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We propose a new outflow boundary condition, a unilateral condition of Sig-
norini’s type, for the incompressible Navier-Stokes equations. The condition is a
generalization of the standard free-traction condition and it’s variational formula-
tion is given by a variational inequality. We also consider a penalty approximation,
which is a kind of the Robin condition, to deduce a suitable formulation for nu-
merical computations. Under those conditions, we can obtain energy inequalities
which are key features for numerical computations. The main contribution of this
paper is to establish the well-posedness of the Navier-Stokes equations under those
boundary conditions. In particular, we prove the unique existence of strong solu-
tions of Ladyzhenskaya’s class by the standard Galerkin’s method. For the proof
of the existence of pressures, however, we offer a new method of analysis.
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1 Introduction

1.1 Motivation

In numerical simulation of real-world flow problems, we often encounter some issues concerning
artificial boundary conditions. A typical and important example is the blood flow problem in
the large arteries, where the blood is assumed to be a viscous incompressible fluid (cf. [8],
[21]). The blood vessel is modeled by a branched pipe as illustrated, for example, by Fig. 1.
We are able to give a velocity profile at the inflow boundary S and the flow is supposed to be
a perfect non-slip on the wall C. Then, the blood flow simulation is highly dependent on the
choice of artificial boundary conditions posed on the outflow boundary Γ.
∗zhoug@ms.u-tokyo.ac.jp
†norikazu@ms.u-tokyo.ac.jp
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Figure 1: A branched pipe

In order to state the problem more specifically, let Ω ⊂ Rd, d = 2, 3, be a bounded domain
and let the boundary ∂Ω be composed of three parts S, C and Γ. Those S, C and Γ are
assumed to be smooth surfaces, although the whole boundary ∂Ω itself is not smooth. Then,
for T > 0, we consider the Navier-Stokes equations

ut + (u · ∇)u = ∇ · σ(u, p) + f in Ω × (0, T ), (1a)
∇ · u = 0 in Ω × (0, T ), (1b)
u = b on S × (0, T ), (1c)
u = 0 on C × (0, T ), (1d)
u|t=0 = u0 on Ω (1e)

for the velocity u = (u1, . . . , ud) and the pressure p with the density ρ = 1 and the kine-
matic viscosity ν of the viscous incompressible fluid under consideration. Therein, σ(u, p) =
(σi,j(u, p)) = −pI+2νD(u) denotes the stress tensor, whereD(u) = (Di,j(u)) =

(
1
2

(
∇u+ ∇uT

))
the deformation-rate tensor and I the identity. The prescribed functions f = f(x, t) and
u0 = u0(x) denote the external force and initial velocity, respectively. Moreover, b = b(x, t)
denotes the prescribed inflow velocity with b|∂S = 0.

A setting of the boundary condition on Γ is not a trivial task, since the flow distribution
and pressure field are unknown and cannot be prescribed in many simulations. As a common
outflow boundary condition, the free-traction condition or the so-called do-nothing condition

τ(u, p) = 0 on Γ (2)

is still frequently used so far (cf. [12], [10]), where

τ(u, p) = σ(u, p)n (3)

denotes the traction vector on ∂Ω and n the outward normal vector to ∂Ω. Though this
condition is enough for many problems, it sometimes causes serious numerical instability near
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Γ (cf. [5, Remark 4.1], [22]). Actually, from the view-point of mathematics, the energy
inequality is not guaranteed under (2) and it is a drawback of employing (2). To describe this
issue, we take a reference flow (g, π) which is the solution of the Stokes system

∇ · σ(g, π) = 0, ∇ · g = 0 in Ω, (4a)
g = b on S, g = 0 on C, g = g0(x)β(t) on Γ (4b)

for all t ∈ [0, T ], where g0 = g0(x) ∈ C∞
0 (Γ)d is a prescribed function satisfying∫

Γ
g0 · n dΓ = 1, g0 · n ≥ 0 on Γ (5)

and we set
β(t) = −

∫
S
b · n dS.

(The function g is nothing but a lifting function of b.) By using this, we will find (u, p) of the
form

u = U + g, p = P + π.

Then, the energy inequality for (1) reads as

sup
t∈[0,T ]

‖U‖2
L2(Ω)d + 2ν

∫ T

0
Dij(U)Dij(U) ≤ C, (6)

where C denotes a positive constant depending only on f , u0, b and T . This inequality is of
use. It plays a crucial role in the construction of a solution of the Navier-Stokes equations as
is just discussed in this paper. Furthermore, it is connected with the stability of numerical
schemes from the view-point of numerical computation. That is, it is preferred that the energy
inequality does not spoiled after discretizations. For example, we often take some kinds of
approximation to ∫

Ω
(u · ∇)v · w dx

to ensure the energy inequality under time discretizations (cf. [23]). However, it is not certain
the energy inequality (6) to hold under (2) even for the continuous case. In fact, assuming (1)
admits a smooth solution (u, p) = (U + g, P + π) in 0 ≤ t ≤ T and multiplying the both sides
of (1a) by U , we have by the integration by parts

d

dt
‖U‖2

L2(Ω)d + 2ν
∫

Ω
Dij(U)Dij(U) dx+

1
2

∫
Γ
un|U |2 dΓ −

∫
Γ
τ(u, p) · U dΓ︸ ︷︷ ︸

=I

=
∫

Ω
[f − gt − (g · ∇)g] · U dx−

∫
Ω
(U · ∇)g · U dx. (7)

If I ≥ 0, we can derive (6) as will be demonstrated in Section 5; However, it is impossible to
get I ≥ 0 since we have no information about un on Γ under (2). (Bothe et al. [6] recently
studied the well-posedness of the Navier-Stokes equations under a class of energy preserving
boundary conditions; However, the common one (2) was discussed only in the case of the Stokes
equations.)
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With this connection, F. Boyer, F. Bruneau and P. Fabrie proposed and studied a class of
nonlinear boundary conditions that ensure the energy inequality (cf. [1], [2], [3], [4]). A typical
outflow condition they proposed is given as

τ(u, p) = −1
2
[un]−U + 2νD(g)n on Γ, (8)

where
[s]± = max{0,±s}, s = [s]+ − [s]−.

Under the boundary condition (8), the identity (7) implies

d

dt
‖U‖2

L2(Ω)d + 2ν
∫

Ω
Dij(U)Dij(U) dx+

1
2

∫
Γ
[un]+|U |2 dΓ

=
∫

Ω
[f − gt − (g · ∇)g] · U dx−

∫
Ω
(U · ∇)g · U dx+

∫
Γ

2νD(g)n · U dΓ.

Then, after some calculations, we obtain the energy inequality (6). Actually, they established
the well-posedness of (1) with a class of boundary conditions, including (8), by Galerkin’s
method based on (6).

As a matter of fact, a similar boundary condition is successfully applied in actual compu-
tations, that is, in blood flow simulation for thoracic arteries. In Bazilevs et al. [5, §4], they
employed the following condition. First, they introduced a regularized traction vector

τ̃(u, p) = τ(u, p) + [un]−u

and considered the resistance boundary condition

τ̃(u, p) · n+R

∫
Γ
un dΓ + p0 = 0, τ̃(u, p) − [τ̃(u, p) · n]n = 0 on Γ,

where R and p0 are prescribed constants that control the average of the flow rate across Γ (cf.
[24], [9]). This condition is equivalently written as

τ(u, p) = −[un]−u−
(
R

∫
Γ
un dΓ + p0

)
n. (9)

If b = 0 (then we can take g = 0 and π = 0), we derive the energy inequality under this
condition. They offered several numerical results for medical problems and did not give any
mathematical considerations. On the other hand, Labeur and Wells [17] considered essentially
the same condition as (9) with R = p0 = 0, where they studied energy stable hybrid discon-
tinuous finite element method but did not discuss about the well-posedness of the continuous
problem.

Those previous works suggest us that it is important to control the flow-direction near the
outflow boundary for stable numerical computations and that the energy inequality is a key
property to check whether the flow-direction is suitable or not. Therefore, it is worth-while
considering flow-direction boundary conditions, such as (8) and (9), from the view-point of
numerical analysis. Furthermore, it seems that there are little works devoted to those boundary
conditions from the view-point of pure analysis.

The condition (8) is useful, but it has a few difficulties. Thus, a non-trivial relationship
is assumed between the traction τ(u, p) and the velocity u in (8) and we have to determine
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the reference velocity g before computation. On the other hand, it is not obvious that the
condition (9) is suitable for the case b 6= 0.

In the present paper, we propose a new boundary condition. That is, in order to control the
flow direction at Γ, we pose a unilateral boundary condition of Signorini’s type{

un ≥ 0,

τn(u, p) ≥ 0, unτn(u, p) = 0, τT (u) = 0
on Γ, (10)

where
τn(u, p) = τ(u, p)n, τT (u) = τ(u, p) − τn(u, p)n.

This is an analogy to Signorini’s condition in the theory of elasticity (cf. [14]). Under this
condition, the solution of (1) satisfies the energy inequality (cf. Theorem 4) and it is indeed a
generalization of the free-traction condition (2). Namely,

if un > 0 on ω ⊂ Γ, then τn(u, p) = 0 on ω;
if un = 0 on ω ⊂ Γ, then τn(u, p) ≥ 0 on ω.

The condition (10) is described in terms of inequalities so that it cannot be directly applied
to numerical calculations. However, we can utilize its penalty approximation

τn(u, p) =
1
ε
[un]−, τT (u) = 0 on Γ, (11)

where 0 < ε � 1 is the penalty parameter. After introducing a C1 regularization of [·]− (for
example, ρδ in (47)), we can solve (1) with (11) by using, for example, Newton’s iteration. We
do not need to introduce the reference velocity g for computation. (For mathematical analysis
below, we need g.) It is indeed an approximation of (10); Thus, we have (cf. the proof of
Lemma 4.7)

(uε, pε) → (u, p) as ε→ 0

in a certain sense or other, where (u, p) and (uε, pε) denote solutions of (1) with, respectively,
(10) and (11). Moreover, the condition (11) is closely related with (9) in a certain sense.
Namely, although ε is originally defined as a positive constant, we set it as a function;

1
ε

= [un]−.

Then, (11) implies
τn(u, p) = [un]2− = −[un]−un, τT (u) = 0.

Hence, as for the normal component, (11) and (9) are equivalent in the case R = p0 = 0. This
suggests that (9) is of use for the case b 6= 0. This is another motivation for studying (11).

Our ultimate aim is to develop the theory for the initial-boundary value problems for the
Navier-Stokes equations (1) with (10) or with (11) from the standpoint both of analysis and nu-
merical computations. The particular purpose of this paper is to establish the well-posedness
of these problems. We postpone a study on time discretizations and the finite element ap-
proximation in future works; a partial result on the finite element approximation for a model
(stationary) Stokes problem will be reported in Saito et al. [19].
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1.2 Summary of the results

We shall give the precise statement of our main results in §2.5, after having described the
variational interpretation of our target problems. However, let us summarize our results here
for the reader’s convenience.

First, we assume that the prescribed inflow velocity b = b(x, t) satisfies b|∂S = 0 and

β(t) = −
∫

S
b · n dS > 0, t ∈ [0, T ].

Consequently, we will have ∫
Γ
u · n dΓ = β(t) > 0, t ∈ [0, T ].

As is clearly stated in Introduction of [13], weak solutions of Leray-Hopf’s class is not suitable
for the purpose of application to numerical analysis. We are strongly motivated by [13] and
interested in constructing of strong solutions of Ladyzhenskaya’s class (cf. [15]), that is, we
will find functions

u ∈ L∞(0, T ;H1(Ω)d), ut ∈ L2(0, T ;H1(Ω)d) ∩ L∞(0, T ;L2(Ω)d),

p ∈ L∞(0, T ;L2(Ω))

that satisfy the Navier-Stokes equation (1) with the unilateral boundary condition (10) in the
sense of distributions.

To this end, it suffices to find (U,P ) satisfying the following perturbed Navier-Stokes prob-
lem.

(NS) For t ∈ (0, T ), find (U,P ) such that

Ut + ((U + g) · ∇)U + (U · ∇)g −∇ · σ(U,P ) = F in Ω, (12a)
∇ · U = 0 in Ω, (12b)
U = 0 on S ∪ C, (12c)
Un + gn ≥ 0, τn(U + g, P + π) ≥ 0 on Γ, (12d)
(Un + gn)τn(U + g, P + π) = 0, τT (U) = −τT (g) on Γ, (12e)
U(x, 0) = U0 on Ω, (12f)

where

F = f − gt − (g · ∇)g,
U0 = u0 − g(0).

Actually, under some appropriate assumptions on F , U0, and (g, π) (cf. (A1)–(A4) below),
we will prove (cf. Theorem 2 in §2.5), there exists a unique solution of (NS) satisfying

U ∈ L∞(0, T ;H1(Ω)d), Ut ∈ L2(0, T ;H1(Ω)d) ∩ L∞(0, T ;L2(Ω)d),

P ∈ L∞(0, T ;L2(Ω)).

For the penalty problem (1) with (11), we consider the following perturbed problem.
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(NSε) Let 0 < ε� 1. For all t ∈ (0, T ), find (Uε, Pε) such that

Uε,t + (Uε + g · ∇)Uε + (Uε · ∇)g − 1
ρ
∇ · σ(Uε, Pε) = F in Ω,

∇ · Uε = 0 in Ω,
Uε = 0 on S ∪ C,

τn(Uε + g, Pε + π) =
1
ε
[Uεn + gn]−, τT (Uε) = −τT (g) on Γ,

Uε(x, 0) = u0 − g(0) on Ω,

Then,
uε = Uε + g, pε = Pε + π

solve (1) with (11). Under the same assumptions on F , U0, and (g, π), we will prove (cf.
Theorem 3 in §2.5), there exists a unique solution of (NSε) satisfying

Uε ∈ L∞(0, T ;H1(Ω)d), Uε,t ∈ L2(0, T ;H1(Ω)d) ∩ L∞(0, T ;L2(Ω)d),

Pε ∈ L∞(0, T ;L2(Ω))

for a sufficiently small ε.
The plan of our analysis is as follows. We firstly give variational formulations (NS-E) and

(NSε-E) of (NS) and (NSε) in §2.3 and §2.4, respectively, after having described the varia-
tional interpretations of traction vectors τ(u, p), τn(u, p) and τT (u) in §2.2. Further, (NS-E) is
converted into the variational inequality problem (NS-I) and the equivalence of those two for-
mulations is proved (cf. Theorem 1 in §2.3). We also introduce the solenoidal (divergence-free)
versions (NS-Iσ) and (NSε-Eσ) of (NS-I) and (NSε-E), respectively.

Theorems 2 and 3 are divided into several propositions:

• Proposition 1 (The unique existence of U of a solution of (NS-Iσ));

• Proposition 2 (The existence of an associating pressure P with U of (NS-I));

• Proposition 3 (The uniqueness of (NS-I));

• Proposition 4 (The unique existence of Uε of a solution of (NSε-Eσ));

• Proposition 5 (The existence of an associating pressure Pε with Uε of (NSε-E));

• Proposition 6 (The uniqueness of (NSε-E)).

We use a C1 regularization ρδ of [·]− and the standard Galerkin’s method to prove Propo-
sition 4 (cf. Section 4). Therein, several a priori estimates including

‖[Uε,n + gn]−‖L∞(0,T ;L2(Γ)) ≤ C
√
ε

play important role. Then, we prove Proposition 1 by compactness in Section 4. Usually, we
apply a version of De Rham’s theorem (cf. [20, Lemma IV.1.4.3] for example) to deduce a
pressure of the Navier-Stokes equations, after a velociy has been obtained. Unfortunately, it
is not enough to deduce pressures P and Pε for our problems. Actually, we have to choose
suitable constants k and kε such that (U, P̊ + k) and (Uε, P̊ε + kε) satisfy (NS-I) and (NSε-E),
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Γ

Figure 2: A smooth domain

respectively, where P̊ and P̊ε are associating pressures with U and Uε, respectively. (P and Pε

are L2 functions in Ω with zero mean values.) We discuss this issue and prove Propositions 2
and 5 in Section 3. Proofs of Propositions 3 and 6 are also mentioned in Section 3.

(NS-E) and (NSε-E) admit energy inequalities of the form (6); We derive those inequalities
in Section 5.

List of problems

Name Place Page Equation
(NS-E) §2.3 11 (18)
(NS-I) §2.3 11 (19)
(NS-Iσ) §2.3 11 (20)
(NSε-E) §2.4 12 (21)
(NSε-Eσ) §2.4 12 (22)
(NS-Iσ )̃ Sec. 4 20 (45)
(NSε-Eσ )̃ Sec. 4 20 (46)
(NSε-Eσ

δ )̃ Sec. 4 21 (49)
(NSε-Eσ

δm)̃ Sec. 4 21 (51)

2 Problems and results

2.1 Notation

We recall that Ω ⊂ Rd, d = 2, 3, is a bounded domain and the boundary ∂Ω is composed of
three parts S, C and Γ. Although we mostly deal with the case illustrated by Fig. 1, our
discussion is also valid for the case where ∂Ω is smooth with Γ ∩ C = ∅, C ∩ S = ∅, and
S ∩ Γ = ∅; See, for example, Fig. 2.

We follow the standard notation, for example, of [16] and [20] as for function spaces and
their norms. We employ the abbreviations:

‖u‖ = ‖u‖Ω = ‖u‖0,Ω = ‖u‖L2(Ω)d or ‖u‖L2(Ω);

‖u‖1 = ‖u‖1,Ω = ‖u‖H1(Ω)d or ‖u‖H1(Ω);

‖u‖Γ = ‖u‖0,Γ = ‖u‖L2(Γ)d or ‖u‖L2(Γ);

(u, v) = (u, v)L2(Ω)d or (u, v)L2(Ω).
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We frequently use the following function spaces:

V = {v ∈ H1(Ω)d | v = 0 on C ∩ S}, V σ = {v ∈ v | ∇ · v = 0 in Ω},
V0 = H1

0 (Ω)d, V σ
0 = {v ∈ V0 | ∇ · v = 0 in Ω},

K = {v ∈ V | vn + gn ≥ 0 on Γ}, Kσ = {v ∈ K | ∇ · v = 0 in Ω},

Q = L2(Ω), Q0 = L2
0(Ω) =

{
q ∈ Q |

∫
Ω
q dx = 0

}
,

M =

{
H

1
2 (Γ) if Γ ∩ C = ∅ (e.g. Fig. 2),

H
1
2
00(Γ) if Γ ∩ C 6= ∅ (e.g. Fig. 1).

The spaces V and V σ are closed subspaces of H1(Ω)d and are equipped with norm ‖ · ‖1. The
spaces V0 and V σ

0 are also closed subspaces of H1(Ω)d and are equipped with norm ‖ · ‖1 by
virtue of the Poincaré inequality.

In general, X ′ denotes the dual space of a Banach space X.

Remark 2.1. The space H
1
2
00(Γ) is sometimes called the Lions-Magenes space (cf. [16, Ch. 1,

§11.5]). It is defined as the set of all v ∈ L2(Γ) satisfying ρ−1/2v ∈ L2(Γ), where ρ ∈ C∞(Γ)
denotes any positive function satisfying ρ|∂Γ = 0 and, for x0 ∈ ∂Γ,

lim
x→x0

ρ(x)
dist (x, ∂Γ)

= d′ > 0

with some d′ > 0. As will be stated in Lemma 2.1, the set of all traces of functions in V is
identical with M .

We use the following forms (the summation convection is employed):

a(u, v) = 2ν
∫

Ω
Dij(u)Dij(v) dx (u, v ∈ H1(Ω)d);

a1(u, v, w) =
∫

Ω
[(u · ∇)v]w dx (u, v, w ∈ H1(Ω)d);

b(v, p) = −
∫

Ω
(∇ · v)p dx (v ∈ H1(Ω)d, p ∈ L2(Ω));

[λ, η] = the duality pairing between λ ∈M ′ and η ∈M ;

[[λ, η]] = the duality pairing between λ ∈ (Md)′ and η ∈Md.

As usual, we write C to express various positive constants that depend only on Ω.
For a vector-valued function v defined on ∂Ω, it’s normal and tangential components are

denoted, respectively, by
vn = v · n, vT = v − (vn)n.

2.2 The re-definition of traction vectors

For (U,P ) ∈ V × Q, we cannot define τ(U,P ) as a function on Γ because of the lack of
regularity. However, if (U,P ) is smooth and satisfies (12a), it also satisfies, for t ∈ (0, T )∫

Γ
τ(U,P ) · v dΓ = (Ut, v) + a(U, v) + a1(U + g, U, v)

+ a1(U, g, v) + b(v, P ) − (F, v) (v ∈ V ),
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where τ(U, p) is understood as a usual function on Γ.
Based on this identity, we re-define the traction vector τ(U,P ) as a functional over Md for

a solution (U,P ) ∈ V × Q of (NS) in the sense of distributions (More precisely, for (U,P )
satisfying (18a) below). We recall the following result (cf. [11, Theorem 2.5] for M = H

1/2
00 (Γ)

and [16, Theorem 8.3, Chap. 1] for M = H1/2(Γ)).

Lemma 2.1. There exists an extension operator E : Md → V such that Eη = η on Γ and
‖Eη‖V ≤ C‖η‖Md for all η ∈ Md. Conversely, for any w ∈ V , we have η = w|Γ ∈ Md and
‖η‖Md ≤ C‖w‖V .

As a consequence, we obtain an extension operator En : M → V such that

(Enη)n = η , (Enη)T = 0 on Γ, ‖Enη‖V ≤ C‖η‖M

for any η ∈M . Now we propose the re-definition of τ(U,P ) as follows:

[[τ(U,P ), η]] = (Ut, wη) + a(U,wη) + a1(U + g, U,wη)

+ a1(U, g, wη) + b(wη, P ) − (F,wη) (η ∈Md), (13)

where wη = Eη ∈ V . Actually, the right-hand side of (13) does not depend on the way of
extension; Hence, this definition is well-defined. Similarly, we re-define as

[[τT (U), η]] = (Ut, wη) + a(U,wη) + a1(U + g, U,wη) + a1(U, g, wη)

+ b(wη, P ) − (F,wη) (η ∈Md with ηn = 0; wη = Eη) (14)

and

[τn(U,P ), η] = (Ut, wη) + a(U,wη) + a1(U + g, U,wη)
+ a1(U, g, wη) + b(wη, P ) − (F,wη) (η ∈M ; wη = Enη). (15)

Then,
[[τ(U,P ), η]] = [τn(U,P ), ηn] + [[τT (U), ηT ]] (η ∈Md). (16)

For a solution (Uε, Pε) of (NSε), we propose the similar re-definition. For example,

[τn(Uε, Pε), η] = (Uε,t, wη) + a(Uε, wη) + a1(Uε + g, Uε, wη)
+ a1(Uε, g, wη) + b(wη, Pε) − (F,wη) (η ∈M ; wη = Enη). (17)

On the other hand, we will assume that τ(g, π) ∈ H1(0, T ;L2(Γ)d) (see, (A1) below) so that
we have

[[τ(g, π), η]] =
∫

Γ
τ(g, π) · η dΓ (η ∈Md).

2.3 Unilateral problems

Under those re-definitions presented in the previous section, we precisely interpret (NS) as
follows.
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(NS-E) For a.e. t ∈ (0, T ), find (U(t), P (t)) ∈ V ×Q with Ut(t) ∈ Qd such that

(Ut, v) + a(U, v)
+ a1(U + g, U, v) + a1(U, g, v) + b(v, P ) = (F, v) ∀v ∈ V0, (18a)

b(U, q) = 0 ∀q ∈ Q, (18b)
Un + gn ≥ 0 on Γ, (18c)
[τn(U,P ) + τn(g, π), η] ≥ 0 ∀η ∈M, η ≥ 0, (18d)
[τn(U,P ) + τn(g, π), Un + gn] = 0, (18e)
[[τT (U) + τT (g), η]] = 0 ∀η ∈M, (18f)
U(x, 0) = U0 on Ω. (18g)

Remark 2.2. If (U,P ) ∈ V ×Q satisfies (18a), then [τ(U,P ), η] and [[τT (U), η]] are well-defined
by (15) and (14).

(NS-E) can be converted into the following variational inequality problem.
(NS-I) For a.e. t ∈ (0, T ), find (U(t), P (t)) ∈ K ×Q with Ut(t) ∈ Qd such that

(Ut, v − U) + a(U, v − U) + a1(U + g, U, v − U)
+ a1(U, g, v − U) + b(v − U,P ) ≥ (F, v − U) − [[τ(g, π), v − U ]] ∀v ∈ K, (19a)

b(U, q) = 0 ∀q ∈ Q, (19b)
U(x, 0) = U0 on Ω. (19c)

The following solenoidal version of (NS-I) will be of use later.
(NS-Iσ) For a.e. t ∈ (0, T ), find U(t) ∈ Kσ with Ut(t) ∈ Qd such that

(Ut, v − U) + a(U, v − U) + a1(U + g, U, v − U)
+ a1(U, g, v − U) ≥ (F, v − U) − [[τ(g, π), v − U ]] ∀v ∈ Kσ, (20a)

U(x, 0) = U0 on Ω. (20b)

Theorem 1. Problems (NS-E) and (NS-I) are equivalent.

Proof. First, letting (U,P ) be a solution of (NS-E), we show (U,P ) satisfies (NS-I). Let v ∈ K
be arbitrary. Since v − U ∈ V , we see from (13)

(Ut, v − U) + a(U, v − U) + a1(U + g, U, v − U) + a1(U, g, v − U)
+ b(v − U,P ) − [[τ(U,P ), v − U ]] = (F, v − U).

Thus,

(Ut, v − U) + a(U, v − U) + a1(U + g, U, v − U) + a1(U, g, v − U)
+ b(v − U,P ) − [[τ(U,P ) + τ(g, π), v − U ]] = (F, v − U).

Since vn + gn ≥ 0 a.e. Γ, by using (16), (18d) and (18e)

[[τ(U,P ) + τ(g, π), v − U ]]
= [τn(U,P ) + τn(g, π), vn − Un] + [[τT (U) + τT (g), vT − UT ]]
= [τn(U,P ) + τn(g, π), vn + gn] − [τn(U,P ) + τn(g, π), Un + gn] ≥ 0.
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Hence, (U,P ) solves (NS-I).
Conversely, letting (U,P ) be a solution to (NS-I), we show (U,P ) satisfies (NS-E).
For any φ ∈ V0, substituting v = U ± φ ∈ K into (19a), we immediately obtain (18a).
Let ϕ ∈ V with ϕn = 0 on Γ be arbitrary. Substituting v = U ± ϕ ∈ K into (19a), we have

(Ut, ϕ) + a(U,ϕ) + a1(U + g, U, ϕ) + a1(U, g, ϕ) + b(ϕ, P ) = (F,ϕ) − [[τT (g), ϕT ]].

This, together with (14), implies (18f). Let w ∈ V with wn ≥ 0 on Γ be arbitrary. Substituting
v = w + U ∈ K into (19a), we have (18d).

Finally, substituting v = −g ∈ K and v = 2U + g ∈ K into (19a), we deduce

(Ut, U + g) + a(U,U + g) + a1(U + g, U, U + g) + a1(U, g, U + g)
+ b(U + g, P ) = (F,U + g) − [[τ(g, π), U + g]].

This, together with (13), gives (18e).

2.4 Penalty problems

We state the following variational formulations of (NSε).
(NSεE) For a.e. t ∈ (0, T ), find (Uε(t), Pε(t)) ∈ V ×Q with Uε,t(t) ∈ Qd such that

(Uε,t, v) + a(Uε, v) + a1(Uε + g, Uε, v) + a1(Uε, g, v)

+ b(v, Pε) −
1
ε

∫
Γ
[Uεn + gn]−vn dΓ = (F, v) − [[τ(g, π), v]] ∀v ∈ V, (21a)

b(Uε, q) = 0 ∀q ∈ Q, (21b)
Uε(x, 0) = U0 on Ω. (21c)

(NSεEσ) For a.e. t ∈ (0, T ), find Uε(t) ∈ V σ with Uε,t(t) ∈ Qd such that

(Uε,t, v) + a(Uε, v) + a1(Uε + g, Uε, v)

+ a1(Uε, g, v) −
1
ε

∫
Γ
[Uεn + gn]−vn ds = (F, v) − [[τ(g, π), v]] ∀v ∈ V σ, (22a)

Uε(x, 0) = U0, on Ω. (22b)

2.5 Main results

We are now in a position to state the main results of this paper. Recall that (g, π) is the
solution of the Stokes system (4) and g0 ∈ C∞

0 (Γ)d is defined by (5). We make the following
assumptions.

(A1) f ∈ H1(0, T ;Qd) and τ(g, π)|Γ ∈ H1(0, T ;L2(Γ)d).

(A2) g ∈ H2(0, T ;Qd) ∩ L∞(0, T ;V σ) and gt ∈ L2(0, T ;V σ).

(A3) β(t) ≥ β0 > 0 for t ∈ [0, T ] with some β0 > 0 and β(t) ∈ C2(0, T ).

(A4) U0 ∈ V σ
0 ∩H2(Ω)d and it satisfies

−(ν∆U0, v) = a(U0, v) +
∫

Γ
τ(g, π)|t=0v dΓ (v ∈ V σ).

12



Remark 2.3. Conditions (A1) and (A2) implies F ∈ H1(0, T ;Qd) and F ∈ L∞(0, T ;Qd).

Remark 2.4. Condition (A2) leads to g ∈ L∞(0, T ;Qd).

Remark 2.5. On Γ, τ(g, π)|t=0 is well-defined by (A1).

Theorem 2. Assume that (A1)–(A4) are satisfied. When d = 2, there exists a unique

U ∈ L∞(0, T ;V σ), Ut ∈ L2(0, T ;V σ) ∩ L∞(0, T ;Qd), (23a)
P ∈ L∞(0, T ;Q) (23b)

satisfying (NS-I) for any T ∈ (0,∞). In particular, (U,P ) is the unique solution of (1) with
(10) in the sense of distributions. When d = 3, the same conclusion holds for a smaller time
interval (0, T∗], where T∗ denotes a positive constant depending on U0.

Theorem 3. Assume that (A1)–(A4) are satisfied. When d = 2, there exists a unique

Uε ∈ L∞(0, T ;V σ), Uε,t ∈ L2(0, T ;V σ) ∩ L∞(0, T ;Qd), (24a)
Pε ∈ L∞(0, T ;Q) (24b)

satisfying (NSε-E) for any T ∈ (0,∞) and a sufficiently small ε. More precisely, there exists
ε0 > 0, which depends only on F , g, U0, Ω and T , such that (NSε-E) admits a unique solution
(Uε, Pε) satisfying (24) for any ε ∈ (0, ε0]. When d = 3, the same conclusion holds for a
smaller time interval (0, T∗], where T∗ denotes a positive constant depending on U0.

The proof of Theorems 2 and 3 are divided into the following propositions where (A1)–(A4)
are always assumed unless otherwise stated explicitly.

Proposition 1 (Existence of U). When d = 2, there exists a unique U satisfying (23a) and
(NS-Iσ) for any T ∈ (0,∞). When d = 3, the same conclusion holds for a smaller time interval
(0, T∗], where T∗ denotes a positive constant depending on U0.

Proposition 2 (Existence of P ). Let U be a solution of (NS-Iσ) satisfying (23a), then there
exists a unique P ∈ L∞(0, T ;Q) such that (U,P ) is a solution of (NS-I).

Proposition 3 (Uniqueness). The solution of (NS-I) is unique.

Proposition 4 (Existence of Uε). When d = 2, there exists a unique Uε satisfying (24a) and
(NSε-Eσ) for any T ∈ (0,∞) and a sufficiently small ε. When d = 3, the same conclusion
holds for a smaller time interval (0, T∗], where T∗ denotes a positive constant depending on U0.

Proposition 5 (Existence of Pε). Let Uε be a solution of (NSε-Eσ) satisfying (24a), then there
exists a unique Pε ∈ L∞(0, T ;Q) such that (Uε, Pε) is a solution of (NSε-E).

Proposition 6 (Uniqueness). The solution of (NSε-E) is unique.

As is stated in §1.2, Propositions 1 and 4 are proved in Section 4. Propositions 2, 5, 3 and
6 are proved in Section 3.
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2.6 Review of some inequalities

We collect here some inequalities used below.
The following one is called Korn’n inequality (cf. [14, Lemma 6.2])

a(v, v) ≥ α‖v‖2
1 (v ∈ V ), (25)

where α > 0 denotes a positive constant depending only on Ω.

Lemma 2.2. When d = 2,

|a1(u, v, w)| ≤ C‖u‖L4(Ω)d‖v‖1‖w‖L4(Ω)d

≤ C‖u‖
1
2 ‖u‖

1
2
1 ‖v‖1‖w‖

1
2 ‖w‖

1
2
1 (u, v, w ∈ H1(Ω)d). (26)

When d = 3,

a1(u, v, w) ≤ C‖u‖L3(Ω)‖v‖1‖w‖L6(Ω)

≤ C‖u‖
1
2 ‖u‖

1
2
1 ‖v‖1‖w‖1 (u, v, w ∈ H1(Ω)d). (27)

Moreover, when d = 2, 3, we have

a1(u, v, v) =
1
2

∫
Γ
un|v|2 dΓ ≤ ‖un‖Γ‖v‖2

L4(Γ) ≤ C‖un‖Γ‖v‖2
1 (u, v ∈ V σ). (28)

Proof. It follows from Sobolev’s embedding theorem and the trace theorem (cf. [13, 15]).
For example, (27) is a readily obtainable consequence of Hölder’s inequality, the continuous

embedding H
1
2 (Ω)(Ω) ⊂ L3(Ω), and the interpolation inequality ‖v‖

H
1
2 (Ω)

≤ C‖v‖
1
2 ‖v‖

1
2
1 .

Remark 2.6. Applying Young’s inequality and Lemma 2.2, we have, for any ξ > 0,

|a1(u, v, u)| ≤ C‖u‖‖u‖1‖v‖1 ≤ ξ‖u‖2
1 + Cξ−1‖u‖2

1‖v‖2
1, (29)

if d = 2. On the other hand,

|a1(u, v, u)| ≤ C‖u‖
1
2 ‖u‖

3
2
1 ‖v‖1 ≤ ξ‖u‖2

1 + Cξ−3‖u‖2
1‖v‖4

1, (30)

if d = 3.

3 Proof of Propositions 2, 3, 5 and 6

Proof of Proposition 2. (Existence) Let φ ∈ V0∩V σ be arbitrary. Substitution v = φ+U ∈ Kσ

into (20) yields

(Ut, φ) + a(U, φ) + a1(U + g, U, φ) + a1(U, g, φ) = (F, φ).

Then, there exists a unique P̊ ∈ Q0 (cf. [20, Lemma IV.1.4.3]) such that, for a.e. t ∈ (0, T ),

(Ut, φ) + a(U, φ) + a1(U + g, U, φ) + a1(U, g, φ) + b(v, P̊ ) = (F, φ) ∀φ ∈ V0 (31)
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and
‖P̊‖ ≤ C(‖Ut‖ + ‖U‖1 + ‖F‖ + ‖(U + g) · ∇U‖ + ‖U · ∇g‖). (32)

We will show that there exists k ∈ L∞(0, T ) such that (U, P̊ + k) solves (NS-E).
First, by virtue of (31), (18a) is satisfied for P = P̊ + k with any k ∈ L∞(0, T ).
Recall that (16) and (20a) give

[[τT (U), vT − UT ]] + [τn(U, P̊ + k), vn − Un]
≥ −[[τT (g), vT − UT ]] − [τn(g, π), vn − Un] ∀v ∈ Kσ. (33)

Let ψ ∈ C∞
0 (Γ)d be a function such that supp ψ ⊂ Γ and ψn = 0. Then, since

∫
Γ ψn dΓ = 0,

there is a function w ∈ V such that w|Γ = ψ, ∇ · w = 0 and ‖w‖V ≤ C‖ψ‖Md . Substituting
v = U ± w ∈ Kσ into (33), we have

[[τT (U), ψT ]] = [τT (g), ψT ].

By the density, this implies (18f). Moreover, since (33) is valid for an arbitrary k ∈ L∞(0, T ),
we have

[τn(U, P̊ ) + τn(g, π), vn + gn] ≥ [τn(U, P̊ ) + τn(g, π), Un + gn] ∀v ∈ Kσ. (34)

At this stage, we set

γ = γ(t) =
1
β

[τn(U + g, P̊ + π), Un + gn] (35)

and take k = γ.
Then, noting

∫
Γ Un dΓ = 0 by ∇ · U = 0 in Ω and U |S∪C = 0, we can calculate as

[τn(U, P̊ + γ) + τn(g, π), Un + gn] = [τn(U, P̊ ) + τn(g, π), Un + gn] − γ

∫
Γ
gn dΓ

= [τn(U, P̊ ) + τn(g, π), Un + gn] − γβ

= 0;

which implies (18e).
For the time being, we admit

γ = inf
η∈Y

[τn(U + g, P̊ + π), η], (36)

where

Y =
{
η ∈M | η ≥ 0, η 6≡ 0,

∫
Γ
η dΓ = 1

}
.

For ξ ∈M with ξ ≥ 0 and ξ 6≡ 0, we have, by setting m =
∫
Γ ξ dΓ 6= 0,

[τn(U, P̊ + γ) + τ(g, π), ξ] = [τn(U, P̊ ) + τn(g, π), ξ] − γm

= m[τn(U, P̊ ) + τn(g, π), ξ/m] − γm

≥ mγ − γm = 0.

Hence, we get (18d).
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It remains to verify (36). Let η ∈ Y be arbitrary and set η̃ = βη−gn ∈M . Since
∫
Γ η̃ dΓ = 0,

there exists ṽ ∈ V σ such that ṽn|Γ = η̃. Then, the function ṽ satisfies that ṽn + gn = βη ≥ 0
on Γ. Thus, ṽ ∈ Kσ. Consequently, we have by (34)

[τn(U, P̊ ) + τn(g, π), η] =
[
τn(U, P̊ ) + τn(g, π),

η̃ + gn

β

]
=

[
τn(U, P̊ ) + τn(g, π),

ṽn + gn

β

]
≥ 1

β
[τn(U, P̊ ) + τn(g, π), Un + gn] = γ;

which yields (36).
(Regularity) According to the expression (35) and the definition (15), we deduce, for a.e.
t ∈ (0, T ),

|γ| ≤ C0,

where C0 = C0(t) denotes a positive function in L∞(0, T ) which depends only on ‖Ut‖, ‖U‖1,
‖F‖ and ‖g‖1. This, together with (32), gives P ∈ L∞(0, T ;Q).
(Uniqueness) Suppose that there is another pressure P ′. Since P̊ and k are unique, we have

P ′ + k′ = P̊ , k′ ≡ − 1
|Ω|

∫
Ω
P ′ dx = k.

Hence, P = P ′.

Proof of Proposition 3. From Proposition 2, we know that P is uniquely determined by U ;
Therefore, we only need to show the uniqueness of U .

Suppose that U1, U2 are two solutions to (NS-Iσ). Let w = U1 − U2. From (20a), we have

(U1,t, U2 − U1) + a(U1, U2 − U1) + a1(U1 + g, U1, U2 − U1)
+ a1(U1, g, U2 − U1) ≥ (F,U2 − U1) − [τ(g, π), U2 − U1],

and

(U2,t, U1 − U2) + a(U2, U1 − U2) + a1(U2 + g, U2, U1 − U2)
+ a1(U2, g, U1 − U2) ≥ (F,U1 − U2) − [τ(g, π), U1 − U2].

Therefore,
(wt, w) + a(w,w) + a1(U2 + g, w,w) ≤ −a1(w,U1 + g, w).

In view of Korn’s inequality (25), Lemma 2.2, Remark 2.6 and

a1(U2 + g, w,w) =
1
2

∫
Γ

(U2 · n+ gn)︸ ︷︷ ︸
≥0

|w|2 dΓ ≥ 0,

we have for any ξ > 0

1
2
‖w(t)‖2 + α‖w(t)‖2

1 ≤

{
ξ‖w‖2

1 + Cξ−1‖U1 + g‖2
1‖w‖2 for d = 2,

ξ‖w‖2
1 + Cξ−3‖U1 + g‖4

1‖w‖2 for d = 3.
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Let ξ be sufficiently small so that α − ξ > α/2. In virtue of Gronwall’s inequality, we obtain,
for all t ∈ (0, T ),

‖w(t)‖2 + α

∫ t

0
‖w(s)‖2

1 ds ≤ C exp
[
Ct‖U1 + g‖L∞(0,t;V )

]
‖w(0)‖2.

Since w(0) = U1(0) − U2(0) = 0, we conclude that U1 = U2.

We proceed to the proof of Propositions for the penalty problem. To do this, we need the
following lemma. For the time being, we write C0(T ) = C0,ε(T ) to express various positive
constants depending only on the following quantities:

‖Uε,t‖L∞(0,T ;Qd), ‖Uε‖L∞(0,T ;V σ), ‖F‖L∞(0,T ;Qd), ‖g‖L∞(0,T ;V σ).

Lemma 3.1. Let Uε be a solution of (NSε-Eσ), then, for a.e. t ∈ (0, T ),

‖[Uεn + gn]−‖Γ ≤ C0

√
ε. (37)

Proof. Substituting v = Uε into (22a), it yields

− 1
ε

∫
Γ
[Uεn + gn]−Uεn dΓ = (F,Uε) − [[τ(g, π), Uε]] − (U ′

ε, Uε)

− a(Uε, Uεn) + a1(Uε + g, Uε, Uεn) + a1(Uε, g, Uεn).

RHS can be estimated from above in terms of ‖Uε,t‖, ‖Uε‖1, ‖F‖ and ‖g‖1, and the function
Uε satisfies (24a). Thus, we have

−1
ε

∫
Γ
[Uεn + gn]−Uεn dΓ ≤ C0(T ).

On the other hand, by using gn ≥ 0 on Γ, we see that

−1
ε

∫
Γ
[Uεn + gn]−Uεn dΓ = −1

ε

∫
Γ
[Uεn + gn]−(Uεn + gn − gn) dΓ

=
1
ε

∫
Γ
|[Uεn + gn]−|2 dΓ +

1
ε

∫
Γ
[Uεn + gn]−gn dΓ

≥ 1
ε
‖[Uεn + gn]−‖2

Γ.

Combining those estimates, we obtain (37).

Proof of Proposition 5. From (22), there exists a unique P̊ε ∈ Q0 (cf. [20, Lemma IV.1.4.3])
such that

(Uε,t, v) + a(Uε, v) + a1(Uε + g, Uε, v) + a1(Uε, g, v) + b(v, P̊ε) = (F, v) (v ∈ V0)

and
‖P̊ε‖ ≤ C(‖U ′

ε‖ + ‖Uε‖1 + ‖(Uε + g) · ∇Uε‖ + ‖Uε · ∇g‖ + ‖F‖).

Thus, we have
‖P̊ε‖ ≤ C0(T ). (38)
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We will show that there is kε ∈ L∞(0, T ) such that (Uε, Pε) with Pε = P̊ε + kε is a solution
of (NSε-E).

Recalling (17) and using (22a), we have

[τn(Uε, Pε), vn] = (Uε,t, v) + a(Uε, v) + a1(Uε + g, Uε, v) + a1(Uε, g, v) + b(v, Pε) − (F, v)

=
1
ε

∫
Γ
[Uεn + gn]−vn − [[τn(g, π), vn]] (v ∈ V σ, vT |Γ = 0).

Hence, [
τn(Uε, Pε) + τn(g, π) − ε−1[τn(Uε, Pε), vn], η

]
= 0 (η ∈Mσ), (39)

where

Mσ =
{
η ∈M |

∫
Γ
η dΓ = 0

}
.

Now we introduce

Z =
{
φ ∈ C∞

0 (Γ) |
∫

Γ
φ = 1

}
and take (and fix below) φ ∈ Z. Then, for any v ∈ V , η̂ = vn − αφ with α =

∫
Γ vn dΓ belongs

to M0. Therefore, by (39),

[τn(Uε, Pε) + τn(g, π) − ε−1[Uεn + gn]−, vn]
= [τn(Uε, Pε) + τn(g, π) − ε−1[Uεn + gn]−, vn − αφ]

+[τn(Uε, Pε) + τn(g, π) − ε−1[Uεn + gn]−, αφ]
= α[τn(Uε, Pε) + τn(g, π) − ε−1[Uεn + gn]−, φ] (v ∈ V ).

Now, since

[τn(Uε, Pε) + τn(g, π) − ε−1[Uεn + gn]−, φ]

= [τn(Uε, P̊ε) + τn(g, π) − ε−1[Uεn + gn]−, φ] − kε,

choosing
kε = [τn(Uε, P̊ε) + τn(g, π) − ε−1[Uεn + gn]−, φ] (40)

we obtain
[τn(Uε, Pε) + τn(g, π) − ε−1[Uεn + gn]−, vn] = 0 (v ∈ V );

which, together with (17), implies (21a).
It should be checked that kε defined as (40) actually independent of φ ∈ Z and it represents

a function only of t. We let φ, φ′ ∈ Z with φ 6≡ φ′. Then η = φ− φ′ ∈Mσ. Hence, by (39),

[τn(Uε, Pε) + τn(g, π) − ε−1[Uεn + gn]−, φ] = [τn(Uε, Pε) + τn(g, π) − ε−1[Uεn + gn]−, φ′],

which means that kε does not depend on the choice of φ ∈ Z.
Finally, in view of (17), (37) and (40), we get

|kε| ≤ C0(T ).

Combining this with (38), we conclude Pε ∈ L∞(0, T ;Q).
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Proof of Proposition 6. Since Pε is uniquely determined by Uε from Proposition 5, it suffices
to show the uniqueness of (NSε-Eσ). Suppose that Uε1 and Uε2 are two solutions of (NSε-Eσ).
Set w = U1

ε − Uε. From (21a), we have, for any v ∈ V σ,

(wt, v) + a(w, v) + a1(Uε1 + g, Uε1, v) − a1(Uε2 + g, Uε2, v)

+ a1(w, g, v) −
1
ε

∫
Γ
([Uε1 · n+ gn]− − [Uε2 · n+ gn]−)vn dΓ = 0.

Substituting v = w into above,

(wt, w) + a(w,w) − 1
ε

∫
Γ
([Uε1 · n+ gn]− − [Uε2 · n+ gn]−)wn dΓ

+ a1(Uε2 + g, w,w) = −a1(w,Uε1 + g, w). (41)

We can estimate as

−
∫

Γ
([Uε1 · n+ gn]− − [Uε2 · n+ gn]−)wn dΓ

= −
∫

Γ
([Uε1 · n+ gn]− − [Uε2 · n+ gn]−)(Uε1 · n+ gn − (Uε2 · n+ gn)) dΓ

=
∫

Γ
|[Uε1 · n+ gn]− − [Uε2 · n+ gn]−|2 dΓ

+
∫

Γ
([Uε1 · n+ gn]−[Uε2 · n+ gn]+ + [Uε1 · n+ gn]+[Uε2 · n+ gn]−) dΓ ≥ 0 (42)

and, by using Lemma 2.2,

a(w,w) + a1(Uε2 + g, w,w) ≥ α‖w‖2
1 +

1
2

∫
Γ
(Uε2 · n+ gn)|w|2 dΓ

= α‖w‖2
1 +

1
2

∫
Γ
([Uε2 · n+ gn]+ − [Uε2 · n+ gn]−)|w|2 dΓ

≥ (α− C ′‖[Uε2 · n+ gn]−‖Γ)‖w‖2
1. (43)

In view of Lemma 3.1, we have ‖[Uε2 · n+ gn]−‖Γ ≤ C0(T )ε.
At this stage, we suppose that ε is small so that α − C ′‖[Uε2 · n + gn]−‖Γ ≥ α/2. Then, it

follows from (41), (42), and (43) that, for arbitrary ξ > 0,

1
2
d

dt
‖w‖2 +

α

2
‖w‖1 ≤ −a1(w,Uε1 + g, w)

≤

{
ξ‖w‖2

1 + Cξ−1‖Uε1 + g‖2
1‖w‖2, for d = 2,

ξ‖w‖2
1 + Cξ−3‖Uε1 + g‖4

1‖w‖2, for d = 3.
(44)

Setting ξ = α/4, from (44) and Gronwall’s inequality, we obtain, for a.e. t ∈ (0, T ],

‖w(t)‖2 +
∫ t

0
‖w(s)‖2

1 ds ≤ C exp
[
Ct‖Uε1 + g‖L∞(0,t;V )

]
‖w(0)‖2.

Since w(0) = Uε1(0) − Uε2(0) = 0, we conclude that Uε1 = Uε2.
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4 Proof of Propositions 1 and 4

This section is devoted to the proof of the unique existence of solutions of (NS-Iσ) and (NSε-
Eσ), that is, the proof of Propositions 1 and 4.

To achieve this purpose, we introduce new variables

Ũ =
U

β
, P̃ =

P

β
, π̃ =

π

β
, f̃ =

f

β
and g̃ =

g

β
.

Problem to find (Ũ , P̃ ) reads as follows. For t ∈ (0, T ), find (Ũ , P̃ ) such that

Ũt +
β′

β
Ũ + β((Ũ + g̃) · ∇)Ũ + β(Ũ · ∇)g̃ −∇ · σ(Ũ , P̃ ) = F̃ in Ω,

∇ · Ũ = 0 in Ω,

Ũ = 0 on S ∪ C,
Ũn + g̃n ≥ 0, τn(Ũ + g̃, P̃ + π̃) ≥ 0 on Γ,

(Ũn + g̃n)τn(U + g̃, P̃ + π̃) = 0, τT (Ũ) = −τT (g̃) on Γ,

Ũ(x, 0) = Ũ0 on Ω,

where Ũ0 = U0
β(0) , and F̃ = f̃ − g̃′ − β′

β g̃ − β(g̃ · ∇)g̃ = F
β .

We will study the well-posedness of Ũ instead of U itself. Set

K̃ = {v ∈ V | vn + g̃n ≥ 0 on Γ}, K̃σ = K̃ ∩ V σ

and consider the following variational problems.
(NS-Iσ )̃ For a.e. t ∈ (0, T ), find Ũ(t) ∈ K̃σ with Ũt(t) ∈ Qd such that

(Ũ ′, v − Ũ) +
β′

β
(Ũ , v − Ũ) + a(Ũ , v − Ũ) + βa1(Ũ + g̃, Ũ , v − Ũ)

+ βa1(Ũ , g̃, v − Ũ) ≥ (F̃ , v − Ũ) − [[τ(g̃, π̃), v − Ũ ]] ∀v ∈ K̃σ, (45a)

Ũ(x, 0) = Ũ0 on Ω. (45b)

(NSε-Eσ )̃ For a.e. t ∈ (0, T ), find Ũε(t) ∈ Ṽ σ with Ũε,t(t) ∈ Qd such that

(Ũ ′
ε, v) +

β′

β
(Ũε, v) + a(Ũε, v) + βa1(Ũε + g̃, Ũε, v)

+ βa1(Ũε, g̃, v) −
1
ε

∫
Γ
[Ũεn + g̃n]−vn dΓ = (F̃ , v) − [[τ(g̃, π̃), v]] ∀v ∈ V σ, (46a)

Ũ(x, 0) = Ũ0 on Ω. (46b)

We see that a solution of (NSε-Eσ) is given as Uε = βŨε.
We introduce a regularization of [·]−. For any δ with 0 < δ � 1, we set

ρδ(s) =

{
0 (s ≥ 0)√
s2 + δ2 − δ (s < 0).

(47)
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We have ρδ(s) ∈ C1(R) and

d

ds
ρδ(s) =

{
0 (s ≥ 0)

s√
s2+δ2

(s < 0),
d2

ds2
ρδ(s) =

{
0 (s ≥ 0)

δ2

(s2+δ2)3/2 (s < 0).
(48)

Then we introduce the regularization problem to (NSε-Eσ)’:
(NSε-Eσ

δ )̃ For a.e. t ∈ [0, T ], find Ũεδ(t) ∈ V σ with Ũ ′
εδ(t) ∈ Qd such that

(Ũ ′
εδ, v) +

β′

β
(Ũεδ, v) + a(Ũεδ, v) + βa1(Ũεδ + g̃, Ũεδ, v)

+ βa1(Ũεδ, g̃, v) −
1
ε

∫
Γ
ρδ(Ũεδn + g̃n)vn dΓ = (F̃ , v) − [[τ(g̃, π̃), v]] ∀v ∈ V σ, (49a)

Ũεδ(x, 0) = Ũ0 on Ω. (49b)

The regularization problem (NSε-Eσ
δ )̃ is of use not only for studying the well-posedness of

penalty problem (NSε-Eσ )̃ but also for computing numerical solutions.
We show the well-posedness of (NSε-Eσ

δ )̃ by Galerkin’s method. Let {wk}∞k=1 ⊂ V σ with
w1 = Ũ0 be linear independent functions such that

∞∪
m=1

span{wk}m
k=1 is dense in V σ. (50)

Then we consider the following problems for m ∈ N.
(NSε Eσ

δm)̃ Find

Ũεδm =
m∑

k=1

cεδk(t)wk,

where cεδk ∈ C2([0, T ]) such that Ũεδm(0) = U0 and, for all k = 1, . . . ,m,

(Ũ ′
εδm, wk) +

β′

β
(Ũεδm, wk) + a(Ũεδm, wk) + βa1(Ũεδm + g̃, Ũεδm, wk)

+ βa1(Ũεδm, g̃, wk) −
1
ε

∫
Γ
ρδ(Ũεmn + g̃n)wkn dΓ = (F̃ , wk) − [[τ(g̃, π̃), wk]], (51)

where Ũεδm(0) = Ũ0, Ũεδmn = Ũεδm · n, and wkn = wk · n.

Below, we prove Propositions 1 and 4 by using several lemmas. We always suppose that
(A1)–(A4) are satisfied. Let us denote by c1 the domain constant appearing in (28), and set

c2(T ) =
c1
2

max
t∈[0,T ]

β, c3(T ) = max
t∈[0,T ]

|β′|
β
,

c4(T, ξ) =

{
Cξ−1‖g̃‖2

1 + c3(T ) (d = 2)
Cξ−3‖g̃‖4

1 + c3(T ) (d = 3)
(ξ > 0). (52)

Further, we write C1(T ) to express positive constants that depend only on the following quan-
tities:

‖F̃‖L∞(0,T ;Qd), ‖g̃‖L∞(0,T ;H1(Ω)d), ‖g̃t‖L∞(0,T ;H1(Ω)d),

‖π̃‖L∞(0,T ;Q), ‖Ũ(0)‖H2(Ω)d , α, c1, c2(T ), c3(T ), c4(T, lα),
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where α denotes a positive constant appearing in Korn’s inequality (25) and l some positive
constants.

Lemma 4.1. Let m ∈ N. There exists T1 ∈ (0, T ] such that (NSε-Eσ
δm)̃ admits a unique

solution Ũεδm in 0 ≤ t ≤ T1 satisfying

‖Ũεδm‖2
L∞(0,T1;Qd) + α‖Ũεδm‖2

L2(0,T1;V σ)

+
1
ε

∫ T1

0

∫
Γ
ρδ(Ũεδmn + g̃n)[Ũεδmn + g̃n]− dΓdt ≤ C1(T1). (53)

Proof. Since ρδ ∈ C1(R), the system of ordinary differential equations (51) admits a unique
solution cεδk ∈ C2([0, T1]) for k = 1, . . . ,m with some T1 > 0. We derive the estimation (53).
Multiplying the both sides of (51) by cεδk(t) and taking the summation for k, we have

1
2
d

dt
‖Ũεδm‖2 +

β′

β
‖Ũεδm‖2 + α‖Ũεδm‖2

1 + βa1(Ũεδm + g̃, Ũεδm, Ũεδm)

+ βa1(Ũεδm, g̃, Ũεδm) − 1
ε

∫
Γ
ρδ(Ũεmn + g̃n)Ũεmn dΓ = (F,Uεm) − [[τ(g, π), Uεm]]. (54)

We see

−1
ε

∫
Γ
ρδ(Ũεmn + g̃n)Ũεmn dΓ = −1

ε

∫
Γ
ρδ(Ũεmn + g̃n)(Ũεmn + g̃n − g̃n) dΓ

=
1
ε

∫
Γ
(ρδ(Ũεmn + g̃n)[Ũεmn + g̃n]− + ρδ(Ũεmn + g̃n)g̃n) dΓ

≥ 1
ε

∫
Γ
ρδ(Ũεmn + g̃n)[Ũεmn + g̃n]− dΓ ≥ 0.

We apply Lemma 2.2 and Remark 2.6 to obtain, for arbitrary ξ > 0,

|βa1(Ũεδm, g̃, Ũεδm)| ≤

{
ξ‖Ũεδm‖2

1 + Cξ−1‖g̃‖2
1‖Ũεδm‖2 for d = 2,

ξ‖Ũεδm‖2
1 + Cξ−3‖g̃‖4

1‖Ũεδm‖2 for d = 3.

On the other hand, again by Lemma 2.2 ,

βa1(Ũεδm + g̃, Ũεδm, Ũεδm) =
β

2

∫
Γ
(Ũεδmn + g̃n)|Ũεδm|2 ds

=
β

2

∫
Γ
[Ũεδmn + g̃n]+|Ũεδm|2 ds− β

2

∫
Γ
[Ũεδmn + g̃n]−|Ũεδm|2 ds

≥ −c1
β

2
‖[Ũεδmn + g̃n]−‖Γ‖Ũεδm‖2

1.

Moreover, ∣∣∣(F̃ , Ũεδm) − [[τ(g̃, π̃), Ũεδm]]
∣∣∣ ≤ ξ‖Ũεδm‖2

1 + Cξ−1(‖F̃‖2 + ‖τ(g̃, π̃)‖2
Γ).

Summing up those estimates, we deduce

1
2
d

dt
‖Ũεδm‖2 + α̃‖Ũεδm‖2

1 +
1
ε

∫
Γ
ρδ(Ũεδmn + gn)[Ũεδmn + gn]− dΓ

≤ Cξ−1(‖F̃‖2 + ‖τ(g̃, π̃)‖2
Γ) + c4(T, ξ)‖Ũεδm‖2, (55)
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where α̃ = α− 2ξ − c2‖[Ũεδmn + gn]−‖Γ.
At this stage, let ξ = α/8. Let T1 be the maximum time such that

c2‖[Ũεδmn + g̃n]−‖Γ ≤ α

4
(t ∈ [0, T1]). (56)

Consequently,
α̃ = α− 2ξ − c2‖[Ũεδmn + g̃n]−‖Γ ≥ α

2
(t ∈ [0, T1]).

Since Ũεδmn(0) + g̃n(0) = Ũ0 + g̃n ≥ 0, we have ‖[Ũεδmn(0) + g̃n(0)]−‖Γ = 0. Integrating the
both sides of (55) with respect to t, we obtain, for any t ∈ [0, T1],

‖Ũεδm(t)‖2 + α

∫ t

0
‖Ũεδm(s)‖2

1 +
1
ε

∫ t

0

∫
Γ
ρδ(Ũεδmn + gn)[Ũεδmn + gn]− dΓds

≤ C(‖F̃‖2
L2(0,t;Qd) + ‖τ(g̃, π̃)‖2

L2(0,t;L2(Γ)d)) + ‖Ũ0‖2 + c4(T, ξ)
∫ t

0
‖Ũεδm(s)‖2 ds.

We apply Gronwall’s inequality to obtain

‖Ũεδm(t)‖2 + α

∫ t

0
‖Ũεδm(s)‖2

1 +
1
ε

∫ t

0

∫
Γ
ρδ(Ũεδmn + gn)[Ũεδmn + gn]− dΓds

≤ C1(T )(‖F̃‖2
L2(0,t;Qd) + ‖τ(g̃, π̃)‖2

L2(0,t;L2(Γ)d) + ‖Ũ0‖2),

which implies (53).

Lemma 4.2. Let m ∈ N. When d = 2, the solution Ũεδm of (NSε-Eσ
δm)̃ satisfies

‖Ũ ′
εδm‖2

L∞(0,T1;Qd) + ‖Ũ ′
εδm‖2

L2(0,T1;V σ)

+
1
ε

∫ T1

0

∫
Γ

[Ũεδmn + g̃n]−√
(Ũεδmn + gn)2 + δ2

|(Ũεδmn + g̃n)′|2dΓdt ≤ C(T1), (57)

where T1 is the constant appearing in Lemma 4.1. When d = 3, there exists T ′
1 ∈ (0, T1]

depending only on ‖Ũ(0)‖1 and α such that (57) holds true with the replacement T1 by T ′
1.

Proof. First, we consider the case d = 2. Differentiating the both side of (51) with respect to
t, we have

(Ũ ′′
εδm, wk) +

(
β′

β

)′
(Ũεδm, wk) +

β′

β
(Ũ ′

εδm, wk) + a(Ũ ′
εδm, wk) + β′a1(Ũεδm + g̃, Ũεδm, wk)

+ βa1(Ũ ′
εδm + g̃, Ũεδm, wk) + βa1(Ũεδm + g̃, Ũ ′

εm, wk) + β′a1(Ũεδm, g̃, wk) + βa1(Ũ ′
εδm, g̃, wk)

+ βa1(Ũεδm, g̃
′, wk) −

1
ε

∫
Γ
ρδ(Ũεδmn + g̃n)′wkn ds = (F̃ ′, wk) − [[τ(g̃′, π′), wk]].

Multiplying the both sides of this equality by c′εδk(t) and taking the summation for k, we get

1
2
d

dt
‖Ũ ′

εδm‖2 + α‖Ũ ′
εδm‖2

1 + βa1(Ũεδm + g̃, Ũ ′
εδm, Ũ

′
εδm) − 1

ε

∫
Γ
ρδ(Ũεδmn + g̃n)′Ũ ′

εδmn ds

≤ −
(
β′

β

)′
(Ũεδm, Ũ

′
εδm) − β′

β
‖Ũ ′

εδm‖2 − β′a1(Ũεδm + g̃, Ũεm, Ũ
′
εδm)

− βa1(Ũ ′
εδm + g̃′, Ũεδm, Ũ

′
εδm) − β′a1(Ũεδm, g̃, Ũεδm) − βa1(Ũ ′

εδm, g̃, Ũ
′
εδm)

− βa1(Ũεδm, g̃
′, Ũ ′

εδm) + (F̃ ′, Ũ ′
εm) − [[τ(g̃′, π̃′), Ũ ′

εm]]. (58)
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As before, we have

βa1(Ũεδm + g̃, Ũ ′
εδm, Ũ

′
εδm) ≥ −c2‖[Ũεδmn + g̃n]−‖Γ‖Ũ ′

εδm‖2
1 (59)

and, for any ξ > 0,∣∣∣(F̃ ′, Ũ ′
εδm) − [[τ(g̃′, π̃′), Ũ ′

εδm]]
∣∣∣ ≤ ξ‖Ũ ′

εδm‖2
1 + Cξ−1(‖F̃ ′‖2 + ‖τ(g̃′, π̃′)‖2

Γ). (60)

Since g̃ = g0(x) on Γ (cf. (4b)), we deduce g̃′n = 0 on Γ. Therefore,

−
∫

Γ
ρδ(Uεδmn + gn)′Ũ ′

εmn ds = −
∫

Γ
ρδ(Uεδmn + gn)′(Ũεδmn + g̃n)′ ds

=
∫

Γ

[Ũεδmn + g̃n]−√
(Ũεδmn + gn)2 + δ2

|(Ũεδmn + g̃n)′|2dΓ ≥ 0. (61)

Moreover, in view of (53), we have, for all t ∈ [0, T1],∣∣∣∣(β′β
)′

(Ũεδm, Ũ
′
εδm) +

β′

β
‖Ũ ′

εδm‖2

∣∣∣∣ ≤ C1(T )‖Ũ ′
εδm‖‖2 + C1(T ). (62)

Applying Lemma 2.2, Remark 2.6 and (53), we can perform estimations as, for arbitrary
ξ > 0,∣∣∣β′a1(Ũεδm + g̃, Ũεδm, Ũ

′
εδm)

∣∣∣ ≤ C‖Ũεδm + g̃‖1/2‖Ũεδm + g̃‖1/2
1 ‖Ũεδm‖1‖Ũ ′

εδm‖1/2‖Ũ ′
εδm‖1/2

1

≤ ξ‖Ũ ′
εδm‖2

1 + Cη−1/3(‖Ũ ′
εδm‖2‖Ũεδm + g̃‖2

1 + ‖Ũεδm‖2
1); (63)∣∣∣βa1(Ũ ′

εδm + g̃′, Ũεδm, Ũ
′
εδm)

∣∣∣ ≤ C‖Ũ ′
εδm‖‖Ũεδm‖1‖Ũ ′

εδm‖1

+ C‖g̃′‖1/2‖g̃′‖1/2
1 ‖Ũεδm‖1‖Ũ ′

εδm‖1/2‖Ũ ′
εδm‖1/2

1

≤ ξ‖Ũ ′
εδm‖2

1 + Cξ−1‖Ũ ′
εδm‖2‖Ũεδm‖2

1

+ Cξ−1/3(‖Ũ ′
εδm‖2‖g̃′‖2

1 + ‖Ũεδm‖2
1); (64)∣∣∣β′a1(Ũεδm, g̃, Ũ

′
εδm)

∣∣∣ ≤ ξ‖Ũ ′
εδm‖2

1 + Cξ−1/3(‖Ũ ′
εδm‖2‖Ũεδm‖2

1 + ‖g̃‖2
1); (65)∣∣∣βa1(Ũ ′

εδm, g̃, Ũ
′
εδm)

∣∣∣ ≤ ξ‖Ũ ′
εδm‖2

1 + Cξ−1‖Ũ ′
εδm‖2‖g̃‖2

1; (66)

and ∣∣∣βa1(Ũεδm, g̃
′, Ũ ′

εδm)
∣∣∣ ≤ ξ‖Ũ ′

εδm‖2
1 + Cξ−1/3(‖Ũ ′

εδm‖2‖Ũεδm‖2
1 + ‖g̃′‖2

1). (67)

From (58) to (67), we obtain

1
2
d

dt
‖Ũ ′

εδm‖2 + α̂‖Ũ ′
εδm‖2

1 +
1
ε

∫ T1

0

∫
Γ

[Ũεδmn + g̃n]−√
(Ũεδmn + gn)2 + δ2

|(Ũεδmn + g̃n)′|2dΓdt

≤ C1(T )(‖g̃‖2
1 + ‖g̃′‖2

1 + ‖Ũεδm‖2
1)‖Ũ ′

εδm‖2

+ C1(T )(‖F̃‖2 + ‖τ(g̃, π̃)‖2
Γ) + C1(T )(‖g̃′‖2

1 + ‖Ũεδm‖2
1), (68)

where α̂ = α− 6ξ − c2‖[Ũεδmn + g̃n]−‖Γ.
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Let ξ = α/12. In virtue of (56), we see that

α̂ = α− 6ξ − c2‖[Ũεδmn + g̃n]−‖Γ ≥ α

2
(t ∈ [0, T1]).

Applying Gronwall’s inequality to (68) and using Lemma 4.1, we obtain

‖Ũ ′
εδm‖2

L∞(0,T1;Qd) + α‖Ũ ′
εδm‖2

L2(0,T1;V σ)

+
1
ε

∫ T1

0

∫
Γ

[Ũεδmn + g̃n]−√
(Ũεδmn + gn)2 + δ2

|(Ũεδmn + g̃n)′|2dΓdt ≤ C1(T1)(1 + ‖Ũ ′
εδm(0)‖2). (69)

To show the boundedness of ‖Ũ ′
εδm(0)‖2, we multiply (51) by c′εδm(t), add the resulting equa-

tions, and set t = 0. Consequently,

‖Ũ ′
εδm(0)‖2 + a(Ũ0, Ũ

′
εδm(0)) − [[τ(g̃, π̃)(0), Ũ ′

εδm(0)]] − 1
ε

∫
Γ
ρδ(Ũ0 + g̃n(0))Ũ ′

εδmn(0) ds

= −β
′

β
(Ũ0, Ũ

′
εδm(0))−βa1(Ũ0+ g̃(0), Ũ0, Ũ

′
εδm(0))−βa1(Ũ0, g̃(0), Ũ ′

εδm(0))+(F̃ (0), Ũ ′
εδm(0)).

Since [Ũ0 + g̃n(0)]− = 0, we have by (A4)

‖Ũ ′
εδm(0)‖2 ≤ |a(Ũ0, Ũ

′
εδm(0))| + |(∆Ũ0, Ũ

′
εδm(0))| +

∣∣∣∣β′β (Ũ0, Ũ
′
εδm(0))

∣∣∣∣
+

∣∣∣βa1(Ũ0 + g̃(0), Ũ0, Ũ
′
εδm(0))

∣∣∣ +
∣∣∣βa1(Ũ0, g̃(0), Ũ ′

εδm(0))
∣∣∣ +

∣∣∣(F̃ (0), Ũ ′
εδm(0))

∣∣∣
≤ C

(
‖Ũ0‖ + ‖Ũ0‖H2 + ‖Ũ0 + g̃(0)‖L∞‖Ũ0‖1 +‖Ũ0‖L∞‖g̃(0)‖1 + ‖F̃ (0)‖

)
‖Ũ ′

εδm(0)‖, (70)

which shows ‖Ũ ′
εδm(0)‖ ≤ C1(T ). This, together with (69), implies (57).

When d = 3, the discussion before (63) and the estimation of ‖Ũ ′
εδm(0)‖Ω remain true for

d = 3. What are changed from the case d = 2 are estimations of ‖Ũ ′
εδm‖2

L∞(0,T̊1;Qd)
and

‖Ũ ′
εδm‖2

L2(0,T̊1;V )
.

In place of (63)–(67), we derive, for arbitrary ξ > 0,∣∣∣β′a1(Ũεδm + g̃, Ũεδm, Ũ
′
εδm)

∣∣∣
≤ C‖Ũεδm + g̃‖L6‖Ũεδm‖1‖Ũ ′

εδm‖L3

≤ C‖Ũεδm + g̃‖1‖Ũεδm‖1‖Ũ ′
εδm‖1/2‖Ũ ′

εδm‖1/2
1

≤ ξ‖Ũ ′
εδm‖2

1‖Ũεδm‖2
1 + Cξ−1/3‖Ũ ′

εδm‖2/3‖Ũεδm + g̃‖4/3
1 ‖Ũεδm‖2/3

1

≤ ξ‖Ũ ′
εδm‖2

1‖Ũεδm‖2
1 + Cξ−1/3‖Ũ ′

εδm‖2‖Ũεδm‖2
1 + Cξ−1/3‖Ũεδm + g̃‖2

1;∣∣∣βa1(Ũ ′
εδm + g̃′, Ũεδm, Ũ

′
εδm)

∣∣∣
≤ C‖Ũ ′

εδm + g̃′‖L6‖Ũεδm‖1‖Ũ ′
εδm‖L3

≤ ξ‖Ũ ′
εδm‖2

1(‖Ũεδm‖1 + ‖Ũεδm‖2
1) + Cξ−3‖Ũ ′

εδm‖2‖Ũεδm‖1

+Cξ−1/3‖Ũ ′
εδm‖2‖Ũεδm‖2

1 + Cξ−1/3‖g̃′‖2
1;∣∣∣β′a1(Ũεδm, g̃, Ũ

′
εδm)

∣∣∣ ≤ ξ‖Ũ ′
εδm‖2

1‖g̃‖2
1 + Cξ−1‖Ũεδm‖2

1; ∣∣∣βa1(Ũ ′
εδm, g̃, Ũ

′
εδm)

∣∣∣ ≤ ξ‖Ũ ′
εδm‖2

1 + Cξ−3‖Ũ ′
εδm‖2‖g̃‖4

1;
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and ∣∣∣βa1(Ũεδm, g̃
′, Ũ ′

εδm)
∣∣∣ ≤ ξ‖Ũ ′

εδm‖2
1‖Ũεδm‖2

1 + Cξ−1‖g̃′‖2
1.

Hence, in place of (68), we obtain

1
2
d

dt
‖Ũ ′

εδm‖2 + ᾱ‖Ũ ′
εδm‖2

1 + ε−1‖([Ũεδmn + g̃n]−)′‖2
Γ ≤ C1(T )(‖F̃‖2 + ‖τ(g̃, π̃)‖2

Γ)

+ C1(T )(‖g̃‖4
1 + ‖g̃‖2

1 + ‖Ũεδm‖2
1)‖Ũ ′

εδm‖2 + C1(T )(‖g̃′‖2
1 + ‖Ũεδm‖2

1), (71)

where ᾱ = α− 2ξ − 4ξ‖Ũεδm‖2
1 − ξ‖Ũεδm‖1 − C1‖[Ũεδmn + g̃n]−‖Γ.

We choose ξ satisfying 2ξ + 4ξ‖Ũ0‖2
1 + ξ‖Ũ0‖1 ≤ α/12. Let T̂1 be the maximum value of t

such that 2ξ + 4ξ‖Ũεδmn(t)‖2
1 + ξ‖Ũεδmn(t)‖1 ≤ α/4. Let T ′

1 = min{T̂1, T1}, then ᾱ ≥ α/2 for
all t ∈ [0, T ′

1]. Then, applying Gronwall’s inequality, we obtain (57) with the replacement T1

by T ′
1.

Lemma 4.3. Let m ∈ N and δ ≤ ε. The solution Ũεδm of (NSε-Eσ
δm)̃ satisfies

‖Ũεδm‖2
L∞(0,T1;V σ) +

1
ε
‖[Ũεδmn + g̃n]−‖2

L∞(0,T1;L2(Γ)) ≤ C1(T1), (72)

where T1 is the constant appearing in Lemma 4.1.

Proof. Multiplying (51) by c′εδm(t) and taking the summation for k, we have

‖Ũ ′
εδm‖2 +

1
2
d

dt
a(Ũεδm, Ũεδm) − 1

ε

∫
Γ
ρδ(Ũεδmn + g̃n)Ũ ′

εδmn ds

= −β
′

β
(Ũεδm, Ũ

′
εδm) − βa1(Ũεδm + g̃, Ũεδm, Ũ

′
εδm)

− βa1(Ũεδm, g̃, Ũ
′
εδm) + (F̃ , Ũ ′

εδm) + [τ(g̃, π̃), Ũ ′
εδm] ≡ RHS.

Integrating the both sides with respect to t, we have, for t ∈ [0, T1],

1
2
a(Ũεδm(t), Ũεδm(t)) − 1

ε

∫ t

0

∫
Γ
ρδ(Ũεδmn + g̃n)Ũ ′

εδmn dΓds

=
1
2
a(Ũ0, Ũ0) +

∫ t

0
RHS ds. (73)

Since g̃′ = 0 on Γ,

−
∫

Γ
ρδ(Ũεδmn + g̃n)Ũ ′

εδmn dΓ

= −
∫

Γ
ρδ(Ũεδmn + g̃n)(Ũεδmn + g̃n)′ dΓ

=
∫

Γ
ρδ(Ũεδmn + g̃n)′(Ũεδmn + g̃n) dΓ −

∫
Γ
[ρδ(Ũεδmn + g̃n)(Ũεδmn + g̃n)]′ dΓ

≡ I1 + I2 (74)
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We see that

I1 =
∫

Γ
ρδ(Ũεδmn + g̃n)′([Ũεδmn + g̃n]+ − [Ũεδmn + g̃n)]−)dΓ

= −
∫

Γ

Ũεδmn + g̃n√
[Ũεδmn + g̃n]−|2 + δ2

[Ũεδmn + g̃n]−dΓ

=
∫

Γ

[Ũεδmn + g̃n]2−√
[Ũεδmn + g̃n]−|2 + δ2

dΓ ≥ 0. (75)

Moreover, by using (Ũεδmn + g̃n)(0) ≥ 0 and |ρδ(s)− [s]−| ≤ δ for s ∈ R, we get, for t ∈ [0, T1],∫ t

0
I2 ds = −

∫
Γ
ρδ(Ũεδmn(t) + g̃n(t))(Ũεδmn(t) + g̃n(t))

=
∫

Γ
ρδ(Ũεδmn(t) + g̃n(t))[Ũεδmn(t) + g̃n(t)]−

= ‖[Ũεδmn(t) + g̃n(t)]−‖2
L2(Γ)

+
∫

Γ
[Ũεδmn(t) + g̃n(t)]−(ρδ(Ũεδmn(t) + g̃n(t)) − [Ũεδmn(t) + g̃n(t)]−) dΓ

≥ ‖[Ũεδmn(t) + g̃n(t)]−‖2
Γ − δ

∫
Γ
[Ũεδmn(t) + g̃n(t)]− dΓ

≥ ‖[Ũεδmn(t) + g̃n(t)]−‖2
Γ − Cδ(‖Ũεδmn(t)‖1 + ‖g̃n(t)‖1). (76)

Hence, (73) leads to

1
2
a(Ũεδm(t), Ũεδm(t)) +

1
ε
‖[Ũεδmn(t) + g̃n(t)]−‖2

Γ

≤ 1
2
a(Ũ0, Ũ0) +

∫ t

0
RHS ds+ C

δ

ε
(‖Ũεδmn(t)‖1 + ‖g̃n(t)‖1). (77)

In view of (53), (57) and (25), we obtain (72) for t ∈ [0, T1].

Lemma 4.4. Let m ∈ N and suppose δ ≤ ε. When d = 2, (NSε-Eσ
δm)̃ admits a unique solution

Ũεδm for any T ∈ (0,∞) satisfying (53), (57), and (72) with the replacement T1 by T .

Proof. In view of (72), for sufficiently small ε,

‖[Ũεδmn + g̃n]−‖Γ ≤ C1(T1)
√
ε ≤ C1(T )

√
ε (t ∈ [0, T1]).

Hence, there exists ε2 > 0 and T2 ∈ (T1, T ] such that (56) is satisfied for all t ∈ [0, T2] and
ε ∈ (0, ε2]. Furthermore, we can replace T1 in (53), (57) and (72) by T2. We can continue this
process until we reach some Tk = T and (53), (57) and (72) are satisfied with T1 replaced by
Tk = T .

Lemma 4.5. When d = 2, for any T ∈ (0,∞), there exists ε0 > 0 and a solution Ũε of
(NSε-Eσ

δ )̃ satisfying

‖Ũεδ‖L∞(0,T ;V σ) + ε−1/2‖[Ũεδ + g̃n]−‖L∞(0,T ;L2(Γ)) ≤ C1(T ), (78a)

‖Ũ ′
εδ‖L∞(0,T ;Qd) + ‖Ũ ′

εδ‖L2(0,T ;V σ) ≤ C1(T ), (78b)
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if ε ∈ (0, ε0] and δ ≤ ε. When d = 3, the same conclusion holds for a smaller time interval
(0, T∗).

Proof. The proof below is valid for both d = 2, 3, except that we have to replace T by T∗ when
d = 3. Let ε ∈ (0, ε0] be fixed. As a consequence of Lemmas 4.1–4.4, there exists some Ūεδ

and a subsequence of {Ũεδm}∞m=1, such that Ūεδ ∈ L∞(0, T ;V σ), Ū ′
εδ ∈ L∞(0, T ;L2(Ω)d) ∩

L2(0, T ;V σ) and, as m→ ∞,

Ũεδm → Ūεδ weakly* in L∞(0, T ;V σ),

[Ũεδm + gn]− → [Ūεδ + gn]− weakly* in L∞(0, T ;L2(Γ)),

Ũ ′
εδm → Ū ′

εδ weakly* in L∞(0, T ;L2(Ω)d),

Ũ ′
εδm → Ū ′

εδ weakly in L2(0, T ;V σ).

We show Ūεδ is the solution of (49a). Multiplying (51) by φ ∈ C∞
0 (0, T ), and integrating over

(0, T ), it yields, for all k = 1, 2, . . . ,m,∫ T

0
φ(t)

{
(Ũ ′

εδm, wk) +
β′

β
(Ũεδm, Ũεδm) + a(Ũεδm, wk) + βa1(Ũεδm + g̃, Ũεδm, wk)

+βa1(Ũεδm, g̃, wk) −
1
ε

∫
Γ
[Ũεδmn + g̃n]−wkn ds− (F̃ , wk) + [[τ(g̃, π̃), wk]]

}
dt = 0.

It follows from (cf. [23, Theorem 2.1, Chap. 3], [2, Theorem II.5.16] and [18, Theorem 6.1,
Corollary 6.2, Chap. 2]) that the embedding

{w | w ∈ L2(0, T ;V ), w′ ∈ L2(0, T ;L2(Ω)d)} ⊂ L2(0, T ;L4(Ω)d)

is compact. Hence Ũεδm → Ūεδ strongly in L2(0, T ;L4(Ω)d). Since the trace mapping
H1(0, T ;V ) → L2(0, T ;L2(Γ)d) is compact, we have

Ũεδmn → Ūεδn strongly in L2(0, T ;L2(Γ)).

Therefore, Ũεδmn → Ūεδn a.e. on Γ. Moreover, the function [s]− of s ∈ R is continuous so that
[Ũεδmn + g̃n]− → [Ūεδn + g̃n]− a.e. on Γ.

At this stage, letting m→ ∞, we obtain, for all k ∈ N,∫ T

0
φ(t)

{
(Ū ′

εδ, wk) +
β′

β
(Ūεδ, Ūεδ) + a(Ūεδ, wk) + βa1(Ūεδ + ḡ, Ūεδ, wk)

+βa1(Ūεδ, ḡ, wk) −
1
ε

∫
Γ
[Ūεδn + g̃n]−wkn ds− (F̃ , wk) + [[τ(g̃, π̃), wk]]

}
dt = 0. (79)

In view of (50), we can replace the test function wk of (79) by arbitrary v ∈ V σ. Consequently,
we have proved Ūεδ = Ũεδ is the solution of (49a) satisfying (80).

Lemma 4.6. When d = 2, for any T ∈ (0,∞), there exists ε0 > 0 and a solution Ũε of
(NSε-Eσ )̃ satisfying

‖Ũε‖L∞(0,T ;V σ) + ε−1/2‖[Ũε + g̃n]−‖L∞(0,T ;L2(Γ)) ≤ C1(T ), (80a)

‖Ũ ′
ε‖L∞(0,T ;Qd) + ‖Ũ ′

ε‖L2(0,T ;V σ) ≤ C1(T ), (80b)

if ε ∈ (0, ε0]. When d = 3, the same conclusion holds for a smaller time interval (0, T∗).
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Proof. The proof below is valid for both d = 2, 3, except that when d = 3, we have to replace
T by T∗. As a consequence of Lemma 4.6, there exists some Ūε and a subsequence of {Ũεδi

}∞i=1,
with limi→∞ δi = 0 such that Ūε ∈ L∞(0, T ;V σ), Ū ′

ε ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;V σ), and
as i→ ∞, δi → 0,

Ũεδi
→ Ūε weakly* in L∞(0, T ;V σ),

ρδi
(Ũεδi

+ gn) → [Ūε + gn]− weakly* in L∞(0, T ;L2(Γ)),

Ũ ′
εδi

→ Ū ′
ε weakly* in L∞(0, T ;L2(Ω)d),

Ũ ′
εδi

→ Ū ′
ε weakly in L2(0, T ;V σ).

It is not difficult to verify that Ūε is the solution to (46). And we proved Ūε = Ũε is the
solution to (46) satisfying (80).

Lemma 4.7. When d = 2, for any T ∈ (0,∞), there exists a solution Ũ of (NS-Iσ )̃ satisfying

‖Ũ‖L∞(0,T ;V σ) ≤ C1(T ), (81a)

‖Ũ ′‖L∞(0,T ;L2(Ω)d) + ‖Ũ ′‖L2(0,T ;V σ) ≤ C1(T ). (81b)

When d = 3, the same conclusion holds for a smaller time interval (0, T∗).

Proof. The proof is valid for both d = 2, 3, except we replace T by T∗ for the case d = 3.
In view of Lemma 4.6, sequences ‖Ũε‖L∞(0,T ;V σ), ‖Ũ ′

ε‖L∞(0,T ;L2(Ω)d) and ‖Ũ ′
ε‖L2(0,T ;V σ) are

bounded as ε→ 0 and ‖[Ũε + g̃n]−‖L∞(0,T ;L2(Γ)) ≤ C1(T )
√
ε. Hence, they admit a sequence εi

(εi → 0 as i→ ∞) and Ū ∈ L∞(0, T ;V σ) such that Ū ′ ∈ L∞(0, T ;L2(Ω)d)∩L2(0, T ;V σ) and,
as εi → 0,

Ũεi → Ū weakly* in L∞(0, T ;V σ), weakly in L2(0, T ;V σ),

[Ũεin + g̃n]− → 0 weakly* in L∞(0, T ;L2(Γ)),

Ũ ′
εi
→ Ū ′ weakly* in L∞(0, T ;L2(Ω)d),

Ũ ′
εi
→ Ū ′ weakly in L2(0, T ;V σ).

In the similar manner as the proof of Lemma 4.6, we have, as εi → 0,

Ũεi → Ū strongly in L4(0, T ;L2(Ω)d),

Ũεin → Ūn strongly in L2(0, T ;L2(Ω)d),

[Ũεi + g̃n]− → [Ūn + g̃n]− a.e. on Γ.

Hence, [Ūn + g̃n]− = 0 a.e. on Γ, Ū ∈ K̃σ, and∫ T

0
a(Ū , Ū)dt ≤ lim inf

εi→0

∫ T

0
a(Ũε, Ũε)dt.

On the other hand, we have from (46)

(Ũ ′
ε, v − Ũε) +

β′

β
(Ũε, v − Ũε) + a(Ũε, v − Ũε) + βa1(Ũε, g̃, v − Ũε) + βa1(Ũε + g̃, Ũε, v − Ũε)

− 1
ε

∫
Γ
[Ũεn + g̃n]−(vn − Ũεn)ds− (F̃ , v − Ũε) − [[τ(g̃, π̃), v − Ũε]] = 0
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for any v ∈ K̃σ and a sufficiently small ε.
Noting that, for any v ∈ K̃,

−[Ũεn + g̃n]−(vn − Ũεn) = −[Ũεn + g̃n]−[vn + g̃n − (Ũεn + g̃n)]
= −[Ũεn + g̃n]−(vn + g̃n) − |[Ũεn + g̃n]−|2 ≤ 0,

we deduce, for all t ∈ [0, T ],∫ t

0

{
(Ũ ′

ε, v − Ũε) + (β′/β)(Ũε, v − Ũε) + a(Ũε, v − Ũε) + βa1(Ũε, g̃, v − Ũε)

+βa1(Ũε + g̃, Ũε, v − Ũε) − (F̃ , v − Ũε) − [[τ(g̃, π̃), v − Ũε]]
}
≥ 0.

Therefore, taking the lower limit as εi → 0, we obtain∫ t

0

{
(Ū ′, v − Ū) + (β′/β)(Ū , v − Ū) + a(Ū , v − Ū) + βa1(Ū , g̃, v − Ū)

+βa1(Ū + g̃, Ū , v − Ū) − (F̃ , v − Ū) − [[τ(g̃, π̃), v − Ū ]]
}
≥ 0

for any v ∈ K̃σ. By using this inequality, we conclude that Ū = Ũ is a solution of (45) for a.e.
t ∈ [0, T ] in the exactly same way as [7, Paragraph III.3.4.1].

Finally, we can state the following proof.

Proof of Propositions 1 and 4. Since U = Ũβ and Uε = Ũεβ, Lemmas 4.7 and 4.6 imply
Propositions 1 and 4, respectively.

5 Energy inequalities

In this section, we derive energy inequalities for (NS-E) and (NSε-E).

Theorem 4 (Energy inequality for (NS-E)). If there exists

U ∈ L∞(0, T ;Qd) ∩ L2(0, T ;V σ), Ut ∈ L2(0, T ;Qd) (82)

that satisfy (NS-E) in 0 ≤ t ≤ T with some P (t) ∈ Q, then we have

sup
0≤t≤T

‖U(t)‖2 +
∫ T

0
a(U(t), U(t)) dt ≤ C(T ), (83)

where C(T ) denotes a positive constant depending on F , g, U0, Ω and T .

Theorem 5 (Energy inequality for (NSε-E)). Let ε > 0. Suppose that there exists

Uε ∈ L∞(0, T ;Qd) ∩ L2(0, T ;V σ), Uε,t ∈ L2(0, T ;Qd)

that satisfy (NSε-E) in 0 ≤ t ≤ T with some Pε(t) ∈ Q. Moreover, assume that

‖[Uεn + gn]−‖L∞(0,T ;L2(Γ)) ≤ C2(T )
√
ε (t ∈ [0, T ]). (84)

Then, there exists ε1 > 0 such that we have, for ε ∈ (0, ε1],

sup
0≤t≤T

‖Uε(t)‖2 +
∫ T

0
a(Uε(t), Uε(t)) dt ≤ C(T ). (85)

Therein, ε1, C2(T ) and C(T ) denote positive constants depending on F , g, U0, Ω and T .
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Remark 5.1. As is described in the previous section, the existence proof of Uε depends on the
inequality (84) (cf. Lemmas 4.3, 4.4 and 4.6). Hence, it is not restrictive that we assume (84)
as long as the solution exists.

We finally state the following proofs.

Proof of Theorem 4. Substituting U into (18a), we have

1
2
d

dt
‖U‖2 + a(U,U) + a1(U + g, U, U) = (F,U) − a1(U, g, U).

We apply Lemma 2.2 and Remark 2.6 to deduce, for any ξ > 0,

|a1(U, g, U)| ≤

{
ξ‖U‖2

1 + Cξ−1‖g‖2
1‖U‖2 (d = 2)

ξ‖U‖2
1 + Cξ−3‖g‖4

1‖U‖2 (d = 3);

|(F,U)| ≤ C‖F‖‖U‖1 ≤ ξ‖U‖2
1 + Cξ−1‖F‖2.

On the other hand, since Un + gn ≥ 0 on Γ,

a1(U + g, U, U) =
1
2

∫
Γ
(Un + gn)|U |2dΓ ≥ 0.

Summing up, we have, for any ξ > 0,

1
2
d

dt
‖U‖2 + a(U,U) − 2ξ‖U‖2

1 ≤

{
ξ−1‖g‖2

1‖U‖2 + Cξ−1‖F‖2 (d = 2)
Cξ−3‖g‖4

1‖U‖2 + Cξ−1‖F‖2 (d = 3).
(86)

From Korn’s inequality (25), the left-hand side of (86) is bounded from below by

1
2
d

dt
‖U‖2 +

(
1 − 2ξ

α

)
a(U,U).

Supposing ξ = α/4 and applying Gronwall’s inequality to (86), we obtain (83).

Proof of Theorem 5. Substituting v = Uε into (21a), we get

1
2
d

dt
‖Uε‖2 + a(Uε, Uε) + a1(Uε + g, Uε, Uε) −

1
ε

∫
Γ
[Uεn + gn]−Uεn dΓ

= (F,Uε) − [[τ(g, π), Uε]] − a1(Uε, g, Uε).

We argue as in the proof of Lemma 4.1 and obtain, for any ξ > 0,

1
2
d

dt
‖Uε‖2 +

[
1 − 2ξ

α
− c1

2α
‖[Uεn + gn]−‖Γ

]
a(Uε, Uε) +

1
ε

∫
Γ
[Uεn + gn]−gn dΓ

≤ C
1
ξ
(‖F‖2 + ‖τ(g, π)‖2

Γ) + c4(T, ξ)‖Uε‖2,

where c1 denotes the domain constant appearing in (28) and c4 is defined as (52) with the
replacement of g̃ by g.

At this stage, we choose as ξ = α/8 and let
√
ε1 = α/(2c1C2(T )). Then, for ε ∈ (0, ε1],

1
2
d

dt
‖Uε‖2 +

1
2
a(Uε, Uε) ≤ C(‖F‖2 + ‖τ(g, π)‖2

Γ) + c4(T, ξ)‖Uε‖2.

Applying Gronwall’s inequality implies (85).
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