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Abstract

The problem is the locally finite generation of a relation sheaf
R(T1,...,7q) in Ocn. After 7; reduced to Weierstrass’ polynomials in
Zn, it is the key for applying an induction on n to show that elements
of Z(11,...,74) are expressed as a finite linear sum of z,-polynomial-
like elements of degree at most p = max;deg, 7; over Ocn. In that
proof one is used to use a division by 7; of the mazimum degree,
deg, 7; = p (Oka ’48, Cartan '50, L. Hérmander ’66, R. Narasimhan
’66, T. Nishino '96, ....). Here we shall confirm that the division above
works by making use of 7, of the minimum degree, min; deg, ;. This
proof is naturally compatible with the simple case when some 7; is a
unit, and gives some improvement in the degree estimate of generators.

1 Introduction and results

It will be of no necessity to mention the importance of Oka’s First Coher-
ence Theorem that the sheaf Ogn (also denoted simply by O,,) of germs of
holomorphic functions over n-dimensional complex vector space C™ (Oka [7],
[8])2. Let Q C C™ be an open set and let 7; € O(Q) :=T1'(2,0,), 1 <j <q.
Oka’s First Coherence Theorem claims that the relation sheaf Z(m,...,7,)
defined by

hm,+e o+ fg1g, =0, ;€00 z€Q

is locally finite in 2, where *, stands for the germ at z. The problem
is local, so that we consider in a neighborhood of a point a € €; fur-

ther we may assume a = 0 with complex coordinate system (z1,...,z,).

'Research supported in part by Grant-in-Aid for Scientific Research (B) 23340029.
2There are some differences in these two versions of Oka VII.



By Weierstrass’ Preparation Theorem 7; are reduced to Weierstrass’ poly-
nomials P; € O(PA,_1)[z,] about 0, where PA,,_; is a small polydisk in

/

2= (z1,...,2n1) € C"L. Set

H=XP,... P,

= max deg, P;
b= 20, 008

, .
= min deg, P;.
b= 28, 8

We call f € O,_1 (2] (vesp. f € O(PA,_1)[zn]) a 2z,-polynomial-like germ
(resp. function) and denote by deg, f its degree in variable z,; for con-
vention, “deg, f < 0”7 means “f = 0”. We also call an element (f;) €
(O, )" (resp. (f;) € (O(PA,—1 x C)))?) with f; € Opa,_,p[2n] (resp.

fi € O(PA,_1)[zn]) a zn-polynomial-like element (resp. section), and deg, (f;) =
max; deg, f; the degree of (f;).

The proof of the local finiteness of Z relies on the induction on n, and
the key which makes the induction to work is:

Lemma A. FEvery element of %, at b = (V,b,) with b € PA, 4 is
expressed as a finite linear sum of z,-polynomial-like elements of %, of degree
at most p with coefficients in O.

There is some structure in the generator system with respect to the degree

in z,. For 1 <1 < j < q there are sections of #Z given by

i-th j-th

T;,; = (0,...,0, P;,0,...,0,—P;,0,...,0),

which we call the trivial solutions, and are z,-polynomial-like sections of

deg, T;; < p. Without loss of generality we may assume that

p =7,
Pq =D,

and set



In the proof of Lemma A a division algorithm is applied; in the orig-
inal proof of Oka as well as in many references such as H. Cartan [1], R.
Narasimhan [4], L. Hérmander [3], T. Nishino [5], J. Noguchi [6],... etc.,
the division algorithm by P, of the maximum degree is used to conclude
the existence of a finite generator system consisting of T;, of degree < p,
1 <i<¢g—1, and a finite number of z,-polynomial-like elements a of de-
gree < p. In case p’ = 0, it is immediate that the trivial solutions 7; with
2 < j < q form already a generator system, while by the original proof one
still needs elements « of degree < p.

The aim of this note is to confirm that Oka’s original proof still works

with the division algorithm by P; of the minimum degree in z,:

Lemma 1.1. Let the notation be as above. Then an element of %, is writ-

ten as a finite linear sum of the trivial solutions, T;, 2 < 7 < q, and z,-

polynomial-like elements o = (a1, g, ..., o) of Xy with coefficients in O,
such that
(1.2) deg, oy <p—1,

deg, oy <p' —1, 2<j<q.

N.B. If p’ =0, then there is no term of o, and if p’ = 1. «a; are constants
for 2 < j<gq.

To decrease p — 1 in (1.2) one needs to transform the relation sheaf
H (P, Py, ..., P,) with dividing P; (2 < j < ¢q) by P (here we use an idea
from Hironaka’s proof, cf. [2]). Set

P =Q;P + Rj, Q;,R; € Op 1(PA,_1)[2n],
deganj Sp/_la QSJSQ



Then for (f;) € (O,,.)? we have
q q q
(1.3) >_fibi, = <f1 2 fa@z) P SRy,
j=1 =2 =2
q
= hl&z _'_ Z fj&zj
j=2

where hy = f1+23:2 f;Q; . Thus the locally finite generation of Z(P, . .., P,)
is equivalent to that of Z(Pi, Rs, ..., R,). Let

j-th

T{:(Rj07"'707_P1707"‘70>7 ZSJSQ

J

be the trivial solutions of Z (P, Ry, ..., R,), which are z,-polynomial-like

sections of deg, T =p'.

Lemma 1.4. Set #' .= Z (P, Rs, ..., R,) be as above. Then an element of
Fy, is written as a finite linear sum of the trivial solutions, T}, 2 < j < g,

of degree p' and z,-polynomial-like elements o/ = (o, s, ..., o) of %, with

coefficients in O, such that

(1.5) deg, oy <p' —2,
deg, o <p' =1, 2<j<q

N.B. If p’ = 0, then there is no term of o/, and if p’ = 1. then o} =0

and o are constants for 2 < j <g.

2 Proofs of Lemmas

(1)(Lemma 1.1) By making use of Weierstrass’ Preparation Theorem at b =
(0',b,) with o € PA,_; we decompose P; to a unit u and a Weierstrass

polynomial Q:
PI(Z/,Zn> ZU'Q(Z/,Zn—bn), degan:dgpl‘

4



Here and in the sequel we abbreviate QZ to @ for the sake of notational
simplicity; there will be no confusion.
It follows that u € O,_1[2,], and then

(2.1) deg, u=p; —d.

Take an arbitrary f = (f1,..., f,) € %. By Weierstrass’ Preparation Theo-
rem we divide f; by Q:

Ji=cQ+ B, 1<1i<gq,
¢ € On,b; ﬁz € On—l,b’ [Zn]7
(2.2) deg, B <d—1

Since u € O, is a unit, with ¢; := c;u~t we get the division of f; by Pi:
(2.3) fi=acP+ B, 1<i<q.
By making use of this we have

(2.4) (fi,..., fy) &+ -+ ¢,
= (&P + B1,CaPL + Ba, ..., CoPL + By)
+ (62P5, —55 P, 0,....,0)
+
+ (6,P,,0,...,0,—¢,P)

— (Zéiﬂ+617ﬁ%ﬂ'aﬁ(]>

=1

= (91,82, -, By) -

Here we put g1 = > 7, &; P41 € Ony. Note that 5; € O,_1y(2,), 2 <@ < ¢.
Since (g1, B, - - -, By) € R,

(2.5) G P = —p2Py — -+ = B Py € On_1y[2).



It should be noticed that if p; =0, then P, =1, 5, =0, 1 <1 < ¢, and
hence g; = 0; the proof is finished in this case.

In general, it follows from the expression of the above right-hand side of
(2.5) that g1 P, € Oy—1 (2] and

< ; . < _
deg,, 1Py < max deg,, f; + max deg, Py <d+p—1.

On the other hand, g P, = giu@ and @) is a Weierstrass’ polynomial at b.
We see that

a1 = qu € Onfl,b’ [Zn];
(2.6) deg, a; =deg, 9P —deg, @
<d+p—-1—d=p-—1.

Set a; = uf; for 2 < i < . Then, by (2.1) and (2.2) we have
(2.7) deg, o, <p1—d+d—1=p—1=p' -1, 2<i<gq,

and by (2.9) that

q

(2.8) f= —Zéiﬂ—i—u_l(al,aZ,...,aq).
i=2
O
(2) (Lemma 1.4) First note that (f1,..., f,) and (1, fo, ..., f,) with h; =
fi+ Z?:z f;Q; as defined in (1.3) are related by

h L Q -+ Qg (N1

fa B o 1 --- 0 fo

E - . . 0 . )
fq 0 O 1 fq

Ji I —Q —Qq hy
L o 1 0 ||
| 0 :
fq 0 0 1 fq



Therefore, the locally finite generation of Z is equivalent to that of Z'.
The proof is similar to the above except for some degree estimates. Now
we have for (f;) € (Onp)?

(2.9) (frooo fo) F &Iy 4+ 6T,
= (51P1 + B+ Z@'Rz‘,ﬁz; e 7Bq>
i=2
- <h17627"'a6q)'

Here we put hy = &P, + B + Y iy CiR;i € Opyp. In stead of (2.5) we have
(2.10) WPy = —ByRy — -+ — B,Ry € On_1[2n]-
From this we obtain

deg, MiPi<d—1+4+p —1=d+p —2.
With o) := hju we have h; P, = hyu@ = o} Q and so

deg, oy <d+p —2—-d=p —2.
For o := uf;, 2 < i < ¢ we have the same estimate as in (2.7):
deg, o; <p' —1.

With the above defined we have

q
f=- ZéiTi’ +u (o], gy y).
=2
O
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