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Abstract

We show quenched large deviations for the simple random walk on
percolation models with long-range correlations defined by Drewitz,
Ráth and Sapozhnikov [3], which contain supercritical Bernoulli per-
colations, random interlacements, the vacant set of random interlace-
ments and the level set of the Gaussian free field. Our result is an
extension of Kubota’s result [8] for supercritical Bernoulli percola-
tions.

1 Introduction

In the research of percolation, it is important to understand geometric prop-
erties of clusters and behaviors of random walks on the clusters. In the case
of supercritical Bernoulli percolation, Antal and Pisztora [1] gave large devi-
ation estimates for the graph distance of two sites lying in the same cluster.
Kubota [8] showed quenched large deviations for the simple random walk
on supercritical Bernoulli percolation on Zd. The strategy of proof in [8] is
similar to the one in Zerner [10], which showed large deviations for random
walk in random environment. However, the configurations of percolation fluc-
tuate and the random walk has non-elliptic transition probabilities. These
obstructions are overcame by using [1] Theorem 1.1.

Drewitz, Ráth and Sapozhnikov [3] considered percolation models on Zd

with long range correlation satisfying some conditions (Assumption 1.1 in be-
low). They obtained large deviation estimates for the graph distance, which
are similar to [1] Theorem 1.1 and a shape theorem for balls in the graph
distance. The percolation model they considered is a generalization of the

∗Graduate School of Mathematical Sciences, The University of Tokyo; e-mail :
kazukio@ms.u-tokyo.ac.jp This work was supported by Grant-in-Aid for JSPS Fellows

1



supercritical Bernoulli site percolation on Zd. Moreover, the conditions are
satisfied by random interlacements, the vacant set of random interlacements
and the level set of the Gaussian free field.

In this paper, we show quenched large deviation principles for the simple
random walk on percolation models {Pu}u considered by Drewitz, Ráth and
Sapozhnikov. Our strategy of proof follows the one in [10] and [8]. In [8], the
fact that Pp is a product measure on {0, 1}Zd

is essentially used in order to
show that the Lyapunov exponent αλ(·) is subadditive. However, in the case
under consideration, Pu is not necessarily a product measure. To get over
this obstruction, we use some ergodic theoretical results for commutative
transformations, specifically, Furstenberg and Katznelson’s theorem [5] and
Tao [9] Theorem 1.1.

Now we describe the setting. Let d ≥ 2. We write |x|∞ = max1≤i≤d |xi|,
and, |x|1 =

∑
1≤i≤d |xi| for x = (x1, . . . , xd) ∈ Rd. Let B(x, r) = {y ∈ Zd :

|x − y|∞ ≤ brc}, x ∈ Zd, r ≥ 0.
Let us denote a configuration of {0, 1}Zd

by ω = (ω(x))x∈Zd . Let C =
C(ω) = {x ∈ Zd : ω(x) = 1}, ω ∈ {0, 1}Zd

. We regard C(ω) as a subgraph
of Zd in which the set of edges is {{x, y} : x, y ∈ C(ω), |x − y|1 = 1}. Let
Cx = Cx(ω) be the connected component in C(ω) containing x. Let Cr,
r ∈ [0, +∞], be the set of x ∈ Zd such that l1-diameter of Cx is larger than
or equal to r. Let D(x, y) be the graph distance in C between x and y. Let
D(x, y) = +∞ if x and y are in different connected components in C.

Let θx, x ∈ Zd, be the canonical shifts on {0, 1}Zd
, that is, θx(ω)(·) =

ω(x+ ·), ω ∈ {0, 1}Zd
. Let Φy : {0, 1}Zd → {0, 1}, y ∈ Zd, be the map defined

by Φy(ω) = ω(y).
Let 0 ≤ a < b. Following [3], we assume that a family of probability

measures {Pu}a<u<b on {0, 1}Zd
satisfies the following conditions.

Assumption 1.1. (P1) Pu is invariant and ergodic with respect to the
lattice shifts θx, x ∈ Zd \ {0}, u ∈ (a, b).
(P2) For any u1 < u2 and any increasing event G, Pu1(G) ≤ Pu2(G).
(P3) There exist constants RP , LP < +∞, εP , χP > 0, and a real valued
function fP with fP (t) ≥ exp((log t)εP ), t ≥ LP , such that
Pu2(A1 ∩ A2) ≤ Pu1(A1)Pu1(A2) + exp(−fP (L)), and,
Pu1(B1 ∩ B2) ≤ Pu2(B1)Pu2(B2) + exp(−fP (L))
for any pair (R, L, u1, u2, x1, x2, A1, A2, B1, B2) with the following conditions,
(i) R ≥ RP is an integer.
(ii) L ≥ 1 is an integer.
(iii) u1, u2 are real numbers such that a < u1 < u2 < b and u2 ≥ (1+R−χP )u1.
(iv) x1, x2 ∈ Zd such that |x1 − x2|∞ ≥ RL.
(v) Ai (resp. Bi), i = 1, 2, are decreasing (resp. increasing) events such that
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Ai (resp. Bi) ∈ σ(Φy : y ∈ B(xi, 10L)).
(S1) (connectivity) There exists fS : (a, b) × Z+ → R such that for any
u ∈ (a, b), there exist ∆S(u) and RS(u) such that fS(u,R) ≥ (log R)1+∆S(u)

for R ≥ RS(u). Moreover, for any R ≥ 1,

Pu(CR ∩ B(0, R) 6= ∅) ≥ 1 − exp(−fS(u,R)), and,

Pu

 ∩
x,y∈CR/10∩B(0,R)

{x and y are connected in C ∩ B(0, 2R)}

 ≥ 1−exp(−fS(u,R)).

(S2) (density) u 7→ Pu(0 ∈ C∞) is positive and continuous.

The family of supercritical Bernoulli site percolations on Zd satisfies the
assumptions (P1)-(P3) and (S1)-(S2). (P3) is trivial because Pp is a

product measure on {0, 1}Zd
. We see (S1) by Grimmett’s book [7] (7.89)

and (8.98). and (S2) by [7] (8.8).
Fix u ∈ (a, b). By (S1), C∞ is non-empty and connected, Pu-a.s. and

hence C∞ is a unique infinite cluster, Pu-a.s. Let Ω0 = {0 ∈ C∞}. we define
the probability measure P on {0, 1}Zd

by P(A) = Pu(A|Ω0).
Let us define the random walk on the infinite cluster by the Markov chain

((Xn)n≥0, (P
x
ω )x∈C∞(ω)) on C∞(ω) whose transition probabilities are given by

P x
ω (X0 = x) = 1,

P x
ω (Xn+1 = x + e|Xn = x) =

1

2d
1{ω(e)=1} ◦ θx, |e|1 = 1, and,

P x
ω (Xn+1 = x|Xn = x) =

1

2d

∑
e′:|e′|1=1

1{ω(e′)=0} ◦ θx.

The following theorem is our main result.

Theorem 1.2. The law of Xn/n obeys the following large deviation principles
with rate function I(x) = supλ≥0(αλ(x) − λ), x ∈ Rd, where αλ(·) is the
function on Rd defined in Section 3.
(1) Upper bound : For any closed set A in Rd, we have P-a.s. ω,

lim sup
n→∞

log P 0
ω(Xn/n ∈ A)

n
≤ − inf

x∈A
I(x). (1.1)

(2) Lower bound : For any open set B in Rd, we have P-a.s. ω,

lim inf
n→∞

log P 0
ω(Xn/n ∈ B)

n
≥ − inf

x∈B
I(x). (1.2)
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2 Preliminaries

Let Hy be the first hitting time to y for the random walk (Xn)n.
Let λ ≥ 0. For x, y, z ∈ C∞, we let

aλ(x, y) = aω
λ(x, y) = − log Ex

ω[exp(−λHy)1{Hy<+∞}], and,

dλ(x, y) = max{aλ(x, y), aλ(y, x)}.

By the strong Markov property of (Xn)n,

aλ(x, z) ≤ aλ(x, y) + aλ(y, z), x, y, z ∈ C∞. (2.1)

By considering a path from x to y of length D(x, y) in C∞,

dλ(x, y) ≤ (λ + log(2d))D(x, y), x, y ∈ C∞. (2.2)

Let Tx : Ω → N ∪ {+∞} be the map defined by Tx(ω) = inf{n ≥
1 : nx ∈ C∞(ω)}, x ∈ Zd \ {0}, where we let inf ∅ = +∞. We define

the maps Θx : Ω0 → Ω0 by Θxω = θ
Tx(ω)
x ω. By the Poincaré recurrence

theorem, Θx is well-defined up to measure 0. By Lemma 3.3 in Berger and
Biskup [2], Θx is invertible measure-preserving and ergodic with respect to

P. Let T
(n)
x =

∑n−1
k=0 Tx ◦Θk

x. Then, by Birkhoff’s ergodic theorem and Kac’s
theorem, we have that for x ∈ Zd \ {0},

lim
n→∞

T
(n)
x

n
= E[Tx] = Pu(Ω0)

−1, P -a.s. and in L1(P). (2.3)

2.1 Some Lemmas

In this subsection, we describe some assertions derived from [3] Theorem 1.3.
By [3] Theorem 1.3, we have that for any u ∈ (a, b), there exist cu > 0

and Cu < +∞ such that for any x ∈ Zd,

Pu (D(0, x) > Cu|x|1, 0 ↔ x) ≤ Cu exp(−cu(log |x|1)1+∆S). (2.4)

Noting (2.4), we can show the following assertions by using the argu-
ments in the proofs of Garet and Marchand [6] Lemma 2.2 and Lemma 2.4
respectively. We omit the proofs.

Lemma 2.1. There exist C1, C2 > 0 such that for any r ≥ 1 and for any y
with |y|1 ≤ r,

Pu

(
D(0, y) ≤ (3r)d, 0 ↔ y

)
≤ C1 exp(−C2(log r)1+∆S).
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Lemma 2.2. There exists C3 > 0 such that E[D(0, Txx)] ≤ C3|x|1, x ∈ Zd.

Noting (2.4) and Lemma 2.1, we can show the following by using the
arguments in the proof of [8], Lemma 3.1, or, in the proof of [10] Lemma 6.
We omit the proof.

Lemma 2.3. Let λ ≥ 0. Then the following holds P-a.s. : For any ε ∈
Q∩ (0, +∞), there exists a positive number N such that for any x ∈ C∞ with
|x|1 ≥ N ,

sup{dλ(x, y) : y ∈ C∞, |x − y|1 ≤ ε|x|1} ≤ (λ + log(2d))Cuε|x|1.

3 Lyapunov exponents

Let the Lyapunov exponents αλ(x) = Pu(Ω0) infn≥1 E[aλ(0, T
(n)
x x)]/n, for λ ≥

0 and x ∈ Zd. They are obtained by Kingman’s subadditive ergodic theorem
as the following.

Proposition 3.1. Let λ ≥ 0 and x ∈ Zd \ {0}. Then,

lim
n→∞

aλ(0, T
(n)
x x)

T
(n)
x

= αλ(x), P-a.s.

Proof. Fix λ ≥ 0 and x ∈ Zd\{0}. Let Wm,n = aλ(T
(m)
x x, T

(n)
x x), 0 ≤ m < n.

Then, by using (2.1), (2.2) and Lemma 2.2, we see that Wm+1,n+1 = Wm,n ◦
Θx, W0,n ≤ W0,m + Wm,n, and, Wm,n ∈ L1({0, 1}Zd

, P), 0 ≤ m < n. Now
we can apply Kingman’s subadditive ergodic theorem to {Wm,n}0≤m<n and
obtain

lim
n→∞

aλ(0, T
(n)
x x)

n
= inf

n≥1

E[aλ(0, T
(n)
x x)]

n
, P-a.s.

By (2.3), we have that

lim
n→∞

aλ(0, T
(n)
x x)

T
(n)
x

= αλ(x), P-a.s.

We need the following lemma to show the subadditivity of the Lyapunov
exponents.
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Lemma 3.2. Let z1, z2 ∈ Zd. Then,

lim
n→∞

1

n

n∑
i=1

Pu(Ω0 ∩ θ−i
z1

Ω0 ∩ θ−i
z2

Ω0) exists and positive.

We denote this limit by bz1,z2.

Proof. By Tao [9] Theorem 1.1, there exists a function g ∈ L2({0, 1}Zd
, Pu)

such that

1

n

n∑
i=1

1Ω0 ◦ θi
0 · 1Ω0 ◦ θi

z1
· 1Ω0 ◦ θi

z2
→ g, n → ∞, in L2(Pu).

Since θ0 is the identity map on {0, 1}Zd
,

lim
n→∞

1

n

n∑
i=1

Pu(Ω0 ∩ θ−i
z1

Ω0 ∩ θ−i
z2

Ω0) =

∫
{0,1}Zd

gdPu.

Since Pu(Ω0) > 0, it follows from Furstenberg and Katznelson’s theorem
[5] that

lim inf
n→∞

1

n

n∑
i=1

Pu(Ω0 ∩ θ−i
z1

Ω0 ∩ θ−i
z2

Ω0) > 0.

These complete the proof.

Proposition 3.3. Let x, y ∈ Zd and q ∈ N. Then, we have that
(i) αλ(x + y) ≤ αλ(x) + αλ(y).
(ii) αλ(qx) = qαλ(x).
(iii) λ|x|1 ≤ αλ(x) ≤ (λ + log(2d))C3Pu(Ω0)|x|1, where C3 is the constant in
Lemma 2.2.

Proof. We can see the assertion (ii) by using the methods taken in the proof
of [8], Corollary 2.4. By noting (2.2) and Lemma 2.2, we have E[a(0, Txx)] ≤
(λ + log(2d))C3|x|1 and hence αλ(x) ≤ (λ + log(2d))C3Pu(Ω0)|x|1. λ|x|1 ≤
αλ(x) is shown by using the methods taken in the proof of [8], Lemma 2.2.
Thus we have the assertion (iii).

Now we show the assertion (i). We can assume without loss of generality
that x, y, x + y ∈ Zd \ {0}.

For z1, z2 ∈ Zd, let

Az1,z2 = {z1, z2 ∈ C∞, aλ(z1, z2) ≤ Cu(λ + log(2d))|z1 − z2|1},

where Cu is the constant in (2.4). Let

Ai = A0,ix ∩ A0,i(x+y) ∩ Aix,i(x+y).
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By (2.1),

1

n

n∑
i=1

E
[
aλ(0, i(x + y))

i
, Ai

]

≤ 1

n

n∑
i=1

E
[
aλ(0, ix)

i
, Ai

]
+

1

n

n∑
i=1

E
[
aλ(ix, i(x + y))

i
, Ai

]
.

Now it is sufficient to show the following convergences.

lim
n→∞

1

n

n∑
i=1

E
[
aλ(0, i(x + y))

i
, Ai

]
= αλ(x + y)

bx,x+y

Pu(Ω0)
. (3.1)

lim
n→∞

1

n

n∑
i=1

E
[
aλ(0, ix)

i
, Ai

]
= αλ(x)

bx,x+y

Pu(Ω0)
. (3.2)

lim
n→∞

1

n

n∑
i=1

E
[
aλ(ix, i(x + y))

i
, Ai

]
= αλ(y)

bx,x+y

Pu(Ω0)
. (3.3)

Here b denotes the constant defined in Lemma 3.2.
Now we prepare the following lemma.

Lemma 3.4.

lim
n→∞

1

n

n∑
i=1

P(Ai) =
bx,x+y

Pu(Ω0)
.

Proof. By Lemma 3.2, it is sufficient to show that

lim
i→∞

Pu(A
c
i ∩ Ω0 ∩ θ−i

x Ω0 ∩ θ−i
x+yΩ0) = 0.

By (2.2) and (2.4),

Pu

(
Ac

i ∩ Ω0 ∩ θ−i
x Ω0 ∩ θ−i

x+yΩ0

)
≤ Pu

(
Ω0 ∩ θ−i

x Ω0 ∩ Ac
0,ix

)
+Pu

(
Ω0 ∩ θ−i

x+yΩ0 ∩ Ac
0,i(x+y)

)
+Pu

(
θ−i

x Ω0 ∩ θ−i
x+yΩ0 ∩ Ac

ix,i(x+y)

)
≤ Pu (D(0, ix) > Cui|x|1, 0 ↔ ix)+Pu (D(0, i(x + y)) > Cui|x + y|1, 0 ↔ i(x + y))

+ Pu (D(ix, i(x + y)) > Cui|y|1, ix ↔ i(x + y))

≤ 3Cu exp
(
−cu(log(i min{|x|1, |x + y|1, |y|1}))1+∆S

)
.

Since x, y, x + y 6= 0, exp
(
−cu(log(i min{|x|1, |x + y|1, |y|1}))1+∆S

)
→ 0,

i → ∞. This completes the proof of Lemma 3.4.
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We show (3.2). First, we have that

E
[
aλ(0, ix)

i
, Ai

]
= E

[
aλ(0, ix)

i
− αλ(x), Ai

]
+ αλ(x)P(Ai).

By Lemma 3.4, it is sufficient to show that

E
[∣∣∣∣aλ(0, ix)

i
− αλ(x)

∣∣∣∣ 1Ai

]
→ 0, i → ∞. (3.4)

By Proposition 3.1, we have that∣∣∣∣aλ(0, ix)

i
− αλ(x)

∣∣∣∣ 1Ai
≤
∣∣∣∣aλ(0, ix)

i
− αλ(x)

∣∣∣∣ 1{0,ix∈C∞} → 0, i → ∞, P-a.s.

By the definition of Ai,∣∣∣∣aλ(0, ix)

i
− αλ(x)

∣∣∣∣ 1Ai
≤ Cu(λ + log(2d)) + αλ(x), i ≥ 1.

By the Lebesgue convergence theorem, we obtain (3.4). Thus (3.2) is shown.
We can show (3.1) in the same manner.
Finally we show (3.3). By Lemma 3.4, it is sufficient to show that

Eu

[∣∣∣∣aλ(ix, i(x + y))

i
− αλ(y)

∣∣∣∣ 1Ai

]
→ 0, i → ∞. (3.5)

By the shift invariance of Pu, we have

Eu

[∣∣∣∣aλ(ix, i(x + y))

i
− αλ(y)

∣∣∣∣ 1Ai

]
= Eu

[∣∣∣∣aλ(0, iy)

i
− αλ(y)

∣∣∣∣ 1θi
xAi

]
.

Now we have that aλ(0, iy) ≤ Cu(λ + log(2d))i|y|1 on θi
xAi. Hence,∣∣∣∣aλ(0, iy)

i
− αλ(y)

∣∣∣∣ 1θi
xAi

≤ Cu(λ + log(2d))|y|1 + αλ(y).

By Proposition 3.1,∣∣∣∣aλ(0, iy)

i
− αλ(y)

∣∣∣∣ 1θi
xAi

≤
∣∣∣∣aλ(0, iy)

i
− αλ(y)

∣∣∣∣ 1{0,iy∈C∞} → 0, i → ∞, Pu-a.s.

Thus we obtain (3.5) by using the Lebesgue convergence theorem and
hence (3.3) is shown. These complete the proof of the assertion (i).
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We can easily extend the Lyapunov exponent αλ(·) to the function on Rd

and then we have the following. See [10] Proposition 3 for proof.

Proposition 3.5. Let λ ≥ 0. Then, there exists a function αλ : Rd → [0,∞)
such that for any x ∈ Zd \ {0}, P-a.s.,

lim
n→∞

aλ(0, T
(n)
x x)

T
(n)
x

= αλ(x).

Moreover, for any x, y ∈ Rd and for any q ∈ (0, +∞), αλ(qx) = qαλ(x),
αλ(x + y) ≤ αλ(x) + αλ(y), and, λ|x|1 ≤ αλ(x) ≤ (λ + log(2d))C3Pu(Ω0)|x|1.

We state some properties of the Lyapunov exponent. See [10] Proposition
3 for proof.

Lemma 3.6. (i) x 7→ αλ(x) is convex on Rd.
(ii) λ 7→ αλ(x) is concave on [0, +∞).
(iii) (λ, x) 7→ αλ(x) is continuous on (0, +∞) × Rd.

4 Shape theorem

First, we state the following lemma, which is essentially the same as [6]
Lemma 5.5.

Lemma 4.1. Let z ∈ Zd \ {0}. Let η > 0. Then, we have P-a.s. that
there exists a positive integer N such that for any r ≥ N there exists k ∈
[(1 − η)r, (1 + η)r] such that kz ∈ C∞.

Let Ω1,λ,z be the set with probability 1 such that the statement in Propo-
sition 3.1 holds on the set for fixed λ, z. Let Ω2,z,η be the set with probability
1 such that the statement in Lemma 4.1 holds on the set for fixed z, η. Let
Ω3,λ be the set with probability 1 such that the statement in Lemma 2.3
holds on the set for fixed λ. For λ ≥ 0, we let

Ω(λ) =
∩

z∈Zd

Ω1,λ,z ∩
∩

z∈Zd\{0},η∈Q∩(0,∞)

Ω2,z,η ∩ Ω3,λ.

We remark that P(Ω(λ)) = 1, λ ≥ 0.

Proposition 4.2 (Shape theorem). We have P-a.s. that for any λ ≥ 0,

lim
|x|1→∞, x∈C∞

aλ(0, x) − αλ(x)

|x|1
= 0.
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Proof. The following proof is essentially the same as the proof of [8] Theorem
1.2. By using Lemma 3.6 and the argument in the final part of [10] Theorem
A, we see that it is sufficient to show that for any fixed λ ≥ 0 and ε ∈ Q∩(0, 1),
the following holds P-a.s., there exists a positive integer N such that for any
x ∈ C∞ with |x|1 ≥ N , |aλ(0, x) − αλ(x)| ≤ ε|x|1.

Assume this statement fails. Then, there exist λ0 ≥ 0 and ε0 > 0 and
an event A with positive probability such that on A, there exists a sequence
(xn)n ⊂ C∞ satisfying |xn|1 → ∞, and |aλ0(0, xn)−αλ0(xn)| ≥ ε0|xn|1, n ≥ 1.

Take a configuration ω ∈ A ∩ Ω(λ0) and a sequence (xn)n in C∞(ω)
described as above. By taking a subsequence if necessary, we can assume
that xn/|xn|1 converges to a point v ∈ {z ∈ Rd : |z|1 ≤ 1}.

Take η ∈ Q ∩ (0,∞), which is chosen small enough later. Let v′ ∈
Sd−1 ∩ Qd such that |v − v′| < η. Let M ∈ N≥1 such that Mv′ ∈ Zd. Let
x′

n = b|xn|1/McMv′, n ≥ 1. By recalling Lemma 4.1 and ω ∈ Ω(λ0), we have
that for any n, there exists kn = kn(η, ω) such that (1− η)b|xn|1/Mc ≤ kn ≤
b|xn|1/Mc, and, knMv′ ∈ C∞(ω). Let x′′

n = knMv′. Then,

|xn − x′′
n|1 ≤ |xn − x′

n|1 + |x′
n − x′′

n|1
≤ |xn − |xn|1v′|1 + ||xn|1v′ − x′

n|1 + M(b|xn|1/Mc − kn)

≤ |xn|1
∣∣∣∣ xn

|xn|1
− v′

∣∣∣∣+ M + η|xn|1.

Hence |xn − x′′
n| ≤ 3η|xn|1 for sufficiently large n.

Recalling x′′
n = knMv′ ∈ C∞, Proposition 3.1 and ω ∈ Ω(λ0), we have

that

lim
n→∞

aλ0(0, x
′′
n)

kn

= lim
n→∞

aλ0(0, knMv′)

kn

= αλ0(Mv′) =
αλ0(x

′′
n)

kn

.

Since kn ≤ |xn|1,

lim
n→∞

aλ0(0, x
′′
n) − αλ0(x

′′
n)

|xn|1
= 0.

Hence,

lim sup
n→∞

|aλ0(0, xn) − αλ0(xn)|
|xn|1

≤ lim sup
n→∞

|aλ0(0, xn) − aλ0(0, x
′′
n)|

|xn|1
+ lim sup

n→∞

|αλ0(xn) − αλ0(x
′′
n)|

|xn|1
.

By recalling |xn − x′′
n| ≤ 3η|xn|1 for sufficiently large n, it follows from

(2.1) and Lemma 2.3 and ω ∈ Ω(λ0) that

lim sup
n→∞

|aλ0(0, xn) − aλ0(0, x
′′
n)|

|xn|1
≤ lim sup

n→∞

dλ0(xn, x′′
n)

|xn|1
≤ 3η(λ0 + log(2d))Cu.
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By Proposition 3.5,

lim sup
n→∞

αλ0(xn − x′′
n) ∨ αλ0(x

′′
n − xn)

|xn|1
≤ 3η(λ0 + log(2d))C3.

Thus we have

lim sup
n→∞

|aλ0(0, xn) − αλ0(xn)|
|xn|1

≤ 3(λ0 + log(2d))(C3 + Cu)η.

By recalling the definition of (xn)n, we have that ε0 ≤ 3(λ0+log(2d))(C3+
Cu)η. However we can take η < ε0/(3(λ0 + log(2d))(C3 + Cu)). This is a
contradiction.

5 Large deviations

In this section, we show Theorem 1.2 by using the strategies taken in the
proof of [8] Theorem 1.3.

Let I(z) = supλ≥0(αλ(x) − λ), z ∈ Rd. Let DI = (I < +∞).

5.1 Proof of the upper bound

Let A be a closed set in Rd. Since |Xn|1 ≤ n for any n ≥ 1 under P 0
ω and

I(z) = +∞ for z ∈ Rd with |z|1 > 1, we can assume without loss of generality
that A is contained in the closed l1-ball centered at 0 with radius 1 in Rd.
If 0 ∈ A, then infz∈A I(z) = 0 and hence the assertion holds. Hereafter we
assume that 0 /∈ A.

Let Iδ(z) = (I(z) − δ) ∧ (1/δ) and Aλ(δ) = {z ∈ A : αλ(z) − λ >
infx∈A Iδ(x) − δ}, λ ≥ 0, δ > 0. Since A is compact, there exist λ1, . . . , λm

such that A = ∪m
i=1Aλi

(δ). Hence we have

lim sup
n→∞

log P 0
ω(Xn ∈ nA)

n
≤ max

1≤i≤m
lim sup

n→∞

log P 0
ω(Xn ∈ nAλi

(δ))

n
. (5.1)

We will show that for λ ≥ 0 and δ > 0, the following holds P-a.s.ω :

lim sup
n→∞

log P 0
ω(Xn ∈ nAλ(δ))

n
≤ δ − inf

z∈A
Iδ(z). (5.2)

11



We can assume without loss of generality that nAλ(δ)∩C∞(ω) 6= ∅. Then,

P 0
ω(Xn ∈ nAλ(δ)) =

∑
y∈nAλ(δ)∩C∞(ω)

P 0
ω(Xn = y)

≤
∑

y∈nAλ(δ)∩C∞(ω)

P 0
ω(Hy ≤ n)

≤
∑

y∈nAλ(δ)∩C∞(ω)

exp(λn − aω
λ(0, y))

≤
∣∣nAλ(δ) ∩ Zd

∣∣ exp(λn − aω
λ(0, yn,λ)),

for some yn,λ ∈ nAλ(δ) ∩ C∞(ω).
Since Aλ(δ) is bounded, we have

log P 0
ω(Xn ∈ nAλ(δ))

n
≤ o(1) + λ − aλ(0, yn,λ)

n

= o(1) + λ − αλ

(yn,λ

n

)
− aλ(0, yn,λ) − αλ(yn,λ)

|yn,λ|1
|yn,λ|1

n
.

(5.3)

Since Aλ(δ) ⊂ A, 0 /∈ A and A is compact, dist(0, Aλ(δ)) > 0. Hence
|yn,λ|1 → ∞, n → ∞. Then, by Proposition 4.2 and boundedness of Aλ(δ),
we have P-a.s. that

aλ(0, yn,λ) − αλ(yn,λ)

|yn,λ|1
|yn,λ|1

n
→ 0, n → ∞.

Recalling (5.3) and yn,λ/n ∈ Aλ(δ), we have P-a.s. that

lim sup
n→∞

log P 0
ω(Xn ∈ nAλ(δ))

n
≤ λ − inf

z∈Aλ(δ)
αλ(z) ≤ δ − inf

z∈A
Iδ(z).

Thus we see that (5.2) holds P-a.s. for fixed λ ≥ 0 and δ > 0. By (5.1), we
see that for fixed δ > 0 the following holds P-a.s. :

lim sup
n→∞

log P 0
ω(Xn ∈ nA)

n
≤ δ − inf

z∈A
Iδ(z).

By letting δ → 0, we see that (1.1) holds P-a.s.

5.2 Proof of the lower bound

For λ ≥ 0, ω ∈ Ω0, x, y ∈ C∞(ω), let

Qx,y
λ,ω(dX·) =

exp(−λHy(X·))1{Hy(X·)<+∞}

Ex
ω[exp(−λHy)1{Hy<+∞}]

P x
ω (dX·).
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Then we have the following lemma, which is essentially the same as [8]
Lemma 4.1 and Fukushima and Kubota [4] Lemma 4.1. See the references
for proof.

Lemma 5.1. Let x ∈ Qd \ {0}. Let β ∈ [0, 1). Denote v = x/|x|1. Denote

M ∈ N≥1 such that Mv ∈ Zd. Denote y
(1)
n = T

(bPu(Ω0)βn|x|/Mc)
Mv Mv and

y
(2)
n = T

(bPu(Ω0)n|x|/Mc)
Mv Mv. Then, the following holds P-a.s. : for any λ ≥ 0

and γ1, γ2 ∈ R with 0 ≤ γ1 < α′
λ+(x) ≤ α′

λ−(x) < γ2,

lim
n→∞

Qy
(1)
n ,y

(2)
n

λ,ω

(
H

y
(2)
n

(1 − β)n
∈ (γ1, γ2)

)
= 1.

Now we start the proof of the lower bound.
First, we show that it is sufficient to show that for any fixed z ∈ Qd \

{0} ∩ DI and r ∈ (0,∞) ∩ Q, the following holds P-a.s. :

lim inf
n→∞

log P 0
ω(Xn ∈ nB(z, r))

n
≥ −I(z). (5.4)

Let B ⊂ Rd be open. If B ∩ DI = ∅, − infz∈B I(z) = −∞ and hence the
assertion holds. Assume B ∩ DI 6= ∅. Since DI is convex and B is open,
we see B ∩ intDI 6= ∅ and for any z ∈ B ∩ DI , there exists u < 1 such
that uz ∈ B ∩ intDI . Therefore, infz∈B∩DI

I(z) = infz∈B∩intDI
I(z). By the

continuity of I on intDI , infz∈B I(z) = infz∈B∩intDI∩Qd I(z). Take a point
z ∈ B ∩ intDI ∩ Qd and r > 0 with B(z, r) ⊂ B arbitrarily. By applying
(5.4) to B(z, r), we see that (1.2) holds P-a.s. for B.

Now we show (5.4). Hereafter we fix z and r. Let λ∗(z) = sup{λ ≥
0 : α′

λ(z) exists and ≥ 1}, where α′
λ(z) denotes the derivative of αλ(z) with

respect to λ if it exists. Let v = z/|z|1 and M be the least integer such that
Mv ∈ Zd. Let Ω4,x,β be the set with probability 1 such that the assertion in

Lemma 5.1 holds and also y
(2)
n /n → x, n → ∞ (Cf. (2.3)), on the set, for

fixed x, β.

Case 1. λ∗(z) = 0. In this case, we use the methods described in the

proof of [8] Theorem 1.3. Let yn = y
(2)
n , where y

(2)
n is defined in Lemma 5.1

for x = z and β = 0. Then, yn/n → z on Ω4,z,0. Let R > 0 be an even
integer. Then, for all sufficiently large n, B(yn, R) ⊂ nB(z, r).

P 0(Xn ∈ nB(z, r)) ≥ P 0(Hyn ≤ n, Xm+Hyn
∈ B(yn, R),∀m ∈ [0, n])

≥ P 0(Hyn ≤ n)P yn(Xm ∈ B(yn, R), ∀m ∈ [0, n])

≥ E0[exp(−λHyn), Hyn ≤ n]P yn(XR = yn)n/R. (5.5)
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Applying Lemma 5.1 to the case x = z, β = 0, γ1 = 0, and γ2 = 1, we
have that on Ω4,z,0, for any λ > 0 such that α′

λ(z) exists,

E0[exp(−λHyn), Hyn ≤ n] ∼ E0[exp(−λHyn)] = exp(−aλ(0, yn)).

By Proposition 3.1 and (5.5), we see that for any λ > 0 such that α′
λ(z)

exists, we have that on Ω4,z,0 ∩ Ω1,λ,Mv,

lim inf
n→∞

log P 0(Xn ∈ nB(z, r))

n
≥ lim inf

n→∞

−aλ(0, yn)

n
+ lim inf

n→∞

log P yn(XR = yn)

R

= −αλ(z) + lim inf
n→∞

log P yn(XR = yn)

R
.

Since C∞ is a subgraph of Zd, P yn(XR = yn) ≥ cdR
−d for any n ≥ 1,

where cd is a positive constant depending only on d. Therefore, by letting
R → ∞, we see that for any λ > 0 such that α′

λ(z) exists, on Ω4,z,0 ∩Ω1,λ,Mv,

lim inf
n→∞

log P 0(Xn ∈ nB(z, r))

n
≥ −αλ(z).

Since λ∗(z) = 0, we have that I(z) = limλ↓0 αλ(z) and the following holds
P-a.s. :

lim inf
n→∞

log P 0(Xn ∈ nB(z, r))

n
≥ −I(z).

This completes the proof of Case 1.

Case 2. λ∗(z) ∈ (0, +∞). In this case, we follow the strategy of proof of
[10] Theorem B. Let ε ∈ (0, λ∗(z) ∧ 1). Then, By noting Lemma 3.6 and the
assumption λ∗(z) ∈ (0,∞), there are ρ ∈ (0, 1), η > 0, and, λ0, λ2 such that
(1) α′

λ0
(z) and α′

λ2
(z) exist.

(2) λ∗(z) − ε < λ0 ≤ λ∗(z) ≤ λ2.
(3) αλ2(z) < αλ∗(z)(z) + ε.
(4) ρα′

λ0
(z) + (1 − ρ)α′

λ2
(z) + [−η, +η] ⊂ (1 − εr/2, 1 + εr/2).

Let y
(1)
n , y

(2)
n as defined in Lemma 5.1 for x = z and β = ρ. Since

y
(2)
n /n → z on Ω4,z,ρ, B(y

(2)
n , nr/2) ⊂ nB(z, r) for sufficiently large n. Then,

for sufficiently large n,

1

n
log P 0(Xn ∈ nB(z, r)) ≥ 1

n
log P 0

(
H

y
(2)
n

/n ∈ (1 − εr/2, 1 + εr/2)
)

≥ λ∗(z)
(
1 − εr

2

)
+

1

n
log E0

[
exp(−λ∗(z)H

y
(2)
n

), An

]
,
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where we let

An =
{

H
y
(1)
n

∈ nρ(α′
λ0

(z) + [−η, +η])
}

∩
{
∃m ∈ n(1 − ρ)(α′

λ2
(z) + [−η, +η]) such that Xm+H

y
(1)
n

= y(2)
n

}
.

By the strong Markov property of (Xn)n,

E0
[
exp(−λ∗(z)H

y
(2)
n

), An

]
= E0

[
exp

(
−λ∗(z)H

y
(1)
n

)
,
H

y
(1)
n

nρ
∈ α′

λ0
(z) + [−η, +η]

]

× Ey
(1)
n

[
exp

(
−λ∗(z)H

y
(2)
n

)
,

H
y
(2)
n

n(1 − ρ)
∈ α′

λ2
(z) + [−η, +η]

]
.

Since −λ∗(z)H
y
(1)
n

≥ −λ0Hy
(1)
n

+ (λ0 − λ∗(z))nρ(α′
λ2

(z) + η) on the set

{H
y
(1)
n

∈ nρ(α′
λ0

(z) + [−η, +η])}, and, λ∗(z) ≤ λ2, we have that on Ω4,z,ρ,

lim inf
n→∞

1

n
log E0

[
exp(−λ∗(z)H

y
(1)
n

), An

]
≥ λ∗(z)(1 − εr/2) + (λ0 − λ∗(z))ρ(α′

λ2
(z) + η) + a1 + a2, (5.6)

where we let

a1 = lim inf
n→∞

1

n
log E0

[
exp(−λ0Hy

(1)
n

), H
y
(1)
n

∈ nρ(α′
λ0

(z) + [−η, +η])
]
, and,

a2 = lim inf
n→∞

1

n
log Ey

(1)
n

[
exp(−λ2Hy

(2)
n

), H
y
(2)
n

∈ n(1 − ρ)(α′
λ2

(z) + [−η, +η])
]
.

By using Lemma 5.1 for x = z and β = 0 and for x = z and β = ρ, and
then by using Proposition 3.1,

a1 = lim
n→∞

log E0[exp(−λ0Hy
(1)
n

)]

n
= −ραλ0(z), on Ω4,z,0 ∩ Ω1,λ0 , and,

a2 = lim
n→∞

log Ey
(1)
n [exp(−λ2Hy

(2)
n

)]

n
= −(1 − ρ)αλ2(z), on Ω4,z,ρ ∩ Ω1,λ2 .

Therefore we have that on Ω4,z,ρ ∩ Ω4,z,0 ∩ Ω1,λ0 ∩ Ω1,λ2 , the right hand side
of (5.6) is larger than or equal to

λ∗(z)
(
1 − εr

2

)
+ (λ0 − λ∗(z))ρ(α′

λ2
(z) + η) − ραλ0(z) − (1 − ρ)αλ2(z).
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By the assumption λ∗(z) ∈ (0, +∞), we have that I(z) = αλ∗(z)(z) − λ∗(z).
Recalling the properties (1) - (4) which ρ, λ0 and λ2 satisfy, we see that on
Ω4,z,ρ ∩ Ω4,z,0 ∩ Ω1,λ0 ∩ Ω1,λ2 ,

lim inf
n→∞

log P 0(Xn ∈ nB(z, r))

n
≥ −I(z) − λ∗(z)εr − ε(2 + εr).

By letting ε → 0, we see that (5.4) holds P-a.s.

Case 3. λ∗(z) = +∞. In this case, we use the methods taken in the proof
of [4] Theorem 1.4. Since λ∗(z) = +∞, we have limλ→∞ α′

λ(z) ≤ 1. Then,
for any u ∈ Q ∩ (0, 1), there exists λ(u) < ∞ such that for any λ ≥ λ(u),
α′

λ(uz) < 1, and hence, λ∗(uz) ∈ [0,∞). If u ∈ (0 ∨ (1 − r/|z|), 1), we can
take r(u) ∈ Q with B(uz, r(u)) ⊂ B(z, r). By using Case 1 or 2, we have
P-a.s. that

lim inf
n→∞

log P 0(Xn ∈ nB(z, r))

n
≥ lim inf

n→∞

log P 0(Xn ∈ nB(uz, r(u)))

n
≥ −I(uz).

Since I(uz) ≤ uI(z) ≤ I(z), we see that (5.4) holds P-a.s.
Thus the proof of the lower bound (1.2) is completed.
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