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Abstract The penalty method for solving the stationary Stokes and Navier-
Stokes equation with slip boundary condition is considered. For Stokes equa-
tions, the optimal error in Hk norm( for any integer k ≥ 0) is obtain. For
Navier-Stokes equations, two penalty equations are proposed, for which the
well-posedness and optimal error estimate are investigated. We are also con-
cerned with the finite element approximation to penalty problem using P1/P1
and P1b/P1 elements. Two implementation methods of penalty term are pro-
posed: the fine-integration and the lower-order-integration schemes. We derive
the error estimates and shows the optimal choice of penalty parameter and
the finite element discretization parameter(mesh size). The theoretical results
are verified by numerical experiments.
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1 Introduction

Set Ω ∈ Rd, d = 2, 3, ∂Ω = Γ ∪C, Γ ∩C = ∅, see Figure 1.1. Ω is C3 smooth.
We consider the stationary Navier-Stokes problem (NS) with slip boundary
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condition.

− ν∆u+ (u · ∇)u+∇p = f, in Ω, (1.1a)

∇ · u = 0, in Ω, (1.1b)

un = 0, τT (u) = 0, on Γ, (1.1c)

u = 0 on C, (1.1d)

where ν > 0, un = u · n, n is the unit outer normal vector to Γ , and τT (u) is
the tangential component of traction vector on Γ defined in the following.

For velocity u and pressure p, we set the stress tensor,

σ(u, p) = (σi,j(u, p)) = −pI + 2µE(u), (1.2a)

E(u) = (Ei,j(u)) =

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

))
, (1.2b)

where I denotes the identity. And we introduce the traction vectors:

τ(u, p) = σ(u, p)n, (1.3a)

τn(u, p) = τ(u, p) · n, (1.3b)

τT (u) = τ(u, p)− τn(u, p)n. (1.3c)

Slip boundary condition un = 0 plays important roles in physical fluid mod-
els( cf. [14]). To solve Stokes or Navier-Stokes equations with slip boundary
condition by finite element method(FEM) is not as easy as the case of no-slip
boundary( ex. Dirichlet boundary) problems. The main difficulties lie to find a
proper finite element approximation to the slip boundary condition un|Γ = 0.

Usually, a polygon or polyhedral domain Ωh is introduced with a trian-
gulation Th to approximate the smooth boundary domain Ω in FEM. And it
is natural to use the unit outer normal vector nh to the boundary Γh( see
Figure 1.2) in numerical method instead of n(x). Some choices of finite ele-
ment spaces used in the no-slip boundary problem, for example, the P1/P1
with stabilization and P1b/P1 approximations( cf. [11]), are known to cause
variational crime( cf. [2,15]) in the slip boundary case. To briefly explain this
problem, we consider the P1b finite element space for velocity

Vh = {vh ∈ C(Ωh)d | vh|T ∈ P1(T )⊕B(T ),∀T ∈ Th, vh = 0 on Ch},

where Pi(T ) is the set of polynomials of degree i on T and B(T ) stands for
the space spanned by bubble function on T . If we set

Vhn = {vh ∈ Vh | vh · nh = 0 on Γh},

as the finite element space with slip boundary information. Since nh is discon-
tinuous on Γh, Vhn coincides with Vh0, where

Vh0 = {vh ∈ Vh | vh = 0 on Γh}.
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To tackle this problem, a pioneer work on FEM for Stokes/Navier-Stokes
equations with slip boundary condition(slip BC) by Verfürth( cf. [25–27]) es-
tablished the convergence and error estimates for a special finite element spaces
satisfying a coupled inf-sup condition given in [26], where the Lagrange mul-
tiplier method is employed and the slip BC is enforced in a weak sense.

In [24,23]( Tabata, etc.), P1/P1 element with stabilization is used, and the
slip BC is implemented as vh(p) · n(p) = 0 for all p the vertices of Ωh on Γ (
see Figure 1.3). The authors consider the spherical domain in [24,23], where
n(p) is easy to calculate; but for general domain, using nh is more convenient
than n. A similar method presented in [10,3] is to introduce a homeomorphism
Gh : Ωh → Ω and consider the P2/P1 approximation, then the slip boundary
is described as vh(p)·n(Gh(p))( see Figure 1.4), where p is the set of all vertices
and midpoint of edges on Γh. However, to construct Gh may be very technical
for complex domain, and sometimes P1/P1 or P1b/P1 element spaces are
preferred for its less DOFs in computation, especially for 3D simulations.

Γ

Ω

C

n

Fig. 1.1 Ω, Γ and C.

Ωh
Γh

nh

Ch

Fig. 1.2 Ωh, ∂Ωh = Γh ∪ Ch and trian-
gulation Th.

!!

"#$%

!

(uh⋅n)(p)=0

Fig. 1.3

!"#$"%&&

%

uh⋅n(Gh(p))=0 Gh(p)

Fig. 1.4

An alternative approach introduced in [10] is to find the local rotational
matrix Ri which rotate the co-ordinate system at nodes i of boundary Γh
to coincide the tangential and normal directions so that un and uT = u −



4 G. Zhou, T. Kashiwabara, and I. Oikawa

unn become the degree of freedom of node i. This approach requires addition
implementation technique.

Instead of searching proper finite element spaces or implement method for
slip BC, another popular way is to use the penalty method( cf. [18,6,9,8]),
which is easy for computation and widely applied in numerical simulations of
fluid motion. The implementation of penalty method can be easily achieved
by popular FEM-softwares, such as Freefem++( cf. [13]) and FeniCS( cf. [20]).

The idea of penalty method is based on a Robin-type boundary condition.
We state the penalty problem (NSε):

− ν∆uε + (uε · ∇)uε +∇pε = f, in Ω, (1.4a)

∇ · uε = 0, in Ω, (1.4b)

τn(uε, pε) +
1

ε
uεn = 0, τT (uε) = 0, on Γ, (1.4c)

uε = 0 on C, (1.4d)

where 0 < ε� 1 is the penalty parameter, and uεn = uε ·n. In the variational
form described below, the penalty term is 1

ε

∫
Γ
uεnvnds with v ∈ V = H1(Ω)d.

As ε→ 0, uεn → 0 at least in L2(Γ ), which shows uεn approximate to the slip
BC un = 0.

In fact, the error estimate ‖u− uε‖H1(Ω) ≤ Cε has been proved for Stokes
equation in [8,9] and for Navier-Stokes equations with penalty problem (3.17).

For Stokes equations, in [6], the method of coupled inf-sup condition is
employed to derive the error estimates. Here, we avoid to use the coupled
inf-sup condition, and introduce the separation of pε ∈ L2(Ω):

pε = p̊ε + kε, p̊ε ∈ L2
0(Ω), kε =

∫
Ω

pεdx/|Ω|. (1.5)

Then we obtain the error estimates( see Theorem 2.3)

‖u− uε‖H1(Ω) + ‖ − τn(u, p)− ε−1uεn + kε‖H−1/2(Γ ) ≤ Cε.

Moreover, for sufficiently smooth domain, we also show that( see Theorem 2.4)

‖uε‖Hk(Ω) + ‖pε‖Hk−1(Ω) ≤ C‖f‖Hk−2(Ω),

and we obtain the error( see Theorem 2.5)

‖u− uε‖Hk(Ω) ≤ Cε,

for any integer k ≥ 1.
For Navier-Stokes equations, we consider the well-posedness of penalty

problems (NSε) and (3.17)( Theorem 3.2,3.3,3.4). The error estimate

‖u− uε‖H1(Ω) ≤ Cε,

is proved for both (NSε) and (3.17)( see Theorem 4.1,4.2, and Remark 4.1).
The penalty scheme (NSε) may exist “large norm solution” uε with ‖uε‖H1(Ω) >
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Cε−1/2 for samll ε, and we discuss the iteration method for (NSε) to avoid
the “large norm solution”( see Sect. 3.2.1).

For the finite element approximation, [8] consider the P2/P1 element
homeomorphism Gh introduced before. And in [6], the authors assume the
finite element spaces satisfying a discrete version of coupled inf-sup condition.
The error estimates ‖u− uh‖H1(Ωh) in [8,6] is derived by estimating the error
‖uε−uh‖H1(Ωh) and using the inequality ‖u−uh‖H1(Ωh) ≤ ‖uε−uh‖H1(Ωh) +
‖u− uε‖H1(Ωh).

Here, we consider the P1/P1 element with stabilization and P1b/P1 el-
ement. We investigate the error estimate ‖u − uh‖H1(Ωh) directly. Most im-
portantly, we proposed two methods to implement the penalty term in finite
element method: (1) fine-integration scheme and (2) lower-order integration
scheme( see Sect. 5). We derive the error estimates for both two implemen-
tation methods( see Theorem 5.2,5.3). And we give some optimal choices of
penalty parameter ε and mesh size h( see Remark 5.1). For example, when
d = 2, setting ε ' h2, we have the error O(h) for lower-integration scheme.
Comparing to the error estimate O(h3/2) of P2/P1 element with penalty in [8],
our error estimate O(h) shows the P1b/P1( or P1/P1) element also performs
well for slip BC penalty method.

As a summary, we prove the error estimates ‖u − uε‖Hk(Ω) ≤ Cε( k ≥ 1)
for Stokes problem and ‖u − uε‖H1(Ω) ≤ Cε for Navier-Stokes problem. Our
analysis method is to take the penalty term ε−1uεn as a Lagrange multiplier,
and consider the error of ‖ − τn(u, p)− ε−1uεn + kε‖

H−
1
2 (Γ )

. We propose two

implementation methods of penalty term in FEM for Navier-Stokes equations,
and we obtain the error estimates of ‖u− uh‖H1(Ωh).

The paper is organized as follows. In Sect. 2, we consider the penalty
method for Stokes equation with slip BC, and derive the error estimates of
penalty. Sect. 3 is devoted to the well-posedness of penalty method for Navier-
Stokes equations. We give the error estimates of penalty for Navier-Stokes
equation in Sect. 4. The finite element approximation is discussed in Sect. 5.
The numerical experiments are presented in Sect. 6.

Notations

Throughout this paper, we write ‖ ·‖k,ω as the norm of Sobolev spaces Hk(ω),
and ‖ · ‖k,p,ω for W k,p(Ω)(k is omitted if k = 0). (·, ·)ω represents the inner-
product of L2(ω), and we use (·, ·) for the case ω = Ω. C or Ci represent some
constants different case by case, but independent of penalty parameter ε and
finite element discretization parameter h. C may depend on Ω, d.
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2 Penalty method for Stokes equations: error estimates

Let f ∈ L2(Ω). We consider the Stokes equations with slip BC, denoted as
(S):

− ν∆u+∇p = f in Ω, (2.1a)

∇ · u = 0 in Ω, (2.1b)

un = 0, τT (u) = 0 on Γ, (2.1c)

u = 0 on C. (2.1d)

Remark 2.1 ( cf. [3,4] ) For f ∈ L2(Ω), there exists a unique solution (u, p) ∈
H2(Ω)d ×H1(Ω) to (2.1).

Function spaces.

– V = H1(Ω)d ∩ {v|C = 0}, Vn = V ∩ {v|v · n = 0 on Γ},
– Vσ = V ∩ {v | ∇ · v = 0 in Ω}, Vσ,n = Vn ∩ Vσ,

– Q = L2(Ω), Q̊ = L2
0(Ω),

– Λ = H1/2(Γ ), Λ∗ = H−
1
2 (Γ ).

– We denote X∗ as the dual of Banach space X.

For any u, v, w ∈ V , p ∈ Q, η ∈ Λ and µ ∈ Λ∗, we set

a(u, v) = 2ν(E(u), E(u)), (2.2a)

a1(u, v, w) =

∫
Ω

(u · ∇)v · wdx, (2.2b)

b(v, p) = −(∇ · v, p), (2.2c)

c(µ, η) =

∫
Γ

µηds. (2.2d)

Some properties of bilinear and trilinear forms.( cf. [11,5,26])

– Coercivity of a: there exists α > 0 such that

a(u, u) ≥ α‖u‖21,Ω , ∀u ∈ V. (2.3)

– For any u, v, w ∈ V ,

a(u, v, w) =

∫
Γ

un(v · w)ds− a(u,w, v)−
∫
Ω

∇ · u(v · w)dx, (2.4)

a(u, v, v) =
1

2

∫
Γ

un|v|2ds, ∀u ∈ Vσ. (2.5)

– The inf-sup condition of b: there exists β > 0 such that

inf
p∈L2

0(Ω)\{0}
sup

v∈H1
0 (Ω)d\{0}

b(v, p)

‖v‖1,Ω‖p‖Ω
≥ β. (2.6)
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– The inf-sup condition of c: there exists γ0 > 0 such that

inf
µ∈Λ∗\{0}

sup
v∈V \{0}

c(µ, vn)

‖v‖1,Ω‖µ‖Λ∗
≥ γ0. (2.7)

The variational form of (2.1) reads as: find (u, p) ∈ Vn × Q̊ such that,

a(u, v) + b(v, p) = (f, v), ∀v ∈ Vn, (2.8a)

b(u, q) = 0, ∀q ∈ Q̊. (2.8b)

Let 0 < ε� 1, the penalty method for (S), denoted as (Sε), reads as:

−∆uε +∇pε = f in Ω, (2.9a)

∇ · uε = 0 in Ω, (2.9b)

τn(uε, pε) +
1

ε
uεn = 0, τT (uε) = 0 on Γ, (2.9c)

uε = 0 on C. (2.9d)

The variational form of (2.9) reads as: find (uε, pε) ∈ V ×Q such that

a(uε, v) + b(v, pε) +
1

ε
c(uεn, vn) = (f, v), ∀v ∈ V, (2.10a)

b(uε, q) = 0, ∀q ∈ Q. (2.10b)

Remark 2.2 pε /∈ Q̊. For nonhomogeneous slip boundary condition un = g
on Γ , we set the penalty term 1

ε c(uεn − g, vn) in (2.10a), or equivalently,
τn(uε, pε) + 1

ε (uεn − g) = 0 in (2.9c).

Theorem 2.1 Given f ∈ V ∗, there exists a unique solution (uε, pε) ∈ V ×Q
to (2.10), with

‖uε‖1,Ω + ‖pε‖Ω ≤ C‖f‖V ∗ .

Proof From the coercivity of a (2.3), we conclude the existence of uε and
‖uε‖V ≤ C‖f‖V ∗ . Set pε = p̊ε + kε, where p̊ε ∈ Q̊ and kε =

∫
Ω
pεdx/|Ω|.

From the inf-sup condition of b (2.6), we have( cf. [11]) ‖p̊ε‖Ω ≤ C‖f‖V ∗ .
To estimate kε, we choose a trace lifting v ∈ V ( cf. [19]) satisfying v = kεn
on Γ , and ‖v‖1,Ω ≤ Ckε. Substituting this v into (2.10), in view of the fact∫
Γ
uεnds = 0, we have

|Γ |k2
ε = kε

∫
Γ

vndx = −b(v, kε) = a(uε, v) + b(v, p̊ε)− (f, v),

which implies

|kε| ≤ C(‖uε‖1,Ω + ‖p̊ε‖Ω + ‖f‖V ∗) ≤ C‖f‖V ∗ .

ut
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To show the error estimates of penalty method, we introduce the Largrange
multipliers λ = −τn(u, p) and λε = 1

εuεn, then (2.8) and (2.10) are rewritten
into the following two equations, respectively:

(1) find (u, p, λ) ∈ V ×Q× Λ∗ such that,

a(u, v) + b(v, p) + c(λ, vn) = (f, v), ∀v ∈ V, (2.11a)

b(u, q) = 0, ∀q ∈ Q, (2.11b)

c(un, η) = 0, ∀η ∈ Λ; (2.11c)

(2) find (uε, pε, λε) ∈ V ×Q× Λ∗ such that,

a(uε, v) + b(v, pε) + c(λε, vn) = (f, v), ∀v ∈ V, (2.12a)

b(uε, q) = 0, ∀q ∈ Q, (2.12b)

c(uεn, η) = εc(λε, η), ∀η ∈ Λ. (2.12c)

We state the error estimates of penalty method.

Theorem 2.2 Let (u, p) and (uε, pε) be the solutions of (2.1) and (2.9), re-
spectively, then we have

‖u− uε‖1,Ω + ‖p− p̊ε‖Ω +
√
ε‖λ− λε‖Γ ≤ c

√
ε‖λ‖Γ . (2.13)

Proof Substituting v = u− uε into (2.11a)−(2.12a), we have

a(u− uε, u− uε) + c(λ− λε, un − uεn) = 0. (2.14)

Since un = 0 and uεn = ελε, we have

c(λ− λε, un − uεn) = εc(λ− λε, λ− λε)− εc(λ, λ− λε). (2.15)

From the coercivity of a (2.3), (2.14) and (2.15) we obtain

α‖u− uε‖21,Ω + ε‖λ− λε‖2Γ
≤εc(λ, λ− λε) ≤

ε

2
‖λ− λε‖2Γ +

ε

2
‖λ‖2Γ ,

which implies
‖u− uε‖1,Ω +

√
ε‖λ− λε‖Γ ≤ c

√
ε‖λ‖Γ . (2.16)

From the inf-sup condition of b (2.6) and

b(p− p̊ε, v) = −a(u− uε, v), ∀v ∈ H1
0 (Ω)d, (2.17)

we have
‖p− p̊ε‖Ω ≤ C‖u− uε‖1,Ω , (2.18)

which gives (2.13). ut

Theorem 2.3 Let (u, p) and (uε, pε) be the solutions of (2.1) and (2.9), re-
spectively, then we have

‖u− uε‖1,Ω + ‖p− p̊ε‖Ω +
√
ε‖λ− λε + kε‖Γ ≤ Cε(‖λ‖ 1

2 ,Γ
+ 1). (2.19)
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Proof Subtracting (2.11a) from (2.12a), we have, for any v ∈ V ,

c(λ− λε + kε, vn) = −a(u− uε, v)− b(v, p− p̊ε).

In view of the inf-sup condition of c (2.7) and (2.18), it yields

‖λ− λε + kε‖Λ∗ ≤ C‖u− uε‖1,Ω (2.20)

Noticing that
∫
Γ
uεnds = 0, instead of (2.15), we derive

c(λ−λε, un−uεn) = εc(λ−λε+kε, λ−λε+kε)−εc(λ+kε, λ−λε+kε). (2.21)

From the coercivity of a (2.3), (2.14) and (2.21), we obtain

α‖u− uε‖21,Ω + ε‖λ− λε + kε‖2Γ
≤εc(λ+ kε, λ− λε + kε) ≤ ε‖λ+ kε‖Λ‖λ− λε + kε‖Λ∗ .

(2.22)

From (2.22) and (2.20), we obtain

‖u− uε‖1,Ω ≤ Cε‖λ+ kε‖Λ,

which implies (2.19) because kε is bounded independent of ε( see Theorem 2.1).
ut

Remark 2.3 From (2.20), we have ‖λ− λε + kε‖H−1/2(Γ ) ≤ Cε.

In view of

‖uεn‖ 1
2 ,Γ

= ‖uεn − un‖ 1
2 ,Γ
≤ C‖uε − u‖1,Ω ≤ Cε,

we have
‖τn(uε, pε)‖ 1

2 ,Γ
= ‖ε−1uεn‖ 1

2 ,Γ
≤ C,

which implies
‖uε‖2,Ω + ‖pε‖1,Ω ≤ C.

In fact, we have the following regularity result for penalty problem (2.9).

Theorem 2.4 For arbitrary integer k ≥ 0, let Ω ∈ Ck+2, f ∈ Hk(Ω)d, then
there exists a unique solution (uε, pε) ∈ Hk+2(Ω)d ×Hk+1(Ω) to (2.9), with

‖uε‖k+2,Ω + ‖pε‖k+1,Ω ≤ C‖f‖k,Ω . (2.23)

Proof For general domain Ω ∈ Ck+2, the regularity in interior or near C is
well known( cf. [7,17]); that is ‖uε‖k+2,ω + ‖pε‖k+1,ω ≤ C(ω)‖f‖k,ω, where
ω ⊂ Ω and dist(w, Γ ) ≥ δ > 0.

For the regularity near Γ , there exists a set of smooth sub-domain in Rd,
denoted as {Ui}mi=1, satisfying Γ ⊂ ∪mi=1Ui.

We introduce a cut-off function θi ∈ C∞(Rd) with suppθi ⊂ Ui, and con-
sider the equations of (θ2uε, θ

2pε) in Ui ∩Ω.
There exists a Ck+3-diffeomorphism( cf. [28]) Φi : Ui → QR := Rdd,+∩{x̃ ∈

Rd, | |x̃| < R}, where Rdd,+ := {x̃ = (x̃′, x̃d) ∈ Rd | x̃′ ∈ Rd−1, x̃d > 0} is the

half-plane, and we also have Φi : Γ ∩ Ui → Γ̃i := {x̃ | |x̃| < R, x̃d = 0}.
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Then we consider the equation of (ũε, p̃ε) := ((θ2
i uε) ◦ Φi, (θ

2
i pε) ◦ Φi) in

domainQR, to which we apply the famous Agmon-Douglis-Nirenberg’ method(
cf. [1]) and obtain ‖DiDj ũε‖Ω ≤ C(‖f‖Ω + ‖uε‖1,Ω), i = 1, . . . , d − 1; j =
1, . . . , d, where Div = ∇xiv. Hence, we can conclude ‖ũε‖ 3

2 ,Γ̃i
≤ C‖f‖k,Ω ,

which implies ‖uεn‖ 3
2 ,Γ
≤ C‖f‖Ω . Following from well-known regularity result

for Stokes equation by Cattabriga [7], it yields ‖uε‖2,Ω + ‖pε‖1,Ω ≤ C‖f‖Ω .
For k ≥ 1, (2.23) can be proved by induction method.

In above, we briefly sketch the strategy of proof. The key point is to consider
the equation in the half-plane via some transformations. We refer the readers
to [21]( Saito, proof of Lemma 4.1) for detailed arguments on those techniques.
Here, to make the argument brief, we only prove the case of k = 0 and the
half-plane domain Ω = Rdd,+ := {x = (x′, xd) ∈ Rd | x′ ∈ Rd−1, xd > 0}.

Set Di
hv = (v(x1, · · · , xi + h, · · · , xd) − v(x))/h, h > 0. Substituting v =

Di
−hD

i
huε into (2.9), i = 1, . . . , d− 1, we have, with Γ = {x | xd = 0},

a(uε, D
i
−hD

i
huε) + b(Di

−hD
i
huε, pε) +

1

ε

∫
Γ

uεnD
i
−hD

i
huε ·nds = (f,Di

−hD
i
huε).

Using the fact (w,Di
−hv) = (Di

hw, v), ∀w, v ∈ H1(Rdd,+), we get

a(Di
huε, D

i
huε) +

1

ε

∫
Γ

|Di
huεn|2ds = (f,Di

−hD
i
huε) ≤ C‖f‖Ω‖Di

−hD
i
huε‖Ω .

Since ‖Di
hv‖Ω ≤ C‖∇xiv‖Ω , from the coercivity of a (2.3), we have,

‖Di
huε‖1,Ω + ε−1/2‖Di

huεn‖Γ ≤ C‖f‖Ω , i = 1, . . . , d− 1.

Let h→ 0, and we have

‖DiDjuε‖Ω + ε−1/2‖Diuεn‖ ≤ C‖f‖Ω , i = 1, . . . , d− 1; j = 1, . . . , d.

By trace theorem and n = (0, . . . , 0, 1), we have

‖uεn‖ 3
2 ,Γ
≤ C‖f‖Ω .

And we can conclude (uε, pε) ∈ H2(Ω)d × H1(Ω) and (2.23) for k = 0( cf.
[7]). ut

Theorem 2.5 For any integer k ≥ 0, f ∈ Hk(Ω)d. Let (u, p) and (uε, pε) of
Hk+2(Ω)d×Hk+1(Ω) be the solutions of (2.1) and (2.9), respectively, then we
have,

‖u− uε‖k+2,Ω + ‖p− p̊ε‖k+1,Ω ≤ Cε‖λ‖k+ 3
2 ,Γ

. (2.24)

Proof Same to Theorem 2.4, to make the argument brief, we only prove the
case of k = 0( k ≥ 1 follows form induction method) and the half-plane
domain Ω = Rdd,+. Substituting v = Di

−hDh(u − uε), i = 1, . . . , d − 1, into
(2.11a)−(2.12a), we have

a(u− uε, Di
−hD

i
h(u− uε)) + c(λ− λε + kε, D

i
−hD

i
h(u− uε) · n) = 0,
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which yields,

a(Di
h(u− uε), Di

h(u− uε)) + εc(Di
h(λ− λε + kε), D

i
h(λ− λε + kε))

= εc(Di
h(λ− λε + kε), D

i
h(λ+ kε)).

kε is a constant, so Di
hkε = 0. Therefore, we have

α‖Di
h(u− uε)‖21,Ω + ε‖Di

h(λ− λε)‖2Γ
≤Cε‖Di

h(λ− λε + kε)‖− 1
2 ,Γ
‖Di

hλ‖ 1
2 ,Γ

.
(2.25)

Via inf-sup condition of b, and the equation

b(Di
h(p− p̊ε), v) = −a(Di

h(u− uε), v), ∀v ∈ H1
0 (Rdd,+),

we have ‖Di
h(p− p̊ε)‖Ω ≤ C‖Di

h(u− uε)‖1,Ω .
Via inf-sup condition of c, and the equation

c(Di
h(λ− λε + kε), v) = −a(Di

h(u− uε), v)− b(Di(p− p̊ε), v),

we have
‖Di

h(λ− λε + kε)‖− 1
2 ,Γ
≤ C‖Di

h(u− uε)‖1,Ω .

In views of (2.25), we obtain

‖Di
h(u− uε)‖1,Ω ≤ Cε‖Di

hλ‖ 1
2 ,Γ

,

then letting h→ 0, we proved (2.24). ut

3 Penalty method for Navier-Stokes equations: well-posedness

3.1 Variational forms of (NS) and (NSε)

The variational form of (1.1) reads as: find (u, p) ∈ Vn × Q̊ such that

a(u, v) + a1(u, u, v) + b(v, p) = (f, v), ∀v ∈ Vn, (3.1a)

b(u, q) = 0, ∀q ∈ Q̊. (3.1b)

Remark 3.1 ( cf. [11]) For f = 0, (3.1) admits a unique solution u = 0. For
any f ∈ V ∗ and f 6= 0, there exists a solution (u, p) ∈ Vn × Q̊ for (3.1), with

‖u‖1,Ω ≤ ‖f‖V ∗/α, ‖p‖Ω ≤ C‖f‖V ∗ . (3.2)

If α2 > ‖f‖V ∗ , then the solution is unique.

The variational form of (1.4) reads as: find (uε, pε) ∈ V ×Q such that

a(uε, v) + a1(uε, uε, v) + b(v, pε) +
1

ε

∫
Γ

uεnvnds = (f, v), ∀v ∈ V, (3.3a)

b(uε, q) = 0, ∀q ∈ Q. (3.3b)
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3.2 Well-posedness of (NSε)

For (1.4), it is equivalent to consider the variational form: find uε ∈ Vσ such
that,

a(uε, v) + a1(uε, uε, v) +
1

ε

∫
Γ

uεnvnds = (f, v), ∀v ∈ Vσ. (3.4)

We will use the following Sobolev embedding and trace inequality, which can
be found in [4,19]:

H
1
2 (Γ ) ⊂ L4(Γ ), ‖v‖L4(Γ ) ≤ C1‖v‖ 1

2 ,Γ
, ∀v ∈ L4(Γ ), d = 2, 3. (3.5)

‖v‖ 1
2 ,Γ
≤ C2‖v‖1,Ω , ∀v ∈ H1(Ω). (3.6)

From now on, C1, C2 represent the constants defined in (3.5) and (3.6).

Theorem 3.1 Let f = 0, uε is the solution of (3.4):

(i) uε = 0;
(ii) there may exists uε 6= 0, but with lower bounds ‖uε‖1,Ω ≥ 4

C2
1C

2
2

√
α
ε .

Theorem 3.2 For f 6= 0, we assume ε is sufficiently small such that

ε ≤ 32α3

27‖f‖2V ∗σ
C4

1C
4
2 , (3.7)

then we have,

(i) there exists a solution uε to (3.4), with ‖uε‖1,Ω ≤ 3
2α‖f‖V ∗σ ;

(ii) there may exists uε ∈ Vσ ∩ {u | ‖u‖1,Ω >
3‖f‖V ∗σ

2α }, but with lower bounds

‖uε‖1,Ω >
√

8α√
3εC2

1C
2
2

.

Moreover, under the assumption

α̃ := α−
3‖f‖V ∗σ

2α
− 1

2

√
3ε

α
‖f‖V ∗σ C

2
1C

2
2 > 0, (3.8)

there exists a unique solution in Vσ ∩
{
v | ‖v‖1,Ω ≤ 3

2α‖f‖V ∗σ
}

.

Proof (Proof of Theorem 3.2) We define the function

F (v) = a(v, v) + a1(v, v, v) +
1

ε
(vn, vn)− (f, v), ∀v ∈ Vσ.

In view of (2.5), (3.5) and (3.6), we have

a1(v, v, v) =
1

2

∫
Γ

vn|v|2ds ≤
1

2
(‖v‖4L4(Γ ) + ‖vn‖2L2(Γ ))

≤ ε
8
C4

1C
4
2‖v‖41,Ω +

1

2ε
‖vn‖2L2(Γ ), ∀v ∈ Vσ,

Fε(v) ≥
(
α‖v‖X −

ε

8
C4

1C
4
2‖v‖3X − ‖f‖X∗σ

)
‖v‖X +

1

2ε
‖vn‖2L2(Γ ), ∀v ∈ Vσ.
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Under the assumption (3.7) on ε, F (v) ≥ 0, for any v ∈ Vσ with ‖v‖1,Ω =√
8α

3εC4
1C

4
2

. Following from Browser’s fixed point theorem( see [11]. Here, we

omit the process of construting the Galerkin’s approximate solutions, and we
refer the readers to Page 280 of [11] for details), there exists a solution uε to

(3.4), with ‖uε‖1,Ω ≤
√

8α
3εC4

1C
4
2

. For this uε, we have α− ε
8C

4
1C

4
2‖uε‖21,Ω ≥ 2α

3 .

Substituting v = uε into (3.4), we obtain,

‖f‖V ∗σ ‖uε‖1,Ω ≥ (f, uε) =a(uε, uε) + a1(uε, uε, uε) +
1

ε
‖uεn‖2L2(Γ )

≥
(
α− ε

8
C4

1C
4
2‖uε‖21,Ω

)
‖uε‖21,Ω +

1

2ε
‖uεn‖2L2(Γ )

≥2α

3
‖uε‖21,Ω +

1

2ε
‖uεn‖2L2(Γ ),

which implies

‖uε‖1,Ω ≤
3

2α
‖f‖V ∗σ , ‖uεn‖L2(Γ ) ≤

√
3ε

α
‖f‖V ∗σ . (3.9)

Hence, we proved (i)(ii).
We consider the uniqueness of solution. Assume u1

ε , u
2
ε are two solutions of

(3.4), with ‖uiε‖1,Ω ≤ 3
2α‖f‖V ∗σ , i = 1, 2. Setting w = u1

ε − u2
ε , we have

a(w, v) + a1(w, u1
ε , v) + a1(u2

ε , w, v) +
1

ε

∫
Γ

wnvnds = 0, ∀v ∈ Vσ. (3.10)

Substituting v = w into (3.10), we have

0 = a(w,w) + a1(w, u1
ε , w) +

1

2

∫
Γ

u2
ε · n|w|2ds+

1

ε
‖wn‖2L2(Γ )

≥ α‖w‖21,Ω − ‖w‖21,Ω‖u1
ε‖1,Ω −

1

2
‖u2

ε · n‖L2(Γ )‖w‖2L4(Γ ) +
1

ε
‖wn‖2L2(Γ )

≥
(
α− 3

2α
‖f‖V ∗σ −

1

2
‖u2

εn‖L2(Γ )C
2
1C

2
2

)
‖w‖21,Ω +

1

ε
‖wn‖2L2(Γ ),

with (3.9) and the assumption (3.8), we have

0 ≥ α̃‖w‖21,Ω +
1

ε
‖wn‖2L2(Γ ),

which gives w = 0, and we complete the proof. ut

Theorem 3.3 Let uε ∈ Vσ be the solution of (3.4), there exists a unique
pε ∈ Q such that, (uε, pε) satisfies (3.3) and

‖pε‖Ω ≤ C(‖uε‖1,Ω + ‖uε‖21,Ω + ‖f‖V ∗). (3.11)
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Proof (Proof of Theorem 3.3) The existence and uniqueness of pε are obvious.
Let pε = p̊ε + kε, where p̊ε ∈ Q̊, kε =

∫
Ω
pεdx/|Ω|. We have

b(v, p̊ε) = −a(uε, v)− a1(uε, uε, v) + (f, v), ∀v ∈ H1
0 (Ω)d,

which implies ‖p̊ε‖Ω ≤ C(‖uε‖1,Ω + ‖uε‖21,Ω + ‖f‖V ∗) by the inf-sup condition
of b. Let v ∈ V be the trace lifting defined in Theorem 2.1, where vn = kεn on
Γ . Substituting this v into (3.3), we have,

k2
ε |Γ | = a(uε, v) + a1(uε, uε, v) + b(v, p̊ε)− (f, v),

which yields |kε| ≤ C(‖uε‖1,Ω + ‖uε‖21,Ω + ‖p̊ε‖Ω + ‖f‖V ∗) by the inf-sup
condition of c. We proved (3.11). ut

3.2.1 Iteration methods

According to (ii) of Theorem 3.1,3.2, there may exist uε to (3.3) with ‖uε‖1,Ω ≥
Cε−

1
2 . For sufficiently small ε, this large norm solution is definitely not the

approximation solution to (1.1). We show that under some conditions, the iter-
ation methods for nonlinear problem (3.3) will avoid the large norm solution.

First, we take (u0
ε , p

0
ε) ∈ V × Q as the initial value of iteration method,

where (u0
ε , p

0
ε) is the solution to the penalty Stokes problem (2.10), with

‖u0
ε‖1,Ω ≤

‖f‖V ∗
α

, ‖u0
εn‖L2(Γ ) ≤

√
ε‖f‖V ∗ . (3.12)

We present two iteration methods in the following.
(i). For k = 1, 2, . . . ,Mmax, find (ukε , p

k
ε ) ∈ V ×Q such that,

a(ukε , v) + a1(uk−1
ε , ukε , v) + b(v, pkε ) +

1

εα′
ukεnvnds = (f, v), ∀v ∈ V,

(3.13a)

b(ukε , q) = 0, ∀q ∈ Q, (3.13b)

if ‖ukε − uk−1
ε ‖1,Ω ≤ η0, then stop the iteration, (3.13c)

where Mmax is the maximum iteration number, η0 is the error of iteration,

and α′ := α− C2
1C

2
2

√
ε‖f‖V ∗
2 > 0( with sufficiently small ε).

Lemma 3.1 For sufficiently small ε such that α′ := α− C2
1C

2
2

√
ε‖f‖V ∗
2 > 0, we

have

‖ukε ‖1,Ω ≤
‖f‖V ∗
α′

, ‖ukεn‖L2(Γ ) ≤
√
ε‖f‖V ∗ , ∀k ≥ 1. (3.14)

Furthermore, if α is sufficiently large, or ‖f‖V ∗ is very small, such that (α′)2 >
‖f‖V ∗ , then ukε → uε in V .
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Proof Substituting v = u1
ε into (3.1) for k = 1, with (3.12), and α′ := α −

C2
1C

2
2

√
ε‖f‖V ∗
2 > 0, it yields

‖u1
ε‖1,Ω ≤

‖f‖V ∗
α′

, ‖u1
εn‖L2(Γ ) ≤

√
ε‖f‖V ∗ .

(3.14) follows from the induction method. (3.14) implies the existence of a
subsequence {umε }m≥0 such that umε → uε weakly in V as m→∞.

Next, we show the convergence of ukε → uε. Setting wk = ukε − uk−1
ε , we

have

a(wk+1, v) + a1(ukε , w
k+1, v) +

1

α′ε

∫
Γ

wk+1
n vnds = −a1(wk, ukε , v), ∀v ∈ Vσ.

Substituting v = wk+1, we obtain

a(wk+1, wk+1) +
1

2

∫
Γ

ukεn|wk+1|2ds+
1

α′ε
‖wk+1

n ‖2L2(Γ )

=− a1(wk, ukε , w
k+1) ≤ ‖ukε ‖1,Ω‖wk‖1,Ω‖wk+1‖1,Ω ,

which implies

α′‖wk+1‖1,Ω ≤
‖f‖X∗
α′
‖wk‖1,Ω .

Assume ‖f‖X∗
α′2

≤ γ < 1, then ‖wk‖1,Ω → 0 as k →∞. ut

Remark 3.2 The sufficient condition α′ >
√
‖f‖V ∗ for convergence of ukε is

not much different to the assumption of uniqueness of solutions to (NS) and
(NSε)( see Theorem 3.1 and (3.8)).

Instead of the iteration method (3.13), Newton’s method is more popular
for stationary Navier-Stokes problem due to its fast convergence.

(ii) (Newton’s method). For k = 1, 2, . . . ,Mmax, find (δuk, δpk) ∈ V × Q
such that,

a(δuk, v) + a1(δuk, uk−1
ε , v) + a1(uk−1

ε , δuk, v)

+ b(v, δpk) +
1

ε

∫
Γ

δuk · nvnds

= (f, v)− a(uk−1
ε , v)− a1(uk−1

ε , uk−1
ε , v)

− b(v, pkε )− 1

ε

∫
Γ

(uk−1
ε · n)vnds, ∀v ∈ Vσ,

(3.15a)

b(δukε , q) = 0, ∀q ∈M, (3.15b)

ukε = uk−1
ε + δuk, pkε = pk−1

ε + δpk, (3.15c)

if ‖δuk‖ ≤ η0, then stop the iteration. (3.15d)
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Via calculation, we have, for each k,

a(δukε , v) + a1(δukε , u
k−1
ε , v) + a1(uk−1

ε , δuk, v) +
1

ε

∫
Γ

δukεnvnds

=a1(δuk−1, δuk−1, v),

(3.16)

where a1(δu0, δu0, v) := −a1(u0
ε , u

0
ε , v). Substituting v = δukε into (3.16), we

have (
α− ‖uk−1

ε ‖1,Ω −
C2

1C
2
2

2
‖uk−1

εn ‖L2(Γ )

)
︸ ︷︷ ︸

=:αk

‖δukε ‖21,Ω +
1

ε
‖δukεn‖2L2(Γ )

≤‖δuk−1
ε ‖21,Ω‖δukε ‖1,Ω .

From (3.12), if α is sufficiently large( or ‖f‖V ∗ is very small) and ε is
small enough, such that α1 > 0, then we have ‖δu1

ε‖V ≤ 1
α1
‖u0

ε · ∇u0
ε‖Ω

and ‖δu1
εn‖Γ ≤ C

√
ε. When ‖δu1

ε‖V is small enough, with induction method,
we have αk > 0 and ‖δukε ‖V ≤ 1

αk
‖δuk−1

ε ‖2V , and it shows the second order

convergence of Newton’s method (ii). However, the convergence relies on a
proper choice( not explicit) of the initial value u0

ε and ε to guarentee the
smallness of ‖δu1

ε‖1,Ω .

3.3 Penalty method (NS′ε)

Find (uε, pε) ∈ V ×Q such that,

a(uε, v) +
1

2
[a1(uε, uε, v)− a1(uε, v, uε)]

+ b(v, pε) +
1

ε

∫
Γ

uεnvnds = (f, v), ∀v ∈ V,
(3.17a)

b(uε, q) = 0, ∀q ∈ Q. (3.17b)

Remark 3.3 If we replace the homogeneous slip boundary condition un = 0 of
(1.1c) by un = g for some given g ∈ H 1

2 (Γ ), then penalty term
∫
Γ
uεvnds is

replaced by
∫
Γ

(uε − g)vnds. For penalty scheme (3.17), 1
2

∫
Γ
guε · vds need to

be added to the LHS of (3.17a).

Theorem 3.4 There exists a solution (uε, pε) to (3.17), satisfying

‖uε‖1,Ω ≤ ‖f‖V ∗/α, ‖pε‖Ω ≤ C‖f‖V ∗ , ‖uεn‖L2(Γ ) ≤ C
√
ε‖f‖V ∗ . (3.18)

Moreover, assume α is sufficiently large( or ‖f‖V ∗ is small enough), such that
α2 > ‖f‖V ∗ , then the solution is unique.
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4 Penalty method for Navier-Stokes equations: error estimates

Let f ∈ L2(Ω), we assume there exists a unique solution (u, p) ∈ H2(Ω) ×
H1(Ω) of (1.1).

Theorem 4.1 Let u and uε be the solutions of (1.1) and (3.17), respectively.
Assume τn(u, p) ∈ L2(Γ ), and α is sufficiently large( or ‖f‖Ω is small enough)
such that α2 > ‖f‖Ω, then we have

‖u− uε‖1,Ω + ‖p− p̊ε‖Ω +
√
ε‖λ− λε‖L2(Γ ) ≤ C

√
ε‖τn(u, p)‖L2(Ω), (4.1)

where pε = p̊ε + kε, p̊ε ∈ Q̊, and kε = 1
|Ω|
∫
Ω
pεdx.

Proof Introducing the Lagrange multiplier λ = −τn(u, p) and λε = 1
εuεn, we

rewrite the variational equations (3.1) and (3.17) into
(1) find (u, p, λ) ∈ V ×Q× Λ∗ such that,

a(u, v) + a1(u, u, v) + b(v, p) + c(λ, vn) = (f, v), ∀v ∈ V, (4.2a)

b(u, q) = 0, ∀q ∈ Q, (4.2b)

c(un, µ) = 0, ∀µ ∈ Λ; (4.2c)

(2) find (uε, pε, λε) ∈ V ×Q× Λ∗ such that,

a(uε, v) +
1

2
a1(uε, uε, v)− 1

2
a1(uε, v, uε)

+ b(v, pε) + c(λε, vn) = (f, v), ∀v ∈ V,
(4.3a)

b(uε, q) = 0, ∀q ∈ Q, (4.3b)

c(uεn, µ) = εc(λε, µ), ∀µ ∈ Λ. (4.3c)

Substituting v = u− uε into (4.2a)−(4.3a), we have

a(u− uε, u− uε) +
1

4
[a1(u− uε, u+ uε, u− uε)

− a1(u− uε, u− uε, u+ uε)] + c(λ− λε, un − uεn) = 0.

Noticing un = 0 and uεn = ελε, we derive

c(λ− λε, un − uεn) = −εc(λ− λε, λε)
=εc(λ− λε, λ− λε)− εc(λ− λε, λ).

(4.4)

It is proved in Remark 3.1, 3.4, that u and uε satisfying

‖u‖1,Ω , ‖uε‖1,Ω ≤ ‖f‖Ω/α. (4.5)

Therefore, we have

(α− ‖f‖Ω/α)‖u− uε‖21,Ω + εc(λ− λε, λ− λε)

≤εc(λ− λε, λ) ≤ ε

2
‖λ− λε‖2L2(Γ ) +

ε

2
‖λ‖2L2(Γ ).

(4.6)
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Under the assumption α2 > ‖f‖Ω , we obtain,

‖u− uε‖1,Ω +
√
ε‖λ− λε‖L2(Γ ) ≤ C

√
ε‖λ‖L2(Ω).

Using inf-sup condition of b (2.6) and (4.5), we conclude

‖p− p̊ε‖Ω ≤ C‖uε − u‖1,Ω . (4.7)

The proof is completed. ut

Theorem 4.2 Let τn(u, p) ∈ H1/2(Γ ), and with the same assumption of The-
orem 4.1, then we have

‖u− uε‖1,Ω + ‖p− p̊ε‖Ω ≤ Cε(‖τn(u, p)‖H1/2(Γ ) + ‖f‖Ω). (4.8)

Proof Instead of using (4.4), we derive

c(λ− λε, un − uεn) = −εc(λ− λε + kε, λε)

=εc(λ− λε + kε, λ− λε + kε)− εc(λ− λε + kε, λ+ kε),
(4.9)

and obtain

(α− ‖f‖Ω/α)‖u− uε‖21,Ω + εc(λ− λε + kε, λ− λε + kε)

≤εc(λ− λε + kε, λ+ kε) ≤ ε‖λ− λε + kε‖Λ∗‖λ+ kε‖Λ.
(4.10)

If we show

‖λ− λε + kε‖Λ∗ ≤ C‖u− uε‖1,Ω , (4.11)

then with the assumption λ ∈ H1/2(Γ ) = Λ, we can derive the error estimate

‖u− uε‖1,Ω ≤ Cε(‖λ‖Λ + kε), (4.12)

where kε is bounded independent of ε( Theorem 3.4). ‖p− p̊ε‖Ω ≤ Cε follows
from (4.7) and (4.12). Therefore, we are only left to prove (4.11). Since

− c(λ− λε + kε, vn)

=a(u− uε, v) + b(v, p− p̊ε) +
1

2
[a1(u− uε, u, v)

+ a1(uε, u− uε, v) + a1(uε − u, v, uε) + a1(u, v, uε − u)]

≤C(1 + ‖u‖1,Ω + ‖uε‖1,Ω)(‖u− uε‖1,Ω + ‖p− p̊ε‖Ω)‖v‖1,Ω .

From (4.5), (4.7) and the inf-sup condition of c (2.7), we obtain (4.11). ut

Remark 4.1 In above, we show the error estimates of penalty scheme (3.17).

For penalty scheme (3.3), under the assumption that uε with ‖uε‖1,Ω ≤ 3‖f‖Ω
2α

and α2 > 3‖f‖Ω
2 , then we can obtain the same error estimates as (4.1) and

(4.8).
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x

π(x)

Γ

Γh

Fig. 5.1 π : Γh → Γ .

5 Penalty method for Navier-Stokes equations: FEM

A regular triangulation Th is introduced to the smooth domain Ω, where
h = maxK∈Th diam(K). Ωh = ∪K∈ThK, ∂Ωh = Γh ∪ Ch, Γh ∩ Ch = ∅(
see Figure 1.2). The boundary mesh Sh inherited from Th is also a regular
triangulation of Γh in d−1 dimension. nh is the outer unit normal assigned to
Γh. We assume C = Ch for simplicity. Suppose Γ is C3 smooth, then we have

(1) maxx∈Γ dist(x, Γh) ≤ Ch2.
(2) There exists a continuous bijective mapping( cf. [12,3])

π : Γh → Γ ; x 7→ π(x).

Moreover, for any element S of Sh, we have π, π−1 ∈ C2(S) and

||Dπ| − 1|, ||Dπ−1| − 1| ≤ Ch2, (5.1)

where |Dπ| is the Jacobian of transform π, such that
∫
Γ
vds =

∫
Γh
v ◦

π|Dπ−1|ds. And we also have( cf. [26])

|nh − n ◦ π| ≤ Ch. (5.2)

Finite element spaces:

We consider the P1/P1 and P1b/P1 finite element spaces.

Vh = {vh ∈ C(Ωh)d | vh|K ∈ P1(K), K ∈ Th, vh|Ch = 0}, for P1

Vh = {vh ∈ C(Ωh)d | vh|K ∈ P1(K)⊕B(K), K ∈ Th, vh|Ch = 0}, for P1b,

Qh = {vh ∈ C(Ωh)d | vh|K ∈ P1(K), K ∈ Th},
Vh0 = {vh ∈ Vh | vh = 0 on Γh}, Q̊h = Qh ∩ L2

0(Ωh),

Λh = {vh · nh | vh ∈ Vh},
where Pl(K) is the set of polynomial of order l in K, and B(K) stands for the
space spanned by the bubble function on K. We define the following bilinear
and trilinear forms:

ah(uh, vh) =
∫
Ωh

2νE(uh)E(vh), ∀uh, vh ∈ Vh; (5.3)

a1h(uh, vh, wh) =
∫
Ωh

(uh · ∇)vhwhdx, ∀uh, vh, wh ∈ Vh; (5.4)

bh(vh, ph) = −
∫
Ωh
∇ · vhphdx, ∀vh ∈ Vh, ph ∈ Qh, (5.5)

dh(ph, qh) = γh2(∇ph,∇qh)Ωh ,

{
γ = 1 for P1/P1,

γ = 0 for P1b/P1.
(5.6)
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Choice of ch.

(1) Fine-integration: For any λh, µh ∈ Λh.

ch(λh, µh) :=

∫
Γh

λhµhds. (5.7)

‖µh‖ch := ch(µh, µh)
1
2 is equivalent to ‖µh‖L2(Γ ), for any µh ∈ Λh.

(2) Lower-order-integration: For any λh, µh ∈ Λh,

ch(µh, ηh) =
∑
s∈Sh

|s|µh(ms)ηh(ms), ms =

{
midpoint of s if d = 2,

barycenter of s if d = 3.

(5.8)

‖µh‖ch = ch(µh, µh)
1
2 is a semi-norm of Λh( there exists µh 6= 0 but

ch(µh, µh) = 0).

Coercivity and inf-sup conditions.

– Coercivity of ah:

ah(vh, vh) ≥ α1‖vh‖21,Ωh , α1 > 0, ∀vh ∈ Vh. (5.9)

– inf-sup condition of bh, β1, β̃1 > 0( cf [15,22]):

inf
ph∈Q̊h\{0}

sup
vh∈Vh0\{0}

bh(vh, ph)

‖vh‖1,Ω‖ph‖Ωh
≥ β1, for P1b/P1. (5.10)

sup
vh∈Vh0\{0}

bh(vh, ph)

‖vh‖1,Ω
≥ β̃1‖ph‖Ωh − γCh‖∇ph‖Ω , ∀ph ∈ Q̊h, for P1/P1.

(5.11)
– inf-sup condition of ch defined by (5.7):

inf
µh∈Λh\{0}

sup
vh∈Vh\{0}

∫
Γh
vh · nhµh

‖vh‖1,Ω‖µh‖Λ∗
≥ γ1 > 0. (5.12)

Finite element penalty scheme.

The finite element approximation to penalty problem (3.17) reads as: find
(uh, ph) ∈ Vh ×Qh such that,

ah(uh, vh) +
1

2
[a1h(uh, uh, vh)− a1h(uh, v, uh)]

+ bh(vh, ph) +
1

ε
ch(uh · nh, vh · nh) = (f̃ , vh)Ωh , ∀vh ∈ Xh,

(5.13a)

bh(uh, qh) = dh(ph, qh), ∀qh ∈Mh, (5.13b)

where f̃ is some extension of f onto Ω̃ = Ω ∪Ωh with ‖f̃‖Ω̃ ≤ C‖f‖Ω .
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In the following we only discuss the P1b/P1 element approximation( γ = 0,
bh(uh, qh) = 0), since the analysis method and results of P1/P1 with stabi-
lization( bh(uh, qh) = h2(∇ph,∇qh)) and P1b/P1 elements are very similar.
We refer the readers to [16] for the argument of P1/P1 element of Stokes
equations.

5.1 Well-posedness and a-priori estimate

Theorem 5.1 There exists a solution (uh, ph) ∈ Vh × Qh to (5.13) with ch
defined by both (5.7) and (5.8), and the solution satisfies

‖uh‖1,Ωh + ‖p̊h‖Ωh +
√
ε‖uh · nh‖ch ≤ C‖f̃‖Ωh, (5.14)

where ph = p̊h + kh, p̊h ∈ Q̊h, kh =
∫
Ωh
phdx/|Ωh|, and

|kh| ≤ C
(
‖f̃‖Ωh + ‖uh‖1,Ω + ‖uh‖21,Ω +

h

ε

)
. (5.15)

Moreover, if α2
1 > ‖f̃‖Ωh , then the solution is unique.

Proof The existence and uniqueness of solution (uh, ph) and (5.14) follow from
the coercivity of ah, the inf-sup conditions of bh and ch. Here, we only check
the estimate of kh (5.15). In views of (5.13b) of γ = 0, we obtain, for ch defined
by both (5.7) and (5.8),

ch(uh ·nh, 1) =

∫
Γh

uh ·nhds =
∑
s∈Sh

|s|(uh ·nh)(ms) = −bh(uh, 1) = 0. (5.16)

Since nh is discontinuous on Γh, we cannot choose the trace lifting vh ∈ Vh
with vh = khnh on Γ , as the proof of Theorem 3.3. Let {Pi}Ni=1 be the set
of the vertices of polygon or polyhedral domain Ωh( nodes of Γh), Γi = {s ∈
Sh | Pi ∈ s}( faces/edges contain the vertex Pi), we then define a vh ∈ Xh

satisfying

vh(Pi) = kh
1

Γ#
i

∑
s∈Γi

nh(s), ‖vh‖1,Ωh ≤ Ckh,

where Γ#
i equals to the number of faces s in Γi, and nh(s) is the value of nh

on s. Since Γ has C3 smoothness, we have |vh − khnh| ≤ Ch on Γh. Then,
substituting this vh into (5.13a), it yields,

kh

∫
Γh

vh · nh = −bh(vh, kh) = ah(uh, vh) + bh(vh, p̊h) +
1

ε
ch(uh · nh, vh · nh).

In view of (5.16), we have

1

ε
ch(uh · nh, vh · nh) =

kh
ε
ch(uh · nh, 1)︸ ︷︷ ︸

=0

+
1

ε
ch(uh · nh, (vh − khnh) · nh).
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Therefore, we have

k2
h|Γh| = kh

∫
Γh

khnh · nh = kh

∫
Γh

(khnh − vh) · nh

= kh

∫
Γh

(khnh − vh) · nh + ah(uh, vh) + bh(vh, p̊h)

+
1

ε
ch(uh · nh, (vh − khnh) · nh),

which implies (5.15) since |vh − khnh| ≤ Ch on Γh. ut

5.2 Preliminary results

5.2.1 Extension operators and skin domain estimates

We denote the skin domain Ω4Ωh = (Ω\Ωh) ∪ (Ωh\Ω), Ω̃ := Ω ∪Ωh.

Lemma 5.1 ( cf. [19]) There exists an extension operator

P ∈ L(Hm(Ω)d, Hm(Rd)d), (0 ≤ m ∈ N0), v 7→ Pv =: ṽ

such that,

‖ṽ‖k,Rd ≤ Cm‖v‖k,Ω , 0 ≤ k ≤ m, ∀v ∈ Hm(Ω)d.

Moreover, if ∇ · v = 0, then we can take the extension ṽ satisfying ∇ · v = 0
in Rd.

Lemma 5.2 ( cf. [29–31]) Under the assumption maxx∈Γ dist(x, Γh) ≤ Ch2,
we have

‖ṽ‖k,Ω4Ωh ≤ Ch‖v‖k+1,Ω , 0 ≤ k ≤ m− 1, ∀v ∈ Hm(Ω)d.

Lemma 5.3 ( cf. [29]) There exists an extension operator Ph ∈ L(Vh, H
1(Ω̃)),

such that, ∀vh ∈ Vh,
‖Phvh‖1,Ω̃ ≤ C‖vh‖1,Ωh ,

‖Phvh‖k,Ω∆Ωh ≤ Ch
1
2 ‖vh‖k,KΓh , k = 0, 1,

‖Phvh‖Ω ≤ Ch‖vh‖1,Ωh ,
where KΓh := {K ∈ Th | K ∩ Γh 6= ∅}.

5.2.2 Lagrange interpolation and projection operators

We employ the Lagrange interpolation operator Ih and projection operator
PL2(cf. [11,26,27]).

Ih : C(Ωh)→ Vh, v 7→ Ihv,

‖v − Ihv‖Lp(Ωh) + h‖v − Ihv‖W 1,p(Ωh) ≤ Ch2‖v‖W 2,p(Ω̃), ∀v ∈W 2,p(Ωh).

PL2 : H1(Ωh)→ Vh, v 7→ PL2v,

(v − PL2v, vh)Ωh = 0, ∀vh ∈ Vh,
‖v − PL2v‖Ωh ≤ Ch‖v‖1,Ωh .
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5.2.3 Consistency error estimates

Lemma 5.4 ( cf. [16]) Let π ∈ C2(Γh), then we have, for any v ∈ H1(Ω̃),

(i) ‖v ◦ π‖Γh ≤ C‖v‖Γ .
(ii) |

∫
Γ
vds−

∫
Γh
v ◦ πds| ≤ Ch2‖v‖2Γh .

(iii) ‖v − v ◦ π‖Γh ≤ Ch‖v‖1,Ω̃.

Proof The proof has been derived in [16]. Here, we present a brief proof for
the convenience of readers. (i) is obvious. (ii) follows from the properties of π
(5.1), ∫

Γ

vds−
∫
Γh

v ◦ πds =

∫
Γh

v ◦ π(|Dπ−1| − 1)ds ≤ Ch2‖v‖Γh .

(iii) is from [26]( (5.1), Verfürth).

Lemma 5.5 ( cf. [16]) Assume λ ∈ L2(Γ )(resp. W 1,∞(Γ )) for ch defined
by (5.7) (resp. (5.8)), and let λ̃ = λ ◦ π, then we have

|c(vn, λ)− ch(v · nh, λ̃)| ≤ Ch‖v‖1,Ω̃ , ∀v ∈ H1(Ω̃)d. (5.17)

Proof For ch defined by (5.7), we have, from (5.2) and (iii) of Lemma 5.4,

|c(vn, λ)− ch(v · nh, λ̃)| = |c(vn, λ)−
∫
Γh

v · nhλ̃ds|

≤
∣∣∣∣∫
Γ

vnλ−
∫
Γh

(vnλ) ◦ π
∣∣∣∣

+

∣∣∣∣∫
Γh

(vnλ) ◦ π − v · (nλ) ◦ π + v · (nλ) ◦ π − v · nhλ̃
∣∣∣∣

≤Ch‖v‖1,Ω̃‖λ‖Γ .

For ch defined by (5.8), we have∣∣∣∣∫
Γh

v · nhλ̃ds− ch(v · nh, λ̃)

∣∣∣∣
≤
∑
s∈Sh

∫
s

v · nh|λ̃− λ̃(ms)|ds ≤ Ch‖v‖1,Ω̃‖λ‖W 1,∞(Γ ).

ut

Proposition 5.1 Let (u, p) and (uh, ph) be solutions of (1.1) and (5.13), re-
spectively. Set λ = −τn(u, p), λh = 1

εuh · nh. We assume f ∈ L2(Ω), and
(u, p) ∈ H2(Ω)d ×H1(Ω), and the same assumption of Lemma 5.5. For any
vh ∈ Vh, we set the consistency error

E(vh) :=ah(ũ− uh, vh) +
1

2
[a1h(ũ− uh, ũ, vh) + a1h(uh, ũ− uh, vh)

− a1h(ũ− uh, vh, ũ)− a1h(ũ, vh, ũ− uh)]

+ bh(vh, p̃− ph) + ch(vh · nh, λ̃− λh),
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where (ũ, p̃) is the extension( Lemma 5.1) of (u, p) onto Ω̃ = Ω ∪ Ωh. Then,
we have

|E(vh)| ≤ Ch‖vh‖1,Ωh . (5.18)

Proof We denote

aω(u, v) := 2ν(E(u), E(v))ω, a1,ω(u, v, w) = (u · ∇v, w)ω,

bω(v, q) = −(∇ · v, q)ω.

From (3.1) and (5.13), we have

E(vh) =− aΩ\Ωh(u, Phvh) + aΩh\Ω(ũ, vh)− 1

2
[a1,Ω\Ωh(u, u, Phvh)

− a1,Ω\Ωh(u, Phvh, u)− a1,Ωh\Ω(ũ, ũ, vh) + a1,Ωh\Ω(ũ, vh, ũ)]

− bΩ\Ωh(Phvh, u) + bΩh\Ω(vh, ũ) + (f, Phvh)Ω\Ωh − (f̃ , vh)Ωh\Ω

− c(Phvh · n, λ) + ch(vh · nh, λ̃).

(5.18) follows from Lemma 5.2, 5.3 and 5.5. ut

5.3 Error estimates: Fine-integration scheme (5.7)

Theorem 5.2 ch is defined by (5.7). Let (u, p) and (uh, ph) be solutions of
(1.1) and (5.13), respectively. Assuming f ∈ L2(Ω), (u, p) ∈ H2(Ω)d×H1(Ω),
and α2

1 > ‖f̃‖Ωh , we have

‖ũ− uh‖1,Ωh + ‖p̃− ph‖Ωh ≤ C(
√
h+
√
ε+ h/

√
ε). (5.19)

Proof Set vh = Ihũ. Since ‖ũ − uh‖1,Ωh ≤ ‖ũ − vh‖1,Ω + ‖uh − vh‖1,Ωh and
‖ũ− vh‖1,Ω ≤ Ch‖ũ‖2,Ω̃ , we only need to show the estimate of ‖uh− vh‖1,Ωh .

α1‖uh − vh‖21,Ωh ≤ ah(uh − vh, uh − vh)

= ah(vh − ũ, vh − uh) + ah(ũ− uh, vh − uh).
(5.20)

ah(ũ− uh, vh − uh)

=E(vh − uh)− 1

2
[a1h(ũ− uh, ũ, vh − uh) + a1h(uh, ũ− uh, vh − uh)

− a1h(ũ− uh, vh − uh, ũ)− a1h(ũ, vh − uh, ũ− uh)]

− bh(vh − uh, p̃− ph)− ch((vh − uh) · nh, λ̃− λh).

In the following, we are aim to prove

ah(ũ− uh, vh − uh) ≤ ‖f̃‖Ωh
α1

‖vh − uh‖21,Ωh + Ch‖vh − uh‖1,Ωh

− ε

4
‖λ̃− λh‖2Γh + C

h2

ε
+ ε‖λ̃‖Γ 2

h

(5.21)



Penalty method for Navier-Stokes equation with slip boundary 25

which implies (5.19) under the assumption α2
1 > ‖f̃‖Ωh . Firstly, from Propo-

sition 5.1, we have |E(vh−uh)| ≤ Ch‖vh−uh‖1,Ωh . Secondly, Via calculation,

1

2
[a1h(ũ− uh, ũ, vh − uh) + a1h(uh, ũ− uh, vh − uh)

− a1h(ũ− uh, vh − uh, ũ)− a1h(ũ, vh − uh, ũ− uh)]

≤‖uh‖1,Ωh‖vh − uh‖21,Ωh + Ch‖vh − uh‖1,Ωh‖ũ‖2,Ω̃

≤‖f̃‖Ωh
α1

‖vh − uh‖21,Ωh + Ch‖vh − uh‖1,Ωh .

Since we can replace p by p+ l for any constant l, we set p̃ satisfies p̃− ph ∈
L2

0(Ωh) and qh = PL2 p̃, qh − ph ∈ Q̊h. With bh(uh, qh) = 0 and ∇ · ũ = 0, we
have

− bh(vh − uh, p̃− ph)

=bh(ũ− vh, p̃− qh) + bh(ũ− vh, qh − ph) + bh(uh, p̃− qh)

=bh(ũ− vh, qh − ph)− bh(vh − uh, p̃− qh)

≤Ch‖ũ‖2,Ω̃‖qh − ph‖Ωh + Ch‖p̃‖1,Ω̃‖vh − uh‖1,Ωh .

Since qh − ph ∈ Q̊h, by inf-sup condition of bh, we obtain

‖qh − ph‖Ωh ≤ Ch(‖ũ‖2,Ω̃ + ‖p̃‖1,Ω̃) + C‖vh − uh‖1,Ωh .

Therefore, we have |bh(vh−uh, p̃−ph)| ≤ Ch2 +Ch‖vh−uh‖1,Ωh . We are left

to estimate −ch((vh − uh) · nh, λ̃− λh). In views of λh = 1
εuh · nh,

− ch((vh − uh) · nh, λ̃− λh) = −εch(λ̃− λh, λ̃− λh) + εch(λ̃, λ̃− λh)

+ ch((ũ− vh) · nh, λ̃− λh)− ch(ũ · nh, λ̃− λh)

≤ −ε‖λ̃− λh‖2Γh + ε‖λ̃‖2Γh +
ε

4
‖λ̃− λh‖2Γh

+
1

ε
‖(ũ− vh) · nh‖2Γh +

1

ε
‖ũ · nh‖2Γh +

ε

2
‖λ̃− λh‖2Γh .

(5.22)

Since ‖(ũ− vh) · nh‖Γh ≤ C‖ũ− vh‖1,Ω̃ ≤ Ch‖ũ‖2,Ω̃ and

‖ũ · nh‖Γh ≤ ‖ũ · (nh − n ◦ π) + (ũ− u ◦ π)n ◦ π‖Γh ≤ Ch, (un = 0 on Γ )

it yields

−ch((vh − uh) · nh, λ̃− λh) ≤ − ε
4
‖λ̃− λh‖2Γh + C

h2

ε
+ ε‖λ̃‖2Γh ,

Combining those inequalities, we proved (5.21). From (5.20), (5.21) and the
assumption α2 > ‖f̃‖Ωh , we conclude (5.19). ut
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5.4 Error estimates: Lower-order-integration scheme (5.8)

Lemma 5.6 ( cf. [16]) Let u ∈ W 2,∞(Ω) with un|Γ = 0. For any s ∈ Sh, ũ
is the extension of u according to Lemma 5.1, then we have

(i) For d = 2, there exists π such that |n ◦ π(ms)− nh(ms)| ≤ Ch2; moreover

|(Ihũ · nh)(ms)| ≤ Ch2‖ũ‖W 2,∞(Ω̃).

(ii) For d = 3, if ũ ∈ W 2,∞(Ω̃) satisfies ∇ · ũ = 0, and ũn = 0 on Γ , then we
have |(Ihũ · nh)(ms)| ≤ Ch‖ũ‖W 2,∞(Ω̃).

Proof (i) For d = 2, since Γ has C3 smoothness, there exists π : Γh → Γ
satisfying |n ◦ π(ms)− nh(ms)| ≤ Ch2 is obvious. In view of ũn = 0 on Γ , we
have

|(Ihũ · nh)(ms)|
≤|(Ihũ · nh)(ms)− Ihũ(ms) · n ◦ π(ms)|

+ |Ihũ(ms) · n ◦ π(ms)− (ũn) ◦ π(ms)|
≤Ch2‖ũ‖W 1,∞(Ω̃) + Ch2‖ũ‖W 2,∞(Ω̃).

(ii) It follows from (5.2) and the fact ũn = 0 on Γ . ut

Theorem 5.3 Let (u, p) and (uh, ph) be solutions of (1.1) and (5.13), respec-
tively. We assume f ∈ L2(Ω), (u, p) ∈ W 2,∞(Ω)d × W 1,∞(Ω), and α2

1 >
‖f̃‖Ωh . We also assume (ũ, p̃), the extension of (u, p), satisfy the condition of
Lemma 5.6, then we have

‖ũ− uh‖1,Ωh + ‖p̃− ph‖Ωh ≤ C(h+
√
ε+ h2/

√
ε), for d = 2, (5.23)

‖ũ− uh‖1,Ωh + ‖p̃− ph‖Ωh ≤ C(
√
h+
√
ε+ h/

√
ε), for d = 3. (5.24)

Proof In views of the proof of Theorem 5.2, the only difference here is the
estimate of−ch((vh−uh)·nh, λ̃−λh) in (5.22). We have, noticing that vh = Ihũ,

− ch((vh − uh) · nh, λ̃− λh) + εch(λ̃− λh, λ̃− λh)

=εch(λ̃, λ̃− λh)− ch(vh · nh, λ̃− λh)

≤− ε

2
‖λ̃− λh‖2ch + Cε‖λ̃‖2ch + C

1

ε
‖Ihũ · nh‖2∞,Γh .

(5.25)

The error estimates (5.23) and (5.24) follow from Lemma 5.6. ut

Remark 5.1 For d = 2, from the error estimates (5.19) and (5.23), we conclude
the optimal choices of ε and h:

(1) Fine-integration scheme: ε ' h, and the error estimate is O(
√
h);

(2) Lower-order-integration scheme: ε ' h2, and the error estimate is O(h).

And we notice that for fine-integration, if ε � h, then the scheme is not
convergence, which is observed by our numerical experiments( Sect. 6). For
d = 3, we choose ε ' h, and the error estimate is O(

√
h).



Penalty method for Navier-Stokes equation with slip boundary 27

6 Penalty method for Navier-Stokes equations: numerical
experiments

Set Ω = {(x, y) ∈ R2 | x2 +y2 < 1}. We consider the equation (1.1) with exact
solution u = (10x3y2,−10x2y3)T , p = 10x2y2.

‖u‖Ω ' 1.11, ‖u‖1,Ω ' 6.88.

Here τT (u) 6= 0, therefore we add
∫
Γ
τT (u)vT ds to the RHS of variational

forms (3.3),(3.17), and
∫
Γh
τT (u)vhT ds to (5.13).

Newton’s method is applied to solve the nonlinear equation( see Sect.
3.2.1(ii)). We test two penalty schemes (3.3),(3.17) for both P1/P1 with stabi-
lization h2(∇ph,∇qh)Ωh and P1b/P1 elements. The error results in our numer-
ical experiments for (3.3) or (3.17) with P1/P1 or P1b/P1 are all very similar,
therefore we only present one of them( (3.17) with P1b/P1) in the following.
But we focus on the difference of error estimates between two implement meth-
ods of penalty term(fine-integration scheme (5.7) and lower-order-integration
scheme (5.8)), with different choices of ε and h( ε ' h and ε ' h2).

From Figure 6.1 and 6.2, the numerical experiments show the H1 norm
error ‖u− uh‖1,Ωh is O(h) for both fine and lower-order integration schemes(
(5.7) and (5.8)). The L2 norm error ‖u − uh‖Ωh seems to be O(h2) for lower
integration scheme with ε ' h2. However, the fine-integration fails when ε '
h2( or ε � h), which coincides with our error estimates( Theorem 5.2). An
interesting found is that, even for ε � h2( we made the numerical tests but
do not show here), the lower-order-integration scheme converges well. Hence,
the lower-order-integration scheme has well stability for tiny ε. (The numerical
experiments are implemented with software FeniCS( cf.[20])).

Notice: In Figure 6.2, line ε ∼ h2, ‖ · ‖L2 overlaps with line y = 2x; and line
ε ∼ h2, ‖ · ‖H1 overlaps with line ε ∼ h, ‖ · ‖H1 .
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