR}

We will show that Ej is concave. It suffices to show that Hj, is convex. We assume
that Hjy is not convex. Then, there exist (y1, 1), (Y2, s2) € Hpr and £ € (0, 1) such that
& (y1,81) + (1 — &) (y2,82) & Hpr and &' (y1,81) + (1 — &) (y2, 52) € Qy. We notice that
0svp > 0 in Qg. Then, we have

M =M+ (1 —-&)M > &vy(y1,51) + (1 =& )vg(yz2, 52)
> vg(& (y1,51) + (1 = &) (y2, 52))
> M.

This is a contradiction. Hence, Hj; is convex. Therefore, Ey is concave. Thus, we have

ETo(y) + (1 =& To(y')

=&(To(y) — Eo(y)) + (EEo(y) + (1 =& Eo(y) + (1 = E)(To(y') — Eo(y'))
<&(Toly) — Eo(y) + Eo(y + (1 = &)y) + (1 = )(To(y') — Eo(y'))
<e+Eo(fy+(1—-8y) <e+To(€y+ (1 -8y,

for y,y’ € R and € € (0,1). Since we let £ > 0 take an arbitrary value, this completes the
proof. O

We set
'Uqb,)\(ya 5) = )‘qvti)()‘ya A$)7 U?,Z),)x(ya S) = )\ql}w()\y, )‘5)7

with A = oco. Then, we can easily see that the blow-up curve of v4 x and vy, is

To(My)
o

Lemma 5.3. Assume that (A1)-(A5.3) hold. Then, we have

Toa(y) =

—~

>0
TO)An(y)ﬁ{ay y=0) as A, — 00

By (y<0)

where a and B are constants satisfying —1 < a < < 1.

21



Proof. First, we see that Tp », (0) = 0.

T To(My) — To(0
Next, since Tp is concave, we see that 0.0, (9) = 0(Any) 0(0) is monotone de-

Any
creasing on n, for y > 0. Here, {\,} is a monotone increasing sequence satisfying

An — 0o. Thus, we have that

T T To(An
lim M = inf ~%2= ) = inf b(Any) for y > 0.
Ap—00 Yy An y An Any
To(An
Let a = i)\nf 0>(\yy). Then, we have that

Tox, (y) = ay as A, — 00,

for all y > 0 and monotone increasing sequences {\, } satisfying \,, — oco. By (4.29), we
have —1 < a < 1. We notice that a does not depend on y and A,,.
Finally, we can prove

T T To(An
lim 0. (%) — sup 0, (1) — sup 0(Any) for y < 0,
An—oo Y A Y A Al
jb(Any)

in the same way of above. We set 8 = sup . We notice that -1 < a < 8 < 1.

n n

Then, it follows that
Tox, (y) = By as Ay — o0,

for all y < 0 and monotone increasing sequences {\, } satisfying \,, — oo. This completes
the proof. O

Now, we set

= ay (y=>0) A 2 n

To(y) = o o ={ws) R |s<Toly), yeR}.
By (y<0)

Remark 5.4. In the same way of proof of Lemma 5.2, we obtain that Ty is concave.

That is, @ and S have the same sign.

Lemma 5.5. Assume that (A1)-(A5.3) hold. Then, we have that a = 5. Here, a and
B are constants as defined in Lemma 5.5.

Proof. There exists a sequence {\,} such that
Vg A, = We, Vpr, — Wy, a8 Ay — 00, locally uniformly in Q.

In the same arguments for Lemma 4.3, we see that D3w¢ > 0 and Dgww >0in QO
, for 0 < 0 < 27. Thus, Dywy and Dewy, are monotone increasing along the direction
6. We also have that it follows from the estimates |Dgwy| and |Dgwy|, corresponding
(4.31) that | Dowg (y, s)|, | Dowy (y, s)| — 0 as do(y, s) — oo, where dy(y, s) is the distance
from a point (y,s) € Qo to Lo = {(y, To(y)) | y € R}. Therefore, Dyw, and Dyw,, do not
occur sign changes in Q.

By Remark 5.4, we see that o and 8 have the same sign.

We assume that 0 < oo < 3. We set 0, and 63 as 0, = arctana and 63 = arctan 3,
respectively. Let us assume that 0 < 6, < 03 < m/2 without loss of generality.

If we take 6 € S where S = {0 € [0,37/2) | 6, < 6 < 05+ 7}, then Dywy > 0, since
the closer wy gets to the blow-up curve s = Sy (y < 0) or s = ay (y > 0), the bigger wgy
becomes.
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We take 6 as 6, < 0 < 6. Then, we have that Djwg > 0, since f € S. On the other
hand, D, wy > 0, since 6 + m € S. This contradicts the fact that

D§w¢ = —D§+ﬂw¢ Qo.

In the same manner, we can prove that a contradiction arises if we assume that o < 3 < 0.
Therefore, we have that o = . This completes the proof. O

s =By

Figure A. The sign of the directional derivative at (y',s’).
e (A) and (B) areas: The sign of the directional derivative is positive.

e (C) area : The sign of the directional derivative is negative.
— If (B) area exists, we can show that a contradiction arises.

Proof of Lemma 5.1. First, we will show that Ty(y) = ay. It follows from Lemma 5.5

that T T 0
S}L\l}i) Of\nzy) = 1ﬁf Oinzy) =« for y € R.
Thus, To(A\ny) = alyy for A, > 0 and y € R. Therefore, we obtain that Ty(y) = ay for
y e R
Next, we will show that vy = Vo and vy, = Vy; o. By applying the proof of Lemma
5.5, we obtain that

(a0s + 0y)vy =0, and (a0s + O0y)vy, =0 (5.6)

in Qp. By substituting (5.6) for (4.23), we obtain the following system of equations:

(1+a)dsvg =277 (vg + vy)
(1 —a)dsvg =27P(vg + vy),

with the blow-up curve Ty(y) = ay. Therefore, we obtain that vy, = Vo and vy = Vi o
in Qg. This completes the proof. O
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6 Continuous differentiability of the blow-up curve

In this section, we complete the proof of Theorem 1.1.
First, we will show that T is differentiable in Br+. We start by assuming that there
exists g € B+ such that T is not differentiable at xy € Bgr+. Then, it follows from the

arguments of (Step 2.) of Section 4.2 that there exist sequences {/\,(11)}, {/\%2)} such that
there exist constants a3 and aw satisfying

1,0 € (_171)a (€3] #052,
¢\ = Voo, as )\g) — 0, locally uniformly in €2,
where
Qo= {(y,s) €ER?|s< oy, Y E R}

for j =1,2.
Let 6,, and 6,, be defined such that 6,, = arctan«; and 6,, = arctanas. Let us
suppose that

3
Og@aj<g or Zﬂ<0aj<7r (1=12)
and
0oy < 04,

without loss of generality.
We assume that 0 < 6,, < 6,, < 7/4. We take 0 < e < 7/2 as

O<9a1+5<9a2—s<%.

Then, for j = 1,2, we have that there exist 6; such that

5
0<9aj+5<6j<9aj+7r—a<f.

We define
Séj) = {Qj | 0, +c<0; <bq, +7T—5} for j=1,2.
We see that there exists €/ > 0 such that

D@/V@aj > 2’ in Qj’o n Bl(0,0),

where B,(y',s") = {(y, S)ER? | \/(y—y)2+(s—s)2< p} . Here, p is a positive con-

stant.
5o, + Sdo,i

For j = 1,2, let (yjjt7 s;t) and (y;~, s;"7) be the intersections of y? +s2=1and

s=agy and s= gy — oo,

respectively. Here, dy is a positive constant.
We see that there exist ng € N and dg > 0 such that for j = 1,2,

QP N QY% N B1(0,0),

Q0 C O

Q% < Q.o
3,00 7,0 A

s?“’f <85,
| o
For 6; € S, Do, dy) — Do, Vo, <€’ in Q5% 1 B1(0,0).
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Here, Q?f’o ={(y,5) | s < ay,y—0&, y€R}. This means that
Do, ¢ > in Q5% N B1(0,0)

for 0; Sg) and j = 1,2. By (4.13), we can prove
Dy, ¢)\£le) >¢ in KJ‘-;O (6.1)

where 5 5
K = {(y,5) € Q) N B1(0,0) | y < min{|y> | [y [} }

for 0; € Sg) and 7 = 1,2. (6.1) means that there exists there exists a positive constant
p such that

0<p<1l and Dg].(b/\(j) >¢ in Q)\(]‘) N BP(O,O) (6.2)
no no
for 6; € Sg) and j =1,2.
Let A, = min{A%), A2}, Tt follows from (6.2) that

Dy >0 in QﬂB,\nlp(xo,T(xo)).

for 0 € ST USY.
In particular,
Dg«p>0 in QN B>\nlp($0, T(Jﬁo)) (63)
for 0* € (04, +¢€,00, —€), since (0n, +£,04, —€) C S Moreover, we have

Dy x>0 in QN By, p(wo,T(70)) (6.4)

since 0* +m € (0, + 7 +¢,00, +m—¢) C S Then, (6.3) and (6.4) contradict the fact
Dy-¢ = —Dge 16 in 0.
We can show contradictions in the other cases, that is, in the cases

0<0, <7/4, 3n/4 <0y, <,
3m/4 < 0y < 0u, <.

Therefore, T is differentiable in Bg«.

Next, we will show that the derivative 7" is continuous in Bg«. We start by assuming
that there exists x¢g € Br+ such that 7" is discontinuous at xg € Br~. Set a,, = T" (o).
Let us suppose that 0 < 0,, < /4 or 3m/4 < 0,, < 57/4 without loss of generality.

Since T” is discontinuous at xy € Bpg-, there exists 0 < ¢ < 7/2 such that there
exists {z;} C Bp. satisfying

lj =20l >0 as j—oo and |bo, —fba, |> 2¢’ for all j € N. (6.5)
By the above argument, there exists ng € N and p € R such that
D90¢ >0 in QﬁB}mop(.ﬁo,T(.ﬁo))

for 6y € Ss’,xg = {90 | 6%0 +e <y < Gazo + 7T — 5/}.
Moreover, by the continuity of T and (6.5), there exists jo € N such that

(2o, T(5,)) € B,y p(w0, T'(20)).
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We see that there exists n;, € N such that
ngo(b >0 in QN B)\"jop(.’L‘jO, T(l‘jo»

for 0, € Ser 2y, = {0j, | 9%3_0 +e' <0, < 9%3_0 +7m—e}.
Then, we have

Dop >0 in QN B)\nop(xo, T(l‘o)) N B/\njop(le)’ T(xjo))

for 6 € Ser o U Ser -
Assume 0 < 0, <0, <m/4. By (6.5),

!

Op, +& <b,, —¢.
Jo

ozmo

Take 0 as Ocr, +e<f< O, —¢.
‘ 2o
Then,

Dgp>0 and Dy, ¢>0 in QN By, (20, T(x0)) N BAnjOp(mjo,T(ij)),

since 9~, 6+me Set g U SE/,%. This contradicts the fact that
D9~+ﬂ¢ = —Dé(b in Q.
In the the other cases, that is, in the cases,
0<0q,, <7/4, 37/4<0,, <m,
J0
3n/d < Oo,, < 00‘% <,
0 S 904 . < ea < 7'(-/47
Tio zQ
0<ba,, < m/4, 3n/4 < Oa,, <,
0

3n/4 <O, <0, <m,
Jjo 0

we can show that contradictions arise in the same way.
This completes the proof.

S
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7 Numerical examples

In this section, we will show some numerical examples of the blow-up curves for (1.7).
For simplicity of computation, we consider the equations in a bounded interval (0, 1) and
pose the periodic boundary condition. We follow the method proposed by Cho [5] for
computing the numerical blow-up curve.

For discretization, we employ the finite difference scheme for (1.7). Take a positive
integer J and set x; = jh with h = 1/J. As a time variable, we take a positive constant
T as T = h and set ¢, = 7-n. Then, we consider the following scheme for (1.7):

¢?%¢($jvtn)v w?%¢($jvtn) (1S.]S‘L nZO)v

R R e Rk AU
T B =2 p|¢j +¢j| )

1 R /i a1 I

J J + J J =9 p|¢j +w] |p,

T h
9= flxy), ) =glxy),
(1<j<J,n>0),

where ¢ ;11 and ¥y are set as ¢, = ¢7 and g = 7.
We define the numerical blow-up curve 7} approximated to T'(z;) by

Tj :’T'TL]‘(’T).

Here, n;(7) is the smallest positive integer such that

n;(T)— nj(r)—1 n; (T n; (T
T-(¢j() l—l—wj () )zl/eps and T-(qﬁj()—i-wj ())<1/eps,

where eps > 0 is a stopping criterion given below. We set T = (1}).

We plot two numerical blow-up curves T7 and T5 with two stopping criterion epsl and
eps2, respectively, for several 7 in Figure 1-3. We see that T; and T3 are almost equal
under suitable epsl, eps2 and 7. Therefore, we can regard T is a reasonable approximation
of the exact blow-up curve T for (1.7).

First, we examine the shape of blow-up curve T for p = 2 and f(z) = (1 +v/2.3) +
2 sin(2rz), g(z) = (1 + v2.3) — 5= sin(27z). In Figure 1, we see that the numerical
blow-up curve T' converges to a smooth function as 7 — 0. Therefore, we numerically
obtain that the blow-up curve T is continuously differentiable if initial values f and g
are smooth and large enough. In Figure 2, we also obtain the same result for p = 3.

On the other hand, we obtain different results of regularity of the blow-up curve in
Figure 3. We see that there is a case where the blow-up curve has the singular points. We
notice that all the initial values are smooth in Figures 1-3. However, the initial values
f and g occur the sign changes in Figure 3, while the initial values f and g are positive
for z € (0,1) in the case of Figures 1 and 2.

Consequently, we see that we have to impose not only regularity but also largeness
on the initial values.

Remark 7.1. Merle and Zagg [9] considered
02u — 0%u = uP.

They analytically showed that there are cases where the blow-up curve T has the singular
points. However, we do not know the relationship between the our numerical results and
the results of [9]
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0.43 T T T T 0.425
0.425 1 042
0.42 0.415
% 0415 £ 041
= =
0.41 0.405 -
0.405 041 L 1
treeepsl
—eps2
04 . . . n 0.395 . . . n -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x x
7 =h = 1/500. 7 =h = 1/1000.
0.42 T T T T 0.415
0.415 1 041
0.41 0.405
% 0405 2 04
= =
04r 0.395 -
0.395 - 0.39
0.39 - - - - 0.385 - - - -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x x

7 = h = 1/2000. 7 = h = 1/5000.

Figure 1: The history of (T}) for p = 2, f(z) = (1 + v2.3) + 5 sin(27z) and g(z) =
(1++v2.3)— % sin(27z) and stopping criteria epsl = le — 2 and eps2 = le — 3.
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0.0865 T T T T 0.084 T T T T

0.086 [ 1 0.0835
0.0855 [ 0.083
0.085 [ 0.0825
0.0845 [ 0.082
E 0084 [ % 0.0815
= =
0.0835 [ 0.081
0.083 [ 0.0805
0.0825 [ 0.08
0.082 [ 0.0795
0.0815 0.079
0
X
7 = h = 1/2000.
0.0835 T T T T 0.0835
0.083 [ N 1 0.083
0.0825 0.0825
0.082 0.082
0.0815 0.0815
E 0081 Z 0081
= =
0.0805 0.0805
0.08 0.08
0.0795 0.0795
0.079 0.079
0.0785 0.0785
X x

7= h = 1/10000. 7= h = 1/18000.

Figure 2: The history of (T}) for p = 3, f(z) = 2.5+ 5 sin(27z), g(z) = 2.5— 5= sin(272)
and stopping criteria epsl = le — 2 and eps2 = le — 3.
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T(x)

7= h =1/500. 7= h = 1/1000.

T(x)

7= h = 1/2000. 7 = h = 1/5000.

Figure 3: The history of (T};) for p = 3, 24 10sin(27x), g(z) = 2 — 10sin(27z)
=le—3.

and stopping criteria epsl = le — 2, and
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