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Abstract

The L2-penalty fictitious domain method is based on a reformulation

of the original problem in a larger simple-shaped domain by introducing a

discontinuous reaction term with a penalty parameter ε > 0. We first derive

regularity results and some a priori estimates and then prove several error

estimates. We also give several error estimates for discretization problems

by the finite element and finite volume methods.
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1 Introduction

The fictitious domain method is a powerful technique for solving partial differ-

ential equations. It based on a reformulation of the original problem in a larger

spatial domain, called the fictitious domain, with a simple shape. One of the

advantages of this approach is that we can avoid the time-consuming construc-

tion of a boundary-fitted mesh. Thus, the fictitious domain is discretized by a

simple-shaped mesh, independent of the original boundary. Consequently, we can

directly apply a large class of numerical methods, for example, the finite element,

finite volume, finite difference methods as well. Furthermore, this approach will

be useful to solve time-dependent moving-boundary problems. Actually, the ficti-

tious domain reformulation combined with the finite volume and finite difference

discretizations are successfully applied in numerical simulations for real-world

problems, for example, a blood flow and fluid-structure interactions in thoracic

aorta ([14]) and a simulation of spilled oil on coastal ecosystems ([13]). The

aim of our work is to establish a mathematical study of the penalty fictitious

∗correspondance: zhoug@ms.u-tokyo.ac.jp
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domain method which can be applied to these time-dependent moving-boundary

problems. As a primary step towards this final end, herein we examine the error

analysis for elliptic problems.

In a previous paper, Zhou and Saito [18], we studied a class of the fictitious

domain methods with a penalty for elliptic problems with various boundary con-

ditions. Therein, we introduce a fictitious domain reformulation by considering a

discontinuous diffusion coefficient, which we call the H1-penalty fictitious domain

method or, simply, the H1-penalty method. As is reported in [18], this reformu-

lation and its finite element discretization enjoy finite mathematical properties.

However, it is rather difficult to apply the finite volume and finite difference meth-

ods to the H1-penalty method since the treatment of a discontinuous diffusion

coefficient is not straightforward. Moreover, solutions of the H1-penalty problem

are not smooth across the original boundary that may cause some difficulties in

actual computations.

In the present paper, we study another type of the fictitious domain method by

introducing a discontinuous reaction term, which we call the L2-penalty fictitious

domain method or, simply, the L2-penalty method. As examined in the present

paper, this method can be directly discretized not only by the finite element but

also finite volume and finite difference methods. Moreover, the penalty solution

has the H2 regularity in the whole fictitious domain.

Now let us summarize the contents of this paper. In Section 2, we study

the L2-penalty method by examining the H2 regularity and some estimates for

solutions of the L2-penalty problem. Then, we derive error estimates of H1 and

L2 norms. In summary, we have (cf. Theorem 2.1) the error estimates

‖u− uε‖H1(Ω) ≤ Cε
1
4 ‖f‖L2(Ω), ‖u− uε‖L2(Ω) ≤ Cε

1
2 ‖f‖L2(Ω),

where u and uε denote the solutions of the original elliptic problem (2.1) defined

in a bounded domain Ω ⊂ R2 and its L2-penalty problem (2.18) for a given

f ∈ L2(Ω), ε is the penalty parameter with ε → 0. Moreover, the Dirichlet

boundary condition posed on the original boundary Γ = ∂Ω is approximated in

the sense that

‖uε‖
H

1
2 (Γ)

+
1√
ε
‖uε‖L2(Ω1) ≤ Cε

1
4 ‖f‖L2(Ω),

where D denotes the fictitious domain such that Ω ⊂ D and Ω1 = D\Ω (see Fig.

1).

Thanks to our regularity results and error estimates, the finite element analy-

sis becomes easy to treat. In Section 3, we derive the error estimates of the finite

element approximation of the L2-penalty problem. We have (cf. Theorem 3.2)

‖∇(uε − uεh)‖L2(D) +
1√
ε
‖uε − uεh‖L2(Ω1) ≤ C‖f‖L2(Ω)(h

1
2 + ε

1
4 ),

‖uε − uεh‖L2(Ω) ≤ C‖f‖L2(Ω)(h
1
2 + ε

1
4 )2,

where uεh denotes the solution of the finite element approximation (3.1) for the

L2-penalty problem (2.18) with the mesh parameter h.
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Consequently, we obtain (cf. Theorem 3.3)

‖u− uεh‖H1(Ω) ≤ C(ε
1
4 + h

1
2 )‖f‖L2(Ω), ‖u− uεh‖L2(Ω) ≤ C(ε

1
2 + h)‖f‖L2(Ω),

‖uεh‖
H

1
2 (Γ)

+
1√
ε
‖uεh‖L2(Ω1) ≤ C(h

1
2 + ε

1
4 )‖f‖L2(Ω).

From these results, we see that the optimal choice of ε is ε = h2, when h fixed.

According to the fictitious domain method, we solve the discrete L2-penalty

problem (3.1) instead of the original problem of (2.1). Since the domain Ω has

smooth boundary, we provide an approximation scheme for the computation of

the inner-product (uεh, vh)Ω1 . We find a polygon Ω̂ approximating to Ω, with

max
x∈∂Ω

dist (x, ∂Ω̂) = O(h2). For example, the Ω̂ is constructed by connecting

the intersection points between ∂Ω and the mesh for every triangle of the mesh.

Then, instead of (3.1), we solve its approximation problem (3.6), and we have

the error estimate (cf. Theorem 3.4)

‖u− ûε,h‖H1(Ω) ≤ C(h
1
2 + ε

1
4 + ε−

1
2h

3
2 )‖f‖L2(Ω),

‖u− ûε,h‖L2(Ω) ≤ C(h+ ε
1
2 + ε−

1
2h2 + ε−

1
4h

3
2 )‖f‖L2(Ω),

which show the approximation scheme shares the same error order with the error

of finite element method for ε = h2; however, ε � h2 would enlarge errors and

we will verify this phenomenon with the aid of numerical experiments.

As mentioned before, one of the advantages of the L2-penalty method is that

it can be directly applied to the finite volume and finite difference methods (cf.

[13], [14]). Therefore, a mathematical study of these problems are of interest.

However, it seems that little is known in this direction. Thus, our next aim is

to study the finite volume discretization of the L2-penalty problem. To this end,

in Section 4, we first introduce and study a special finite element approximation

with the mass-lumping approximation, where the L2 inner product is replaced by

a simple quadrature formula using the Voronoi polygon (cf. [8, §6.2]). Actually,

we prove (cf. Theorem 4.1)

‖uε − uML
εh ‖H1(D) +

1√
ε
‖uε − uML

εh ‖L2(Ω1)

≤ C(h+ hε−1/4 + hε−1/2 + h2ε−3/4)‖f‖L2(Ω),

where uML
εh denotes the solution of the finite element approximation with the

mass-lumping.

The final section, Section 5, is devoted to the finite volume method. We first

verify that the finite element approximation with mass-lumping is equivalent to

the finite volume approximation and then derive the following error estimate:

|Qhuε − ûh|1,D,h ≤ C(h+ hε−1/4 + hε−1/2 + h2ε−3/4)‖f‖0,Ω,

where ûh denotes the finite volume approximation, Qhuε a suitable projection of

uε into the finite volume trial function space, and | · |1,D,h the discrete H1
0 norm
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defined as (5.5). We note that ûh and Qhuε are piecewise constant functions.

This is the first result concerning error analysis for the fictitious domain method

applied to the finite volume method.

The convergence of L2-penalty for elliptic and parabolic problems has been

proved in [10]; however, no error estimate has been found, neither the finite el-

ement analysis. A similar penalty problem for the Navier-Stokes equations is

considered without any numerical results in [1]. Our error estimates in the H1

norm maintain the sharpness of those for Navier-Stokes problems in [1]. It should

be kept in mind that our method of analysis presented here can also be applied to

Stokes and Navier-Stokes problems with little difficulty. Furthermore, the results

presented in this paper are applied to analysis of L2 and H1-penalty fictitious do-

main methods for parabolic problems in cylindrical and non-cylindrical domains

in [19].

Notation

Throughout this paper, we follow the notation of [9]. Namely we use standard

Lebesgue and Sobolev spaces L2(ω), Hm(ω) (m > 0) and H1
0 (ω), where ω denotes

a domain in R2. We write as

(u, v)ω = (u, v)L2(ω) =

∫
ω
u(x)v(x) dx;

‖u‖0,ω = ‖u‖L2(ω) =

(∫
ω
|u(x)|2 dx

)1/2

;

|u|m,ω =

 ∑
|α|=m

‖∂αu‖20,ω

1/2

;

‖u‖m,ω =
(
‖u‖2m−1,ω + |u|2m,ω

)1/2
,

where α = (α1, α2) denotes a multi-index with |α| = α1 + α2 and set ∂α =

(∂/∂x1)α1(∂/∂x2)α2 .

We also use standard Lebesgue and Sobolev spaces L2(γ) and Hs(γ) (s > 0)

defined on a part γ of the boundary ∂ω. The unit outer normal vector to the

boundary under consideration is always denoted by n. Finally, we use the same

letter C to express a generic constant independent of the penalty parameter ε

and the discretization parameter h.

2 Fictitious domain method with L2-penalty

Throughout this paper, we assume that Ω is a bounded domain in R2 with the

C2 boundary Γ = ∂Ω. As a model problem, we consider the Poisson equation

with the homogeneous Dirichlet boundary condition,

−∆u = f in Ω, u = 0 on Γ, (2.1)
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Figure 1: The original domain Ω and the fictitious domain D.

where f is a given function of L2(Ω). The weak form reads as{
Find u ∈ H1

0 (Ω) such that

(∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω).

(2.2)

We take a convex polygonal domain D ⊂ R2, which we call the fictitious

domain, such that Ω ⊂ D and set Ω1 = D\Ω. See, for example, Fig. 1. Then,

the fictitious domain formulation with the L2 penalization for (2.2) is given asFind uε ∈ H1
0 (D) such that

(∇uε,∇v)D +
1

ε
(uε, v)Ω1 = (f̃ , v)D ∀v ∈ H1

0 (D),
(2.3)

where

0 < ε ≤ 1 (2.4)

is the penalty parameter and f̃ ∈ L2(D) is any extension of f into D such that

f̃ = f a.e. in Ω, ‖f̃‖0,D ≤ C‖f‖0,Ω

with a positive constant C depending only on D and Ω.

According to the Lax and Milgram’s theory, there exists a unique solution uε
of (2.3) for any ε ∈ (0, 1]. Substituting v = uε in (2.3) and then using Schwarz,

Poincaré and Young’s inequalities, we have

‖∇uε‖20,Ω + ‖∇uε‖20,Ω1
+

1

ε
‖uε‖20,Ω1

≤ C2

2
‖f‖20,Ω +

1

2
‖∇uε‖20,Ω +

1

2
ε‖f̃‖20,Ω1

+
1

2ε
‖uε‖20,Ω1

.

This gives

‖uε‖1,D +
1√
ε
‖uε‖0,Ω1 ≤ C‖f‖0,Ω. (2.5)

In particular, we have ‖uε‖0,Ω1 ≤ C
√
ε.
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Furthermore, the function uε solves the variational problem

(∇uε,∇v)D =

(
f̃ − 1

ε
χuε, v

)
D

∀v ∈ H1
0 (D),

where χ ∈ L∞(D) denotes the characteristic function of Ω1 defined as

χ(x) =

{
0 (x ∈ Ω)

1 (x ∈ Ω1).
(2.6)

Hence, we can apply regularity results of elliptic problems in convex domains

(cf. [5, Theorem 3.2.1.2] for example) to obtain

uε ∈ H2(D) (2.7)

and

‖uε‖2,D ≤ C
∥∥∥∥f̃ − 1

ε
χuε

∥∥∥∥
0,D

≤ C
(

1 +
1√
ε

)
‖f‖0,Ω. (2.8)

This estimate is meaningless for a sufficiently small ε; However, we can deduce

better a priori bounds for ‖uε‖2,Ω and, by using this, we can derive some error

estimate for uε. Actually, the following theorem is the main result of this section.

Theorem 2.1. Let uε ∈ H1
0 (D) be the solution of (2.3). Then, we have uε ∈

H2(D) and

‖uε‖2,Ω ≤ C‖f‖0,Ω, (2.9)

‖uε‖2,Ω1 ≤ Cε−
1
4 ‖f‖0,Ω, (2.10)

‖uε‖1,Ω1 ≤ Cε
1
4 ‖f‖0,Ω, (2.11)

‖uε‖0,Ω1 ≤ Cε
3
4 ‖f‖0,Ω. (2.12)

Furthermore,

‖u− uε‖1,Ω ≤ ε
1
4 ‖f‖0,Ω, (2.13)

‖u− uε‖0,Ω ≤ ε
1
2 ‖f‖0,Ω, (2.14)

‖uε‖ 1
2
,Γ ≤ Cε

1
4 ‖f‖0,Ω, (2.15)

where u ∈ H1
0 (Ω) denotes the solution of (2.2).

Remark 2.2. In [10, Theorem I-4], it has already proved

‖uε − u‖1,Ω → 0,
1√
ε
‖uε‖0,Ω1 → 0 as ε→ 0 (2.16)

for f̃ being the zero extension of f .

In the proof of Theorem 2.1, we use the following regularity result for a linear

elliptic equation. Although it seems not to be new, we give its proof for readers’

convenience.

6



Lemma 2.3. For φ ∈ L2(Ω1) and g ∈ H1/2(Γ), let w ∈ H2(Ω1) be a solution of

−∆w +
1

ε
w = φ in Ω1,

∂w

∂n
= g on Γ, w = 0 on ∂D.

Then, we have

‖w‖0,Ω1 ≤ C(ε‖φ‖0,Ω1 + ε
3
4 ‖g‖ 1

2
,Γ),

‖w‖2,Ω1 ≤ C(‖φ‖0,Ω1 + ε−
1
4 ‖g‖ 1

2
,Γ).

In order to prove this, we need the following auxiliary lemma. The proof will

be given in Appendix A.

Lemma 2.4. For g ∈ H
1
2 (Γ) and η > 0, there exists v = vη ∈ H2(Ω1) such that,

∂v

∂n
= g on Γ, v = 0 on ∂D

with estimates

‖v‖0,Ω ≤ Cη3‖g‖ 1
2
,Γ, |v|1,Ω ≤ Cη‖g‖ 1

2
,Γ, |v|2,Ω ≤ Cη−1‖g‖ 1

2
,Γ.

Proof of Lemma 2.3. By Lemma 2.4 with η = ε
1
4 , there exists ψ ∈ H2(Ω) such

that ∂ψ/∂n = g on Γ, ψ = 0 on ∂D, ‖ψ‖0,Ω1 ≤ Cε
3
4 ‖g‖ 1

2
,Γ and ‖ψ‖2,Ω1 ≤

Cε−
1
4 ‖g‖ 1

2
,Γ. Setting u = w − ψ, we have

−∆u+
1

ε
u = φ+ ∆ψ +

1

ε
ψ in Ω1,

∂u

∂n
= 0 on Γ, u = 0 on ∂D.

Multiplying the both sides by u and integrating over Ω1, we have

‖∇u‖20,Ω1
+

1

ε
‖u‖20,Ω1

≤ ‖φ‖0,Ω1‖u‖0,Ω1 +

(
‖ψ‖2,Ω1 +

1

ε
‖ψ‖0,Ω1

)
‖u‖0,Ω1 .

Hence,

‖u‖0,Ω1 ≤ ε‖φ‖0,Ω1 + ε‖ψ‖2,Ω1 + ‖ψ‖0,Ω1

≤ ε‖φ‖0,Ω1 + ε · Cε−
1
4 ‖g‖ 1

2
,Γ + Cε

3
4 ‖g‖ 1

2
,Γ.

This implies

‖w‖0,Ω1 ≤ ‖ψ‖0,Ω1 + ε‖φ‖0,Ω1 + Cε
3
4 ‖g‖ 1

2
,Γ ≤ ε‖φ‖0,Ω1 + Cε

3
4 ‖g‖ 1

2
,Γ.

On the other hand,

‖w‖2,Ω1 ≤ C

∥∥∥∥φ+ ∆ψ +
1

ε
ψ

∥∥∥∥
0,Ω1

+ C‖g‖ 1
2
,Γ

≤ C‖φ‖0,Ω1 + C‖ψ‖2,Ω1 + C
1

ε
‖ψ‖0,Ω1 + C‖g‖ 1

2
,Γ

≤ C‖φ‖0,Ω1 + Cε−
1
4 ‖g‖ 1

2
,Γ + C‖g‖ 1

2
,Γ,

which implies the desired estimate.
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Now we can state the following proof.

Proof of Theorem 2.1. First, we prove inequalities (2.10)–(2.15) by using (2.9).

Applying Green’s formula, we observe that (2.3) is equivalent to the following

problem:

−∆uε = f in Ω, uε|Ω = uε|Ω1 on Γ; (2.17)

−∆uε +
1

ε
uε = f̃ in Ω1,

∂uε
∂n

∣∣∣∣
Ω

=
∂uε
∂n

∣∣∣∣
Ω1

on Γ, uε = 0 on ∂D. (2.18)

In view of the trace theorem, we have∥∥∥∥∂uε∂n

∥∥∥∥
1
2
,Γ

≤ C‖uε‖2,Ω ≤ C‖f‖0,Ω.

Hence, we apply Lemma 2.3 to the problem (2.18) in order to obtain

‖uε‖0,Ω1 ≤ C(ε
3
4 ‖f‖0,Ω + ε‖f̃‖0,Ω1), (2.19)

‖uε‖2,Ω1 ≤ C(ε−
1
4 ‖f‖0,Ω + ‖f̃‖0,Ω1) (2.20)

which imply (2.10) and (2.12), respectively.

We recall that in general we have (cf. [4, Theorem 7.27])

|v|1,Ω1 ≤ C(η|v|2,Ω1 + η−1‖v‖0,Ω)

for any η > 0 and v ∈ H2(Ω). Setting η = ε
1
2 , we deduce (2.11).

Estimates (2.13) and (2.15) are readily obtainable consequences of (2.11) and

trace theorems. Thus,

‖uε − u‖1,Ω ≤ C‖uε − u‖ 1
2
,Γ = C‖uε‖ 1

2
,Γ

≤ C‖uε‖1,Ω1 ≤ Cε
1
4 ‖f‖0,Ω.

We proceed to derive (2.14). To this end, we introduce the adjoint problems

for (2.2) and (2.3) which are given as{
Find uF ∈ H1

0 (Ω) such that

(∇uF ,∇v)Ω = (F, v)Ω ∀v ∈ H1
0 (Ω)

(2.21)

and Find uFε ∈ H1
0 (D) such that

(∇uFε,∇v)D +
1

ε
(uFε, v)Ω1 = (F̃ , v)D ∀v ∈ H1

0 (D),
(2.22)

for any F ∈ L2(Ω), and the extension of F , F̃ ∈ L2(D), satisfying ‖F̃‖0,Ω1 ≤
C‖F‖0,Ω.

Apparently, we can obtain the a priori estimates and H1 norm penalization

error estimate, like (2.20), (2.20) and (2.13), for the adjoint problems (2.21) and
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(2.22). Thus we have

‖uFε‖2,Ω ≤ C(ε−
1
4 ‖F‖0,Ω + ‖F̃‖0,Ω1), (2.23)

‖uFε‖0,Ω ≤ C(ε
3
4 ‖F‖0,Ω + ε‖F̃‖0,Ω1), (2.24)

‖uFε|Ω − uF ‖1,Ω ≤ Cε
1
4 ‖F‖0,Ω. (2.25)

Denoting by ũ and ũF the zero extension of u and uF , respectively, one can

show that

(∇uε,∇ũF )D = (ũF , f̃)D = (uF , f)Ω = (∇uF ,∇u)Ω

= (F, u)Ω = (F̃ , ũ)D = (∇uFε,∇ũ)D,

and hence

(∇(uFε − ũF ),∇(uε − ũ))D = (F̃ , uε − ũ)D −
1

ε
(uFε, uε)Ω1 .

At this stage, we let F̃ = uε − ũ. Then,

‖uε − ũ‖20,Ω + ‖uε‖20,Ω1
= (∇(uFε − ũF ),∇(uε − ũ))D +

1

ε
(uFε, uε)Ω1 .

Combining those estimates, we get

‖uε|Ω − u‖0,Ω ≤ Cε
1
2 ‖f‖0,Ω. (2.26)

Thus, we have proved (2.14).

Now, we go back to the beginning of the proof; It remains to show (2.9). To

this end, let us consider the interface problem composed of (2.17) and (2.18) and

apply the standard method of tangential difference quotients due to Nirenberg;

See, for example, [5, Theorem 2.2.2.3], [12, Appendix], or [18, Theorem 3.1].

We take a set {Uj}Nj=1 of open subsets in R2 enjoying the following properties.

With Uj and 1 ≤ j ≤ N , we associate a C2 diffeomorphism Φj : Uj → R2 that

satisfies

Ω ⊂
N⋃
j=1

Φj(Uj) ⊂ D,

Uj0 = Ψj(Φj(Uj) ∩ Ω) = R2
+ ∩ Uj , Uj1 = Ψj(Φj(U) ∩ Ω1) = R2

− ∩ Uj ,

where R2
± = R2 ∩ {±x2 > 0} and Ψj = Φ−1

j . Further, we take {θj}Nj=1 ⊂ C∞0 (Ω)

such that supp θj ⊂ Φj(Uj) and

N∑
j=1

θj = 1 on Ω and δ = min
1≤j≤N

dist (supp θj , ∂Φj(Uj)) > 0.

We note that (θjuε) ◦ Φj ∈ H1
0 (Uj) for j = 1, 2, . . . , N . We drop the subscript j

and write U = Uj , U1 = Uj1, U0 = Uj0, Φ = Φj , Ψ = Ψj , and θ = θj for short.

Set u1 = θuε and u2 = (θuε) ◦ Φ.
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First, if U1 = ∅, then u1 ∈ H2(Ω) and ‖u1‖2,Ω ≤ C‖f̃‖0,D are not new. In

what follows, we consider the case U0 6= ∅ and U1 6= ∅. Set Di = ∂/∂xi, (i = 1, 2).

We observe that u2 ∈ H1
0 (U) satisfies

2∑
i,k=1

∫
U
aikDiu2Dkvdx+

1

ε

2∑
i,k=1

∫
U1

Diu2Dkv|DΦ|dx = (f2, v) ∀v ∈ H1
0 (U),

(2.27)

where f2 = (θf̃ +∇uε∇θ +∇ · (uε∇θ)) ◦ Φ|DΦ| and

aik = (
2∑
l=1

DlψiDlψk) ◦ Φ|DΦ| (i, k = 1, 2), Ψ = (ψ1, ψ2).

Let ũ2 be the zero extension of u2 onto R2 and let |h| ≤ δ/4. Substituting

v = τh−1
h

τ−h−1
h ũ2 ∈ H1

0 (U) into (2.27), where τh is the translation operator with

τhφ(x) = φ(x1 + h, x2), φ(x) ∈ L2(R2), we have after some calculation

2∑
i=1

∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥2

0,U
+

1

ε

2∑
i=1

∥∥∥τh − 1

h
ũ2

∥∥∥2

0,U1

≤ C
2∑
i=1

∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥
0,U

+ C
1

ε
‖ũ2‖20,U1

+ C‖f2‖20,U ,

applying (2.16) or (2.5), we have
∑2

i=1

∥∥∥Di

(
τh−1
h ũ2

) ∥∥∥
U0

≤ C‖f‖0,Ω. On letting

h ↓ 0, we conclude DiD1u2 ∈ L2(U0) and ‖DiD1u2‖0,U0 ≤ C‖f̃‖0,Ω for i = 1, 2.

Finally, we see that

D2
2u2 =

1

a22
(f2 −

∑
k+l≤3

Dl(aklDku2)−D2a22D2u2) in U0.

This implies that D2
2u2 ∈ L2(U0) and ‖u2‖2,U0 ≤ C‖f̃‖0,Ω.

Summing up, we conclude that uε|Ω ∈ H2(Ω) and ‖u‖2,Ω ≤ C‖f‖0,Ω. This

completes the proof of Theorem 2.1.

Remark 2.5. As stated before, the solution uε ∈ H1
0 (D) of (2.3) has a regularity

property uε ∈ H2(D). Thus, the solution of the penalization problem (2.3) is

regular. It seems that this property is an advantage of the L2-penalty method

in contrast to the H1-penalty method whose solution uε has only uε|Ω ∈ H2(Ω)

and uε|Ω1 ∈ H2(Ω1). However, as is reported in Theorem 2.1, we are able to

guarantee only ‖uε‖2,Ω1 ≤ ε−
1
4 ‖f‖0,Ω. Thus, ‖uε‖2,Ω1 may be very large for a

sufficiently small ε > 0. This drawback has not been pointed out in the previous

studies on the L2-penalty method including, for example, [1] and [10].

3 Finite element approximation

We introduce a shape-regular family of triangulations {Th}h>0 to the convex

polygonal domain D, where h is the maximum diameter of the triangles of Th.

10



That is, there exists a positive constant ν1 such that

hT
ρT
≤ ν1 (∀T ∈ ∀Th ∈ {Th}h),

where hT and ρT , respectively, denote the diameters of circumscribe and inscribe

circles of T . Let Vh(D) ⊂ H1
0 (D) be the set of all continuous piecewise-affine

functions subordinate to Th. A finite element approximation for (2.3) reads asFind uεh ∈ Vh(D) such that

(∇uεh,∇vh)D +
1

ε
(uεh, vh)Ω1 = (f̃ , vh)D ∀vh ∈ Vh(D),

(3.1)

Thus, applying the fictitious domain method, we compute (3.1) instead of (2.2).

According to Theorem 2.1, the error satisfies

‖u− uεh‖1,Ω ≤ ‖u− uε‖1,Ω + ‖uε − uεh‖1,D ≤ Cε
1
4 + C‖∇(uε − uεh)‖0,D,

‖u− uεh‖0,Ω ≤ ‖u− uε‖0,Ω1 + ‖uε − uεh‖0,Ω ≤ Cε
1
2 + ‖uε − uεh‖0,Ω.

Hence, it suffices to examine uε − uεh. First, we give the following lemma.

Lemma 3.1. Let uε and uεh be the solutions of (2.3) and (3.1), respectively.

Then, we have

‖∇(uε − uεh)‖0,D +
1√
ε
‖uε − uεh‖0,Ω1

≤ C inf
vh∈Vh(D)

(
‖∇(uε − vh)‖0,D +

1√
ε
‖uε − vh‖0,Ω1

)
. (3.2)

Proof. It is a consequence of the Galerkin orthogonality

(∇(uε − uεh),∇vh)D +
1

ε
(uε − uεh, vh) = 0 ∀vh ∈ Vh(D).

Theorem 3.2. Suppose that uε and uεh are the solutions of (2.3) and (3.1),

respectively. Then, we have

‖∇(uε − uεh)‖0,D +
1√
ε
‖uε − uεh‖0,Ω1 ≤ C(h

1
2 + ε

1
4 )‖f‖0,Ω, (3.3)

‖uε − uεh‖0,Ω ≤ C(h
1
2 + ε

1
4 )2‖f‖0,Ω. (3.4)

Proof. We introduce some notations first. A generic (closed) triangle of Th is

denoted by K, and the set of all vertices of K is denoted by Λ(K) = (νK1 , ν
K
2 , ν

K
3 ).

Set TΓ = {K | K ∩ Γ 6= ∅} and T ′ = {K ⊂ Ω|K ∩ TΓ = ∅}. The standard P1

Lagrange interpolation of v ∈ H2(D) is denoted by Ihv. We define vh ∈ Vh(D)

by setting,

vh(ν) =

{
0 for ν ∈ Λ(K),K ⊂ TΓ ∪ Ω1,

uε(ν) for all other vertices ν.

11



substitute vh into (3.2) and using the a priori estimates in Theorem 2.1, we have

‖uε − vh‖0,Ω1 = ‖uε‖0,Ω1 ≤ Cε
3
4 ‖f‖0,Ω

and

‖∇(uε − vh)‖20,Ω
≤ C(‖∇(uε − Ihu)‖20,T ′ + ‖∇uε‖20,Ω\T ′ + ‖∇vh‖

2
0,Ω\T ′)

≤ C(‖∇(uε − u)‖20,T ′ + ‖∇(u− Ihu)‖20,T ′ + ‖∇uε‖20,Ω\T ′ + ‖∇vh‖
2
0,Ω\T ′)

≤ C
(
h2‖u‖22,Ω + h‖uε‖22,Ω + h‖u‖22,Ω

)
≤ Ch‖f‖20,Ω,

where u ∈ H2(Ω) is the solution of (2.2). Therefore,

‖∇(uε − vh)‖20,D = ‖∇(uε − vh)‖20,Ω + ‖∇(uε − vh)‖20,Ω1

= ‖∇(uε − vh)‖20,Ω + ‖∇uε‖20,Ω1

≤ Ch‖f‖20,Ω + Cε
1
2 ‖f‖20,Ω,

which implies (3.3). See the proof of [18, Theorem 4.4] for the detailed proof of

this estimate; Especially, the estimate ‖∇uε‖0,Ω\T ′ ≤ Ch
1
2 ‖uε‖2,Ω follows from

[18, Lemma 4.2] or a similar lemma in [17], and for the proof of ‖∇vh‖0,Ω\T ′ ≤
Ch

1
2 ‖u‖2,Ω, one can refer to [17] or the proof of [18, Theorem 4.4], with aware of

u = 0 on Γ, which gives (3.3).

Then, setting F̃ = 1Ω(uε − uεh) and v = uε − uεh in the adjoint problem

(2.22), where 1Ω = 1 in Ω, and 1Ω = 0 in otherwise, applying (3.3) and the prior

estimates in Theorem 2.1, we have for any vh ∈ Vh(D)

‖F‖20,Ω = ‖uε − uεh‖20,Ω = (∇uFε,∇(uε − uεh))D +
1

ε
(uFε, uε − uεh)Ω1

= (∇uFε − vh,∇(uε − uεh))D +
1

ε
(uFε − vh, uε − uεh)Ω1

≤ C(ε
1
4 + h

1
2 )‖F‖0,Ω(ε

1
4 + h

1
2 )‖f‖0,Ω

+ C
1

ε
ε

1
2 (ε

1
4 + h

1
2 )‖F‖0,Ωε

1
2 (ε

1
4 + h

1
2 )‖f‖0,Ω,

which implies (3.4), and the proof is completed.

Combining Theorems 2.1 and 3.2, we obtain the following estimates.

Theorem 3.3. Suppose that u and uεh are the solutions of (2.2) and (3.1),

respectively. Then, we have

‖∇(u− uεh)‖0,Ω ≤ C(h
1
2 + ε

1
4 )‖f‖0,Ω, ‖u− uεh‖0,Ω ≤ C(h+ ε

1
2 )‖f‖0,Ω,

‖uεh‖ 1
2
,Γ +

1√
ε
‖uεh‖0,Ω1 ≤ C(h

1
2 + ε

1
4 )‖f‖Ω.
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Due to the smooth boundary of Ω, the inner-product (uε,h, vh)Ω1 cannot be

computed exactly. Therefore we need an approximation scheme for computation

of the problem (3.1).

As we mentioned in Introduction, we find a polygonal domain Ω̂ for Ω such

that the vertices of ∂Ω̂ are situated on ∂Ω and assume that there are h1 > 0 and

c0 > 0 such that

dist (Ω, Ω̂) ≤ c0h
2 (h ∈ (0, h1)). (3.5)

We set Ω̂1 = D\Ω̂.

Then, we considerFind ûεh ∈ Vh(D) such that

(∇ûεh,∇vh)D +
1

ε
(ûεh, vh)Ω̂1

= (f̃ , vh)D ∀vh ∈ Vh(D).
(3.6)

We have the error estimate of the approximation

Theorem 3.4. Let u and ûε,h be the solutions of (2.2) and (3.6), respectively.

Then, we have

‖u− ûε,h‖1,Ω ≤ C‖ûε,h‖ 1
2
,Γ ≤ C(h

1
2 + ε

1
4 + ε−

1
2h

3
2 )‖f‖0,Ω,

‖u− ûε,h‖0,Ω ≤ C(h+ ε
1
2 + ε−

1
2h2 + ε−

1
4h

3
2 )‖f‖0,Ω.

Remark 3.5. For ε = h2, we have ‖u− ûε,h‖1,Ω ≤ Ch
1
2 = Cε

1
4 and ‖u− ûε,h‖0,Ω ≤

Ch = Cε
1
2 .

Proof of Theorem 3.4. In view of Theorem 3.3, it suffices to prove

‖ûε,h − uε,h‖1,Ω ≤ Cε−
1
2h

3
2 ‖f‖0,Ω, (3.7)

‖ûε,h − uε,h‖0,Ω ≤ C(ε−
1
2h2 + ε−

1
4h

3
2 )‖f‖0,Ω. (3.8)

Subtracting (3.1) from (3.6), we have

(∇(uε,h − ûε,h), vh)D +
1

ε
(uε,h − ûε,h, vh)Ω1∩Ω̂1

+
1

ε
(uε,h, vh)Ω1\Ω̂1

− 1

ε
(ûε,h, vh)Ω̂1\Ω1

= 0. (3.9)

for any vh ∈ Vh(D). We also have

‖ûε,h‖0,Ω̂1
≤ C
√
ε‖f‖0,Ω, ‖uε,h‖0,Ω1 ≤ C

√
ε‖f‖0,Ω

which be obtained by substituting v = ûε,h and v = uε,h, respectively, into (3.6)

into (3.1).

Since we assume that (3.5) hold true, we have

‖ûε,h‖0,Ω̂1\Ω1
≤ Ch

1
2 ‖ûε,h‖0,Ω̂1∩TΓ

,

‖vh‖0,Ω̂1\Ω1
≤ Ch

1
2 ‖vh‖0,Ω̂1∩TΓ

≤ Ch‖vh‖1,D,

‖uε,h‖0,Ω1\Ω̂1
≤ Ch

1
2 ‖ûε,h‖0,Ω1∩TΓ

,

‖vh‖0,Ω1\Ω̂1
≤ Ch

1
2 ‖vh‖0,Ω1∩TΓ

≤ Ch‖vh‖1,D,

13



where TΓ = {K ∈ T | K ∩Γ 6= ∅}, and these estimates can be found in [16]. Sub-

stituting vh = uε,h − ûε,h into (3.9), and applying these estimates and Poincaré’s

inequality, we obtain that

‖uε,h − ûε,h‖21,D +
1

ε
‖uε,h − ûε,h‖20,Ω1∩Ω̂1

≤ (∇(uε,h − ûε,h),∇(uε,h − ûε,h))D +
1

ε
(uε,h − ûε,h, uε,h − ûε,h)0,Ω1∩Ω̂1

≤ 1

ε
‖ûε,h‖0,Ω̂1\Ω1

‖uε,h − ûε,h‖0,Ω̂1\Ω1
+

1

ε
‖uε,h‖0,Ω1\Ω̂1

‖uε,h − ûε,h‖0,Ω1\Ω̂1

≤ C
1

ε
h

1
2 ε

1
2h‖uε,h − ûε,h‖1,D,

which gives (3.7). Setting f̃ = uε,h − ûε,h in (3.1) and (3.6), applying (3.7) we

finally get (3.8).

At this stage, we give numerical experiments to show that the L2-error is

bounded by (
√
ε + h) and the H1-norm error is bounded by (ε

1
4 + h

1
2 ), which is

according to our analysis on L2-penalization and finite element error estimates.

We consider the problem

−∆u = 1 in Ω, u = 0 on Γ,

where Ω = {(x, y) | x2 + y2 < 1} and the exact solution is u = −1
4(x2 + y2 − 1).

To implement the fictitious domain method, we set the domain D = {−1.2 <

x, y < 1.2}. We solve the problem (3.6). First, fixing h = 0.01, we show the

errors for different ε, see Figure 2; then, setting ε = 10−6, we observe the errors

dependents on different h, see Figure 3. The logarithm is of base 10 for all the

figures.

-3

-2.5

-2

-1.5

-1

-0.5

0

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

lo
g
E
r

log ε

Er =
‖uε−ũ‖k,D
‖ũ‖k,D for h = 0.01, (k = 0, 1).
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y = 1
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4x

Figure 2:
‖ûε,h−ũ‖k,D
‖ũ‖k,D for h = 0.01, k =

0, 1
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‖uε−ũ‖k,D
‖ũ‖k,D for ε = 10−6, (k = 0, 1).
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H1-norm

y = x
y = 1

2x

Figure 3:
‖ûε,h−ũ‖k,D
‖ũ‖k,D for ε = 1e − 6,

k = 0, 1.

4 Finite element approximation with mass-lumping

We continue to consider a family of shape-regular triangulations {Th}h of the

polygonal domain D. Further, we assume that it is of weakly acute type. Thus,
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each T ∈ Th is a non-obtuse triangle. In this section, we consider a special type

of the finite element approximation to (2.3). In the subsequent section, we will

show that the scheme considered here coincides with a finite volume scheme.

Let Ph be the set of all nodes of and P0
h be the set of all interior nodes of

Th. Moreover, Let D∗P be the Voronoi polygon (Dirichlet domain, Wigner-Seitz

cell, Thiessen polygon; See for more detail [8, §6.2]) corresponding to P ∈ Ph.

The domain DP = D∗P ∩ Ω is called the circum-centric region corresponding to

P ∈ Ph. We introduce, for each P ∈ Ph,

φP ∈ C(Ω), φP |T is an affine function on T for all T ∈ Th,

φP (Q) =

{
1 (Q ∈ Ph, Q = P )

0 (Q ∈ Ph, Q 6= P ),

and

φ̂P =

{
1 in DP

0 otherwise.

Then set

Xh = span {φP }P∈Ph , Vh = span {φP }P∈P0
h
,

X̂h = span {φ̂P }P∈Ph , V̂h = {v ∈ X̂h | v ≡ 0 in DP for P ∈ Ph\P0
h}.

(The spaces Xh and Vh are nothing but the standard P1 finite element spaces

defined on Th.)

We introduce the lumping operator Mh : Vh → V̂h defined as

Mhv =
∑
P∈P0

h

v(P )φ̂P (v ∈ Vh). (4.1)

The inverse operator is obviously given as

M−1
h v̂ =

∑
P∈P0

h

v̂(P )φP (v̂ ∈ V̂h). (4.2)

It is well-known that there exists constants C,C ′ and C ′′ depending only on D

and ν1 (=the shape-regularity constant) such that

C‖vh‖0,D ≤ ‖Mhvh‖0,D ≤ C ′‖vh‖0,D (vh ∈ Vh), (4.3)

‖vh −Mhvh‖0,D ≤ C ′′h‖∇vh‖0,D (vh ∈ Vh). (4.4)

See, for example, [6, Lemma 2.1].

Now, we consider the following finite element scheme:
Find uεh ∈ Vh such that

(∇uεh,∇vh) +
1

ε
(ûεh, v̂h)Ω1 = (f̃ , v̂h)D (∀vh ∈ Vh),

(4.5)

where ûεh = Mhuεh and v̂h = Mhvh.

Below, we write as

(vh, wh)ω,h = (Mhvh,Mhwh)ω (vh, wh ∈ Vh, ω = Ω1, D).
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Theorem 4.1. Let uε ∈ H1
0 (D) and uεh ∈ Vh be solutions of (2.3) and (4.5),

respectively. Then, we have

‖∇(uε − uεh)‖0,D +
1√
ε
‖uε − uεh‖0,Ω1

≤ C(h+ hε−1/4 + hε−1/2 + h2ε−3/4)‖f‖0,Ω. (4.6)

In particular,

‖u− uεh‖1,Ω ≤ C(ε
1
4 + h+ hε−1/4 + hε−1/2 + h2ε−3/4)‖f‖0,Ω

where u denotes the solution of (2.2).

Proof. We drop the subscript ε for simplicity; u = uε and uh = uεh. Let wh ∈ Vh
be arbitrary. Then, we have

‖∇(wh − uh)‖0,D +
1√
ε
‖wh − uh‖0,Ω1

≤ C sup
vh∈Vh

(∇(wh − uh),∇vh)D + 1
ε (wh − uh, vh)Ω1

‖vh‖1,D,Ω1,ε
, (4.7)

where

‖vh‖1,D,Ω1,ε =

(
‖∇vh‖20,D +

1

ε
‖vh‖20,Ω1

)1/2

. (4.8)

We observe

(∇(wh − uh),∇vh)D +
1

ε
(wh − uh, vh)Ω1

= (∇(wh − u),∇vh)D + (∇(u− uh),∇vh)D +
1

ε
(wh − u, vh)Ω1 +

1

ε
(u− uh, vh)Ω1

= (∇(wh − u),∇vh)D +
1

ε
(wh − u, vh)Ω1︸ ︷︷ ︸

=J1

+(∇u,∇vh)D +
1

ε
(u, vh)Ω1 − (∇uh,∇vh)D −

1

ε
(uh, vh)Ω1,h︸ ︷︷ ︸

=J2

−1

ε
(uh, vh)Ω1 +

1

ε
(uh, vh)Ω1,h︸ ︷︷ ︸

=J3

.

First,

|J1| ≤
(
‖∇(wh − u)‖0,D +

1√
ε
‖wh − u‖0,Ω1

)
‖vh‖1,D,Ω1,ε.

Next, since uh satisfies the equation (4.5), we can deduce from (4.3)

|J2| = |(f̃ , vh)D − (f̃h, v̂h)D|
≤ C‖f̃‖0,D‖vh − v̂h‖0,D
≤ C‖f‖0,Ω · Ch‖∇vh‖0,D
≤ Ch‖f‖0,Ω‖vh‖1,D,Ω1,ε.
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By taking vh = uh in (4.5), we can derive

‖∇uh‖0,D ≤ C‖f‖0,Ω, ‖uh‖0,Ω1 ≤ Cε1/2‖f‖0,Ω

in the same way as the derivation of (2.5).

By using these estimates, together with (4.4), we can perform an estimation

as

|J3| ≤
1

ε
|(uh, vh)Ω1 − (uh, vh)Ω1,h|

=
1

ε
|(uh, vh)Ω1 − (ûh, v̂h)Ω1 |

=
1

ε
|(uh − û, vh)Ω1 − (ûh, v̂h − vh)Ω1 |

≤ 1

ε

[
|(uh − û, vh)Ω1 |+ |(ûh, v̂h − vh)Ω1 |

]
≤ 1

ε
(‖uh − ûh‖0,Ω1‖vh‖0,Ω1 + ‖ûh‖0,Ω1‖vh − v̂h‖0,Ω1)

≤ 1

ε
(‖uh − ûh‖0,D‖vh‖0,Ω1 + ‖ûh‖0,Ω1‖vh − v̂h‖0,D)

≤ Ch

ε
(‖∇uh‖0,D‖vh‖0,Ω1 + ‖ûh‖0,Ω1‖∇vh‖0,D)

≤ Ch√
ε
‖f‖0,Ω ·

1√
ε
‖vh‖Ω1 +

Ch

ε
· ε−1/2‖f‖0,Ω‖∇vh‖0,D

≤ Chε−
1
2 ‖f‖0,Ω‖vh‖1,D,Ω1,ε.

Summing up those estimates and using the triangle inequality, we get

‖∇(u− uh)‖0,D +
1√
ε
‖u− uh‖0,Ω1

≤ ‖∇(u− wh)‖0,D +
1√
ε
‖u− wh‖0,Ω1 + ‖∇(wh − uh)‖0,D +

1√
ε
‖wh − uh‖0,Ω1

≤ C(h+ hε−1/2)‖f‖0,Ω + C

(
‖∇(wh − u)‖0,D +

1√
ε
‖wh − u‖0,Ω1

)
.

Now choosing wh = Ihu (= the standard P1 Lagrange interpolation of u) and

then using (2.9) and (2.10), we obtain

‖∇(u− Ihu)‖20,D = ‖∇(u− Ihu)‖20,Ω + ‖∇(u− Ihu)‖20,Ω1

≤ Ch2|u|22,Ω + Ch2|u|22,Ω1

≤ Ch2‖f‖20,Ω + Ch2ε−
1
2 ‖f‖20,Ω, (4.9)

1

ε
‖u− Ihu‖20,Ω1

≤ 1

ε
C(h4 + h4ε−

1
2 )‖f‖20,Ω. (4.10)

In conclusion, we have

‖∇(u− uh)‖0,D +
1√
ε
‖u− uh‖0,Ω1

≤ C(h+ hε−1/4 + hε−1/2 + h2ε−3/4)‖f‖0,Ω,

which completes the proof.
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Remark 4.2. We suppose ε = hα with α > 0. Then, for h� 1,

‖u− uεh‖1,Ω ≤

{
Chα/4‖f‖0,Ω (0 < α ≤ 4/3)

Ch1−α/2‖f‖0,Ω (4/3 < α < 2).
(4.11)

The optimal choice of α is α = 4/3; then, ‖u − uεh‖1,Ω ≤ Ch1/3‖f‖0,Ω. When

α ≥ 2, the error estimate is meaningless.

5 Finite volume approximation

This section is devoted to analysis of the finite volume approximation. We set

T̂h = {DP }P∈Ph , T̂ 0
h = {DP }P∈P0

h
.

Following the standard notion of the finite volume method (cf. [3]), we write

K ∈ T̂h instead of DP ∈ T̂h to express a general control volume. Further, for

K ∈ T̂h, we write xK ∈ Ph instead of P ∈ Ph and call xK the corresponding point

to K.

Then, T̂h is an actually admissible mesh ofD. That is, the following conditions

(A1)–(A4) are satisfied:

(A1) Any K ∈ T is a convex polyhedral domain and D =
⋃
K∈T̂h

K;

(A2) For any K,L ∈ T̂h with K 6= L, either the (d − 1) dimensional Lebesgue

measure of K ∩L is zero or K ∩L is an entire common side (edge, face) σ.

Below we write σ = K|L to express the latter case;

(A3) For K ∈ T̂h, the corresponding point xK ∈ Ph is in K. Further, if σ = K|L,

that xk 6= xL and the line segment connecting xK with xL is orthogonal to

σ;

(A4) For K ∈ T̂h\T̂ 0
h , we have xK ∈ ∂D.

Moreover, we use the following notation.

• Each K ∈ T̂h is called a control volume. The d dimensional Lebesgue

measure of K is denoted by mK . The set of all sides of K is denoted by

EK .

We set E =
⋃
K∈T̂h

EK , Eint = {σ ∈ E | σ ⊂ D}, and Eext = {σ ∈ E | σ ⊂ ∂D}.

Obviously, E = Eint ∪ Eext. For σ ∈ E , the (d − 1) dimensional Lebesgue

measure of σ is denoted by mσ.

• ForK ∈ T̂ 0
h , the neighbours ofK is defined asN (K) = {L ∈ T̂h | σ = K|L}.

• For σ = K|L ∈ E , the distance between xK and xL is denoted by dσ, while

the distance between xK and σ is denoted by dK,σ.
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• The transmissibility coefficient is defined as τσ = mσ/dσ for K ∈ T̂ 0
h ,

L ∈ N (K) with σ = K|L.

• As the size parameter, we continue to employ h. (In [3], h is denoted by

size (T̂h).)

• Below, we write as vK = v|K = v(xK) for v ∈ X̂h and K ∈ T̂h.

We introduce interpolation operators Ph : L1(D)→ V̂h and Qh : C(D)→ V̂h
which are defined by

Phv ∈ V̂h, (Phvh)|K =
1

mK

∫
K
v(x) dx (v ∈ L1(D)),

Qhw ∈ V̂h, (Qhw)|K = w(xK) (w ∈ H2(D)).

Now we are able to derive the finite volume scheme to −∆uε + (1/ε)χuε = f̃

in D with uε|∂D = 0, where χ ∈ L∞(D) denotes the characteristic function of Ω1

defined as (2.6). First, we integrate the equation over K ∈ T̂ 0
h to obtain

−
∫
K

∆uε dx+
1

ε

∫
K
χuε dx =

∫
K
f̃ dx.

In the finite volume method, the Laplace operator is approximated as∫
K

∆uε dx =
∑

L∈N (K),σ=K|L

∫
σ
∇uε ·nK,σ dS ≈

∑
L∈N (K),σ=K|L

τσ[uε(xL)−uε(xK)],

where nK,σ is the unit normal vector to σ outgoing from K. Other terms are

treated as

1

ε

∫
K
χuε dx ≈ 1

ε

∫
K
χuε(xK) dx ≈ 1

ε
uε(xK)χ̂KmK ;∫

K
f̃ dx = f̂Kmk,

where

χ̂h = Phχ, f̂h = Phf̃ .

Summing up, we can state the finite volume scheme to (2.3) as follows:
Find ûεh ∈ V̂h such that

−
∑

L∈N (K),σ=K|L

τσ(ûε,L − ûε,K) +
1

ε
χ̂K ûKmK = f̂KmK (∀K ∈ T̂ 0

h ).

(5.1)

We then derive another expression to (5.1). Multiplying by v̂K the both sided

of the above identity and summing up all K ∈ T̂h
0
, we obtain

−
∑
K∈T̂h

v̂K
∑

L∈N (K)

γK|L(ûε,L − ûε,K) +
1

ε

∑
K∈T̂h

χ̂K ûK v̂KmK =
∑
K∈T̂h

f̂K v̂KmK .
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We can calculate as∑
K∈T̂h

χ̂K ûK v̂KmK =
∑
K∈T̂h

∫
K
χûhv̂h dx = (ûh, v̂h)Ω1 ,∑

K∈T̂h

f̂K v̂KmK = (f̃ , v̂h)D.

Thus, setting

ah(v̂h, ŵh) = −
∑
K∈T̂h

ŵK
∑

L∈N (K)

γK|L(v̂L − v̂K) (v̂h, ŵh ∈ V̂h), (5.2)

we obtain an equivalent expression to (5.1) as follows:
Find ûεh ∈ V̂h such that

ah(ûεh, v̂h) +
1

ε
(ûεh, v̂h)Ω1 = (f̃ , v̂h)D (∀v̂h ∈ V̂h).

(5.3)

At this stage, we recall the following well-known result (cf. [8, Corollary 6.9],

[7, §3]):

Lemma 5.1. We have ah(v̂h, ŵh) = (∇uh,∇vh)D for v̂h, ŵh ∈ V̂h with vh =

M−1
h v̂h ∈ Vh and wh = M−1

h ŵh ∈ Vh.

By taking into account of this fact, we see that problem (5.1) is equivalently

written as (4.5). Thus, we have the following Lemma.

Lemma 5.2. Let uε ∈ H1
0 (D) and ûεh ∈ V̂h be solutions of (2.3) and (5.1),

respectively. Set uεh = M−1
h ûεh. Then, we have

‖∇(uε − uεh)‖0,D +
1√
ε
‖uε − uεh‖0,Ω1

≤ C(h+ hε−1/4 + hε−1/2 + h2ε−3/4)‖f‖0,Ω. (5.4)

At this stage, we introduce a discrete H1
0 norm defined as

|v̂h|1,D,h = ah(v̂h, v̂h)
1
2 (v̂h ∈ V̂h). (5.5)

An error estimate for the finite volume approximation is given as follows.

Theorem 5.3. Let uε and ûεh be solutions of (2.3) and (5.1), respectively. Set

êh = Qhuε − ûh ∈ V̂h. Then, we have

|êh|1,D,h ≤ C(h+ hε−1/4 + hε−1/2 + h2ε−3/4)‖f‖0,Ω. (5.6)

Proof. Set eh = M−1
h êh ∈ Vh. Then, it is explicitly given as eh = Ihuε − uh with

uh = M−1
h ûh. Hence, in view of Lemmas 5.1 and 5.3, we have by using (4.9)

|êh|1,D,h = ah(êh, êh)
1
2 = (∇eh,∇eh)

≤ ‖∇(Ihuε − uε)‖0,D + ‖∇(uε − uεh)‖0,D
≤ C(h+ hε−1/4 + hε−1/2 + h2ε−3/4)‖f‖0,Ω,

which completes the proof.
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A Proof of Lemma 2.4

It suffices to consider the case Ω = RN+ , since then the general case is proved by

the standard argument by using partition of the unity and localization technique

(see, for example, [15, §20]).

We suppose that ĥ(ξ′) is the Fourier transform of a function h(x1, . . . , xN−1),

where ξ′ = (ξ1, . . . , ξN−1). Similarly, let ŵ(ξ) be the Fourier transform of a

function w(x) in variables (x1, . . . , xN−1), where ξ = (ξ′, xN ). We apply the

extension formula in [11, Theorem 5.2, Chapter 2] with a slightly modification.

Thus, we propose

v̂(ξ′, xN ) = xN exp
(
−(1 + |ξ′|)η−2, xN

)
ĝ(ξ′). (1.1)

Indeed, let |α| ≤ 2, let us consider wα = ∂αv in RN+ and set wα = 0 for xN < 0.

Let us denote α = (α1, . . . , αN , ), and α = (α′, αN ). Hence ŵα(ξ) is a finite sum

of expressions like

aI(ξ) = a

∫ ∞
0

e(−ixN ξN )(ξ′)α
′
((1 + |ξ′|)η−2)αN−jx1−j

N ·

exp
(
−(1 + |ξ′|)η−2, xN

)
ĝ(ξ′)dxN ,

where a is a constant, j = 0, 1. We have:

I(ξ) =
(ξ′)α

′
((1 + |ξ′|)η−2)αN−j ĝ(ξ′)

((1 + |ξ′|)η−2 + iξN )2−j ,

and so

‖I(ξ)‖20,RN = C

∫
RN−1

(ξ′)2α′((1 + |ξ′|)η−2)2αN−3|ĝ(ξ′)|2dξ′

≤


Cη−2‖g‖21

2
,Γ
, αN = 2,

Cη2‖g‖21
2
,Γ
, αN = 1,

Cη6‖g‖21
2
,Γ
, αN = 0.

This completes the proof. 2
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