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Abstract

We study a cell problem arising in homogenization for a Hamilton-Jacobi equation
whose Hamiltonian is not coercive. We introduce a generalized notion of effective
Hamiltonians by approximating the equation and characterize the solvability of the
cell problem in terms of the generalized effective Hamiltonian. Under some sufficient
conditions, the result is applied to the associated homogenization problem. We also
show that homogenization for non-coercive equations fails in general.
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1 Introduction

We consider a Hamilton-Jacobi equation of the form

(CP) H(x,Du(x) + P ) = a in TN

and study a problem to find, for a given P ∈ RN , a pair of a function u : TN → R and
a constant a ∈ R such that u is a Lipschitz continuous viscosity solution of (CP). Here,
TN := RN/ZN and a function u on TN is regarded as a function defined on RN with ZN -
periodicity, i.e., u(x + z) = u(x) for all x ∈ RN and z ∈ ZN . Moreover, Du denotes the
gradient, i.e., Du = (∂u/∂x1, · · · , ∂u/∂xN). This kind of problem is called a cell problem in
the theory of homogenization. The constant a satisfying (CP) is called a critical value if it
is uniquely determined.
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In this paper, we assume that the Hamiltonian H : TN ×RN → R in (CP) is given by

(1.1) H(x, p) = σ(x)m(|p|),

where σ and m satisfy

(H1) σ : TN → (0,∞) is a continuous function,

(H2) m : [0,∞) → (0, 1) is a Lipschitz continuous function,

(H3) m is strictly increasing and m(r) → 1 as r → ∞.

Due to the boundedness of m, our cell problem does not necessarily admit a solution (u, c),
and the solvability depends on P ∈ RN . One of goals in this paper is to characterize the
set of P ∈ RN such that the cell problem admits a solution. The other goal is to apply the
result to the associated homogenization problem.

A result for existence of a solution of cell problems for Hamilton-Jacobi equations was
first established by Lions, Papanicolaou and Varadhan [19] under the assumption that the
Hamiltonian is coercive, i.e.,

(1.2) lim
r→∞

inf{H(x, p) | x ∈ TN , p ∈ RN , |p| ≥ r} = +∞.

Their method begins with considering the following approximate equation with a parameter
δ > 0:

(1.3) δuδ(x) +H(x,Duδ(x) + P ) = 0 in TN .

By a standard argument of viscosity solutions, it turns out that there exists a unique solution
uδ and that a family of functions {δuδ}δ>0 is uniformly bounded. Thus, (formally) {Duδ}δ>0

is uniformly bounded thanks to the coercivity. Therefore, by taking a subsequence if neces-
sary, δuδ and uδ − minuδ uniformly converge to a constant −c and a function u as δ → 0,
respectively. A stability argument of viscosity solutions shows that u and c solve (CP). For
more details, see [19] and [13]. We point out that the paper [13] also studies second order
uniformly elliptic equations by using a similar argument.

Unfortunately, our Hamiltonian (1.1) is not coercive because of the boundedness of the
function m. When a Hamiltonian is not coercive, the method of [19] becomes very delicate.
Cardaliaguet [8] shows, in fact, that δuδ may not converge to a constant; this result does not
cover our setting. We also refer the reader to [2] as a related work to [8]. Homogenization
results with non-coercive Hamiltonians can be seen in [4, 5, 6, 9, 10, 17, 21]. Hamiltonians
with some partial coercivity is studied in [4], and [5] treats equations with u/ε-term. The
papers [6, 21, 17] are concerned with homogenization on spaces with a (sub-Riemannian)
geometrical condition. The authors of [9] study moving interfaces with a sign changing driving
force term while [10] considers G-equations being possibly non-coercive. Homogenization for
degenerate second order equations has been developed by [1, 7]. Our Hamiltonian (1.1) has
not been treated yet in the context of homogenization.
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We now present our main results and briefly explain our approach for the non-coercive
Hamilton-Jacobi equation (CP). Let us consider an approximate equation of the form

(CPn) Hn(x,Dun(x) + P ) = H̄n(P ) in TN

for each n ∈ N. Here {Hn}n∈N is a family of coercive Hamiltonians which approximate
H. For the detailed assumptions, see (A1)–(A4) in Section 3. By the coercivity of Hn,
the result of [19] ensures that, for each n ∈ N, the approximate equation has a solution
(un, H̄n(P )) for every P ∈ RN . The function H̄n(·) is called an effective Hamiltonian, which
appears in a limit equation in homogenization problems (see [19]). Our first main result
is that, for each P ∈ RN , there exists a limit H̄∞(P ) of H̄n(P ) as n → ∞ and its value
is independent of approximation (Theorem 3.1). In this paper we call H̄∞(·) a generalized
effective Hamiltonian, which is defined on the whole of RN even if (CP) is not solvable
for some P ∈ RN . We now define the solvability set D as the set of P ∈ RN such that
(CP) admits a solution. Our second main result is a characterization of D in terms of the
generalized effective Hamiltonian. We prove that D = {P ∈ RN | H̄∞(P ) < σ}, where
σ := minx∈TN σ(x), and that H̄∞(P ) is equal to the critical value of (CP) (Theorem 3.2). In
the one-dimensional case, it turns out that D has a more explicit representation (Proposition
4.1).

We next present our homogenization results. Let uε be a viscosity solution of

(HJε)

{
uεt(x, t) +H

(x
ε
,Duε(x, t)

)
= 0 in RN × (0, T ),

uε(x, 0) = u0(x) in RN .

Here, ε > 0 is a parameter and u0 : RN → R is a bounded and Lipschitz continuous initial
datum. In our homogenization result (Theorem 5.1) we assume either

(1) D = RN or (2) m(Lip[u0]) < σ/σ,

where σ := maxx∈TN σ(x) and Lip[u0] stands for the Lipschitz constant of u0. Then, we prove
that uε converges to the solution u of the following problem locally uniformly in RN × [0, T )
as ε→ 0:

(HJ)

{
ut(x, t) + H̄∞(Du(x, t)) = 0 in RN × (0, T ),

u(x, 0) = u0(x) in RN .

The assumption (1) guarantees that the cell problem is solvable for every P ∈ RN . The proof
is given by the half-relaxed limit method and the perturbed test function method provided
by Evans [13]. The assumption (2) is a sufficient condition that {uε}ε>0 is equi-Lipschitz
continuous. Since the cell problem may not have a solution for some P ∈ RN , we are not
able to apply the perturbed test function method directly. We prove the homogenization
result by reducing the original equation (CP) to the approximate equation (CPn) with a
coercive Hamiltonian by using the equi-Lipschitz continuity of {uε}ε>0. We also show that,
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under the condition σm(0) > σ, the solutions uε do not converge to any function locally
uniformly in RN × [0, T ) as ε→ 0 (Theorem 5.4).

Our non-coercive Hamiltonian (1.1) is originally derived by Yokoyama, Giga and Rybka
[22] to study the morphological stability of a faceted crystal. Two functions σ andm represent
the rate of supply of molecules and the dimensionless kinetic coefficient, respectively. In [15]
and [16] the authors study the large time behavior of a viscosity solution of such non-coercive
Hamilton-Jacobi equations.

We conclude this section with the physical explanation of the above homogenization
problem and its result. In this problem, we find an average growth of the faceted crystal
with a (microscopic) heterogeneous supply of molecules. As we will mention in Subsection
3.3, the cell problem does not have a solution under the condition σm(0) ≥ σ. Thus, both
the assumptions (1) and (2) imply σm(0) < σ. This inequality means that the heterogeneity
of the supply of molecules is somewhat small. In this case the growth of the faceted crystal is
described by (HJ) in view of Theorem 5.1. We point out that the condition σm(0) < σ also
appears in [16] to ensure the large time behaviour in the whole space. On the other hand, if
σm(0) > σ, i.e., the heterogeneity is somewhat large, then the growth of the faceted crystal
becomes complicated since homogenization fails (Theorem 5.4).

This paper is organized as follows. Section 2 is devoted to preparation for the viscosity
solutions and the critical values. We study the cell problem in Section 3 and 4. In Section 3,
we present main theorems and prove them. We also give a sufficient condition for D = RN

and some properties of generalized effective Hamiltonians. In Section 4, we focus on the one-
dimensional cell problem and give a more explicit representation of D. Section 5 is concerned
with an application to homogenization problems.

2 Preliminaries

Let Lip(TN) denote the set of Lipschitz continuous functions on TN and B(x, r) denote the
closure of an open ball B(x, r) of radius r > 0 centered at a point x.

We consider Hamilton-Jacobi equations of the form

(2.1) H(x,Du(x)) = 0 in TN .

Throughout this paper, we assume that the Hamiltonian H : TN ×RN → R is continuous.
In order to define viscosity solutions of (2.1), we recall notions of super- and subdifferentials.
For a continuous function u : TN → R and x ∈ TN , we set

D+u(x) :=

{
Dϕ(x)

∣∣∣∣ ϕ ∈ C1(TN), max
TN

(u− ϕ) = (u− ϕ)(x)

}
,

D−u(x) :=

{
Dϕ(x)

∣∣∣∣ ϕ ∈ C1(TN), min
TN

(u− ϕ) = (u− ϕ)(x)

}
.

Definition 2.1. We call u ∈ C(TN) a viscosity subsolution (resp. supersolution) of (2.1) if

H(x̂, p) ≤ 0 (resp. H(x̂, p) ≥ 0)
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for all x̂ ∈ TN and p ∈ D+u(x̂) (resp. p ∈ D−u(x̂)).
We call u ∈ C(TN) a viscosity solution of (2.1) if it is a viscosity sub- and supersolution

of (2.1).

The term “viscosity” is often omitted in this paper.
A pair of a function u ∈ Lip(TN) and a constant a ∈ R satisfying (CP) is called a solution

of (CP). If such a constant a is unique, it is called the critical value of (CP). If there exists
a critical value of the cell problem for every P ∈ RN , then we say that the cell problem
is fully solvable. When the cell problem is fully solvable, we are able to define a function
H̄ : RN → R by setting H̄(P ) as the associated critical value. We call the function H̄ an
effective Hamiltonian of H.

Proposition 2.2 (Comparison principle for the cell problem). Let P ∈ RN and let a, b ∈
R. If there exist a subsolution u ∈ Lip(TN) of (CP) and a supersolution v ∈ Lip(TN) of
H(x,Dv(x) + P ) = b in TN , then a ≥ b. In particular, if (u, c), (v, d) ∈ Lip(TN) × R are
solutions of the cell problem (CP), then c = d and moreover

c = inf{a ∈ R | there exists a subsolution of (CP)}
= sup{a ∈ R | there exists a supersolution of (CP)}.

The proof is based on the comparison principle for (1.3) with a small δ > 0; see [19, 13].
Here we do not need an extra continuity assumption on H since u and v are now Lipschitz
continuous.

Proof. Since u and v is bounded, we may assume that u > v by adding a positive constant
to u if necessary. Suppose by contradiction that a < b, i.e.,

H(x,Du+ P ) ≤ a < b ≤ H(x,Dv + P )

in the viscosity sense. We then see that

δu+H(x,Du+ P ) ≤ a+ b

2
≤ δv +H(x,Dv + P ).

The comparison principle implies that u ≤ v, which contradicts to u > v. Therefore, a ≥ b.
This observation implies

inf{a ∈ R | there exists a subsolution of (CP)} =: c

≥ sup{a ∈ R | there exists a supersolution of (CP)} =: c.

We then see that c = d = c = c since c ≤ c ≤ c and c ≤ d ≤ c by the definitions.

Lemma 2.3 (Estimates of the critical value). Let P ∈ RN and let (u, c) ∈ Lip(TN)×R be
a solution of the cell problem (CP). Then, we have

sup
ϕ∈C1(TN )

inf
x∈TN

H(x,Dϕ(x) + P )

sup
x∈TN

sup
p∈D+u(x)

H(x, p+ P )

 ≤ c ≤


inf

ϕ∈C1(TN )
sup
x∈TN

H(x,Dϕ(x) + P ),

inf
x∈TN

inf
p∈D−u(x)

H(x, p+ P ).
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Proof. The inequality c ≤ infx∈TN infp∈D−u(x)H(x, p+P ) is trivial since it is equivalent to the
definition of a viscosity supersolution of (CP). Similarly, the inequality supx∈TN supp∈D+u(x)H(x, p+
P ) ≤ c holds since it is equivalent to the definition of a viscosity subsolution of (CP).

For a fixed ϕ ∈ C1(TN), since u − ϕ is periodic and (Lipschitz) continuous, we have
Dϕ(x̂) ∈ D−u(x̂) at a minimum point x̂ ∈ TN of u− ϕ. Thus

sup
x∈TN

H(x,Dϕ(x) + P ) ≥ H(x̂, Dϕ(x̂) + P ) ≥ c,

which implies that c ≤ infϕ∈C1(TN ) supx∈TN H(x,Dϕ(x) + P ). In a similar way, we see that
supϕ∈C1(TN ) infx∈TN H(x,Dϕ(x) + P ) ≤ c by choosing a maximum point of u− ϕ.

Remark 2.4. It is worth to note that if the Hamiltonian H = H(x, p) is convex in p for each
x ∈ TN and satisfies the coercivity condition (1.2), then

inf
ϕ∈Lip(TN )

sup
x∈TN

sup
p∈D+ϕ(x)

H(x, p+ P ) = inf
ϕ∈C1(TN )

sup
x∈TN

H(x,Dϕ(x) + P ).

In particular, we have well-known formulas

c = inf
ϕ∈C1(TN )

sup
x∈TN

H(x,Dϕ(x) + P )

= inf
ϕ∈Lip(TN )

sup
x∈TN

sup
p∈D+ϕ(x)

H(x, p+ P )

= sup
x∈TN

sup
p∈D+u(x)

H(x, p+ P ).

We refer the reader to [11] or [20, Subsection 4.2] for details on such a kind of representation
formulas of the critical value.

We investigate the cell problem with a coercive Hamiltonian.

Proposition 2.5 ([19]). Assume (1.2). Then, the cell problem (CP) is fully solvable.

Proposition 2.6 (Properties of the effective Hamiltonian). Assume (1.2).

(1) If there exists L > 0 such that |H(x, p)−H(x, q)| ≤ L|p− q| for all x ∈ TN , p, q ∈ RN ,
then H̄ satisfies |H̄(P )− H̄(Q)| ≤ L|P −Q| for all P,Q ∈ RN .

(2) If H(x, p) ≤ H(x, kp) for all x ∈ TN , p ∈ RN and k ≥ 1, then H̄(P ) ≤ H̄(kP ) for all
P ∈ RN and k ≥ 1.

(3) If H(x, p) = H(x,−p) for all x ∈ TN and p ∈ RN , then H̄(P ) = H̄(−P ) for all
P ∈ RN .

Proof. (1) Let (u, H̄(P )) be a solution of (CP). We observe

H(x,Du+Q)− L|P −Q| ≤ H(x,Du+ P ) = H̄(P ).
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Thus, u is a subsolution of

H(x,Du+Q) = H̄(P ) + L|P −Q|

By Proposition 2.2, we obtain that H̄(Q) ≤ H̄(P ) + L|P −Q|.
(2) Let (u, H̄(P )) be a solution of (CP). We then see by the assumption that

H(x,D(ku) + kP ) ≥ H(x,Du+ P ) = H̄(P ),

which means that ku is a supersolution of H(x,Dv + kP ) = H̄(P ). Proposition 2.2 implies
H̄(kP ) ≥ H̄(P ).

(3) Let (u, H̄(P )) be a solution of (CP). Then, since H is even in the second variable,
(−u, H̄(P )) is a solution of

H(x,Dv − P ) = H̄(P ) in TN .

Thus, we have H̄(P ) = H̄(−P ).

3 The cell problem

From now on, we study a Hamiltonian H of the form (1.1) with (H1)–(H3). Define

σ := sup
x∈TN

σ(x), σ := inf
x∈TN

σ(x), m0 := m(0).

3.1 Main results

For each n ∈ N let Hn : TN ×RN → R be an approximating Hamiltonian of H such that

(A1) Hn is continuous on TN ×RN ,

(A2) Hn satisfies the coercivity condition (1.2),

(A3) lim inf
n→∞

inf
TN×B(0,R)

(H −Hn) ≥ 0 for all R > 0,

(A4) lim sup
n→∞

sup
TN×RN

(H −Hn) ≤ 0.

By (A1) and (A2), for each n ∈ N, the approximation cell problem (CPn) is fully solvable as
noted in Proposition 2.5. Let H̄n(P ) be the critical value of (CPn) for P ∈ RN . We define a
solvability set D by

D := {P ∈ RN | (CP) admits a solution (u, c) ∈ Lip(TN)×R}.

We are now in a position to state our main theorems.
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Theorem 3.1 (Convergence of H̄n). There exists a unique function H̄∞ : RN → R such
that, for any sequence {Hn}n∈N satisfying (A1)–(A4), the following conditions hold:

lim inf
n→∞

inf
B(0,R)

(H̄∞ − H̄n) ≥ 0 for all R > 0,(3.1)

lim sup
n→∞

sup
RN

(H̄∞ − H̄n) ≤ 0.(3.2)

We call the function H̄∞ a generalized effective Hamiltonian of H.

Theorem 3.2 (Characterization of the solvability set). We have D = {P ∈ RN | H̄∞(P ) <
σ}. Moreover, if P ∈ D, the critical value of (CP) is equal to H̄∞(P ).

3.2 The proof of Theorem 3.1

The proof consists of four steps. We first prove in Step 1 that {H̄n(P )}n∈N is a convergent
sequence for every P ∈ RN . Then it is shown in Step 2 that the limit is unique no matter
how {Hn}n∈N satisfying (A1)–(A4) is chosen. In Step 3 we prove that the convergence is
locally uniform when {Hn}n∈N is monotone, and finally, in Step 4, we derive (3.1) and (3.2)
for a general approximation.

1. Fix any P ∈ RN and let (un, H̄n(P )) ∈ Lip(TN)×R be a solution of (CPn) for each
n ∈ N. We first show that {H̄n(P )}n∈N is bounded from below. Indeed, taking a maximum
point xn ∈ TN of un, we have

Hn(xn, P ) ≤ H̄n(P ).

Since Hn uniformly converges to H on TN ×B(0, |P |), we see that

H(xn, P )− 1 ≤ H̄n(P )

for sufficiently large n. Thus (
inf

x∈TN
H(x, P )

)
− 1 ≤ H̄n(P ),

which implies {H̄n(P )}n∈N is bounded from below.
Fix ε > 0. By (A4) there exists some K ∈ N such that

(3.3) H − ε

2
≤ Hn on TN ×RN

for all n ≥ K. Fix an arbitrary n ≥ K. Recall that un is a Lipschitz continuous function and
set Ln = |P |+ Lip[un]. Then, it follows from (A3) that there exists some M ≥ n such that

(3.4) Hm − ε

2
≤ H on TN ×B(0, Ln)

for all m ≥M . Combining (3.3) and (3.4), we see that un is a subsolution of

Hm(x,Dw + P ) = H̄n(P ) + ε in TN .
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By Proposition 2.2, we have

(3.5) H̄m(P ) ≤ H̄n(P ) + ε

for all m ≥M . This inequality implies that {H̄n(P )}n∈N is bounded from above. By taking
lim supm→∞ and lim infn→∞, we have

lim sup
m→∞

H̄m ≤ lim inf
n→∞

H̄n + ε.

Since ε > 0 is arbitrary, H̄n(P ) converges to some value as n→ ∞.
2. We next prove that the limit of H̄n(P ) is independent of a choice of {Hn}n∈N satisfying

(A1)–(A4). Let {Hn}n∈N and {H ′
n}n∈N be two sequences of Hamiltonians satisfying (A1)–

(A4). For each P ∈ RN , let (un, H̄n(P )) and (u′n, H̄
′
n(P )) be, respectively, solutions of (CPn)

and
H ′

n(x,Du
′
n + P ) = H̄ ′

n(P ) in TN .

Consider a new sequence
H1, H

′
1, H2, H

′
2, H3, H

′
3, · · · .

This satisfies (A3) and (A4), so that

H̄1(P ), H̄
′
1(P ), H̄2(P ), H̄

′
2(P ), H̄3(P ), H̄

′
3(P ), · · ·

has a limit a ∈ R. Therefore

a = lim
n→∞

H̄n(P ) = lim
n→∞

H̄ ′
n(P )

since both {H̄n(P )}n∈N and {H̄ ′
n(P )}n∈N are subsequences. We denote this common limit

by H̄∞(P ).
3. Assume that {Hn}n∈N is monotone, i.e., Hn ≥ Hn′ on TN × RN for all n ≤ n′. By

this monotonicity we see that H̄n ≥ H̄n′ if n ≤ n′. Indeed, a solution un of (CPn) is always
a subsolution of

Hn′(x,Dun + P ) = H̄n(P ).

Thus Proposition 2.2 yields H̄n(P ) ≥ H̄n′(P ). Since H̄∞ is continuous in view of Proposition
3.11 (1), Dini’s lemma implies that H̄n converges to H̄∞ locally uniformly in RN as n→ ∞.
(For the proof of Proposition 3.11 (1) we only need a pointwise convergence of H̄n to H̄∞
and the uniqueness of H̄∞.)

4. We shall show (3.1) and (3.2) for a general {Hn}n∈N. Sending m→ ∞ in (3.5) of Step
1, we obtain

H̄∞(P ) ≤ H̄n(P ) + ε.

This inequality holds for all ε > 0, n ≥ K and P ∈ RN , where K does not depend on P .
Accordingly we have supRN (H̄∞ − H̄n) ≤ ε, and thus taking lim supn→∞ yields (3.2) since
ε > 0 is arbitrary.

To prove (3.1) we define {H ′
n}n∈N by H ′

n(x, p) := supm≥nHm(x, p). Then {H ′
n}n∈N is

monotone and H ′
n ≥ Hn on TN × RN for all n. Also, {H ′

n}n∈N satisfies (A1)–(A4); it is
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easy to see that (A2)–(A4) hold while the continuity condition (A1) is due to Ascoli-Arzelà
theorem. More precisely, since {Hn} has a uniform convergent limit H on each compact
set of TN × RN , it is equi-continuous on the set, which implies that the supremum H ′

n is
continuous. From Step 3 it follows that H̄ ′

n converges to H̄∞ locally uniformly. Therefore,
using H̄ ′

n ≥ H̄n, we observe

lim inf
n→∞

inf
B(0,R)

(H̄∞ − H̄n) ≥ lim inf
n→∞

inf
B(0,R)

(H̄∞ − H̄ ′
n) = 0.

The proof is now complete.

Remark 3.3. Theorem 3.1 still holds for more general Hamiltonians which are not necessarily
of the form (1.1). Indeed, the above proof works if we require H to satisfy

(3.6) |H(x, p)−H(x, q)| ≤ L|p− q| for some L > 0,

which is used to guarantee Proposition 3.11 (1).

3.3 The proof of Theorem 3.2

We first prepare

Proposition 3.4. Let P ∈ D and let c ∈ R be the critical value of (CP). Then,

σm(|P |)
σm0

}
≤ c ≤ σm(|P |), c < σ.

In particular, we have D = ∅ if σm0 ≥ σ.

Proof. Taking ϕ ≡ 0 in Lemma 2.3 implies

c ≤ inf
ϕ∈C1(TN )

sup
x∈TN

H(x,Dϕ(x) + P ) ≤ sup
x∈TN

H(x, P ) = σm(|P |),

c ≥ sup
ϕ∈C1(TN )

inf
x∈TN

H(x,Dϕ(x) + P ) ≥ inf
x∈TN

H(x, P ) = σm(|P |).

We next show c < σ. Take a solution u ∈ Lip(TN) of (CP). For every x ∈ A− := {x ∈
TN | D−u(x) ̸= ∅}, take p ∈ D−u(x). Since |p| ≤ Lip[u], we have

inf
p∈D−u(x)

H(x, p+ P ) ≤ H(x, p+ P ) ≤ σ(x)m(Lip[u] + |P |).

Therefore, by Lemma 2.3,

c ≤ inf
x∈TN

inf
p∈D−u(x)

H(x, p+ P ) ≤ inf
x∈A−

inf
p∈D−u(x)

H(x, p+ P )

≤ inf
x∈A−

σ(x)m(Lip[u] + |P |).

According to [3, Lemma 1.8 (d)], the set A− is dense in TN . Thus, we obtain c ≤ σm(Lip[u]+
|P |) < σ. The proof of the inequality σm0 ≤ c is easier.
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Let D̂ := {P ∈ RN | H̄∞(P ) < σ}. We note that D = D̂ = ∅ when σm0 ≥ σ. Indeed,

Proposition 3.4 implies D = ∅ and Proposition 3.11 (4) (shown later) implies D̂ = ∅. We
may hereafter assume that σm0 < σ.

Let us take an approximating Hamiltonian Hn of the form

Hn(x, p) = σ(x)Mn(|p|),

where Mn : [0,∞) → [m0,∞) is an approximating function of m such that

(B1) Mn is Lipschitz continuous,

(B2) Mn(r) → ∞ as r → ∞,

(B3) there exists αn ∈ R such that

Mn(r) = m(r) for r ∈ [0, αn], Mn(r) > m(r) for r ∈ (αn,∞),

for each n ∈ N and αn → ∞ as n→ ∞,

(B4) Mn(r) ≥Mn′(r) for all n′ ≥ n and r ∈ [0,∞).

For instance,

(3.7) Mn(r) = max{m(r), Lr − n}

satisfies (B1)–(B4), where L is the Lipschitz constant of m.

Proof of D ⊃ D̂. We define

Dℓ := {P ∈ RN | H̄ℓ(P ) ≤ σm(αℓ)}.

If we prove that D ⊃ Dℓ for every ℓ ∈ N, the conclusion follows since

D ⊃
∞∪
ℓ=1

Dℓ = D̂.

Thus, we shall prove that D ⊃ Dℓ for each ℓ ∈ N.
Fix any P ∈ Dℓ and let (un, H̄n(P )) be a solution of (CPn). Note that H̄n(P ) is monotone

decreasing with respect to n by (B4) and Proposition 2.2. For each n ∈ N such that n ≥ ℓ,

Mn(|Dun + P |) = H̄n(P )

σ(x)
≤ H̄ℓ(P )

σ
≤ m(αℓ) in TN

in the viscosity sense. Note that the last inequality follows from P ∈ Dℓ. Since m ≤ Mn on
[0,∞) and m is strictly increasing, we have

|Dun(x)| ≤ αℓ + |P | in TN

11



in the viscosity sense. Thus,

sup
n≥ℓ

Lip[un] ≤ αℓ + |P | <∞.

Set vn(y) := un(y) − minun. Then, {vn}n∈N is uniformly bounded and equi-Lipschitz
continuous in TN . Thus, by taking a subsequence if necessary, Ascoli-Arzelà theorem implies
that vn uniformly converges to some Lipschitz continuous function u in TN as n → ∞.
Since Mn converges to m locally uniformly in [0,∞) by (B3) of Mn, the stability of viscosity
solutions (see [12]) implies that (u, H̄∞(P )) is a solution of (CP), which means that P ∈ D.

We get the desired inclusion D ⊃ D̂.
Proof of D ⊂ D̂. Fix any P ∈ D and let (u, c) ∈Lip(TN) ×R be a solution of (CP). The
condition (B3) of Mn implies

Mn(r) = m(r) for all r ≤ Lip[u] + |P |

for sufficiently large n. Hence, (u, c) is a solution of

σ(x)Mn(|Du+ P |) = c in TN .

Since H̄n(P ) is the critical value of the above problem, we have H̄n(P ) = c. Sending n→ ∞
yields H̄∞(P ) = c. Since c < σ by Proposition 3.4, we have H̄∞(P ) < σ. Thus, D ⊂ D̂. The
proof of Theorem 3.2 is complete.

Remark 3.5. By the last part of the proof, we see that for every R > 0 there exists NR ∈ N
such that H̄∞(P ) = H̄n(P ) for all P ∈ B(0, R) and n ≥ NR. This is thanks to the conditions
(B1)–(B4).

Remark 3.6. By Lemma 2.3 it is easily seen that H̄∞(0) = σm0. Thus Theorem 3.2 implies
that 0 ∈ D if σm0 < σ. Moreover, from the Lipschitz continuity of H̄∞ (Proposition 3.11
(1)) it follows that B(0, (σ − σm0)/σL) ⊂ D, where L is the Lipschitz constant of m.

Remark 3.7. A similar proof applies to more general Hamiltonians. Let H be a Hamiltonian
satisfying (3.6). We define

h(ρ) := inf
x∈TN

inf
|p|≥ρ

H(x, p), h∞ := sup
ρ≥0

h(ρ),

and assume

(H4) inf
x∈TN

sup
|p|≤ρ

H(x, p) < h∞ for all ρ ≥ 0.

Then it turns out that D = {P ∈ RN | H̄∞(P ) < h∞}. We shall give a sketch of the proof
of this generalization.

We first note that the critical value c of (CP) satisfies c < h∞. This follows from (H4).
Also, we see that {p ∈ RN | H(x, p) ≤ τ for some x ∈ TN} is bounded for every τ < h∞.
Indeed, if there were some sequence {(xj, pj)}j∈N such that |pj| → ∞ as j → ∞, we would
have h(|pj|) ≤ H(xj, pj) ≤ τ < h∞, which is a contradiction since supj∈N h(|pj|) < h∞.

12



Define D̂ := {P ∈ RN | H̄∞(P ) < h∞}, and take an approximate Hamiltonian Hn as

Hn(x, p) = max{H(x, p), |p| − n}. To prove D ⊃ D̂ we set Dℓ := {P ∈ RN | H̄ℓ(P ) ≤ τℓ},
where {τℓ}ℓ∈N is a sequence such that τℓ < h∞ and τℓ → h∞ as ℓ→ ∞. Then

∪∞
ℓ=1 Dℓ = D̂.

Fix ℓ ∈ N. For every P ∈ Dℓ and n ≥ l, a solution (un, H̄n(P )) of (CPn) satisfies

H(x,Dun + P ) ≤ Hn(x,Dun + P ) = H̄n(P ) ≤ H̄ℓ(P ) ≤ τℓ.

Since τℓ < h∞, we have supn≥ℓ Lip[un] < ∞. Ascoli-Arzelà theorem ensures that un −minu

subsequently converges to some u, and thus (u, H̄∞(P )) solves (CP). The proof of D ⊂ D̂ is
easier. Indeed, by the choice of Hn, a solution (u, c) of (CP) is also a solution of (CPn) for
n sufficiently large, and therefore H̄∞(P ) = H̄n(P ) = c < h∞.

3.4 A sufficient condition for the fully solvability

Applying the result in Theorem 3.2, we give a sufficient condition which guarantees that
(CP) is fully solvable, i.e., D = Rn.

Theorem 3.8. Assume σm0 < σ. Let P ∈ RN and assume that there exists ψ ∈ C1(TN)
such that Dψ = −P on {σ ̸= σ}. Then P ∈ D.

If there exists such a ψ for every P ∈ RN , then (CP) is fully solvable. A simple condition
for the existence of ψ will be given after the proof; see Remark 3.9.

Proof. We take Hn as in the proof of Theorem 3.2. By the representation of D obtained in
Theorem 3.2, the proof is completed by showing that H̄n(P ) < σ for n ∈ N sufficiently large.
To this end, we use the estimate

H̄n(P ) ≤ inf
ϕ∈C1(TN )

sup
x∈TN

Hn(x,Dϕ(x) + P )

in Lemma 2.3. Choosing ϕ = ψ, where ψ is the function in our assumption, we see

(3.8) H̄n(P ) ≤ sup
x∈TN

Hn(x,Dψ(x) + P ).

On {σ ̸= σ} we compute

Hn(x,Dψ(x) + P ) = Hn(x, 0) = σ(x)m0 ≤ σm0 < σ.

For x ∈ TN such that σ(x) = σ, we have

Hn(x,Dψ(x) + P ) = σMn(|Dψ(x) + P |).

We now set r0 := maxx∈TN |Dψ(x) + P | < ∞ and choose n large so that Mn(r) = m(r) for
all r ≤ r0. Then

Hn(x,Dψ(x) + P ) ≤ σm(r0) < σ.

Consequently, (3.8) implies H̄n(P ) < σ.
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Remark 3.9. If {σ ̸= σ} ⊂ (0, 1)n, then there exists ψ in Theorem 3.8 for every P ∈ RN .
Indeed, letting A ⊂ (0, 1)n be an open set such that {σ ̸= σ} ⊂ A and A ⊂ (0, 1)n, we are
able to construct a function ψ ∈ C1(TN) so that ψ(x) = −⟨P, x⟩ for x ∈ {σ ̸= σ} and
ψ(x) = 0 for x ̸∈ A.

Remark 3.10. The existence of ψ in Theorem 3.8 is not a necessary condition for P ∈ D.
In Example 4.4 (1), where we consider the one-dimensional case, the cell problem is fully
solvable, but there is no such periodic ψ for P ̸= 0 because σ attains a minimum at one
point.

3.5 Properties of the generalized effective Hamiltonian

In this subsection we shall derive some properties of the generalized effective Hamiltonian.

Proposition 3.11 (Properties of the generalized effective Hamiltonian). We have

(1) |H̄∞(P )− H̄∞(Q)| ≤ σL|P − Q| for all P,Q ∈ RN , where L is the Lipschitz constant
of m,

(2) H̄∞(kP ) ≥ H̄∞(P ) for all P ∈ RN and k ≥ 1,

(3) H̄∞(P ) = H̄∞(−P ) for all P ∈ RN ,

(4) max{σm(|P |), σm0} ≤ H̄∞(P ) ≤ σm(|P |) for all P ∈ RN .

Proof. Take Hn as in the proof of Theorem 3.2, where we set Mn by (3.7). Let H̄n be the
effective Hamiltonian of Hn. We then have

|Hn(x, p)−Hn(x, q)| ≤ σL|p− q| for all x ∈ TN , p, q ∈ RN .

Hence, Proposition 2.6 (1) shows

|H̄n(P )− H̄n(Q)| ≤ σL|P −Q| for all P,Q ∈ RN .

Sending n→ ∞ yields the conclusion (1).
By a similar argument the properties (2)–(3) are verified from Proposition 2.6 since our

coercive Hamiltonians Hn satisfy the assumptions of Proposition 2.6 (2)–(3). The property
(4) is a consequence of Lemma 2.3.

4 One-dimensional cell problem

In this section we investigate the cell problem in one dimension. In this case the solvability
set D has a more explicit representation. We first rewrite (CP) as

(4.1) |u′(x) + P | = fa(x) in T,
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where

fa(x) := m−1

(
a

σ(x)

)
.

Here, m−1 : [m0, 1) → [0,∞) is the inverse function of m, and fa is well-defined as a [0,∞)-
valued function if σm0 ≤ a < σ. We now set m−1(1) = ∞. Then, fσ is a [0,∞]-valued
function. Note that a 7→ fa(x) is increasing for every x ∈ T.

The authors of [19] consider

(4.2) |u′(x) + P |2 − V (x) = a in T,

as an example of the cell problem in one dimension. Here, V is a continuous function on T
such that minT V = 0. According to [19], for each P ∈ R, the critical value c of (4.2) is given
by

(4.3) c =

{
0 if |P | ≤

∫ 1

0

√
V (z)dz,

a such that |P | =
∫ 1

0

√
V (z) + adz, a ≥ 0, otherwise.

As an analogue of this formula, we establish

Proposition 4.1. (1) If σm0 ≥ σ, then D = ∅.

(2) If σm0 < σ, then

D =

{
(−

∫ 1

0
fσ(z)dz,

∫ 1

0
fσ(z)dz) if fσ ∈ L1(0, 1),

R otherwise.

Moreover, the critical value c is given by

(4.4) c =

{
σm0 if |P | ≤

∫ 1

0
fσm0(z)dz,

a such that |P | =
∫ 1

0
fa(z)dz otherwise.

Proof. (1) This is obvious by Proposition 3.4.

(2) We set D̃ = (−
∫ 1

0
fσ(z)dz,

∫ 1

0
fσ(z)dz). When fσ /∈ L1(0, 1), we read D̃ = R. We first

prove D ⊃ D̃. To do this, take P ∈ D̃. What we have to do is to find u ∈ Lip(T) such that
(u, c) is a solution of (4.1), where c is the constant in (4.4).

When |P | ≤
∫ 1

0
fσm0(z)dz, we set

u(x) =


∫ x

x0

fσm0(z)dz − Px for x ∈ [x0, x1],∫ x0+1

x

fσm0(z)dz + P (1− x) for x ∈ [x1, x0 + 1].

Here, x0 ∈ [0, 1] and x1 ∈ [x0, x0 + 1] are points such that

fσm0(x0) = 0,

∫ x1

x0

fσm0(z)dz =

∫ x0+1

x1

fσm0(z)dz + P.
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We regard u as a function on T by extending it periodically. Then, it is easy to see that u
is a solution of (4.1).

When |P | ≥
∫ 1

0
fσm0(z)dz, for c chosen by (4.4), we set

u(x) = sign(P )

∫ x

0

fc(z)dz − Px for x ∈ R.

Note that u is a Z-periodic function since, by the definition of c,

sign(P )

∫ 1

0

fc(z)dz − P = 0.

Then, it is easy to see that u is a solution of (4.1). Therefore, we have obtained D ⊃ D̃.

We next show the reverse inclusion D ⊂ D̃. Let P ∈ D and take a solution (u, c) of (4.1),
then

|P | =
∣∣∣∣∫ 1

0

(u′(z) + P )dz

∣∣∣∣ ≤ ∫ 1

0

|u′(z) + P |dz ≤
∫ 1

0

fc(z)dz <

∫ 1

0

fσ(z)dz.

The first equality follows from the periodicity of u. Thus, P ∈ D̃ and so the proof is
complete.

Remark 4.2. The representation of the critical value (4.4) is also obtained via the formula
(4.3) given in [19]. In fact, a is a critical value of (CP) if and only if the critical value ca of

|u′(x) + P | = fa(x) + ca in T

is equal to 0. It is easily seen that the condition ca = 0 yields (4.4).

When σ attains a minimum on some interval [a, b] with a < b, it is easily seen that fσ is
not integrable since fσ = +∞ on [a, b]. Consequently, (4.1) is fully solvable by Proposition
4.1. If σ(x) = σ at only one point x ∈ T, the integrability of fσ depends on σ and m as the
next examples indicate.

Example 4.3. Let us consider (4.1) with

m(r) =
1

2

r

1 + r
+

1

2
(r ∈ [0,∞)), σ(x) = xα(1− x)α + β (x ∈ [0, 1]),

where α, β > 0. We note that σm0 < σ holds when β > 1/4α. Since

fσ(x) =
σ

2

1

σ(x)− σ
− 1 =

σ

2

1

xα(1− x)α
− 1,

the integrability of fσ is determined by the choice of α > 0.
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Example 4.4. Set

σ(x) =

{
x+ 3

2
(0 ≤ x < 1

2
),

−x+ 5
2

(1
2
≤ x < 1).

(1) We let

m(r) =
1

2

r

1 + r
+

1

2
.

We extend σ periodically to R and still denote it by σ. Note that σm0 < σ holds. Since

fσ(x) =
σ

2

1

σ(x)− σ
− 1

2
,

we observe that ∫ 1

0

fσ(z)dz = 2

∫ 1/2

0

fσ(z)dz = σ

∫ 1/2

0

1

z
dz − 1

2
= ∞.

Thus, D = R, i.e., the cell problem is fully solvable.
(2) We next study

m(r) =
1

2
tanh r +

1

2
(r ∈ [0,∞)).

Note that σm0 < σ. Since

fσ(x) =
1

2
log

(
σ

σ(x)− σ

)
=

1

2
{log σ − log(σ(x)− σ)},

we observe that ∫ 1

0

fσ(z)dz = 2

∫ 1/2

0

fσ(z)dz = 1 +
1

2
log 6.

Therefore, D =
(
−1− 1

2
log 6, 1 + 1

2
log 6

)
.

Proposition 4.5. We have

H̄∞(P ) > H̄∞(Q) for all P,Q ∈ D such that |P | > |Q| ≥
∫ 1

0

fσm0(z)dz.

Proof. By (4.4), we observe∫ 1

0

{fH̄∞(P )(z)− fH̄∞(Q)(z)}dz = |P | − |Q| > 0,

which implies that H̄∞(P ) > H̄∞(Q).
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5 Application to homogenization problems

We present our homogenization result for the equation (HJε) with the Hamiltonian (1.1)
satisfying (H1)–(H3). Here, u0 : RN → R is a bounded and Lipschitz continuous initial
datum. We remark that there exists a unique bounded solution uε ∈ C(RN × [0, T )) of
(HJε). Similarly, there exists a unique bounded solution u ∈ C(RN × [0, T )) of (HJ). Indeed,
the comparison principle holds for a viscosity sub- and supersolution (see [12]). This yields
uniqueness of solutions. Existence is a consequence of Perron’s method (see [18]).

Theorem 5.1 (Homogenization result). Assume either

(1) D = RN or (2) m(Lip[u0]) < σ/σ.

Then the solution uε of (HJε) converges to the solution u of (HJ) locally uniformly in RN ×
[0, T ) as ε→ 0.

Recall that, for each P ∈ D, H̄∞(P ) is the critical value of (CP) from Theorem 3.2. As we
mentioned in Introduction the assumption (1) means that the cell problem is fully solvable,
so the same argument as [13] works for our equation.

We shall hereafter prove Theorem 5.1 under the assumption (2).

Proposition 5.2 (Regularity of the solution of (HJε)). Assume (2) in Theorem 5.1. Then,
the solutions uε of (HJε) satisfy

|uε(x, t)− uε(x, s)| ≤ L|t− s|, |uε(x, t)− uε(y, t)| ≤ K|x− y|

for all x, y ∈ RN , t, s ∈ [0, T ) with the constants

L := σm(Lip[u0]) <∞, K := m−1

(
σ

σ
m(Lip[u0])

)
<∞.

We omit the proof since this proposition is verified by the same argument as in [14,
Appendix A]. We point out that [14, Proposition 3.17] holds under the assumption R+(m) <
∞ even if the Hamiltonian does not satisfy the coercivity condition (HR+).

We give two different proofs of Theorem 5.1 under the assumption (2).

Proof I of Theorem 5.1 under the assumption (2). By Proposition 5.2, Ascoli-Arzelà theo-
rem implies that uε subsequently converges to some Lipschitz continuous function u locally
uniformly in RN × [0, T ) as ε→ 0.

We prove that u is a supersolution of (HJ). The proof is based on the perturbed test
function method (see [13]). Let (x0, t0) ∈ RN × (0, T ) and ϕ ∈ C1(RN × (0, T )) such that
u− ϕ has a strict local minimum at (x0, t0). Suppose that

ϕt(x0, t0) + H̄∞(Dϕ(x0, t0)) =: −θ < 0.
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We take {Hn}n∈N as in the proof of Theorem 3.2 and let H̄n be the effective Hamiltonian of
(CPn). Since H̄n converges to H̄∞, we have

(5.1) ϕt(x0, t0) + H̄n(Dϕ(x0, t0)) ≤ −θ
2

for sufficiently large n.
Set

ϕε
n(x, t) := ϕ(x, t) + εvn

(x
ε

)
,

where vn is a solution of (CPn). By the same argument as in [13], we see that ϕε
n is a

subsolution of

(5.2) wt(x, t) + σ
(x
ε

)
Mn(|Dw(x, t)|) = 0

in B(x0, r)× (t0 − r, t0 + r) for sufficiently small r > 0. On the other hand, by the Lipschitz
continuity of uε and (B3), we see that it is a solution of (5.2) in RN × (0, T ) for sufficiently
large n. The comparison principle for (HJε) implies a contradiction (see [13]) and so u is a
supersolution of (HJ).

Similarly, it is proved that u is a subsolution of (HJ), and therefore, u is a unique solution
of (HJ). Consequently, uε converges to u locally uniformly in RN × [0, T ) as ε → 0 without
taking subsequences.

Proof II of Theorem 5.1 under the assumption (2). Recall that {uε}ε>0 is equi-Lipschitz con-
tinuous in view of Proposition 5.2 and therefore subsequently converges to some u locally
uniformly in RN × [0, T ) as ε → 0. Take {Hn}n∈N as in the proof of Theorem 3.2. By (B3)
and the equi-Lipschitz continuity of {uε}ε>0, we have

uεt(x, t) +Hn

(x
ε
,Duε(x, t)

)
= 0 in RN × (0, T )

for all n ∈ N large enough and all ε > 0. We now apply the homogenization result for
coercive Hamiltonians [13] to see that uε converges to the solution wn of{

wt(x, t) + H̄n (Dw(x, t)) = 0 in RN × (0, T ),

w(x, 0) = u0(x) in RN

locally uniformly in RN × [0, T ). Since u is a limit of a subsequence, it turns out that wn ≡ u.
Since H̄n converges to H̄∞ locally uniformly, the stability result for viscosity solutions yields
the conclusion that u is a viscosity solution of (HJ).

Remark 5.3. The main difference between two proofs is the order of limits of ε and n. We
point out that Proof I does not require the locally uniform convergence of H̄n. However, we
need the equi-Lipschitz continuity of {uε}ε>0 in both proofs in order to ensure that uε is a
solution of the approximate equation.
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Theorem 5.4 (Non-homogenization result). Assume that σm0 > σ. Let uε be the solutions
of (HJε). Then, u

ε does not have a locally uniformly convergent limit in Rn× [0, T ) as ε→ 0.

Proof. Set

uε−(x, t) := u0(x)− σ
(x
ε

)
t, uε+(x, t) := u0(x)− σ

(x
ε

)
m0t

for (x, t) ∈ RN × [0, T ). Then, we see that uε− and uε+ are a subsolution and a supersolution
of (HJε) respectively. By the comparison principle, the solution uε satisfies

(5.3) uε−(x, t) ≤ uε(x, t) ≤ uε+(x, t)

for all (x, t) ∈ RN × [0, T ) and ε > 0.
Let u and u be the upper half-relaxed limit and the lower half-relaxed limit of uε, respec-

tively. Namely,

u(x, t) := lim
δ→0

sup{uε(y, s) | (y, s) ∈ B(x, δ)× (t− δ, t+ δ), ε < δ},

u(x, t) := lim
δ→0

inf{uε(y, s) | (y, s) ∈ B(x, δ)× (t− δ, t+ δ), ε < δ}.

Moreover, let u− and u+ be the upper half-relaxed limit of uε− and the lower half-relaxed
limit of uε+, respectively. Then, we have

u−(x, t) = u0(x)− σt and u+(x, t) = u0(x)− σm0t.

Thus, by (5.3) and the assumption σm0 > σ, we have

(5.4) u(x, t) ≤ u+(x, t) < u−(x, t) ≤ u(x, t)

for all (x, t) ∈ RN × [0, T ). Therefore, u and u are different and so we conclude that uε does
not converge to any functions locally uniformly as ε→ 0.

Remark 5.5. When σm0 = σ, we do not know whether or not uε has a limit as ε → 0.
However, by (5.4), we see that the limit of uε should be u0(x) − σt(= u0(x) − σm0t) if it
exists.
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