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We study a blow-up curve for the one dimensional wave equation ∂2t u−∂2xu =
|∂tu|p with p > 1. The purpose of this paper is to show that the blow-up
curve is a C1 curve if the initial values are large and smooth enough. To
prove the result, we convert the equation into a first order system, and then
apply a modification of the method of Caffarelli and Friedman [2]. Moreover,
we present some numerical investigations of the blow-up curves. From the
numerical results, we were able to confirm that the blow-up curves are smooth
if the initial values are large and smooth enough. Moreover, we can predict
that the blow-up curves have singular points if the initial values are not large
enough even they are smooth enough.

1 Introduction

In this paper, we consider the nonlinear wave equation{
∂2t u− ∂2xu = |∂tu|p, x ∈ R, t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ R,
(1.1)

where
p > 1 is a constant such that the function |s|p is of class C4. (1.2)

Here, u is an unknown real-valued function.
Let R∗ and T ∗ be any positive constants, and set

BR∗ = {x | |x| < R∗}, (1.3)

K−(x0, t0) = {(x, t) | |x− x0| < t0 − t, t > 0} , (1.4)

KR∗,T∗ =
∪

x∈BR∗

K−(x, T
∗). (1.5)

We then consider the following function

T (x) = sup {t ∈ (0, T ∗) | |∂tu(x, t)| <∞} for x ∈ BR∗ .

In this paper, we call the set Γ = {(x, T (x)) | x ∈ BR∗} the blow-up curve. Below, we
identify Γ with T itself. There are two purposes of this paper. First, we demonstrate
that T is continuously differentiable for the suitable initial values. Second, we present
some numerical examples of the various blow-up curves. From the numerical results, we
were able to confirm that the blow-up curves are smooth if the initial values are large
and smooth enough. Moreover, we can predict that the blow-up curves have singular
points if the initial values are not large enough even they are smooth enough.
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We will state some analytical results from previous studies on the blow-up curves for
nonlinear wave equations. The majority of previous studies have considered the following
nonlinear wave equation:

∂2t u− ∂2xu = F (u), x ∈ R, t > 0,

and corresponding blow-up curve

T̃ (x) = sup {t ∈ (0, T ∗) | |u(x, t)| <∞} for x ∈ BR∗ .

We note that the definition of the blow-up curve is different from ours. The pioneering
study on this topic was done by Caffarelli and Friedman [1], [2]. They investigated the
case with F (u) = |u|p. They demonstrated that T̃ in that case is continuously differen-
tiable under suitable initial conditions. Moreover, Godin [7] showed that the blow-up
curve with F (u) = eu is also continuously differentiable under appropriate initial condi-
tions. It was also shown that the blow-up curve can be C∞, in the case of F (u) = eu

(see Godin [8]). Furthermore, Uesaka [13] considered the blow-up curve for the system
of nonlinear wave equations.

On the other hand, Merle and Zagg [9] showed that there are cases where the blow-up
curve has singular points, while the above results concern the smoothness of the blow-up
curve.

As mentioned above, several results have been established on the blow-up curve when
there are no nonlinear terms involving the derivative of the solution. On the other hand,
to the best of our knowledge only one result has been found concerning the blow-up
curve with nonlinear terms involving the derivative of solution. Ohta and Takamura [11]
considered the nonlinear wave equation

∂2t u− ∂2xu = (∂tu)
2 − (∂xu)

2, x ∈ R, t ∈ R. (1.6)

This equation can be transformed into the wave equation ∂2t v − ∂2xv = 0 by

v(x, t) = exp {−u(x, t)} , u(x, t) = − log {v(x, t)} .

Thanks to the linearization of (1.6), we can study the blow-up curve of (1.6).
However, we cannot apply this linearization to (1.1). Therefore, we employ an al-

ternative method, which is to rewrite to (1.1) as a system that does not include the
derivative of the solution in nonlinear terms. We basically apply the method introduced
by Caffarelli and Friedman [2] to this system. However, we offer an alternative proof of
[2] for showing that the blow-up curve of the blow-up limits is an affine function (Section
5). Consequently, our proof is more elementary and easy to read. Our method would be
applied to the original equation of [2].

We define ϕ and ψ as

ϕ = ∂tu+ ∂xu, ψ = ∂tu− ∂xu.

Then, we see that (1.1) is rewritten as
D−ϕ = 2−p|ϕ+ ψ|p, x ∈ R, t > 0,

D+ψ = 2−p|ϕ+ ψ|p, x ∈ R, t > 0,

ϕ(x, 0) = f(x), ψ(x, 0) = g(x), x ∈ R,
(1.7)

where D−v = ∂tv − ∂xv, D+v = ∂tv + ∂xv and f = u1 + ∂xu0, g = u1 − ∂xu0. (The
equivalency of between (1.1) and (1.7) will be described in Remark 1.2.)
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Let (ϕ̃, ψ̃) be the solution of
dϕ̃

dt
= 2−p|ϕ̃+ ψ̃|p, t > 0,

dψ̃

dt
= 2−p|ϕ̃+ ψ̃|p, t > 0,

ϕ̃(0) = γ1, ψ̃(0) = γ2,

(1.8)

where γ1 and γ2 are some positive constants which will be fixed later. Then, we see that
there exists a positive constant T1 such that

ϕ̃(t) + ψ̃(t) → ∞ as t→ T1.

We make the following assumptions.

(A1) f ≥ γ1, g ≥ γ2 in BR∗+T∗ .

(A2) f, g ∈ C4(BR∗+T∗).

(A3) There exists a constant ε0 > 0 such that

2−p(γ1 + γ2)
p ≥ (2 + ε0)· max

x∈BR∗+T∗
{|fx(x)|+ |gx(x)|}.

(A4) T1 < T ∗.

(A5.1) There exists a constant ε1 >
2

2p− 3
such that

2−p(γ1 + γ2)
p ≥ (2 + ε1)· max

x∈BR∗+T∗
{|∂xf(x)|+ |∂xg(x)|}.

(We notice that it follows from (1.2) that p > 3/2.)

(A5.2) There exists a constant C(2) > 0 such that

(f + g)2p−1 ≥ C(2)· max
x∈BR∗+T∗

{|∂2xf(x)|+ |∂2xg(x)|}.

(A5.3) There exists a constant C(3) > 0 such that

(f + g)3p−2 ≥ C(3)· max
x∈BR∗+T∗

{|∂3xf(x)|+ |∂3xg(x)|}.

We now state the main results of this paper.

Theorem 1.1. Let R∗ and T ∗ be arbitrary positive numbers. Assume that (A1)-(A5.3)
hold true. Then, there exists a unique C1(BR∗) function T such that 0 < T (x) < T ∗ (x ∈
BR∗) and a unique (C3,1(Ω))2 solution (ϕ, ψ) of (1.7) satisfying

ϕ(x, t), ψ(x, t) → ∞ as t→ T (x) (1.9)

for any x ∈ BR∗ , where Ω =
{
(x, t) ∈ R2 | x ∈ BR∗ , 0 < t < T (x)

}
.

Remark 1.2. The equation (1.1) is equivalent to (1.7). We set

u(x, t) = u0(x) +
1

2

∫ t

0

(ϕ+ ψ)(x, s)ds.

Then, u satisfies (1.1).

Remark 1.3. The assertion (1.9) implies that ∂tu(x, t) → ∞ as t→ T (x) (x ∈ BR∗).
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Next, we will mention numerical analysis of blow-up of nonlinear partial differential
equations. There are many previous works of computation of blow-up solutions of various
partial differential equations; See, for example, [10], [6], [3], [14], [12], [4] and [5].

We computed blow-up curve using the method of Cho [5] and obtained the various
numerical results of blow-up curves. We will show them in Section 7.

The remainder of this paper is organized as follows. In Section 2, we construct a
classical solution for (1.7) in the domain Ω. In Section 3, we give the blow-up rates of the
solutions of (1.7). Moreover, we show that the blow-up curve is Lipschitz continuous. In
the course of Sections 4–6, we prove that the blow-up curve is continuously differentiable.
In Section 7, we show some numerical examples of blow-up curves.

2 Existence and regularity of solutions

In this section, we will demonstrate the existence and regularity of the solutions ϕ and ψ
of (1.7) by successive approximation. Let us define {ϕn} and {ψn} by ϕ0 ≡ γ1, ψ0 ≡ γ2,
and 

D−ϕn+1 = 2−p|ϕn + ψn|p, (x, t) ∈ KR∗,T∗ ,

D+ψn+1 = 2−p|ϕn + ψn|p, (x, t) ∈ KR∗,T∗ ,

ϕn+1(x, 0) = f(x), ψn+1(x, 0) = g(x), x ∈ BR∗+T∗ ,

(2.1)

for n ∈ N ∪ {0}. Here, γ1 and γ2 are initial values of (1.8). We note that (2.1) can be
rewritten as

ϕn+1(x, t) = f(x+ t) +

∫ t

0

2−p|ϕn + ψn|p(x+ (t− s), s)ds,

ψn+1(x, t) = g(x− t) +

∫ t

0

2−p|ϕn + ψn|p(x− (t− s), s)ds.

(2.2)

Remark 2.1. Consider a function F ∈ C1(KR∗,T∗). We note that it follows from (2.1)
and (2.2) that F (x, t) ≥ 0 in KR∗,T∗ if

F (x, 0) ≥ 0 in BR∗+T∗ , and

 D−F (x, t) ≥ 0
or

D+F (x, t) ≥ 0
in KR∗,T∗ .

2.1 Lemmas

Now, we introduce two important lemmas.

Lemma 2.2. Assume that (A1) hold. Then, we have

ϕn+1 ≥ ϕn ≥ 0,
ψn+1 ≥ ψn ≥ 0,

in KR∗,T∗ , (2.3)

for n ∈ N ∪ {0}.

Proof. First, it follows from (A1) that

ϕ1(x, t) = f(x+ t) +

∫ t

0

2−p|ϕ0 + ψ0|p(x+ (t− s), s)ds ≥ γ1 = ϕ0(x, t) ≥ 0

in KR∗,T∗ . Similarly, we have that ψ1 ≥ ψ0 ≥ 0 in KR∗,T∗ .
Next, we assume that

ϕn ≥ ϕn−1 ≥ 0 and ψn ≥ ψn−1 ≥ 0 in KR∗,T∗ .
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Then, we have

ϕn+1(x, t) = f(x+ t) +

∫ t

0

2−p|ϕn + ψn|p(x+ (t− s), s)ds

≥ f(x+ t) +

∫ t

0

2−p|ϕn−1 + ψn−1|p(x+ (t− s), s)ds

= ϕn(x, t) ≥ 0

in KR∗,T∗ . Similarly, we have that ψn+1 ≥ ψn ≥ 0 in KR∗,T∗ .

Lemma 2.3. Assume that (A1)–(A3) hold. Then, we have

∂tϕn ≥ (1 + ε0)|∂xϕn|,
∂tψn ≥ (1 + ε0)|∂xψn|,

in KR∗,T∗ , (2.4)

for n ∈ N ∪ {0}.

Proof. Set λ = 1 + ε0, and

Jn = ∂tϕn + λ∂xϕn, J̃n = ∂tϕn − λ∂xϕn,

Ln = ∂tψn + λ∂xψn, L̃n = ∂tψn − λ∂xψn,

for n ∈ N ∪ {0}. Then, it suffices to show that Jn, J̃n, Ln and L̃n are nonnegative for
n ∈ N ∪ {0}, in KR∗,T∗ . First, we note that J0 = J̃0 = L0 = L̃0 = 0 in KR∗,T∗ . We
assume that

Jn ≥ 0, Ln ≥ 0 in KR∗,T∗ .

Then, it follows from (A3) that

Jn+1(x, 0) = ∂tϕn+1(x, 0) + λ∂xϕn+1(x, 0)

= (1 + λ)∂xϕn+1(x, 0) + 2−p|ϕn(x, 0) + ψn(x, 0)|p

≥ (2 + ε0)∂xf(x) + 2−p(γ1 + γ2)
p ≥ 0 in BR∗+T∗ .

Furthermore, it follows from Lemma 2.2 that

D−Jn+1 = ∂t(∂tϕn+1 + λ∂xϕn+1)− ∂x(∂tϕn+1 + λ∂xϕn+1)

= ∂t(∂tϕn+1 − ∂xϕn+1) + λ∂x(∂tϕn+1 − ∂xϕn+1)

= (∂t + λ∂x)2
−p|ϕn + ψn|p

= (∂t + λ∂x)2
−p(ϕn + ψn)

p

= 2−pp(ϕn + ψn)
p−1(Jn + Ln) ≥ 0 in KR∗,T∗ .

Therefore, we obtain Jn+1 ≥ 0 in KR∗,T∗ . Similarly, we obtain that Ln+1 ≥ in KR∗,T∗ .
In the same way of above, we can show that

J̃n+1 ≥ 0, L̃n+1 ≥ 0 in KR∗,T∗

if we assume that J̃n ≥ 0, L̃n ≥ 0 in KR∗,T∗ . Therefore, we have obtained that

Jn, J̃n, Ln, L̃n ≥ 0 for n ∈ N ∪ {0}, in KR∗,T∗ . This completes the proof.

2.2 Proof of existence and regularity of ϕ and ψ

Fix (x, t) ∈ KR∗,T∗ . Since {ϕn(x, t)} and {ψn(x, t)} are increasing sequences on n, we
have

lim
n→∞

ϕn(x, t) = sup
n∈N

ϕn(x, t) and lim
n→∞

ψn(x, t) = sup
n∈N

ψn(x, t). (2.5)
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We set
ϕ(x, t) = sup

n∈N
ϕn(x, t) and ψ(x, t) = sup

n∈N
ψn(x, t).

It follows from Lemma 2.3 that ϕ and ψ are monotone increasing on t. Hence, there exists
a function T (x) such that

T (x) = sup{t ∈ (0, T ∗) | (ϕ+ ψ)(x, t) <∞} for x ∈ BR∗

and
lim
t↑T (x)

(ϕ+ ψ)(x, t) → ∞ for x ∈ BR∗

if T (x) < T ∗. We set Ω = {(x, t) | x ∈ BR∗ , 0 < t < T (x)}.

Remark 2.4. We will show that T is actually a blow-up curve of ϕ and ψ in Section 3.

We state the following local existence lemma.

Lemma 2.5. Assume that (A1)–(A3) hold. Then, (ϕ, ψ) is a unique (C3,1(Ω))2 solution
of (1.7).

Proof. We set

B(t) =
{
x ∈ BR∗+T∗ | |x− x̃| ≤ t̃− t

}
for (t̃, x̃) ∈ Ω.

(Proof of regularity.)
First, we will show that (ϕ, ψ) is a (C3,1(Ω))2 solution of (1.7). We split the proof into
2 steps.

(Step 1.) Fix (x̃, t̃) ∈ Ω. We will show that there exists a positive constant M0 such
that

∥ϕ+ ψ∥L∞(B(t))) ≤M0 for t ∈ [0, t̃] (2.6)

by showing a contradiction.
We set

Yx =
{
x ∈ BR∗ | |x− x̃| ≤ t̃− T (x)

}
and m is the 1-dimensional Lebesgue measure.

We assume that (2.6) does not hold. Then, there exists t′ ∈ (0, t̃) such that there
exist a′, b′ satisfying a′ < b′ and

(a′, b′) ⊂ B(t′) and (x′, t′) ̸∈ Ω for x ∈ (a′, b′).

By the monotonicity of ϕ + ψ on t, we have T (x) ≤ t′ for x ∈ (a′, b′), which implies
(a′, b′) ∈ Yx. Hence, we have m(Yx) > 0.

It follows from the monotonicity of ϕ+ ψ on t that

(x, t) /∈ Ω if x ∈ Yx and (t = x+ t̃− x̃ or t = −x+ t̃+ x̃).

Moreover, we have m(Yt̃,+) > 0 or m(Yt̃,−) > 0 if m(Yx) > 0. Here,

Yt̃,− =
{
s ∈ (0, t̃) | s = −x+ t̃+ x̃, x ∈ Yx

}
,

Yt̃,+ =
{
s ∈ (0, t̃) | s = x+ t̃− x̃, x ∈ Yx

}
.

Then, we have

∞ >(ϕn+1 + ψn+1)(x̃, t̃)

≥
∫
Yt̃,−

2−p|ϕn + ψn|p(x̃+ t̃− s, s)ds+

∫
Yt̃,+

2−p|ϕn + ψn|p(x̃− t̃+ s, s)ds

→ ∞, as n→ ∞.
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It is a contradiction. Therefore, we obtain (2.6).

(Step 2.) We will show (ϕ, ψ) ∈ (C3,1(Ω))2. Fix (x̃, t̃) ∈ Ω. It suffices to show

ϕ, ψ ∈ C3,1(K−(x̃, t̃)).

By (Step 1.), we have that there exists a positive constant C0 depending only on t̃
and x̃ such that

∥ϕn + ψn∥L∞(B(t))) ≤ C0 for t ∈ [0, t̃] and n ∈ N. (2.7)

Then, we have

∥ϕn+1(· , t)− ϕn(· , t)∥L∞(B(t)) + ∥ψn+1(· , t)− ψn(· , t)∥L∞(B(t))

≤
∫ t

0

2−p+1
∥∥∥|ϕn + ψn|p(· , s1)− |ϕn−1 + ψn−1|p(· , s1)

∥∥∥
L∞(B(s1))

ds1

for t ∈ [0, t̃] and n ∈ N. By (2.7), we have that

∥ϕn+1(· , t)− ϕn(· , t)∥L∞(B(t)) + ∥ψn+1(· , t)− ψn(· , t)∥L∞(B(t))

≤ pCp−1
0

∫ t

0

(∥∥ϕn(· , s1)− ϕn−1(· , s1)
∥∥
L∞(B(s1))

+
∥∥ψn(· , s1)− ψn−1(·, s1)

∥∥
L∞(B(s1))

)
ds1

≤
(
pCp−1

0

)2 ∫ t

0

∫ s1

0

(∥∥ϕn−1(· , s2)− ϕn−2(· , s2)
∥∥
L∞(B(s2))

+
∥∥ψn−1(· , s2)− ψn−2(· , s2)

∥∥
L∞(B(s2))

)
ds2ds1.

for t ∈ [0, t̃] and n ∈ N. Repeating this argument, we obtain that

∥ϕn+1(· , t)− ϕn(· , t)∥L∞(B(t)) + ∥ψn+1(· , t)− ψn(· , t)∥L∞(B(t))

...

≤ (pCp−1
0 )n

∫ t

0

∫ s1

0

∫ s2

0

. . .

∫ sn−1

0(∥∥ϕ1(· , sn)− ϕ0(· , sn)
∥∥
L∞(B(sn))

+
∥∥ψ1(· , sn)− ψ0(· , sn)

∥∥
L∞(B(sn))

)
dsn . . . ds2ds1.

≤ 4C0
(pCp−1

0 T )n

n!
→ 0 as n→ ∞,

for t ∈ [0, t̃]. Hence, it follows from (2.5) that

∥ϕn − ϕ∥L∞(K−(x̃,t̃)) + ∥ψn − ψ∥L∞(K−(x̃,t̃)) → 0 as n→ ∞.

Next, we will show that ϕ, ψ ∈W 1,∞(K−(x̃, t̃)). We see that

D−Dθϕn+1 = Dθ2
−p(ϕn + ψn)

p = p2−p(ϕn + ψn)
p−1(Dθϕn +Dθψn),

D+Dθψn+1 = Dθ2
−p(ϕn + ψn)

p = p2−p(ϕn + ψn)
p−1(Dθϕn +Dθψn),{

Dθϕ1(x, 0) = (cos θ + sin θ)fx(x) + sin θ · 2−p(γ1 + γ2)
p,

Dθψ1(x, 0) = (cos θ − sin θ)gx(x) + sin θ · 2−p(γ1 + γ2)
p,{

Dθϕn+1(x, 0) = (cos θ + sin θ)∂xf(x) + sin θ · 2−p(f + g)p(x),

Dθψn+1(x, 0) = (cos θ − sin θ)∂xg(x) + sin θ · 2−p(f + g)p(x),
(n ∈ N)
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for n ∈ N ∪ {0}. Here, Dθv = sin θ∂tv + cos θ∂xv.
We set W (t) = Cp0 exp(pC

p−1
0 t). Then, we have

W (t) = Cp0 +

∫ t

0

pCp−1
0 W (s)ds.

We will show

∥Dθϕn(· , t)∥L∞(B(t)) ≤W (t), ∥Dθψn(· , t)∥L∞(B(t)) ≤W (t) (2.8)

for t ∈ [0, t̃] and n ∈ N ∪ {0}.
We see

Dθϕ0 = Dθψ0 = 0 ≤W (t)

for t ≥ 0. Assume that (2.8) holds for n. Then, we have∥∥p2−p(ϕn + ψn)
p−1(· , t)(Dθϕn +Dθψn)(· , t)

∥∥
L∞(B(t))

≤ pCp−1
0 W (t) (2.9)

for t ∈ [0, t̃]. It follows that (A3) that

∥Dθϕn+1(· , t)∥L∞(B(t))

≤ 2∥∂xf∥L∞(B(0)) + 2−p∥f + g∥pL∞(B(0))

+

∫ t

0

∥∥p2−p(ϕn + ψn)
p−1(· , s)(Dθϕn +Dθψn)(· , s)

∥∥
L∞(B(s))

ds

≤ Cp0 +

∫ t

0

pCp−1
0 W (s)ds =W (t) for t ∈ [0, t̃]. (2.10)

Similarly, we have that ∥Dθψn+1(· , t)∥L∞(B(t)) ≤W (t) for t ∈ [0, t̃]. Thus,

∥Dθϕn(· , t)∥L∞(B(t)) ≤W (t), ∥Dθψn(· , t)∥L∞(B(t)) ≤W (t)

for t ∈ [0, t̃] and n ∈ N ∪ {0}. We set C1 = Cp0 exp(pC
p−1
0 T ). Then, we have

∥Dθϕn(· , t)∥L∞(B(t)) ≤ C1 and ∥Dθψn(· , t)∥L∞(B(t)) ≤ C1 (2.11)

for t ∈ [0, t̃] and n ∈ N ∪ {0}.
We see that

∥Dθϕn+1(· , t)−Dθϕn(· , t)∥L∞(B(t)) + ∥Dθψn+1(· , t)−Dθψn(· , t)∥L∞(B(t))

≤
∫ t

0

p2−p+1
∥∥∥[(ϕn + ψn)

p−1(Dθϕn +Dθψn)

− (ϕn−1 + ψn−1)
p−1(Dθϕn−1 +Dθψn−1)

]
(· , s)

∥∥∥
L∞(B(s))

ds

It follows from (2.7) and (2.11) that

∥Dθϕn+1(· , t)−Dθϕn(· , t)∥L∞(B(t)) + ∥Dθψn+1(· , t)−Dθψn(· , t)∥L∞(B(t))

≤
∫ t

0

pCp−1
0

(
∥Dθϕn(· , s1)−Dθϕn−1(· , s1)∥L∞(B(s1))

+ ∥Dθψn(· , s1)−Dθψn−1(· , s1)∥L∞(B(s1))

)
ds1

+

∫ t

0

2p(p− 1)C1C
p−2
0

(
∥ϕn(· , s1)− ϕn−1(· , s1)∥L∞(B(s1))

+ ∥ψn(· , s1)− ψn−1(· , s1)∥L∞(B(s1))

)
ds1
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≤
(
pCp−1

0

)2 ∫ t

0

∫ s1

0

(
∥Dθϕn−1(· , s2)−Dθϕn−2(· , s2)∥L∞(B(s2))

+ ∥Dθψn−1(· , s2)−Dθψn−2(· , s2)∥L∞(B(s2))

)
ds2ds1

+ C2
2

∫ t

0

∫ s1

0

(
∥ϕn−1(· , s2)− ϕn−2(· , s2)∥L∞(B(s2))

+ ∥ψn−1(· , s2)− ψn−2(· , s2)∥L∞(B(s2))

)
ds2ds1

+ C2

∫ t

0

(
∥ϕn(· , s1)− ϕn−1(· , s1)∥L∞(B(s2))

+ ∥ψn(· , s1)− ψn−1(· , s1)∥L∞(B(s2))

)
ds1

...

≤
(
pCp−1

0

)n ∫ t

0

∫ s1

0

∫ s2

0

. . .

∫ sn−1

0(
∥Dθϕ1(· , sn)−Dθϕ0(· , sn)∥L∞(B(sn))

+ ∥Dθψ1(· , sn)−Dθψ0(· , sn)∥L∞(B(sn))

)
ds1ds2 . . . dsn

+
n∑
j=1

4C0
T j

j!
· (C2T )

n−j

(n− j)!

≤ 4C1
(pCp−1

0 T )n

n!
+

n∑
j=1

4C0
(C2T )

n

j!(n− j)!
→ 0 as n→ ∞

for t ∈ [0, t̃]. Here, C2 = max{pCp−1
0 , 2p(p − 1)C1C

p−2
0 }. Thus, there exist ϕ

(1)
θ , ψ

(1)
θ ∈

L∞(K−(x̃, t̃)) such that

∥Dθϕn − ϕ
(1)
θ ∥L∞(K−(x̃,t̃)) + ∥Dθψn − ψ

(1)
θ ∥L∞(K−(x̃,t̃)) → 0 as n→ ∞.

Therefore, (ϕ, ψ) ∈ (W 1,∞(K−(x̃, t̃)))
2. By repeating the same arguments, we obtain

that (ϕ, ψ) ∈ (W 4,∞(K−(x̃, t̃)))
2. That is, we have (ϕ, ψ) ∈ (C3,1(K−(x̃, t̃)))

2.

(Proof of uniqueness.)
Next, we will show that (ϕ, ψ) is a unique solution of (1.7). We suppose (ϕ1, ψ1) and
(ϕ2, ψ2) are solutions of (1.7) and T1 and T2 are corresponding blow-up curves. Let

Ωj = {(x, t) | x ∈ BR∗ , 0 < t < Tj(x)} for j = 1, 2.

Take (x̃, t̃) ∈ Ω1 ∩ Ω2 arbitrarily. In the same way of proof of (Step 2.), we have

sup
0≤t′≤t

(
∥ϕ1(· , t′)− ϕ2(· , t′)∥L∞(B(t′)) + ∥ψ1(· , t′)− ψ2(· , t′)∥L∞(B(t′))

)
≤ sup

0≤t′≤t

(∫ t′

0

2−p+1
∥∥|ϕ1 + ψ1|p(· , s)− |ϕ2 + ψ2|p(· , s)

∥∥
L∞(B(s))

ds
)

≤ tpCp−1
0 sup

0≤t′≤t

(
∥ϕ1(· , t′)− ϕ2(· , t′)∥L∞(B(t′))

+ ∥ψ1(· , t′)− ψ2(· , t′)∥L∞(B(t′))

)
for t satisfying 0 ≤ t ≤ t̃. Thus,

sup
0≤t′≤t

(
∥ϕ1(· , t′)− ϕ2(· , t′)∥L∞(B(t′)) + ∥ψ1(· , t′)− ψ2(· , t′)∥L∞(B(t′))

)
= 0
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if t is small enough. Since C0 does not depend on t, by repeating this argument, we
obtain

sup
0≤t′≤t̃

(
∥ϕ1(· , t′)− ϕ2(· , t′)∥L∞(B(t′)) + ∥ψ1(· , t′)− ψ2(· , t′)∥L∞(B(t′))

)
= 0.

Therefore, we have
(ϕ1, ψ1) = (ϕ2, ψ2) in Ω1 ∩ Ω2

and
T1(x) = T2(x) for x ∈ BR∗ .

This completes the proof.

Lemma 2.6. Assume that (A1)–(A4) hold. Then, we have

T (x) < T ∗ for x ∈ BR∗ .

Proof. Let us define {ϕ̃n} and {ψ̃n} by ϕ̃0 = γ1, ψ̃0 = γ2 and
d

dt
ϕ̃n+1 = 2−p|ϕ̃n + ψ̃n|p, t > 0,

d

dt
ψ̃n+1 = 2−p|ϕ̃n + ψ̃n|p, t > 0,

ϕ̃n+1(0) = γ1, ψ̃n+1(0) = γ2.

It suffices to show that ϕn(x, t) ≥ ϕ̃n(t) and ψn(x, t) ≥ ψ̃n(t) in KR∗,T∗ , for n ∈ N. First,
we see that

ϕ1(x, t)− ϕ̃1(t) = f(x+ t)− γ1 +

∫ t

0

2−p|ϕ0 + ψ0|p(x+ (t− s), s)ds

−
∫ t

0

2−p|ϕ̃0 + ψ̃0|p(s)ds

= f(x+ t)− γ1 ≥ 0,

in KR∗,T∗ . Similarly, we have that ψ1(x, t) ≥ ψ̃1(t) in KR∗,T∗ .

Next, we assume that ϕn(x, t) ≥ ϕ̃n(t) and ψn(x, t) ≥ ψ̃n(t) in KR∗,T∗ . Then, we
have that

ϕn+1(x, t)− ϕ̃n+1(t) = f(x+ t)− γ1 +

∫ t

0

2−p|ϕn + ψn|p(x+ (t− s), s)ds

−
∫ t

0

2−p|ϕ̃n + ψ̃n|p(s)ds

≥ 0,

in KR∗,T∗ . Similarly, we obtain that ψn+1(x, t) ≥ ψ̃n+1(t) in KR∗,T∗ . Therefore, we have

ϕn(x, t) ≥ ϕ̃n(t), ψn(x, t) ≥ ψ̃n(t) in KR∗,T∗

for n ∈ N.
This completes the proof.

3 Blow-up rates of solutions and Lipschitz continuity
of T

Now, we will show that T is Lipschitz continuous in BR∗ . To prove this fact, we first
introduce the following proposition.
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Proposition 3.1. Assume that (A1)–(A4) hold. Then, there exist positive constants C1

and C2 depending only on p and ε0 such that

C1(ϕ+ ψ)p ≤ ∂tϕ ≤ C2(ϕ+ ψ)p, (3.1)

C1(T (x)− t)−q−1 ≤ ∂tϕ(x, t) ≤ C2(T (x)− t)−q−1, (3.2)

C1(ϕ+ ψ)p ≤ ∂tψ ≤ C2(ϕ+ ψ)p, (3.3)

C1(T (x)− t)−q−1 ≤ ∂tψ(x, t) ≤ C2(T (x)− t)−q−1, (3.4)

C1(T (x)− t)−q ≤ (ϕ+ ψ)(x, t) ≤ C2(T (x)− t)−q, (3.5)

in Ω. Here, q = 1/(p− 1).

Proof. First, we will show that (3.1) holds. We see that

D−∂tϕn+1 = ∂tD−ϕn+1 = ∂t2
−p|ϕn + ψn|p = ∂t2

−p(ϕn + ψn)
p

= 2−pp(ϕn + ψn)
p−1(∂tϕn + ∂tψn) in KR∗,T∗ , (3.6)

for n ∈ N ∪ {0}. From Lemma 2.3, we obtain that

D−2
−p(ϕn + ψn)

p = 2−pp(ϕn + ψn)
p−1(∂tϕn − ∂xϕn + ∂tψn − ∂xψn)

≤ 2−p+1p(ϕn + ψn)
p−1(∂tϕn + ∂tψn) in KR∗,T∗ , (3.7)

for n ∈ N∪{0}. We set Jϕ,n+1 = 2∂tϕn+1 − 2−p(ϕn+ψn)
p. Then, by (3.6) and (3.7), we

have

D−Jϕ,n+1

≥ 2−p+1p(ϕn + ψn)
p−1(∂tϕn + ∂tψn)− 2−p+1p(ϕn + ψn)

p−1(∂tϕn + ∂tψn)

= 0 in KR∗,T∗ , (3.8)

for n ∈ N ∪ {0}. It follows from (A3) that

Jϕ,n+1(x, 0) = 2∂tϕn+1(x, 0)− 2−p(ϕn + ψn)
p(x, 0)

= 2∂xϕn+1(x, 0) + 2−p(ϕn + ψn)
p(x, 0)

≥ 2fx + 2−p(γ1 + γ2)
p ≥ 0 in BR∗+T∗ (3.9)

for n ∈ N ∪ {0}. Then, by (3.9) and (3.8), we obtain that Jϕ,n ≥ 0 in KR∗,T∗ , for n ∈ N.
On the other hand, it follows from Lemma 2.3 that

∂tϕn+1 = ∂xϕn+1 + 2−p(ϕn + ψn)
p ≤ 1

1 + ε0
∂tϕn+1 + 2−p(ϕn + ψn)

p

in KR∗,T∗ , for n ∈ N ∪ {0}. Hence,

∂tϕn+1 ≤ 1 + ε0
ε0

2−p(ϕn + ψn)
p in KR∗,T∗ , (3.10)

for n ∈ N ∪ {0}. It follows from the fact that Jϕ,n ≥ 0 and (3.10) that

2−p−1(ϕn + ψn)
p ≤ ∂tϕn+1 ≤ 1 + ε0

ε0
· 2−p(ϕn+1 + ψn+1)

p in KR∗,T∗ , (3.11)

for n ∈ N ∪ {0}, which implies (3.1) holds. Similarly, we can prove that (3.3) holds.
Next, we will show that (3.5) holds. By considering (3.1), we see that

∂(ϕ+ ψ)

∂t
≤ 2−p+1(1 + ε0)ε

−1
0 (ϕ+ ψ)p in Ω.
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Thus, we have

∂t

∂(ϕ+ ψ)
≥ 2p−1(1 + ε0)

−1ε0(ϕ+ ψ)−p in Ω. (3.12)

Fix x0 ∈ BR∗ . By (3.12), we have

T (x0)− ε− τ ≥
∫ (ϕ+ψ)(x0,T (x0)−ε)

(ϕ+ψ)(x0,τ)

2p−1(1 + ε0)
−1ε0z

−pdz

=
[
−(p− 1)−12p−1(1 + ε0)

−1ε0z
−(p−1)

](ϕ+ψ)(x0,T (x0)−ε)

(ϕ+ψ)(x0,τ)
.

for τ > 0 and ε > 0 satisfying T (x0)− ε− τ > 0. Hence, by letting ε→ 0, we obtain

T (x0)− τ ≥
[
−(p− 1)−12p−1(1 + ε0)

−1ε0z
−(p−1)

]∞
(ϕ+ψ)(x0,τ)

= (p− 1)−12p−1(1 + ε0)
−1ε0(ϕ+ ψ)−(p−1)(x0, τ).

Thus, we have that

(ϕ+ ψ)(x0, τ) ≥ 2
(
(p− 1)ε−1

0 (1 + ε0)
)−1/(p−1)

(T (x0)− τ)−1/(p−1) (3.13)

for τ ∈ [0, T (x0)). Similarly, we obtain that

(2p(p− 1)−1)1/(p−1)(T (x0)− τ)−1/(p−1) ≥ (ϕ+ ψ)(x0, τ) (3.14)

for τ ∈ [0, T (x0)). It follows from (3.13) and (3.14) that (3.5) holds. Moreover, it follows
from (3.1) and (3.5) that (3.2) holds. Similarly, we have that (3.4) also holds. This
completes the proof.

By combining the above Lemma 2.3 with Proposition 3.1, we obtain that the blow-up
curve T is Lipschitz continuous. That is, the following lemma holds.

Lemma 3.2. Suppose that (A1)–(A4) hold. Then, we have that

|T (x′)− T (x′′)| ≤ 1

1 + ε0
|x′ − x′′| for x′, x′′ ∈ BR∗ . (3.15)

Proof. This proof is based on the Implicit Function Theorem. Let ε > 0 be arbitrary.
By (3.5), we see that there exists a positive constant C1 depending p and ε0 such that

C1ε
−q ≤ (ϕ+ ψ)(x, t) for x ∈ BR∗ and t ∈ [T (x)− ε, T (x)).

Thus, there exists a positive constantM satisfyingM ≥ C1ε
−q, and a function E(x) (x ∈

BR∗) such that

(ϕ+ ψ)(x,E(x)) =M and T (x)− E(x) ≤ ε for x ∈ BR∗ .

First, we will demonstrate continuity of E in BR∗ . That is, for x′ ∈ BR∗ , we will
show that tn → E(x′) if xn → x′, where tn = E(xn).

We take an arbitrary converging subsequence {tnk} ⊂ {tn}, and denote its limit by η.
Following from the definition of E, we have that (ϕ+ψ)(xnk, tnk) = (ϕ+ψ)(xnk, E(xnk)) =
M. Thus, it follows from continuity of ϕ and ψ that (ϕ+ψ)(x′, η) =M. Since ∂t(ϕ+ψ) > 0
in Ω, we have that η = E(x′). Therefore,

lim inf
n→∞

tn = lim sup
n→∞

tn = E(x′).

Thus, we have demonstrated the continuity of E at x′.
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Next, we will prove Lipschitz continuity of E. We see that there exists a positive
constant h′ for x′ ∈ BR∗ such that

B(x′, h′) ⊂ Ω,

where B(x′, h′) =
{
(t, x) |

√
(x− x′)2 + (t− E(x′))2 < h′

}
. Following from continuity

of E, there exits a positive constant h′′ such that 0 < h′′ ≤ h′ satisfying

(x1, E(x1)), (x2, E(x2)) ∈ B(x′, h′) for x1, x2 ∈ (x′ − h′′, x′ + h′′).

Let k = E(x2)− E(x1) and

H(ξ) = (ϕ+ ψ)(x1 + ξ(x2 − x1), t+ ξk),

where ξ is a constant satisfying 0 ≤ ξ ≤ 1. Then, we have

H(0) = (ϕ+ ψ)(x1, t),

H(1) = (ϕ+ ψ)(x2, t+ k) = (ϕ+ ψ)(x2, t+ E(x2)− E(x1)).

Take t as t = E(x1). Then, we have H(0) = H(1) =M. By Rolle’s Theorem, there exists
ξ′ ∈ (0, 1) such that

H ′(ξ′) =(x2 − x1)∂x(ϕ+ ψ)(x1 + ξ′(x2 − x1), E(x1) + ξ′k)

+ k∂t(ϕ+ ψ)(x1 + ξ′(x2 − x1), E(x1) + ξ′k) = 0. (3.16)

Hence, it follows from Lemma 2.3 and (3.16) that

|E(x1)− E(x2)| = |k| =
∣∣∣∣−∂x(ϕ+ ψ)(x1 + ξ′(x2 − x1), E(x1) + ξ′k)

∂t(ϕ+ ψ)(x1 + ξ′(x2 − x1), E(x1) + ξ′k)

∣∣∣∣ |x1 − x2|

≤ 1

1 + ε0
|x1 − x2|.

Thus, E is Lipschitz continuous in (x′ − h′′, x′ + h′′). Moreover, it follows from the
continuity of E that

E(x+ h)− E(x)

h
=

−h∂x(ϕ+ ψ)(x+ ξh,E(x) + ξ(E(x+ h)− E(x)))

h∂t(ϕ+ ψ)(x+ ξh,E(x) + ξ(E(x+ h)− E(x)))

→ −∂x(ϕ+ ψ)(x,E(x))

∂t(ϕ+ ψ)(x,E(x))
as h→ 0 for x ∈ BR∗ .

Hence, we have that

∂

∂x
E(x) =

−∂x(ϕ+ ψ)(x,E(x))

∂t(ϕ+ ψ)(x,E(x))
for x ∈ BR∗ .

By continuity of ∂x(ϕ+ψ), ∂t(ϕ+ψ) and E, we see that E ∈ C1(BR∗). Hence, we have
that

|E(x′)− E(x′′)| ≤
(

sup
x∈BR∗

|E′(x)|
)
|x′ − x′′| ≤ 1

1 + ε0
|x′ − x′′| (3.17)

for x′, x′′ ∈ BR∗ . Therefore, E is Lipschitz continuous in BR∗ .
Finally, we will prove Lipschitz continuity of T in BR∗ . It follows from (3.17) that

|T (x′)− T (x′′)| ≤ |T (x′)− E(x′)|+ |E(x′)− E(x′′)|+ |E(x′′)− T (x′′)|

≤ 2ε+
1

1 + ε0
|x′ − x′′| for x′, x′′ ∈ BR∗ .

Since we let ε > 0 take an arbitrary value, this completes the proof.
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By applying Lemma 3.2, we obtain the following results.

Definition 3.3. By d(x, t), we denote the distance from a point (x, t) in Ω to Γ =
{(x, T (x)) | x ∈ BR∗}.

Remark 3.4. It follows from Lemma 3.2 that

T (x)− t√
2

≤ d(x, t) ≤ T (x)− t.

By replacing T (x)− t by d(x, t) in Proposition 3.1, we obtain the following Corollary.

Corollary 3.5. Assume that (A1)–(A4) hold. Then, there exist positive constants C1

and C2 depending only on p and ε0 such that

C1d
−q(x, t) ≤ (ϕ+ ψ)(x, t) ≤ C2d

−q(x, t), (3.18)

C1d
−q−1(x, t) ≤ ∂tϕ(x, t) ≤ C2d

−q−1(x, t), (3.19)

C1d
−q−1(x, t) ≤ ∂tψ(x, t) ≤ C2d

−q−1(x, t), (3.20)

where q = 1/(p− 1), in Ω.

From Corollary 3.5, we obtain the following lemma, which states that T is the blow-up
curve of both ϕ and ψ:

Lemma 3.6. Assume that (A1)–(A4) hold. Then, there exist positive constants C1 and
C2 depending on p and ε0 such that

C1(T (x)− t)−q ≤ ϕ(x, t) ≤ C2(T (x)− t)−q, (3.21)

C1(T (x)− t)−q ≤ ψ(x, t) ≤ C2(T (x)− t)−q, (3.22)

where q = 1/(p− 1), in Ω.

Proof. We will only show that (3.21) holds. By Corollary 3.5 and Lemma 3.2, there exist
positive constants c1 and c2 depending p and ε0 such that

ϕ(x, T (x)− ε) = f(x+ T (x)− ε)

+

∫ T (x)−ε

0

2−p(ϕ+ ψ)p(x+ (T (x)− ε)− s, s)ds

≥
∫ T (x)−ε

T (x)−2ε

2−p(ϕ+ ψ)p(x+ (T (x)− ε)− s, s)ds

≥ c1ε inf
T (x)−2ε≤s≤T (x)−ε

d(x+ (T (x)− ε)− s, s)−qp

≥ c2ε · ε−q−1 = c2ε
−q.

On the other hand, it follows from Proposition 3.1 that there exists a positive constant
C2 depending only on p and ε0 such that ϕ(x, T (x) − ε) ≤ C2ε

−q. This completes the
proof.

4 Blow-up limits of solutions

In the following, we will show that T ∈ C1(BR∗). In order to achieve this, we will
consider limits of the scaled functions Tλ, ϕλ, and ψλ (we will define these later) and
their properties.
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4.1 Estimates of blow-up limits

We set Dθ as

Dθ = cos θ∂x + sin θ∂t, where 0 ≤ θ < 2π.

First, we introduce the following lemma.

Lemma 4.1. Assume that (A1)–(A5.3) hold. Then, there exist positive constants Cα
and C∗

α depending only on p and ε1 such that

max{|Dα
θ ϕ(x, t)|, |Dα

θ ψ(x, t)|} ≤ Cα(ϕ+ ψ)p+(α−1)/q(x, t) (4.1)

≤ C∗
αd(x, t)

−(pq+(α−1)) (4.2)

for (x, t) ∈ Ω, where q = 1/(p− 1) and α = 0, 1, 2, 3.

Proof. We can easily obtain that (4.2) holds by Corollary 3.5 if we prove (4.1). So, we
will only prove (4.1).

We also obtain that (4.1) holds in the case of α = 0, 1, by Lemmas 2.2, 2.3 and
Proposition 3.1.

First, we will show that (4.1) holds in the case of α = 2. It suffices to show that there
exists a positive constant C2 depending only on p and ε1 such that

max{|D2
θϕn(x, t)|, |D2

θψn(x, t)|}
≤ C2(ϕn + ψn)

2p−1(x, t) for n ∈ N ∪ {0}, (4.3)

in KR∗,T∗ . We see that Dθϕ0 = Dθψ0 = 0 in KR∗,T∗ . Hence, (4.1) holds for n = 0.
Assume

max
{
|D2

θϕn(x, t)|, |D2
θψn(x, t)|

}
≤ C2(ϕn + ψn)

2p−1(x, t) in KR∗,T∗ .

Then, it follows from (4.1) in the case α = 1 and Proposition 3.1 that

|D−(D
2
θϕn+1)(x, t)|

= 2−p|D2
θ(ϕn + ψn)

p(x, t)|
≤ 2−pp(p− 1)(ϕn + ψn)

p−2(x, t)(Dθϕn +Dθψn)
2(x, t)

+ 2−pp(ϕn + ψn)
p−1(x, t)|(D2

θϕn +D2
θψn)(x, t)|

≤ 2−p+1p
(
2(p− 1)C2

1 + C2

)
|(ϕn + ψn)

3p−2(x, t)| in KR∗,T∗ , (4.4)

where Cα is the constant in the case of α = 1, 2 of (4.1). Moreover, it follows from
Lemma 2.3 and Proposition 3.1 that

D−C2(ϕn+1 + ψn+1)
2p−1(x, t)

= C2(2p− 1)(ϕn+1 + ψn+1)
2p−2(x, t)D−(ϕn+1 + ψn+1)(x, t)

≥ 2−pC2(2p− 1)
(
1 +

ε1
2(1 + ε1)

)
(ϕn + ψn)

3p−2(x, t) in KR∗,T∗ . (4.5)

Let
Mn(x, t) = C2(ϕn + ψn)

2p−1(x, t)−D2
θϕn(x, t).

Then, it follows from (A3) and (A5.2) that

Mn+1(x, 0) ≥
(
C2 − 4C(2)−1

− p2−2p+3
)
(f + g)2p−1(x), (4.6)
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in BR∗+T∗ . On the other hand, it follows from (4.4) and (4.5) that

D−Mn+1(x, t) ≥ 2−pC2

{
(2p− 1)

(
1 +

ε1
2(1 + ε1)

)
− 2p

}
(ϕn + ψn)

3p−2(x, t)

− 2−p4p(p− 1)C2
1 (ϕn + ψn)

3p−2(x, t) in KR∗,T∗ . (4.7)

By (A5.1), we have

(2p− 1)
(
1 +

ε1
2(1 + ε1)

)
− 2p > 0.

We take C2 as

C2 > max
{
4C(2)−1

+ p2−2p+3,{
(2p− 1)

(
1 +

ε1
2(1 + ε1)

)
− 2p

}−1

4p(p− 1)C2
1

}
.

Then, it follows from (4.6) and (4.7) that Mn+1 ≥ 0 in KR∗,T∗ . Consequently, we obtain
that Mn ≥ 0 in KR∗,T∗ , for n ∈ N ∪ {0}. That is, there exists a positive constant C2

depending p and ε1 such that

C2(ϕn + ψn)
2p−1 ≥ D2

θϕn in KR∗,T∗

for n ∈ N ∪ {0}. Similarly, we have the following inequality by retaking C2 if necessary. C2(ϕn + ψn)
2p−1 ≥ −D2

θϕn,
C2(ϕn + ψn)

2p−1 ≥ D2
θψn,

C2(ϕn + ψn)
2p−1 ≥ −D2

θψn,
in KR∗,T∗ ,

for n ∈ N∪ {0}. This means (4.3) holds. In the same way, we can prove (4.1) in the case
of α = 3.

Let x0 ∈ BR∗ . Then, we introduce the following scaled functions:

ϕλ(y, s) = λqϕ(x0 + λy, T (x0) + λs), (4.8)

ψλ(y, s) = λqψ(x0 + λy, T (x0) + λs), (4.9)

where λ > 0 and q = 1/(p− 1). Any sequences {ϕλn} and {ψλn} with λn ↓ 0 are called
blow-up sequences (see. [2]). Now, we see that{

D−ϕλ = 2−p(ϕλ + ψλ)
p,

D+ψλ = 2−p(ϕλ + ψλ)
p

(4.10)

for (y, s) ∈ Ωλ, where Ωλ =
{
(y, s) ∈ R2 | (x0 + λy, T (x0) + λs) ∈ Ω

}
. By dλ(y, s), we

denote the distance from a point (y, s) ∈ Ωλ to Γλ = {(y, s) | s = Tλ(y)}. Here, Tλ is a
blow-up curve of ϕλ.

Lemma 4.2. For each fixed λ > 0,

Tλ(y) =
T (x0 + λy)− T (x0)

λ
. (4.11)

Proof. By Lemma 3.6, there exist positive constants C1 and C2 depending on p and ε1
such that

λqC1 (T (x0 + λy)− (T (x0) + λs))
−q

≤ λqϕ(x0 + λy, T (x0) + λs) ≤ λqC2 (T (x0 + λy)− (T (x0) + λs))
−q
.

We see that

λq (T (x0 + λy)− (T (x0) + λs))
−q

=

(
T (x0 + λy)− T (x0)

λ
− s

)−q

. (4.12)

Therefore, we obtain (4.11).
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Similarly, we can show that the blow-up curve of ψλ(y, s) is Tλ(y).
From Proposition 3.1 and Lemmas 2.3, 3.2 and 4.1, there exist positive constants C1,

C2, C3,α, and C4,α, depending only on p and ε1 such that

C1(ϕλ + ψλ)
p ≤ ∂sϕλ ≤ C2(ϕλ + ψλ)

p, (4.13)

C1(ϕλ + ψλ)
p ≤ ∂sψλ ≤ C2(ϕλ + ψλ)

p, (4.14)

C1(Tλ(y)− s)−q ≤ ϕλ(y, s) ≤ C2(Tλ(y)− s)−q, (4.15)

C1(Tλ(y)− s)−q ≤ ψλ(y, s) ≤ C2(Tλ(y)− s)−q, (4.16)

|∂yϕλ| ≤
1

1 + ε1
∂sϕλ, |∂yψλ| ≤

1

1 + ε1
∂sψλ, (4.17)

|Tλ(y)− Tλ(y
′)| ≤ 1

1 + ε1
|y − y′| for y, y′ ∈

(
−R− x0

λ
,
R− x0
λ

)
, (4.18)

Tλ(y)− s√
2

≤ dλ(y, s) ≤ Tλ(y)− s, (4.19)

max {|Dα
θ ϕλ(y, s)|, |Dα

θ ψλ(y, s)|}
≤ C3,α(ϕλ(y, s) + ψλ(y, s))

p+(α−1)/q ≤ C4,αdλ(y, s)
−(pq+α−1). (4.20)

where (y, s) ∈ Ωλ. Here α = 0, 1, 2, 3.

4.2 Strategy of proof of the differentiability of T

We will consider the limits of the functions Tλn , ϕλn , and ψλn . It follows from (4.18)
that Tλn is equicontinuous.

We define In by a closed interval satisfying

• In ⊂ In+1 for n ∈ N,

•
∪∞
n=1 . I ⊂ In0 .

By (4.18), there exists a positive constant M1 such that

|Tλn(y)| ≤M1 for y ∈ I1.

By the Ascoli and Arzela theorem, there exist a sequence {λ(1)n } ⊂ {λn} and T
(1)
0 ∈ C(I1)

such that T
λ
(1)
n

converges to T
(1)
0 uniformly in I1.

In the same manner as above, we can see that there exist a sequence {λ(2)n } ⊂ {λ(1)n }
and T

(2)
0 ∈ C(I2) such that T

λ
(2)
n

converges to T
(2)
0 uniformly in I2. By repeating the

same arguments, there exists T0 ∈ C(R) such that TΛn converges to T0 locally uniformly

in R, where Λn = λ
(n)
n .

In the remainder of this paper, we will show that T ∈ C1(BR). We demonstrate this
proof through the following two steps.

(Step 1.) First (in Section 5), we will show that T0, which is defined as above, is an
affine function. That is, there exists a constant αx0 such that T0(y) = αx0y for y ∈ R.

(Step 2.) Next (in Section 6), we will demonstrate that a contradiction arises if we
assume that there exists x0 ∈ BR∗ such that T is not differentiable at x0 ∈ BR∗ .

We start by assuming that T is not differentiable at x0 ∈ BR∗ . On the other hand,
by (Step 1), we have that for all y ∈ R,

TΛn
(y)

y
=
T (x0 + Λny)− T (x0)

Λny
→ αx0

as Λn → 0,
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where {Λn} ⊂ {λn} is the sequence appeared in (Step 1). This means that there exist
{λn′} ⊂ {λn} and y′ ∈ R such that

lim sup
λn′→0

Tλn′ (y
′) > lim inf

λn′→0
Tλn′ (y

′). (4.21)

On the other hand, there exist {λ(1)n′ } ⊂ {λn′} and {λ(2)n′ } ⊂ {λn′} such that

lim
λ
(1)

n′ →0

T
λ
(1)

n′
(y′) = lim sup

λn′→0
Tλn′ (y

′),

lim
λ
(2)

n′ →0

T
λ
(2)

n′
(y′) = lim inf

λn′→0
Tλn′ (y

′).

By repeating the above arguments, there exist {λ(1)n′
k
} ⊂ {λ(1)n′ } and {λ(2)n′

k
} ⊂ {λ(2)n′ }, and

corresponding functions T
(1)
0 , T

(2)
0 ∈ C(R), such that

T
λ
(1)

n′
k

→ T
(1)
0 , T

λ
(2)

n′
k

→ T
(2)
0 locally uniformly in R.

It follows from (Step 1) that there exist constants α
(1)
x0 and α

(2)
x0 such that T

(1)
0 (y) = α

(1)
x0 y

and T
(2)
0 (y) = α

(2)
x0 y, respectively. By (4.21), we see that α

(1)
x0 ̸= α

(2)
x0 .

In Section 6, we will demonstrate that a contradiction arises if there exist α
(1)
x0 and

α
(2)
x0 such that α

(1)
x0 ̸= α

(2)
x0 and

T
(1)
0 (y) = α(1)

x0
y, T

(2)
0 (y) = α(2)

x0
y for y ∈ R.

That is, we obtain that T is differentiable in BR∗ . Moreover, we can show that a contra-
diction arises if we assume that the derivative T ′ is not continuous in BR∗ .

In the remainder of this section, we prepare for our proof of (Step 1.). We consider
the limits of blow-up sequences ϕλn and ψλn . We set Ω0 = {(y, s) | y ∈ R, s < T0(y)}.
Then, we set Jn as a closed subset of Ω0 satisfying

• Jn ⊂ Jn+1 for n ∈ N,

•
∪∞
n=1 Jn = Ω0.

It follows from the Ascoli and Arzela theorem that there exists a subsequence {λ̃n} ⊂
{Λn}, such that there exist

vϕ, vψ, v
1,θ
ϕ , v1,θψ , v2,θϕ , v2,θψ , v3,θϕ , v3,θψ ∈ C(Ω0)

satisfying 
ϕλ̃n

→ vϕ, ψλ̃n
→ vψ,

Dθϕλ̃n
→ v1,θϕ , Dθψλ̃n

→ v1,θψ ,

D2
θϕλ̃n

→ v2,θϕ , D2
θψλ̃n

→ v2,θψ ,

D3
θϕλ̃n

→ v3,θϕ , D3
θψλ̃n

→ v3,θψ ,

locally uniformly in Ω0 (4.22)

for θ ∈ [0, 2π). Thus, we have that vϕ, vψ ∈ C3(Ω0). The functions vϕ and vψ are called
blow-up limits of ϕ and ψ (see [2]). By (4.10), (4.13)–(4.20), we have that{

D−vϕ = 2−p(vϕ + vψ)
p,

D+vψ = 2−p(vϕ + vψ)
p,

(4.23)
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and there exist positive constants C1, C2, C3,α and C4,α, depending only on p and ε1,
such that

C1(vϕ + vψ)
p ≤ ∂svϕ ≤ C2(vϕ + vψ)

p, (4.24)

C1(vϕ + vψ)
p ≤ ∂svψ ≤ C2(vϕ + vψ)

p, (4.25)

C1(T0(y)− s)−q ≤ vϕ(y, s) ≤ C2(T0(y)− s)−q, (4.26)

C1(T0(y)− s)−q ≤ vψ(y, s) ≤ C2(T0(y)− s)−q, (4.27)

|∂yvϕ| ≤
1

1 + ε1
∂svϕ, |∂yvψ| ≤

1

1 + ε1
∂svψ, (4.28)

|T0(y)− T0(y
′)| ≤ 1

1 + ε1
|y − y′| for y, y′ ∈ R, (4.29)

T0(y)− s√
2

≤ d0(y, s) ≤ T0(y)− s, (4.30)

max {|Dα
θ vϕ(y, s)|, |Dα

θ vψ(y, s)|}
≤ C3,α(vϕ(y, s) + vψ(y, s))

p+(α−1)/q ≤ C4,αd0(y, s)
−(pq+α−1), (4.31)

where (y, s) ∈ Ω0. Here, d0(y, s) is the distance from a point (y, s) ∈ Ω0 to Γ0 = {(y, s) |
s = T0(y), y ∈ R} and α = 0, 1, 2, 3.

4.3 Convexity of blow-up limits

In order to demonstrate that T0 is an affine function, we will prove the following lemma.

Lemma 4.3. Assume that (A1)–(A5.3) hold. Then, we have that

D2
θvϕ ≥ 0, D2

θvψ ≥ 0 in Ω0 (4.32)

for 0 ≤ θ < 2π.

Proof. We fix a point (ỹ, s̃) ∈ Ω0. Let K−(ỹ, s̃) = {(y, s) ∈ Ω0 | |ỹ − y| < s̃− s} . Then,
it suffices to show that D2

θvϕ, D
2
θvψ ≥ 0 in K−(ỹ, s̃).

Let
Jϕ = D2

θvϕ + η∂svϕ, Jψ = D2
θvψ + η∂svψ,

where η is a positive constant.
In what follows, we will show that

Jϕ > 0 and Jψ > 0 in K−(ỹ, s̃). (4.33)

We see that

D−Jϕ = D+Jψ

= 2−pp(p− 1)(vϕ + vψ)
p−2(Dθvϕ +Dθvψ)

2

+ 2−pp(vϕ + vψ)
p−1(Jϕ + Jψ). (4.34)

We consider Jϕ and Jψ in K−(ỹ, s̃). By (4.30), we have

1√
2

(
T0(y)− s

|s|

)
≤ d0(y, s)

|s|
≤ T0(y)− s

|s|
.

Thus, we obtain that

1√
2
≤ d0(y, s)

|s|
≤ 1 for (y, s) ∈ K−(ỹ, s̃), as s→ −∞. (4.35)
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By (4.31), (4.24), (4.26), (4.27) and (4.30), we have that there exist positive constants
c1 and c2, depending only on p and ε1, such that

max{|D2
θvϕ(y, s)|, |D2

θvψ(y, s)|} ≤ c1(vϕ + vψ)
p(y, s)(vϕ + vψ)

1/q(y, s)

≤ c2∂svϕ(y, s)d0(y, s)
−1. (4.36)

Hence, it follows from (4.35) and (4.36) that

Jϕ = η∂svϕ(1 +O(1/|s|)), Jψ = η∂svψ(1 +O(1/|s|)), as s→ −∞ (4.37)

in K−(ỹ, s̃). Since ∂svϕ, ∂svϕ > 0 in Ω0, we have that Jϕ, Jψ > 0 in K−(ỹ, s̃)∩ {(y, s) |
s < −σ} if σ is large enough.

We assume that (4.33) does not hold. Then, there exists (y′, s′) ∈ K−(ỹ, s̃) such that

Jϕ(y
′, s′) = 0 or Jψ(y

′, s′) = 0

and

Jϕ(y, s) > 0 and Jψ(y, s) > 0 for (y, s) ∈ K−(ỹ, s̃) ∩ {(y, s) | y ∈ R, s < s′}.

We assume Jϕ(y
′, s′) = 0. Then, it follows from (4.34) that

0 = Jϕ(y
′, s′)

= Jϕ(y
′ +M, s′ −M)

+

∫ M

0

2−pp(p− 1)(vϕ + vψ)
p−2(Dθvϕ +Dθvψ)

2(y′ +M − s, s)ds

+

∫ M

0

2−pp(vϕ + vψ)
p−1(Jϕ + Jψ)(y

′ +M − s, s)ds

> 0 for M > 0.

This is a contradiction. In the same manner as above, we can show that a contradiction
arises if we assume that Jψ(y

′, s′) = 0. Therefore, we obtain that (4.33) holds.
By taking η → 0, we have

D2
θvϕ ≥ 0 and D2

θvψ ≥ 0 in K−(ỹ, s̃).

This completes the proof.

5 Linearity of the blow-up curve of blow-up limits

In this section, we will prove (Step 1.) as stated in Section 4.2. In order to prove this,
we will consider {

D−Vϕ = 2−p(Vϕ + Vψ)
p,

D+Vψ = 2−p(Vϕ + Vψ)
p,

(5.1)

with some constant α ∈ R and the corresponding blow-up curve

{(y, s) | s = αy, y ∈ R} . (5.2)

We know that (5.1)–(5.2) yield the following special solution:

(Vϕ,α(y, s), Vψ,α(y, s)) = (Cϕ,α(αy − s)−q, Cψ,α(αy − s)−q), (5.3)

where
Cϕ,α = (q(1 + α)(1− α)p)

q
, Cψ,α = (q(1 + α)p(1− α))

q
.

In this section, we will prove the following lemma.
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Lemma 5.1. Assume that (A1)–(A5.3) hold. Then, there exists a positive constant
α ∈ R such that

T0(y) = αy for y ∈ R. (5.4)

Moreover, the constant α satisfies −1 < α < 1 and

vϕ = Vϕ,α and vψ = Vψ,α. (5.5)

In order to prove Lemma 5.1, we will first introduce some lemmas.

Lemma 5.2. Assume that (A1)–(A5.3) hold. Then, T0 is concave.

Proof. Let ε > 0 be arbitrary. Then, by (4.26) we see that there exists a positive constant
c1, depending only on p and ε1, such that

c1ε
−q ≤ vϕ(y, s) for y ∈ R and s ∈ [T0(y)− ε, T0(y)).

Thus, there exist M ≥ c1ε
−q and E0(y) such that

vϕ(y,E0(y)) =M and T0(y)− E0(y) ≤ ε for y ∈ R.

We set HM = {(y, s) | s ≤ E0(y), y ∈ R}.
We will show that E0 is concave. It suffices to show that HM is convex. We assume

that HM is not convex. Then, there exist (y1, s1), (y2, s2) ∈ HM and ξ′ ∈ (0, 1) such that
ξ′(y1, s1) + (1 − ξ′)(y2, s2) /∈ HM and ξ′(y1, s1) + (1 − ξ′)(y2, s2) ∈ Ω0. We notice that
∂svϕ > 0 in Ω0. Then, we have

M = ξ′M + (1− ξ′)M ≥ ξ′vϕ(y1, s1) + (1− ξ′)vϕ(y2, s2)

≥ vϕ(ξ
′(y1, s1) + (1− ξ′)(y2, s2))

> M.

This is a contradiction. Hence, HM is convex. Therefore, E0 is concave. Thus, we have

ξT0(y) + (1− ξ)T0(y
′)

= ξ(T0(y)− E0(y)) + (ξE0(y) + (1− ξ)E0(y
′)) + (1− ξ)(T0(y

′)− E0(y
′))

≤ ξ(T0(y)− E0(y)) + E0(ξy + (1− ξ)y′) + (1− ξ)(T0(y
′)− E0(y

′))

≤ ε+ E0(ξy + (1− ξ)y′) < ε+ T0(ξy + (1− ξ)y′),

for y, y′ ∈ R and ξ ∈ (0, 1). Since we let ε > 0 take an arbitrary value, this completes the
proof.

We set
vϕ,λ(y, s) = λqvϕ(λy, λs), vψ,λ(y, s) = λqvψ(λy, λs),

with λ→ ∞. Then, we can easily see that the blow-up curve of vϕ,λ and vψ,λ is

T0,λ(y) =
T0(λy)

λ
.

Lemma 5.3. Assume that (A1)–(A5.3) hold. Then, we have

T0,λn(y) →

{
αy (y ≥ 0)

βy (y < 0)
as λn → ∞

where α and β are constants satisfying −1 < α ≤ β < 1.
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Proof. First, we see that T0,λn(0) = 0.

Next, since T0 is concave, we see that
T0,λn(y)

y
=
T0(λny)− T0(0)

λny
is monotone de-

creasing on n, for y > 0. Here, {λn} is a monotone increasing sequence satisfying
λn → ∞. Thus, we have that

lim
λn→∞

T0,λn(y)

y
= inf

λn

T0,λn(y)

y
= inf

λn

T0(λny)

λny
for y > 0.

Let α = inf
λn

T0(λny)

λny
. Then, we have that

T0,λn(y) → αy as λn → ∞,

for all y > 0 and monotone increasing sequences {λn} satisfying λn → ∞. By (4.29), we
have −1 < α < 1. We notice that α does not depend on y and λn.

Finally, we can prove

lim
λn→∞

T0,λn(y)

y
= sup

λn

T0,λn(y)

y
= sup

λn

T0(λny)

λny
for y < 0,

in the same way of above. We set β = sup
λn

T0(λny)

λny
. We notice that −1 < α ≤ β < 1.

Then, it follows that
T0,λn(y) → βy as λn → ∞,

for all y < 0 and monotone increasing sequences {λn} satisfying λn → ∞. This completes
the proof.

Now, we set

T̃0(y) =

{
αy (y ≥ 0)

βy (y < 0)
, Ω̃0 =

{
(y, s) ∈ R2 | s < T̃0(y), y ∈ R

}
.

Remark 5.4. In the same way of proof of Lemma 5.2, we obtain that T̃0 is concave.
That is, α and β have the same sign.

Lemma 5.5. Assume that (A1)–(A5.3) hold. Then, we have that α = β. Here, α and
β are constants as defined in Lemma 5.3.

Proof. There exists a sequence {λn} such that

vϕ,λn → wϕ, vψ,λn → wψ, as λn → ∞, locally uniformly in Ω̃0.

In the same arguments for Lemma 4.3, we see that D2
θwϕ ≥ 0 and D2

θwψ ≥ 0 in Ω̃0

, for 0 ≤ θ < 2π. Thus, Dθwϕ and Dθwψ are monotone increasing along the direction
θ. We also have that it follows from the estimates |Dθwϕ| and |Dθwψ|, corresponding
(4.31) that |Dθwϕ(y, s)|, |Dθwψ(y, s)| → 0 as d̃0(y, s) → ∞, where d̃0(y, s) is the distance

from a point (y, s) ∈ Ω̃0 to Γ̃0 = {(y, T̃0(y)) | y ∈ R}. Therefore, Dθwϕ and Dθwψ do not

occur sign changes in Ω̃0.
By Remark 5.4, we see that α and β have the same sign.
We assume that 0 < α < β. We set θα and θβ as θα = arctanα and θβ = arctanβ,

respectively. Let us assume that 0 ≤ θα < θβ < π/2 without loss of generality.
If we take θ ∈ S where S = {θ ∈ [0, 3π/2) | θα < θ < θβ + π}, then Dθwϕ > 0, since

the closer wϕ gets to the blow-up curve s = βy (y < 0) or s = αy (y ≥ 0), the bigger wϕ
becomes.
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We take θ̃ as θα < θ̃ < θβ . Then, we have that Dθ̃wϕ > 0, since θ̃ ∈ S. On the other

hand, Dθ̃+πwϕ > 0, since θ̃ + π ∈ S. This contradicts the fact that

Dθ̃wϕ = −Dθ̃+πwϕ Ω̃0.

In the same manner, we can prove that a contradiction arises if we assume that α < β < 0.
Therefore, we have that α = β. This completes the proof.

s = ↵y

s = �y

(A)

(B)

(C)

y

s

(y0, s0)

Figure A. The sign of the directional derivative at (y′, s′).

• (A) and (B) areas: The sign of the directional derivative is positive.

• (C) area : The sign of the directional derivative is negative.
→ If (B) area exists, we can show that a contradiction arises.

Proof of Lemma 5.1. First, we will show that T0(y) = αy. It follows from Lemma 5.5
that

sup
λn

T0(λny)

λny
= inf

λn

T0(λny)

λny
= α for y ∈ R.

Thus, T0(λny) = αλny for λn > 0 and y ∈ R. Therefore, we obtain that T0(y) = αy for
y ∈ R.

Next, we will show that vϕ = Vϕ,α and vψ = Vψ,α. By applying the proof of Lemma
5.5, we obtain that

(α∂s + ∂y)vϕ = 0, and (α∂s + ∂y)vψ = 0 (5.6)

in Ω0. By substituting (5.6) for (4.23), we obtain the following system of equations:{
(1 + α)∂svϕ = 2−p(vϕ + vψ)

(1− α)∂svϕ = 2−p(vϕ + vψ),

with the blow-up curve T0(y) = αy. Therefore, we obtain that vϕ = Vϕ,α and vψ = Vψ,α
in Ω0. This completes the proof.
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6 Continuous differentiability of the blow-up curve

In this section, we complete the proof of Theorem 1.1.
First, we will show that T is differentiable in BR∗ . We start by assuming that there

exists x0 ∈ BR∗ such that T is not differentiable at x0 ∈ BR∗ . Then, it follows from the

arguments of (Step 2.) of Section 4.2 that there exist sequences {λ(1)n }, {λ(2)n } such that
there exist constants α1 and α2 satisfying

α1, α2 ∈ (−1, 1), α1 ̸= α2,

ϕ
λ
(j)
n

→ Vϕ,αj as λ(j)n → 0, locally uniformly in Ωj,0,

where

Ωj,0 =
{
(y, s) ∈ R2 | s < αjy, y ∈ R

}
for j = 1, 2.

Let θα1 and θα2 be defined such that θα1 = arctanα1 and θα2 = arctanα2. Let us
suppose that

0 ≤ θαj <
π

4
or

3π

4
< θαj < π (j = 1, 2)

and

θα1
< θα2

without loss of generality.
We assume that 0 ≤ θα1 < θα2 < π/4. We take 0 < ε < π/2 as

0 < θα1 + ε < θα2 − ε <
π

4
.

Then, for j = 1, 2, we have that there exist θj such that

0 < θαj + ε < θj < θαj + π − ε <
5π

4
.

We define

S(j)
ε =

{
θj | θαj

+ ε < θj < θαj
+ π − ε

}
for j = 1, 2.

We see that there exists ε′ > 0 such that

Dθ′Vϕ,αj > 2ε′ in Ωj,0 ∩B1(0, 0),

where Bρ(y
′, s′) =

{
(y, s) ∈ R2 |

√
(y − y′)2 + (s− s′)2 < ρ

}
. Here, ρ is a positive con-

stant.
For j = 1, 2, let (y±j , s

±
j ) and (yδ0,±j , sδ0,±j ) be the intersections of y2 + s2 = 1 and

s = αxjy and s = αxjy − δ0,

respectively. Here, δ0 is a positive constant.
We see that there exist n0 ∈ N and δ0 > 0 such that for j = 1, 2,

Ωδ01,0 ∩ Ωδ02,0 ∩B1(0, 0),

Ω
λ
(j)
n0

⊂ Ω−δ0
j,0 , Ωδ0j,0 ⊂ Ω

λ
(j)
n0

sδ0,−j < s−j ,

For θj ∈ S
(j)
ε′ , |Dθjϕλ(j)

n0

−DθjVϕ,αj | ≤ ε′ in Ωδ0j,0 ∩B1(0, 0).
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Here, Ωδ0j,0 =
{
(y, s) | s < αxjy − δ0, y ∈ R

}
. This means that

Dθjϕλ(j)
n0

> ε′ in Ωδ0j,0 ∩B1(0, 0)

for θj ∈ S
(j)
ε′ and j = 1, 2. By (4.13), we can prove

Dθjϕλ(j)
n0

> ε′ in Kδ0
j (6.1)

where
Kδ0
j =

{
(y, s) ∈ Ω

λ
(j)
n0

∩B1(0, 0) | y < min{|yδ0,−j |, |yδ0,+j |}
}

for θj ∈ S
(j)
ε′ and j = 1, 2. (6.1) means that there exists there exists a positive constant

ρ such that

0 < ρ ≤ 1 and Dθjϕλ(j)
n0

> ε′ in Ω
λ
(j)
n0

∩Bρ(0, 0) (6.2)

for θj ∈ S
(j)
ε′ and j = 1, 2.

Let λn1 = min{λ(1)n0 , λ
(2)
n0 }. It follows from (6.2) that

Dθϕ > 0 in Ω ∩Bλn1ρ
(x0, T (x0)).

for θ ∈ S
(1)
ε′ ∪ S(2)

ε′ .
In particular,

Dθ∗ϕ > 0 in Ω ∩Bλn1ρ
(x0, T (x0)) (6.3)

for θ∗ ∈ (θα1 + ε, θα2 − ε), since (θα1 + ε, θα2 − ε) ⊂ S
(1)
ε . Moreover, we have

Dθ∗+πϕ > 0 in Ω ∩Bλn1ρ
(x0, T (x0)) (6.4)

since θ∗ + π ∈ (θα1 + π+ ε, θα2 + π− ε) ⊂ S
(2)
ε . Then, (6.3) and (6.4) contradict the fact

Dθ∗ϕ = −Dθ∗+πϕ in Ω.

We can show contradictions in the other cases, that is, in the cases

0 ≤ θα1 < π/4, 3π/4 < θα2 < π,

3π/4 < θα1 < θα2 < π.

Therefore, T is differentiable in BR∗ .

Next, we will show that the derivative T ′ is continuous in BR∗ . We start by assuming
that there exists x0 ∈ BR∗ such that T ′ is discontinuous at x0 ∈ BR∗ . Set αx0 = T ′(x0).
Let us suppose that 0 ≤ θαx0

< π/4 or 3π/4 ≤ θαx0
< 5π/4 without loss of generality.

Since T ′ is discontinuous at x0 ∈ BR∗ , there exists 0 < ε′ < π/2 such that there
exists {xj} ⊂ BR∗ satisfying

|xj − x0| → 0 as j → ∞ and |θαxj
− θαx0

| > 2ε′ for all j ∈ N. (6.5)

By the above argument, there exists n0 ∈ N and ρ ∈ R such that

Dθ0ϕ > 0 in Ω ∩Bλn0ρ
(x0, T (x0))

for θ0 ∈ Sε′,x0 = {θ0 | θαx0
+ ε′ < θ0 < θαx0

+ π − ε′}.
Moreover, by the continuity of T and (6.5), there exists j0 ∈ N such that

(xj0 , T (xj0)) ∈ Bλn0ρ
(x0, T (x0)).
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We see that there exists nj0 ∈ N such that

Dθj0
ϕ > 0 in Ω ∩Bλnj0

ρ(xj0 , T (xj0))

for θj0 ∈ Sε′,xj0
= {θj0 | θαxj0

+ ε′ < θj0 < θαxj0
+ π − ε′}.

Then, we have

Dθϕ > 0 in Ω ∩Bλn0ρ
(x0, T (x0)) ∩Bλnj0

ρ(xj0 , T (xj0))

for θ ∈ Sε′,x0 ∪ Sε′,xj0
.

Assume 0 < θx0 < θxj0
< π/4. By (6.5),

θαx0
+ ε′ < θαxj0

− ε′.

Take θ̃ as θαx0
+ ε′ < θ̃ < θαxj0

− ε′.

Then,

Dθ̃ϕ > 0 and Dθ̃+πϕ > 0 in Ω ∩Bλn0ρ
(x0, T (x0)) ∩Bλnj0

ρ(xj0 , T (xj0)),

since θ̃, θ̃ + π ∈ Sε′,x0 ∪ Sε′,xj0
. This contradicts the fact that

Dθ̃+πϕ = −Dθ̃ϕ in Ω.

In the the other cases, that is, in the cases,

0 ≤ θαx0
< π/4, 3π/4 < θαxj0

< π,

3π/4 < θαx0
< θαxj0

< π,

0 ≤ θαxj0
< θαx0

< π/4,

0 ≤ θαxj0
< π/4, 3π/4 < θαx0

< π,

3π/4 < θαxj0
< θαx0

< π,

we can show that contradictions arise in the same way.
This completes the proof.

�0 y

s

s = ↵jy

s = ↵jy � �0

(y�j , s
�
j )

(y+j , s
+
j )

(y�0,+j , s�0,+j )

(y�0,�j , s�0,�j )
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7 Numerical examples

In this section, we will show some numerical examples of the blow-up curves for (1.7).
For simplicity of computation, we consider the equations in a bounded interval (0, 1) and
pose the periodic boundary condition. We follow the method proposed by Cho [5] for
computing the numerical blow-up curve.

For discretization, we employ the finite difference scheme for (1.7). Take a positive
integer J and set xj = jh with h = 1/J. As a time variable, we take a positive constant
τ as τ = h and set tn = τ ·n. Then, we consider the following scheme for (1.7):

ϕnj ≈ ϕ(xj , tn), ψnj ≈ ψ(xj , tn) (1 ≤ j ≤ J, n ≥ 0),


ϕn+1
j − ϕnj

τ
−
ϕnj+1 − ϕnj

h
= 2−p

∣∣ϕnj + ψnj
∣∣p,

ψn+1
j − ψnj

τ
+
ψnj − ψnj−1

h
= 2−p

∣∣ϕnj + ψnj
∣∣p,

ϕ0j = f(xj), ψ0
j = g(xj),

(1 ≤ j ≤ J, n ≥ 0),

where ϕJ+1 and ψn0 are set as ϕnJ+1 = ϕn1 and ψn0 = ψnJ .
We define the numerical blow-up curve Tj approximated to T (xj) by

Tj = τ ·nj(τ).

Here, nj(τ) is the smallest positive integer such that

τ ·
(
ϕ
nj(τ)−1
j + ψ

nj(τ)−1
j

)
≥ 1/eps and τ ·

(
ϕ
nj(τ)
j + ψ

nj(τ)
j

)
< 1/eps,

where eps > 0 is a stopping criterion given below. We set T = (Tj).
We plot two numerical blow-up curves T1 and T2 with two stopping criterion eps1 and

eps2, respectively, for several τ in Figure 1–3. We see that T1 and T2 are almost equal
under suitable eps1, eps2 and τ. Therefore, we can regard T is a reasonable approximation
of the exact blow-up curve T for (1.7).

First, we examine the shape of blow-up curve T for p = 2 and f(x) = (1 +
√
2.3) +

1
2π sin(2πx), g(x) = (1 +

√
2.3) − 1

2π sin(2πx). In Figure 1, we see that the numerical
blow-up curve T converges to a smooth function as τ → 0. Therefore, we numerically
obtain that the blow-up curve T is continuously differentiable if initial values f and g
are smooth and large enough. In Figure 2, we also obtain the same result for p = 3.

On the other hand, we obtain different results of regularity of the blow-up curve in
Figure 3. We see that there is a case where the blow-up curve has the singular points. We
notice that all the initial values are smooth in Figures 1–3. However, the initial values
f and g occur the sign changes in Figure 3, while the initial values f and g are positive
for x ∈ (0, 1) in the case of Figures 1 and 2.

Consequently, we see that we have to impose not only regularity but also largeness
on the initial values.

Remark 7.1. Merle and Zagg [9] considered

∂2t u− ∂2xu = up.

They analytically showed that there are cases where the blow-up curve T has the singular
points. However, we do not know the relationship between the our numerical results and
the results of [9]
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Figure 1: The history of (Tj) for p = 2, f(x) = (1 +
√
2.3) + 1

2π sin(2πx) and g(x) =

(1 +
√
2.3)− 1

2π sin(2πx) and stopping criteria eps1 = 1e− 2 and eps2 = 1e− 3.
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Figure 2: The history of (Tj) for p = 3, f(x) = 2.5+ 1
2π sin(2πx), g(x) = 2.5− 1

2π sin(2πx)
and stopping criteria eps1 = 1e− 2 and eps2 = 1e− 3.
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Figure 3: The history of (Tj) for p = 3, f(x) = 2 + 10 sin(2πx), g(x) = 2 − 10 sin(2πx)
and stopping criteria eps1 = 1e− 2, and eps2 = 1e− 3.
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