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This paper presents a coherent analysis of the finite difference method
to nonlinear Schrödinger (NLS) equations in one spatial dimension. We
use the discrete H1 framework to establish well-posedness and error es-
timates in the L∞ norm. The nonlinearity f(u) of a NLS equation is
assumed to satisfy only a growth condition. We apply our results to
computation of blow-up solutions for a NLS equation with the nonlin-
earity f(u) = −|u|2p, p being a positive real number. Particularly, we
offer the numerical blow-up time T (h, τ), h and τ as discretization pa-
rameters of space and time variables. We prove that T (h, τ) converges
to the blow-up time T∞ of the solution of the original NLS equation.
Several numerical examples are presented to confirm the validity of the-
oretical results. Furthermore, we infer from numerical investigation that
the convergence of T (h, τ) is at a second order rate in τ if the Crank–
Nicolson scheme is applied to time discretization.

Key words: nonlinear Schrödinger equation, blow-up, finite difference method

2010 Mathematics Subject Classification: 35Q55, 35B44, 65M06

1. Introduction

The blow-up of solutions is a central concern in the theory of nonlinear partial
differential equations. However, it is often the case that we cannot obtain analytic
evidence or predictions related to blow-up solutions. Therefore, numerical methods
are actually an important approach for the study of blow-up phenomena.

For example, Akrivis et al. [2] studied the blow-up phenomenon for the nonlinear
Schrödinger (NLS) equation with cubic nonlinearity, in 2 and 3 spatial dimensions.
∗norikazu@ms.u-tokyo.ac.jp
†tsasaki@ms.u-tokyo.ac.jp
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They derived the blow-up rate numerically. For the two dimensional case, this
corresponds to a critical case. Then they calculated the blow-up rate numerically as

ln

[(
ln

1

T∞ − t

)
1

T∞ − t

]1/2
.

Since the appearance of that paper, Merle and Raphael [13] have demonstrated
analytically that the appropriate blow-up rate in the critical case is lower than
numerical predictions suggest.

Furthermore, Besse et al. [4] also considered the blow-up problem for NLS equa-
tions. They presented numerical investigations related to the dependence of the
blow-up time on factors such as the properties of the initial data, the nonlinearity
in the equation, and the damping term in the equation.

In this way, numerical results have illuminated many meaningful properties of
blow-up solutions that are difficult to prove analytically. Moreover, some numerical
results have contributed to derivations of analytical evidence.

However, such results are based on numerical blow-up experiments. No mathe-
matical proof exists that connects analytical blow-ups and numerical blow-ups. To
bridge that gap, some results have been proposed related to the convergence of the
numerical blow-up time for some heat and wave equations. The pioneering study of
this topic was produced by Nakagawa [14] in 1976. He considered a finite difference
scheme for a semilinear heat equation

∂tu− ∂2xu = u2 (t > 0, x ∈ I = (0, 1)) (1)

with the Dirichlet boundary condition u(t, 0) = u(t, 1) = 0. Hereinafter, we write
∂t = ∂/∂t, and so on. If the initial data u(0, x) = u0(x) are sufficiently large, the
unique solution blows up in finite time T∞ in the sense that

lim
t→T∞

∥u(t, ·)∥L∞(I) = ∞.

He proposed a numerical blow-up time, and proved that it converges to the exact
blow-up time. His strategy is summarized as follows:

Step A. He considers the explicit finite difference approximation for (1) with a
(fixed) spatial grid size h and variable time increments ∆tn for n ≥ 0. Dis-
crete time variables are defined as tn+1 = tn+∆tn for n ≥ 0. Let unh(x) be the
piece-wise constant interpolation of the finite difference solution to u(tn, x).
The time increment ∆tn is defined in terms of unh by

∆tn = τ min

{
1,

1

∥unh∥L2(I)

}
,

where τ = ch2 with some 0 < c ≤ 1/2. We have ∆tn ≤ τ . Then, the numerical
blow-up time is defined as

T (τ) = lim
n→∞

tn = lim
n→∞

n−1∑
k=0

∆tk ≤ ∞. (2)

By the definition, T (τ) <∞ implies that ∥unh∥L2(I) → ∞ as n→ ∞.
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Step B. Blow-up of u is characterized by a differential inequality for a functional
J(u(t, ·)). Then, by considering the discrete analogue of the differential in-
equality, blow up of the discrete analogue Jh(uh(tn, ·)) of J(u(t, ·)) is charac-
terized.

Step C. Using the fact

lim
τ→0

max
tn∈[0,T ]

|Jh(uh(tn, ·))− J(u(tn, ·))| = 0 (3)

for any T < T∞, he concluded the convergence of the numerical blow up time

lim
τ→0

T (τ) = T∞. (4)

Following Nakagawa’s study, many other studies have been produced with the aim
of computing numerical blow-up solutions for heat equations. For examples, see [6],
[8], and [15]. Recently, similar studies have examined nonlinear wave equations; see
[7] and [17].

Apparently, little is known for NLS equations. As a matter of fact, conservative
quantities play a crucial role in theory of Schrödinger equations. For example, for
the solution of a cubic NLS equation

i∂tu+ ∂2xu = u|u|2 (t > 0, x ∈ R),

its L2 norm is preserved:

∥u(t, ·)∥L2(R) = ∥u(0, ·)∥L2(R) (t ≥ 0).

Hereinafter, i =
√
−1 denotes the imaginary unit. In the design of numerical

schemes, the analytic property of the solutions must not be spoiled. Consequently,
we prefer conservative numerical schemes. However, the reproduction of blow-up
is difficult using conservative schemes because all norms are equivalent in a finite
dimensional space. A similar issue for the Keller–Segel system of chemotaxis was
discussed and numerical blow-up analysis was reported in [24].

Zhang [23] presented the following interesting result. Consider a special NLS
equation

i∂tu+ ∂2xu = −|u|2p (t > 0, x ∈ I = (0, 1)), (5a)

u(t, 0) = u(t, 1) = 0 (t > 0), (5b)

u(0, x) = u0(x) (x ∈ Ī = [0, 1]), (5c)

where p ≥ 1 is a given real number. In contrast to the standard NLS equation, the
problem (5) admits no conservation properties. Nevertheless, we are interested in
(5) because the finite-time behavior of the solution is controlled by the inequality
for a certain functional. To state it more precisely, we set

J(t, v) =
π

4

∫ 1

0
Im(eiπ

2tv(x)) sin(πx) dx (6)

for t ≥ 0 and v ∈ L∞(I). Furthermore, we set

λp(u0) =
2p− 1

π2
|J(0, u0)|2p−1 (7)
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and

T∗ =

{
1/(2π) if λp(u0) < 1,

t∗ if λp(u0) ≥ 1,
(8)

where 0 < t∗ ≤ 1/(2π) is the unique solution of the equation

sin(π2t) =
1

λp(u0)

(
0 < t ≤ 1

2π

)
. (9)

Zhang then proved the following result.

Proposition 1.1 ([23, Theorem 3.1, case 2]). Let J(0, u0) > 0 and let 0 < T < T∗
be an arbitrary. Then, if a smooth solution

u ∈ C1([0, T ];L2(I)) ∩ C0([0, T ];H2(I) ∩H1
0 (I))

of (5) exists in 0 ≤ t ≤ T , we have

|J(t, u(t))| ≥ C∗J(0, u0)

[
1− 2p− 1

π2
J(0, u0)

2p−1 sin(π2t)

]−1/(2p−1)

, (10)

for 0 ≤ t ≤ T , where C∗ denotes the absolute positive constant depending only on p.

Inequality (10) itself does not appear in the statement of [23, Theorem 3.1, case 2].
However, we first derive (10) and then obtain the main conclusion. As a consequence
of (10), there exists a constant 0 < TJ ≤ T∗ such that

lim
t→TJ

|J(t, u(t))| = 0. (11)

Moreover, we have |J(t, u(t, ·))| ≤ C∥∂xu(t, ·)∥L2(I) ≤ C∥u(t, ·)∥L∞(I). Therefore,
we conclude that u(t, x) blows up at finite time t = T∞ ≤ TJ in the sense of (2).

This observation indicates the possibility that we can apply Nakagawa’s strategy
to the NLS equation (5).

This paper has dual purposes. The first is to prove that the implicit θ finite
difference (FD) scheme can reproduce the blow-up phenomenon for the NLS equation
(5) if 1/2 ≤ θ ≤ 1. Particularly, we show that the numerical blow-up time T (h, τ),
which converges to the exact blow-up time T∞, can be introduced by Nakagawa’s
strategy. To this end, we first establish well-posedness and convergence for the FD
scheme. Then, we readily deduce (3) (see Step C above). To consider a discrete
version Jh of J (see Step B above), we must define a numerical blow-up time T (h, τ)
as

T (h, τ) ≤ 1

4π

for technical reasons. Consequently, the time increment ∆tn should be defined as
(see (34))

∆tn = τ ·min

{
1,

1

∥unh∥
q
L∞(I)

, an

}
(n ≥ 0), (12)

where q ≥ 1 and {an} denotes a certain sequence such that T (h, τ) ≤ 1/(4π) (see
(35)). Consequently, T (h, τ) < ∞ does not imply ∥unh∥L∞(I) → ∞ as n → ∞.
Therefore, the original strategy of Nakagawa cannot be applied directly (see Step
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A above). To surmount this difficulty, we propose an abstract generalization of
results obtained from previous studies [6], [7], [8], [15], [17] and [21]. We introduce a
certain abstract setting (I)–(VIII) and consider assumptions (H1)–(H6) (see Section
4). Then, we prove

(H1)–(H4) and (H5) ⇒ T∞ ≥ lim sup
h,τ→0

T (h, τ) (see Proposition 4.2);

(H1)–(H4) and (H6) ⇒ T∞ ≤ lim inf
h,τ→0

T (h, τ) (see Proposition 4.3).

Subsequently we show that the FD scheme with (12) satisfies assumptions (H1)–
(H4) and (H5). Then, we prove that (H6) is actually satisfied by Proposition 4.2.
Therefore, we can apply Proposition 4.3 and obtain lim

h,τ→0
T (h, τ) = T∞.

The second purpose of the study presented in this paper is to state well-posedness
and convergence results for the finite difference schemes for NLS equations in a
coherent manner. Numerous studies have examined the finite difference method for
linear and nonlinear Schrödinger equations. Particularly, [9] is useful to review those
subjects. Whereas discrete conservation properties and computational efficiency are
well discussed, only a few reports describe convergence and error analysis. For
example, we consider a linear Schrödinger equation and the implicit θ scheme for
time discretization. Then, the case 1/2 ≤ θ ≤ 1 is well-known to be stable in the
sense that ∥Gn∥2 ≤ 1 holds, where Gn is the finite difference matrix of the FD
scheme (see (15)) and ∥ · ∥2 the matrix 2-norm. In contrast, the case for which
θ = 0 is not stable in this sense (see also Remark 3.2). However, we cannot find
the explicit proof (except for the case θ = 1/2) in the literature. Moreover, when
θ = 1/2, Gn becomes a unitary operator in the sense that ∥Gn∥2 = 1 holds. Because
Gn is a discrete analogue of the Schrödinger semigroup S(t) (see Appendix A), it
is a discrete counterpart of the unitarity of S(t). However, the (vector) 2-norm is
useless to address nonlinear terms, for example, −|u|2p. The ∞-norm is of great use
to treat nonlinear terms, but no estimates are available for ∥Gn∥∞. This dilemma
complicates error analysis for NLS equations. In fact, if considering a nonlinear heat
equation, then we can overcome this issue using the (discrete) smoothing property
of the heat semigroup.

Fortunately, our targets are problems have one spatial dimension, such that the
discrete H1 norm ||| · |||h is available (see (48) for the definition). Particularly, we
can use a discrete Sobolev inequality ∥v∥∞ ≤ C|||v|||h for v ∈ CN , where ∥ · ∥∞ de-
notes the vector ∞-norm (see Proposition 2.1 (i)). Moreover, we obtain the discrete
unitarity |||Gn|||h = 1 for θ = 1/2 and the discrete contraction property |||Gn|||h < 1
for 1/2 < θ ≤ 1 (see Proposition 3.1). Combining these facts, we can establish
well-posedness and error estimates in the ∞-norm (see Theorems I and II). In other
words, we carry out a coherent analysis in the discrete H1 framework to deduce error
estimates in the ∞-norm. L∞ error estimates for several systems of NLS equations
are found, for example, in [3] and [19]. However, those works lack the operator
theoretical perspective that we study in this paper.

Our results are valid for quite general NLS equations i∂tu+ ∂2xu = f(u) + g(t, x).
More specifically, on the nonlinerity f(u) we assume only the growth condition, say
Condition (f), defined in Section 2. For example, f(u) = u|u|2p and f(u) = −|u|2p
for p ≥ 1 satisfy Condition (f) (see Example 2.4). We use no conservation properties
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to establish well-posedness and error estimates. Furthermore, our error estimates
are valid as long as the smooth solution of the NLS equation exists.

This paper comprises six sections and three appendices. In Section 2, we intro-
duce the notation used for this study, NLS equation in a general form and implicit θ
finite difference scheme. Particularly, we introduce the growth condition, say Con-
dition (f), on f(u) and state a useful criterion of Condition (f) to hold (Proposition
2.3). Our main theorems related to the well-posedness (Theorem I), error estimates
(Theorem II) and numerical blow-up result (Theorem III) are also stated there. We
describe the proof of Theorems I and II in Section 3. Theorem III is proved in Sec-
tion 5 using an abstract theory developed in Section 4. We confirm the validity of
Theorem III by numerical examples in Section 6. We review the well-posedness and
regularity of solutions for NLS equations in a bounded interval in Appendix A. In
Appendix B, we describe the proof of Proposition 2.3. In numerical experiments, we
solve the resulting nonlinear equations using a modified Newton method introduced
into Appendix C.

2. Main results

We consider the following initial-boundary value problem

i∂tu+ ∂2xu = f(u) + g(t, x) (t > 0, x ∈ (0, L)), (13a)

u(t, 0) = 0, u(t, L) = 0 (t > 0), (13b)

u(0, x) = u0(x) (x ∈ [0, L]), (13c)

where u = u(t, x) denotes a complex-valued function to be find, f = f(s), g = g(t, x),
and u0 = u0(x) are prescribed continuous functions. We assume that u0(0) =
u0(L) = 0 and g(t, 0) = g(t, L) = 0 for all t ≥ 0.

The unique existence of a solution of (13) is well-known. For example, there
exists a smooth classical solution of (13), if f(x + iy) is a smooth function of x, y,
g(t, x) is a smooth function of t, x, and u0(x) is a smooth function of x satisfying
the compatibility condition with the boundary condition. More specific statements
will be recalled in Appendix A.

To state the finite difference scheme, we introduce 0 < N ∈ Z and let

h = L/(N + 1), xj = jh (0 ≤ i ≤ N + 1).

As a discretization of time variable, we take positive constants ∆t1,∆t2, . . . and set

t0 = 0, tn = tn−1 +∆tn−1 (n ≥ 1).

We denote by uni the finite difference approximation of u(tn, xj) and set

un+θ
j = (1− θ)unj + θun+1

j ,

gn+θ
j = (1− θ)g(tn, xj) + θg(tn+1, xj),

Dku
n
j =

un+1
j − unj

k
,

δ2hu
n
j =

unj−1 − 2unj + uni+1

h2
.
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Let 0 ≤ θ ≤ 1. Then, we consider the standard implicit θ scheme

iD∆tnu
n
j + δ2hu

n+θ
j

= (1− θ)f(unj ) + θf(un+1
j ) + gn+θ

j (1 ≤ j ≤ N, n ≥ 0), (14a)

un0 = 0, unN+1 = 0 (n ≥ 1), (14b)

u0j = u0(xj) (0 ≤ j ≤ N + 1). (14c)

It is convenient to rewrite (14) to the vector and matrix form. To this end, we let

λn =
∆tn
h2

and introduce Hn,Kn ∈ CN×N defined as

Hn = IN + iθλnA, Kn = IN − i(1− θ)λnA,

where IN ∈ RN×N denotes the identity matrix and

A =


2 −1

0−1 2 −1
. . .

. . .

0 −1 2

 ∈ RN×N .

Actually, A is well-known as a positive-definite symmetric matrix so that Hn is
non-singular. Therefore, we can set

Gn = H−1
n Kn. (15)

Introducing

un =

u
n
1
...
unN

 (n ≥ 1), u0 =

u0(x1)
...

u0(xN )

 , gn+θ =

g
n+θ
1
...

gn+θ
N

 ,

we can rewrite (14) equivalently as

un = Gn−1u
n−1 − i∆tn−1H

−1
n−1[(1− θ)f(un−1) + θf(un)]

− i∆tn−1H
−1
n−1g

n−1+θ (n ≥ 1). (16)

To state conditions on f , well-posedness and error estimates, we must introduce
some norms. As usual, we use

∥v∥∞ = max
1≤j≤N

|vj |, ∥v∥2 =

 N∑
j=1

|vj |2h

1/2

(v = (v1, . . . , vN )T ∈ CN )

and

(v,w)2 =

N∑
i=1

vjwjh (v = (v1, . . . , vN )T, w = (w1, . . . , wN )T ∈ CN ),

7



where wj denotes the complex conjugate of wj and ·T the transpose of a matrix
(vector). We have ∥v∥22 = (v,v)2. The matrix

Ah =
1

h2
A ∈ RN×N

is a positive-definite symmetric matrix so that its square root A
1
2
h is defined in a

natural way. We introduce the discrete H1
0 (0, L) norm as

|||v|||h = ∥A
1
2
hv∥2 (v ∈ CN ). (17)

We can calculate as

∥A
1
2
hv∥

2
2 = (Ahv,v)2 =

N+1∑
j=1

∣∣∣∣vj − vj−1

h

∣∣∣∣2 h (v ∈ CN , v0 = vN+1 = 0). (18)

Therefore, we can express the following.

|||v|||h =

 |v1|2

h2
+

N∑
j=2

∣∣∣∣vj − vj−1

h

∣∣∣∣2 + |vN |2

h2

h

1/2

(v ∈ CN ). (19)

With ||| · |||h, a discrete Sobolev and inverse inequalities are available.

Proposition 2.1. (i) ∥v∥∞ ≤
√
L |||v|||h for v ∈ CN .

(ii) |||v|||h ≤ 2h−1∥v∥2 for v ∈ CN .

Proof. (i) Let v = (v1, . . . , vN )T ∈ CN and set v0 = vN+1 = 0. Let 1 ≤ j ≤ N .

We can write it as vj =

j∑
i=0

(vi − vi−1). Therefore, by (19) and the Cauchy–Schwarz

inequality,

|vj | ≤
N+1∑
i=1

∣∣∣∣vi − vi−1

h

∣∣∣∣h1/2h1/2 ≤ √
L ∥A

1
2
hv∥2.

(ii) Again using (18) and (19),

|||v|||2h = ∥A
1
2
hv∥

2
2 ≤ 2

N+1∑
i=1

|vi|2 + |vj−1|2

h2
h ≤ 4

h2
∥v∥22,

which completes the proof.

Proposition 2.2. For a smooth function v in [0, L] satisfying v(0) = v(L) = 0, we
have

|||v|||h ≤
√
L ∥∂xv∥L∞(0,L), (20)

where v = (v(x1), . . . , v(xN ))T ∈ CN .

Proof. It is a consequence of the fundamental theorem of calculus.
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We make the following assumption related to f :

Condition (f). There exist positive, continuous and non-decreasing functions
C1f (η) and C2f (η) of η ≥ 0 such that

|||f(u)|||h ≤ C1f (|||u|||h) (u ∈ CN ), (21a)

|||f(u)− f(v)|||h ≤ C2f (u ∧ v) |||u− v|||h (u,v ∈ CN ), (21b)

where u ∧ v = max{|||u|||h, |||v|||h}.

The following proposition provides a useful criterion of Condition (f) to hold. The
proof will be presented in Appendix B.

Proposition 2.3. If ϕ(x, y) = Re f(z) and ψ(x, y) = Im f(z), z = x + iy, are
both C1 functions of Rx × Ry → R with f(0) = 0, then Condition (f) is satisfied.
Particularly, we can take

C1f (η) = c0(η)η, C2f (η) = c0(η) (η ≥ 0),

where

c0(η) = cL max
|z|≤

√
Lη

(
ϕx(x, y)

2 + ϕy(x, y)
2 + ψx(x, y)

2 + ψy(x, y)
2
)1/2

with cL =
√
2 + 4L2. The value of cL might not be the best possible.

Example 2.4. Let α ∈ C and m ≥ 2. Then, f(u) = αu|u|m satisfies Condition (f).
We have

C1f (η) = c1η
m+1, C2f (η) = c1η

m,

where c1 = |α|(m + 1)cL. Furthermore, f(u) = α|u|m also satisfies Condition (f)
and

C1f (η) = c2η
m+1, C2f (η) = c2η

m,

where c2 = |α|mcL.
We are now in a position to state the main results presented in this paper. First,

we describe the well-posedness of the scheme (14).

Theorem I (Well-posedness). Let 1/2 ≤ θ ≤ 1 and let J be a positive integer. Let
R > 0 and assume

|||u0|||h ≤ R, sup
0≤n≤J

|||gn−1+θ|||h ≤ R. (22)

Assume, moreover, that Condition (f) is satisfied. Take ∆t1,∆t2, . . . ,∆tJ satisfying
∆tn ≤ τ with some τ > 0. Then, there exists a constant γR,J > 0 depending only
on J , R, C1f (2R), and C2f (2R) such that, if τ ≤ γR,J , the scheme (14) admits a
solution un for any 1 ≤ n ≤ J with

sup
1≤n≤J

|||un|||h ≤ 2R. (23)

The solution un satisfying (23) is unique (for a given partition ∆t1,∆t2, . . . ,∆tJ).
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Remark 2.5. Theorems I and II described below remain valid for 0 ≤ θ < 1/2, if
τ = ch4 is assumed with some c > 0. See Remark 3.2. However, the condition
τ = ch4 is unreasonable in actual computations. Therefore, we do not study the
case 0 ≤ θ < 1/2 further.

Our next results are error estimates. Let u and un respectively denote the so-
lutions of (13) and (14). We set Un = (Un

1 , . . . , U
n
N )T, where Un

j = u(tn, xj)
(j = 1, . . . , N). The error is defined as

en = Un − un.

If posing appropriate assumptions on f(u), g and u0, we obtain a smooth solution
u of (13) (see Proposition A.2). However, we directly assume the regularity of u in
Theorem II below. Let Q = [0, T ]× [0, L] and assume

u, ∂x∂
l
tu, ∂

m
x u ∈ C0(Q) (1 ≤ l ≤ σ, 1 ≤ m ≤ 5), (24)

where

σ =

{
2 for θ = 1/2,

1 for 1/2 < θ ≤ 1.
(25)

Moreover, set

M0 =M0(u) = ∥u∥L∞(Q) + ∥∂x∂σt u∥L∞(Q) + ∥∂5xu∥L∞(Q),

M1 =M1(u) =
√
L∥∂xu∥L∞(Q),

and
κ = κ(u) = C2f (6M1).

If u further has a fine extension property, then we can obtain better error esti-
mates. Introducing an extension operator E from C0([0, L])∩H1

0 (0, L) to C([−L, 2L])
by

(Ev)(x) =


−v(x) (x ∈ [−L, 0])
v(x) (x ∈ [0, L])

−v(2L− x) (x ∈ [L, 2L])

(v ∈ C0([0, L]) ∩H1
0 (0, L)).

We consider the following assumption:

∂mx (Eu) ∈ C0([0, T ]× [−L, 2L]) (1 ≤ m ≤ 5); (26a)

f(0) = 0. (26b)

Theorem II (Error estimates). Let 1/2 ≤ θ ≤ 1. Let T > 0. Assume that Condition
(f) is satisfied. Assume moreover that the unique solution u of (13) satisfies (24)
and the solution un of (14) is unique. Then there exist positive constants C0, τ0 and
h0 such that, if τ ≤ τ0 and h ≤ h0, then we have

sup
0≤tn≤T

|||en|||h ≤ C0M0T exp(2κT )(τσ + hs) (27)

and
sup

0≤tn≤T
∥en∥∞ ≤ C0M0T

√
L exp(2κT )(τσ + hs), (28)
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where

s =

{
2 if (26) is satisfied,

3/2 otherwise.
(29)

Several remarks must be made at this point.

Remark 2.6. In Theorem II, the constant C0 is an absolute constant, whereas τ0 and
h0 depend on T,M0 and M1.

Remark 2.7. The L∞ error estimate (28) is a readily obtainable consequence of
(27) by virtue of Proposition 2.1 (i). However, it provides only a sub-optimal error
estimate for space discretization without assuming (26). We observe the optimal
order (second order) convergence using numerical experiments (see Examples 2.11
and 2.12), but we are unable to remove (26) by our method of analysis at present.

Remark 2.8. If we pose the periodic boundary condition instead of the Dirichlet
condition, then we can remove the assumption (26) and obtain the optimal order
convergence in ||| · |||h and ∥ · ∥∞. Herein, ||| · |||h should be redefined suitably.

Remark 2.9. Some error estimates in L∞(0, T ;L2(Ω)) and L∞(Q) for the Crank–
Nicolson/finite element approximation for NLS equations were presented in an earlier
report [1]. Here, Ω is a polyhedral domain in Rd. Akrivis et al. [1] first introduced
the truncated NLS equation where f(s) is replaced by a global Lipschitz continuous
function f̃(s) such that f(s) = f̃(s) for |s| ≤ M with a given M > 0. Then, an
error estimate in L∞(Q) of the approximation ũnh of the truncated problem was

derived under the assumption τ = ch
d
4
+ε with c, ε > 0. From this result, they derive

the optimal order error estimate in L∞(0, T ;L2(Ω)). However, we cannot avoid

τ = ch
d
4
+ε. An attempt to remove this restriction has been reported (see [22]).

Their method is applicable to our scheme in the case of θ = 1/2. Consequently, we
obtain

sup
0≤tn≤T

∥en∥∞ ≤ (Const.)h−
1
2 (τ2 + h2)

if we choose as τ = ch
1
4
+ε. This error estimate is sub-optimal both for time and

space. However, by following the argument of [1] and using (28), we can deduce the
optimal order error estimate in ∥ · ∥2 without assuming any condition on τ and h.

Remark 2.10. It is readily apparent that our problems and results include the linear
case (f(s) = 0). It would be interesting to compare (27) with corresponding results
for the finite difference method to a one-dimensional linear heat equation presented
in [20, theorem 10.2]. Thomée actually derived the second order (in space) error
estimate in ||| · |||h. He applied the smoothing property of a discrete (finite difference)
heat equation. However, as described before, no smoothing property is available for
the Schrödinger equation in a bounded domain.

Example 2.11. One can confirm the validity of error estimates (27) and (28) using
simple numerical examples. First, we consider

u(t, x) = et(sinx+ i sin(2x)) (t ≥ 0, 0 ≤ x ≤ L = 2π) (30)

and define g(t, x) as g(t, x) = i∂tu − ∂2xu − u|u|2. The assumption (26) is satisfied.
We let T = 1 and use a modified Newton method to solve nonlinear equations

11



at each time step tn (see Appendix C). In Fig. 1, we present (log h, log ∥en∥∞),
(log h, log ∥en∥2) and (log h, log |||en|||h) for θ = 1/2 (τ = h/10) and θ = 1 (τ =
h2/100). Results show that the second-order convergence actually occurs in ∥ · ∥∞,
∥ · ∥2 and ||| · |||h.
Example 2.12. We consider the case in which f(u) = −|u|2, L = 1 and u0(x) =
−5i sin(πx). In this case, the assumption (26) can not be expected to hold. The exact
solution is not available. Therefore, we employ the following technique. Letting
un(h) be the solution of (14) for h, we define

E∞(h) = sup
0≤tn≤T

∥un(2h)− un(h)∥∞.

Then, assuming sup0≤tn≤T ∥en∥∞ = Chα, we have E∞(h) ≤ C(1 + 2α)hα. Simi-
larly, E2(h) and E1h(h) are defined in terms of ∥ · ∥2 and ||| · |||h. Figure 2 shows
(log h, logE∞(h)), (log h, logE2(h)) and (log h, logE1h(h)) for θ = 1/2 (τ = h/10)
and θ = 1 (τ = h2/100). The result demonstrates that the second order convergence
also occurs in this case.
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Figure 1: log h versus log ERR: i∂tu = ∂2xu + u|u|2 + g(t, x), ERROR =
∥en∥∞, ∥en∥2, |||en|||h. See Example 2.11 for additional details.

Remark 2.13. The function f(u) = u|u|
1
2 does not satisfy Condition (f). However,

we obtain the second-order convergence by numerical experiments. Therefore, Con-
dition (f) is a sufficient condition to deduce error estimates.

Finally, we describe the numerical blow-up result. We consider (5). Consequently,
we deal with the case f(u) = −|u|2p with a positive real number p and L = 1 in
(13).

One might recall that we are interested in the reproduction of the blow-up of
solutions of (5). Therefore, to avoid technical difficulties, we suppose that u0 is
large (in a certain sense) in addition to the basic assumptions on the smoothness.
We assume

J(0, u0) > µp ≡

( √
2π2

2p− 1

)2p−1

. (31)

Then, in view of (10), we have TJ < 1/(4π) and T∞ < 1/(4π). From this, we can set
the numerical blow-up time T (h, τ), that will be defined below, as T (h, τ) < 1/(4π).
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Figure 2: log h versus log ERR: i∂tu = ∂2xu − |u|2, ERR = E∞(h), E2(h), E1h(h).
See Example 2.12 for additional details.

This enables us to avoid numerous unnecessary difficulties. Moreover, we assume
J(0, u0) > 2 to ensure (83) used below.

We recall that our finite difference scheme is given as

iD∆tnu
n+1
j + δ2hu

n+θ
j

= −
[
(1− θ)|un+1

j |2p + θ|unj |2p
]

(1 ≤ j ≤ N, n ≥ 0), (32a)

un0 = unN+1 = 0 (n ≥ 1), (32b)

u0j = u0(xj) (0 ≤ j ≤ N + 1). (32c)

At this stage, we state our choose of ∆tn for n ≥ 0. Let

0 < τ <
1

4π
, q > 0 (33)

be arbitrary. Then, we define ∆tn as

∆tn = τ ·min

{
1,

1

∥un∥q∞
, an

}
(n ≥ 0). (34)

Hereinafter, we set

a0 = 1, an =
1

2

(
1

4π
− tn−1

)
(n ≥ 1). (35)

In fact, an ≥ 0 for n ≥ 1. Furthermore, we can introduce the numerical blow-up
time

T (h, τ) = lim
n→∞

tn = lim
n→∞

n−1∑
k=0

∆tk ≤ 1

4π
. (36)

Theorem III (Approximation of the blow-up time). Assume that the unique solu-
tion u of (5) satisfies (24) and that

J(0, u0) > min{2, µp}. (37)

13



Then, u and J(t, u(t, ·)) blow up, respectively, in T∞ < 1/(4π) and TJ < 1/(4π) with
T∞ ≤ TJ . Assume, furthermore, T∞ = TJ , i.e.,

lim
t→T∞

J(t, u(t, ·)) = ∞. (38)

Consider the finite difference scheme (32) for 1/2 ≤ θ ≤ 1 and the numerical blow-up
time T (h, τ) defined by (36). Then, we have

lim
h,τ→0

T (h, τ) = T∞. (39)

Remark 2.14. Theorem III is somewhat restrictive because we have assumed TJ =
T∞. However, we have not succeeded in removing it at present. It is noteworthy
that the same assumptions are (sometimes implicitly) assumed in all related earlier
studies (see [6], [7], [8], [14], [15] and [17]).

Remark 2.15. We have no information related to the rate of convergence. However,
from numerical experiments in Section 6, we infer that |T (h, τ) − T∞| ≤ Cτσ if
τ/h = Const, where σ is defined as (25).

3. Well-posedness and error estimates (Proofs of Theorems
I and II)

This section is devoted to proofs of Theorems I and II. For any matrix B ∈ CN×N

and any norm of CN , we set

∥B∥ = sup
v∈CN

∥Bv∥
∥v∥

.

The following proposition plays a crucial role in what follows.

Proposition 3.1. For any n ≥ 0,

|||Hn|||h < 1, (40a)

|||Gn|||h = 1

(
θ =

1

2

)
, |||Gn|||h < 1

(
1

2
< θ ≤ 1

)
. (40b)

Proof. Because ||| · |||h is defined in terms of A
1
2
h , we obviously have

|||Hn|||h = ∥Hn∥2, |||Gn|||h = ∥Gn∥2.

Therefore, (40) is a consequence of the following inequalities and equality:

∥Hn∥2 ≤ 1, (41a)

∥Gn∥2 = 1

(
θ =

1

2

)
, ∥Gn∥2 < 1

(
1

2
< θ ≤ 1

)
. (41b)

Although those results seem not to be new, we state their proofs for the reader’s
convenience. Recall that ∥Gn∥2 =

√
r(G∗

nGn), where r(B) and B∗ respectively
denote the spectral radius and conjugate transpose of a matrix B. Setting

ϕ(µ) =
1− i(1− θ)λnµ

1 + iθλnµ
, ψ(µ) =

1 + i(1− θ)λnµ

1− iθλnµ

14



for µ ≥ 0, the eigenvalues of G∗
nGn are given explicitly as

ψ(µ1)ψ(µ1), ψ(µ2)ϕ(µ2), . . . , ψ(µN )ϕ(µN )

in terms of the eigenvalues 0 < µ1 < µ2 < · · · < µN of A. Moreover, by direct
calculation, we deduce

0 < ψ(µ)ϕ(µ)


< 1 (1/2 < θ ≤ 1)

= 1 (θ = 1/2)

> 1 (0 ≤ θ < 1/2)

(42)

for µ ≥ 0. Combining those results, we obtain (41b). Inequality (41a) is proved
similarly.

Remark 3.2. We consider the case for which 0 ≤ θ < 1/2. According to (42), we
have ∥Gn∥2 > 1 and |||Gn|||h > 1. However, if assuming τ = ch4 with some c > 0,
then we have

∥Gk−1Gk−2 · · ·G0∥2 ≤ CT (0 ≤ tk ≤ T ), (43)

where CT > 0 is a constant depending on T > 0. In fact, because

ψ(µ)ϕ(µ) ≤ 1 + (1− 2θ)
∆t2n
h4

µ2 ≤ 1 + c(1− 2θ)τµ2

for µ > 0, we can perform an estimation as

∥Gk−1Gk−2 · · ·G0∥2 ≤
√

(1 + c′τ)k ≤ exp

(
1

2
c′T

)
(0 ≤ tk ≤ T )

with a suitable constant c′ > 0. Theorems I and II in the case 0 ≤ θ < 1/2 are
proved using (43) instead of (40b) in the following proof.

Proof of Theorem I. Let Λn = {1, . . . , n} for n ∈ N. Set

BR =

{
{vn}n∈ΛJ

⊂ CN | sup
n∈ΛJ

|||vn|||h ≤ R

}
(44)

for R > 0.
Furthermore, we have by (16)

un = Gn−1 · · ·G0u
0 − i

n−1∑
k=1

∆tk−1Gn−1 · · ·GkH
−1
k−1[F (uk−1+θ) + gk−1+θ]

− i∆tn−1H
−1
n−1[F (un−1+θ) + gn−1+θ], (45)

where we have used the following abbreviation

F (uk−1+θ) = (1− θ)f(uk−1) + θf(uk) (1 ≤ k ≤ n). (46)

We introduce a Banach space

XJ = {W = {wn}n∈ΛJ
| wn ∈ CN (n ∈ ΛJ)} (47)
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with the norm
∥W ∥XJ

= sup
n∈ΛJ

|||wn|||h (48)

for W = {wn}n∈ΛJ
∈ XJ . Then, B2R is a closed ball in XJ .

We introduce the operator T : XJ → XJ by setting

Ũ = T U ,

where Ũ = {ũn}n∈ΛJ
, U = {un}n∈ΛJ

and

ũn = Gn−1 · · ·G0u
0 − i

n−1∑
k=1

∆tk−1Gn−1 · · ·GkH
−1
k−1[F (uk−1+θ) + gk−1+θ]

− i∆tn−1H
−1
n−1[F (un−1+θ) + gn−1+θ],

with (46).
We show that T is a contraction operator from B2R into itself with a suitably

chosen τ .
First, let U ∈ B2R and set Ũ = T U . We have by (21a) and (40)

|||ũn|||h ≤ |||u0|||h +
n∑

k=1

∆tk−1|||F (uk−1+θ)|||h +
n∑

k=1

∆tk−1|||gk−1+θ|||h

≤ R+

n∑
k=1

∆tk−1[(1− θ)C1f (|||uk−1|||h) + θC1f (|||uk|||h)] + ∆tnR

≤ R+ τJ [C1f (2R) +R].

Next, let U ,V ∈ B2R and set Ũ = T U , Ṽ = T V . Then, by using (21b) and
(40), we can conduct an estimation as

|||ũn − ṽn|||h ≤
n∑

k=1

∆tk−1|||F (uk−1+θ)− F (vk−1+θ)|||h

≤ C2f (2R)

n∑
k=1

∆tk−1|||uk+1−θ − vk+1−θ|||h

≤ C2f (2R)τJ∥U − V ∥XJ
.

Putting together those estimates, it is apparent that, if

0 < τ ≤ γR,J = min

{
R

J [C1f (2R) +R]
,

1

2JC2f (2R)

}
,

then T becomes a contraction mapping of B2R → B2R.
Results show that T has a unique fixed point U that satisfies (45) and ∥U∥XJ

≤
2R. This completes the proof of Theorem I.

We proceed to the proof of Theorem II. We use a version of the well-known discrete
Gronwall inequality.
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Proposition 3.3. Let {xn}n≥0, {yn}n≥1, {an}n≥1, {bn}n≥1 and {∆tn}n≥0 satisfy

xn ≥ 0, yn ≥ 0, an ≥ 0, bn ≥ 0,

xn +

n∑
j=1

∆tj−1yj ≤ x0 +

n∑
j=1

∆tj−1ajxj +

n∑
j=1

∆tj−1bj .

Assume that 1 −∆tn−1an > 0 for all n ≥ 1. Then, setting γn = (1 −∆tn−1an)
−1,

we have

xn +

n∑
j=1

∆tj−1yj ≤

x0 + n∑
j=1

∆tj−1bj

 exp

 n∑
j=1

∆tj−1γjaj

 (n ≥ 1). (49)

Proof. That is fundamentally the same as that of [10, Lemma 5.1].

Proof of Theorem II. It is divided into three steps.
Step 1. We derive several useful estimates. According to (45), we obtain the
following expression of the error:

en = −i
n−1∑
k=1

∆tk−1Gn−1 · · ·GkH
−1
k−1(r

k +Rk
1 +Rk

2 + ϕk)

− i∆tn−1H
−1
n−1(r

n +Rn
1 +Rn

2 + ϕn) (50)

with e0 = 0, where

rnj = iD∆tnU
n
j − i[(1− θ)∂tu(tn−1, xj) + θ∂tu(tn, xj)],

Rn
1,j = (1− θ)[δ2hU

n−1
j − ∂2xu(tn−1, xj)],

Rn
2,j = θ[δ2hU

n
j − ∂2xu(tn, xj)],

ϕnj = (1− θ)[f(Un−1
j )− f(un−1

j )] + θ[f(Un
j )− f(unj )].

Therefore, again using (40),

|||en|||h ≤
n∑

k=1

∆tk−1(|||rk|||h + |||Rk
1 |||h + |||Rk

2 |||h + |||ϕk|||h) (n ≥ 1). (51)

By virtue of Condition (f), we obtain

|||ϕn|||h ≤ (1− θ)C2f (u
n−1 ∧Un−1)|||en−1|||h + θC2f (u

n ∧Un)|||en|||h. (52)

We state an estimation of |||rn|||h only for the case θ = 1
2 . It is noteworthy that

rn0 = rnN+1 = 0. Because

D∆tn−1U
n
j − 1

2
[∂tu(tn−1, xj) + ∂tu(tn, xj)]

= −∆tn−1

4

∫ tn

tn−1

∂3t u(s, xj) ds+
1

4

∫ 1

0
(1− s)∆t2n−1∂

3
t u(tn−1 + s∆tn−1, xj) ds

+
1

4

∫ 1

0
(1− s)∆t2n−1∂

3
t u(tn − s∆tn−1, xj) ds,
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we can calculate as

rnj − rnj−1

h
= −∆tn−1

4h

∫ xj

xj−1

∫ tn

tn−1

∂x∂
3
t u(s, ξ) dsdξ

+
1

4h

∫ xj

xj−1

∫ 1

0
(1−s)∆t2n−1u[∂x∂

3
t u(tn−1+s∆tn−1, ξ)+∂x∂

3
t u(tn−s∆tn−1, ξ)] dsdξ.

Therefore, ∣∣∣∣rnj − rnj−1

h

∣∣∣∣ ≤ C∆t2n−1∥∂x∂3t u∥L∞(Q).

Hereinafter, C denotes various absolute positive constants. This inequality is valid
for 1 ≤ j ≤ N + 1. Therefore, in view of (19)

|||rn|||h ≤ Cτ2∥∂x∂3t u∥L∞(Q).

Next we present estimations of |||Rn
1 |||h and |||Rn

2 |||h. Set ρnj = δ2hU
n
j −∂2xu(tn, xj).

First, we derive estimations without assuming (26). Similar to the manner presented
above, we have

ρnj − ρnj−1

h
=
h2

6h

∫ xj

xj−1

∫ 1

0
(1− s)3[∂5xu(tn, ξ + sh) + ∂5xu(tn, ξ − sh)] dsdξ (53)

for 2 ≤ j ≤ N . However, we have

|ρn1 |, |ρnN | ≤ Ch2∥∂4xu∥L∞(Q).

Therefore, by (19)

|||Rn
1 |||2h ≤ C(1− θ)2

2
h4∥∂4xu∥2L∞(Q)

h2
+

N∑
j=2

h4∥∂5xu∥2L∞(Q)

h

≤ C(1− θ)2
(
h3∥∂4xu∥2L∞(Q) + h4∥∂5xu∥2L∞(Q)

)
≤ C(1− θ)2(h3 + h4)(∥∂4xu∥2L∞(Q) + ∥∂5xu∥2L∞(Q)).

Consequently, we obtain

|||Rn
1 |||h + |||Rn

2 |||h ≤ Ch
3
2 (∥∂4xu∥L∞(Q) + ∥∂5xu∥L∞(Q)). (54)

Now we assume (26). We use the same symbol u to express the extension Eu of
u. Moreover, we set Un

−1 = −Un
1 and Un

N+2 = −Un
N . Then, because δ2hU

n
0 = 0 and

∂2xu(tn, 0) = i∂tu(tn, 0) − f(u(tn, 0)) − g(tn, 0) = 0 for example, we have ρn0 = 0
and ρnN+1 = 0. Moreover, the expression (53) is valid for i = 1 and i = N + 1.
Consequently, we deduce

|||Rn
1 |||h + |||Rn

2 |||h ≤ Ch2(∥∂4xu∥L∞(Q) + ∥∂5xu∥L∞(Q))

instead of (54).
Putting those estimates together, we obtain

|||rn|||h + |||Rn
1 |||h + |||Rn

2 |||h ≤ C0M0(τ
σ + hs), (55)
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where C0 denotes an absolute positive constant.

Step 2. We choose τ ′0 > 0 and h0 > 0 such that

1− τκ ≥ 1

2
, T exp(2κT )C0M0(τ

σ + hs) ≤ 1

2
M1 (56)

for τ ≤ τ ′0 and h ≤ h0. Below, we always suppose that τ ≤ τ ′0 and h ≤ h0.
We prove (27) under the assumption that

|||un|||h ≤ R = 6M1 (0 ≤ tn ≤ T ). (57)

As a consequence of (51), (52) and (55), we have

|||en|||h ≤
n∑

k=1

∆tk−1κ|||ek|||h +
n∑

k=1

∆tk−1C0M0(τ
σ + hs).

Because 1−∆tk−1κ ≥ 1−τκ > 1/2 and (1−∆tk−1κ)
−1 ≤ 2, we can apply Proposition

3.3 to obtain

|||en|||h ≤
n∑

k=1

∆tk−1C0M0(τ
σ + hs) · exp

(
n∑

k=1

∆tk−1(1−∆tk−1κ)
−1κ

)
≤ (τσ + hs) · TC0M0 exp (2κT ) . (58)

Step 3. We prove (27) without assuming (57). Assume that there exists 0 < n ∈ Z
such that

|||un−1|||h ≤ R, |||un|||h > R, tn ≤ T. (59)

It is readily apparent that we have |||Un−1|||h ≤ M1 by Proposition 2.2. In view of
(58) in Step 2,

|||un−1|||h ≤ |||Un−1|||h + TC0M0 exp (2κT ) (τ
σ + hs)

≤ |||Un−1|||h + TC0M0 exp (2κT ) (τ
σ + hs) ≤ 3

2
M1.

At this stage, we apply Theorem I with the initial value un−1, J = 2 and R1 =
3
2M1. Then, γ2,R1 > 0 exists such that, if τ ≤ τ0 = min{τ ′0, γ2,R1}, then

|||un|||h ≤ 2R1 = 3M1 < R,

which contradicts (59). Therefore, as long as τ ≤ τ0 and h ≤ h0, we have (57).
Consequently, we obtain (27).

4. Abstract convergence result for the blow-up time

In this section, we develop an abstract theory for approximating the blow-up time.
We first state a problem setting (I)–(VIII). Then we describe conditions that imply
the reproduction of the blow-up. The proof of Theorem III is an application of
Propositions 4.1–4.3 given below.
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Let X be a (real or complex valued) normed vector space equipped with the norm
∥ · ∥X . Assume that a function

u ∈ C([0, T∞);X) (I)

is given for some T∞ > 0. (We might imagine that u is the solution of a partial
differential equation.) Our main assumption is that

lim
t→T∞

∥u(t)∥X = ∞. (II)

We introduce non-uniform time-grid points

0 = t0 < t1 < · · · < tn < · · ·

and assume that
∆tn = tn+1 − tn ≤ τ (n ≥ 0) (III)

for a given τ > 0. Let Xh be a closed subspace of X with a parameter h > 0. Then,
suppose that we are given

unτ,h = unρ ∈ Xh (n ≥ 0) (IV)

where
ρ = (τ, h).

We further assume that

lim
ρ→0

max
tn∈[0,T ]

∥unρ − u(tn)∥X = 0 for any T ∈ (0, T∞). (V)

Hereinafter, by ρ → 0, we mean that |τ | + |h| → 0. Consequently, unρ might be
an approximation of u(tn) by, for example, the finite difference method. There, h
denotes the granularity parameter of spatial discretization.

We let

T (ρ) = T (τ, h) =

∞∑
n=0

∆tn ≤ ∞. (60)

Then, we want to find some conditions that imply

T (ρ) <∞;

lim
tn→T (ρ)

∥unρ∥X = lim
n→∞

∥unρ∥X = ∞;

lim
ρ→0

T (ρ) = T∞.

To achieve this purpose, we provide an auxiliary observation. In many applica-
tions, (II) is a consequence of

d

dt
J(t, u(t)) ≥ G0(|J(t, u(t))|) (t > 0), (61)

where J : (0,∞)×X → R is a functional satisfying

|J(t, v)| ≤ CJ∥v∥X (t ≥ 0, v ∈ X), (VI)
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with CJ > 0 and G : [0,∞) → [0,∞) is a function of class (G) defined below.

Condition (G). G : [0,∞) → [0,∞) is called a function of class (G) if the following
conditions (62a)–(62c) are satisfied:

G is continuously differentiable and is strictly monotone increasing; (62a)

G(s) > 0 for s > 0; (62b)∫ ∞

β

ds

G(s)
<∞ (β: a positive constant). (62c)

Actually, if J(0, u(0)) ≥ α > 0 for some α > 0, then (61) implies that J(t, u(t)) is
a strictly increasing function of t > 0. Furthermore, there exists TJ > 0 such that
J(t, u(t)) → ∞ as t→ TJ , where

0 < TJ ≤
∫ ∞

α

dz

G(z)
<∞. (63)

Therefore, we deduce (II) for T∞ < TJ .
Based on this observation, we assume directly that

J(t, u(t)) → ∞ as t→ T∞ (VII)

instead of (61). Moreover, we introduce a functional Jh : (0,∞) × Xh → R which
satisfies

|Jh(t, v)| ≤ C ′
J∥v∥X (t ≥ 0, v ∈ Xh), (VIII)

where C ′
J is a positive constant that is independent of t ≥ 0. Assume that

Jh(0, u
0
ρ) ≥ α with some α > 0; (H1)

Jh(tn+1, u
n+1
ρ )− Jh(tn, u

n
ρ )

∆tn
≥ G(Jh(tn, u

n
ρ )) (n ≥ 0), (H2)

where G is a function of class (G). As a consequence of (H1) and (H2), we have
Jh(tn, u

n
ρ ) ≥ α and Jh(tn, u

n
ρ ) is monotone increasing on n ∈ N. We remark that

(H2) should be understood recurrently. That is, first, we have (H2) for n = 0 under
(H1). Therefore Jh(t1, u

1
ρ) ≥ α. Then, we have (H2) for n = 1 and so on.

Furthermore, suppose the following:

∆tn ≤ τ

H(Jh(tn, unρ ))
(n ≥ 0); (H3)

1

H(Jh(0, u0ρ))
≤ 1; (H4)

lim
ρ→0

max
tn∈[0,T ]

∣∣Jh(tn, unρ )− J(tn, u(tn))
∣∣ = 0 for any T ∈ (0, T∞); (H5)

∥unρ∥X → ∞ as n→ ∞ if T (ρ) ≤M with some 0 < M ≤ T∞. (H6)

Hereinafter, H : [0,∞) → [0,∞) is a function satisfying the following (64a)–(64d):

H is continuous and monotone increasing; (64a)

lim
s→∞

H(s) = ∞; (64b)

the mapping s 7→ s+ τ
G(s)

H(s)
is monotone increasing; (64c)∫ ∞

γ

G′(z)

G(z)H(z)
dz <∞ (γ: a positive constant). (64d)
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We designate such H a function of class (H) associated with G.

We are now in a position to state our main results in this section.

Proposition 4.1. Let (I)–(VIII) be given. Assuming that (H1)–(H4) are satisfied,
then we have

T (ρ) ≤ 2

(∫ ∞

α

dz

G(z)
+ Cτ

)
, (65)

where G is the function appearing in (H2). Particularly T (ρ) <∞.

Proposition 4.2. Let (I)–(VIII) be given. Assuming that (H1)–(H4) and (H5) are
satisfied, then we have

lim sup
ρ→0

T (ρ) ≤ T∞

and
lim

tn→T (ρ)
∥unρ∥X = lim

n→∞
∥unρ∥X = ∞.

Proposition 4.3. Let (I)–(VIII) be given. Assuming that (H1)–(H4) and (H6) are
satisfied, then we have

T∞ ≤ lim inf
ρ→0

T (ρ).

Remark 4.4. In previous works, we defined

∆tn = τ min

{
1,

1

∥unρ∥
q
X

}
(66)

with some q > 0. Therefore, setting H(s) = (s/C ′
J)

q, we have (III), (H3) and (H6).

Proof of Proposition 4.1. Consider the finite difference scheme

vn+1 − vn

∆sn
= G(vn) (n = 0, 1, 2, · · · ), v0 = Jh(u

0
ρ), (67)

where ∆sn is defined as

∆sn =
τ

H(vn)
.

It follows from (H4), (62b) and (64a) that

∆sn ≤ τ for (n ≥ 0).

Moreover, it was shown in [8, Theorem 2.1] that lim
n→∞

vn = ∞ and

∞∑
k=0

∆sk ≤
∫ ∞

α

dz

G(z)
+ Cτ <∞, (68)

where C is a constant that is independent of τ .
To prove (65), it is sufficient to show that

∞∑
k=0

∆tk ≤ 2

∞∑
k=0

∆sk.
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We recall that Jh(u
n
ρ ) ≥ α for n ≥ 0 and Jh(u

n
ρ ) is a strictly monotone increasing

sequence in n in view of (H1) and (H2), as described previously.
First, from (H3), one obtains

∆t0 ≤
τ

H(Jh(0, u0ρ))
=

τ

H(v0)
= ∆s0.

If
∞∑
n=0

∆tn ≤ ∆s0

takes place, the proof is finished. Otherwise, there exists an n1 ≥ 0 such that

n1∑
n=0

∆tn ≤ ∆s0 and ∆s0 <

n1+1∑
n=0

∆tn. (69)

Consequently, we can estimate the following:

n1+1∑
n=0

∆tn =

n1∑
n=0

∆tn +∆tn1+1

≤ ∆s0 +
τ

H(tn1+1, Jh(u
n1+1
ρ ))

≤ ∆s0 +
τ

H(Jh(0, u0ρ))
= 2∆s0.

Moreover, it follows from (H2) that

Jh(tn1+2, u
n1+2
ρ ) ≥ Jh(tn1+1, u

n1+1
ρ ) + ∆tn1+1G(Jh(tn1+1, u

n1+1
ρ ))

≥ Jh(tn1 , u
n1
ρ ) + ∆tn1G(Jh(tn1 , u

n1
ρ )) + ∆tn1+1G(Jh(tn1+1, u

n1+1
ρ ))

≥ Jh(tn1 , u
n1
ρ ) + (∆tn1 +∆tn1+1)G(Jh(tn1 , u

n1
ρ )) ≥ · · ·

≥ Jh(0, u
0
ρ) +

(
n1+1∑
n=0

∆tk

)
G(Jh(0, u

0
ρ))

≥ v0 +∆s0G(v
0) = v1. (70)

Based on that result, we obtain that

∆tn1+2 ≤
τ

H(Jh(tn1+2, u
n1+2
ρ ))

≤ τ

H(v1)
= ∆s1. (71)

Therefore, either (71) or (72) holds:

∞∑
n=n1+2

∆tn ≤ ∆s1. (72)

At this stage, if

n2∑
n=n1+2

∆tn ≤ ∆s1 and ∆s1 <

n2+1∑
n=n1

∆tn.

takes place, the proof is completed. Otherwise, in exactly the same manner as shown
above, we deduce

n2+1∑
n=n1+2

∆tn ≤ 2∆s1
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and Jh(tn2+2, u
n2+2
ρ ) ≥ v2.

Consequently,

∆tn2+2 ≤
τ

H(Jh(u
n2+2
ρ ))

≤ τ

H(v2)
= ∆s2.

Repeating this argument, we find a sequence {nj}∞j=1 such that Jh(tnj+2, u
nj+2
ρ ) ≥ vj

and
nj+1+1∑
n=nj+2

∆tn ≤ 2∆sj ,

for all j ≥ 1. Consequently,

∞∑
n=0

∆tn = lim
r→∞

n1+1∑
n=0

∆tn +

n2+1∑
n=n1+2

∆tn + · · ·+
nr+1∑

n=nr−1+2

∆tn


≤ 2 lim

r→∞

r−1∑
n=0

∆sn ≤ 2

(∫ ∞

α

dz

G(z)
+ Cτ

)
,

which completes the proof.

Proof of Proposition 4.2. We show

T ∗ ≡ lim sup
ρ→0

T (ρ) ≤ T∞ (73)

by contradiction. Let
T∞ < T ∗ (74)

and set ε = (T ∗ − T∞)/4. There exist R > 0 and τ̂ > 0 such that

2

(∫ ∞

R

dz

G(z)
+ Cτ̂

)
< ε.

Below we fix such R and τ̂ . Then, by (H5), there exists τ# > 0 and h# > 0 such
that

|J(tn, u(tn))− Jh(tn, u
n
ρ )| ≤ R

for τ ∈ (0, τ#] and h ∈ (0, h#]. Moreover, in view of (VII), there exists t′ = t′R < T∞
such that J(u(t′)) > 2R. Set

τ∗ = min
{
τ̂ , τ#, T∞ − t′,

}
and assume τ ∈ (0, τ∗] below. Consequently, we obtain τ ≤ T∞ − t′ and

Jh(tn, u
n
ρ ) ≥ J(tn, u(tn))−R.

There exists k ∈ N satisfying t′ ≤ tk < T∞ because τ < T∞ − t′. Therefore,

Jh(tk, u
k
ρ) ≥ J(tk, u(tk))−R > R. (75)

It follows from (74) that we can take a sub-sequence {ρi = (τi, hi)}∞i=1 with ρi → 0
as i→ ∞ such that

T∞ + ε < T (ρi).
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However, as a consequence of Proposition 4.1 and (75), we obtain

T (ρi) =
∞∑
n=0

∆tn =
k∑

n=0

∆tn +
∞∑

n=k+1

∆tn ≤ tk + 2

(∫ ∞

R

dz

G(z)
+ Cτ̂

)
< T∞ + ε.

This result presents a contradiction. Therefore, we obtain (73).

Proof of Proposition 4.3. As a consequence of Proposition 4.1, we know that T (ρ) <
∞. We will show that

T∞ ≤ lim inf
ρ→0

T (ρ) ≡ T∗ (76)

by contradiction. In addition, we assume that

T∗ < T∞.

Then, there exists a sub-sequence {ρi = (τi, hi)}∞i=1 such that ρi → 0 as i→ ∞ and

T (ρi) ≤ T∗ + δ < T∞,

where δ = (T∞ − T∗)/2. Therefore, (H6) can be applied to obtain ∥unρ∥X → ∞ as
t→ T (ρ).

We have
max

0≤t≤T∗+δ
∥u(t)∥X <∞. (77)

However, the solution unhi
satisfies

lim
n→∞

∥unρi∥X = lim
tn→T (ρi)

∥unρi∥X = ∞. (78)

Those (77) and (78) contradict to (V). Therefore, (76) is proved.

Remark 4.5. Main results established in other studies reported in the literature [6],
[7], [8], [14], [15], and [17] can be obtained by application of Propositions 4.1, 4.2
and 4.3.

5. Approximation of the blow-up time (Proof of Theorem
III)

This section is dedicated to the proof of Theorem III. It would be interesting to
derive a discrete version of (10). However, we do not attempt to proceed in this
direction. Instead, we shall apply Propositions 4.1–4.3 with

X = L∞(0, 1), ∥ · ∥X = ∥ · ∥L∞(0,1).

Below, we assume that the unique solution u of (5) is sufficiently smooth and that
(37) is satisfied. Then, as described before, u and J(t, u(t, ·)) blow up, respectively,
in T∞ < 1/(4π) and TJ < 1/(4π). It must be recalled that we are assuming T∞ =
TJ (see (38)). Let un = (un1 , . . . , u

n
N )T be the unique solution of (32) and set

un0 = unN+1 = 0. Recall moreover that the numerical blow-up time T (h, τ) defined
by (36).
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We set

Ij =


[
0, h2

]
(j = 0)(

xj − h
2 , xj +

h
2

]
(j = 1, 2, . . . , N)(

1− h
2 , 1
]

(j = N + 1)

and introduce

Xh = {vh ∈ X | vh is a constant function on each Ij (j = 0, 1, · · · , N + 1)}.

We define unρ ∈ Xh, ρ = (τ, h), for n = 0, 1, . . . by

unρ (x) = unj (x ∈ Ij , j = 0, 1, . . . , N + 1). (79)

Now we introduce Jh : [0,∞)×Xh → R, which is a discrete version of J , as

Jh(tn, v) =
1

2β(h)

N∑
j=1

Im(ηnv(xj)) sin(πxj)h

for n ∈ N and v ∈ Xh, where β(h) =

N∑
j=1

sin(πxj)h and ηn is a unique solution of

ηn+1 − ηn

∆tn
= iπ2

[
θηn + (1− θ)ηn+1

]
(n ≥ 0), η0 = 1. (80)

It is readily apparent that ηn is an approximation of eiπ
2tn . Particularly, we have

positive constants C ′ and τ̂ such that

|ηn − eiπ
2tn | ≤ C ′τσ, |ηn| ≤ 2 (81)

for n ≥ 1 and τ ∈ (0, τ̂ ], where σ is defined as (25).
One can note that

|Jh(v)| ≤ ∥v∥X , (82)

for v ∈ Xh. Moreover, it is noteworthy that, as a consequence of (37) and (H5)
(which will be verified below), there is a constant ĥ > 0 such that

Jh(0, u
0
ρ) > 1 (83)

for any h ∈ (0, ĥ].
Now we can state the following proof.

Proof of Theorem III. We first check (I)–(VI) in Section 4:

• (I) is satisfied if u0 is smooth and satisfies the compatibility conditions with
the boundary condition (see Proposition A.2);

• (II) is satisfied with T∞ ≤ TJ < 1/(4π) by (31);

• (III) is satisfied by the definition of ∆tn;

• (IV) is given as the finite difference solution unρ ;
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• (V) is guaranteed by Theorem II;

• (VI) is satisfied with CJ = 1;

• (VII) is assumed;

• (VIII) is satisfied with C ′
J = 1 (see (82)).

We consider functions G(s) = s2p and H(s) = sq for p ≥ 1 and q > 0. Actually,
G(s) is a function of class (G) and H(s) is a function of class (H) associated with
G.

To apply Propositions 4.1 and 4.2, we verify (H1)–(H5):

• (H2) is satisfied as will be stated in Proposition 5.1 presented below;

• (H3) is satisfied, because, by (VI),

∆tn ≤ τ

∥unρ∥
q
L∞(I)

≤ τ

Jh(tn, unρ )
q
=

τ

H(Jh(tn, unρ ))
;

• (H4) is satisfied (see (83));

• (H5) is a readily obtainable consequence of (V), (81), and β(h) → π/2 as
h→ 0;

• (H1) is satisfied (see (83)).

Finally, we verify (H6) using Proposition 4.2 in the following way. Assuming that
T (h, τ) ≤ M for some 0 < M ≤ T∞, then we prove ∥unρ∥X → ∞ as n → ∞ by
showing a contradiction. Assume ∥unρ∥X < ∞ for n ≥ 0. Then, by the definition
of ∆tn, we must have an → 0. Therefore, T (h, τ) = 1/(4π). However, in view of
Proposition 4.2,

T∞ ≥ lim sup
h,τ→0

T (h, τ) =
1

4π
> TJ ≥ T∞,

which is a contradiction. Therefore, we have proved (H6).
We can therefore apply Proposition 4.3 and complete the proof of Theorem III.

The following proposition must be stated.

Proposition 5.1. Letting 1/2 ≤ θ ≤ 1 and assuming that (37) is satisfied, then,
Jh(tn, u

n
h) is a positive and strictly increasing sequence in n ≥ 0 (Consequently,

Jh(tn, u
n
h) ≥ 0 for n ≥ 0), and there exist positive constants h1 and τ1 such that

Jh(tn+1, u
n+1
h )− Jh(tn, u

n
h)

∆tn
≥ 1

16
Jh(tn, u

n
h)

2p, (84)

for n ≥ 0, h ∈ (0, h1] and τ ∈ (0, τ1].

Proof. Because tn ≤ 1/(4π), we have

Re(eiπ
2tn) = cos(π2tn) ≥ cos(π/4) =

1√
2
.
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Therefore, in view of (81)

Re ηn ≥ cos(π2tn)− C1τ
2 >

1

2
(85)

for n ≥ 0 and τ ∈ (0, τ̂ ].
We write Jn = Jh(tn, u

n
ρ ), u

n+θ
j = θun+1

j +(1−θ)unj and ηn+θ = (1−θ)ηn+1+θηn

for abbreviation. Using (32), we can calculate it as

Jn+1 − Jn
∆tn

=
1

2β(h)
Im

N∑
j=1

[
(D∆tnη

n)un+θ
j + ηn+θ(D∆tnu

n
j )
]
sin(πxj)h

=
1

2β(h)
Re

N∑
j=1

π2ηn+θun+θ
j sin(πxj)h

+
1

2β(h)
Re

N∑
j=1

ηn+θ(δ2hu
n+θ
j ) sin(πxj)h

+
1

2β(h)
Re

N∑
j=1

ηn+θ
[
θ|un+1

j |2p + (1− θ)|unj |2p
]
sin(πxj)h

for n ≥ 0. An elementary identity is applied:

N∑
j=1

δ2hu
n
j sin(πxj)h = −π2[1− κ(h)]

N∑
j=1

sin(πxj)u
n
j h,

where

κ(h) = 1− 4

π2h2
sin2

(
πh

2

)
,

and obtain the following using (81),

Jn+1 − Jn
∆tn

=
π2

2β(h)
Re

N∑
j=1

ηn+θun+θ
j sin(πxj)h

− π2[1− κ(h)]

2β(h)
Re

N∑
j=1

ηn+θun+θ
j sin(πxj)h

+
1

2β(h)

N∑
j=1

Re ηn+θ
[
θ|un+1

j |2p + (1− θ)|unj |2p
]
sin(πxj)h

=
π2κ(h)

2β(h)
Re

N∑
j=1

ηn+θun+θ
j sin(πxj)h

+
1

2β(h)

N∑
j=1

Re ηn+θ
[
θ|un+1

j |2p + (1− θ)|unj |2p
]
sin(πxj)h

≥ −π
2κ(h)

β(h)

N∑
j=1

[
θ|un+1

j |+ (1− θ)|unj |
]
sin(πxj)h

+
1

4β(h)

N∑
j=1

[
θ|un+1

j |2p + (1− θ)|unj |2p
]
sin(πxj)h
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Next we prove (84) by induction in n. To do so, it is noteworthy that there exists
a positive constant h2 such that 0 < π2κ(h) ≤ 1/16 holds for h ∈ (0, h2]. In what
follows, we presume that h ∈ (0, h3], where h3 = min{h1, h2}. Moreover, we use

Jn ≤ 1

β(h)

N∑
j=1

|unj | sin(πxj)h, (86a)

1

β(h)

N∑
j=1

|unj |2p sin(πxj)h ≥

 1

β(h)

N∑
j=1

|unj | sin(πxj)h

2p

≥ J2p
n (86b)

for n ≥ 0. The first inequality (86b) is a consequence of Jensen’s inequality.
First, we show that (84) holds for n = 0. It is noteworthy that

1

β(h)

N∑
j=1

|u0j | sin(πxj)h ≥ J0 > 1. (87)

If assuming

1

β(h)

N∑
j=1

|u1j | sin(πxj)h ≥ 1,

we can estimate it using (86),

J1 − J0
∆t0

≥ 1

4β(h)

N∑
j=1

[
(1− θ)|u1j |2p + θ|u0j |2p

]
sin(πxj)h

− 1

16β(h)

N∑
j=1

[
(1− θ)|u1j |+ θ|u0j |

]
sin(πxj)h

≥ 1

4

[
(1− θ)J2p

1 + θJ2p
0

]
− 1

16

[
(1− θ)J2p

1 + θJ2p
0

]
≥ 3

16

[
(1− θ)J2p

1 + θJ2p
0

]
≥ 3θ

16
J2p
0 ≥ 1

16
J2p
0 .

However, if

1

β(h)

N∑
j=1

|u1j | sin(πxj)h < 1,

then by using

1

β(h)

N∑
j=1

|u1j | sin(πxj)h < 1 ≤ 1

β(h)

N∑
j=1

|u0j | sin(πxj)h,
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we have

J1 − J0
∆t0

≥ 1

4β(h)

N∑
j=1

[
(1− θ)|u1j |2p + θ|u0j |2p

]
sin(πxj)h

− 1

16β(h)

N∑
j=1

[
(1− θ)|u0j |+ θ|u0j |

]
sin(πxj)h

≥ 1

4β(h)

N∑
j=1

[
(1− θ)|u1j |2p + θ|u0j |2p

]
sin(πxj)h

− 1

16β(h)

N∑
j=1

|u0j | sin(πxj)h

≥ 1

4

[
(1− θ)J2p

1 + θJ2p
0

]
− 1

16
J2p
0 ≥ 1

16
J2p
0 .

Consequently, the case for which n = 0 is verified.
Next, we assume that 0 < n0 ∈ Z exists such that (84) holds for 0 ≤ n ≤ n0 − 1.

Then we obtain a rough estimate
Jn ≥ 1

for 0 ≤ n ≤ n0. By considering two cases

1

β(h)

N∑
j=1

|un0+1
j | sin(πxj)h ≥ 1

and

1

β(h)

N∑
j=1

|un0+1
j | sin(πxj)h < 1,

we can prove that (84) is satisfied for n = n0 + 1 as we have shown for n0 = 0.
This completes the proof of Proposition 5.1.

6. Numerical examples

This section presents some numerical examples to confirm Theorem III. The numer-
ical blow-up time T (h, τ) is an infinite series defined as (36). Therefore, in actual
computations, we take a sufficiently large n and regard tn as a reasonable approx-
imation of T (h, τ). We assume 1/2 ≤ θ ≤ 1, τ = h and q = p (see Remark C.3).
Furthermore, set T (τ) = T (h, τ). For the time being, the initial function is set as
u0(x) = 50i sin(πx). We then introduce the truncated numerical blow-up time Tε(τ)
by setting

Tε(τ) = min
{
tn | ∥un∥∞ > ε−1

}
, (88)

where ε > 0 is the stopping criterion given below.
For a given ε1 > 0, we set ε2 = 100ε1, ε3 = 100ε2 and Tj(τ) = Tεj (τ) for

j = 1, 2, 3. We present T1(τ), T2(τ), and T3(τ) for several values of τ in Fig. 3–5.
If τ is sufficiently small, then T1(τ) and T2(τ) are almost equal. Therefore, we can
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Figure 3: Truncated blow-up times T1(τ) (eps1), T2(τ) (eps3) and T3(τ) (eps2) for
solutions of (32) with p = 1 and ε1 = 10−10.
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Figure 4: Truncated blow-up times T1(τ) (eps1), T2(τ) (eps3) and T3(τ) (eps2) for
solutions of (32) with p = 3/2 and ε1 = 10−10.
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Figure 5: Truncated blow-up times T1(τ) (eps1), T2(τ) (eps3) and T3(τ) (eps2) for
solutions of (32) with p = 2 and ε1 = 10−10.
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consider Tε(τ) as an appropriate approximation of the exact blow-up time. Table 1
is the final result of the numerical blow-up time.

Moreover, we infer from Fig. 3–5 that there is the relation

T (τ) = −Cτα + T∞ (89)

where C > 0 and α ≥ 1 are constants. To verify this using numerical experiments,
letting k(τ) = |T (2τ, ε)− T (τ, ε)|, we observe

α(τ) =
log k(τ)− log k(2τ)

− log 2
. (90)

In fact, if α = α(τ) is independent of τ , then we have k(τ) = C ′τα with C ′ =
C(2α − 1). The result is reported in Table 2. From this, we infer that, as τ → 0,

|T (τ, h)− T∞| = O(τσ)

holds, where σ is defined as (25). The proof of this conjecture is left as a subject for
future study.

τ p = 1 p = 3/2 p = 2

0.00595238 0.0204633423 0.0002000014 0.0000026665
0.00297619 0.0204641504 0.0002000021 0.0000026666
0.00148810 0.0204643586 0.0002000023 0.0000026667
0.00074405 0.0204644119 0.0002000023 0.0000026667

Table 1: Numerical blow-up times T1(τ) for θ = 1/2 and ε1 = 10−10.

p = 1 p = 3/2 p = 2
τ θ = 1/2 θ = 1 θ = 1/2 θ = 1 θ = 1/2 θ = 1

0.00595238 2.18 1.07 2.00 1.01 1.94 1.05
0.00297619 2.03 1.03 1.99 1.01 1.95 1.03
0.00148810 2.02 1.01 1.99 1.00 1.96 1.01
0.00074405 2.03 1.01 1.99 1.00 1.97 1.01

Table 2: Numerical convergence rates α(τ) of T (τ).

Finally, examples of shapes of numerical solutions un of (32) are given. We take
two initial functions u0(x) = 50i sin(πx) and u0(x) = 100 sin(2πx) + 50i sin(πx). In
Fig. 6 and 7, the absolute value |un| of un is shown.

A. Well-posedness of (13)

The following results are not new for specialists of nonlinear Schrödinger equations.
For example, Proposition A.1 is fundamentally described in [5, theorem 3.5.1]. How-
ever, results for more regular solutions are not given explicitly in [5]. If considering
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Figure 6: Shapes of numerical solutions |un| of (32): u0(x) = 50i sin(πx), N = 63,
τ = h and θ = 1/2.
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Figure 7: Shapes of numerical solutions |un| of (32): u0(x) = 100 sin(2πx) +
50i sin(πx), N = 63, τ = h and θ = 1/2.
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the Cauchy problem, we can use the smoothing property of the Schrödinger semi-
group and obtain a regular (global-in-time) solution in a certain sense (see [11]).
However, in the case of a bounded domain, any smoothing properties are not avail-
able. Therefore, we assume sufficiently smooth data f , g and u0 to obtain a smooth
solution.

Let I = (0, L) for L > 0. Any function spaces considered in this appendix
are still complex-valued. We introduce the following linear operators A and H of
L2(I) → L2(I) by

D(A) = H2(I) ∩H1
0 (I), Av = − d2

dx2
v (v ∈ D(A)),

D(H) = D(A), Hv = iAv (v ∈ D(H)).

The following results are well known (see [16]). Operator A is a positive and
self-adjoint operator in L2(I) and −A generates the analytic semigroup (of class C0)
e−tA in L2(I). The operator −H generates a C0 semigroup S(t) = e−itH in L2(I)
and ∥S(t)∥L2(I) = 1 for all t > 0.

When I = R, one can prove

∥S(t)∥H1(I) = 1 (t > 0)

by the Fourier transform. However, it is not readily apparent that this equality
remains valid if I is a bounded interval. Instead, we apply fractional powers A

1
2 of

A. We know that
D(A

1
2 ) = H1

0 (I).

Therefore, as a norm of H1
0 (I), we can choose

|||v||| = ∥A
1
2 v∥L2(I) = ∥∂xv∥L2(I) (v ∈ H1

0 (I)).

By Poincaré’s inequality, we have

C−1∥v∥H1(I) ≤ |||v||| ≤ C∥v∥H1(I) (v ∈ H1
0 (I)).

Then, we deduce the following results.

• |||S(t)||| = 1 for all t > 0.

• There exists a constant CI > 0 such that ∥v∥L∞(I) ≤ CI |||v||| for v ∈ H1
0 (I).

We make the following condition on the nonlinearity f of H1
0 (I) → L2(I).

Condition (f1). There exists a continuous, non-decreasing and positive function
ω(η) of η > 0 such that

∥A
1
2 f(u)−A

1
2 f(v)∥L2(I) ≤ ω(M)∥A

1
2u−A

1
2 v∥L2(I)

for any u, v ∈ D(A
1
2 ) with ∥A

1
2u∥L2(I), ∥A

1
2 v∥L2(I) ≤M andM > 0. This inequality

is written equivalently as

∥∂xf(u)− ∂xf(v)∥L2(I) ≤ ω(M)∥∂xu− ∂xv∥L2(I)

for any u, v ∈ H1
0 (I) with ∥u∥H1(I), ∥v∥H1(I) ≤M .
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Proposition A.1. Assume that Condition (f1) is satisfied and that g ∈ C0([0, T ];H1
0 (I)).

Then, for any u0 ∈ H1
0 (I), there exists T > 0 and a unique

u ∈ C0([0, T ];H1
0 (I)) ∩ C1((0, T ); [H1

0 (I)]
′)

that satisfies∫
I
i(∂tu)v dx+

∫
I
(∂xu)(∂xv) dx =

∫
I
f(u)v dx+

∫
I
gv dx

(∀v ∈ H1
0 (I), a.e. t ∈ (0, T ))

with u(0, x) = u0(x) for x ∈ I. Moreover, if we define the maximal existence time
T∞ as T∞ = supT , then T∞ <∞ implies lim

t→T∞
|||u(t)||| = ∞.

We then make the following condition for f : H1
0 (I) → L2(I) and 2 ≤ m ∈ Z.

Condition (fm). For k = 1, . . . ,m and u ∈ D(Am/2), we have f(u) ∈ D(Ak/2).
Moreover, there exists a continuous, non-decreasing and positive function ωk(η) of
η > 0 such that

∥Ak/2[f(u)− f(v)]∥L2(I) ≤ ωk(M)∥Ak/2(u− v)∥L2(I)

for any u, v ∈ D(Ak/2) with ∥Ak/2u∥L2(I), ∥Ak/2v∥L2(I) ≤M .

Proposition A.2. Let 2 ≤ m ∈ Z. Assume that Condition (fm) is satisfied and
that g ∈ C [m/2]([0,∞);H1

0 (I)). Then, for any u0 ∈ D(Am/2), there exists T > 0 and
a unique

u ∈
[m/2]∩
k=0

Ck([0, T ];D(Am/2−k))

that satisfies
i∂tu+ ∂2xu = f(u) + g(t, x) (0 < t < T, x ∈ I)

with u(0, t) = u0(x) for x ∈ I.

Those propositions A.1 and A.2 are proved fundamentally using the same method
used by Segal [18] (see also [5, proof of Theorem 3.3.1]).

Remark A.3. For m ≥ 1, u0 ∈ D(Am/2) implies that u0 = ∂xu0 = · · · = ∂mx u0 = 0
at x = 0, L.

B. Proof of Proposition 2.3

Let f : C → C. Suppose that ϕ(x, y) = Re f(z) and ψ(x, y) = Im f(z), z = x + iy,
are both C1 functions of Rx ×Ry → R and that f(0) = 0 holds. First, we introduce
a useful expression. We write

Df(z) = (ϕx(x, y), ϕy(x, y))
T + i(ψx(x, y), ψy(x, y))

T (z = x+ iy).

In addition, for w = ξ + iη, define Df(z) · w as

Df(z) · w = ϕx(x, y)ξ + ϕy(x, y)η + i[ψx(x, y)ξ + ψy(x, y)η].
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Then, if setting

|Df(z)| =
√
ϕx(x, y)2 + ϕy(x, y)2 + ψx(x, y)2 + ψy(x, y)2,

we have
|Df(z) · w| ≤ |Df(z)| · |w| (z, w ∈ C).

Furthermore, for R > 0, setting

α(R) = max
|z|≤

√
LR

|Df(z)|,

we can estimate as

|Df(z)−Df(w)| ≤ 2α(R) (|z|, |w| ≤
√
LR). (91)

Let u = (u1, . . . , uN )T,v = (v1, . . . , vN )T ∈ CN and u0 = uN+1 = v0 = vN+1 = 0.
Then,

qj ≡ f(uj)− f(vj)− [f(uj−1)− f(vj−1)]

=

∫ 1

0
Df(pj(s)) · [(uj − vj)− (uj−1 − vj−1)] ds

+

∫ 1

0
[Df(pj(s))−Df(pj−1(s))] · (uj−1 − vj−1) ds

for 1 ≤ j ≤ N , where pj(s) = svj + (1− s)uj .
At this stage, we let R = |||u|||h ∧ |||v|||h. Then, in view of Proposition 2.1 (i), we

have |pj(s)|, |pj−1(s)| ≤
√
LR , which we can estimate as

|qj |2 ≤ 2α(R)2[(uj − vj)− (uj−1 − vj−1)]
2 + 4α(R)2L|||u− v|||2h.

Therefore,

|||f(u)− f(v)|||2h =

N+1∑
j=1

|qj |2

h2
h

≤ 2α(R)2
N+1∑
j=1

|(uj − vj)− (uj−1 − vj−1)|2

h2
h+ 4α(R)2L2|||u− v|||2h

= (2 + 4L2)α(R)2|||u− v|||2h,

which implies (21b) with C2f (R) =
√
2 + 4L2α(R) = c0(R).

Finally, (21a) follows by setting v = 0.

C. Modified Newton method

To solve our finite difference scheme (14), at each time step tn, we must solve a
nonlinear equation of the form

Fu = Hu−Kv + i∆t
[
(1− θ)f(v) + θf(u) + gn+θ

]
= 0, (92)
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where u = un+1, v = un, ∆t = ∆tn, H = Hn, and K = Kn.
If decomposing the equation (92) into the real and imaginary parts, then we can

apply any iterative methods for solving the system of equations of real functions.
The standard Newton method is a powerful method. Another method is proposed
in [2, §5]. However, if the nonlinearity f(z) is differentiable in the complex sense,
we can use the complex Newton method (for the system of equations of complex
functions). Consequently, MATLAB and Scilab are available to compute (92) using
complex variables. However, f(z) = αz|z|m and f(z) = α|z|m, α ∈ C, m ≥ 2, are
not differentiable in the complex sense so that the complex Newton method is not
available. Instead, we offer a new iterative method that is a version of modified
Newton methods to solve (92) using complex variables.

That is, we consider the following iteration: For an initial guess u0 ∈ CN , we
generate {uk}k≥1 by

uk+1 = Nuk

≡ uk −H−1Fuk

= −i∆tθH−1f(uk) +H−1
[
Kv − i∆t(1− θ)f(v)− i∆tgn+θ

]
. (93)

This iterative method actually converges with a sufficiently small ∆t, as stated in
Proposition C.1. Set BR = {z ∈ C | |z| ≤ R} and take g̃ > 0 satisfying |||gn|||h ≤ g̃
for 0 ≤ tn ≤ T .

Proposition C.1. Assume that Condition (f) is satisfied. Let v ∈ CN and R =
|||v|||h. Then, if

∆t ≤ min

{
R

3θC1f (2R)
,

R

3(1− θ)C1f (R)
,

R

3g̃
,

1

2θC2f (2R)

}
, (94)

then N is a contraction mapping from B2R to B2R. Consequently, there exists a
unique fixed point u ∈ B2R.

The proof is a direct consequence of Condition (f).

Example C.2. We ignore the contribution of g̃ to set ∆t appropriately because g̃ is
not so large relative to R. Consider f(z) = αu|u|m, α ∈ C and m ≥ 2. Then, (94)
is written equivalently as

∆t ≤ min

{
1

3θc12m+1
,

1

3(1− θ)c1

}
1

Rm
, (95)

where c1 is the constant defined in Example 2.4. Therefore, in this case, to apply
the iterative method (93), we must take

∆tk = τ min

{
1,

1

|||un|||mh

}
, 0 < τ ≤ τ ′, (96)

where

τ ′ = γmin

{
1

3θc12m+1
,

1

3(1− θ)c1

}
(97)

and γ is a constant taken from 0 < γ < 1. For the case f(z) = α|z|m, c1 should be
replaced by c2 in Example 2.4.

Remark C.3. In view of (96), we must choose q = 2p in (34) to solve (32). However,
we have verified from numerical experimentation that a modified Newton method
always converges by setting q = p.
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