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0. Introduction

In number theory, the analytic properties of the critical values of automorphic
L-functions are important in the conjectural framework of Deligne and Beilinson.
For previous work of Harder [H], to compute the period integrals of the Eisenstein
cohomology classes over the fundamental cycles formed by summing over a genus,
we can get the special values of the associated L-function, together with some
explicitly computed local factors. In this case, He considered the cohomology on
the arithmetic quotients of the upper half plane of degree n. However, he has not
come to consider its Eisenstein cohomology classes and has not prove the Deligne’s
conjecture. To understand the arithmetic of certain special values of L-functions
based on the Deligne’s conjecture, we should treat the Eisenstein cohomology of
other manifold. In this article, we understand the analytic properties of such an
Eisenstein cohomology classes to prove the Deligne’s conjecture on the special values
of the associated L-functions.

Let π be a cuspidal representation of GL(2). Our main object of this article is
the exterior square L-functions of π defined by using the standard L-function

(0.1) L(s, π) =
2∏

i=1

(1− αip
−s)−1, αi ∈ C

of π. We denote

(0.2) L(s, π,∧2) =
∏

1≤i<j≤2

(1− αiαjp
−s)−1

the exterior square L-functions on GL(2). To prove the Deligne’s conjecture on the
critical values of the exterior square L-functions, we find its period integral rep-
resentation and confirm the analytic properties of suitable Eisenstein cohomology
classes.

Typeset by AMS-TEX
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Since we will denote more precisely, our interesting situation confineG to Sp(2,Q).
Let X be a symmetric spaces which is a quotient of G(R)/K∞. Here K∞ is a max-
imal compact subgroup of G(R). X is identified with the Siegel upper half space
of degree 2. We take Γ be a torsion free arithmetic subgroup of G. It naturally
acts on X for the identification. The cohomology classes of H∗(Γ\X) arise from
classes on the boundary of the Borel-Serre compactification of Γ\X. Since the
compactification has the same homology type as Γ\X, there is a restriction map
from the cohomology of Γ\X to the cohomology of the boundary. The bound-
ary components are parameterised by Γ-conjugacy classes of parabolic subgroups
and are homotopic to quotients of X by a subgroup of Γ. The cohomology group
H∗(Γ\X̄,C) on the compactification decomposes the direct product of the cuspi-
dal cohomology H∗

cusp(Γ\X̄,C) and so called Eisenstein cohomology H∗
Eis(Γ\X̄,C).

It is known that the Eisenstein cohomology classes are represented by its suitable
residue or the first term. Then our aim of this paper is to realize its classes using
well-known arithmetic functions like Gamma function and zeta function and calcu-
late its period integrals to describe the special values of automorphic L-functions.

Specially, if the degree of the cohomology group is 3, J. Schwermer showed in
[Sc] that the cohomology classes of H3(Γ\X̄,C) are represented by the residue of
a Eisenstein series E(g, s) where its flat section is in the induced representation of
the minimal parabolic subgroup of G (after, we will call it the minimal parabolic
Eisenstein series) and the constant terms of the Eisenstein series of the maximal
parabolic subgroups of G. Then first we will give the formula of the residue of
the minimal parabolic Eisenstein series (Theorem 4). In order to give the explicit
formula of the residue, it is necessary to describe Fourier expansion of the minimal
parabolic Eisenstein series E(g, s) along the minimal parabolic subgroup P of G
and to carry out the differentiate for s (Theorem 3). However the Fourier expansion
of the real analytic Siegel modular forms along P is not known, we will extend the
results of [Na] for the holomorphic Siegel modular forms (Theorem 2).

Our main theorem of this paper is to compute H = GL(2)×GL(2)-period of the
residue of the minimal parabolic Eisenstein series to bring out that it is the pure
and simple critical value of the exterior square L-function L(1, π,∧2) (Theorem 5).

Theorem. We define Ωφ(2) be the period integral of the flat section included in
the minimal parabolic Eisenstein series E(g, s). Then we have

(0.3) Ωφ(2) ·
∫
H(Q)\H(A)

Ress=1E
∗(h, s)dh = L(1/2, π)L(1, π,∧2),

where L(1/2, π) be the special value of the standard L-function of automorphic
cuspidal representation π.

The flow of its calculation is as follows. We use two theorems. One of it is the
minimal parabolic Eisenstein series can be decomposed as the classical Eisenstein
series on GL(2) and the Siegel-Eisenstein series associated to the maximal parabolic
subgroup of G (Theorem 1), and the other one is the period becomes Bump and
Friedberg’s Rankin-Selberg integral referred in [BF]. Since the analyticity of it
follows from the residue of the minimal parabolic Eisenstein series, then we hope
to prove the Deligne’s conjecture on the critical values of the exterior square L-
functions to future application.

During writing this paper, the author was supported by Grants-in-Aid for young
scientists (S) for JSPS. The project title is “Strategic Research to solve certain
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conjectures in Arithmetic Geometry”, the number of it is 21674001 and its princi-
pal investigator is Pf. Kenichi Bannai belonging to Keio university, department of
mathematics. I appreciate that S. Matsumoto gave advice about the program of
the Iwasawa decomposition in Matlab.

Below, σ(X) is set to the usual trace of the matrixX and δ(X) is the determinant

of it. And e(α) means e2π
√
−1α.

I. Minimal parabolic Eisenstein series for symplectic group

I-1. Group structure.
Let G be a symplectic group of degree 2 over the rationals Q which is defined by

(1.1) G = Sp(2,Q) =
{
g = SL(4,Q) | tgJ2g = J2 =

(
02 −12
12 02

)}
.

Take its analytic subgroups N and A of G for

N = N0 ⋉N2(1.2)

=

n =


1 n0

1

1

−n0 1


⋉




1 n1 n2

1 n2 n3

1

1




and

(1.3) A =
{
a(p) = diag(a1, a2, a

−1
1 , a−1

2 ) | ai > 0
}
,

whereN is the maximal unipotent radical and A a maximal split torus ofG. ThenG
has the Iwasawa decomposition G = NAK for a fixed maximal compact subgroup
K = K∞ ×

∏
v<∞ Kv, where K∞ = G(R) ∩ O(4) ∼= U(2) and Kv = G(Zv) for

v < ∞.
Let M = ZK(A) be the centraliser of A in K

(1.4) M = {diag(ε1, ε2, ε1, ε2) ε1, ε2 ∈ {±1}} .

Then the minimal parabolic subgroup P = NAM of G has the Langlands decom-
position which is known by [L].

I-2. Principal series representation and Eisenstein series.
In this section, we recall the principal series representation of G for the minimal

parabolic subgroup P .
Let a be the Lie algebra of A. For λ = (λ1, λ2) ∈ a∗C = HomR(a,C) ∼= C2, we

define a modulus quasi-character eλ : P → R>0 of P by

(1.5) eλ(a(p)) = exp(λ log a(p))

for the Langlands decomposition p = na(p)m, n ∈ N , a(p) ∈ A and m ∈ M .
The irreducible unitary representation σ of M is given by the product of sign

representations. It is specified by

(1.6) ε1 = σ(diag(−1, 1,−1, 1)) and ε2 = σ(diag(1,−1, 1,−1)).

For an irreducible cuspidal automorphic representation (π, Vπ) of G, there exists
a cuspidal data (P, 1N ⊗ eλ+ρ ⊗ σ), where ρ is the half-sum of the positive roots of
P .
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Definition 1. Let σ be an irreducible unitary representation of M . For λ ∈ a∗C,
we define a principal series representation of G as an induced representation

IndGP (1N ⊗ eλ+ρ ⊗ σ)(1.7)

=
{
φ :G → Vπ | φ(pg) = eλ+ρ(a(p))σ(m)φ(g), ∀(p, g) ∈ P ×G

}
.

We call function φ : C × G → C a flat section of IndGP (1N ⊗ eλ+ρ ⊗ σ) when
it satisfies the following conditions: For all s ∈ C, φ(s, ·) : G → C belongs to the
space of the induced representation and its restricted in K is not depend on s ∈ C.

Definition 2. Let φλ+ρ ∈ IndGP (1N ⊗ eλ+ρ ⊗ σ) be a flat section. The minimal
parabolic Eisenstein series for G is defined by

(1.8) E(g, s) =
∑

γ∈P\G

φλ+ρ(s, γg).

This series is absolutely convergent for Re s > 3/2.

I-3. Relation among the Siegel-Eisenstein series.
In this subsection, we consider the relation between the minimal parabolic Eisen-

stein series and the Siegel-Eisenstein series of G. The Siegel-Eisenstein series is one
of the most fascinating subject in number theory, for example, its analytic prop-
erties are very important. This relation among them is studied for some time, for
instance in [Ba], [Sa] and [GMRV], however there is no evident paper to give an ex-
plicit formula of its Fourier expansion, prove its functional equation and give some
information about poles using its relation. Then we bring out the relation among
Siegel-Eisenstein series where its classical Siegel-Fourier expansion is extensively
considered.

Now, let P2 be the Siegel maximal parabolic subgroup of G. It has the Levi
decomposition P2 = N2A2M2, where

(1.9) N2 =

{
n(x) =

(
12 x
02 12

)
x = tx

}
, A2 = {diag(a, a, a−1, a−1) | a > 0}

and

(1.10) M2 =

{
m(a) =

(
a 02
02

ta−1

)
a ∈ SL±(2)

}
.

We can also define the Siegel-Eisenstein series for G using a flat section φ
(2)
λ2

∈
IndGP2

(1N2 ⊗ eλ2+ρ2 ⊗ σ2) for ρ2 = (3/2, 3/2),

(1.11) E2(g, s) =
∑

γ∈P2\G

φ
(2)
λ2+ρ2

(s, γg).

The first theorem of this paper is to show the relation between the minimal parabolic
Eisenstein series and the Siegel-Eisenstein series.
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Theorem 1. Let φ
(2)
λ+ρ ∈ IndGP2

(1N2
⊗ eλ+ρ ⊗ σ2) be a flat section and f be a

natural embedding from GL(2) to P2 as A 7→
(

A ∗
02

tA−1

)
. For the embedding, we

define f̄ the isomorphism map from B\GL(2) to P\P2. For all g = p2k ∈ P2K = G,
we define the Eisenstein series on GL(2) by

(1.12) ε(g, s) =
∑

δ∈B\GL(2)

φ
(1)
ν+ι+ρ2

(s, δf̄−1(p2)),

where B is the standard Borel subgroup on GL(2) and φ
(1)
ν+ι+ρ2

is a flat section in

Ind
GL(2)
B (1NB ⊗eν+ι+ρ2

B ⊗σB). Then the minimal parabolic Eisenstein series E(g, s)
is decomposed as follows.

(1.13) E(g, s) =
∑

γ∈P2\G

φ
(2)
λ+ρ(s, γg)ε(γg, s).

Proof. Since the Siegel maximal parabolic subgroup P2 contains the minimal
parabolic subgroup P which is a normal subgroup of P2, then

E(g, s) =
∑

γ1∈P\P2

∑
γ2∈P2\G

φλ+ρ(s, γ1γ2g).

If we take an element of P , the inverse image of f is in the Borel subgroup B on
GL(2). Then the first isomorphism theorem says that P\P2

∼= B\GL(2) and we
can replace the first summation with B\GL(2).

From the character formula for the induced representation, if we consider the
inclusion relations P ⊂ P0 ⊂ G, then we have an isomorphism IndGP (1N⊗eλ+ρ⊗σ) ∼=
IndGP2

(
IndP2

P (1N ⊗ eλ+ρ ⊗ σ)
)
which is called induction in stages.

The Borel subgroup B has the Langlands decomposition B = NBABMB such
that

NB =

{(
1 b
0 1

)
b ∈ R

}
, AB =

{(
a1 0
0 a2

)
ai ∈ R>0 and |a1| ̸= 1, |a2| ̸= 1

}
and

MB =

{(
a1 0
0 a2

)
ai ∈ R>0 and |a1| = |a2| = 1

}
.

We also define σB the irreducible unitary representation of B and eνB the modulus
quasi-character of B for ν ∈ HomR(aB ,C). Since the image of a representative α
of B\GL(2) by f̄ becomes a representative f̄(α) of P\P2, if we take φ′ an element

of IndP2

P (1N ⊗ eλ+ρ ⊗ σ) and define φ(1)(α) = φ′(f̄(α)), for α ∈ [A], then we have
the isomorphism

φ
(1)
ν+ι+ρ2

∈ Ind
GL(2)
B (1NB ⊗ eν+ι+ρ2

B ⊗ σB) ∼= IndP2

P (1N ⊗ eλ+ρ ⊗ σ) ∋ φ′
λ+ρ,

where ι = (1/2,−1/2) be the half-sum of positive roots for GL(2).
For all g ∈ G, we have

E(g, s) =
∑

f̄−1(γ1)∈B\GL(2)

∑
γ2∈P2\G

φ
(2)
λ+ρ(s, γ2g)φ

′
λ+ρ(s, γ1(γ2g)|P2)

=
∑

f̄−1(γ1)∈B\GL(2)

∑
γ2∈P2\G

φ
(2)
λ+ρ(s, γ2g)φ

(1)
ν+ι+ρ2

(s, f̄−1(γ1)f̄
−1((γ2g)|P2)).

The second summation is the Eisenstein series on GL(2). □
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II. Fourier expansion of the Eisenstein
series along the minimal parabolic subgroup

However the classical Fourier expansion along the maximal parabolic subgroup
are well-known, little is known concerning the Fourier expansion along the minimal
parabolic subgroup P . One of the reason of it is that the unipotent radical N
of P is non-abelian. We should extend the theory of Fourier analysis on non-
abelian groups. According to the previous study of H. Narita discussed about an
expansion of vector-valued holomorphic Siegel modular forms in [Na], the Fourier
coefficients of the Fourier expansion along minimal parabolic subgroup are related
to the maximal one. We should extend the results for the real analytic Eisenstein
series. Also we prove the relation between the Fourier coefficients of the Fourier
expansion along the minimal parabolic subgroup and the Siegel maximal parabolic
subgroup as an expansion of the study of Narita and calculate the Fourier expansion
of the real analytic Eisenstein series obtained in section 1, coming down to the
maximal one.

II-1. Construction of the Fourier expansion along the minimal para-
bolic subgroup.

We define (π,Hπ) be the spherical principal series representation of G and (τ, Vτ )
be the irreducible finite dimensional representation of K. Let ι be the inclusion
map from τ to πK where πK be the K-finite vectors in π. Then we can define a
generalised Whittaker function as an image of the following map:

(2.1) Wk,T ∈ Hom(gC,K)(πK , C∞
ηT

(N\G)K) → HomK(τ, C∞
ηT

(N\G)K) ∋ Wk,T ◦ ι,

where

(2.2) ηT = L2-IndNMe(T log)

and

(2.3) C∞
ηT

(N\G)K =
{
Wk,T : G

C∞

→ H∞
ηT

Wk,T (ng) = ηT (n)Wk,T (g), K-finite
}

for HηT
the representation space of ηT and H∞

ηT
the space of C∞-vectors in it. We

remark that the space HomK(τ, C∞
ηT

(N\G)K) is equivalent to the following space
such that

(2.4)
{
Wk,T : G

C∞

→ H∞
ηT

Wk,T (ngk) = ηT (n)τ(k)Wk,T (g)
}
.

The explicit formula of the generalised Whittaker function at archimedean place
was given by Niwa in [Ni], Theorem 1 and Proposition 2.

We take an arithmetic subgroup Γ of G which implies that the Q-structure comes
from a such of G and N ∩Γ = NΓ = (N0 ∩Γ)⋉ (N2 ∩Γ). Since NΓ\N is compact,
its L2-space is decomposed as the Hilbert space direct sum.

Proposition 1. Let N̂ is the unitary dual of N . We have

(2.5) L2(NΓ\N) ∼=
⊕̃

(η,Hη)∈N̂
HomN (η, L2(NΓ\N))⊗Hη.
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Proof. Its proof is described in [GGP], Chapter I. section 2.3. □
As same as in [Na], if we choose a basis of HomN (η, L2(NΓ\N)) and decide the

multiplicity of η in L2(NΓ\N), then we can describe the Fourier expansion of the
real analytic Eisenstein series along the minimal parabolic subgroup P on G. Before
stating our result, we prepare some notation.

Let S2 be a set of positive definite symmetric matrices of degree 2 with rational
coefficients. We denote by S̄2 the closure of S2 in V . Since tr(u, v) for u, v ∈ V ∼= N2

is a non-degenerate bilinear form on V , we define the dual lattice of VΓ = V ∩ Γ =
N2 ∩ Γ such that

(2.6) S∨
2 =

{
T ∈ S̄2 | tr(T, S) ∈ Z, ∀S ∈ VΓ

}
.

Consider the natural action of the maximal unipotent radical U2(Q) =
{(

1 b

0 1

)}
of

GL(2,Q) such that (v, u) 7→ tuvu for all u ∈ U2(Q), we define

(2.7) S∨
2,∼ = S2/U2(Q).

If we consider the group structures of U2 and N0, the equivalences U2∩Γ ∼= U2(Z) ∼=
N0 ∩ Γ hold, for S ∈ S∨

2 . Then we define

(2.8) M∨
0,∼ = {T ∈ S∨

2 | tuTu = S, ∃u ∈ U2(Q)}/U2(Z).

For T ∈ M∨
0,∼, let mT be a maximal subordinate subalgebra : a maximal left subal-

gebra containing the characteristic subalgebra and excluding the central generator,
and MT = exp(mT ).

Proposition 2. Let F be a real analytic Eisenstein series on G of weight k
with respect to Γ. For any n ∈ N and g ∈ G, the Fourier expansion of F along P
is given by

(2.9) F (ng) =
∑

S∈S∨
2,∼

∑
T∈M∨

0,∼(S)

FS,T (g)ΘT (Wk,T (·))(n),

where

(2.10) ΘT (Wk,T (·))(n) =
∑

γ∈NΓ∩MT \NΓ

Wk,T (γn) and FS,T (g) = Wk,T (1 · g)−1.

Proof. This proof is almost the same as the paper of Narita ([Na], Theorem
5.8). Only different thing is that now F be a real analytic Eisenstein series. In this
case, F generates the spherical principal series representation (π,Hπ) at infinite
places. Then for a basis {ΘT }T∈M∨

0,∼
of HomN (η, L2(NΓ\N)), we can take the

generalised Whittaker function Wk,T (g) ∈ H∞
ηT

on G of π. □
We also discuss about the relation between this Fourier expansion and the Siegel

Fourier expansion. There are three types of Fourier expansions onG by its parabolic
subgroups. We call Siegel Fourier expansion as a Fourier expansion along Siegel
maximal parabolic subgroup P2. In the expansion, if we replace N with N2 that is
N0

∼= U2 is identity element, we get the following well-known expansion.



8

Theorem 2. Let F be a real analytic Eisenstein series on G of weight k with
respect to Γ. We take T ∈ S∨

2 belonging to M∨
0,∼(S) with some S ∈ S∨

2 . Define the
Fourier expansion of F along the minimal parabolic subgroup P is

(2.11) F (g) =
∑

S∈S∨
2,∼

∑
T∈M∨

0,∼(S)

FS,T (g)ΘT (Wk,T (·))(n)

and the maximal parabolic subgroup P2 is

(2.12) F (g) =
∑
S∈S∨

2

FS(g)e(σ(Sx)).

Then the relations of the both Fourier coefficients are given by

(2.13) FS,T (g) = FS(g), and FS,T (g) = FtuSu(g), for every u ∈ U2(Z).

Proof. It is done to replace N with N2 in the formula of the Fourier ex-
pansion of F along P in the previous proposition. Before all, in the part of
ΘT ((Wk,T )(·))(n), it can be calculated as follows. For all n(x) ∈ N2 ⊂ P2,

ΘT ((Wk,T )(·)) (n(x)) = χT (n(x))Wk,T (·) = Wk,T (n(x))

= ηT (n(x)) = e(σ(Tx)).

Compare with the formulas of both Fourier expansions, we obtain the statement. □
II-2. Calculation of the Fourier expansion.
According to the previous subsection, we have to calculate the Fourier expansion

as follows :

E(g, s) =
∑

S∈S∨
2,∼

∑
T∈M∨

0,∼(S)

ES,T (g)ΘT (Wk,T (·)) (n)(2.14)

=
∑
S∈S∨

2

ES(g)e(σ(Sx)),

where the Fourier coefficients ES,T (g) is expressed as

ES,T (g) = ES(g) =

∫
N2\N2(A)

∑
γ∈P2\G

φ
(2)
λ+ρ(s, γn(x)m (( a1 a2u

0 a2
)))

× ε(γn(x)m (( a1 a2u
0 a2

)) , s)e(−σ(Sx))dn(x),(2.15)

for a decomposition g = n(x)m
(( a1 a2u

0 a2

))
k ∈ G. Here we remark that the function

φ
(2)
λ+ρ(s, ·) and the Eisenstein series ε(·, s) are not depend on the maximal compact

subgroup k ∈ K. Below, ES(g) are calculated concretely.
According to the structure of the Siegel maximal parabolic subgroup P2, G has

the Bruhat decomposition G =
⨿2

i=0 P2wiP2, where

(2.16) w0 = 14, w1 =

( 1

1

1

−1

)
and w2 =

( 1

1

−1

−1

)
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be its Weyl group elements. It is well known that for any Weyl group element
wi, one has the decomposition for the unipotent subgroup of G such that N2 =
Nwi ·Nwi , where

(2.17) Nw0 = N2, Nw1 =

{
n(x) | x =

(
x1 x2

x2 0

)}
and Nw2 = {14}

and

(2.18) Nw0 = {14}, Nw1 =

{
n(x) | x =

(
0 0
0 x3

)}
and Nw2 = N2.

Then the Fourier coefficients ES(g) can be decomposed as the following.

Lemma 1. Let ES(g) be the Fourier coefficients of the Fourier expansion of the
minimal parabolic Eisenstein series formulated in (2.15). For all S ∈ S∨

2 , it is
expressed as follows.

ES(g) =
2∑

i=0

∑
γ∈Qi\M2

∫
Nwi\Nwi (A)

e(−σ(Sγ−1xγ))dn(x)

×
∫
Nwi

(A)
φ
(2)
λ+ρ(s, win(x)γm (( a1 a2u

0 a2
)))ε (win(x)γm (( a1 a2u

0 a2
)) , s)

× e(−σ(Sγ−1xγ))dn(x),

(2.19)

where Qi be the subgroup of M2 defined by

(2.20) Q0 = M2, Q1 =

{
m(a) | a =

(
a1 b
0 a2

)
∈ GL(2)

}
and Q2 = M2.

Proof. It is easy to check that w−1
i P2wi ∩ P2 = NwiQi for all i = 0, 1 and 2.

The coset w−1
i P2wi ∩ P2\P2 is equivalent to the set {nm | n ∈ Nwi , m ∈ Qi\M}.

This equivalence relation will be acquired by computing the residue class of the
coset. Since the map of P → PwiP , p 7→ wip is surjective, then we have an
isomorphism

w−1
i P2wi ∩ P2\P2

∼= P2\P2wiP2
∼= {nm | n ∈ Nwi , m ∈ Qi\M}.

The Fourier coefficients ES(g) is as follows when the sum running γ is rewritten
using an isomorphism.

ES(g) =

2∑
i=0

∫
N2\N2(A)

∑
γ∈P2\P2wiP2

φ
(2)
λ+ρ(s, γg)ε(γg, s)e(−σ(Sx))dn(x)

=
2∑

i=0

∑
γ∈Qi\M2

∫
N2\N2(A)

∑
δ∈Nwi

φ
(2)
λ+ρ(s, δγg)ε(δγg, s)e(−σ(Sx))dn(x).
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For the element in N2(A), transformation of the variable n(x) to γ−1n(x)γ shows
that

ES(g) =
2∑

i=0

∑
γ∈Qi\M2

∫
Nwi\N2(A)

φ
(2)
λ+ρ(s, win(x)γm (( a1 a2u

0 a2
)))

× ε(win(x)γm (( a1 a2u
0 a2

)) , s)e(−σ(Sγ−1xγ))dn(x).

Because of N2(A) = Nwi(A) ·Nwi(A), we obtain the statement. □
The next opinion is obtained because we classify the Fourier coefficients ES(g)

according to the rank of S ∈ S∨
2 concretely using Lemma 1.

Proposition 3. The assumptions and notations are same as in Lemma 1. The
Fourier coefficients ES(g) can be described concretely as follows.
(i) If S = 02, then we have

φ
(2)
λ+ρ(s,m (( a1 a2u

0 a2
)))ε(m (( a1 a2u

0 a2
)) , s)

(2.21)

+

∫
Nw1 (A)

φ
(2)
λ+ρ(s, w1n(x)m (( a1 a2u

0 a2
)))ε(w1n(x)m (( a1 a2u

0 a2
)) , s)dn(x)

+
∑
l∈Q

∫
Nw1 (A)

φ
(2)
λ+ρ(s, w1n(x)m

((
0 a2

a1 a2(u+a)

))
)

× ε(w1n(x)m
((

0 a2

a1 a2(u+a)

))
, s)dn(x)

+

∫
N2(A)

φ
(2)
λ+ρ(s, w2n(x)m (( a1 a2u

0 a2
)))ε(w2n(x)m (( a1 a2u

0 a2
)) , s)dn(x).

(ii-1) If rank S = 1 and S =
( s1 s2
s2 s3

)
such that s2 = s3 = 0 or s1s3 = s22, then we

have

∫
N2(A)

φ
(2)
λ+ρ(s, w2n(x)m (( a1 a2u

0 a2
)))ε(w2n(x)m (( a1 a2u

0 a2
)) , s)e(−σ(Sx))dn(x)

(2.22)

+

∫
Nw1 (A)

φ
(2)
λ+ρ(s, w1n

((
0 0

0 x3

))
m
((

0 a2

a1 a2(u+s2/s1)

))
)

× ε(w1n
((

0 0

0 x3

))
m
((

0 a2

a1 a2(u+s2/s1)

))
, s)e(−s1x3)dx3.

(ii-2) If rank S = 1 and S =
(

0 0

0 s3

)
, then we have

∫
N2(A)

φ
(2)
λ+ρ(s, w2n(x)m (( a1 a2u

0 a2
)))ε(w2n(x)m (( a1 a2u

0 a2
)) , s)e(−σ(Sx))dn(x)

(2.23)

+

∫
Nw1 (A)

φ
(2)
λ+ρ(s, w1n

((
0 0

0 x3

))
m (( a1 a2u

0 a2
)))

× ε(w1n
((

0 0

0 x3

))
m (( a1 a2u

0 a2
)) , s)e(−s3x3)dx3.
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(iii) If rank S = 2, then we have
(2.24)∫

N2(A)
φ
(2)
λ+ρ(s, w2n(x)m

(( a1 a2u

0 a2

))
)ε(w2n(x)m

(( a1 a2u

0 a2

))
, s)e(−σ(Sx))dn(x).

In the above proposition, what is necessary is to give the Iwasawa decomposition

of win(x)m(a) for a =
( a1 a2u

0 a2

)
, a =

(
0 a2

a1 a2(u+a)

)
or a =

(
0 a2

a1 a2(u+s2/s1)

)
because

the domain on the Eisenstein series ε(g, s) is depend only on the diagonal block of
P2 ⊂ G which was explain in Theorem 1. If we compute the Iwasawa decomposition,
in all cases, f̄−1(win(x)m(a)) =

( a1 a2u

0 a2

)
for f̄ given in Theorem 1.

Theorem 3. Let E(g, s) be the minimal parabolic Eisenstein series of weight

k ∈ 2Z. We put g = m(a) for a =
( a1 a2v

0 a2

)
∈ GL(2). The imaginary part of the

action of
√
−1 multiple of the unit matrix of degree 2 on G is defined by y, that is

y = ata. We also define the imaginary part of the action of a on
√
−1 as v and

τ = u +
√
−1v. Following we use the notations ξ(s) = π−s/2Γ(s/2)ζ(s) and the

Pochhammer symbol (a)i = Γ(a+i)/Γ(a). For all n(x) ∈ N2, the Fourier expansion
of the normalised minimal parabolic Eisenstein series

E∗(n(x)g, s) = ε∗(n(x)g, s)E∗
2 (n(x)g, s)

(2.25)

= ξ(s)ξ(2s− 2)2(s/2)k/2((s− 1)/2)k/2(s− 1)kε(n(x)g, s− k)E(n(x)g, s− k)

along the minimal parabolic subgroup P of G is given as following.
First, we show the Fourier expansion of the normalised Eisenstein series

(2.26) ε∗(n(x)g, s) = ξ(2s− 2)(s− 1)kε(n(x)g, s− k)

such that

ε∗(n(x)g, s)

(2.27)

= δ(y)
1
2 v

1
2−k

{
δ(y)−1vsξ(2s− 2)(s− 1)k + v−s+1ξ(2s− 3)(s− k − 1)k

+
∞∑

m=1

m−s+1σ2s−3(m)W−k,s−3/2 (4πmv) e(mτ)

+ (s− k − 1)k(s− 1)k

∞∑
m=1

m−s+1σ2s−3(m)Wk,s−3/2 (4πmv) e(−mτ)

}
,

where σs(n) is a divisor sum defined by σs(n) =
∑

d|n d
s and Wν,µ(z) is a W -

Whittaker function which is given by the integral

(2.28) Wν,µ(z) =
e−z/2zµ+1/2

Γ(−ν + µ+ 1/2)

∫ ∞

0

e−tzt−ν+µ−1/2(1 + t)ν+µ−1/2dt,

for Re (−ν + µ+ 1/2) > 0 and Re z > 0.
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Second, we show the Fourier expansion of the normalised Siegel-Eisenstein series

(2.29) E∗
2 (n(x)g, s) = ξ(s)ξ(2s− 2)(s/2)k/2((s− 1)/2)k/2E(n(x)g, s− k)

such that

E∗
2 (g, s) = ε2(g, s) + δ(y)

s−k
2 v

1
2 2−k(s− 1)kξ(s)ξ(2s− 2)

(2.30)

+ δ(y)
3−s−k

2 v
1
2 2−k(s− k − 1)kξ(s− 2)ξ(2s− 3)

+ 2v
1
2

∑
S∈S∨

2 ,δ(S)=0,
S ̸=02,S>0

{
δ(y)

s−k
2 |σ(Sy)|− s

2 ξ(2s− 2)F
(1)
e(S)(2− s)

× ((3− s− k)/2)k/2 Wk/2,(s−1)/2 (4π|σ(Sy)|)

+ δ(y)
3−s−k

2 −k|σ(Sy)|
s−3
2 ξ(2s− 3)F

(1)
e(S)(s− 1)

× ((s− k)/2)k/2 Wk/2,s/2−1 (4π|σ(Sy)|)

}
e(σ(Sx))

+ 21−2kv
1
2π−k

∑
S∈S∨

2 ,δ(S)=0,
S ̸=02,S<0

{
δ(y)

s−k
2 |σ(Sy)|− s

2−kξ(2s− 2)F
(1)
e(S)(2− s)

× ((3− s− k)/2)k/2 Wk/2,(s−1)/2 (4π|σ(Sy)|)

+ δ(y)
3−s−k

2 |σ(Sy)|
s−3
2 −kξ(2s− 3)F

(1)
e(S)(s− 1)

× ((s− k)/2)k/2 Wk/2,s/2−1 (4π|σ(Sy)|)

}
e(σ(Sx))

+ 23π− 1
2 v

1
2

{ ∑
S∈S∨

2 ,δ(S)>0,
S>0

(2/π)−k(δ(2S))
s+k−3

2 L∗(s− 1, χ)F
(2)
S (s)

× (s− k − 1)2kω (2πy, S; (s+ k)/2, (s− k)/2) e(σ(Sy))

+
∑

S∈S∨
2 ,δ(S)>0,
S<0

(2π)−k(δ(2S))
s−k−3

2 (δ(2y))−kL∗(s− 1, χ)F
(2)
S (s)

× (s− k − 1)2kω (2πy, S; (s+ k)/2, (s− k)/2) e(σ(Sy))

+
∑

S∈S∨
2 ,δ(S)<0,
S<0

(δ(y))−
k
2 (−δ(2S))

s−3
2 (−δ(2Sy))

1
4L∗(s− 1, χ)F

(2)
S (s)

× ((s− k)/2)k/2 ((s− 1)/2)k/2 ω (2πy, S; (s+ k)/2, (s− k)/2) e(σ(Sy))

}
,

where ε2(g, s) is the Eisenstein series on GL(2), its flat section is in Ind(| · |s−1/2
A , | ·

|5/2−s
A ) and e(S) = gcd(S). Here the definition of some functions remarked. For
s ∈ C and S ∈ S∨

2 ,

(2.31) F
(1)
e(S)(s) =

∏
p|e(S)

F (1)
p (e(S), s), F (1)

p (e(S), s) =

ordpe(S)∑
i=0

p−(s−1)i
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and

F
(2)
S (s) =

∏
p|f

F (2)
p (S, s),(2.32)

F (2)
p (S, s) =

α1∑
i=0

pi(2−s)

α−i∑
m=0

pm(3−2s) − χ(p)p1−s
α−i−1∑
j=0

pj(3−2s)

 .

Here we note that −δ(2S) = D(S)f2 for the fundamental discriminant D(S) and

f ∈ Z, α1 = ordpe(S), α = ordpf and the Kronecker symbol χ(·) =
(

D(S)
·

)
. We put

L(s, χ) the Dirichlet’s L-function of χ normalised by π−s/2Γ(s/2)L(s, χ) = L∗(s, χ)
and ω(y, S, α, β) the confluent hypergeometric function as the same notation in [Sh].

The minimal parabolic Eisenstein series converges for Re s > 3, but can be
analytically continued on the whole of the complex plane as a meromorphic function
of s. It satisfies a functional equation s to 3− s and has simple poles at s = 1 and
2.

Proof. In Proposition 3, if we calculate the Iwasawa A-part of the restriction

for P2 of win(x)m(a) for i = 1 or 2 and for a =
( a1 a2u

0 a2

)
or
(

0 a2

a1 a2(u+b)

)
, it is

understand that all of it is not depend on Ni(A) and explicitly given by
( a1 a2u

0 a2

)
.

Then the local integrals (ii-1), (ii-2) and (iii) of Proposition 3 come down ε(m(a), s)

for a =
( a1 a2u

0 a2

)
multiple of the integral of the flat section φ

(2)
λ+ρ of the Siegel-

Eisenstein series E2(g, s) and e(−σ(Sx)) on Nwi(A). The Fourier expansion of
E2(g, s) was considered by S. Mizumoto in [M] and Y. Hasegawa-T. Miyazaki in
[HM]. Using these references and Shimura’s explicit expression for the confluent
hypergeometric functions in [Sh] and considering the shift of ρ, we get the formula
(2.30). Especially, the local integrals of the second term and the third term of
(2.21) in Proposition 3 are calculated by{∫

Nw1(A)

φ
(2)
λ+ρ(s, w1n(x)m

((
a1 a2v
0 a2

))
)ε(w1n(x)m (( a1 a2v

0 a2
) , s))dn(x)

+
∑
l∈Q

∫
Nw1 (A)

φ
(2)
λ+ρ(s, w1n(x)m

((
0 a2

a1 a2(u+b)

))
)

× ε(w1n(x)m
((

0 a2

a1 a2(u+b)

))
, s)dn(x)

}
=

∑
γ∈B\GL(2)

∫
Nw1 (A)

φ
(2)
λ+ρ(s, γm (( a1 a2v

0 a2
)))ε(γm (( a1 a2v

0 a2
)) , s)dn(x).

Since the right hand side of the integral on Nw1(A) sets a flat section of the induced

representation Ind
GL(2)
B (| · |s−

1
2

A | · |
5
2−s

A ), so that if we take the summation of all
γ ∈ B\GL(2) is equal to the Eisenstein series on GL(2). In the well-known formula
of the Fourier expansion of the Eisenstein series on GL(2), we add it to the shift of
ρ.

The functional equation of the minimal parabolic Eisenstein series follows from
the local functional equations such that ξ(s) = ξ(1−s), (−s)n = (−1)n(s−n+1)n,

F
(1)
b (s) = b1−sF

(1)
b (1− s), F

(2)
S = f3−2sF

(1)
S (3− s), σs(n) = |n|sσ−s(n), L

∗(s, χ) =
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| − δ(2S)/f2| 12−sL∗(1 − s, χ), Wν,µ(z) = Wν,−µ(z) and ω(y, S;α, β) = ω(y, S; 3 −
α, 3− β). If we exchange s to 3− s in (2.30), then the first term itself, the second
term and the third term, the forth term and the fifth term, the sixth term and the
seventh term, the eighth term and the ninth term respectively preserve the equality.

Since the function ξ(s) has poles −1/2 at s = 0 and 1 at s = 1, then E∗
2 (g, s)

has simple poles at s = 1 and 2. □
For this theorem, the Fourier expansion of the minimal parabolic Eisenstein

series had written exactly, then the analytical properties of the Eisenstein series
came to be found well.

3. Bump-Friedberg’s zeta integrals and critical
values of the exterior square L-functions

There is a fundamental problem of Langlands’ theory of automorphic L-functions
such that every general automorphic L-function initially defined as an Euler product
in some half-plane, continues to a meromorphic function in all of s ∈ C, with only
finitely many poles, and a functional equation relating its values at s and 1 − s.
It has been successfully attacked in general using two different methods. One of
it is the explicit construction of zeta-integrals and the other one is the Langlands-
Shahidi method using Eisenstein series and their Fourier coefficients.

According to the previous work of G. Harder in [H], he constructed the coho-
mology classes in the cohomology groups of arithmetic quotients and provided it
with integral over suitable cycle. Then by summing it over the classes in the genus
which is called the period integrals, the critical values of L-functions attached to
algebraic Hecke characters were appeared.

In this section, to refer the way of [GRS], we calculate the H = GL(2)×GL(2)-
period integral of the residue of the Eisenstein series and it is shown clearly that
the critical value of the exterior square L-function appear.

3-1. Eisenstein cohomology on arithmetic quotients of the Siegel upper
half space of degree 2.

In the introduction of this paper, we had already reviewed the structures of coho-
mology groups of Γ\G/K = Γ\X for an arithmetic torsion free subgroup Γ ⊂ G(Z).
Then we induct the result of J. Schwermer in [Sc], p. 254, about the Eisenstein co-
homology classes on Γ\X.

Proposition 4. Let E∗(g, s) be the minimal parabolic Eisenstein series of weight
6 which is defined in the previous section. The residue of E∗(g, s) at s = 1 is closed
and harmonic and represents a non-trivial class in the Eisenstein cohomology of
degree 3.

Considering this proposition, we let calculate the period integrals of the residue
of E∗(g, s) at s = 1 which is a cohomology class in H3(Γ\X̄,C) and then obtain
the critical values of the exterior square L-functions. Since the Fourier expansion
of E∗(g, s) was explicitly shown in Theorem 3 (II-2), then the residue of E∗(g, s)
at s = 1 is fully-clarified by calculating the Laurent expansion around s = 1 of
zeta function, gamma function, the confluent hypergeometric functions and other
special functions appearing in the Fourier expansion of the Eisenstein series.

Theorem 4. The notations are same as in Theorem 3. For all g = m
(( a1 a2u

0 a2

))
∈

G and s ∈ C, take E∗(g, s) as the minimal parabolic Eisenstein series of weight
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k ∈ 2Z. The residue of E∗(g, s) at s = 1 is explicitly given as following. For k > 0,

Ress=1E
∗(g, s) = ε(g, 1) · δ(y)− k

2 v
1
2

{
2−kδ(y)π/6

(3.1)

− 2−kδ(y)
1
2

∞∑
m=1

σ−1(m)W−k,1/2(4πmv)e(mτ)

− 22π− 1
2

∑
δ(S)=−□<0

(−δ(2S))−1(−δ(2Sy))
1
4F

(2)
S (1) ((1− k)/2)k−1/2

× ω (2πy, S; (1 + k)/2, (1− k)/2) e (σ(Sy))

}
.

For k = 0,

Ress=1E
∗(g, s) = ε(g, 1)(δ(y)v)

1
2

{
1

2
(log(4πv/δ(y)) + γ) + 2 log |η(τ)|

(3.2)

− 2
∑

δ(S)=0,S ̸=02

σ0(e(S))K0 (2π(|σ(Sy)|)) e (σ(Sx))

− 2
∑

δ(2S)=−□<0

σ0(e(S))K0(2π
√
σ(Sy)2 − δ(2Sy))e (σ(Sx))

}
.

Proof. Since for all k ∈ 2Z, the Eisenstein series ε∗(g, s) is entire at s = 1, then
it appears the value of s = 1 in the part of the residue of the minimal parabolic
Eisenstein series at s = 1. On the other hand, the Siegel-Eisenstein series E2(g, s)
has poles in the first term ε2(g, s), the second term and the last term for the Fourier
expansion given in Theorem 3, (2.30) for k > 0. In this case, the functions ξ(s) and
ξ(2s−2) have a singularity. If the Dirichlet’s character χ is trivial, i.e. −δ(2S) = □,
L∗(s − 1, χ) = (−δ(2S))1/2f−1L∗(2 − s, χ) = ζ(s) has a simple pole at s = 1. We
also count a zero of order 1 of functions (s − 1)k or ((3− s− k)/2)k/2, (3.1) is

obtained.
If k = 0, the poles of E2(g, s) appear in ε2(g, s), the second term, the forth term,

the fifth term and the last term. In this case, we remark that

W0,0(4π|σ(Sy)|) = 2|σ(Sy)| 12K0(2π|σ(Sy)|)

and

ω (2πy, S; 1/2, 1/2) = 2−
3
2π

1
2 (−δ(Sy))

1
4K0

(
2π
√

σ(Sy)2 − δ(2Sy)
)
.

where the relation between the hypergeometric functions, it says more correctly
W -Whittaker function and the confluent hypergeometric function, and K-Bessel
function. □

After this section, computing the period integrals for this residue, then we show
that an exterior square L-function is included in the integrals.
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3-2. Formulation of the period integrals.
Let H denotes the subgroup of G which composes fixed points of an involution

θ of G defined over Q. We called such an H a symmetric subgroup of G and the
pair (G,H) a symmetric pair. In this article, we take H as GL(2) × GL(2) which
embedded in G by

(3.3)

((
a1 a2
a3 a4

)
,

(
b1 b2
b3 b4

))
7→

( a1 a2

b1 −b2
−b3 b4

a3 a4

)
.

The sublattice Γ∨ = Hq(Γ\X̄,Z) ⊂ Hq−1(Γ\X̄,Ωq(Γ\X̄))∨ consists of linear forms
on Hq−1(Γ\X̄,Ωq(Γ\X̄)) and these linear forms are natural inner product between
q-cycles H(Q)\H(A) ∈ Ωq(Γ\X̄) and closed q-forms f ∈ Ωq(Γ\X̄) as follows.

(3.4)
(
H(Q)\H(A), f

)
=

∫
H(Q)\H(A)

f(h)dh.

The Stokes theorem says that the pairing is independent of the choice of representa-
tives of the equivalence classes Hq(Γ\X̄,C) and Hq(Γ\X̄,C) and defines a pairing
between them. We call the pairing a period integral. We want to give an explicit
expression for that period integral.

3-3. Calculation of the period integrals of the Eisenstein cohomology
classes.

If we refer to the calculation method of the article [GRS], applying the truncation
operator to E∗(g, s) and computing its integrals follow our main theorem.

Theorem 5. Let (π, Vπ) be a cuspidal representation of GL(2). We define Ωφ(2)

the period attached to a flat section φ(2) ∈ Vπ appearing in the minimal parabolic
Eisenstein series E∗(g, s). Then the integral over H(Q)\H(A) for H = GL(2) ×
GL(2) of the residue of the minimal parabolic Eisenstein series at s = 1 expressed
as following.

(3.5) Ωφ(2) ·
∫
H(Q)\H(A)

Ress=1E
∗(h, s)dh = L(1/2, π)L(1, π,∧2).

Here L(1/2, π) be the special value of the standard L-function of π.

Since we prove this main theorem, following result by D. Bump and S. Friedberg
in [BF] such that the Rankin-Selberg integral which have been discovered involve
Eisenstein series represents a product of two L-functions is useful.

Lemma 2. Let ε(g, s) be an Eisenstein series on GL(2). For all cusp form
φ ∈ Vπ and α ∈ C, we have

(3.6) L(1/2, π)L(s, π,∧2) =

∫
GL(2,Q)\GL(2,A)

φ
(
α,
(

g
tg−1

))
ε(g, s)dg.

We apply the truncation operator Λc for a real number c > 1 to the minimal
parabolic Eisenstein series E∗(g, s) such that

ΛcE∗(g, s) = E∗(g, s)−
∑

γ∈P2\G

(φ(s, γg) +M(s)φ(s, γg))χc(γg)

=
∑

γ∈P2\G

φ(s, γg)χc(γg)−
∑

γ∈P2\G

M(s)φ(s, γg)χc(γg),(3.7)
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where the function in the summation is a constant term of E∗(g, s), χc is the
characteristic function on GL(2) such that for the all real number c, χc(g) satisfies

χc(g) =

{
1, δB(g) > c,

0, δB(g) ≤ c,

where δB is the modulus character of B. Naturally, M(s) is the standard intertwin-
ing operators. Since its integrals are explicitly calculated by Ginzburg, Rallis and
Soudry in [GRS] of Proposition 4 to describe the cosets appearing the unfolding
of its integrals and summations respectively, taking the residue of the result and c
maps to ∞, they obtain the following lemma.

Lemma 3. If Re s is sufficiently large, then the following formulae are valid with
a certain choice of measures. For α ∈ C, we have
(3.8)∫

H(Q)\H(A)
Ress=1E

∗(h, s)dh =

∫
KH

∫
GL(2,Q)\GL(2,A)

φ
(
α,
(

g
tg−1

)
k
)
dgdk,

where KH is the maximal compact subgroup of H.

Using the above two lemmas, we prove our main theorem.

Proof. Since the minimal parabolic subgroup E∗(g, s) is decomposed as in
Theorem 1, then the integrand is decomposed by

φ
(
α,
(

g
tg−1

)
k
)
= φ(2)

(
α,
(

g
tg

)
k
)
ε
((

g
tg

)
k, 1
)
.

The property of φ(2) says that it can be separated by φ(2)
(
α,
(

g
tg

))
φ(2)(α, k)

and the Eisenstein series on GL(2) is not depend on k ∈ K. Then the integral in
Lemma 2 is equal to∫

H(Q)\H(A)
Ress=1E

∗(h, s)dh

= Ω−1
φ(2) ·

∫
GL(2,Q)\GL(2,A)

φ(2)
(
α,
( g

tg

))
ε
(( g

tg

)
k, 1
)
,

where Ω−1
φ(2) means the period attached to φ(2). Since this integral is exactly the

special value of the Rankin-Selberg integral at s = 1 which is found by Bump and
Friedberg in Lemma 2 up to the multiple by Ωφ(2) , we obtain our main theorem. □

Since the analytics of L(1, π,∧2) follows from that of Ress=1E
∗(g, s) referring to

our main theorem, then it becomes now easily to prove the Deligne’s conjecture on
L(1, π,∧2).
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