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Abstract

We study a linearly semidiscrete-in-time finite difference method for
the system of nonlinear Schrödinger equations that is a model of the in-
teraction of a non-relativistic particles with different masses. The main
aim is to show that the scheme is second-order convergent.

1 Introduction and main results

We consider the following system of nonlinear Schrödinger equations:





i∂tu + α∆u = λūv, t ≥ 0, x ∈ Rd,

i∂tv + β∆v = µu2, t ≥ 0, x ∈ Rd,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Rd,

(1)

where u and v are complex-valued functions, ∆ is the Laplacian in Rd , α and
β are positive constants, and λ and µ are complex constants. This system is a
model of the interaction of a non-relativistic particles with different masses.

The mathematical study for (1) is well developed. Throghout this paper, we
suppose that

s > d/2, s : integer.

For some s1 ≥ s, there exists a constant T ∗ = T ∗(u0, v0) ∈ (0,∞] such that the
system (1) admits a unique maximal solution

(u, v) ∈ Cs1([0, T ∗); Hs1(Rd)),

for any initial data (u0, v0) ∈ Hs1(Rd); see, e.g., Cazenave [3]. Moreover, the
aymptotic profiles of solutions of (1) are studied, for example, in [5] and [6].

In this paper, we are concerned with a time discretization method for (1). As
is well-known, we need to consider implicit schemes to obtain stable numerical
solutions for Schrödinger equations. Especially, the Crank-Nicolson scheme is
useful and widely applied, since it is stable and second order convergent. How-
ever, if applying the Crank-Nicolson scheme to a nonlinear Schrödinger equation,
we deduce a nonlinear elliptic equation at each time step as the the resulting
equation in order to maintain the second order convergence (cf. [1], [4]). On a
consequence, we meet another difficulty for solving nonlinear elliptic equations.
This can be quite time-consuming when the size of a fully discretized problem
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is very large. In this connection, Besse’s relaxation scheme ([2]) is a method
worthy of note. He considers a nonlinear Schrödinger equation and studies a lin-
ear scheme by considering both the main time step tn and the dual one tn+1/2.
Here, by a linear scheme, we mean a time discretization method whose resulting
equations consist of linear elliptic equations. His relaxation scheme is shown
to be convergent but the proof of the second order convergence is still open at
present.

In this paper, we propose a linear scheme for (1) that is motivated by the
relaxation scheme. The main contribution of this paper is to show that it is
actually second order convergent. As stated above, we restrict our attention
within a time discretization scheme and not discuss about space discretizations.
However, the resulting equations of our scheme is linear so that the standard
space discretization methods, for example, the finite difference, finite element,
spectral methods are readily applicable. As a matter of fact, fully discrete
schemes for (1) by those methods under various boundary conditions will be
studied in forthcoming papers. Moreover, numerical examples will be reported
there.

Now let us state the time discretization scheme for (1) to be considered. let
h be a time step size. We propose the following scheme for (1).





i
un+ 3

2 − un+ 1
2

h
+ α∆

un+ 3
2 + un+ 1

2

2
= λ

(
un+ 3

2 + un+ 1
2

2

)
vn+1,

i
vn+1 − vn

h
+ β∆

vn+1 + vn

2
= µ(un+ 1

2 )2
(2)

for n = 0, 1, 2, . . . Namely the first and the second equations of (1) are discretized
at times tn+1 = (n + 1)h and tn+ 1

2
= (n + 1

2 )h, respectively.
The scheme (2) consists of two linear equations for solving un+3/2 and vn+1

at each time step. More specifically, the first equation of (2) is equivalently
written as

Kn+1

(
un+ 3

2

ūn+ 3
2

)
=

( (
1 + iαh

2 ∆
)
un+ 1

2 − iλh
2 ūn+ 1

2 vn+1
(
1− iαh

2 ∆
)
ūn+ 1

2 + iλh
2 un+ 1

2 v̄n+1

)

where

Kn+1 =
(

1− iαh
2 ∆ iλh

2 vn+1

−iλh
2 v̄n+1 1 + iαh

2 ∆

)
.

Since the operator Kn+1 is defined in terms of the solution vn+1 at the previous
time step, it is not certain that Kn+1 is invertible at this stage. However,
as we will state in Propositon 1 and Theorem 2 below, the scheme (2) has a
unique solution in tn+3/2 < T ∗ for a suitably chosen h so that Kn+1 is actually
invertible.

Below, we use the usual Lebesgue spaces L2 = L2(Rd), L∞ = L∞(Rd) and
Sobolev spaces Hk = Hk(Rd) for an integer k together with their standard
norms. We write as

‖· ‖L2 = ‖· ‖L2(Rd) and ‖· ‖Hs = ‖· ‖Hs(Rd).

First, we state the following local stability result which plays an important
role.
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Proposition 1 Let a, b ∈ Hs, and put R ≥ ‖a‖Hs + ‖b‖Hs . Then there exist
a constant TR > 0, which depends only on R, λ, µ, s and d, a unique solution
(un+ 1

2 , vn)n of (2) with initial condition (u
1
2 , v0) = (a, b) satisfies

‖un+ 1
2 ‖Hs + ‖vn‖Hs ≤ 2R (3)

for all n ∈ N with nh ≤ TR.

It should be kept in mind that, since h ∈ (0, TR/2], the set {n ≥ 1 | nh ≤ TR}
is not an empty set. This proposition will be proved in section 2, after having
prepared a few prelimimary results.

We are now in a position to state the main results of this paper.
Theorem 2 Let s ∈ N and s > d/2. Let u0, v0 ∈ Hs+6, and let T ∗ = T ∗(u0, v0)
be the maximal existence time of the solution (u, v) of (1) as mentioned before.
Then (u, v) further satisfies

(u, v) ∈
3⋂

k=0

Ck
(
[0, T ∗);

(
Hs+6−2k

)2
)

. (4)

Let T ∈ (0, T ∗) be arbitary, and set M∗ = max0≤k≤3{Mk}, where

Mk = max
t∈[0,T ]

{‖∂k
t u(t)‖Hs+6−2k + ‖∂k

t v(t)‖Hs+6−2k

}
(k = 0, 1, 2, 3). (5)

Moreover, let (un+ 1
2 , vn)n be the solution of (2) with initial condition

u
1
2 = u0 +

ih

2
(α∆u0 − λu0v0), v0 = v0. (6)

Then there exist positive constants h0 and K0, which depend only on α, β, λ, µ,
T and M0, such that the problem (2) is solvable and the solution (un+ 1

2 , vn)n

satisfies
‖u(tn+ 1

2
)− un+ 1

2 ‖Hs + ‖v(tn)− vn‖Hs ≤ K0h
2 (7)

for all h ∈ (0, h0) and n ∈ N satisfying (n + 1)h ≤ T .

2 Proof of Proposition 1

First, we collect preliminary results, which we use in the proof of Proposition
1 and Theorem 2. We introduce operators, for positive constants α and β,

Aα =
(

I + i
αh

2
∆

)(
I − i

αh

2
∆

)−1

, Bβ =
(

I − i
βh

2
∆

)−1

which are primary defined on L2, where I denotes the identity operator in
L2. An application of the Fourier transformation, we can deduce the following
lemma.
Lemma 1 1. Aα is a unitary operator on Hs and we can write

Aα =
(

I − i
αh

2
∆

)−1 (
I + i

αh

2
∆

)
.
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2. Bβ is a bounded operator on Hs.

The following estimates are readily obtainable cosequeces of the Taylor’s
theorem.
Lemma 2 1. Let f(t) ∈ C3([0, T ]; Hs), h > 0, t + h ∈ [0, T ], and t− h ∈ [0, T ].
Then we have

‖h−1(f(t + h)− f(t− h))− 2∂tf(t)‖Hs ≤ 1
3
‖f‖C3([0,T ];Hs)h

2.

2. Let f(t) ∈ C2([0, T ];Hs), h ≥ 0, t + h ∈ [0, T ], and t − h ∈ [0, T ]. Then we
have

‖f(t + h) + f(t− h)− 2f(t)‖Hs ≤ ‖f‖C2([0,T ];Hs)h
2.

We will make use of the well-known Sobolev inequality.
Lemma 3 There exists a positive constant C which depends only on d and s
such that

‖uv‖Hs ≤ C‖u‖Hs‖v‖Hs

for all u, v ∈ Hs.

Now we can state the following proof.
Proof of Proposition 1. It is based on the contraction mapping principle.
Let a, b ∈ Hs be arbitrary and set R ≥ ‖a‖Hs + ‖b‖Hs .

First, Equation (2) with initial condition (u
1
2 , v0) = (a, b) can be written in

the following form with Duhamel’s principle:




un+ 3
2 = An+1

α a− iλh

n∑

j=0

An−j
α Bα

(
uj+ 3

2 + uj+ 1
2

2

)
vj+1,

vn+1 = An+1
β b− iµh

n∑

j=0

An−j
β Bβ

(
uj+ 1

2

)2
(8)

for n = 0, 1, 2, . . .
For the time being, we fix N ∈ N and set N̂ = {1, 2, . . . , N}. Then, we

consider a Banach space

XN = {(wn+ 1
2 , ŵn)n∈N̂ | wn+ 1

2 , ŵn ∈ Hs ∀n ∈ N̂}
with the norm

‖(wn+ 1
2 , ŵn)n‖XN = sup

n∈N̂

(
‖wn+ 1

2 ‖Hs + ‖ŵn‖Hs

)
,

for (wn+ 1
2 , ŵn)n ∈ XN . We introduce T : XN → XN by setting

(ũn+ 1
2 , ṽn)n = T (un+ 1

2 , vn)n, (9)

where




ũn+ 3
2 = An+1

α a− iλh

n∑

j=0

An−j
α Bα

(
uj+ 3

2 + uj+ 1
2

2

)
vj+1,

ṽn+1 = An+1
β b− iµh

n∑

j=0

An−j
β Bβ

(
uj+ 1

2

)2
(10)
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for n = 0, 1, ..., N − 1. Here, we set u
1
2 = a.

Below, we will show that T is a contraction operator from a closed ball B2R

into itself, with a suitably chosen h, where

B2R =
{

(wn+ 1
2 , ŵn)n ∈ XN | ‖(wn+ 1

2 , ŵn)n‖XN
≤ 2R

}
.

First, let (un+ 1
2 , vn)n ∈ B2R, and set (ũn+ 1

2 , ṽn)n = T (un+ 1
2 , vn)n. By using

Lemma 1 and Lemma 3, we have

‖ũn+ 3
2 ‖Hs ≤ ‖a‖Hs + Ch

n∑

j=0

(
‖uj+ 3

2 ‖Hs + ‖uj+ 1
2 ‖Hs

)
‖vj+1‖Hs

≤ ‖a‖Hs + CNhR2,

‖ṽn+1‖Hs ≤ ‖b‖Hs + Ch

n∑

j=0

‖uj+ 1
2 ‖2Hs ≤ ‖b‖Hs + CNhR2.

for n = 0, 1, . . . , N−1. Hence there exists a positive constant C1, which depends
only on d, s, λ and µ, such that

‖ũn+ 3
2 ‖Hs + ‖ṽn+1‖Hs ≤ R + C1NhR2

for all n = 0, 1, . . . , N − 1. Therefore, if

C1NhR ≤ 1 (11)

then we have ‖(ũn+ 1
2 , ṽn)n‖XN ≤ 2R, which implies that T (B2R) ⊂ B2R.

Next, let (un+ 1
2

1 , vn
1 )n, (un+ 1

2
2 , vn

2 )n ∈ B2R, and let

(ũn+ 1
2

1 , ṽn
1 )n = T (un+ 1

2
1 , vn

1 )n, (ũn+ 1
2

2 , ṽn
2 )n = T (un+ 1

2
2 , vn

2 )n.

Then, we have

‖ũn+ 3
2

1 − ũ
n+ 3

2
2 ‖Hs

≤ Ch

n∑

j=0

{ (
‖uj+ 3

2
1 − u

j+ 3
2

2 ‖Hs + ‖uj+ 1
2

1 − u
j+ 1

2
2 ‖Hs

)
‖vj+1‖Hs

+
(
‖uj+ 3

2
2 ‖Hs + ‖uj+ 1

2
2 ‖Hs

)
‖vj+1

1 − vj+1
2 ‖Hs

}

≤ CNhR‖(uk+ 1
2

1 , vk
1 )k − (uk+ 1

2
2 , vk

2 )k‖XN ,

and

‖ṽn+1
1 − ṽn+1

2 ‖Hs ≤ Ch

n∑

j=0

(
‖uj+ 1

2
1 ‖Hs + ‖uj+ 1

2
2 ‖Hs

)
‖uj+ 1

2
1 − u

j+ 1
2

2 ‖Hs

≤ CNhR‖(uk+ 1
2

1 , vk
1 )k − (uk+ 1

2
2 , vk

2 )k‖XN

for n = 0, 1, . . . , N−1. Hence there exists a positive constant C2, which depends
only on d, s, λ and µ, such that

‖ũn+ 3
2

1 − ũ
n+ 3

2
2 ‖Hs + ‖ṽn+1

1 − ṽn+1
2 ‖Hs

≤ C2NhR‖(uk+ 1
2

1 , vk
1 )k − (uk+ 1

2
2 , vk

2 )k‖XN
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for all n = 0, 1, ..., N − 1. Therefore, if

C2NhR ≤ 1
2
,

then we have

‖T (uk+ 1
2

1 , vk
1 )k − T (uk+ 1

2
2 , vk

2 )k‖XN
≤ 1

2
‖(uk+ 1

2
1 , vk

1 )k − (uk+ 1
2

2 , vk
2 )k‖XN

,

which implies that T : B2R → B2R is a contraction mapping. At this stage, we
define as

TR = min
{

1
C1R

,
1

2C2R

}
.

Moreover, from now on, and chose N as N = max{n | n ≥ 1, nh ≤ TR}. Then,
the mapping T turns out to be a cotraction mapping of B2R → B2R. As the
result, T has a unique fixed point (un+ 1

2 , vn)n∈N̂ which obviously satisfies (10)
and (3) for 1 ≤ n ≤ N . This completes the proof of Proposition 1. ¤

3 Proof of Theorem 2

This section is devoted to the proof of Theorem 2.
Let u0, v0 ∈ Hs+6 and let (un+ 1

2 , vn)n be the solution of (2) with initial
condition (6). Then there exists a positive constant C∗ which depends s, d and
α, such that

‖u0‖Hs + ‖v0‖Hs ≤ C∗M∗(1 + M∗)

Put M ′ := max{M∗, C∗(M∗ + 1)M∗}. From Propsition 1, there exists a
constant TM ′ > 0, which depends only on R, λ, µ, s and d, a unique solution
(un+ 1

2 , vn)n of (2) with initial condition (6) satisfies

‖un+ 1
2 ‖Hs + ‖vn‖Hs ≤ 2M ′

for all n ∈ N with nh ≤ TM ′ . We define

νh = sup{n ∈ N | ‖un+ 1
2 ‖Hs + ‖vn‖Hs ≤ 3M ′}.

We divide the proof into two steps.

Step 1. First, we show that there exist positive constants h1 and K0, which
depend only on T and M0, such that the estimate (7) holds for all h ∈ (0, h1)
and n ∈ N satisfying

(n + 1)h ≤ T, n ≤ νh. (12)

We define as

Nh = min
{[

T

h

]
− 1, νh

}
,

where [T/h] denotes the integer part of T/h.
For n = 0, 1, 2, ..., we set

θn+ 1
2 = u(tn+ 1

2
)− un+ 1

2 , ρn = v(tn)− vn.

Then we have

θn+ 3
2 − θn+ 1

2 − i
αh

2
∆(θn+ 3

2 + θn+ 1
2 ) = ihΦn+1,
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or equivalently,
θn+ 3

2 = Aαθn+ 1
2 + ihBαΦn+1,

where Φn+1 = φn+1
1 + φn+1

2 + φn+1
3 ,

φn+1
1 = i

{
∂tu(tn+1)−

u(tn+ 3
2
)− u(tn+ 1

2
)

h

}
,

φn+1
2 = α∆

{
u(tn+1)−

u(tn+ 3
2
) + u(tn+ 1

2
)

2

}
,

φn+1
3 = −λ

{
u(tn+1)v(tn+1)−

(
un+ 3

2 + un+ 1
2

2

)
vn+1

}
.

It follows from Lemma 1 that

‖θn+ 3
2 ‖Hs ≤ ‖θn+ 1

2 ‖Hs + h‖Φn+1‖Hs .

Next, we estimate ‖Φn+1‖Hs . Fisrt, from Lemma 2, we have

‖φn+1
1 ‖Hs ≤ CM3h

2, ‖φn+1
2 ‖Hs ≤ CM2h

2

for n = 0, 1, ..., Nh − 1, where M2 and M3 are constants defined by (5).
Moreover, since

u(tn+1)v(tn+1)−
(

un+ 3
2 + un+ 1

2

2

)
vn+1

=

{
u(tn+1)−

(
u(tn+ 3

2
) + u(tn+ 1

2
)

2

)}
v(tn+1)

+

{(
u(tn+ 3

2
) + u(tn+ 1

2
)

2

)
−

(
un+ 3

2 + un+ 1
2

2

)}
v(tn+1)

+

(
un+ 3

2 + un+ 1
2

2

)
{v(tn+1)− vn+1},

it follows from Lemma 2 that

‖φn+1
3 ‖Hs ≤ CM2h

2‖v(tn+1)‖Hs

+ C(‖u(tn+ 3
2
)− un+ 3

2 ‖Hs + ‖u(tn+ 1
2
)− un+ 1

2 ‖Hs)‖v(tn+1)‖Hs

+ C(‖un+ 3
2 ‖Hs + ‖un+ 1

2 ‖Hs)‖v(tn+1)− vn+1‖Hs

≤ CM ′(M2h
2 + ‖θn+ 3

2 ‖Hs + ‖θn+ 1
2 ‖Hs + ‖ρn+1‖Hs)

for n = 0, 1, ..., Nh − 1. Thus, we obtain

‖Φn+1‖Hs ≤ CM ′h2

+ CM ′
(
‖θn+ 3

2 ‖Hs + ‖θn+ 1
2 ‖Hs + ‖ρn+1‖Hs

)
,
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and cosequently

‖θn+ 3
2 ‖Hs ≤ ‖θn+ 1

2 ‖Hs + h‖Φn+1‖Hs

≤ ‖θn+ 1
2 ‖Hs + CM ′h3

+ CM ′h
(
‖θn+ 3

2 ‖Hs + ‖θn+ 1
2 ‖Hs + ‖ρn+1‖Hs

)
. (13)

for n = 0, 1, . . . , Nh − 1.
Similarly, we have

ρn+1 − ρn − i
βh

2
∆(ρn+1 + ρn) = ihΨn+ 1

2 , (14)

or equivalently,
ρn+1 = Aβρn + ihBβΨn+ 1

2 ,

where Ψn+ 1
2 = ψ

n+ 1
2

1 + ψ
n+ 1

2
2 + ψ

n+ 1
2

3 ,

ψ
n+ 1

2
1 = i

{
∂tv(tn+ 1

2
)− v(tn+1)− v(tn)

h

}
,

ψ
n+ 1

2
2 = β∆

{
v(tn+ 1

2
)− v(tn+1) + v(tn)

2

}
,

ψ
n+ 1

2
3 = −µ

{(
u(tn+ 1

2
)
)2

−
(
un+ 1

2

)2
}

.

Again, from Lemma 2, we have

‖ψn+ 1
2

1 ‖Hs ≤ CM3h
2, ‖ψn+ 1

2
2 ‖Hs ≤ CM2h

2

for n = 0, 1, ..., Nh − 1. Moreover, we have

‖ψn+ 1
2

3 ‖Hs ≤ C(‖u(tn+ 1
2
)‖Hs + ‖un+ 1

2 ‖Hs)‖u(tn+ 1
2
)− un+ 1

2 ‖Hs

≤ CM ′‖θn+ 1
2 ‖Hs

for n = 0, 1, ..., Nh − 1. Thus, we obtain

‖ρn+1‖Hs ≤ ‖ρn‖Hs +h‖Ψn+ 1
2 ‖Hs ≤ ‖ρn‖Hs +CM∗h3+CM ′h‖θn+ 1

2 ‖Hs (15)

for n = 0, 1, ..., Nh − 1.
Summing up estimates (13) and (15), we deduce

‖θn+ 3
2 ‖Hs + ‖ρn+1‖Hs

≤ ‖θn+ 1
2 ‖Hs + ‖ρn‖Hs + C3M

′h3

+ C4M
′h

(
‖θn+ 3

2 ‖Hs + ‖ρn+1‖Hs + ‖θn+ 1
2 ‖Hs + ‖ρn‖Hs

)

where C3 and C4 denote positive constants depending only on d, s, α, β, λ and
µ. Therefore

(1− C4M
′h)

(
‖θn+ 3

2 ‖Hs + ‖ρn+1‖Hs

)

≤ (1 + C4M
′h)

(
‖θn+ 1

2 ‖Hs + ‖ρn‖Hs

)
+ C3M

′h3
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for n = 0, 1, ..., Nh − 1.
At this stage, we define a positive constant h1 by

h1 =
1

2C4M ′ (16)

and we assume that h ∈ (0, h1]. Then, we have

‖θn+ 3
2 ‖Hs + ‖ρn+1‖Hs

≤ (1 + 4C4M
′h)

(
‖θn+ 1

2 ‖Hs + ‖ρn‖Hs

)
+ 2C3M

′h3

≤ e4C4M ′h
(
‖θn+ 1

2 ‖Hs + ‖ρn‖Hs

)
+ 2C3M

′h3

for n = 0, 1, ..., Nh − 1. Thus, we have

‖θn+ 1
2 ‖Hs + ‖ρn‖Hs

≤ e4C2M ′nh
(
‖θ 1

2 ‖Hs + ‖ρ0‖Hs

)
+ 2C1M

′h3
n−1∑

j=0

e4C2M ′jh

≤ e4C2M ′T ‖θ 1
2 ‖Hs + 2C1M

′Te4C2M ′T h2 (17)

n ∈ N satisfying (12).
In view of the regularity property (4), we have

∂tu(0) = i(α∆u0 − λū0v0).

Hence, using the Taylor theorem, we can calculated as

θ
1
2 = u(t 1

2
)− u

1
2 =

{
u(0) +

h

2
∂tu(0) +

∫ h
2

0

(
h

2
− τ

)
∂2

τu(τ) dτ

}

−
{

u0 + i
h

2
(α∆u0 − λu0v0)

}

=
∫ h

2

0

(
h

2
− τ

)
∂2

τu(τ) dτ.

This gives

‖θ 1
2 ‖Hs ≤

∫ h
2

0

(
h

2
− τ

)
‖∂2

τu(τ)‖Hs dτ ≤ h2

8
max

t∈[0,T ]
‖∂2

t u(t)‖Hs ≤ M ′

8
h2.

Therefore, taking

K0 =
M ′

8
e4C2M ′T + 2C1M

′Te4C2M ′T ,

we have shown that the desired estimate (7) holds for all h ∈ (0, h1] and n ∈ N
satisfying (12).

Step 2. We prove that there exists a positive constant h0 such that
[
T

h

]
− 1 ≤ νh
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holds for all h ∈ (0, h0). We argue it by contradiction.
Assume that νh <

[
T
h

]− 1. Then, we have Nh = νh and in view of Step 1,

‖u(tn+ 1
2
)− un+ 1

2 ‖Hs + ‖v(tn)− vn‖Hs ≤ K0h
2

for all n = 1, ..., νh and h ∈ (0, h1). Moreover, since (νh + 1)h ≤ T , it follows
from the definition of M ′ that

max
n=1,...,νh

(
‖u(tn+ 1

2
)‖Hs + ‖v(tn)‖Hs

)
≤ M ′.

Combinig those inequalities, we get

‖un+ 1
2 ‖Hs + ‖vn‖Hs ≤ M ′ + K0h

2

for all n = 1, ..., νh.
We define a positive constant h0 by

h0 = min

{
h1,

√
M ′

2K0
,

1
2
T 3

2 M ′

}
,

where T 3
2 M ′ is the constant introduced in Proposition 1 with R = 3

2M ′.
From now on, soppose that h ∈ (0, h0]. Then,

‖uνh+ 1
2 ‖Hs + ‖vνh‖Hs ≤ M ′ + K0h

2 ≤ 3
2
M ′.

We apply Proposition 1 with a = uνh+ 1
2 , b = vνh and R = 3

2M ′ and obtain

‖uνh+ 3
2 ‖Hs + ‖vνh+1‖Hs ≤ 3M ′.

This contradicts the definition of νh. Therefore,
[

T
h

] − 1 ≤ νh holds for all
h ∈ (0, h0]. That is, we have Nh =

[
T
h

] − 1 for all h ∈ (0, h0]. Hence, by the
result of Step 1, we see that the desired estimate (7) holds for all h ∈ (0, h0]
and n ∈ N satisfying (n + 1)h ≤ T . This completes the proof of Theorem 2. ¤
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