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1. Introduction and the main result

Let Ω be a Jordan region in the two-dimensional Euclidean space R2. We consider the following
Dirichlet problem for the Laplace equation:{

△u = 0 in Ω,

u = f on Γ,
(1.1)

where Γ denotes the boundary ∂Ω of Ω and △ the Laplace operator. Throughout this paper, we
identify R2 with the complex plane C.

As is well-known, the Dirichlet problem (1.1) appears in many fields in mathematical physics
and engineering so that its rapid solver is highly required. The method of fundamental solutions
(MFS) is one of the popular rapid solvers for (1.1). In MFS, we first take the charge points
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{yk}N
k=1 ⊂ C \Ω, the collocation points {x j}N

j=1 ⊂ Γ and then find an approximate solution of
the form

u(N)(x) =
N

∑
k=1

QkE(x− yk), (1.2)

where E(x) denotes a fundamental solution of △ with the singularity at the origin and {Qk}N
k=1

the coefficient to be determined by the boundary condition;

u(N)(x j) = f (x j) ( j = 1,2, . . . ,N). (1.3)

The most typical choice of E is

E(x) =− 1
2π

log |x|,

and under this selection MFS is also called as the charge simulation method (CSM). Whereas the
method itself is quite simple and the implementation is easy, it is rather difficult to establish the
well-posedness, stability and convergence. As a matter of fact, the first mathematical analysis
of CSM was done by Katsurada and Okamoto [5]. They considered (1.1) in the case where Ω is
a disk Dρ with radius ρ having the origin as its center, and showed the well-posedness (cf. [5,
Theorems 1]) and the exponential convergence (cf. [5, Theorem 2]) with at most one exceptional
N under the choice of the charge points {yk}N

k=1 and the collocation points {x j}N
j=1 as

y j = Rω j−1, x j = ρω j−1 ( j = 1,2, . . . ,N), (1.4)

where ω = exp(2πi/N) and R > ρ . Unlike the finite difference method or the finite element
method, the well-posedness is not so obvious. In fact, when we take the charge points {yk}N

k=1
as yk = Rωk−1/2 (k = 1,2, . . . ,N), there cannot exist an approximate solution of the form (1.2)
satisfying (1.3) when N is even (cf. Katsurada [6, Theorem 8.2]). After this pioneering work, the
well-posedness and exponential convergence of CSM are well established for a Jordan region
with the analytic boundary, an annular region and an elliptic region. Furthermore CSM is applied
to compute numerical conformal mappings in various regions, and offers a high-precision and
simple numerical scheme (cf. Amano et.al [1] and references therein).

Not to mention, another choice of E is possible. In [6], Katsurada concentrated his attention
to the case disk Ω = Dρ and proposed the dipole simulation method (DSM), in which E is given
as follows:

E(x,y) =− 1
2π

(ny | x− y)
∥x− y∥2 , (1.5)

where ny = y/|y| and (· | ·) denotes the Euclidean inner product on R2. It has been shown that
DSM composed of (1.2) and (1.3), where E is defined by (1.5), is well-posed (cf. [6, Theorem
5.1]) and that the exponential convergence (cf. Comments before [6, Theorem 5.2]) is guaranteed
under the choice of the dipole points {yk}N

k=1 and the collocation points {x j}N
j=1 is the same as

(1.4). Recently, Ogata [8] generalized Katsurada’s DSM and examined its effectiveness through
numerical experiments. Thus, he treated (1.1) in the case where Ω is a Jordan region in R2 and
considered the approximate solution of the form

u(N)(x) =
N

∑
k=1

QkD(x,yk;nk), (1.6)
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where {yk}N
k=1 ⊂ R2 \Ω are the dipole points, {nk}N

k=1 are the unit vectors, which are called the
dipole moments, that nk represents the direction of the dipole located at yk and D is defined as

D(x,yk;nk) =− 1
2π

(nk | x− yk)

∥x− yk∥2 .

In fact, DSM’s approximate solution can be represented as the real part of a holomorphic func-
tion;

u(N)(x) = u(N)(z) = Re

[
N

∑
k=1

Qk
nk

z−ζk

]
,

where z = x+ iy, ζk = ξk + iηk and nk = n(1)k + in(2)k in which x = (x,y)T, yk = (ξk,ηk)
T and

nk = (n(1)k ,n(2)k )T. Inspired by the above expression, the complex dipole simulation method
which is an approximation technique for holomorphic functions is proposed in our previous
paper [10].

In [8], moreover, he applied DSM to compute numerical conformal mappings, which makes
us to be able to remove the difficulty of computing arguments, therefore, his method offers
much easier and simpler scheme for numerical conformal mappings. Indeed, his method can
be extended to compute bidirectional numerical conformal mappings (cf. S. and Ogata [11]).
However, there is no mathematical result in [8].

The purpose of the present paper is to give ways of arranging the dipole points {yk}N
k=1 and

the collocation points {x j}N
j=1 and defining the dipole moments {nk}N

k=1 that guarantee the well-
posedness and the exponential convergence of DSM composed of (1.6) and (1.3). As a pre-
liminary step to this end, we first consider the case where Γ is a circle γρ = {z ∈ C | |z| = ρ}
with ρ > 0. Introducing the dipole and the collocation points as (1.4) and the dipole moments
{nk}N

k=1 as nk = yk/∥yk∥ we establish the well-posedness (cf. Theorem 3.2) and the exponential
convergence (cf. Theorem 3.3). In order to extend the results to more general regions, we fol-
low Katsurada [7] and introduce the notion of the peripheral conformal mapping. Actually, the
following definition is a generalization of Katsurada’s one. Set Aρ2,ρ1 = {z ∈ C | ρ2 < |z|< ρ1}
with ρ1 > ρ2 > 0.

Definition 1.1. For a Jordan curve Γ in C and a constant r > 0, the mapping Ψ from a neigh-
borhood of γr to C is called a peripheral conformal mapping of Γ with the reference radius r if
the following two conditions are satisfied:

1. Ψ maps γr onto Γ;

2. Ψ : Aκ−1r,κr → C is a schlicht function with some κ > 1.

For any analytic Jordan curve, there exists a peripheral conformal mapping; Actually, by using
its Fourier expansion based on an analytic parameterization, we can construct Ψ concretely
(cf. [7, Remark 3.1]).

In what follows, we assume that there exists a peripheral conformal mapping Ψ of Γ with the
reference radius ρ , and that Γ is regular. Then, letting R ∈]ρ,κρ [, we propose an arrangement
of the dipole and the collocation points and a definition of the dipole moments as

y j = Ψ(Rω j−1), x j = Ψ(ρω j−1), n j =
ω j−1Ψ′(Rω j−1)

|Ψ′(Rω j−1)|
( j = 1,2, . . . ,N). (1.7)
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In order to describe our result, we need a function space Xε,s and its norm ∥ ·∥ε,s which were
originally introduced by Arnold [2]. Let T be the set of all finite Fourier series on S1 := R/Z;
T denotes the set of all functions of the form

f (τ) = ∑
n∈Z

f̂ (n)e2πinτ (τ ∈ S1),

where f̂ (n) are complex numbers and all but finite number of them are zeros. For each (ε,s) ∈
]0,+∞[×R, we introduce

( f ,g)ε,s = ∑
n∈Z

f̂ (n)ĝ(n)ε2|n|n2s ( f ,g ∈ T ),

∥ f∥ε,s =
√

( f , f )ε,s =
√

∑
n∈Z

| f̂ (n)|2ε2|n|n2s ( f ∈ T ), (1.8)

where n := max{2π|n|,1}. They are an inner product and a norm of T , respectively. Then, Xε,s
is defined as the completion of T with ∥ · ∥ε,s and it forms a Hilbert space. Moreover, Hs(Γ)
denotes the standard Sobolev space.

We are now in a position to state the main result of this paper, where the well-posedness
and the exponential convergence of DSM under the arrangement and the definition (1.7) are
established by applying the results for a circle.

Theorem 1.2. Assume that there exists a peripheral conformal mapping Ψ of Γ with the refer-
ence radius ρ . Let R ∈]ρ,κρ [ and suppose

1 ≤ δ ≤ κ; δ = 1 =⇒ t > 1/2; δ = κ =⇒ t <−1/2. (1.9)

Suppose that the dipole and the collocation points and the dipole moments are defined as (1.7)
and that the boundary data satisfies fρ ∈ Xδ ,t , where fρ(τ) = f (Ψ(ρe2πiτ)) for τ ∈ S1.
(i) For a sufficiently large N ∈N, there exists a unique {Qk}N

k=1 satisfying (1.6) and (1.3). Thus,
an approximate solution of DSM is actually exists uniquely.
(ii) Assume further that

R ≤
√

κρ , δ > 1; R =
√

κρ =⇒ s > 1/2. (1.10)

Then there exist constants µ = µ(δ ) ∈]0,1[ and C such that the error estimate

∥u−u(N)∥Hs(Γ) ≤CµN∥ fρ∥δ ,t

holds true for a sufficiently large N ∈ N, where C is independent of N.

This theorem is a readily obtainable corollary of Theorem 4.4 below. Therefore, hereafter we
aim to prove Theorem 4.4 instead of Theorem 1.2 itself.

The contents of this paper are as follows. In Section 2, we collect several notions and results
which will be used in analysis below. Section 3 is devoted to the case where Γ is a circle and we
prove the well-posedness (cf. Theorem 3.2) and the exponential convergence (cf. Theorem 3.3).
The general case is studied in Section 4 and the proof of Theorem 4.4 is described there. We
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conclude this paper by summarizing the results and giving some concluding remarks in Section
5.

Let us end this section with some notation to be used in this paper. We denote the lexico-
graphic order on ]0,+∞[×R by ≥, that is, for (εµ ,sµ) ∈]0,+∞[×R (µ = 1,2), (ε1,s1)≥ (ε2,s2)
is defined as ε1 > ε2∨(ε1 = ε2∧s1 ≥ s2). Furthermore we also use the relation (ε1,s1)> (ε2,s2)
defined as (ε1,s1)≥ (ε2,s2)∧ (ε1,s1) ≠ (ε2,s2). For each N ∈ N, we set ∆N := { j/N ∈ S1 | j =
0,1, . . . ,N −1}. For all m,n ∈ Z, m ≡ n always means m ≡ n (mod N).

2. Preliminaries

2.1. Function spaces Xε,s

As to the Hilbert space Xε,s, we use the following elementary result which seems not to be new
for specialists.

Proposition 2.1. (i) For all n ∈ Z, the nth Fourier coefficient mapping

T ∋ f 7−→ f̂ (n) =
∫ 1

0
f (θ)e−2πinθ dθ

has a unique bounded linear extension to Xε,s. Therefore, using these extended Fourier coeffi-
cients, we can define the norm ∥ f∥ε,s of f ∈ Xε,s by (1.8).
(ii) If (ε1,s1) > (ε2,s2), then a natural inclusion Xε1,s1 ↪→ Xε2,s2 exists and is compact. Espe-
cially, we can define the union of all Xε,s; X =

∪
ε,s Xε,s.

See for details [7, Lemma 4.1]. The spaces Hs := X1,s are periodic Sobolev spaces whose
elements are distributions with period 1. The space Hs(Γ) is defined as the set of functions
whose composition with a parameterization of Γ on S1 belongs to Hs, and its norm is given
by the Hs norm of this composition. H0 is identical with L2 which is a space of measurable
functions with period 1 which are square integrable over a period. For all ε > 1, the elements of
Xε,s are infinitely differentiable. For all s > 1/2, the elements of X1,s are continuous functions.
Finally we note that the dual space of Xε,s is isomorphic to Xε−1,−s, therefore we identify them:
(Xε,s)

′ = Xε−1,−s.

2.2. Integral operators

Fix R ∈]ρ ,κρ [ and suppose that there exists some function Q defined on ΓR = Ψ(γR) such that
the boundary data f of (1.1) can be written as a double-layer potential:

f (x) =
∫

ΓR

−1
2π

(ny | x− y)
∥x− y∥2 Q(y)dsy (x ∈ Γ), (2.1)

where ny denotes the outward unit normal vector of ΓR at y ∈ ΓR and dsy the line element of ΓR.
Then the exact solution u of (1.1) is as follows:

u(x) =
∫

ΓR

−1
2π

(ny | x− y)
∥x− y∥2 Q(y)dsy (x ∈ Ω).
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At this moment, our problem is reduced to find an approximation of Q. Of course, the function
Q does not necessarily exist, therefore, we have to consider the above problem in the Hilbert
space Xε,s prescribed before.

In order to introduce an integral operator, we give S1-parameterizations of Γ, ΓR, f and Q as
follows:

Γ : S1 ∋ τ 7−→ Ψ(ρe2πiτ) ∈ C,
ΓR : S1 ∋ τ 7−→ Ψ(Re2πiτ) ∈ C,
F(τ) := f (Ψ(ρe2πiτ)) (τ ∈ S1),

q(τ) := Q(Ψ(Re2πiτ)) (τ ∈ S1).

Then we can represent (2.1) as

F(τ) =
∫ 1

0
Re
{

−Re2πiθ Ψ′(Re2πiθ )

Ψ(ρe2πiτ)−Ψ(Re2πiθ )

}
q(θ)dθ (τ ∈ S1).

Thus, if we define an integral operator A as

Aq(τ) =
∫ 1

0
a(τ ,θ)q(θ)dθ (τ ∈ S1), (2.2)

a(τ,θ) = Re
{

−Re2πiθ Ψ′(Re2πiθ )

Ψ(ρe2πiτ)−Ψ(Re2πiθ )

}
(τ,θ ∈ S1),

then the boundary condition in (1.1) is equivalent to F = Aq. Eventually, our problem is reduced
to find an approximation of the above q.

2.3. Approximate function space

We introduce an approximate function space defined on S1 for q as follows:

D (N) =

{
N

∑
k=1

Qkδ
(
·− k−1

N

) ∣∣∣∣∣ (Qk) ∈ CN

}
,

where δ is the Dirac delta function on S1. Concerning D (N), the following proposition holds
true. The following result, which is described in [7, Lemma 4.3] and Ogata and Katsurada [9,
Lemma 2] for example, is well-known.

Proposition 2.2. (i) For all v ∈ D (N), the sequence {v̂(n)}n∈Z is periodic with respect to n with
period N, that is, v̂(n) = v̂(m) (n ≡ m).
(ii) If (ε ,s)< (1,−1/2), then D (N) ⊂ Xε,s.

2.4. Discrete Fourier transform

The following proposition, which will be used in order to show the well-posedness of DSM
when Γ is a circle, states that the discrete Fourier transform is an isomorphism.

6



Proposition 2.3. Suppose that (δ , t)> (1,1/2) and f ∈ Xδ ,t . Then,

∑
n≡p

f̂ (n) = 0 (∀p ∈ ΛN) ⇐⇒ f = 0 on ∆N .

See for details Arnold and Wendland [3, Lemma 2.1]. Note that the above condition on f
implies that f is at least continuous.

2.5. Potential theory

The following proposition is used to show that A , which is some extension of A and will be
defined later, is injective.

Proposition 2.4. Suppose that Γ is a C2-regular Jordan curve, Ω the interior simply-connected
region of Γ and Q a continuous function on Γ. If∫

Γ

−1
2π

(ny | x− y)
∥x− y∥2 Q(y)dsy = 0 (x ∈ Ω)

holds, then Q ≡ 0.

This proposition can be proved by using a standard potential theory, so that we omit its proof.

3. DSM in a disk

When Γ is a circle, the well-posedness and the exponential convergence of DSM is studied in
[6]. However, the settings in this paper is different from that of [6], and the complete proof
seems not to be given in [6]. Therefore, we state results and proofs for DSM in the case where
Γ is a circle in this section.

Let Ω be a disk with radius ρ having the origin as its center: Ω = Dρ . In this case, we can
take the peripheral conformal mapping Ψ as the identity mapping, and the integral operator A is
reduced to an integral operator L defined as

Lq(τ) =
∫ 1

0
Re
{

−Re2πiθ

ρe2πiτ −Re2πiθ

}
q(θ)dθ (τ ∈ S1)

for q ∈C(S1). If we define a function G as

G(τ) := Re
{

−R
ρe2πiτ −R

}
(τ ∈ S1),

then Lq can be represented as the convolution of L and q;

Lq = G∗q. (3.1)

By direct calculation, the Fourier series expansion of G is

G(τ) = 1+
1
2 ∑

n∈Z\{0}

(ρ
R

)|n|
e2πinτ (τ ∈ S1). (3.2)
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Then the nth Fourier coefficient of Lq can be calculated as

(Lq)∧(n) = Ĝ(n)q̂(n) (n ∈ Z), Ĝ(n) =


1 (n = 0),
1
2

(ρ
R

)|n|
(n ̸= 0)

owing to (3.1) and (3.2).
In order to deal with the considered problem on the Hilbert space Xε,s, we have to extend L

to Xε,s.

Lemma 3.1. For each (ε ,s) ∈]0,+∞[×R, we define an operator L : Xε,s → XεR/ρ ,s as L q =
G∗q. Then, L is a bounded linear extension of L and an isomorphism.

Proof. For all q ∈ Xε,s, we have

∥L q∥2
εR/ρ,s = ∑

n∈Z
|(L q)∧(n)|2

(
εR
ρ

)2|n|
n2s = |q̂(0)|2 + 1

4 ∑
n∈Z\{0}

|q̂(n)|2ε2|n|n2s.

Therefore we obtain
1
4
∥q∥2

ε,s ≤ ∥L q∥2
ε,s ≤ ∥q∥2

ε,s. (3.3)

The linearity of L is clear, and its boundedness follows from the right inequality of (3.3). The
bijectivity can be shown easily, so we omit the detail of it. The continuity of L −1 follows from
the left inequality of (3.3).

We can here rewrite the boundary condition (1.3) by virtue of the extended operator L . We
take q(N) ∈ D (N) arbitrarily and write it as

q(N) =
N

∑
k=1

Qkδ
(
·− k−1

N

)
.

Then we have

L q(N)(τ) =
N

∑
k=1

2πRQk Re
{
−1
2π

ωk−1

ρe2πiτ − yk

}
.

Therefore the unique solvability of (1.3) is equivalent to that of

L q(N) = F on ∆N . (3.4)

As to the unique solvability of (3.4), the following theorem holds, which assures the well-
posedness of DSM when Ω is a disk.

Theorem 3.2. Let 0 < ρ < R and (δ , t)> (1,1/2). Then, for all F ∈ Xδ ,t , there uniquely exists
q(N) ∈ D (N) which satisfies (3.4), and its Fourier coefficients are given by

q̂(N)(p) =

(
∑

m≡p
F̂(m)

)
/φ(N)

p (ρ) (p ∈ ΛN), (3.5)

where
φ(N)

p (ρ) = ∑
m≡p

Ĝ(m).
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Proof. By Proposition 2.3, (3.4) is equivalent to

∑
m≡p

Ĝ(m)q̂(N)(m) = ∑
m≡p

F̂(m) (∀p ∈ ΛN).

Since q̂(N)(m) is periodic with respect to m with period N because of Proposition 2.2, (3.4) is
equivalent to

φ(N)
p (ρ)q̂(N)(p) = ∑

m≡p
F̂(m) (∀p ∈ ΛN). (3.6)

Since φ(N)
p (ρ) ̸= 0 for all p ∈ Z, (3.6) is uniquely solvable and its Fourier coefficients are given

by (3.5).

We next give the error estimate of DSM, which asserts the exponential convergence of DSM.

Theorem 3.3. Let 0 < ρ < R, (δ , t)> (1,1/2) and (ε ,s) satisfies the following conditions:

max
{

δ
(ρ

R

)2
,

1
δ

}
≤ ε ≤min

{
1
δ

(
R
ρ

)2

,δ

}
; ε = δ =⇒ s≤ t; ε =

R
ρ
=⇒ s<−1

2
. (3.7)

Then, there exist some positive constant C = C(ε,s,δ , t,ρ ,R,∥L ∥,∥L −1∥) and real constant
P = P(ε ,s,δ , t) such that for all F ∈ Xδ ,t , all N ∈ N and the unique solution q(N) ∈ D (N)

of L q(N) = F on ∆N , of which the existence is assured by Theorem 3.2, the following error
estimate holds:

∥F −L q(N)∥ε,s ≤CNP
( ε

δ

)N/2
∥F∥δ ,t .

Remark 3.4. The first inequalities in (3.7) on δ and ε are seemed to be rather complicated. We
subsidiary use a graph in order to understand the condition graphically. We set

H1 = {(δ ,ε) | 1 ≤ δ ≤ R/ρ ,ε = δ−1},
H2 = {(δ ,ε) | R/ρ ≤ δ ≤ (R/ρ)2,ε = (R/ρ)2δ−1},
L1 = {(δ ,ε) | R/ρ ≤ δ ≤ (R/ρ)2,ε = δ (ρ/R)2},
L2 = {(δ ,ε) | 1 ≤ δ ≤ R/ρ ,ε = δ},
C1 = (R/ρ ,ρ/R), C2 = ((R/ρ)2,1),

and I as a closed region surrounded by H1 ∪ L1 ∪ H2 ∪ L2. Then δ and ε satisfy the first
inequalities in (3.7) if and only if (δ ,ε) ∈ I (see Figure 1).

Remark 3.5. The exponent P in Theorem 3.3 can be taken as follows:

P = P(ε,s,δ , t) =



max{s− t,0,−t} ((δ ,ε) =C1),

max{s− t,0,s} ((δ ,ε) =C2),

max{s− t,−t} ((δ ,ε) ∈ H1 \{C1}),
max{s− t,s} ((δ ,ε) ∈ H2 \{C2}),
max{s− t,0} ((δ ,ε) ∈ L1 \{C1,C2}),
s− t (otherwise).
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Figure 1: The region I of (δ ,ε)

In order to prove Theorem 3.3, we need the following lemma.

Lemma 3.6. Suppose that 0 < ρ < R, (δ , t) > (1,1/2) and (ε,s) satisfies (3.7). Then there
exists some positive constant C =C(ε ,s,δ , t,ρ,R) such that for all F ∈ Xδ ,t , q ∈ Xδρ/R,t with
L q = F and q(N) ∈ D (N) with L q(N) = F on ∆N , of which the unique existence is assured by
Theorem 3.2, the following estimate holds:

∥q−q(N)∥ερ/R,s ≤CNP(ε,s,δ ,t)
( ε

δ

)N/2
∥q∥δρ/R,t .

We postpone the proof of Lemma 3.6 to the appendix, and give the proof of Theorem 3.3 by
virtue of Lemma 3.6.

Proof of Theorem 3.3. Since L is an isomorphism owing to Lemma 3.6, we have

∥F −L q(N)∥ε,s = ∥L q−L q(N)∥ε,s ≤C∥q−q(N)∥ερ/R,s

≤CNP(ε,s,δ ,t)
( ε

δ

)N/2
∥q∥δρ/R,t ≤CNP(ε,s,δ ,t)

( ε
δ

)N/2
∥L q∥δ ,t

=CNP(ε,s,δ ,t)
( ε

δ

)N/2
∥F∥δ ,t ,

where C denotes some positive constant independent of N and may mean another one with
respect to each expression here and hereafter.
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4. DSM in a Jordan region

At first, we shall extend an integral operator A defined by (2.2) to Xε,s. To this end, we define a
perturbation operator K as

K = A−L. (4.1)

If q is a continuous function on S1, then we have

Kq(τ) =
∫ 1

0
k(τ,θ)q(θ)dθ ,

where

k(τ,θ) = Re
{

−Re2πiθ Ψ′(Re2πiθ )

Ψ(ρe2πiτ)−Ψ(Re2πiθ )
+

Re2πiθ

ρe2πiτ −Re2πiθ

}
(τ,θ ∈ S1).

Thus the lth Fourier coefficient of Kq can be calculated as

(Kq)∧(l) = ∑
m∈Z

k̂(l,m)q̂(−m),

where k̂(l,m) is the double Fourier coefficient defined as

k̂(l,m) =
∫ 1

0

∫ 1

0
k(τ,θ)e−2πi(lτ+mθ) dτ dθ .

We require estimates on k̂(l,m) to extend K to Xε,s.

Lemma 4.1. There exists some positive constant C independent of N such that

|k̂(l,m)| ≤Cκ−|l|
(

R
κρ

)|m|

holds for all l,m ∈ Z.

By using above estimates, we can extend K as follows:

Lemma 4.2. Suppose that (ε ,s)> (R/(κρ),1/2) and (δ , t)< (κ ,−1/2). If we define K : Xε,s →
Xδ ,t as

(K q)∧(l) = ∑
m∈Z

k̂(l,m)q̂(−m), l ∈ Z,

then K is a bounded linear extension of K and compact.

Proof. For all q ∈ Xε,s we have

∥K q∥2
δ ,t = ∑

l∈Z
|(K q)∧(l)|2δ 2|l|l2t = ∑

l∈Z

∣∣∣∣∣∑m∈Z
k̂(l,m)q̂(−m)

∣∣∣∣∣
2

δ 2|l|l2t

≤ ∑
l∈Z

(
∑

m∈Z
|k̂(l,m)|2ε−2|m|m−2s

)(
∑

m∈Z
|q̂(−m)|2ε2|m|m2s

)
δ 2|l|l2t

≤C ∑
l∈Z

(
δ
κ

)2|l|
l2t ∑

m∈Z

(
1
ε

R
κρ

)2|m|
m−2s∥q∥2

ε,s ≤C∥q∥2
ε,s.

11



This implies that K is a bounded linear operator.
In order to see the compactness of K , we take (δ ′, t ′)∈]0,+∞[×R to satisfy (δ , t)< (δ ′, t ′)<

(κ ,−1/2), and decompose it as follows:

K : Xε,s

˜K ""

// Xδ ,t

Xδ ′,t ′
- 

i

<<

Here ˜K : Xε,s → Xδ ′,t ′ is a bounded linear operator defined as well as K and i a natural
inclusion, which is a compact operator, assured its existence by Proposition 2.1. Since K =
i◦ ˜K , K is compact.

The following corollary immediately follows from the above lemma.

Corollary 4.3. If (ε,s) satisfies(
R

κρ
,
1
2

)
< (ε,s)<

(
κρ
R

,−1
2

)
, (4.2)

then the operator K : Xε,s → XεR/ρ ,s is compact.

When (ε ,s) satisfies the condition (4.2), we define A : Xε,s → XεR/ρ ,s as A = K +L .
Then A is an extension of A. We can now state the most general version of Theorem 1.2.

Theorem 4.4. Suppose that R ∈]ρ,κρ[ and (1,1/2) < (δ , t) < (κ ,−1/2). Then the following
hold true:
(i) For sufficiently large N ∈ N and all F ∈ Xδ ,t , there exists a unique q(N) ∈ D (N) such that

A q(N)(x) = F(x), x ∈ ∆N .

(ii) Suppose further that (ε ,s) satisfies the following conditions:

max
{

δ
(ρ

R

)2
,

1
δ

}
≤ ε ≤ min

{
1
δ

(
R
ρ

)2

,δ

}
; ε = δ =⇒ s < t; ε =

R
ρ
=⇒ s <−1

2

and (ε,s)> ((R/ρ)2κ−1,1/2). Then there exists some positive constant C which depends on ε ,
s, δ , t, ρ , R, ∥L ∥, ∥L −1∥, ∥A ∥, ∥A −1∥ such that

∥F −A q(N)∥ε,s ≤CNP(ε,s,δ ,t)
( ε

δ

)N/2
∥F∥δ ,t .

In order to prove the above theorem, we need the following two lemmas.

Lemma 4.5. Suppose that R ∈]ρ,κρ [ and that (ε ,s) satisfies (4.2). Then A is bounded and
isomorphic.

12



Proof. The boundedness of A is clear. Concerning that A is isomorphic, we only have to
show that A is injective since A is a Fredholm operator with index 0. We take q ∈ KerA
arbitrarily. Since L is an isomorphism, A q = 0 is equivalent to q = −L −1K q. Then we
have K q ∈ Xκ,t for all t < −1/2 since K : Xε,s → Xδ ,t defines a bounded linear operator
when (ε ,s)> (R/(κρ),1/2) and (δ , t)< (κ,−1/2) are satisfied due to Lemma 4.2. Therefore
q =−L −1K q ∈ Xκρ/R,t . Note that κρ/R > 1. Defining a function Q on ΓR as

Q(Ψ(Re2πiτ)) = q(τ) (τ ∈ S1),

Q : ΓR → C is continuous. Then we have

A q = 0 ⇐⇒
∫ 1

0
Re
{

−Re2πiθ Ψ′(Re2πiθ )

Ψ(ρe2πiτ)−Ψ(Re2πiθ )

}
q(θ)dθ = 0 (∀τ ∈ S1)

⇐⇒
∫

ΓR

−1
2π

(ny | x− y)
∥x− y∥2 Q(y)dsy︸ ︷︷ ︸

=:u(x)

= 0 (∀x ∈ Γ).

The function u is harmonic in the interior simply-connected region ΩR of ΓR, and especially con-
tinuous on Ω. Thus we have u= 0 in Ω thanks to the maximum principle for harmonic functions.
Furthermore we have u = 0 in ΩR because of the identity theorem for real analytic functions (see
for instance Axler, Bourdon and Ramey [4]). Hence Q ≡ 0 follows from Proposition 2.4, and
this yields q ≡ 0.

Lemma 4.6. Suppose that the following conditions are satisfied: R ∈]ρ ,κρ [; (1,1/2)< (δ , t)<
(κ ,−1/2); (3.7) and (ε,s) > ((R/ρ)2κ−1,1/2). Then there exists some positive constant C
which depends on ε , s, δ , t, ρ , R, ∥L ∥, ∥L −1∥, ∥A ∥, ∥A −1∥ such that for all N ∈ N, all
q ∈ Xδρ/R,t and all q(N) ∈ D (N) satisfying A q = A q(N) on ∆N , the following estimate holds:

∥q−q(N)∥ερ/R,s ≤CNP(ε,s,δ ,t)
( ε

δ

)N/2(
∥q∥δρ/R,t +∥q−q(N)∥ερ/R,s

)
,

where C is independent of N.

Proof. Since both L and A are isomorphic, the following estimate holds:

∥q−q(N)∥ερ/R,s ≤C∥A (q(N)−q)∥ε,s ≤C∥L −1A (q(N)−q)∥ερ/R,s.

Here we put
wN = q(N), w = q(N)−L −1A (q(N)−q).

Then we have

wN ∈ D (N), L −1A (q(N)−q) = wN −w, L w = L wN on ∆N ,

w = q+L −1(L −A )(q(N)−q).

13



Therefore, by Theorem 3.3 which gives the error estimate of DSM when Ω is a disk, we have

∥q(N)−q∥ερ/R,s ≤C∥L wN −L w∥ε,s ≤CNP(ε,s,δ ,t)
( ε

δ

)N/2
∥L w∥δ ,t

≤CNP(ε,s,δ ,t)
( ε

δ

)N/2
∥w∥δρ/R,t .

(4.3)

Moreover we have

∥w∥δρ/R,t = ∥q+L −1(L −A )(q(N)−q)∥δρ/R,t ≤ ∥q∥δρ/R,t +C∥(L −A )(q(N)−q)∥δ ,t

≤ ∥q∥δρ/R,t +C∥q(N)−q∥ερ/R,s ≤C
(
∥q∥δρ/R,t +∥q(N)−q∥ερ/R,s

)
, (4.4)

where we use the boundedness of L −A =−K : Xερ/R,s →Xδ ,t . Combining (4.3) with (4.4),
we obtain the desired estimate.

Proof of Theorem 4.4. At first, we remark that

NP(ε,s,δ ,t)
( ε

δ

)N/2
= o(1) as N → ∞

holds since (ε ,s) < (δ , t). Therefore, by Lemma 4.6, for a sufficiently large N ∈ N and all
q(N) ∈ D (N) with A q(N) = A q on ∆N , we have

∥q−q(N)∥ερ/R,s ≤CNP(ε,s,δ ,t)
( ε

δ

)N/2
∥q∥δρ/R,t . (4.5)

Therefore A q(N) = 0 on ∆N yields q(N) = 0. Since A q(N) = F on ∆N is equivalent to the system
of finite linear equations, this shows the unique solvability of the considered functional equation.

Finally we prove the second statement. Since A is an isomorphism of Xδρ/R,t onto Xδ ,t , for
F ∈ Xδ ,t , there uniquely exists q ∈ Xδρ/R,t which satisfies A q = F . Then we have

∥F −A q(N)∥ε,s = ∥A q−A q(N)∥ε,s ≤C∥q−q(N)∥ερ/R,s and ∥q∥δρ/R,t ≤C∥F∥δ ,t .

Hence we obtain the desired error estimate by the above two inequalities and (4.5).

5. Concluding remarks

In the present paper, we introduced the concept of peripheral conformal mapping following
Katsurada [7], and used it to arrange the dipole and collocation points and to define the dipole
moments. Under this situation, we proved the well-posedness and the exponential convergence
of DSM.

One of researches to be continued is to extend this result to multiply-connected region’s case.
However, it may be considered that the original DSM cannot be applied to potential problem in
multiply-connected region, therefore we may need some modification.

14



A. Proof of Lemma 3.6

We here prove Lemma 3.6. The basic idea is the same as [7].
Firstly note that q̂(N)(p) can be represented as

q̂(N)(p) =

(
∑

m≡p
Ĝ(m)q̂(m)

)
/φ(N)

p (ρ).

We decompose and estimate ∥q−q(N)∥ερ/R,s as follows:

∥q−q(N)∥2
ερ/R,s = |q̂(0)− q̂(N)(0)|2 + ∑

n∈Z\{0}
|q̂(n)− q̂(N)(n)|2

(ερ
R

)2
n2s

≤ T1 +(2π)2s{T2 +2T3 +2T4},

where ΛN := {p ∈ Z | −N/2 < p ≤ N/2} and

T1 = |q̂(0)− q̂(N)(0)|2, T2 = ∑
n∈ΛN\{0}

|q̂(n)− q̂(N)(n)|2
(ερ

R

)2|n|
|n|2s,

T3 = ∑
n∈Z\ΛN

|q̂(n)|2
(ερ

R

)2|n|
|n|2s, T4 = ∑

n∈Z\ΛN

|q̂(N)(n)|2
(ερ

R

)2|n|
|n|2s.

We frequently use the following proposition without proof for proving Lemma 3.6.

Proposition A.1. (i) For arbitrary N ∈ N we have |φ(N)
0 (ρ)| ≥ 1.

(ii) For each n ∈ ΛN \{0} we have |φ(N)
n (ρ)| ≥ 2−1(ρ/R)|n|.

(iii) For all ε ∈]0,1[ and all t ∈ R there exists some positive constant Cε,t such that

max
p∈ΛN\{0}

{(
N
|p|

)t

εN−2|p|
}
≤Cε,t

holds for all N ∈ N.
(iv) For all (ε,s)< (1,−1) there exists some positive constant Cε,s such that

∑
m∈I(p)

|m|sε |m| ≤Cε,sNsεN−|p|

holds for all N ∈ N and all p ∈ ΛN , where I(p) = {p+ lN | l ∈ Z\{0}}.

In the remainder of this section we estimate each Tj ( j = 1,2,3,4). Since

q̂(0)− q̂(N)(0) =

[
∑

m∈I(0)
Ĝ(m)q̂(0)− ∑

m∈I(0)
Ĝ(m)q̂(m)

]
/φ(N)

0 (ρ)

we have
T1 = |q̂(0)− q̂(N)(0)|2 ≤ T11 +T12,

where I(p) := {p+ lN | l ∈ Z\{0}} and

T11 =
2

|φ(N)
0 (ρ)|2

∣∣∣∣∣ ∑
m∈I(0)

Ĝ(m)q̂(0)

∣∣∣∣∣
2

, T12 =
2

|φ(N)
0 (ρ)|2

∣∣∣∣∣ ∑
m∈I(0)

Ĝ(m)q̂(m)

∣∣∣∣∣
2

.
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From Proposition A.1 (i) and the assumption δ (ρ/R)2 ≤ ε we obtain

T11 ≤ 2

(
∞

∑
l=1

(ρ
R

)lN
)2

|q̂(0)|2 ≤C11

(ρ
R

)2N
∥q∥2

δρ/R,t

≤


C11

( ε
δ

)N
∥q∥2

δρ/R,t if ε = δ (ρ/R)2 ∧ s− t ≤ 0,

C11N2(s−t)
( ε

δ

)N
∥q∥2

δρ/R,t otherwise.

Here and hereafter Csuperscript
subscript denotes some constant independent of N and it may represent another con-

stant in each symbol. By Proposition A.1 (i) we have

T12 ≤ 2

(
∑

m∈I(0)

1
2

(ρ
R

)|m|
|q̂(m)|

)2

≤ 1
2

(
∑

m∈I(0)
|q̂(m)|2

(
δρ
R

)2|m|
m2t

)(
∑

m∈I(0)

1
δ 2|m|

1
m2t

)

≤C12δ−2NN−2t∥q∥2
δρ/R,t ≤


C12N−2t

( ε
δ

)N
∥q∥2

δρ/R,t if δ−1 = ε ∧ s ≤ 0,

C12N2(s−t)
( ε

δ

)N
∥q∥2

δρ/R,t otherwise.

Here note that the underlined infinite sum is estimated by using Proposition A.1 (iv) and we use the
assumption δ−1 ≤ ε .

Next we estimate T2. For n ∈ ΛN \{0} we have

q̂(n)− q̂(N)(n) =

[
∑

m∈I(n)
Ĝ(m)q̂(n)− ∑

m∈I(n)
Ĝ(m)q̂(m)

]
/φ(N)

n (ρ),

therefore

|q̂(n)− q̂(N)(n)|2 ≤ 2

|φ(N)
n (ρ)|2

∣∣∣∣∣ ∑
m∈I(n)

Ĝ(m)q̂(n)

∣∣∣∣∣
2

+

∣∣∣∣∣ ∑
m∈I(n)

Ĝ(m)q̂(m)

∣∣∣∣∣
2


holds. Thus we obtain T2 ≤ T21 +T22, where

T21 = ∑
n∈ΛN\{0}

2

|φ(N)
n (ρ)|2

∣∣∣∣∣ ∑
m∈I(n)

Ĝ(m)q̂(n)

∣∣∣∣∣
2(ερ

R

)2|n|
|n|2s,

T22 = ∑
n∈ΛN\{0}

2

|φ(N)
n (ρ)|2

∣∣∣∣∣ ∑
m∈I(n)

Ĝ(m)q̂(m)

∣∣∣∣∣
2(ερ

R

)2|n|
|n|2s.

As to T21, from Proposition A.1 (ii), we have

1

|φ(N)
n (ρ)|2

∣∣∣∣∣ ∑
m∈I(n)

Ĝ(m)

∣∣∣∣∣
2

≤ 4
(

R
ρ

)2|n|
∣∣∣∣∣ ∑
m∈I(n)

1
2

(ρ
R

)|m|
∣∣∣∣∣
2

≤C21

(ρ
R

)2(N−2|n|)

for n ∈ ΛN \{0}, therefore

T21 ≤C21 ∑
n∈ΛN\{0}

|q̂(n)|2
(ρ

R

)2(N−2|n|)(ερ
R

)2|n|
|n|2s

≤C21N2max{s−t,0}
( ε

δ

)N
∥q∥2

δρ/R,t sup
n∈ΛN\{0}

{
|n|2(s−t)N−2max{s−t,0}

{
δ
ε

(ρ
R

)2
}N−2|n|

}
︸ ︷︷ ︸

=:A21

.
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Taking care of ε ≥ δ (ρ/R)2 the above supremum A21 is bounded as follows due to Proposition A.1 (iii):

A21 ≤


1 if ε = δ (ρ/R)2 ∧ s ≤ t,

4−(s−t) if ε = δ (ρ/R)2 ∧ s > t,

C−2(s−t),δε−1(ρ/R)2 N2(s−t) if ε > δ (ρ/R)2 ∧ s ≤ t,

C−2(s−t),δε−1(ρ/R)2 if ε > δ (ρ/R)2 ∧ s > t.

Therefore we obtain

T21 ≤


C21

( ε
δ

)N
∥q∥2

δρ/R,t if ε = δ (ρ/R)2 ∧ s ≤ t,

C21N2(s−t)
( ε

δ

)N
∥q∥2

δρ/R,t otherwise.

For n ∈ ΛN \{0} we have

1

|φ(N)
n (ρ)|2

∣∣∣∣∣ ∑
m∈I(n)

Ĝ(m)q̂(m)

∣∣∣∣∣
2

≤
(

R
ρ

)2|n|

∑
m∈I(n)

|q̂(m)|2
(

δρ
R

)2|m|
m2t ∑

m∈I(n)

1
δ 2|m|

1
m2t

≤C22

(
R
ρ

)2|n| 1
δ 2(N−|n|) N−2t ∑

m∈I(n)
|q̂(m)|2

(
δρ
R

)2|m|
m2t

by Proposition A.1 (ii) and (iv). Thus we have

T22 ≤C22 ∑
n∈ΛN\{0}

(
R
ρ

)2|n| 1
δ 2(N−|n|) N−2t ∑

m∈I(n)
|q̂(m)|2

(
δρ
R

)2|m|
m2t
(ερ

R

)2|n|
|n|2s

≤C22∥q∥2
δρ/R,tN

−2t+2max{t,0}
( ε

δ

)N
sup

n∈ΛN\{0}

{(
1

εδ

)N−2|n|
|n|2sN−2max{s,0}

}
︸ ︷︷ ︸

=:A22

.

Since ε ≥ δ−1 we have the following estimate on A22 thanks to Proposition A.1 (iii):

A22 ≤


1 if ε = δ−1 ∧ s ≤ 0,

4−s if ε = δ−1 ∧ s > 0,

C−2s,(εδ )−1 N2s if ε > δ−1 ∧ s ≤ 0,

C−2s,(εδ )−1 if ε > δ−1 ∧ s > 0.

Therefore we obtain

T22 ≤


C22N−2s

( ε
δ

)N
∥q∥2

δρ/R,t if ε = δ−1 ∧ s ≤ 0,

C22N2(s−t)
( ε

δ

)N
∥q∥2

δρ/R,t otherwise.

Concerning T3 we have

T3 ≤ ∑
n∈Z\ΛN

|q̂(n)|2
(

δρ
R

)2|n|
|n|2t sup

n∈Z\ΛN

{( ε
δ

)2|n|
|n|2(s−t)

}

≤ ∥q∥2
δρ/R,tN

2(s−t)
( ε

δ

)N
sup

n∈Z\ΛN

{( ε
δ

)2|n|−N
(
|n|
N

)2(s−t)
}

︸ ︷︷ ︸
=:A3

.
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Remarking that (ε,s)≤ (δ , t) we have

A3 ≤

{
4−(s−t) if ε = δ ∨ (ε < δ ∧ s ≤ t),
C if ε < δ and s > t.

Here C is some positive constant. Thus we obtain

T3 ≤C3N2(s−t)
( ε

δ

)N
∥q∥2

δρ/R,t .

Finally as to T4 we have

T4 = ∑
p∈ΛN

∑
l∈Z\{0}

|q̂(N)(p+ lN)|2
(ερ

R

)2|p+lN|
|p+ lN|2s = T41 +T42,

where

T41 = ∑
l∈Z\{0}

|lN|2s
(ερ

R

)2|lN|
|q̂(N)(0)|2, T42 = ∑

p∈ΛN\{0}

{
∑

l∈\{0}
|p+ lN|2s

(ερ
R

)2|p+lN|
|q̂(N)(p)|2

}
.

Here note that the infinite series

∑
l∈Z\{0}

|p+ lN|2s
(ερ

R

)2|p+lN|
(∀p ∈ ΛN)

is absolutely convergent because of the assumption (ε,s)< (R/ρ,−1/2). Making use of Proposition A.1
(i) we have |q̂(N)(0)|2 ≤C∥q∥2

δρ/R,t and from Proposition A.1 (iv) this yields an estimate

T41 ≤C2s,ερ/RN2s
(ερ

R

)2N
·C∥q∥2

δρ/R,t

≤


C41N2s

( ε
δ

)N
∥q∥2

δρ/R,t if ε = δ−1(R/ρ)2 ∧ t ≥ 0,

C41N2(s−t)
( ε

δ

)N
∥q∥2

δρ/R,t otherwise.

Concerning T42 we first have an estimate of q̂(N)(p) for p ∈ ΛN \{0}

|q̂(N)(p)|2 ≤ 1
(2π)2t ∑

m≡p
|q̂(m)|2

(
δρ
R

)2|m|
m2t
(

R
ρ

)2|p|
[

1
δ 2|p|

1
|p|2t +C−2t,δ−2 N−2t

(
1
δ

)2(N−|p|)
]
.

Then we have

T42 ≤ ∑
p∈ΛN\{0}

(
∑

l∈Z\{0}
|p+ lN|2s

(ερ
R

)2|p+lN|
)

1
(2π)2t ∑

m≡p
|q̂(m)|2

(
δρ
R

)2|m|
m2t
(

R
ρ

)2|p|

×

[
1

δ 2|p|
1

|p|2t +C−2t,δ−2 N−2t
(

1
δ

)2(N−|p|)
]

≤C2s,ερ/RN2[s+max{−t,0}]
( ε

δ

)N
∥q∥2

δρ/R,t

× sup
p∈ΛN\{0}

[
N−2max{−t,0}

|p|2t

{
εδ
(ρ

R

)2
}N−2|p|

+C−2t,δ−2 N−2[t+max{−t,0}]
{

ε
δ

(ρ
R

)2
}N−2|p|

]
︸ ︷︷ ︸

=:A42
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Noting that ε ≤ δ−1(R/ρ)2 we have

A42 ≤

{
C′ if ε = δ−1(R/ρ)2,

C′N−2t otherwise

due to Proposition A.1 (iii). Therefore we obtain

T42 ≤


C42N2s

( ε
δ

)N
∥q∥2

δρ/R,t if ε = δ−1(R/ρ)2 ∧ t ≥ 0,

C42N2(s−t)
( ε

δ

)N
∥q∥2

δρ/R,t otherwise.

Combining the above estimates we obtain

∥q−q(N)∥2
ερ/R,s ≤CN2P(ε,s,δ ,t)

( ε
δ

)N
∥q∥2

δρ/R,t

as desired.
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