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Abstract

We consider a certain class of de Rham’s functional equations. We
consider Hausdorff dimension of the measure whose distribution func-
tion is the solution. We give a necessary and sufficient condition for
singularity. We also show that they have a relationship with stationary
measures.

1 Introduction

de Rham [2] considered the following functional equation.

Fla) = {Fo(f(2a:)) 0<2<1/2 a1

F(fr—1) 1/2<z<1.

He showed that there exists a unique, continuous and strictly increasing
solution f of (1.1), if Fy and Fj are strictly increasing contractions on [0, 1]
such that 0 = Fo(()) < Fo(l) = F1<0) < Fl(].) =1.

b
Let us denote ®(A; z) = 0zt for a 2 x 2 real matrix A = (CCL b) and

d
zeR.
Throughout this paper, we only consider the equation (1.1) for Fj(z) =

O(A;;x), © € [0,1], i = 0,1, such that 2 x 2 real matrices A; = (CCLZ ZZ)
i =0, 1, satisfy the following conditions (A1) - (A3).

cz+d
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ap + bo b1 ai + bl
(Al) 0_b0< Co+d0 _d_1< C1+d1 N

(A2) aid; — bic; > 0,7 =0, 1.

(A3) (aid; — bic;)Y? < min{d;, c; + d;}, i = 0, 1.

The conditions (A1) - (A3) guarantee that F; := ®(A;;-), i = 0, 1, satisfy
de Rham’s conditions. Let us denote py be the probability measure such
that f is the distribution function of py.

Let o = min{0, co/(dy — ag),c1/b1}, B = max{0,co/(dy — ap),c1/b1} and
v = 1/®(Ao; 1) = do/(ag + co) = di/by > 1. Let po(z) = (x + 1)/(x + )
and pi(z) = 1 — po(x) for x > —v. Let s(p) = —plogp — (1 — p)log(1 — p)
for p € [0,1]. We denote the s-dimensional Hausdorff measure, s € (0, 1], of
E C R by Hy(F) and the Hausdorff dimension of E by dimg(E).

The followings are main results in this paper.

Theorem 1.1. (1) There exists a Borel set Ky such that pg(Ko) = 1 and

dimpy (Ko) < max{s(po(v));y € [a, 8]}/ log2.
(2) We have that jus(K) = 0 for any Borel set K with dimp (K) < min{s(po(y));y €

[, 5]}/ 1og 2.

Theorem 1.2. (1) If both (i) (co + do — 2a0)(do — ap) = aoco, and (i7)
(a1 — 2¢1)(dy — 2by) = bicy are satisfied, then pg(de) = (1 + 2¢)/(—2cox +
1+ 2¢)%dz. In particular, py is absolutely continuous.

(2) If either (i) or (ii) fails, then there exists a Borel set Ky such that
pe(Ky1) =1 and dimy(K,) < 1. In particular, py is singular.

Acknowledgements. The author wishes to express his gratitude to
Professor Shigeo Kusuoka for his many useful comments and suggestions and
encouragement.

2 Some Lemmas

First, we introduce some notation.

Let X, : [0,1) — {0,1} , n > 1 be given by X, (z) = [2"z] — 2[2" ],
r € [0,1). Let p,(i1,...,0n) = pr({X; = 45,1 < j < n}) forn >
i1y ... 0n € {0,1} and R, (x) = pp(Xi(x), ..., X, (2z)) forn > 1and z € [0,
Let
1) = [T, 293 (x) 21, 293
Then, z € I( ), x € [0,1), and, X,,(v) = X,,(x) and I, (y
I, (z). We have that R,(x) = pur ({X; = X;(x),1 <j<n}) = pur(L,(2)).

Let
( o (2) %(m)) = Axy)+ Axoe) 1z € [0,1).

)

1
1).

x)+ 27" = 272", 27([2"x] + 1)).

() Sp()



Lemma 2.1. Letn > 1 and iy, ..., i, € {0,1}. Then we have the followings.
(1) fFOo,2774) = D(Aiy -+ A 0) and f (D01 2774 +277) = O(A;, -+ Ay 1).
(2) Rus1(@)/Ra() = pxpi1 () (ra(@)/ $0(2)).

Proof. (1) We show the assertion by induction in n. If n =1, it is a direct
consequence of the equation (1.1). Assume that the assertion is valid for
n=m.

Suppose that ¢; = 0. Since f(y) = @ (Ao; f(2y)) for y € [0,1/2], we have

that f(Zm“z MJ) - f(Zm“z %) - @(Ao;f(zg?;l 2—sz+1>). By

the assumption, we have that f (ijl 2’jij+1> =9 (Ai2 x -A,-mH;O), and

then

o <A0; f (2;”:1 2—%]-“)) =D (Ag;® (A - Aiyyi0)) = D (Ayy - Ai i 0).

Similarly we have that f (ZmH 2770 + Z_m_1> = (Ail A 1).
Suppose that iy = 1. Since f(y) = ® (Ay; f(2y — 1)) for y € [1/2, 1]

have that f (ZmHQ %) =f (1/2+Zm+12 jzj) = (Al,f (Z z]+1>>.
By the assumption, we have that

F (S0 27i501) = ® (A, -+ 4,,,,:0) and then
(0] <A1; / (Zmzl Q*jij+1>> = (A1; P (Aiz .. 'Az‘m+1§ 0)) = (Ai1 .. 'Az'm+1§ 0)‘
Similarly we have that f (Zmﬂ 2790 + 27m71> — D (A, A1)

So the assertion is valid for n = m 4 1. Thus we obtain the assertion (1).
(2) By the assertion (1), we have that

k k
Rala) = 1y (1) = by ([Z Ay A ;))
= (I)(AXl(x) AXk ),1

_ pe(@)sk(@) — gr(@)ri(z)
sk () (re(w) + se(@))

We have that

Roi(x) o $n () (ra() + su(z))
Buw) A X ) et (@) S (2))

(det Ax, .\ (2))5n(2) () 4 $p(x)

= X .
bXnJrl(x)r”( ) + an+l(fE)S"(x) (aXn-H(CE) + bXn+1(93)> ’I“n(l’) + (an-H + an+1(£L“)) Sn($)

If X,,11(x) =0, then, by noting that by = 0, we have that

Rppai(x) " 1 () + Sn(x) _ (1)
Ry(r) ot do " a (ra(@) + v (2)) (Sn(lf)) '
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If X,,41(x) =1, then, by noting that a; + b; = ¢; + d;, we have that

Ropi(z) wd — b Sn() 1
Ry TG )
o 8@ (rale)
-y ()
Thus we obtain the assertion (2). O

Now we state some properties of ®(*4;;-), i =0, 1.
We remark that ®(*Ag;-) (resp. ®(*Ay;-)) is well-defined and continuous
on R (resp. (—v,0)).

Lemma 2.2. (1) dy > ag >0, by +¢; >0 and a > —1.
(2) ®(*Ag; 2) = 2z if and only if z = co/(dy — ag).
(3) ®(*A1;2) =z if and only if z = =1 or z = ¢, /by.

Proof. (1) By (A2) and (A3), we have that dy > 0, and then ag > 0. By
(A3) and (A1), we have that 0 < (agdg)"/? = (apdo — boco)'/? < dy and then
0 <ag<dy.

By (A1), we have that a; + b; = ¢; + d; and then a;dy — bic; = (¢1 +
d1)(d1—by1). By (A2) and (A3), we have that ¢;+d; > 0, and then d; —b; > 0.
By (A3), we have that 0 < (¢; + d;)Y?(dy — by)"/? < ¢1 + d;. Hence we have
that d; — by < ¢1 + dq, and then by + ¢; > 0.

By (A2) and (A3), we have that d; > 0. By (Al), we have that b; > 0.
Since by +¢; > 0, we see that ¢y /by > —1. Then, we have that ¢y/(dy — ap) >
—1 by noting (Al) and ay < dyp. Now we have that a = min{0, c¢y/(dy —
CL()), Cl/bl} > —1.

(2) Since by = 0, we have that ®(*Ag;2) — 2 = —(do — ag)z/dy + co/do.
Since dy > ag, we see that ®(*Ag; z) = z if and only if z = ¢q/(dy — ag).

(3) Since

—b122 = (dy —a1)z + ¢

D('Ay;2) — 2 =
( I’Z) z b12+d1
- (—blz -+ Cl)(Z —+ 1) . _(Z -+ 1)(2’ — Cl/b1>
biz +dy z+7 ’
we see that ®(*Ay;z) = z if and only if z = —1 or 2 = ¢ /b;. O

Let fn = O'(Xl, ce 7Xn)7 n > 1. Let Ln = Z?:l Eﬂf[_ 1Og(Rz/szl)‘E71]
and M, = —log R, — L,, n > 1. Then we have the following.

Lemma 2.3. (1) L, 1(x) — L,,(z) = s(po(rn(x)/sn(x))) for ps-a.s.x € [0,1).
(2) M,,/n — 0, (n — 00) for pis-a.s.



Proof. (1) It is sufficient to show that for any = € [0, 1),

/fnm ’ (po (Z:Ez;» () = /mx) Tl (%) pa(dy)

Since 7, (y)/sn(y) = rn(x)/sn(z) for y € I,(x), we see that

o G (i) Jtin =stastons (i (5355 )

By Lemma 2.1(2), we see that —log (us(Ln+1(y))/ 1 (In(y))) = —log (Rus1(y)/Ra(y)) =
—log px,. 41y (ra(y)/sn(y)) and

/I s (%) p(dy) = /I L los (pxm(y) (Z%i)) 5 (dy)

= iy (o) 1 (Yo = 0] o (2]

= g (In(z)) s (po(ra(x)/sn(x)))

which implies our assertion.
(2) By noting Jensen’s inequality, we have that

W

V)

)5 (1) 0 (s = 10 (20

EF [(My, — My—1)?] < 2(BE" [(—log Ry, +log R—1)?] + E" [(Lk — Lie—1)*])
< 4E" [(—log Ry + log Ry—1)*] .
Let Cy = sup {z(logz)? + (1 — z)(log(1 — z))? : z € [0,1]} < +o00. We
will show that B [(log(Rpi1/Rn))?] < Cp for any n > 1.

Let 7(p) = p(logp)? + (1 — p)(log(1 — p))? for p € [0,1]. We remark that
7(p) = 7(1 — p). Then we have that

E* [(—log Ry, + log R,,_1) Zﬂf( ( )) (lOg R}:nilzlggi)y

r! 2% Ra(2k/27) \? 2% + 1 R.(2k +1/27)
-2 {“f (1 (30)) (o atrmn) s (0 () (s i 2720
By noting that R,,—1(2k/2") = R,_1(2k+1/2") = R,—1(k/2"1), ps (1,(2k/2™)) =
R, (2k/2™) and py (I,(2k +1/2")) = R,(2k + 1/2™), we have that

(i) |- 5 e (5

Evs
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Thus we have that supys; E* [(M, — My_1)?] < 4Cy < +00. Since {M,}
is an {F,}-martingale, { M?} is an {F,}-submartingale. Noting that My = 0,
we have that E#7[M?2] = >0 EFF[(My — My_1)?).

By Doob’s submartingale inequality, we have that

BUIME] _4Co

Al S T , € > 0.

ff (max M,? > 641) <

1<k<2!

Now we have that for ps-a.s.z, there exists m = m(z) € N such that
max;<p<o(Mi(7)/2")* < €, | > m, and then, (M,(z)/n)* < 46, n > 2™,
Then we see that limsup,,_, . (M,/n)? < ¢, ps-a.s., which implies our asser-
tion. [l

Lemma 2.4. (1) Suppose that limsup,,_,. . (—logR,)/n < 6y for a constant
61, then there exists a Borel set Ko such that j1;(Ky) = 1 and dimpy(Kp) <
6,/ log 2.

(2) Suppose that liminf, ., ,(—log R,)/n > 0y for a constant 0, then we
have that ps(K) =0 for any Borel set K with dimy(K) < 05/ log 2.

Proof. We denote the diameter of a set G C R by diam(G).

(1) Let Y, = (Mo {(—log Ri)/k < 61 + €}. Then we have that ps (>, Yen) =
1. Let Ac, be the set of I(x), z € [0,1), such that Ry(z) > exp(—k(0; +¢)).
Then, for any k > n, {Ix(z) € Acj: x € Y., } is a 27%-covering of Y, ,,.

Since pr([0,1)) = 1, we see that §(Acx) exp(—k(61 +¢€)) < 1. Then

> diam (1) 21982 = §( A, ) exp (— k(01 + 2€)) < exp(—ke).
IEAQ}C

By letting k — +00, we see Hg,12¢)/10g2(Yen) = 0.

Let Ko = (V;>1 Ups1 Yi/kn- Then, we have that iy (Ko) = 1 and Hp, 2¢)/10g2(Ko) =
0 for any € > 0. Hence dimpy(Ky) < 6,/log?2.

(2) Let K be a Borel set such that dimy(K) < 62/log2. Then, there
exists € > 0 such that H(QQ_E)/logQ(K> = 0. Then, for any n > 1 and § > 0,
there exist intervals {U(n,{)};2, on [0,1) such that K C |J;», U(n,l) and
diam(U(n,1)) < 27" for [ > 1 and 3,., diam(U(n,1))®~/182 < §. For
ecach [ > 1, let k(n,1) > n be the integer such that 27*™) < diam(U (n, 1)) <
29— (k(n,l)=1)

Let Ze, = gy {(—log Ry)/k > 62 — €}. Then we have that
iy, o0 15 (Zen) = tif (Upsy Zem) = 1, and,

1 (T () = Bruny (y) < exp (—k(n, 1) (62 — €)) < diam(U (n, 1))%= 182,

forye Z.,, and [ > 1.



Since diam(Iy(, (7)) = 27¥mD and diam(U(n, 1)) < 2=*00=D " e see
that f { I(u1)(2); Tk () NU(n,1) # 0} < 3 and that
pp (KN Z.,nU(n, 1)) < 3diam(U(n,1))029/los2,

Noting that K C (s, U(n,!1), we see that

pr(KNZen) <3 pp(KNZeuNU(n, 1) <3 diam(U(n, 1)) %279/ 182 < 3.

1>1 >1

Since ¢ is taken arbitrarily, we see that p;(K N Z.,) = 0. Recalling
o (Un21 Zen) =1, we see that p,(K) = 0. O

3 Proofs of main Theorems

Lemma 3.1. Letn > 1 and iy,...,i, € {0,1}. Then,
a < O(A;, - Aja) S O(A;, Ay 8) < 5.
In particular, r,(x)/s,(z) € [o, B] forn >1 and x € [0,1).

Proof. By noting Lemma 2.2, we have that ®(*Ag; 2) — 2 = —(do — ag)z/do +
co/dy and ®(*Ay;2) — 2z = —(2 + 1)(z — e1/b1)/(z + 7). We remark that
a > —1> —~. Since a < ¢/ (dy—ag), c1 /by < 3, we see that a < ®(*A;;a) <
O(*A; 3) < B for i =0, 1.

Since ®(*Ap;-) and P(‘A;;-) are increasing, we obtain the assertion by
induction in n.

We have that & < 0 < 3 by the definition of « and 3. Since r,(x)/s,(z) =
P(*Ax, () - - "Ax,(2): 0), we see that 7, (x)/s,(z) € [, F]. O

Now we show Theorem 1.1.
By noting Lemma 2.3 and Lemma 3.1, we see that for us-a.s.,

N
lim sup “los limsup& = limsmpi Zs <p0 (Tn($)>> <max{s(po(v));v € [, B]}

n——+00 n n—oo N N—oo Nn:l Sn<l’)

lim inf —log R _ liminfh = liminfl is 'a(z) > min {s(po(v));y € [a, B}
n—-+00 n " nse m Neooo N — Po sn(a:) = bo\y))s Yy ) .
Let 61 = max {s(po(v));y € [, ]} and 6y = min{s(po(y));y € [, 5]}
Then, by Lemma 2.4(1) (resp. (2)), we obtain the assertion (1) (resp. (2)).
These complete the proof of Theorem 1.1.



Lemma 3.2. Let N;(z) = {n e N: X, (z) =i} forx € [0,1), i =0,1. Then,

N—oo N

Proof. Let {y(x) = |[No(x) N {1,..., N}|. Then, (y(z) = 32N, Loy (Xn(2)).
Let M, = Y7, (Li03(X,) — po(@)). Then, {M,} is an {F,}-submartingale
because

> po(a) >0, py-a.s.x.

Tn(x)
Sn(7)

EP (M1 — Mol F)(2) = B 110y (Xs1)—po(a) | Fu) () = po ( )—po<a> >0,

We remark that |M,;1 — M,| = |1i03(Xnt1) — po(@)| < 14 po(a) for
pe-a.s.. By Azuma’s inequality [1], we see that for N € Nand 0 < ¢ < 1,

N(1-— C)Zpo(a)Q)
2(1 +p0(@))2 )

Hence, for any 0 < ¢ < 1, iminfy_.o (/N > cpo(a) for ps-a.s.. Thus we
obtain the assertion. O]

15 (G < Nepo(a) = iy (My < —N(1—c)po(a)) < exp (—

Lemma 3.3. We assume that the condition (i) in Theorem 1.2 fails. Then,
(1) There ezists ey € (0,2(y—1)) such that for any z € R with |z —(y—2)] <
€0,

|©("Ag; 2) — (v — 2)| > €.

Let A(x) = {neN:|r,(z)/sn(x) — (v —2)| <€}, B(x) = N\ A(x),
Clz)={ne€ A(x) :n—1¢€ B(x)} and D(x) = B(x) UC(z). Then we have
the followings.

(2) No(z) € D(x) for x €]0,1).
(3) iminfy o |B(x) N{1,...,N}|/N > po(c)/2, ps-a.s.x.
(4) Let eg = s(po(y — 2+ €9)) < log2. Then,

N
. 1 Z (T log2 —e «

Proof. (1) This is a direct consequence of the assumption that the condition
(i) in Theorem 1.2 fails, that is, ®(*Ag;y —2) # v — 2.

(2) It is sufficient to show that N\ D(z) C Ny(z). We see that N\ D(z) =
A(z) N (N\ C(x)) = {n € A(x) : n—1 € A(z)}. We assume that there
exists n € N\ D(x) such that n € Ny(x). Since n — 1 € A(x), we have
that |r,_1(z)/sp_1(x) — (v — 2)| < €. Since n € Ny(z), rn(z)/s,(x) =
O("Ag;rp_1(x)/sp_1(x)). By the assertion (1), we see that |r,(z)/s,(z) —
(7 —2)| > €. But this is contradict to n € A(z).
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(3) By the assertion (2), we see that |[No(z) N {1,...,N}| < |D(z) N
{1,..., N}|. We have that |C(z)n{1,...,N}| <|B(x)n{l,..., N} for any
N > 1, by the injectivity of the map h : C'(z) — B(x) given by h(n) =n—1.
Then we see that |D(xz) N {1l,...,N}| < 2|B(x) N {1,...,N}|, and then,
No(z)N{1,...,N}| <2|B(x)n{1,...,N}|, for any N > 1.

By Lemma 3.2,
B 1,...,N
i BOO L N i)

Thus we obtain the assertion (3).
(4) By noting the definition of B(z), we see that

s(po(rn()/sn(x))) < max {s(po(y — 2 — €0)),5(po(y — 2+ €0))} = e for any
z €[0,1) and n € B(x).
Now we have that

() -k v x Je((29))

neA(z),n<N neB(z),n<N

Let En(z) = |B(z)n{1,..., N}|/N. Then, by noting that s(po(r,(z)/s.(x))) <
log 2, we see that

N
n€A(z),n<N

Now we have that

v 2 () e

neB(z),n

By noting that eg < log 2, we see that

limsup ((1 — &n(x))log2 + En(z)ep) < log2 — (log2 — ep) liNIEinffN(x).

N—oo

By the assertion (3), we see that liminfy_.. &n(z) > po(a)/2 > 0 for py-
a.s.z. Thus we obtain the assertion (4). O

Now we show Theorem 1.2 (1). We remark that ®(cA;z) = ®(A;2) for
any constant ¢ > 0 and the conditions (A1) - (A3) remain valid for (cAo, cA;).
Then, we can assume that dg = 1 and b; = 1.

By computation, we see that

(12 0 _ (4o +1 1
A0_<c0 1)’ Al_( 2¢q 2(1+co))’
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and f(x) = oy j:l T satisfies the equation (1.1). This completes the

proof of Theorem 1.2 (1).

Now we show Theorem 1.2 (2). We assume that the condition (i) fails.
Then, by Lemma 2.3, we have that for ps-a.s.z,

N
, —log Ry(z) Ly(z) . 1 ( (m(m)))
limsup ————— = limsu = limsup — s — .
N—>+o<I>) N N—»oop N N—>oop N ; bo Sn(x)
Then, by noting Lemma 3.3(4) and Lemma 2.4(1), we obtain the desired
result.

We can show the assertion in the same manner if the condition (ii) fails.
These complete the proof of Theorem 1.2(2).

4 A relationship with stationary measures

In this section, we state a relationship between a certain class of de Rham’s
functional equations and stationary measures.

We state a general setting. Let G be a semigroup and p be a probability
measure on GG. Let M be a topological space. We assume that G acts on
M measurably, that is, there is a map from (g,z) € G x M to g-x € M
satisfying the following conditions :

(1) (9192) - ® = g1+ (g2 - @) for any g1,92 € G and z € M.
(2) z — ¢ - x is measurable map on M for any g € G.
We say that a probability measure v on M is a u-stationary measure if

v(B) = /G v(h™'B)u(dh), (4.1)

for any B € B(M). Furstenberg [3] Lemma 1.2 showed that if M is a compact
metric space, then there exists a p-stationary measure.
Let

G:{(Z Z) EM(2;R):ad>bc,bZO,d>0,O<a—|—b§C+d}7

and, M = [0,1]. Then G is a semigroup. We define a continuous action of
GtoMbyA-z=®(A;z). For (Ay, Ay) satisfying (A1)-(A3), we see that
Ap, A1 € G. Let u be a probability measure on G such that u(Ag) = u(A;) =
1/2. Then we have the following.
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Lemma 4.1. (1) For k > 1,

{Aal(f( K(2)))
AT (f(I())) =

1 (fUk(@) =0 z €0,1/2)
) = f(La (20— 1)) = e[1/2,1).

f(lk 1(22)), A
0, ATH(f (In(x)

(2) For any p-stationary measure v and k > 1,

v(f(Ir-1(22)))/2 z€[0,1/2)

”ﬂ&“»%:{mﬂgqex—n»m v e[1/2,1).

(3) There ezists exactly one p-stationary measure v.

Proof. (1) By Lemma 2.1(1), we see that
fIe(2)) = 2(Axy @) Axp(@)i [0, 1)) = P(Axy (2 P(Axy(0) A3 0, 1))
We see that f(I-1(22)) = ®(Ax,() - Axk ;[0,1)) = Ay l(f( k(2))), = €
0.1/2), and, F(Ia (22— 1)) = B(Ayy - Ay 0, ) = 4 (1 (1)
o€ Lo, e A0, O b 0D 6, Ay = b
x € 1[0,1/2), and, Ay (f(Ix(z))) = 0, z € [1/2,1). Thus we have the asser-
tion (1).
(2) By noting the assertion (1) and (4.1), we obtain the desired result.
(3) Let v, i = 0,1, be two u-stationary measures. By the assertion (2),
we see that vo(f(Ix(x))) = vi(f(Ix(x))) for k > 1, z € [0,1). Let

C= {f(zlewxj(m)) k>1.2¢€0,1) } = {2 0<1< 2 k> 1),
Then, we have that vy([a,b)) = v1([a,b)) for a,b € C. Since f is continuous
on [0,1], C is dense in [0, 1]. Thus we see that vy = v;. O

Lemma 4.2. Let g : [0,1] — [0,1] be the inverse function of the solution f
of (1.1). Then,

(1) g is continuous and strictly increasing. Hence, p, is well-defined.

(2) py is singular if and only if u, is so.

Proof. (1) Noting that f is continuous and strictly increasing on [0, 1], f(0) =
0 and f(1) = 1, we obtain the desired result.

(2) Since I([a, b)) = 1y (f~([a, b)) = pg (97" ([a,]))) for 0 < a < b <1,
we see that [(B) = uy (f~H(B)) = py (97(B)) for any Borel set B.

We assume that py is singular. Then, there exists a Borel set B, such
that ps(By) = 0 and {(By) = 1. Then, u, (g7 (By)) =1 and I (¢ (By)) =
wr (g7 (Bo))) = ps(By) = 0. Thus we see that pu, is singular.

We assume that p, is singular. Then, we see that p is singular in the
same manner as in the above argument. O

11



The following theorem gives a necessary and sufficient condition for the
regularity of the stationary measure in this setting.

Theorem 4.3. Let the conditions (i) and (ii) as in Theorem 1.2 and v be a
unique p-stationary measure. Then, we have

(1) v is absolutely continuous if and only if both (i) and (ii) hold.

(2) v is singular if and only if either (i) or (ii) fails.

(154

Proof. 1t is sufficient to show “if” parts.

(1) By noting Theorem 1.2(1), we have that f(z) = x/(—2cox + 2¢o + 1)
and then g(y) = (2¢o+ 1)y/(2coy +1). By Lemma 4.2(2), we have that p, is
absolutely continuous and obtain the assertion (1).

(2) We see that p,(f(Ix(x))) = pe(g7 (Ix(z))) = 277, z € [0,1), k > 1.
By Lemma 4.1(1),
pg (f (Ix(x))) = % (g (Ao (f (Tx(2))) + pg (AT (f(Ix(@))))), @ € [0,1), & >
1. Then we see that (4.1) holds for [a,b), a, b € C and that i, is a y-stationary

measure. By noting Theorem 1.2(2), we have that pf is singular. By Lemma
4.2(2), we have that i, is singular and obtain the assertion (2). O

5 Examples and remarks

The following example concerns the Lebesgue singular functions.

Example 5.1. Let us define 2 x 2 real matrices 4,0, Ap1, p € (0,1), by

p 0 I—p p
A"’O:(o 1)"4?’1:( 0 1>'

Then, (Ao, A1) = (Apo, Ap1) satisfies the conditions (A1)-(A3).

Let f, be the solution of (1.1) for (Ag, A1) = (A0, Ap1). Then, as imme-
diate consequences of main theorems, we have the followings.
(1) py, is absolutely continuous if p = 1/2, and puy, is singular if p # 1/2.
(2) There exists a Borel set K, such that puz (K,) = 1 and dimg(K,) <

s(p)/log 2.
(3) ps, (K) = 0 for any Borel set K with dimpg (K) < s(p)/log 2.

The following example concerns the range of self-interacting walks on an
interval in the author [5].

Example 5.2. Let , = 2/(1 + /1 + 8u2), u > 0. Let A,;, i = 0,1, be two
2 x 2 real matrices given by

~ x 0 - 0 T
— uw — w >
Auo <—u2xi 1) > Au (—u%i 1-— u2x2) vz 0.

12



Let 0 < u < v/3. Then (Ag, A1) = (Ao, Ay1) satisfies the conditions
(A1)-(A3). Let g, be the solution of (1.1) for (Ag, Ay) = (Auo, Aur). We
remark that v = (1 — v?22) /2, = (1 + z,)/22,. By the definition of z,, we
see that each of the conditions in Theorem 1.2 is equivalent to z,, # 1/2, that
is, u # 1. Then, by Theorem 1.2, we have that s, is singular for 0 < u < V3
and u # 1, and absolutely continuous for u = 1.

Let 0 < u < 1. Then we have that z,, > 1/2, o = min{0, —1/2, —u?x,} =
—1/2, 8 = 0 and v < 3/2. Hence we see that v — 2 < «, in particular,
v —2 ¢ [o,8]. By Theorem 1.1, we see that there exists a Borel set K,
such that dimpy(K,) < s(po(a))/log2 = s(z,)/log2 and pu,, (K,) = 1 and
that g, (K) = 0 for any Borel set K with dimpy(K) < s(po(8))/log2 =

s(2x, /(1 + z,))/log 2.

Remark 5.3. (1) Pincus [6], [7] obtained results similar to Theorem 4.3.
Hata [4] Corollary 7.4 showed the singularity of the solution of (1.1) under
the assumptions similar to [7] Theorem 2.1.

(2) Let T': [0,1) — [0,1) be given by T'(x) = 2z mod 1. Then, by compu-
tation,

ur () = [ (P2 ) + S (1)) st 4 € (o,

We see that T is a non-singular transformation on [0, 1) with respect to /iy,
that is, ppo T < py and pp < ppo T

Now it is natural to ask whether the non-singular dynamical system
([0,1), py,T) is ergodic. The dynamical system ([0,1], puy,,7) in Example
5.1 is invariant and ergodic. Also, we would like to see whether there exists
a T-invariant measure A on [0, 1) which satisfies A < p1y and pp < A.
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