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Abstract. We study transverse projective structures of foliations
and construct an invariant, which is a homomorphism from a foli-
ated cohomology to the ordinary one. It is shown that the infini-
tesimal derivatives of the Godbillon-Vey class and the Bott class
are determined by the invariant. As a corollary, a rigidity theorem
for the Godbillon-Vey class and the Bott class is shown.

Introduction

It is known that the Godbillon-Vey class and some secondary char-

acteristic classes for foliations admit continuous deformations, namely,

they can vary continuously under deformation of foliations. If smooth

families of foliations are given, the derivatives of these classes with re-

spect to families can be considered. The derivatives are defined indeed

not only with respect to actual deformations but with respect to in-

finitesimal deformations [10] (see also [4], [3]). We call such derivatives

infinitesimal derivatives for short. It is known that infinitesimal deriva-

tives of the Godbillon-Vey class and the Bott class are represented in

terms of projective Schwarzians and their Ricci curvatures. A formula

was found by Maszczyk for codimension-one foliations and by the au-

thor for those of codimension greater than one [18], [3]. The formu-

lae suggest that there exists an invariant associated with transverse

projective structures of foliations which determines the infinitesimal

derivatives. Transverse projective structures are usually studied under
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2 TARO ASUKE

the assumption that they are invariant under the holonomy (cf. [19],

[5]), however, it is insufficient in the study of infinitesimal derivatives.

In this paper, we first clarify transverse projective structures not nec-

essarily invariant under the holonomy. It is an adaptation of Cartan’s

and Thomas’ theory [23], [16]. We largely rely on the Robert ver-

sion of Thomas’ theory [21] but we also need a version of the Hlavatý

connection [12] in order to construct appropriate connections. After

discussing transverse projective structures, we will recall some relevant

notions on the infinitesimal derivatives. Then, we will construct an

invariant, which is a homomorphism from a foliated cohomology to the

ordinary one, and describe infinitesimal derivatives by means of it. As

a corollary, we obtain a rigidity theorem for the Godbillon-Vey class

and the Bott class. A part of this work is done while the author enjoys

his visit to the ‘Institute de Mathématiques de Toulouse’. He would

like to express his gratitude for their warm hospitality, especially to

J. Rebelo.

1. Torsion-free and Thomas-Whitehead connections

for foliations

Throughout this paper, we will assume that manifolds and foliations

are smooth, namely, of class C∞. We refer to [4] for generalities of

transversely holomorphic foliations.

1.1. Transversal torsion and Christoffel symbols.

LetM be a manifold, F a foliation ofM and TF the tangent bundle

of F . If F is a real foliation, then we set E(F) = TF . If F is

transversely holomorphic, then we define E(F) as follows. Let (x, y) =

(x1, . . . , xp, y1, . . . , yq) be coordinates on a foliation chart, where y =

(y1, . . . , yq) are coordinates in the transversal direction so that y ∈ Cq.

We define E(F) to be the complex vector bundle locally spanned by
∂

∂x1 , . . . ,
∂

∂xp and ∂
∂ȳ1
, . . . , ∂

∂ȳq
. By abuse of notations we denote by TM

the complexification TM ⊗ C of TM . In the both cases, let Q(F) =

TM/E(F) be the (complex) normal bundle of F and π : TM → Q(F)

the projection. If F is a vector bundle over M and if U is an open

subset of M , then we denote by ΓU(F ) the set of smooth (even in the

transversely holomorphic case) sections of F over U . If U = M , then

ΓU(F ) is also denoted by Γ (F ). In what follows, we mostly deal with
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transversely holomorphic foliations. The arguments in the real case are

easier and almost parallel.

Notation. We will frequently compare coefficients of tensors, connec-

tions, etc. in what follows. Once a chart is chosen and coefficients are

defined, the symbol ‘̂′ is used to express another chart and the co-

efficients on it. For example, if (U,φ) is a chart and if a1, . . . , aq are

coefficients of a tensor on (U,φ), then (Û , φ̂) represents a chart such

that U ∩ Û ̸= ∅ and â1, . . . , âq represent the coefficients on (Û , φ̂). The

coefficients are often considered as entries of matrices, and the mul-

tiplication rule of matrices is applied. For example, if ω1, . . . , ωq are

coefficients of a Cq-valued 1-form and if aij, where 1 ≤ i, j ≤ q, are

coefficients of a glq(C)-valued 2-form, then we set ω = t(ω1 · · · ωq),

A = (aij) and define A ∧ ω to be a Cq-valued 3-form of which the i-th

entry is given by
∑
j

aij ∧ωj. Finally, the Roman indices will begin from

one, while the Greek indices will begin from zero.

Definition 1.1. A connection ∇ on Q(F) is said to be a Bott connec-

tion if ∇XY = π[X, Ỹ ] for X ∈ Γ (E(F)) and Y ∈ Γ (Q(F)), where Ỹ

is any lift of Y to Γ (TM). A connection D on
∧qQ(F) is said to be a

Bott connection ifDXY = LXY ifX ∈ Γ (E(F)) and Y ∈ Γ (
∧qQ(F)),

where LX denotes the Lie derivative.

It is well-known that Bott connections always exist. Note that a

Bott connection on Q(F) induces a Bott connection on
∧qQ(F).

Definition 1.2. We denote by KF the line bundle
∧qQ(F)∗, where

q is the codimension of F . If F is transversely holomorphic, then q is

the complex codimension and KF is called the canonical bundle of F .

We denote
∧qQ(F) by K−1

F .

Definition 1.3 ([24]). Let ∇b a Bott connection on Q(F). We define

a skew-symmetric (0, 2)-tensor field T on Q(F) by

T (X, Y ) = ∇b
X̃
Y −∇b

Ỹ
X − π[X̃, Ỹ ],

where X̃, Ỹ are lifts of X, Y to TM . We call T the transversal torsion

of∇b. A Bott connection is said to be transversely torsion-free if T = 0.

Lemma 1.4. The transversal torsion is a well-defined (0, 2)-tensor

field.
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Proof. First we fix Ỹ . Let X̃ ′ be also a lift of X and set Ũ = X̃ ′ − X̃.

Then we have ∇b
X̃′Y = ∇b

X̃+Ũ
Y = ∇b

X̃
Y +π[Ũ , Ỹ ]. On the other hand,

we have π[X̃ ′, Ỹ ] = π[X̃, Ỹ ] + π[Ũ , Ỹ ]. Hence T (X, Y ) is independent

of the choice of X̃. Similarly, we can show that T (X, Y ) is independent

of the choice of Ỹ . If we replace X by fX, where f is a function, then

we may assume that f̃X = fX̃. Hence T (fX, Y ) = ∇b
fX̃
Y −∇b

Ỹ
fX −

π[fX̃, Ỹ ] = f∇b
X̃
Y −(Ỹ f)X−f∇b

Ỹ
X−fπ[X̃, Ỹ ]+(Ỹ f)X = fT (X, Y ).

Similarly, we can show that T (X, fY ) = fT (X, Y ). Therefore T is a

tensor. □

Remark 1.5. If we set

T̃ (X, Y ) = ∇b
Xπ(Y )−∇b

Y π(X)− π[X, Y ],

then, T̃ is the torsion in the sense of [24]. We have T̃ = π∗T .

Let U × T ⊂ Rq × Cq be a foliation chart, and let x and y be local

coordinates in the leaf and transversal directions, respectively. We set

ei = π

(
∂

∂yi

)
,

and let ω = (ωi
j) be the connection matrix of a Bott connection onQ(F)

with respect to {e1, . . . , eq}. Then, each ωi
j involves only dy1, . . . , dyq,

especially not dȳ1, . . . , dȳq in the transversely holomorphic case.

Definition 1.6. Let ∇b be a Bott connection on Q(F) and let (x, y)

be coordinates on a foliation chart. We set Γi
jk = dyi

(
∇b

∂

∂yj

ek

)
and

call
{
Γi
jk

}
i,j,k

the Christoffel symbols of ∇b by abuse of notations.

Lemma 1.7. Let ∇b be a Bott connection on Q(F).

1) Γi
jk = dyi

(
∇b

∂

∂yj
+X
ek

)
if X ∈ Γ (E(F)).

2) ∇b is transversely torsion-free if and only if Γi
jk = Γi

kj holds for any

i, j, k.

Proof. We first show 1). We have
[
X, ∂

∂yk

]
∈ Γ (E(F)) because X ∈

Γ (E(F)). Hence we have∇b
Xek = π

[
X, ∂

∂yk

]
= 0. Therefore,∇b

∂

∂yj
+X
ek =

∇b
∂

∂yj

ek + ∇b
Xek = ∇b

∂

∂yj

ek. Next we show 2). By Lemma 1.4, ∇b is
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transversely torsion-free if and only if T (ej, ek) = 0 for any j, k. We

have

T (ej, ek) = ∇b
∂

∂yj
ek −∇b

∂

∂yk
ej − π

[
∂

∂yj
,
∂

∂yk

]
=
∑
i

(Γi
jk − Γi

kj)ei.

The right hand side is identically equal to 0 if and only if Γi
jk = Γi

kj

holds for any i, j, k. □

We set T i
jk =

Γi
jk−Γi

kj

2
. We have then T =

∑
i,j,k

eiT
i
jkdy

j ∧ dyk.

Let U × T and Û × T̂ be foliation charts with coordinates (x, y) and

(x̂, ŷ). We have then ŷ = γ(y) for some (biholomorphic) diffeomor-

phism γ defined on an open subset of T . We refer γ as the transversal

component of the transition function.

Lemma 1.8 (cf. [17, Proposition 7.9]). Transversely torsion-free Bott

connections exist.

Proof. Let∇b be a Bott connection. If we denote by
{
Γi
jk

}
the Christof-

fel symbols of ∇b with respect to {e1, . . . , eq}, then

Γi
jk =

∑
l

∂yi

∂ŷl
∂2ŷl

∂yj∂yk
+
∑
l,m,n

∂yi

∂ŷl
Γ̂l
mn

∂ŷm

∂yj
∂ŷn

∂yk
.

Hence, if we set Γ′i
jk = Γi

kj, then the family {Γ′i
jk} satisfies the same

relation as above. Therefore, if we set ωi
jk =

Γi
jk+Γi

kj

2
, then {ωi

jk} deter-

mines a connection. It is easy to see that thus defined connection is a

Bott connection and transversely torsion-free. □

We refer to [24] for more on the differential geometry of foliations.

1.2. Bundle of transversal volume elements and Thomas-

Whitehead connections.

We will introduce a version of the Thomas-Whitehead connections

in the sense of [21] for foliations. First of all, we recall relevant Lie

algebras.

Definition 1.9. We denote by pglq+1(C) = glq+1(C)/C the Lie algebra

of PGLq+1(C) = GLq+1(C)/C∗ and set m = Cq.
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Let m ⊕ glq(C) ⊕ m∗ be the Lie algebra of which the Lie bracket is

given by [(xi, xij, xj), (y
i, yij, yj)] = (zi, zij, zj), where

(1.10)



zi =
∑
k

xiky
k −

∑
k

yikx
k,

zij =
∑
k

(xiky
k
j − yikx

k
j ) + xiyj − yixj −

∑
k

(xky
k − ykx

k)Iq,

zj =
∑
k

xky
k
j −

∑
k

ykx
k
j

for (xi, xij, xj), (y
i, yij, yj) ∈ m ⊕ glq(C) ⊕ m∗. Then, pglq+1(C) is iso-

morphic to m ⊕ glq(C) ⊕ m∗. Indeed, let X ∈ pglq+1(C) and A =(
a bi
ci Di

j

)
∈ glq+1(C) a representative of X. If we associate X with

(ci, Di
j − a, bi), then it gives an isomorphism. If {ω} is a family of

m-valued r-forms such that ω̂ = Dγ ω, where γ is the transversal com-

ponent of a transition function, then {ω} is naturally a Q(F)-valued

r-form and vice versa. Similarly, a family {µ} of m∗-valued s-forms

such that µ̂Dγ = µ corresponds to a Q(F)∗-valued s-form.

Definition 1.11. The C∗-principal bundle (R>0-principal bundle in

the real case, where R>0 = {t ∈ R | t > 0}) associated with K−1
F is

called the bundle of transversal volume elements and denoted by EF .
We denote by p̃ the projection from EF to M .

The bundle EF admits natural local coordinates as follows. Let U ×
T ⊂ Rp × Cq be a foliation chart and (x, y) be coordinates on U × T .

If U × T is small enough, then we have a local trivialization EF |U×T
∼=

U×T ×C∗ (or EF |U×T
∼= U×T ×R>0). We locally identify U×T ×C∗

with U × T × C by the correspondence (x, y, u) 7→ (x, y, log u), where

we take refinements and choose branches of the logarithm (in the real

case, we can identify U × T × R>0 with U × T × R). By changing

the order, we may use (x, y0, y) ∈ U × C × T as local coordinates

for EF . Then, transition functions are given as follows. Let (V, φ)

and (V̂ , φ̂) be foliation charts such that V ∩ V̂ ̸= ∅. If we identify

V with φ(V ) and if we assume that V = U × T , then the transition

function from φ(V ∩ V̂ ) to φ̂(V ∩ V̂ ) is of the form (ψ, γ). Then a

point (x, y0, y) ∈ φ(V ) × C (the order of the coordinates is changed)

is identified with φ̃(x, y0, y) = (ψ(x, y), y0+log detDγ(y), γ(y)), where
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log represents the fixed branch. Therefore EF is naturally equipped

with a foliation which we denote by F̃ . Indeed, E(F̃) is the subbundle

of TEF locally spanned by

1) in the transversely holomorphic case, ∂
∂xi ,

∂
∂ȳµ

, where 1 ≤ i ≤ p and

0 ≤ µ ≤ q,

2) in the real case, ∂
∂xi , where 1 ≤ i ≤ p.

Let D be a Bott connection on K−1
F . We denote the associated connec-

tion on EF also by D. Then, E(F̃) is the horizontal lift of E(F) with

respect to D. If X ∈ TM , we denote by Xh the horizontal lift of X to

TEF . We set Q(F̃) = TEF/E(F̃) and denote by π̃ the projection from

TEF to Q(F̃). We set ϵµ = π̃
(

∂
∂yµ

)
. Then {ϵ0, . . . , ϵq} is a local trivi-

alization of Q(F̃). If we set J = detDγ, ∂ log J
∂y

=
(

∂ log J
∂y1

· · · ∂ log J
∂yq

)
and D̃γ =

(
1 ∂ log J

∂y

0 Dγ

)
, then the transition function on Q(F̃) is given

by D̃γ. The bundle Q(F̃) also deserves to be called the horizontal lift

of Q(F).

Definition 1.12. We denote by p : Q(F̃) → Q(F) the projection in-

duced from the projection p̃∗ : TEF → TM . If v ∈ Q(F), then let ṽ be

a lift of v to TM and set vh = π̃(ṽh). We call vh the horizontal lift of

v to Q(F̃) with respect D.

The following commutative diagram commutes:

TEF
π̃−−−→ Q(F̃)

p̃∗

y yp

TM
π−−−→ Q(F).

Lemma 1.13. The horizontal lift of v ∈ Q(F) is independent of the

choice of ṽ.

Proof. Let ṽ′ be also a lift of v to TM . Since ṽ′ − ṽ ∈ E(F), we have

(ṽ′)h − ṽh ∈ E(F̃) so that π̃((ṽ′)h) = π̃(ṽh). □

Let f1dy
1 + · · ·+ fqdy

q be the connection form of D with respect to

e1 ∧ · · · ∧ eq. Then we have

(1.14) ehi = ϵi − fiϵ0.
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We formally set eh0 = ϵ0. As Q(F̃) is the horizontal lift of Q(F), it is

natural to choose
{
eh0 , e

h
1 , . . . , e

h
q

}
as a local trivialization of Q(F̃). We

have

(ϵ0, . . . , ϵq) =
(
eh0 , . . . , e

h
q

)(1 f
0 Iq

)
,

where f =
(
f1 · · · fq

)
. Note that (êµ)

h = êhµ and that
(
êh0 , . . . , ê

h
q

)(1 0
0 Dγ

)
=(

eh0 , . . . , e
h
q

)
. This trivialization will be useful for a characterization of

TW-connections (Theorem 1.20).

Definition 1.15. Let ξ be the vector field on EF locally given by ∂
∂y0

.

We call ξ the canonical fundamental vector field after [21].

Note that F̃ is invariant under the C-action generated by ξ. Note

also that π̃(ξ) = eh0 = ϵ0.

We introduce a foliated version of Thomas-Whitehead connections

as follows.

Definition 1.16. A linear connection ∇ on Q(F̃) is called a transverse

Thomas-Whitehead projective connection (transverse TW-connection,

or even simply TW-connection for short) if ∇ satisfies the following

conditions, namely,

1) ∇Xϵ0 = − 1
q+1

π̃(X) for any X ∈ Γ (TEF).
2) ∇ξY = − 1

q+1
Y for any Y ∈ Γ (Q(F̃)).

3) ∇ is invariant under the right C-action generated by ξ.

Let D be a Bott connection on K−1
F and ∇b a Bott connection for F .

A transverse TW-connection ∇ is called a transverse TW-connection

for (∇b,D) if ∇ satisfies the following additional condition, namely,

4) If X ∈ Γ (TM) and Y ∈ Γ (Q(F)), then p(∇XhY h) = ∇b
XY , where

p : Q(F̃) → Q(F) is the projection.

If the following stronger condition is satisfied instead of 4), then ∇ is

said to be standard :

4’) ∇XhY h = (∇b
XY )h for X ∈ Γ (TM) and Y ∈ Γ (Q(F)).

If D is induced from ∇b, then we omit mentioning D.

Remark 1.17. 1) The condition 1) in Definition 1.16 implies that

∇Xhϵ0 = 0 for X ∈ E(F).
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2) We will later introduce the torsion and curvature of a TW-connection

in Definition 1.28, which are different from those as a linear connec-

tion.

3) If ∇X = 0 for X ∈ Γ (E(F̃)), then we can ask ∇ to be transversely

torsion-free as a linear connection on Q(F̃) as in [23]. Then, the

conditions 1) and 2) in Definition 1.16 are equivalent. See also 3) of

Remark 1.22.

Let V be a foliation chart for F . Let
{
Γi
jk

}
be the Christoffel symbols

of ∇b on V with respect to {e1, . . . , eq}, and let θ =
∑
i

fidy
i be the

connection form of D with respect to e1 ∧ · · · ∧ eq. We consider f =

(f1 · · · fq) as a locally defined m∗-valued 1-form. The following Lemma

is immediate from the definition.

Lemma 1.18. Let ∇ be a TW-connection and ω the connection form

of ∇ with respect to {ϵ0, . . . , ϵq}. Then we have

ω = − 1

q + 1

(
dy0 0
dy dy0Iq

)
+

(
0 ν
0 µ

)
for some µ and ν, where ιξµ = Lξµ = 0 and ιξν = Lξν = 0. We refer

(µ, ν) as the components of ∇ with respect to {ϵ0, . . . , ϵq}.

More precise description of µ and ν when ∇ is a TW-connection for

(∇b,D) will be later given in Theorem 1.20.

Under the identification pglq+1(C) = m⊕glq(C)⊕m∗, the connection

form ω as in Lemma 1.18 corresponds to
(
− 1

q+1
dy, µ, ν

)
, where dy =

t
(
dy1 · · · dyq

)
. Indeed the connection form of a Cartan connection

is obtained from (µ, ν) and the Maurer-Cartan form of H2(q) which

will appear in §3. We refer to [7] for details.

Definition 1.19. We set, for 1 ≤ i, j, k ≤ q,

Πi
jk = Γi

jk −
δij

q + 1
fk −

δik
q + 1

fj,

L(q)j = dfj −
1

q + 1

∑
k

fjfkdy
k −

∑
i,k

fiΠ
i
jkdy

k,

where δij denotes the Dirac delta. We set Πi
j =

∑
k

Πi
jkdy

k, Π = (Πi
j)

and L(q) = (L(q)j).
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Note that L(q) = df − 1
q+1

fθ − fΠ and that if we know D then we

can recover Γ from Π. By modifying the constructions of [23] and [12],

we can always find a TW-connection.

Theorem 1.20. Let ∇b be a Bott connection for F and D a Bott

connection on K−1
F . If ∇ is a transverse TW-connection for (∇b,D),

then the components of ∇ with respect to {ϵ0, . . . , ϵq} is of the form

(Π, L(q) + α), where α is the pull-back by p̃ of a Q(F)∗-valued 1-form

on M . A transverse TW-connection ∇ for (∇b,D) is standard if and

only if α = 0.

Proof. First, we show that (Π, L(q) + α) as above gives rise to a con-

nection on Q(F̃). Let U = V × C and Û = V̂ × C be foliation charts

for F̃ , and let (Π, L(q)+α) and (Π̂, L̂(q)+ α̂) be as above. Let γ be the

transversal component of the transition function from V to V̂ . We set

ω = − 1

q + 1

(
dy0 0
dy dy0Iq

)
+

(
0 L(q) + α
0 Π

)
and define ω̂ in the same

way. Then, ω and ω̂ are local connection forms of a connection on Q(F̃)

if and only if they satisfy the equality ω = (D̃γ)−1dD̃γ + (D̃γ)−1ω̂D̃γ.

We have

(D̃γ)−1dD̃γ =

(
0 d∂ log J

∂y
− ∂ log J

∂y
(Dγ)−1dDγ

0 (Dγ)−1dDγ

)
,

(D̃γ)−1

(
dŷ0 0
dŷ dŷ0Iq

)
D̃γ =

(
dŷ0 0
0 dŷ0Iq

)
+

(
−∂ log J

∂y
(Dγ)−1dŷ −∂ log J

∂y
(Dγ)−1dŷ ∂ log J

∂y

(Dγ)−1dŷ (Dγ)−1dŷ ∂ log J
∂y

)

=

(
dy0 −d log J ∂ log J

∂y

dy dŷ0 + dy ∂ log J
∂y

)

=

(
dy0 0
dy dy0Iq

)
+

(
0 −d log J ∂ log J

∂y

0 (d log J)Iq + dy ∂ log J
∂y

)
,

(D̃γ)−1

(
0 L̂(q) + α̂

0 Π̂

)
D̃γ =

(
0 (L̂(q) + α̂)Dγ − ∂ log J

∂y
(Dγ)−1Π̂Dγ

0 (Dγ)−1Π̂Dγ

)
.
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Since Γ = (Γi
j) and Γ̂ are connection forms, we have

Γ = (Dγ)−1dDγ + (Dγ)−1Γ̂Dγ,∑
j

fjdy
j = d log J +

∑
j

f̂jdŷ
j.

Therefore,

(Πi
j) = (Dγ)−1dDγ + (Dγ)−1(Γ̂i

j)Dγ

− 1

q + 1

(
d log J +

∑
j

f̂jdŷ
j

)
Iq

− 1

q + 1
(Dγ)−1dŷ

(
∂ log J

∂y
+ (f̂j)Dγ

)
= (Dγ)−1(Π̂i

j)Dγ

+ (Dγ)−1dDγ − 1

q + 1
(d log J)Iq −

1

q + 1
dy

(
∂ log J

∂y

)
.

On the other hand,

L(q)

= d
∂ log J

∂y
+ df̂Dγ + f̂dDγ − 1

q + 1

(
∂ log J

∂y
+ f̂Dγ

)
(d log J + θ̂)

−
(
∂ log J

∂y
+ f̂Dγ

)
(Dγ)−1(Π̂i

j)Dγ

−
(
∂ log J

∂y
+ f̂Dγ

)(
(Dγ)−1dDγ − 1

q + 1
(d log J)Iq −

1

q + 1
dy

(
∂ log J

∂y

))
= L̂(q)Dγ + d

∂ log J

∂y
− ∂ log J

∂y
(Dγ)−1(Π̂i

j)Dγ

− ∂ log J

∂y

(
(Dγ)−1dDγ − 1

q + 1
dy

(
∂ log J

∂y

))
.

Thus a connection is defined. It is easy to see that the conditions other

than 4) in Definition 1.16 are satisfied. To see that the condition 4)

is also satisfied and the uniqueness of the standard TW-connection,

let {eh0 , eh1 , . . . , ehq} be the local trivialization of Q(F̃) given by (1.14).

Let ∇ be a TW-connection for (∇b,D), ω the connection form of ∇
with respect to {ϵ0, . . . , ϵq} and (µ, ν) the components. If we set F =
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1 −f
0 Iq

)
, where f =

(
f1 · · · fq

)
, then we have

F−1dF + F−1ωF

=

(
− 1

q+1
dy0 − 1

q+1
fdy −df + 1

q+1
fdyf + ν + fµ

− 1
q+1

dy − 1
q+1

(−dyf + dy0Iq) + µ

)
,

which is the connection form of ∇ with respect to {eh0 , eh1 , . . . , ehq}.
Therefore, if we denote by dη0 = dy0 + θ, dη1 = dy1, . . . , dηq = dyq

the dual to ϵ0, . . . , ϵq, then

F−1dF + F−1ωF

=

(
− 1

q+1
dη0 −L(q) + ν + f(µ− Π)

− 1
q+1

dη − 1
q+1

dη0Iq + µ+ 1
q+1

(fdηIq + dηf)

)
.

The connection ∇ is a transverse TW-connection for (∇b,D) if and

only if

F−1dF + F−1ωF =

(
− 1

q+1
dη0 α̃

− 1
q+1

dη − 1
q+1

dη0Iq + Γ

)
,

where α̃ is an m∗-valued 1-form which does not involve dy0 (and dȳ0).

This holds if and only if µ = Π. Moreover, ∇ is standard if and only if

in addition α̃ = 0, namely, ν = L(q). □

Definition 1.21. A TW-connection∇ is said to be invariant under the

holonomy if ω is the connection form of ∇ with respect to {ϵ0, . . . , ϵq},
then ιXω = LXω = 0 for any X ∈ E(F̃), where ι and L denotes the

inner product and the Lie derivative, respectively.

Remark 1.22. 1) If D is induced from ∇b, then we have
∑
i

Πi
ik = 0.

In particular, Π = 0 if q = 1.

2) Let T be the transverse torsion of ∇b. If X, Y ∈ TM , then let Z

be a lift of T (π(X), π(Y )) to TM and set Tθ(X,Y ) = θ(Z). Then,

L(q) ∧ dy = R(D) + Tθ, where R(D) is the curvature of D. If in

particular ∇b is transversely torsion-free, then L(q) ∧ dy = R(D).

3) A standard transversal TW-connection is not always torsion-free as

a linear connection on Q(F̃) even if ∇X = 0 for X ∈ Γ (E(F̃)). In-

deed, ehµ are not necessarily associated with transversal coordinates.

Suppose that ∇b is transversely torsion-free and that θ =
∑
i

fidy
i =

dg locally holds for some function g such that X(g) = 0 for any
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X ∈ Γ (E(F)). Such a g is a function only in y1, . . . , yq, in particu-

lar, transversely holomorphic in the transversely holomorphic case.

If we set η0 = y0+g(y1, . . . , yq), η1 = y1, . . . , ηq = yq, then, ∂
∂ηµ

= ehµ
and the standard TW-connection is torsion-free.

Definition 1.23. Let ∇,∇′ be transverse TW-connections. We say

that ∇ and ∇′ are projectively equivalent if there exists a section β of

Q(F̃)∗ ⊗ T ∗EF with the following properties. We regard β as a section

of (T ∗EF)⊗2 by the pull-back if necessary.

i) β(ϵ0, X) = β(X, ϵ0) holds for all X ∈ TE∗
F .

ii) β(ϵ0, ϵ0) = 0 and β(ϵ0, · ) = 0 on E(F̃).

iii) β is invariant under the C-action generated by ξ.

iv) ∇′ − ∇ = (ιϵ0β) ⊗ id + id ⊗ (ιϵ0β) − β ⊗ ϵ0, where id =
∑
µ

ϵµdy
µ

denotes the identity map on Q(F̃) and (ιϵ0β)(X) = β(ϵ0, X).

If moreover β is foliated in the sense that ιXβ = LXβ = 0 if X ∈ E(F̃),

then we say that ∇ and ∇′ are F -equivalent.

Let ∇ and ∇′ be equivalent transverse TW-connections. We will

calculate an explicit form of ∇′−∇ for later use. If β is an equivalence,

then we can represent

β =
∑
i

bidy
i ⊗ dy0 +

∑
j

bjdy
0 ⊗ dyj +

∑
i

dyi ⊗ βi,

where ιϵ0βi = 0 and Lϵ0βi = Lϵ0bi = 0 for any i and j. We have

(ιϵ0β)⊗ id =

(
0 bjdy

0

0 bjdy
i

)
,

id⊗ (ιϵ0β) =


∑
j

bjdy
j 0

. . .
0

∑
j

bjdy
j

 ,

β ⊗ ϵ0 =


∑
j

bjdy
j b1dy

0 + β1 · · · bqdy
0 + βq

0 0 · · · 0
...

...
...

0 0 · · · 0

 .
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Hence, if we set B = (β1 · · · βq) and b = (b1 · · · bq), then

(1.24) ∇′ −∇ =

(
0 −B
0 b dyIq + dy b

)
.

We also clarify the condition that the coefficients of β should satisfy.

Let β =
∑
i

b̂idŷ
i ⊗ dŷ0 +

∑
j

b̂jdŷ
0 ⊗ dŷj +

∑
i

dŷi ⊗ β̂i be the repre-

sentation of β on another foliation chart. Then bi =
∑
k

b̂k(Dγ)
k
i and

βi =
∑
k,l

b̂k(Dγ)
k
i
∂ log J
∂yl

dyl +
∑
j,k

b̂j
∂ log J
∂yi

(Dγ)jkdy
k +

∑
k

β̂kDγ
k
i .

The following definition is classical [15].

Definition 1.25. Let ∇b and ∇b′ be Bott connections for F . We

say that ∇b and ∇b′ are projectively equivalent if ∇b′
XY − ∇b

XY =

λ(X)Y + λ(Y )X holds for some section λ of Q∗(F). We call λ an

equivalence between ∇ and ∇′. If λ is invariant under the holonomy,

then we say that ∇ and ∇′ are F -equivalent.

Let ρ be the canonical form on the frame bundle P (F) of Q(F). We

denote by ω and ω′ the connection forms on P (F) of the connections

associated with∇b and∇b′. Then, ρ and λ can be naturally regarded as

anm-valued 1-form and anm∗-valued function on P (F), respectively. If

we represent ρ = t(ρ1 · · · ρq) and λ = (λ1 · · · λq), then ω′−ω = [ρ, λ],

where the right hand side is defined by (1.10).

1.3. Normal and Hlavatý connections.

There are classical constructions on manifolds of dimension q > 1.

If a torsion-free connection is given on a manifold, then there is a nor-

mal †1 TW-connection. In this case, a transversely torsion-free Bott

connection is a torsion-free connection in the usual sense. The defin-

ition of normal TW-connections is almost the same as in Theorem 1.20

but D is assumed to be induced from ∇b, and L(q)jk is replaced by

(1.26) L′(q)jk =
q + 1

q − 1

(∑
l

∂Πl
jk

∂yl
−
∑
l,m

Πl
mjΠ

m
lk

)
.

The most difference is that normal ones are Ricci flat but standard ones

are in general not. Note that the Ricci curvature does not necessarily

†1We call the connection normal because it corresponds to the normal projec-
tive connection [15]. See ‘Fundamental Theorem for TW-connections’ in [21] and
also [23].
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make a sense for a transverse TW-connection if it is not holonomy

invariant. Normal connections are useful when transversely projective

foliations (Definition 2.1) are considered.

On the other hand, Hlavatý constructed a connection similar to the

TW-connection in [12]. The original one is slightly different from pro-

jective connections in the sense of [23] but it can be modified as follows.

We work on manifolds so that (y1, . . . , yq) denote local coordinates.

First let

Φi
jk = Γi

jk +
1

q2 − 1

∑
a

(
δij(Γ

a
ka − qΓa

ak) + δik(Γ
a
aj − qΓa

ja)
)
.

Note that if ∇ is torsion-free, then Φi
jk = Πi

jk. Let ω be a volume form

and locally represent ω as ω = µ dy1 ∧ · · · ∧ dyq. If we set

γj =
1

q + 1

∂ log µ

∂yj
,

then

γj = γ̂j +
1

q + 1

∂ log J

∂yj
.

Note that (q+1)γjdy
j is the connection form with respect to ∂

∂y1
∧· · ·∧

∂
∂yq

of the connection onK−1
F flat with respect to 1

µ
∂

∂y1
∧· · ·∧ ∂

∂yq
. Indeed,

Hlavatý made use of volume forms but connection forms suffice. If∑
j

fjdy
j is the connection form of a connection on

∧q TM with respect

to ∂
∂y1

∧ · · · ∧ ∂
∂yq

, then

1

q + 1
fj =

1

q + 1
f̂j +

1

q + 1

∂ log J

∂yj
.

Conversely, Definition 1.19 also works if we define fj from a volume

form. We will proceed as if γj is defined from a volume form, but we

can modify the argument even if γj is defined by a connection. Let m, l

be a function, and set

mj =
1

q + 1

∂m

∂yj
, lj =

1

q + 1

∂l

∂yj
,
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and

πjk =
∂γj
∂yk

−
∑
a

γaΦ
a
jk + γjmk + ljγk − γjγk

=
1

q + 1

(
∂2 log µ

∂yj∂yk
−
∑
a

∂ log µ

∂ya
Φa

jk +
∂ log µ

∂yj
mk + lj

∂ log µ

∂yk

− 1

q + 1

∂ log J

∂yj
∂ log J

∂yk

)
.

Let Pjk be a tensor in the sense that Pjk =
∑
a,b

P̂ab
∂ŷa

∂yj
∂ŷb

∂yk
. We set

ω0
jk = Pjk + (q + 1)πjk

= Pjk +
∂2 log µ

∂yj∂yk
−
∑
a

∂ log µ

∂ya
Φa

jk +
∂ log µ

∂yj
mk + lj

∂ log µ

∂yk

− 1

q + 1

∂ log µ

∂yj
∂ log µ

∂yk
.

We can show, in a similar way to prove Theorem 1.20, the following.

Theorem 1.27 (cf. [12]). We can define a TW-connection by locally

setting

ω = − 1

q + 1

(
dy0 0
dy dy0Iq

)
+

∑k mkdy
k ljdy

0 +
∑
k

Pjkdy
k + (q + 1)

∑
k

πjkdy
k

0
∑
k

Φi
jkdy

k

 .

Compared with the original one, ω0
0γ, ω

0
j0 and π are modified. As

a consequence, ω0
jk are also modified. The connection given in The-

orem 1.20 can be regarded as a variant of the Hlavatý connections.

1.4. Curvature and torsion of TW-connections.

Let ∇ be a TW-connection, ω the connection form of ∇ with respect

to {ϵ0, . . . , ϵq} and (µ, ν) the components. Then, the curvature form of

∇ as a linear connection on Q(F̃) is given by

R = (Ri
j) =

(
− 1

q+1
ν ∧ dy dν + ν ∧ µ

− 1
q+1

µ ∧ dy dµ+ µ ∧ µ− 1
q+1

dy ∧ ν.

)
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Under the identification pglq+1(C) = m ⊕ glq(C) ⊕ m∗, R corresponds

to (Ωi,Ωi
j,Ωj), where

Ωi = − 1

q + 1

∑
k

µi
k ∧ dyk,

Ωi
j = (dµ+ µ ∧ µ)ij −

1

q + 1
dyi ∧ νj +

1

q + 1

∑
νk ∧ dyk,

Ωj = dνj +
∑
k

νk ∧ µk
j .

Definition 1.28. We call (Ωi
j,Ωj) the curvature of ∇ and Ωi the tor-

sion of ∇. We say that ∇ is torsion-free if Ωi = 0.

Let ∇ be a TW-connection for (∇b,D). Then, the components of

∇ with respect to {ϵ0, . . . , ϵq} is given by (Π, L(q) + α). Therefore we

have

Ωi = − 1

q + 1

∑
k

Πi
k ∧ dyk

=
∑
j,k

1

q + 1
T i
jkdy

j ∧ dyk,

Ωi
j = (dΠ+Π ∧ Π)ij −

1

q + 1
dyi ∧ (L(q)j + αj)

+
1

q + 1

∑
k

(L(q)k + αk) ∧ dyk,

Ωj = d(L(q) + α)j +
∑
k

(L(q)k + αk) ∧ Πk
j

= −
∑
i

fiΩ
i
j + dαj +

∑
i

αi ∧ Γi
j −

1

q + 1

∑
k,l,m

fjflT
l
kmdy

k ∧ dym,

where T i
jk =

Γi
jk−Γi

kj

2
are the coefficients of the transversal torsion T of

∇b. Note that
∑
µ

Rµ
µ = 0 and

R0
0 = − 1

q + 1

(
dθ +

∑
i,j,k

fiT
i
jkdy

j ∧ dyk +
∑
j

αj ∧ dyj
)
.

These equalities can be shown by lengthy calculations which we omit.
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2. transverse projective structures

Let G2(q) the set of 2-frames at 0 ∈ Cq. It is well-known [16] that

G2(q) = {(sij; sijk) | (sij) ∈ GLq(C), sijk = sikj} and G2(q) has the group

structure such that

(s′ij ; s
′i
jk)(s

i
j; s

i
jk) =

(
s′ips

p
j ;
∑
p

s′ips
p
jk +

∑
q,r

s′iqrs
q
js

r
k

)
.

We set

H2(q) = {(sij; sijk) ∈ G2(q) | ∃ si s.t. sijk = −(sijsk + siksj)}

and

H =

{(
∗ ∗
0 ∗

)
∈ PGLq(C)

}
.

The group H is naturally isomorphic to H2(q) via linear fractional

transformations.

Definition 2.1. Let P 2(F) be the transversal 2-jet bundle [19]. A

transverse projective structure of F is a subbundle of P 2(F) of which

structure group is H2(q) [19], [5]. If F admits a transverse projective

structure invariant under the holonomy, then F is said to be trans-

versely projective. If in addition the transverse projective structure is

given by that of CP q, then the transverse projective structure is said

to be flat.

Transverse projective structures are often assumed to be flat and the

term ‘flat’ is omitted. However, we consider the both in this paper.

Theorem 2.2. Let ∇b and ∇b′ be Bott connections for F , and let D
and D′ be Bott connections on K−1

F .

1) Transverse TW-connections ∇ for (∇b,D) and ∇′ for (∇b′,D′) are

projectively equivalent in the sense of Definition 1.23 if and only if

∇b and∇b′ are projectively equivalent in the sense of Definition 1.25.

Therefore, the projective equivalence classes of Bott connections on

Q(F) are in one-to-one correspondence to the projective equivalence

classes of transverse TW-connections on Q(F̃).

2) Any transverse TW-connection for (∇b,D) is equivalent to the stand-

ard one for (∇b,D) and also to TW-connections for ∇b.

3) Transverse TW-connections∇ for∇b and∇′ for∇b′ are projectively

equivalent if and only if ∇b and ∇b′ are projectively equivalent.
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4) A torsion-free TW-connection determines a transverse projective

structure. Therefore, transverse projective structures are in one-

to-one correspondence to the projective equivalence class of trans-

versely torsion-free Bott connections.

5) Any TW-connection is projectively equivalent to a TW-connection

for some (∇b,D).

Proof. We will denote by θ =
∑
i

fidy
i and θ′ =

∑
i

f ′
idy

i the con-

nection forms of D and D′ with respect to e1 ∧ · · · ∧ eq. First, we

show 1). If an equivalence between ∇ and ∇′ is given by β, then

we can define a 1-form λ on M by setting λ =
∑
j

bjdy
j. By (1.24),

λ +
1

q + 1
(θ′ − θ) gives a projective equivalence between ∇b and ∇b′.

Conversely let λ be a projective equivalence between ∇b and ∇b′. We

set bi = λi −
1

q + 1
(f ′

i − fi), βi = −(L(q)′ − α′)i + (L(q) − α)i and

β =
∑
i

bidy
i⊗dy0+

∑
j

bjdy
0⊗dyj +

∑
i

dyi⊗βi. Then β is well-defined

and an equivalence between ∇ and ∇′. The part 2) follows from 1) at

once. The part 3) follows from 1) and 2). The part 4) is well-known.

Indeed, if (µ, ν) be the components of ∇ with respect to {ϵ0, . . . , ϵq},
then

(
− 1

q+1
dy,Π, L(q) + α

)
viewed as a family of m ⊕ glq(C) ⊕ m∗-

valued forms, namely viewed as the connection form of a Cartan con-

nection, determines a projective structure and vice versa (cf. [16], [7]).

In order to show 5), first assume that ∇ is torsion-free. Then we

have a subbundle of P 2(F) with structure group H2(q). Therefore, we

have a section, say σ, to P 2(F)/H2(q). Since H2(q)/GLq(C) is con-

tractible, we can find a lift of σ to a section to P 2(F)/GLq(C). The

last section gives a transversely torsion-free Bott connection which we

denote by ∇b. Let now (µ, ν) be the components of ∇ with respect

to {ϵ0, . . . , ϵq}. As ∇b is given by a lift of σ, we can find a connection

D of K−1
F of which the connection form is given by θ =

∑
i

fidy
i and

that µi
jk = Γi

jk−
δij
q+1

fk−
δik
q+1

fj, where Γ
i
jk are the transverse Christoffel

symbols of ∇b. Let ∇′ be the standard TW-connection for (∇b,D). If

we define β as in the proof of 1), β is an equivalence between ∇ and

∇′. Suppose now that ∇ is not necessarily torsion-free. In this case, we
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set µ′i
jk =

µi
jk+µi

kj

2
. If we regard (µ′, ν) as the components with respect

to {ϵ0, . . . , ϵq}, then a TW-connection without torsion is defined. If we

denote this connection by ∇′, then we can find Bott connections ∇b

and D such that the standard TW-connection for (∇b,D) is projec-

tively equivalent to ∇′. Let Γi
jk be the transverse Christoffel symbols

of ∇b and set Γ′i
jk = Γi

jk +
µi
jk−µi

kj

2
. Then {Γ′i

jk} defines a Bott connec-

tion which we denote by ∇′b, and ∇ is projectively equivalent to the

standard TW-connection for (∇′b,D) by the part 2). □
Theorem 2.3. 1) A foliation F is transversely projective if there is a

transverse TW-connection on Q(F̃) which is invariant under holo-

nomy.

2) Suppose conversely that F is transversely projective and that q > 1.

Then, F admits a normal transverse TW-connection for a trans-

versely torsion-free Bott connection ∇b, namely, F admits a trans-

verse TW-connection of which the components with respect to {ϵ0, . . . , ϵq}
is given by (Π, L′(q)), where Π is given by the formula in Defin-

ition 1.19 with fj =
∑
i

Γi
ij and L

′(q) is given by the formula (1.26)

in §§ 1.3. Moreover, the standard transverse TW-connection for ∇b

is projectively equivalent to the normal transverse TW-connection.

3) Suppose that F admits a transverse TW-connection ∇ on Q(F̃)

which is invariant under the holonomy. If ∇ is torsion-free and

the curvature of ∇ is equal to zero, then the transverse projective

structure determined by ∇ is flat.

4) Suppose that F is transversely projective and let ∇ be a holonomy

invariant TW-connection for (∇b,D), where ∇b is torsion-free and

D is induced by ∇b. If ∇ is Ricci-flat as a linear connection on

Q(F̃), then ∇ is transversely normal connection.

Proof. If a transverse TW-connection invariant under the holonomy

exits, then we can modify it to be transversely torsion-free as in the

proof of 5) of Theorem 2.2. Once we have a transverse TW-connection

invariant under the holonomy, the projective structure found by The-

orem 2.2 is also invariant under the holonomy. This shows 1). In

order to show 2), suppose that F is transversely projective. We can

then find a projective structure on T =
⨿
λ

Tλ invariant under the ho-

lonomy. By locally pulling-back the normal projective connection on
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T , we obtain a normal transverse TW-connection. The part 3) can be

shown in a similar way to the proof of Theorem 15 in [16]. Finally

suppose again that F is transversely projective and ∇ is holonomy

invariant. Suppose in addition that ∇b is torsion-free and D is in-

duced by ∇b. Then, the Ricci curvature makes a sense, and we have∑
i

Ri
jik = −L′(q)jk + (L(q) + α)jk. □

Remark 2.4. The connection ∇b in 1) is not necessarily invariant

under the holonomy. Note also that∇ in 4) is Ricci-flat if the transverse

projective structure is indeed flat.

If we consider only transverse projective structures invariant under

the holonomy, it is natural to restrict ourselves to F -equivalences in

Definition 1.23 and Definition 1.25.

3. Bott, Godbillon-Vey classes and their infinitesimal

derivatives

We will introduce the Godbillon-Vey and the Bott classes and in-

finitesimal derivatives of them. For the sake of simplicity, we assume

for a while that KF =
∧qQ(F)∗ is trivial. We refer to [2] for detailed

accounts. Let Ω be a trivialization of KF and regard Ω as a q-form on

M . By virtue of Frobenius’ theorem, there is a 1-form, say θ, such that

dΩ + θ ∧ Ω = 0. This θ is essentially the connection form of a Bott

connection on K−1
F with respect to the dual of Ω, and the Bott vanish-

ing theorem [6] shows that the differential form θ ∧ (dθ)q is closed. It

can be shown that the differential form represents a cohomology class

independent of the choice of Ω and θ.

Definition 3.1. 1) In the real case, the cohomology class ofH2q+1(M ;R)
represented by

(
−1
2q

)2q+1

θ ∧ (dθ)q is called the Godbillon-Vey class

and denoted by GVq(F).

2) In the transversely holomorphic case, the cohomology class ofH2q+1(M ;C)
represented by

(
−1

2q
√
−1

)2q+1

θ∧ (dθ)q is called the Bott class and de-

noted by Bottq(F). If KF is not necessarily trivial, then the Bott

class is defined as an element of H2q+1(M ;C/Z).

If KF is trivial, then the Bott class in H2q+1(M ;C/Z) coincides with
the natural image of Bottq(F).
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Let {Fs} be a one-parameter smooth family of foliations of co-

dimension q such that F0 = F . If transversely holomorphic foliations

are considered, we assume that transversal holomorphic structures also

vary smoothly (see [3] for a precise definition). We still assume that

KFs is trivial for each s for simplicity. If s is small enough, then we

may assume that there is a smooth family of trivializations {Ωs} and

1-forms {θs} such that dΩs+θs∧Ωs = 0. If we set θ = θ0, θ̇ =
∂
∂s
θs
∣∣
s=0

,

then we have ∂
∂s
(θs ∧ (dθs)

q)
∣∣
s=0

= θ̇∧(dθ)q+qθ∧dθ̇∧(dθ)q−1. Since we

have d(θ∧ θ̇) = dθ∧dθ̇−θ∧dθ̇, the right hand side is cohomologous to

(q+1)θ̇∧(dθ)q. The differential form (q+1)θ̇∧(dθ)q makes a sense even

if KF is non-trivial, and represents the derivative of the Godbillon-Vey

class or the Bott class with respect to {Fs}.
The derivatives of the Godbillon-Vey class and Bott class with re-

spect to infinitesimal deformations of foliations are defined as a gen-

eralization of the above construction. In order to explain it, we need

some definitions.

Definition 3.2. Let Ωr(U) = ΓU(
∧r T ∗M) be the set of C-valued

differential forms of class C∞ on an open subset U of M . If E is a

vector bundle over M , we denote by Ωr(U ;E) = ΓU(
∧r T ∗M ⊗ E)

the set of E-valued r-forms on U . We denote by I∗k(U ;E) the ideal of

Ω∗(U ;E) locally generated by dyi1 ∧ · · · ∧ dyik ⊗ s, where i1 < · · · < ik
and s ∈ ΓU(E). If E is a trivial line bundle, then we denote Irk(U ;E)

by Irk(U). We set Cr
F(U ;Q(F)) = Ωr(U ;Q(F))/Ir1(U ;Q(F)).

Note that naturally Cr
F(U ;Q(F)) ∼= ΓU(

∧r E(F)∗ ⊗Q(F)).

Definition 3.3. Let∇b be a Bott connection onQ(F). Let {e1, . . . , eq}
be a local trivialization of Q(F) and τ the connection form of ∇b with

respect to {e1, . . . , eq}. If c ∈ Cr
F(U ;Q(F)), then we locally represent

c =
∑
i

ci ⊗ ei and set

dF c =
∑
i

(
dci +

∑
j

τ ij ∧ cj
)

⊗ ei mod Ir+1
1 (U ;Q(F)).

We denote by H∗
F(M ;Q(F)) the (co)homology of (C∗

F(M ;Q(F)), dF).

Note that if we choose {dy1, . . . , dyq} as a local trivialization, then

τ = Γ.
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Lemma 3.4. (C∗
F(M ;Q(F)), dF) is indeed a cochain complex, namely,

we have dF ◦ dF = 0.

Proof. Let c =
∑
i

ci ⊗ ei ∈ Cr
F(U ;Q(F)). We have

dF(dFc)

= dF

(∑
i

(
dci +

∑
j

τ ij ∧ cj
)

⊗ ei

)

=
∑
i

(∑
j

dΘi
j ∧ cj −

∑
j

τ ij ∧ dcj +
∑
j

τ ij ∧ dcj +
∑
j,k

τ ij ∧ τ
j
k ∧ c

k

)
⊗ ei

=
∑
i,j

(dτ + τ ∧ τ)ij ∧ cj ⊗ ei

= 0

because dτ + τ ∧ τ ∈ I21 (U ;Q(F)⊗Q(F)∗). □

Let ΘF be the sheaf of germs of vector fields which preserves F . If F
is transversely holomorphic, then we assume that vector fields preserve

the transverse holomorphic structure. A vector field X is such a one if

[X, Y ] ∈ Γ (E(F)) for any Y ∈ Γ (E(F)). The following is known.

Theorem 3.5 (Heitsch [9], Duchamp-Kalka [8]). The complex (C∗
F(M ;Q(F)), dF)

is a resolution of ΘF so that H∗
F(M ;Q(F)) ∼= H∗(M ; ΘF).

Definition 3.6 (Heitsch [9], Duchamp-Kalka [8]). The elements of

H1(M ; ΘF) are called infinitesimal deformations of F .

Derivatives of the Godbillon-Vey class and the Bott class with respect

to infinitesimal deformations of F are defined as follows [9], [10], [3],

[4]. Let α ∈ H1(M ; ΘF). By Theorem 3.5, −α is represented by a

Q(F)-valued 1-form σ such that dσ+τ ∧σ+ τ̇ ∧ω = 0 for some glq(C)-
valued (glq(R)-valued) 1-form τ̇ . We set θ̇ = tr τ̇ and θ = tr τ . It can

be shown that θ̇ ∧ (dθ)q is closed and represents a class independent of

the choices.

Definition 3.7. 1) In the real case, the element of H2q+1(M ;R) rep-
resented by

(
−1
2q

)2q+1

(q + 1)θ̇ ∧ (dθ)q is called the infinitesimal de-

rivative of the Godbillon-Vey class with respect to α.



24 TARO ASUKE

2) In the transversely holomorphic case, the element of H2q+1(M ;C)
represented by

(
−1

2q
√
−1

)2q+1

(q+1)θ̇∧(dθ)q is called the infinitesimal

derivative of the Bott class with respect to α.

3) The Godbillon-Vey class or the Bott class is said to be infinitesimally

rigid if their infinitesimal derivatives vanish with respect to any

infinitesimal deformation.

It is known that a smooth family {Fs} of foliations induces a class in

H1(M ; ΘF), and that if α is induced from {Fs}, then the infinitesimal

derivative of the Godbillon-Vey class (or the Bott class) with respect

to α coincides with the derivative of the Godbillon-Vey class (or the

Bott class) with respect to s at s = 0.

4. Transverse projective structures and infinitesimal

derivatives

Definition 4.1. Let γ be a (biholomorphic) diffeomorphism from an

open subset, say U , of Cq to an open subset of Cq. We set ŷ = γ(y) for

y ∈ U , and

Σ(γ)ijk =
∑
l

∂yi

∂ŷl
∂2ŷl

∂yj∂yk
−

δij
q + 1

∂ log J

∂yk
− δik
q + 1

∂ log J

∂yj
,

Λ(γ)jk =
−1

q + 1

∂2 log J

∂yj∂yk
− 1

(q + 1)2
∂ log J

∂yj
∂ log J

∂yk

+
∑
l,m

1

q + 1

∂ log J

∂yl
∂yl

∂ŷm
∂2ŷm

∂yj∂yk
,

where J = detDγ. We set Σ(γ)ij =
∑
k

Σ(γ)ijkdy
k and Σ(γ) = (Σ(γ)ij).

Similarly, we set Λ(γ)j =
∑
k

Λ(γ)jkdy
k and Λ(γ) = (Λ(γ)j). We call

Σ(γ) the (projective) Schwarzian of γ, and Λ(γ) the curvature of the

Schwarzian, respectively.

Remark 4.2. 1) We have Σ(γ)ijk = Σ(γ)ikj and Λ(γ)jk = Λ(γ)kj.

2) We have
∑
i

Σ(γ)iik = 0. In particular, if q = 1, then we have

Σ(γ)111 = 0. On the other hand, Λ(γ)11 =
−1

2

(
γ′′′

γ′
− 3

2

(
γ′′

γ′

)2
)

which is the classical Schwarzian.
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3) If q > 1, then Λ(γ) is equal to be the Ricci curvature of Σ(γ)

multiplied by
−1

q − 1
in the sense that we have

Λ(γ)jk =
−1

q − 1

(∑
l

∂Σ(γ)ljk
∂yl

−
∑
m,n

Σ(γ)mnjΣ(γ)
n
mk

)
.

It is known that

Definition 4.3. Let ∇ be a TW-connection and B be a Bott con-

nection on K−1
F . Let ω and ζ =

∑
j

gjdy
j be connection forms of ∇

and B with respect to {ϵ0, . . . , ϵq} and e1 ∧ · · · ∧ eq, respectively. Let

(µ, ν) be the components of ∇ with respect to {ϵ0, . . . , ϵq} and set

N = N(∇,B) = ν + gµ, where g = (g1 · · · gq).

If ∇ is a TW-connection for (∇b,D), then (µ, ν) = (Π, L(q)+α) and

N(∇,D) = L(q) + α + fΠ, where θ =
∑
j

fjdy
j is the connection form

of D.

Proposition 4.4. Let ∇b, D and B be Bott connections and ∇ the

standard TW-connection for (∇b,D). Then (dθ)q = (N(∇,B) ∧ dy)q.

Proof. By Theorem 1.20, we have N ∧ dy = (L(q) − gΠ) ∧ dy = dθ −
gΠ ∧ dy. Since −gΠ ∧ dy ∈ I22 (U), we have (N ∧ dy)q = (dθ)q. □

A study on relationship between projective connections and Chern

forms can be found in [14].

Lemma 4.5. We have N = (N̂ + (q + 1)Λ(γ̂) − f̂Σ(γ̂))Dγ, where

γ̂ = γ−1. If∇′ is also a TW-connection, then (N(∇′,B)−N(∇,B))⊗dy
is globally well-defined.

Proof. We make use of the same notation as in the proof of The-

orem 1.20. Let (µ, ν) and (µ̂, ν̂) be the components of ∇ with respect

to {ϵ0, . . . , ϵq} and {ϵ̂0, . . . , ϵ̂q}, respectively. As in the proof of The-

orem 1.20, we have

ν = d
∂ log J

∂y
− ∂ log J

∂y
(Dγ)−1dDγ +

1

q + 1
d log J

∂ log J

∂y

+ λ̂Dγ − ∂ log J

∂y
(Dγ)−1µ̂Dγ,

µ = (Dγ)−1dDγ − 1

q + 1
(d log J)Iq −

1

q + 1
dy
∂ log J

∂y
+ (Dγ)−1µ̂Dγ.
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Since g = ĝDγ + ∂ log J
∂y

, we have

N = ν + gµ

= N̂Dγ + d
∂ log J

∂y
− ∂ log J

∂y
(Dγ)−1dDγ +

1

q + 1
d log J

∂ log J

∂y

− ∂ log J

∂y
(Dγ)−1µ̂Dγ

+ ĝDγ

(
(Dγ)−1dDγ − 1

q + 1
(d log J)Iq −

1

q + 1
dy
∂ log J

∂y

)
+
∂ log J

∂y

(
(Dγ)−1dDγ − 1

q + 1
(d log J)Iq −

1

q + 1
dy
∂ log J

∂y
+ (Dγ)−1µ̂Dγ

)
= N̂Dγ + d

∂ log J

∂y
− 1

q + 1

∂ log J

∂y
(d log J)

+ ĝDγ

(
(Dγ)−1dDγ − 1

q + 1
(d log J)Iq −

1

q + 1
dy
∂ log J

∂y

)
.

On the other hand, if we set γ̂ = γ−1 and Ĵ = detDγ̂, then ∂ log Ĵ
∂ŷ

Dγ+
∂ log J
∂y

= 0. Therefore, we have

d
∂ log J

∂y
− 1

q + 1

∂ log J

∂y
(d log J)

= −d∂ log J
∂ŷ

(Dγ̂)−1 +
∂ log Ĵ

∂y
(Dγ̂)−1dDγ̂(Dγ̂)−1

− 1

q + 1

∂ log Ĵ

∂ŷ
(Dγ̂)−1(d log Ĵ)

= (q + 1)Λ(γ̂)Dγ̂−1,

and

(Dγ)−1dDγ − 1

q + 1
(d log J)Iq −

1

q + 1
dy
∂ log J

∂y

= −Dγ̂(Dγ̂)−1dDγ̂(Dγ̂)−1 +
1

q + 1
(d log Ĵ)Iq +

1

q + 1
Dγ̂dŷ

∂ log Ĵ

∂ŷ
(Dγ̂)−1

= −Dγ̂Σ(γ̂)(Dγ̂)−1.

Consequently, N = (N̂+(q+1)Λ(γ̂)−ĝΣ(γ̂))Dγ. Therefore, N(∇′,B)−
N(∇,B) = (N̂(∇′,B)−N̂(∇,B))Dγ holds and (N(∇′,B)−N(∇,B))⊗
dy is globally well-defined. □
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Definition 4.6. Let ∇b be a transversely torsion-free connection on

Q(F), D the induced connection on K−1
F and ∇ be the standard TW-

connection for (∇b,D). We define LP : H
r
F(M ;Q(F)) → H2q+r(M)

as follows. Let N = N(∇,D) and N ∧ dy =
∑
i

Ni ∧ dyi. If [c] ∈

Hr
F(M ;Q(F)), then we locally represent c = ci ⊗ ei and set N ∧ c =∑

i

Ni ∧ ci. We set then

LP([c]) = [d((N ∧ c) ∧ (N ∧ dy)q−1)] ∈ H2q+r(M),

where P denotes the projective equivalence class represented by ∇.

In what follows, we always assume that D and B are induced by ∇b,

and denote the connection form by θ.

Proposition 4.7. LP is well-defined and depends on the projective

equivalence class of ∇.

Proof. First, note that (dc + Γ ∧ c)|E(F) = 0 and that Ni = dfi −∑
j

1

q + 1
fifjdy

j. Therefore, N∧dy = dθ and d((N∧c)∧(N∧dy)q−1) =

d(N ∧ c) ∧ (dθ)q−1. We have

d(N ∧ c) ∧ (dθ)q−1

= d((N̂ + (q + 1)Λ(γ̂)− f̂Σ(γ̂))Dγ ∧ (Dγ)−1ĉ) ∧ (dθ̂)q−1

= d(N̂ ∧ ĉ) ∧ (dθ̂)q−1

+ d((q + 1)Λ(γ̂)− f̂Σ(γ̂)) ∧ ĉ ∧ (dθ̂)q−1

− ((q + 1)Λ(γ̂)− f̂Σ(γ̂)) ∧ (dĉ) ∧ (dθ̂)q−1

= d(N̂ ∧ ĉ) ∧ (dθ̂)q−1

+ ((q + 1)dΛ(γ̂)− f̂dΣ(γ̂)) ∧ ĉ ∧ (dθ̂)q−1

− (df̂) ∧ Σ(γ̂) ∧ ĉ ∧ (dθ̂)q−1

− ((q + 1)Λ(γ̂)− f̂Σ(γ̂)) ∧ (−Γ ∧ ĉ) ∧ (dθ̂)q−1

= d(N̂ ∧ ĉ) ∧ (dθ̂)q−1 − df̂ ∧ Σ(γ̂) ∧ ĉ ∧ (dθ̂)q−1.
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by 1) of Lemma 4.5. On the other hand, we have

df̂ ∧ Σ(γ̂) ∧ ĉ ∧ (dθ̂)q−1

=
∑
i,j,k

df̂i ∧ Σ(γ̂)ijkdŷ
k ∧ ĉj ∧

(∑
l

df̂l ∧ dŷl
)q−1

=
1

q

∑
i,j

Σ(γ̂)ijiĉ
j ∧

(∑
l

df̂l ∧ dŷl
)q

= 0.

Moreover, d(d(N ∧ c) ∧ (dθ)q−1) = 0 so that a closed form on M is

defined. Next, suppose that c = dFh for some h ∈ Cr−1
F (M ;Q(F)),

that is, ci = dhi +
∑
j

Γi
j ∧ hj + ki for some (r − 1)-forms hi such that

ĥi =
∑
j

Dγijh
j and k ∈ Ir−1

1 (M ;Q(F)). Then,

d(N ∧ c) ∧ (dθ)q−1

=
∑
i

dNi ∧

(
dhi +

∑
j

Γi
j ∧ hj

)
∧ (dθ)q−1 −N ∧ dc ∧ (dθ)q−1

= dN ∧ dh ∧ (dθ)q−1 − df ∧ d(Γ ∧ h+ k) ∧ (dθ)q−1.

On the other hand, we have

df ∧ Γ ∧ h ∧ (dθ)q−1 =
∑
i,j,k

dfi ∧ Γi
jkdy

k ∧ hj ∧ (dθ)q−1

=
∑
i,j

1

q
Γi
jih

j ∧ (dθ)q

=
∑
j

1

q
fjh

j ∧ (dθ)q

because D is induced from ∇b, and also have

dN ∧ h ∧ (dθ)q−1

= −
∑
j,k

1

q + 1
(dfj ∧ fkdyk ∧ hj + fjdfk ∧ dyk ∧ hj) ∧ (dθ)q−1

= −
∑
j

1

q
fjh

j ∧ (dθ)q.
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Therefore,

d(N ∧ c) ∧ (dθ)q−1 = d(−2dN ∧ h ∧ (dθ)q−1 + df ∧ k ∧ (dθ)q−1).

We will show that dN ∧ h ∧ (dθ)q−1 and df ∧ k ∧ (dθ)q−1 are globally

well-defined. We have

dN ∧ h ∧ (dθ)q−1

= (dN̂ + (q + 1)dΛ(γ̂)− df̂ ∧ Σ(γ̂)− f̂dΣ(γ̂))Dγ ∧ (Dγ)−1ĥ ∧ (dθ̂)q−1

= (dN̂ − df̂ ∧ Σ(γ̂)) ∧ ĥ ∧ (dθ̂)q−1

= dN̂ ∧ ĥ ∧ (dθ̂)q−1.

The last equality follows from the following one, namely,

df̂ ∧ Σ(γ̂) ∧ ĥ ∧ (dθ̂)q−1 =
∑
i,j

df̂i ∧ Σ(γ̂)ijidŷ
i ∧ ĥj ∧ (dθ̂)q−1

=
1

q

∑
i,j

Σ(γ̂)iji ∧ ĥj ∧ (dθ̂)q

= 0.

We also have

df ∧ k ∧ (dθ)q−1 = (df̂ + d∂ log J)Dγ ∧ ((Dγ)−1)k̂ ∧ (dθ̂)q−1

= df̂ ∧ k̂ ∧ (dθ̂)q−1.

Therefore dN∧h∧(dθ)q−1 and df∧k∧(dθ)q−1 are globally well-defined,

and d(N∧c)∧(dθ)q−1 represents the trivial class in H2q+r(M). Now let

∇′ be a TW-connection for (∇b′,D′) which is projectively equivalent

to ∇ and N ′ = N(∇′,D′). We denote by π[0,1] the projection from

M×[0, 1] →M and by ιt : M →M×{t} the inclusion, where t ∈ [0, 1].

Let F × [0, 1] be the foliation of M × [0, 1] of which the leaves are

given by {L × [0, 1] |L is a leaf of F}. We set ∇b
t = (1 − t)∇b + t∇b′,

Dt = (1 − t)D + tD′ and let ∇t be the standard TW-connection for

(∇b
t ,Dt) on Q( ˜F × [0, 1]). Let [c] ∈ Hr

F(M ;Q(F)) and c̃ = π∗
[0,1][c] ∈

Hr
F×[0,1](M × [0, 1];Q(F × [0, 1])). If we set Nt = N(∇t,Dt) and ρ =

d(Nt∧ c̃)∧(dθt)q−1, then ρ is closed and we have ι∗0ρ = d(N∧c)∧(dθ)q−1

and ι∗1ρ = d(N ′ ∧ c) ∧ (dθ′)q−1. We represent dρ = α + β ∧ dt, where

α and β do not involve dt, and set U =

∫ 1

0

βdt. It is well-known and

easy to show that we have dU = ι∗0ρ − ι∗1ρ. Therefore L depends only

on the projective equivalence class of ∇. □
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Remark 4.8. The equality ∇t = (1 − t)∇ + t∇′ fails in general, and

concrete forms of the coboundary between d(N∧c)∧(dθ)q−1 and d(N ′∧
c) ∧ (dθ′)q−1 are quite complicated.

Remark 4.9. Secondary characteristic classes for transversely projec-

tive foliations have been well-studied. See e.g. [20], [19], [22]. See also

[1] for a related study.

Lemma 4.10. We set N ′ = (N ′
i), where N

′
i = dfi −

1

q + 1

∑
j

fifjdy
j.

Then d(N ′ ∧ ω̇) ∧ (dθ)q−1 = −1
q
θ̇ ∧ (dθ)q. In addition, we have

dDN
′ ∧ ω̇ = (dN ′ +N ′ ∧Θ) ∧ ω̇ ∧ (dθ)q−1 = 0,

N ∧ Θ̇ ∧ ω ∧ (dθ)q−1 = −1

q
θ̇ ∧ (dθ)q.

Proof. We set Ω = ω1 ∧ · · · ∧ ωq = dy1 ∧ · · · ∧ dyq and Ω̇ = ω̇1 ∧ dy2 ∧
· · · ∧ dyq + · · ·+ dy1 ∧ · · · ∧ dyq−1 ∧ ω̇q. We have

θ̇ ∧ dθq

= q!(−1)
q(q−1)

2 θ̇ ∧ df1 ∧ · · · ∧ dfq ∧ Ω

= −q!(−1)
q(q+1)

2 (df1 ∧ · · · ∧ dfq ∧ θ ∧ Ω̇ + df1 ∧ · · · ∧ dfq ∧ dΩ̇)

= q!(−1)
q(q−1)

2 df1 ∧ · · · ∧ dfq ∧ Ω ∧ (f1ω̇
1 + · · ·+ fqω̇

q)

− q!(−1)
q(q+1)

2 df1 ∧ · · · ∧ dfq ∧ dΩ̇.
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On the other hand, we have the following equalities, namely,

d

(∑
i

(
dfi −

1

q + 1

∑
j

fifjdy
j

)
∧ ω̇i

)
∧ (dθ)q−1

= − 1

q + 1

∑
i,j

(dfifj + fidfj) ∧ dyj ∧ ω̇i ∧ (dθ)q−1

−
∑
i

(
dfi −

1

q + 1

∑
j

fifjdy
j

)
∧ dω̇i ∧ (dθ)q−1

= −(q − 1)!

(q + 1)
(−1)

q(q−1)
2 (f1ω̇

1 + · · ·+ fqω̇
q) ∧ df1 ∧ · · · ∧ dfq ∧ Ω

− 1

(q + 1)
(f1ω̇

1 + · · ·+ fqω̇
q) ∧ (dθ)q

−
∑
i

dfi ∧ dω̇i ∧ (dθ)q−1

= −(q − 1)!(−1)
q(q−1)

2 (f1ω̇
1 + · · ·+ fqω̇

q) ∧ df1 ∧ · · · ∧ dfq ∧ Ω

+ (−1)
q(q+1)

2 (q − 1)!df1 ∧ · · · ∧ dfq ∧ dΩ̇

= −1

q
θ̇ ∧ (dθ)q.

Hence the first equality is shown. We have d(N ′ ∧ ω̇) ∧ (dθ)q−1 =

(dN ′ ∧ ω̇ + N ′ ∧ Θ ∧ ω̇ + N ′ ∧ Θ̇ ∧ ω) ∧ (dθ)q−1. On the other hand,

N ′ ∧ Θ̇ ∧ ω ∧ (dθ)q−1 =
∑
i,j

N ′
i ∧ Θ̇i

j ∧ dyj ∧ (dθ)q−1 = −1
q
θ̇ ∧ (dθ)q. □

Theorem 4.11. We have LP([ω̇]) = −1
q
θ̇ ∧ dθq in H2q+1(M ;C).

Since d(N ′ ∧ ω̇) ∧ (dθ)q−1 = d(N ′ ∧ ω̇ ∧ (dθ)q−1), the Čech-de Rham

class {δ((N ′ ⊗ dy) ∧ (dθ)q−1)} makes a sense. This class is denoted by

L and studied in [3], where it is shown that L can be represented only

in terms of Λ(γ).

Proposition 4.12. Let ∇ be the standard TW-connection for ∇b. If

∇b is transversely torsion-free and if ∇ is invariant under holonomy,

then LP = 0.

Proof. Let (Π, L(q)) be the components of∇ with respect to {ϵ0, . . . , ϵq}
and [c] ∈ H∗

F(M ;Q(F)), where c =
∑
i

ci⊗ei. Then d(N∧c)∧(dθ)q−1 =

d((L(q)+fΠ)∧c)∧(dθ)q−1. As∇ is holonomy invariant, dL(q)i ∈ I22 (F)
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and dL(q)∧c∧(dθ)q−1 = 0. We also have (L(q)+fΠ)∧dc∧(dθ)q−1 = 0

because c is dF -closed. Finally, we have

d(fΠ) ∧ c ∧ (dθ)q−1 = df ∧ Π ∧ c ∧ (dθ)q−1

=
∑
i,j,l

dfl ∧ Πl
ijdy

j ∧ ci ∧ (dfl ∧ dyl)q−1

= −
∑
i,l

1

q
Πl

ilc
i ∧ (dθ)q

Since∇b is assumed to be transversely torsion-free, we have Πl
il = Πl

li =

0. □

Combining with Theorem 4.11, we obtain the following

Corollary 4.13. 1) Let F be a (real) foliation. If F admits a trans-

verse projective structure, then the Godbillon-Vey class of F is in-

finitesimally rigid.

2) Let F be a transversely holomorphic foliation. If F admits a trans-

verse holomorphic projective structure, then the Bott class of F is

infinitesimally rigid.

Corollary 4.13 is shown in [3] for transverse flat projective structures.

Remark 4.14. 1) The homomorphism LP is non-trivial if F admits

deformations with respect to which the Godbillon-Vey class or the

Bott class vary continuously.

2) Suppose that F is transversely projectively flat. Then, F admits an

foliation atlas such that every transition function γji in the transver-

sal direction is a projective transformation. If we make use of such

a foliation atlas, then we have Σ(γji) = 0 and Λ(γji) = 0. Therefore

N∧c is globally well-defined by Lemma 4.5, and (N∧c)∧(N∧dy)q−1

is a cocycle. We do not know if this cocycle leads to an invariant of

transverse flat projective structures. For example, the class repre-

sented by this cocycle depends a priori the cocycle c.
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Hörmander type diffusion processes.

2013–11 Shigeo KUSUOKA and Yasufumi OSAJIMA: A remark on quadratic functional
of Brownian motions.

2013–12 Yusaku TIBA: Shilov boundaries of the pluricomplex Green function’s level sets.

2014–1 Norikazu SAITO and Guanyu ZHOU: Analysis of the fictitious domain method
with an L2-penalty for elliptic problems.

2014–2 Taro ASUKE: Transverse projective structures of foliations and infinitesimal
derivatives of the Godbillon-Vey class.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


