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We consider the stationary Stokes equations under a unilateral boundary condition
of Signorini’s type, which is one of artificial boundary conditions in flow problems.
The well-posedness is discussed through its variational inequality formulation. We
also consider the finite element approximation for a regularized penalty problem. The
well-posedness, stability and error estimates are established. The lack of a coupled
Babuška and Brezzi’s condition makes analysis difficult. We offer a new method
of analysis; In particular, our device to treat the pressure seems to be new and of
interest. Numerical examples to confirm the validity of our theoretical results are also
presented.
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1 Introduction

We suppose that Ω is a bounded domain in Rd with d = 2, 3 and that the boundary ∂Ω is
composed of three parts S1, S2 and Γ. Those S1, S2 and Γ are assumed to be smooth but the
whole boundary ∂Ω is not necessarily smooth. One may imagine a branched pipe as illustrated
in Fig. 1. The first purpose of this paper is to study the well-posedness of the following unilateral
boundary value problem for the Stokes equations

− ν∆u+ ∇p = f, ∇ · u = 0 in Ω, (1a)
u = 0 on S1 ∪ S2, (1b)
un + gn ≥ 0, on Γ, (1c)
τn(u, p) + αn ≥ 0 on Γ, (1d)
(un + gn)(τn(u, p) + αn) = 0 on Γ, (1e)
τT (u) + αT = 0 on Γ (1f)

∗norikazu@ms.u-tokyo.ac.jp
†sugitani@ms.u-tokyo.ac.jp
‡zhoug@ms.u-tokyo.ac.jp
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Figure 1: Example of Ω (branched pipe)

for the velocity u = (u1, . . . , ud) and the pressure p with the density ρ = 1 and the kinematic
viscosity ν of the viscous incompressible fluid under consideration. Therein,

τ(u, p) = σ(u, p)n

denotes the traction vector on ∂Ω, where n is the outward normal vector to ∂Ω, σ(u, p) =
(σi,j(u, p)) = −pI+2νD(u) the stress tensor,D(u) = (Di,j(u)) =

(
1
2

(
∇u+ ∇uT

))
the deformation-

rate tensor and I the identity matrix. For a vector-valued function v on ∂Ω, its normal and
tangential components are denoted, respectively, as

vn = v · n, vT = v − vnn.

In particular, τn(u, p) = τ(u, p) · n and τT (u) = τ(u, p) − τn(u, p)n are normal and tangential
traction vectors, respectively. Moreover, f , g and α are prescribed functions. We also consider
the finite element approximation for a regularized penalty problem to (1) which is given as

− ν∆u+ ∇p = f, ∇ · u = 0 in Ω, (2a)
u = 0 on S1 ∪ S2, (2b)

τn(u, p) + αn =
1
ε
φδ(un + gn) on Γ, (2c)

τT (u) + αT = 0 on Γ (2d)

with 0 < ε � 1 and 0 < δ � 1. Therein, φδ(s) is a C1 regularization of [s]− = max{0,−s}. We
can take, for example,

φδ(s) =

{
0 (s ≥ 0)
(
√
s2 + δ2 − δ) (s < 0).

(3)

First of all, we mention our motivation for studying (1) and (2). In numerical simulation of real-
world flow problems, we often encounter some issues concerning artificial boundary conditions.
A typical and important example is the blood flow problem in the large arteries, where the
blood is assumed to be a viscous incompressible fluid (cf. [13, 27]). The blood vessel is modeled
by a branched pipe as illustrated, for example, by Fig. 1. Then, for T > 0, we consider the
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Navier-Stokes equations for the velocity v = (v1, . . . , vd) and the pressure q,

vt + (v · ∇)v = ∇ · σ(v, q) + f, ∇ · v = 0 in Ω × (0, T ), (4a)
v = b on S1 × (0, T ), (4b)
v = 0 on S2 × (0, T ) (4c)

with the initial condition v|t=0 = v0. We are able to give a velocity profile b = b(x, t) at the
inflow boundary S1 and the flow is supposed to be a perfect non-slip on the wall S2. Then, the
blood flow simulation is highly dependent on the choice of artificial boundary conditions posed
on the outflow boundary Γ.

In a previous paper, Zhou and Saito [29], we discussed an issue of the free-traction condition

τ(v, q) = 0 on Γ, (5)

which is one of the common outflow boundary conditions (cf. [17, 18]), and some nonlinear
energy-preserving boundary conditions (cf. [4, 5, 6, 7, 8]) from the view-point of energy inequality.
Moreover, we proposed a new outflow boundary condition,

vn ≥ 0, τn(v, q) ≥ 0, vnτn(v, q) = 0, τT (v) = 0 on Γ. (6)

This is an analogy to Signorini’s condition in the theory of elasticity (cf. [20]) and is indeed a
generalization of the free-traction condition (5). Namely,

if vn > 0 on ω ⊂ Γ, then τn(v, q) = 0 on ω;
if vn = 0 on ω ⊂ Γ, then τn(v, q) ≥ 0 on ω.

An advantage of employing (6) is that (4) admits energy inequality, whereas it is not guaranteed
under (5). To describe it more specifically, we take a reference flow (g, π) which is the solution
of the Stokes system

∇ · σ(g, π) = 0, ∇ · g = 0 in Ω, (7a)

g = b on S1, g = 0 on S2, g = −g0(x)
∫

S1

b · n dS1 on Γ (7b)

for all t ∈ [0, T ], where g0 = g0(x) ∈ C∞
0 (Γ)d is a prescribed function satisfying∫

Γ
g0 · n dΓ = 1, g0 · n ≥ 0 on Γ. (8)

(The function g is nothing but a lifting function of b.) By using this, we will find (v, q) of the
form

v = u+ g, q = p+ π.

Assuming (4) admits a smooth solution (v, q) = (u+ g, p+ π) in 0 ≤ t ≤ T and multiplying the
both sides of (4a) by u, we have by the integration by parts

d

dt
‖u‖2

L2(Ω)d + 2ν
∫

Ω
Dij(u)Dij(u) dx+

1
2

∫
Γ
vn|u|2 dΓ −

∫
Γ
τ(v, q) · u dΓ︸ ︷︷ ︸

=I

=
∫

Ω
[f − gt − (g · ∇)g] · u dx−

∫
Ω
(u · ∇)g · u dx. (9)
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With the aid of (6), we derive I ≥ 0 and, consequently,

sup
t∈[0,T ]

‖u‖2
L2(Ω)d + 2ν

∫ T

0
Dij(u)Dij(u) ≤ C, (10)

where C denotes a positive constant depending only on f , u0, b and T (cf. [29, Theorem 4]). This
inequality is of use. It plays a crucial role in the construction of a solution of the Navier-Stokes
equations (cf. [29]). Moreover, it is connected with the stability of numerical schemes from the
view-point of numerical computation. That is, it is preferred that energy inequality does not
spoiled after discretizations (cf. [28]). With (5), we do not know whether I ≥ 0 or not so that
energy inequality cannot be derived even for the continuous case.

The condition (6) is described in terms of inequalities so that it does not fit numerical calcu-
lations. However, we can utilize its penalty approximation

τn(v, q) =
1
ε
[vn]−, τT (v) = 0 on Γ, (11)

where 0 < ε� 1 and

[s]± = max{0,±s}, s = [s]+ − [s]− (s ∈ R). (12)

We also obtain energy inequality with (11) for a sufficiently small ε (cf. [29, Theorem 5]).
Moreover, after introducing a C1 regularization φδ of [·]−, we can solve (4) with (11) by using,
for example, Newton’s iteration.

Our final aim is to develop the theory for the initial-boundary value problems for the Navier-
Stokes equations (4) with (6) or with (11) from the standpoint both of analysis and numerical
computations. As a primary step, we studied the well-posedness of these problems in Ladyzhen-
skaya’s class in [29]. That is, we studied the unique existence of a solution of

ut + ((u+ g) · ∇)u+ (u · ∇)g −∇ · σ(u, p) = F, ∇ · u = 0 in Ω,
u = 0 on S1 ∪ S2,

un + gn ≥ 0, τn(u, p) + τn(g, π) ≥ 0 on Γ,
(un + gn)(τn(u, p) + τn(g, π)) = 0, τT (u) + τT (g) ≥ 0 on Γ,

where F = f − gt − (g · ∇)g.
In the present paper, we concentrate our attention to the discretization of the space variable.

Thus, we study the finite element approximation by using model Stokes problems. Consequently,
we come to consider Problems (1) and (2).

As a matter of fact, (1) and (2) themselves are not new problems. In a classical monograph,
Kikuchi and Oden [20], Chapter 7 is devoted to similar problems. However, their problem contains
the traction condition τ(u, p) = h. More precisely, they suppose that S2 is divided into two parts
S21, S22 and consider

u = 0 on S21, τ(u, p) = h on S22 (13)

instead of (1b). Then, supposing
Γ ∩ (S1 ∪ S21) = ∅, (14)

we can prove that there exists a domain constant C > 0 satisfying

C
[
‖q‖L2(Ω) + ‖τ‖H−1/2(Γ)

]
≤ sup

v∈H1(Ω)d,v|S1∪S21
=0

∫
Ω q(∇ · v) dx+

∫
Γ τvn dΓ

‖v‖H1(Ω)
(15)
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for any (q, τ) ∈ L2(Ω) × H−1/2(Γ) (cf. [20, Theorem 7.2]). This inequality is usually referred
to as the coupled Babuška-Brezzi condition. The well-posedness and error estimates of the
corresponding penalty problem (without any regularization) are direct consequences of this result
from the general theory (cf. [2]). In contrast, we are interested in establishing a formulation
without the traction boundary condition. Unfortunately, if S22 = ∅, (15) is not available and it
makes analysis somewhat difficult. Moreover, we do not prefer assuming (14). Consequently, we
have to develop a totally new method of analysis in this paper. In particular, we offer a new
device to treat the pressure part.

Finite element approximation of another class of unilateral boundary value problems for the
Stokes equations, say unilateral problems of friction type, are discussed, for example, in [1, 19,
21, 22].

This paper is composed of 7 sections. After having introduced basic definitions and recalled
some standard results in Section 2, we state the variational formulation (1) in Section 3. The well-
posedness of (1) is also established there. Sections 4 is devoted to the presentation of the finite
element approximation for (2). The well-posedness and error estimates are proved in Sections 5
and 6, respectively. Finally, we confirm our results by numerical experiments in Section 7.

2 Preliminary

Geometry We recall that Ω ⊂ Rd, d = 2, 3, is a bounded domain and the boundary ∂Ω is
composed of three parts S1, S2 and Γ. We deal with the following two cases:

(G1) S1, S2 and Γ are smooth surface (curve) and Ω is a Lipschitz domain (cf. Fig. 1);

(G2) S1, S2 are polygon (line segment) and Ω is a polyhedral (polygonal) domain.

In what follows, we suppose that Ω is given as (G1) or (G2) unless otherwise stated explicitly.
Moreover, we set

S = S1 ∪ S2.

Throughout this paper, C denotes various positive constants depending on Ω.

Remark 1. Although we mostly deal with the case illustrated by Fig. 1, our discussion is also
valid for the case where ∂Ω is smooth with Γ ∩ S2 = ∅, S2 ∩ S1 = ∅, and S1 ∩ Γ = ∅.

Function spaces and forms We use the standard Lebesgue and Sobolev spaces, for example,
L2(Ω), H1(Ω), L2(Γ), H1/2(Γ). (We follow the notation of [25] as for function spaces and their
norms. ) The abbreviations

(v, w) = (v, w)Ω = (v, w)L2(Ω), (v, w)Γ = (v, w)0,Γ = (v, w)L2(Γ),

‖v‖ = ‖v‖Ω = ‖v‖0,Ω = ‖v‖L2(Ω), ‖v‖1 = ‖v‖1,Ω = ‖v‖H1(Ω), ‖v‖Γ = ‖v‖0,Γ = ‖v‖L2(Γ)

will be employed. Moreover,

|v|m = |v|m,Ω = |v|Hm(Ω), |v|m,Γ = |v|Hm(Γ)

are the semi-norms of Hm(Ω), Hm(Γ).
For a vector-valued function space, we use the same symbol to denote its norm;

‖v‖ = ‖v‖L2(Ω)d (v ∈ L2(Ω)d), ‖v‖1 = ‖v‖H1(Ω)d (v ∈ H1(Ω)d).
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The basic function spaces of our consideration are

V = {v ∈ H1(Ω)d | v = 0 on S} and Q = L2(Ω).

They are Hilbert spaces equipped with the norms ‖v‖1 and ‖q‖, respectively. We use closed
subspaces of V ,

V σ = {v ∈ V | ∇ · v = 0 in Ω}, V0 = H1
0 (Ω)d, V σ

0 = {v ∈ V0 | ∇ · v = 0 in Ω},

and that of Q,

Q0 =
{
q ∈ Q |

∫
Ω
q dx = 0

}
.

Convex subsets

K = {v ∈ V | vn + gn ≥ 0 on Γ} and Kσ = {v ∈ V σ | vn + gn ≥ 0 on Γ}

of V and V σ, respectively, play important roles.
We recall the so-called Lions-Magenes space H1/2

00 (Γ). It is defined as (cf. [25, §11.5, Ch. 1])

H
1/2
00 (Γ) = {µ ∈ H1/2(Γ) | ρ−1/2µ ∈ L2(Γ)}

which is a Hilbert space equipped with the norm

‖µ‖
H

1/2
00 (Γ)

=
(
‖µ‖2

H1/2(Γ)
+ ‖ρ−1/2µ‖2

Γ

)1/2
.

Here, ρ ∈ C∞(Γ) denotes any positive function satisfying ρ|∂Γ = 0 and, for x0 ∈ ∂Γ,

lim
x→x0

ρ(x)
dist (x, ∂Γ)

= d′ > 0

with some d′ > 0. Moreover, we know (cf. [25, Theorem 11.7, Ch. 1])

H
1/2
00 (Γ) = (H1

0 (Γ), L2(Γ))1/2,2 (algebraly and topologically), (16)

where the righthand side denotes the real interpolation space between L2(Γ) and H1
0 (Γ) with the

exponent 1/2 and p = 2. In particular, H1/2
00 (Γ) is strictly included in H1/2(Γ).

Below we set
M = H

1/2
00 (Γ), ‖µ‖1/2,Γ = ‖µ‖

H
1/2
00 (Γ)

and

M0 =
{
µ ∈M |

∫
Γ
µ dΓ = 0

}
.

In general, X ′ denotes the topological dual space of a Banach space X and the norm of X ′ is
defined as

‖ϕ‖X′ = sup
v∈X

〈ϕ, v〉X′,X

‖v‖X
= sup

v∈X,v 6=0

〈ϕ, v〉X′,X

‖v‖X
,

where 〈·, ·〉X′,X is the duality pairing between X ′ and X. For a closed subspace Y of X and
ϕ ∈ Y ′, we mean by ‖ϕ‖Y ′

‖ϕ‖Y ′ = sup
v∈Y

〈ϕ, v〉X′,X

‖v‖X
.
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Set

〈·, ·〉 = 〈·, ·〉V ′,V = the duality pairing between V ′ and V ,
[·, ·] = [·, ·]M ′,M = the duality pairing between M ′ and M,

[[·, ·]] = [[·, ·]](Md)′,Md = the duality pairing between (Md)′ and Md.

We use the following forms:

a(u, v) = 2ν
∫

Ω
Di,j(u)Di,j(v) dx (u, v ∈ H1(Ω)d);

b(p, u) = −
∫

Ω
p(∇ · u) dx (p ∈ Q, u ∈ H1(Ω)d).

Trace and lifting operators Let Tr = Tr(Ω,Γ) be a trace operator from H1(Ω) into H1/2(Γ).
The meaning of Tr(Ω, S) is the same.

Lemma 2. The trace operator v 7→ µ = Tr v is linear and continuous of V → Md. Conversely,
there exists a linear and bounded operator E of Md → V , which is called a lifting operator, such
that Eµ = µ on Γ for all µ ∈Md.

This result directly follows from [15, Theorem 2.5] and [16, Theorem 1.5.2.3]. A partial result
is also reported in [26, Theorems 1.1 and 5.1]. As a consequence of Lemma 2, we obtain a lifting
operator En : M → V such that

(Enµ)n = µ , (Enµ)T = 0 on Γ, ‖Enµ‖1 ≤ C‖µ‖1/2,Γ

for any µ ∈M .
Below, we will often write as v|Γ = Tr v if there is no fear of confusion.

Remark 3. In view of Lemma 2 and the standard trace/lifting theorem, the zero extension µ̂ of
µ ∈Md into ∂Ω;

µ̂ =

{
µ on Γ,
0 on ∂Ω\Γ

belongs to H1/2(∂Ω)d.

Remark 4. Another definition of H1/2
00 (Γ) is given by Baiocchi and Capelo [3, Page 379]. That is,

H
1/2
00 (Γ) = {Tr v | v ∈ H1(Ω), Tr(Ω, S)v = 0}

which is a Hilbert space equipped with the norm

‖µ‖
H

1/2
00 (Γ)

= inf{‖v‖1 | v ∈ H1(Ω), Tr(Ω, S)v = 0, Tr v = µ}.

Lemmas We collect here several standard results used below.

Lemma 5 (Korn’s inequality, [20, Lemma 6.2]). There exists a positive constant CK depending
only on Ω such that

a(v, v) ≥ CK‖v‖2
1 (v ∈ V ).
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Lemma 6 ([14, Lemma I.2.1]). Suppose that Φ ∈ V ′
0 satisfies

〈Φ, v〉 = 0 (∀v ∈ V σ
0 ).

Then, there exists a unique p ∈ Q0 such that∫
Ω
p (∇ · v) dx = 〈Φ, v〉 (∀v ∈ V0), ‖p‖ ≤ C‖Φ‖V ′ .

Lemma 7 ([14, Corollary I.2.4]). For any q ∈ Q0, there exists w ∈ V0 such that

∇ · w = −q in Ω, ‖w‖1 ≤ C‖q‖.

Remark 8. An readily obtainable consequence of Lemma 7 is that there is a positive constant
γ > 0 depending only on Ω satisfying

inf
q∈Q0

sup
v∈V0

b(q, v)
‖q‖‖v‖1

≥ γ (17)

This result is well-known as the inf-sup condition or Babuška and Brezzi’s condition.

Lemma 9 ([14, Lemma I.2.2]). For any µ ∈ H1/2(∂Ω)d satisfying (µ, n)L2(∂Ω) = 0, there exists
v ∈ H1(Ω)d such that

∇ · v = 0 in Ω, v = µ on ∂Ω, ‖v‖1 ≤ C‖ζ‖H1/2(∂Ω)d .

Re-definition of traction vectors Let us propose the re-definition of τ(u, p). If a smooth vector
field u and scalar field p satisfy the Stokes equation

−ν∆u+ ∇p = f, ∇ · u = 0 in Ω

for a given f ∈ L2(Ω)d, they satisfies

a(u, v) + b(p, v) +
∫

Γ
τ(u, p) · v = (f, v) (∀v ∈ V ) (18)

and
a(u, v) + b(p, v) = (f, v) (∀v ∈ V0). (19)

(In (18), τ(u, p) is understood as a usual function defined on Γ.) Based on those identities, we
re-define the traction vector τ(u, p) for functions (u, p) ∈ V σ ×Q satisfying (19) as a functional
over Md defined by

[[τ(u, p), µ]] = a(u,wµ) + b(p, wµ) − (f, wµ) (µ ∈Md), (20)

where wµ = Eµ ∈ V . Actually, the righthand side of (20) does not depend on the way of
extension; Hence, this definition is well-defined. Similarly, we re-define as

[[τT (u), µ]] = a(u,wµ) + b(p, wµ) − (f, wµ) (µ ∈Md with µn = 0; wµ = Eµ) (21)

and
[τn(u, p), µ] = a(u,wµ) + b(p, wµ) − (f, wµ) (µ ∈M ; wµ = Enµ). (22)

Then, we deduce an expression

[[τ(u, p), µ]] = [τn(u, p), µn] + [[τT (u), µT ]] (µ ∈Md). (23)
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3 Variational formulations and well-posedness

From now on, we always assume

f ∈ Qd, b ∈Md, β ≡ −
∫

S
b · n dS > 0. (24)

We take g ∈ H1(Ω)d satisfying

∇ · g = 0 in Ω, g|S = b, g|C = 0, g|Γ = βg0, (25)

where g0 is the function defined as (8). Then, we have

gn ≥ 0 on Γ, gn ∈M, α ≡ 2νD(g)n ∈ (Md)′ (26)

Under those assumptions and re-definitions in the previous section, we precisely interpret (1)
as follows.

(PDE) Find (u, p) ∈ V ×Q such that

a(u, v) + b(p, v) = (f, v) (∀v ∈ V0), (27a)
b(q, u) = 0 (∀q ∈ Q), (27b)
un + gn ≥ 0 a.e. on Γ, (27c)
[τn(u, p) + αn, µ] ≥ 0 (∀µ ∈M, µ ≥ 0), (27d)
[τn(u, p) + αn, un + gn] = 0 (27e)

[[τT (u) + αT , µ]] = 0 (∀µ ∈Md, µn = 0). (27f)

Obviously, if a solution (u, p) of (PDE) is sufficiently smooth, it solves (1) in the classical sense.
(PDE) is equivalent to the following variational inequality.

(VI) Find (u, p) ∈ K ×Q such that

a(u, v − u) + b(p, v − u) ≥ (f, v) − [[α, v]] (∀v ∈ K), (28a)
b(q, u) = 0 (∀q ∈ Q). (28b)

In this section, we prove the following two theorems.

Theorem 10. Problems (VI) and (PDE) are equivalent.

Theorem 11. There exists a unique solution (u, p) ∈ K ×Q of (VI) and it holds that

‖u‖1 + ‖p‖ ≤ C∗, (29)

where C∗ denotes a positive constant depending only on Ω, ‖f‖, ‖α‖(Md)′ and ‖g‖1.

Remark 12. The boundary condition (27f) is nothing but one of alternatives. One can pose

uT + α′
T = 0 a.e. on Γ (30)

with a prescribed α′
T instead of (27f). Actually, the discussion presented below remains true if

we re-choose a suitable lifting function g and replace the original V by

V = {v ∈ H1(Ω)d | v = 0 on Γ, vT = 0 on Γ}.

9



Proof of Theorem 10. (PDE)⇒(VI). Let (u, p) ∈ V ×Q be a solution of (PDE). We verify (u, p)
is a solution of (VI). First, we have u ∈ K by (27c) and (27b). By using (20), (23), and
(27c)–(27f), we have for any v ∈ K

a(u, v − u) + b(p, v − u) − (f, v) + [[α, v − u]]
= [[τ(u, p), v − u]] + [[α, v − u]]
= [τn(u, p), vn − un] + [[τT (u) + αT , vT − uT ]]︸ ︷︷ ︸

=0

+[αn, vn − un]

= [τn(u, p) + αn, vn + gn]︸ ︷︷ ︸
≥0

− [τn(u, p) + αn, uh + gn]︸ ︷︷ ︸
=0

≥ 0.

(VI)⇒(PDE). Let (u, p) ∈ K × Q be a solution of (VI). We now verify (u, p) actually satisfies
(PDE). First, (27b) and (27c) are obvious.

Let v ∈ V0 be arbitrary. Substituting v = u± v ∈ K into (28a), we have (27a).
We recall τ(u, p) is defined as (20). Thus, (28a) implies

[[τ(u, p), v − u]] ≥ −[[α, v − u]] (∀v ∈ K).

Moreover, by (23)

[τn(u, p) + αn, vn − un] + [[τT (u) + αT , vT − uT ]] ≥ 0 (∀v ∈ K). (31)

Let ψ ∈ C∞
0 (Γ)d with ψn = 0 on Γ. Substituting v = u ± Eψ ∈ K into (31), we have

[[τT (u) + αT , ψ]] = 0. By the density, this implies (27f).
Next, let ψ ∈ C∞

0 (Γ)d with ψn ≥ 0 and ψT = 0 on Γ. Substituting v = u+ Eψ ∈ K into (31),
we have [τn(u, p) + αn, ψn] ≥ 0. By the density, this implies (27d).

Combining (31) and (27f), we have

[τn(u, p) + αn, vn − un] ≥ 0 (∀v ∈ K).

At this stage, we introduce w∗ ∈ V satisfying

w∗ = g on Γ, ‖w∗‖1 ≤ C‖g‖1. (32)

Since g |Γ∈ Md, such w∗ really exists in view of the trace theorem. But it does not satisfy
the divergence-free condition; Thus, w∗ 6∈ V σ. We now have −w∗

n + gn = −gn + gn ≥ 0 and
2un + w∗

n + gn = 2(un + gn) ≥ 0. Hence, we can choose as v = −w∗ and v = 2u+ w∗ above and
obtain (27e).

Proof of Theorem 11. Since a is a coercive bilinear form in V σ × V σ by virtue of Lemma 5, we
can apply Stampacchia’s theorem (cf. [10, Theorem 5.6]) to conclude that there exists a unique
u ∈ Kσ satisfying

a(u, v − u) ≥ (f, v − u) − [[α, v − u]] (∀v ∈ Kσ). (33)

Taking v = u± ϕ with ϕ ∈ V σ
0 in (33), we deduce

a(u, ϕ) = (f, ϕ) (∀ϕ ∈ V σ
0 ). (34)

Hence, according to Lemma 6, there exists p̂ ∈ Q0 satisfying

−b(p̂, v) = a(u, v) − (f, v) (∀v ∈ V0). (35)
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Now we set, for k ∈ R,
pk = p̂+ k (36)

and verify, with an appropriate choice of k, that (u, pk) is a solution of (VI). To this end, it
suffices to check that (u, pk) is a solution of (PDE).

We have by (20) and (33)

[τn(u, pk), vn − un] + [[τT (u), vT − uT ]] ≥ −[[α, v − u]] (v ∈ Kσ). (37)

Let ψ ∈ C∞
0 (Γ)d with ψn = 0 on Γ. Then, since

∫
Γ ψn dΓ = 0, there is a function w ∈ V

satisfying w = ψ on Γ, ∇ · w = 0 in Ω and ‖w‖1 ≤ C‖ψ‖Md . Substituting v = u± w ∈ Kσ into
(37), we get [[τT (u) + αT , ψT ]] = 0. By the density, this implies (27f).

Consequently, it follows from (37) that

[τn(u, pk) + αn, vn − un] ≥ 0 (v ∈ Kσ). (38)

We set
γ = inf

µ∈Y
[τn(u, p̂) + αn, µ],

where

Y =
{
µ ∈M | µ ≥ 0, µ 6≡ 0,

∫
Γ
µ dΓ = 1

}
. (39)

The, for any µ ∈M with µ ≥ 0 and µ 6≡ 0, we have

[τn(u, pk) + αn, µ] = [τn(u, p̂) + αn, µ] − k

∫
Γ
µ ≥ γ

∫
Γ
µ− k

∫
Γ
µ

Hence, we deduce (27d) if k ≤ γ.
For the time being, we admit

γ =
[τn(u, p̂) + αn, un + gn]

β
, (40)

When un + gn = 0 on Γ, we obviously have γ = 0. However, this is impossible since un + gn ≥ 0
and

∫
Γ gn dΓ > 0. We have by (40)

[τn(u, p̂) + αn, un + gn] = γβ = γ

∫
Γ
gn dΓ = γ

∫
Γ
(un + gn) dΓ.

Therefore, taking
k = γ,

we obtain

[τn(u, pk) + αn, un + gn] = [τn(u, p̂) + αn, un + gn] − γ

∫
Γ
(un + gn) = 0.

Thus, we have verified (27e).
In order to show (40), we use w∗ ∈ V defined as (32) again. From (38) with k = 0,

[τn(u, p̂) + αn, vn + w∗
n] ≥ [τn(u, p̂) + αn, un + w∗

n] (v ∈ Kσ).

Since w∗ = g on Γ, this is equivalently written as

[τn(u, p̂) + αn, vn + gn] ≥ [τn(u, p̂) + αn, un + gn] (v ∈ Kσ).

11



Moreover, we get[
τn(u, p̂) + αn,

vn + gn

β

]
≥

[
τn(u, p̂) + αn,

un + gn

β

]
(v ∈ Kσ). (41)

Now let µ ∈ Y be arbitrary and set µ̃ = βµ − gn ∈ M . Since
∫
Γ µ̃ dΓ = 0, there exists ṽ ∈ V σ

such that ṽn = µ̃ on Γ according to Remark 3 and Lemma 9. Then, the function ṽ satisfies that
ṽn + gn = βµ ≥ 0 on Γ. Thus, ṽ ∈ Kσ. Consequently, we have by (41)

[τn(u, p̂) + αn, µ] =
[
τn(u, p̂) + αn,

µ̃+ gn

β

]
=

[
τn(u, p̂) + αn,

ṽn + gn

β

]
≥ 1
β

[τn(u, p̂) + αn, un + gn] ,

which implies (40).
It remains to derive (29). First, from (35) and (17), we have

‖p̂‖ ≤ sup
v∈V0

|(f, v) − a(u, v)|
‖v‖1

≤ C(‖f‖ + ‖u‖). (42)

Equation (27e), together with (22), implies

a(u, u+ g) + b(p, u+ g) − (f, u+ g) + [αn, un + gn] = 0.

Therefore, by virtue of Korn’s inequality,

CK‖u+ g‖2
1 ≤ C(‖f‖ + ‖α‖(Md)′ + ‖g‖1)‖u+ g‖1

and, consequently,
‖u+ g‖1 ≤ C∗, ‖u‖1 ≤ C∗. (43)

Finally, thanks to the expression (40), we can estimate as

|γ| ≤ 1
β
‖τn(u, p̂) + αn‖M ′‖un + gn‖1/2,Γ ≤ C(‖u‖1 + ‖p̂‖)‖u+ g‖1. (44)

Combining this with (42) and (43), we obtain (29).

4 Finite element approximation

Since the problem (PDE) and (VI) are not directly applicable for numerical computation, we
propose the penalty approximation for (VI).

As a regularization of [s]−(s ∈ R), we introduce a function φδ : R → R that satisfies

φδ is a non-increasing C1(R) function; (45a)
|φδ(s) − [s]−| ≤ Cδ (s ∈ R); (45b)

φδ(s) = 0 (s ≥ 0), 0 ≤ φδ(s) ≤ −s (s < 0); (45c)∣∣∣∣ ddsφδ(s)
∣∣∣∣ ≤ C (s ∈ R), (45d)

where δ ∈ (0, 1] is regularized parameter and C’s are independent of δ. As mentioned in Intro-
duction, we can take, for example, the function φδ(s) defined as (3).
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For penalty parameter ε ∈ (0, 1], we consider the following penalty problem;

(PEε,δ) Find (u, p) ∈ V ×Q such that

a(u, v) + b(p, v) − 1
ε

∫
Γ
φδ(un + gn)vn dΓ = (f, v) − [[α, v]] (∀v ∈ V ), (46a)

b(q, u) = 0 (∀q ∈ Q). (46b)

This and the subsequent sections are devoted to the finite element approximation of (PEε,δ).
In order to avoid unessential difficulties concerning “curved boundary”, we consider only the case
(G2). Consequently, the unit outer normal vector n to Γ is a constant vector over Γ.

We use the so-called P1 bubble/P1 (P1b/P1) elements for discretization. Let {Th}h be a regular
family of triangulations of Ω. As the granularity parameter, we have employed h = max{hT |
T ∈ Th}, where hT denotes the diameter of T . We introduce the following function spaces:

Vh = {vh ∈ C0(Ω) | vh = 0 on S, vh|T ∈ P(d)
1 ⊕ span{ϕT } (∀T ∈ Th)},

V0h = Vh ∩H1
0 (Ω)d, V σ

h = {vh ∈ Vh | b(qh, vh) = 0 (∀qh ∈ Qh)} ,

Qh = {qh ∈ C0(Ω) | qh|T ∈ P(d)
1 (∀T ∈ Th)}, Q0h = Qh ∩Q0,

Mh = {µh = vhn|Γ | vh ∈ Vh}, M0h =
{
µh ∈Mh |

∫
Γ
µh dΓ = 0

}
,

where P(d)
k denotes the set of all polynomials in x1, . . . , xd of degree ≤ k, and ϕT =

∏d+1
i=1 λT,i,

with λT,1, . . . , λT,d+1 the barycentric co-ordinates of T .
Let us denote by Sh the d− 1 dimensional triangulation of Γ inherited from Th. We obviously

have
Mh = {µh ∈ C(Γ) | µh|S ∈ P(d−1)

1 (∀S ∈ Sh), µh|∂Γ = 0} (algebraly). (48)

Moreover, we introduce a projection operator Λ : Q→ Q0 by

Λq = q −m(q) with m(q) =
1
|Ω|

∫
Ω
q dx (q ∈ Q). (49)

It is clear that ‖Λq‖ ≤ C‖q‖ for q ∈ Q and Λqh ∈ Q0h for qh ∈ Qh.

Then, the finite element approximation for (PEε,δ,h) reads as follows.
(PEε,δ,h) Find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + b(ph, vh) − 1
ε

∫
Γ
φδ(un + gn)vhn dΓ = (f, vh) − [[α, vh]] (∀vh ∈ Vh), (50a)

b(qh, uh) = 0 (∀qh ∈ Qh). (50b)

Before considering the well-posedness and error estimates, we recall here basic results on the
finite element method.

Babuška-Brezzi condition As is well-known, the Babuška-Bezzi condition holds true in V0h ×
Q0h. That is, there is a constant γ′ > 0, which is independent of h, such that

inf
qh∈Q0h

sup
vh∈V0h

b(qh, vh)
‖vh‖1‖qh‖

≥ γ′. (51)
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Discrete lifting operators and discrete traction vectors The following is a discrete analogue
of Lemma 2.

Lemma 13 ([19, Lemma 2.1]). (i) There is a continuous linear operator Eh from Md
h to Vh such

that Ehµh = µh on Γ and ‖Ehµh‖1 ≤ C‖µh‖1/2,Γ for any µh ∈Md
h , where C is independent of h.

(ii) There is a continuous linear operator Enh from Mh to Vh such that (Enhµh)n = µh and
(Enhµh)T = 0 on Γ and ‖Enhµh‖1 ≤ C‖µh‖1/2,Γ for any µh ∈Mh, where C is independent of h.
(iii) For µh ∈M0h, the above wh = Enhµh can be chosen in such way that wh ∈ V σ

h .

As the continuous case, we define traction vectors τ(uh, ph) ∈ (Md
h)′, τT (uh) ∈ (Md

h)′ and
τn(uh, ph) ∈M ′

h for a solution (uh, ph) ∈ V σ
h ×Qh of

a(uh, vh) + b(ph, vh) = (f, vh) (vh ∈ V0h) (52)

as follows:

[[τ(uh, ph), µh]] = a(uh, wh) + b(ph, wh) − (f, wh) (µh ∈Md
h , wh = Ehµh); (53a)

[τT (uh), µh] = a(uh, wh) + b(ph, wh) − (f, wh) (µh ∈Md
h with µhn = 0, wh = Ehµh); (53b)

[τn(uh, ph), µh] = a(uh, wh) + b(ph, wh) − (f, wh) (µh ∈Mh, wh = Enhµh) (53c)

These definitions do not depend on the way of extensions. In fact, for any µh, let wh ∈ Vh and
w̃h ∈ Vh be both extension of λh; whn = w̃hn = λh on Γ. Set vh = wh− w̃h. Then, since vh ∈ V0h,
we deduce, by (52),

a(uh, wh) + b(ph, wh) − (f, wh) − [a(uh, w̃h) + b(ph, w̃h) − (f, w̃h)]
= a(uh, vh) + b(ph, vh) − (f, vh) = 0.

Thus, (53c) is well-defined.

5 Well-posedness of (PEε,δ,h)

In this section, we establish the well-posedness of (PEε,δ,h). Thus, we shall prove the following
two theorems. Recall that C∗ denotes a positive constant depending only on Ω, ‖f‖, ‖g‖1 and
‖α‖(Md)′ .

Theorem 14. There exists a unique solution (uh, ph) ∈ Vh ×Qh of (PEε,δ,h) , and we have

‖uh‖1 + ‖p̂h‖ +
∥∥∥∥1
ε
φδ(uhn + gn) + kh

∥∥∥∥
M ′

h

≤ C∗, (54)

where p̂h = Λph and kh = m(ph).

Theorem 15. Assume

(A1) the family {Sh}h is of quasi-uniform;

(A2) there exists Γ1 ⊂ Γ with |Γ1| > 0 which is independent of h, ε, δ and Ω such that uhn+gn > 0
on Γ1.
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Then, the solution (uh, ph) ∈ Vh ×Qh of (PEε,δ,h) admits the following estimates:

‖uh‖1 + ‖ph‖ +
∥∥∥∥1
ε
φδ(uhn + gn)

∥∥∥∥
M ′

h

≤ C∗; (55a)∥∥∥∥1
ε
φδ(uhn + gn)

∥∥∥∥
M ′

≤ C∗

(
1 +

h

ε

)
; (55b)

1√
ε
‖[uhn + gn]−‖Γ ≤ C∗

(
1 +

δ

ε

)
. (55c)

Remark 16. Condition (A2) is not restrictive; If β is sufficiently large and h, ε, δ are suitably
small, it is natural to suppose this condition.

Remark 17. If δ ≤ c0ε with some c0 > 0, we have, from (55c), ‖[uhn + gn]−‖Γ → 0 as ε→ 0.

To prove Theorem 14, we apply the following fundamental result.

Lemma 18 ([24, Theorem 2.1]). Let X be a separable reflexive Banach space and let T : X → X ′

be a (possibly nonlinear) operator satisfying the following conditions:

1. (boundness) There exist C,C ′,m > 0 s.t. ‖Tu‖X′ ≤ C‖u‖m
X + C ′ for all u ∈ X;

2. (monotonicity) 〈Tu− Tv, u− v〉X′,X ≥ 0 for all u, v ∈ X;

3. (hemicontinuity) For any u, v, w ∈ X, the function λ 7→ 〈T (u+ λv), w〉X′,X is continuous
on R;

4. (coerciveness)
〈Tu, u〉X′,X

‖u‖X
→ ∞ as ‖u‖X → ∞.

Then, for any ϕ ∈ X ′, there exists u ∈ X such that Tu = ϕ. Furthermore, if T is strictly
monotone:

〈Tu− Tv, u− v〉X′,X > 0 (∀u, v ∈ X,u 6= v),

then the solution is unique.

We set ρδ : V → V ′ by

〈ρδ(u), v〉 = −
∫

Γ
φδ(un + gn)vn dΓ (v ∈ V ).

Lemma 19. ρδ is a bounded, monotone and hemicontinuous operator from V to V ′.

Proof. (boundness) By using (45c) and the trace theorem, we have

〈ρδ(u), v〉 ≤
∫

Γ
|un + gn| · |vn| dΓ ≤ (‖u‖1 + ‖gn‖Γ)‖v‖1

for u, v ∈ V . Hence,
‖ρδ(u)‖V ′ ≤ ‖u‖1 + ‖gn‖Γ (u ∈ V ).

(monotonicity) Since −φδ(s) is non-decreasing function, we have

〈ρδ(u) − ρδ(v), u− v〉 = −
∫

Γ
(φδ(un + gn) − φδ(vn + gn))(un + gn − (vn + gn)) dΓ ≥ 0

for u, v ∈ V .
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(hemicontinuity) Let u, v, w ∈ V . Then, a real-valued function

〈ρδ(u+ λv), w〉 = −
∫

Γ
φδ(un + λvn)wn dΓ

of λ ∈ R is a continuous function, since the function φδ is continuous.

Proof of Theorem 14. It is divided into three steps.
Step 1. First, we prove that there exists a unique uh ∈ V σ

h satisfying

a(uh, vh) +
1
ε
〈ρδ(uh), vh〉 = (f, vh) − [[α, vh]] (∀vh ∈ V σ

h ) (56)

by using Lemma 18.
To do this, we introduce a nonlinear operator Aε : Vh → V ′

h by setting

〈Aεuh, vh〉 = a(uh, vh) +
1
ε
〈ρδ(uh), vh〉 (uh, vh ∈ Vh).

and verify the conditions of Lemma 18.
(boundness) For uh, vh ∈ V σ

h , we have immediately

‖Aεuh‖(V σ
h )′ ≤

(
‖a‖ +

1
ε

)
‖uh‖1 +

1
ε
‖gn‖Γ (uh ∈ V σ

h ).

(strictly monotonicity) By virtue of Korn’s inequality and monotonicity of ρδ,

〈Aεuh −Aεvh, uh − vh〉 = a(uh − vh, uh − vh) +
1
ε
〈ρδ(uh) − ρδ(vh), uh − vh〉

≥ CK‖uh − vh‖2
1 > 0

for uh, vh ∈ V σ
h , uh 6= vh.

(hemicontinuity) Let uh, vh, wh ∈ V σ
h . Then, a real-valued function

〈Aε(uh + λvh), wh〉 = a(uh + λvh, wh) +
1
ε
〈ρδ(uh + λvh), wh〉

of λ ∈ R is continuous, since a(·, wh) is continuous and ρδ(·) is hemicontinuous.
(coerciveness) For uh ∈ V σ

h , we have by (45c)

〈ρδ(uh), uh〉 = −
∫

Γ
φδ(uhn + gn)uhn dΓ

= −
∫

Γ
φδ(uhn + gn) ([uhn + gn]+ − [uhn + gn]− − [gn]+ + [gn]−) dΓ

≥ −
∫

Γ
φδ(un + gn)[gn]− dΓ

≥ −C (‖uh‖1 + ‖gn‖Γ) ‖gn‖Γ.

This gives

〈Aεuh, uh〉
‖uh‖1

=
a(uh, uh)
‖uh‖1

+
1
ε

〈ρδ(uh), uh〉
‖uh‖1

≥ CK‖uh‖1 −
C

ε

(‖uh‖1 + ‖gn‖Γ)
‖uh‖1

‖gn‖Γ,
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and, hence,
〈Aεuh, uh〉

‖uh‖1
→ ∞ as ‖uh‖1 → ∞.

As a consequence, we can apply Lemma 18 to conclude that there exists a unique uh ∈ V σ
h

satisfying Aεuh = Fh, where Fh ∈ (V σ
h )′ is defined as 〈F, vh〉 = (f, vh) − [[α, vh]] for vh ∈ V σ

h .
Thus, we have proved a unique existence of the solution uh ∈ V σ

h of (56).
Step 2. We verify the unique existence of ph ∈ Qh such that (uh, ph) is a solution of (PEε,δ,h).
In view of (51), there exists a unique p̂h ∈ Q0h satisfying

a(uh, vh) + b(p̂h, vh) = (f, vh) (vh ∈ V0h). (57)

Now, we find a constant kh such that (uh, ph) is a solution of (PEε,δ,h), where ph = p̂h + kh. (We
note that, with any kh ∈ R, (uh, ph) also solves (52).) To do this, we first rewrite (50a) as, by
using (53a)–(53c),

[τn(uh, ph) − ε−1φδ(uhn + gn) − αn, vhn] + [[τT (uh) − αT , vhT ]] = 0 (vh ∈ Vh).

Thus, in view of Lemma 13, it suffices to prove the following two equations:

[τn(uh, ph) − ε−1φδ(uhn + gn) − αn, µh] = 0 (µh ∈Mh); (58a)

[[τT (uh) − αT , µh]] = 0 (µh ∈Md
h with µhn = 0). (58b)

Obviously, vh = Ehµh ∈ Vh belongs to V σ
h for any µh ∈ Md

h with µhn = 0. Hence, (56) and
(53b) immediately implies (58b).

On the other hand, combining (56) and (53c), we have

[τn(uh, ph) + αn − ε−1φδ(uhn + gn), λh] = 0 (∀λh ∈M0h). (59)

At this stage, let us take

µ̃h ∈ Yh =
{
µh ∈Mh | µh ≥ 0, µh 6≡ 0,

∫
Γ
µh dΓ = 1

}
.

Then, for any µh ∈Mh, the function µh − κhµ̃h belongs to M0h, where κh =
∫
Γ µh dΓ.

Therefore, for any µh ∈Mh,

[τn(uh, ph) + αn − ε−1φδ(uhn + gn), µh] = [τn(uh, ph) + αn − ε−1φδ(uhn + gn), µh − κhµ̃h]

+ [τn(uh, ph) + αn − ε−1φδ(uhn + gn), κhµ̃h]

= κh[τn(uh, ph) + αn − ε−1φδ(uhn + gn), µ̃h] (60)

Now, choosing
kh = [τn(uh, p̂h) − ε−1φδ(uhn + gn), µ̃h], (61)

we have

[τn(uh, ph) + αn − ε−1φδ(uhn + gn), µ̃h] = [τn(uh, p̂h) + αn − ε−1φδ(uhn + gn), µ̃h] − kh

= 0.

Hence, we get (58a) by (60).

17



It remains to verify that (61) does not depend on the choice of µ̃h. We let µ̃h, µ̃
′
h ∈ Yh with

µ̃h 6= µ̃′h and let the corresponding kh be denoted by k̃h, k̃′h, respectively. Then, since λh = µh−µ′h
satisfies

∫
Γ λh dΓ = 0, we have by (59),

k̃h − k̃′h = [τn(uh, p̂h) + αn − ε−1φδ(uhn + gn), λh] = 0,

which means that kh defined by (61) is well-defined.
Step 3. Finally, we derive the stability result (54). Substituting vh = uh ∈ V σ

h into (56), we
obtain,

a(uh, uh) − 1
ε

∫
Γ
φδ(uhn + gn)uhn dΓ = (f, uh) − [[α, uh]]. (62)

Noting that, by (45c)

−1
ε

∫
Γ
φδ(uhn + gn)uhn dΓ = −1

ε

∫
Γ
φδ(uhn + gn)(uhn + gn) dΓ +

1
ε

∫
Γ
φδ(uhn + gn)gn dΓ

≥ 1
ε

∫
Γ
φδ(uhn + gn)[uhn + gn]− dΓ ≥ 0, (63)

we get
a(uh, uh) ≤ (f, uh) − [[α, uh]].

Hence, by virtue of Korn’s inequality,

‖uh‖1 ≤ C(‖f‖ + ‖α‖(Md)′). (64)

Moreover, according to (51) and (57),

‖p̂h‖ ≤ sup
vh∈V0h

b(p̂h, vh)
‖vh‖1

= sup
vh∈V0h

(f, vh) − a(uh, vh)
‖vh‖1

≤ C(‖f‖ + ‖uh‖1). (65)

Since (50a) is expressed as∫
Γ
(ε−1φδ(uhn + gn) + kh)µh dΓ

= a(uh, vh) + b(p̂h, vh) − (f, vh) + [[α, vh]] (∀µh ∈Mh, vh = Enhµh ∈ Vh),

we deduce ∥∥∥∥1
ε
φδ(uhn + gn) + kh

∥∥∥∥
M ′

h

≤ C(‖uh‖1 + ‖p̂h‖ + ‖f‖ + ‖α‖(Md)′). (66)

Summing up (64), (65) and (66), we obtain (54).

We proceed to the proof of Theorem 15. We use the standard Lagrange interpolation operator
ih : C(Γ) →Mh defined by

ihµ(P ) = µ(P ) (every node P of Sh)

and the L2 projection operator πh : L2(Γ) →Mh defined by∫
Γ
(πhµ− µ)µh dΓ = 0 (µh ∈Mh). (67)
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The following results are well-known:

µ ≥ 0 ⇒ ihµ ≥ 0, (68a)

‖ihµ− µ‖Γ + h‖ihµ− µ‖1,Γ ≤ Ch2|µ|2,Γ (µ ∈ H2(Γ) ∩H1
0 (Γ)), (68b)

‖πhµ‖Γ ≤ C‖µ‖Γ (µ ∈ L2(Γ)), (68c)

‖πhµ‖1,Γ ≤ C‖µ‖1,Γ (µ ∈ H1
0 (Γ)), (68d)

‖πhµ− µ‖Γ ≤ Ch‖µ‖1,Γ (µ ∈ H1
0 (Γ)). (68e)

In fact, (68a), (68b), (68c), (68e) are standard. On the other hand, (68d) holds true if {Sh}h is
of quasi-uniform (cf. [12, 11, 9]).

Remark 20. According to (68b), ‖ihµ‖1,Γ is bounded by a positive constant depending only on µ
if µ ∈ C∞

0 (Γ).

Lemma 21. ‖πhµ− µ‖M ′ ≤ Ch‖µ‖1/2,Γ for any µ ∈M .

Proof. It follows from (68c) that ‖πhµ − µ‖Γ ≤ C‖µ‖Γ. Combining this with (68e), (16) and
applying the interpolation theorem (cf. [25, Theorem 5.1, Ch. 1]), we obtain

‖πhµ− µ‖Γ ≤ Ch1/2‖µ‖1/2,Γ (µ ∈M).

We can utilize this in the following way. That is, noting (67),

‖πhµ− µ‖M ′ = sup
λ∈M

(πhµ− µ, λ)Γ
‖λ‖1/2,Γ

= sup
λ∈M

(πhµ− µ, πhλ− λ)Γ
‖λ‖1/2,Γ

≤ sup
λ∈M

‖πhµ− µ‖Γ‖πhλ− λ‖Γ

‖λ‖1/2,Γ
≤ Ch‖µ‖1/2,Γ.

Lemma 22. ‖φδ(µ)‖1/2,Γ ≤ C‖µ‖1/2,Γ for any µ ∈M .

Proof. By using (45c) and (45d), we have ‖φδ(µ)‖Γ ≤ C‖µ‖Γ for µ ∈ Q and ‖φδ(µ)‖1,Γ ≤ C‖µ‖1,Γ

for µ ∈ H1
0 (Γ). Hence, we can apply the (nonlinear) interpolation theorem (cf. [23, Theorem

3.1]) and (16) to get the desired result.

Proof of Theorem 15. First, we derive an estimation for kh. We take µ̃ ∈ C∞
0 (Γ) satisfying

µ̃ ≥ 0, µ̃ 6≡ 0 in Γ, supp µ̃ ⊂ Γ1.

Then, setting µ̃h = ihµ ∈Mh, we have

µ̃h ≥ 0, µ̃ 6≡ 0 in Γ, µ̃h = 0 in Γ\Γ1, ‖µ̃h‖M ≤ C,

∣∣∣∣∫
Γ
µ̃h dΓ −

∫
Γ
µ̃ dΓ

∣∣∣∣ ≤ Ch2, (69)

where those C’s depend on µ.
Since (A2) gives

φδ(uhn + gn) = 0 on Γ1,

we deduce from (50a) and (69)

kh

∫
Γ
µ̃h dΓ = a(uh, ṽh) + b(p̂h, ṽh) − 1

ε

∫
Γ
φδ(uhn + gn)µ̃h dΓ − (f, ṽh) + [[α, ṽh]]

= a(uh, ṽh) + b(p̂h, ṽh) − (f, ṽh) + [[α, ṽh]], (70)
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where ṽh = Enhµ̃h ∈ Vh.
This leads to

|kh| ≤ C∗, ‖ph‖ ≤ C∗. (71)

Hence, we have proved (55a).
By using (67) and (50a), we can calculate as∫

Γ
ε−1πhφδ(uhn + gn)µh dΓ =

∫
Γ
ε−1φδ(uhn + gn)µh dΓ

= a(uh, vh) + b(ph, vh) − (f, vh) + [[α, vh]] (∀µh ∈Mh, vh = Enhµh ∈ Vh).

Hence,
‖ε−1πhφδ(uhn + gn)‖M ′

h
≤ (‖uh‖1 + ‖p̂h‖ + ‖f‖ + ‖α‖(Md)′ + ‖g‖1). (72)

We write as

sup
µ∈M

(ε−1φδ(uhn + gn), µ)Γ
‖µ‖1/2,Γ

=
1
ε

sup
µ∈M

(φδ(uhn + gn) − πhφδ(uhn + gn), µ)Γ
‖µ‖1/2,Γ︸ ︷︷ ︸

=I1

+ sup
µ∈M

(ε−1πhφδ(uhn + gn), µ)Γ
‖µ‖1/2,Γ︸ ︷︷ ︸
=I2

.

By using Lemmas 21 and 22,

‖πhφδ(uhn + gn) − φδ(uhn + gn)‖M ′ ≤ Ch‖φδ(uhn + gn)‖1/2,Γ

≤ Ch‖uhn + gn‖1/2,Γ

≤ Ch(‖uh‖1 + ‖g‖1).

Consequently,

|I1| ≤ C
h

ε
(‖uh‖1 + ‖g‖1).

On the other hand, by virtue of (67), (68d) and (72), we have

I2 = sup
µ∈M

(ε−1πhφδ(uhn + gn), µ)Γ
‖µ‖1/2,Γ

≤ C sup
µ∈M

(ε−1πhφδ(uhn + gn), πhµ)Γ
‖πhµ‖1/2,Γ

≤ C sup
µh∈Mh

(ε−1πhφδ(uhn + gn), µh)Γ
‖µh‖1/2,Γ

Therefore, from (72),

|I2| ≤ C(‖uh‖1 + ‖ph‖ + ‖f‖ + ‖α‖(Md)′ + ‖g‖1)

Summing up those estimates, we get (55b).
Finally, using (45b),

−1
ε

∫
Γ
φδ(uhn + gn)uhn dΓ ≥ 1

ε

∫
Γ
φδ(uhn + gn)[uhn + gn]− dΓ ≥ 0

≥ 1
ε

∫
Γ
([uhn + gn]2− − Cδ[uhn + gn]−) dΓ ≥ 0.
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We apply this to (62) and obtain

1
ε

∫
Γ
[uhn + gn]2− dΓ ≤ (f, uh) − [[α, uh]] + C

δ

ε

∫
Γ
[uhn + gn]− dΓ

≤ ‖f‖ · ‖uh‖1 + ‖α‖(Md)′‖uh‖1 + C
δ

ε
(‖uh‖1 + ‖g‖1),

which implies (55c).

6 Error estimate

We are now ready to state the error estimates between (PDE) and (PEε,δ,h).

Theorem 23. Assume that (A1) and (A2) are satisfied. Let (u, p) and (uh, ph) be solutions of
(PDE) and (PEε,δ,h), respectively, and suppose that (u, p) ∈ H2(Ω)d ×H1(Ω) and τn(u, p)+αn ∈
M . Moreover, assume that h ≤ c1ε with a constant c1 > 0. Then, we have

‖u− uh‖1 + ‖p̂− p̂h‖ ≤ C∗∗(
√
ε+

√
δ +

√
h), (73)

where p̂ = Λp, p̂h = Λph, C∗∗ denotes a positive constant depending only on Ω, |u|2, |p|1,
‖τn(u, p) + αn‖M , ‖f‖, ‖g‖1 and ‖α‖(Md)′. If, furthermore,

(A3) there exists Γ0 ⊂ Γ with |Γ0 ∩ Γ1| > 0 such that un + gn > 0 on Γ0,

then we have
‖u− uh‖1 + ‖p− ph‖ ≤ C∗∗(

√
ε+

√
δ +

√
h). (74)

Remark 24. Since
∫
Γ un dΓ = 0 and un + gn ≥ 0 on Γ, we may assume that we are given Γ0 as

in (A3).

We use the standard Lagrange interpolation operator Ih : C(Ω)d → Vh and the L2 projection
operator Πh : Q→ Qh. It is well-known that

‖v − Ihv‖1 ≤ Ch|v|2 (v ∈ [H2(Ω) ∩H1
0 (Ω)]d), (75a)

‖q − Πhq‖ ≤ Ch|q|1 (q ∈ H1(Ω)). (75b)

Proof of Theorem 23. We recall that (27) together with (22) give

a(u, v) + b(p, v) − [τn(u, p), vn] = (f, v) − [[αT , vT ]] (v ∈ V ). (76)

Hence, errors u− uh and p− ph satisfy

a(u− uh, vh) + b(p− ph, vh) − [τn(u, p) + αn − ε−1φδ(uhn + gn), vhn] = 0 (vh ∈ Vh). (77)

Setting p̂ = Λp, p̂h = Λph, k = m(p) and kh = m(ph), we can write as

a(u− uh, vh) = −b(p̂− p̂h, vh)︸ ︷︷ ︸
=J1(vh)

+[τn(u, p) + αn − ε−1φδ(uhn + gn) + k − kh, vhn]︸ ︷︷ ︸
=J2(vh)

(vh ∈ Vh).
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In particular, we have

b(Λqh − p̂h, vh) = −a(u− uh, vh) − b(p̂− Λqh, vh) (vh ∈ V0h, qh ∈ Qh).

and, by applying (51),

‖Λqh − p̂h‖ ≤ C sup
vh∈V0h

−a(u− uh, vh) − b(p̂− Λqh, vh)
‖vh‖1

≤ C(‖u− uh‖1 + ‖p̂− Λqh‖)
≤ C(‖u− uh‖1 + ‖p− qh‖) (qh ∈ Qh). (78)

At this stage, we set

vh = Ihu− uh ∈ Vh, qh = Πhp ∈ Qh, q̂h = Λqh ∈ Q0h. (79)

Then,

‖p̂− p̂h‖ ≤ ‖p̂− q̂h‖ + ‖q̂h − p̂h‖
≤ ‖p− Πhp‖ + C(‖u− uh‖1 + ‖p− Πhp‖)
≤ C∗∗h+ C‖u− uh‖1. (80)

By using (75), (78) and ‖p̂− q̂h‖ ≤ C‖p− qh‖, we estimate as

|J1(Ihu− uh)| ≤ |b(p̂− p̂h, Ihu− u)| + |b(p̂− q̂h, u− uh)| + |b(q̂ − p̂h, u− uh)|
≤ ‖b‖ · ‖p̂− p̂h‖ · ‖Ihu− u‖1 + ‖b‖ · ‖p̂− q̂h‖ · ‖u− uh‖1 + 0
≤ C(C∗∗h+ ‖u− uh‖1) · h|u|2 + Ch|p|1‖u− uh‖1

≤ C∗∗h
2 + C∗∗h‖u− uh‖1

≤ C∗∗h
2 + C∗∗h(‖u− Ihuh‖1 + ‖Ihu− uh‖1)

≤ C∗∗h
2 + C∗∗‖Ihu− uh‖1.

To perform an estimation for J2, we divide it as

J2(Ihu− uh) = [τn(u, p) + αn − ε−1φδ(uhn + gn) + k − kh, (Ihu)n − un]︸ ︷︷ ︸
=J21

+[τn(u, p) + αn − ε−1φδ(uhn + gn) + k − kh, un − uhn]︸ ︷︷ ︸
=J22

.

According to stability results (54) and (55b), we deduce

|J21| ≤ (‖τn(u, p̂)‖M ′ + ‖ε−1φδ(uhn + gn)‖M ′ + ‖αn‖M ′ + |kh|)‖(Ihu)n − un‖1/2,Γ

≤ C∗‖Ihu− u‖1

≤ C∗∗h.

Noting ∫
Γ
(un − uhn) dΓ =

∫
Ω
∇ · (u− uh) dx = 0
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and using (27c), (27d), (27e), (45b), (45c) and (54), we can calculate as

J22 = [τn(u, p) + αn − ε−1φδ(uhn + gn), un + gn − (uhn + gn)]

= −[ε−1φδ(uhn + gn), un + gn] − [τn(u, p) + αn, uhn + gn]

+ [ε−1φδ(uhn + gn), uhn + gn]

= −[ε−1φδ(uhn + gn), un + gn]︸ ︷︷ ︸
≤0

−[τn(u, p) + αn, [uhn + gn]+]︸ ︷︷ ︸
≤0

+ [τn(u, p) + αn, [uhn + gn]−]−[ε−1φδ(uhn + gn), [uhn + gn]−]︸ ︷︷ ︸
≤0

≤ [τn(u, p) + αn, [uhn + gn]− − φδ(uhn + gn)] + ε[τn(u, p) + αn, ε
−1φδ(uhn + gn)]

≤ ‖τn(u, p) + αn‖Γ‖[uhn + gn]− − φδ(uhn + gn)‖Γ

+ ε‖τn(u, p) + αn‖M‖ε−1φδ(uhn + gn)‖M ′

≤ C∗(δ + ε).

Summing up those estimates, we obtain

CK‖Ihu− uh‖2
1 ≤ a(Ihu− uh, Ihu− uh)

= a(Ihu− u, Ihu− uh) + a(u− uh, Ihu− uh)
= a(Ihu− u, Ihu− uh) + J1(Ihu− uh) + J21 + J22

≤ C∗∗h‖Ihu− uh‖1 + C∗∗h
2 + C∗∗h‖Ihu− uh‖1 + C∗∗h+ C∗(δ + ε).

Therefore, we deduce
‖Ihu− uh‖1 ≤ C∗∗

(√
h+

√
ε+

√
δ
)

and
‖u− uh‖1 ≤ ‖u− Ihu‖1 + ‖Iu− uh‖1 ≤ C∗∗

(√
h+

√
ε+

√
δ
)
.

This, together with (80), implies (73).
Finally, we derive an estimation for |kh −k|. As in the proof of Theorem 15 (cf. (69)), We take

µ̃ ∈ C∞
0 (Γ) satisfying µ̃ ≥ 0, µ̃ 6≡ 0 in Γ and supp µ̃ ⊂ Γ0 ∩Γ1. Then, setting µ̃h = ihµ ∈Mh, we

have

µ̃h ≥ 0, µ̃h 6≡ 0 in Γ, µ̃h = 0 in Γ\(Γ0 ∩ Γ1), ‖µ̃h‖M ≤ C,

∣∣∣∣∫
Γ
µ̃h dΓ −

∫
Γ
µ̃ dΓ

∣∣∣∣ ≤ Ch2.

Since un + gn > 0 on Γ0, we have τn(u, p) + αn = 0 on Γ0 in view of (27e). Substituting
ṽh = Enhµ̃h ∈ Vh ⊂ V into (76) and using (27d), we have

k

∫
Γ
µ̃h dΓ = a(u, ṽh) + b(p̂, ṽh) − (f, ṽh) + [[α, ṽh]] −

∫
Γ
(τn(u, p) + αn)µ̃h dΓ

= a(u, ṽh) + b(p̂, ṽh) − (f, ṽh) + [[α, ṽh]].

This, together with (70), gives

|kh − k| ≤ |a(uh − u, ṽh)| + |b(p̂h − p̂, ṽh)| ≤ C(‖uh − u‖1 + ‖p̂h − p̂‖).

Combining those estimates, we completes the proof of (74).
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7 Numerical examples

In this section, we present some results of numerical experiments in order to confirm our theo-
retical results. We prefer the original setting (4) with (6), (11) to (1) and (2). Thus, we consider
a model Stokes problem with a nonlinear Robin condition

− ν∆v + ∇q = f, ∇ · v = 0 in Ω, (81a)
v = b on S1, (81b)
v = 0 on S2, (81c)

τn(v, q) =
1
ε
φδ(vn) on Γ, (81d)

vT = 0 on Γ, (81e)

where φδ is the regularized function defined as (3).

Remark 25. As mentioned in Introduction, we are interested in computing v and q in (4). The
unknown functions u and p in (1) and (2) are introduced as “perturbations” of those target
variables and they make analysis clear. Moreover, the reference flow (g, π) plays an important
role in theoretical considerations, whereas it is not obvious that it is always available in actual
computations.

Remark 26. In (81), we take vT = 0 instead of τT (u) = 0 as a boundary condition for the
tangential component of v on Γ. See Remark 12.

The finite element approximation for (81) reads as follows.
(PE′

ε,δ,h) Find (vh, qh) ∈Wh ×Qh such that vh = ihb on S1 and

a(vh, wh) + b(qh, wh) − 1
ε

∫
Γ
φδ(vn)whn dΓ = (f, wh) (∀wh ∈ Vh), (82)

b(rh, vh) = 0 (∀rh ∈ Qh), (83)

where

Wh = {vh ∈ C0(Ω) | vh = 0 on S2, vhT = 0 on Γ, vh|T ∈ P(d)
1 ⊕ span{ϕT } (∀T ∈ Th)}.

First, we deal with a simple example. That is, setting Ω = {(x, y) | 0 ≤ x ≤ L,−R ≤ y ≤ R},
S1 = {0} × [−R,R], and Γ = {L} × [−R,R], we impose

b(x, y) = (C0(R2 − y2), 0), f ≡ 0 (84)

with C0 > 0. Then, (81) has the exact solution which is explicitly given as

v(x, y) =
(
C0(R2 − y2), 0

)
, q(x, y) = 2νC0L

(
1 − x

L

)
. (85)

This is nothing but the well-known Poiseuille flow.
The details of our computation are as follows. Set L = 15, R = 5, ν = 1/50, and C0 = 5/(νL).

For the triangulation of Ω, we use a uniform mesh composed of 12N2 congruent right-angle
triangles; The rectangle is divided into 3N ×2N squares. Then, each small square is decomposed
into two equal triangles by a diagonal. Consequently, h = N/

√
2. Since we have employed the C1

regularization φδ, Newton’s method is available for computing the nonlinear equation (PE′
ε,δ,h).

Penalty parameters are chosen as ε = δ = h/20. Hence, it is ensured by Theorem 23 that

‖v − vh‖1 + ‖q − qh‖ ≤ C
√
h. (86)
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In order to verify this, we set

E
(1)
h = ‖v − vh‖, E

(2)
h = ‖v − vh‖1, E

(3)
h = ‖q − qh‖,

and observe

ρ
(i)
h =

logE(i)
h′ − logE(i)

h

log h′ − log h
(i = 1, 2, 3)

with h′ ≈ h/2.
The result is reported in Tab. 1; The H1 error ρ(2)

h for vh is close to the unity. It is better
than our theoretical result (86). However, we have not succeeded in proving those first order
convergences at present. We need further study. We could not derive the L2 error for vh; From
Tab. 1, we observe that the second order convergence actually takes place.

h E
(1)
h ρ

(1)
h E

(2)
h ρ

(2)
h E

(3)
h ρ

(3)
h

1.0743 13.9 − 1.20 · 102 − 2.07 · 10−1 −
0.5371 3.47 2.001 5.96 · 101 1.010 6.57 · 10−2 1.656
0.2685 0.87 2.000 2.97 · 101 1.003 2.18 · 10−2 1.594
0.1342 0.21 2.000 1.48 · 101 1.001 7.42 · 10−3 1.553
0.0665 0.052 2.000 7.17 1.000 2.56 · 10−3 1.527

Table 1: Numerical convergence rates of (PE′
ε,δ,h) for (85).

Finally, we consider a two-dimensional branched pipe as illustrated in Fig. 2. Since this Ω is
not a polygon, we approximate it by a polygon Ωh whose vertices are located on ∂Ω. On S1,
we impose a parabolic inflow similarly to (84). The figure 3 shows the state of a numerical flow
velocity vh.

Figure 2: A branched pipe and an example of triangulation.

As before, we observe ρ(1)
h , ρ(2)

h and ρ
(3)
h . Since in this case we cannot obtain the (explicit)

exact solution, we make use of numerical solutions with extra fine mesh. Tab. 2 shows the result.
We observe that the H1 error for vh and the L2 error for qh are close to the unity even in the
curved domain. Moreover, the L2 error for vh is close to 2.
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Figure 3: Velocity and pressure field in branched pipe.

h E
(1)
h ρ

(1)
h E

(2)
h ρ

(2)
h E

(3)
h ρ

(3)
h

0.69279 2.497 · 10−1 — 5.941 — 1.786 · 10−1 —
0.33353 7.767 · 10−2 1.552 3.359 0.780 5.909 · 10−2 1.513
0.17571 2.044 · 10−2 2.083 1.768 1.001 3.069 · 10−2 1.022

Table 2: Numerical convergence rates of (PE′
ε,δ,h) for branched pipe.
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