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Abstract

This paper develops a rigorous asymptotic expansion method with its numerical
scheme for the Cauchy-Dirichlet problem in second order parabolic partial differential
equations (PDEs). As an application, we propose a new approximation formula for pric-
ing a barrier option under a certain type of stochastic volatility model including the
log-normal SABR, model.
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1 Introduction

Numerical methods for the Cauchy-Dirichlet problem have been a topic of great interest
in stochastic analysis and its applications. For example, in mathematical finance the Cauchy-
Dirichlet problem naturally arises in valuation of continuously monitoring barrier options:

CBarrier(Tv J}) = E[f(X%)]'{T>T}] = E[f(XII“)l{minte[o,T] Xt>L}]’ (11)

Here, T' > 0 is a maturity of the option, and (X[); denotes a price process of the underlying
asset starting from x (usually given as the solution of a certain stochastic differential equation
(SDE)). Also, L stands for a constant lower barrier, that is L < z, and 7 is the hitting time
to L:

r=inf{t €[0,T]: X’ < L}. (1.2)
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It is well-known that a possible approach in computation of Cyapier (T, ) is the Euler scheme,
which stores the sample paths of the process (X[); through an n-time discretization with the
step size T'/n. In applying this scheme to pricing a continuously monitoring barrier option,
one kills the simulated process (say, (X;);) if X; exits from the domain (L,o0) until the
maturity 7. The usual Eular scheme is suboptimal since it does not control the diffusion
paths between two successive dates t; and t;,1: the diffusion paths could have crossed the
barriers and come back to the domain without being detected. It is also known that the error
between Ciarier (T, ¥) and Cpamier (T, ) (the barrier option price obtained by the Euler scheme)
is of order \/T/n, as opposed to the order T'/n for standard plain-vanilla options. (See [7])
Therefore, to improve the order of the error, many schemes for the Monte-Carlo method have
been proposed. (See [16] for instance.)

One of the other tractable approaches for calculating Cgamier (7, ) is to derive an analyt-
ical approximation. If we obtain a closed form approximation formula, then it is a powerful
tool for evaluation of continuously monitoring barrier options because we do not have to rely
on Monte-Carlo simulations anymore. However, from a mathematical viewpoint, deriving an
approximation formula by applying stochastic analysis is not an easy task since the Malli-
avin calculus cannot be directly applied, which is due to the non-existence of the Malliavin
derivative D;7 (see [4]) and to the fact that the minimum (maximum) process of the Brownian
motion has only first-order differentiability in the Malliavin sense. Thus, neither approach in
[11] nor in [19] can be applied directly to valuation of continuously monitoring barrier options
while they are applicable to pricing discrete barrier options. (See [18] for the detail.)

In this paper, we propose a new general method for approximating the solution to the
Cauchy-Dirichlet problem. Roughly speaking, our objective is to pricing barrier options when
the dynamics of the underlying asset price is described by the following perturbed SDE:

{ dX7* = b(X", €)dt + o(X7*, £)dB,,

Jo, (1.3)

where ¢ is a small parameter, which will be defined precisely later in the paper. In this case,
the barrier option price (1.1) is characterized as a solution of the Cauchy-Dirichlet problem:

%us(t,:c) + L% (t,x) =0, (t,x)€[0,T) x (L,00),
u (T, z) = f(x), x> 1L, (1.4)
W (t, L) =0, te[0,71],

where the differential operator ¢ is determined by the diffusion coefficients b and o. Next,
we introduce an asymptotic expansion formula:

ut(t,x) = ul(t, ) + e(t,z) + - + "0 (t,2) + O™, (1.5)

n—1

where O denotes the Landau symbol. The function u"(¢, ) is the solution of (1.4) with ¢ = 0:
if b(x,0) and o(x,0) have some simple forms such as constants (as in the Black-Scholes model),
we already know the closed form of u’(t, ) and hence obtain the price. Then, we are able
to get the approximate value for u®(t, ) through evaluation of v9(¢,z),...,v° (¢, ). In fact,
they are also characterized as the solution of a certain PDE with the Dirichlet condition. By
formal asymptotic expansions, (1.5) as well as

L= e Lt L
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we can derive the PDEs corresponding to v} (¢, ) of the form:

0
St ) + L0t w) + g1, 7) =0, () € [0,7) x (L, 00)

v (T, x) =0, x> L,
ve(t,L) =0, t € 10,7,

(1.6)

where gp(t, x) will be given explicitly later in this paper. Moreover, by applying the Feynman-
Kac approach, we are able to obtain their stochastic representations. We will justify the above
argument in a mathematically rigorous way with necessary assumptions in Section 2.

The theory of the Cauchy-Dirichlet problem for this kind of second order parabolic PDE
is well understood in the case of bounded domains (see [5], [6] and [14] for instance). As for
an unbounded domain case such as (1.4), [17] provides the existence and uniqueness results
for a solution of the PDE and the Feynman-Kac type formula (cited as Theorem 1 below).
However, some mathematical difficulty exists for applying the results of [17] to the PDE (1.6).
More precisely, the function gp(¢,7) may be divergent at t = T. (If g{(t,x) is continuous on
[0,T]x [L, 0), the existence and uniqueness of (1.6) are guaranteed: see [5].) To overcome this
difficulty, we generalize the Levi’s parametrix method (which is used to construct a classical
solution of the PDE) in Theorem 2. Furthermore, we show another representation of v} (¢, x)
by using the corresponding semi-group in Section 3. We notice that such a form is convenient
for evaluation of v} (¢, ) in concrete examples.

In Section 4, we apply our method to pricing a barrier option in a stochastic volatility
model:

dsS; = (c—q)Sedt +0:S:dB}, S5 =S >0,
dof = e\ — of)dt +cvoi(pdB} + /1 — p2dB}), of =0 > 0,

where ¢,q > 0, ¢ € [0,1), \,0,v > 0, p € [~1,1] and B = (B', B?) is a two dimensional
Brownian motion. Then, we obtain a new approximation formula:

Cga‘;’fier(T’ S) = E [f(S%)l{HlinogtST Sf>L}}

T
~ PPf(log9S) + €/ PR _2PPP f(log S)dr,
0

where (PP); is a semi-group defined in Section 3, f is a payoff function and f(z) = f(e”). Here,
PP f(log S) is regarded as the down-and-out barrier option price, CE> . (T, S) in the Black-
Scholes model. Moreover, we confirm practical validity of our method through a numerical
example given in Section 4. Notice also that our example does not satisfy the assumptions
introduced in Section 2. Thus, we generalize our main result and present weaker (but a little
bit complicated) version of the assumptions in Section 5.1. Furthermore, Section 5.2-5.4 list
the proofs of our results.

Finally, we remark that in the contrast to the previous works ([2], [3], [8], [9] for ex-
ample), which start with some specific models (the Black-Scholes model or some type of fast
mean-reversion model) and derive approximation formulas for (discretely or continuously mon-
itoring) barrier option prices, we firstly develop a general asymptotic expansion scheme for the
Cauchy-Dirichlet problem under multi-dimensional diffusion setting; then, as an application,
we provide a new approximation formula under a certain class of stochastic volatility model
that can be widely applied in practice (e.g. in currency option markets).
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2 Main Results

Let b: RxT — R%and o : RYx I — R?®R™ be Borel measurable functions (d, m € N,)
where [ is an interval on R including the origin 0 (for instance I = (—1,1).) We consider
the SDE (1.3) for any 2 € R? and ¢ € I; we will introduce the assumptions for existence and
uniqueness of a weak solution of (1.3) later.

We are interested in evaluation of the following: for a small ¢,

u(t, )

Tt
= E {exp <—/ C(Xf’x,€)d7’> X (xemysr—iy |, (62) €[0,T]x D (2.1)
0

for Borel measurable functions f : R? — R and ¢ : R x I — R, a positive real number
T > 0 and a domain D C R D c R% s the closure of D and 7p(w), w € C([0,T]; R?), stands
for the first exit time from D, that is

mp(w) = inf{t € [0, T];w(t) ¢ D}.

As mentioned in Section 1, the right-hand side of (2.1) corresponds to a barrier option price of
knock-out type with maturity 7' in finance. We regard (X;*); as the underlying aseet prices
and the expectation E[-] is taken under a risk-neutral probability measure. The boundary 0D
of the domain means the trigger points of the option and f represents a payoff at maturity.
The function ¢ represents a short-term interest rate. Our setting includes the case of D = R,
which corresponds to a price of an European option:

W (o) = E [exp (- /0 o c(Xf””,a)dr) f(X;’ft)] |

For applications to option pricing, see Section 4 for the details.
Now we introduce our assumptions.

[A] There is a positive constant A; such that
|09 (2, )2 + |V (z,e) P < Ay(1+ |z)?), z€RY e, d,j=1,...,d.

Moreover, for each ¢ € I it holds that ¢/ (-,¢),b'(-,¢) € £ fori,j = 1,...,d, where L is
the set of locally Lipschitz continuous functions defined on R

[B] The function f(x) is continuous on D and there are C; > 0 and m € N such that
|f(@)] < Cp(1+ |z*™), z € R%. Moreover, f(z) =0 on R?\ D.

Note that under [A], the existence and uniqueness of a solution of (1.3) are guaranteed on
any filtered probability space equipped with a standard d-dimensional Brownian motion, and
Corollary 2.5.12 in [10] and Lemma 3.2.6 in [15] imply

E[sup | X5 — 2] < Gt ' + =), (t,z) €[0,T] x R4 1 €N (2.2)
0<r<t
for some C; > 0 which depends only on [ and A;. Moreover, (X7), has the strong Markov
property. Although the assumptions [A]-[B] are not always satisfied in our example in Section
4, we can weaken them, and will introduce more general conditions in Section 5.1.
We continue to state our assumptions.
4



[C] There is a positive constant A, such that c(x,e) > —A, for x € D, e € I. Moreover, for
each € € I, it holds that ¢(-,¢) € L.

[D] The boundary 9D has the outside strong sphere property, that is, for each z € 0D there
is a closed ball E such that END = ¢ and END = {z}.

[E] The matrix (a”(z,¢));; is elliptic in the sense that for each ¢ € I and compact set K C R
d

there is a positive number p. ; such that Z a’(z,e)€'€¢ > u. k|€|? for any x € K and
ij=1
¢ € R% In the case of € = 0, we further assume

d
polél” <) a(x,0)6¢ < g€, x €D, R
ij=1
for some pg > 0.

Let us define a second order differential operator .£° by

2 d

.1 i 0 ; 0
L= §i;a](x’€)8xi8xj + ;b (33,5)% —c(z,¢),
d
where a" = Zaikajk. We consider the following Cauchy-Dirichlet problem for a PDE of
k=1

parabolic type

%ue(t,x) + L (t,z) =0, (t,x)€[0,T)x D,

u* (T, z) = f(x), x €D, (2:3)
u(t,z) =0, (t,x) € [0,T] x OD.

The following is obtained by Theorem 3.1 in [17].

Theorem 1. Assume [A]-[E]. For each e € I, u°(t,z) is a (classical) solution of (2.3) and

sup  |u(t,2)]/(1 + |z*™) < oo. (2.4)
(t,y)el0,T]xD

Moreover, if w®(t,z) is also a solution of (2.3) satisfying the growth condition

sup  [w?(t,2)|/(1+ J2*") < o0
(t,y)€[0,T)x D

for some m' € N, then u® = w°.
To study an asymptotic expansion of u°(¢,x), we assume

[F] For each 4,5 = 1,...,d the functions o (z,0), b'(x,0) and c(t,x,0) are bounded on
[0,7] x D, and there exist constants Az > 0 and « € (0, 1] such that

’Uij(xvo) - O-ij(yao)l + ‘bl<x70) - bl(:%())l + ‘C<$70) - C(yu())’ < A3|I - y|a7 T,y € D



[G] Let n € N. The functions a”(x,¢), b'(x,e) and c(w,e) are n-times continuously dif-
ferentiable in e. Furthermore, each of derivatives 0%a® /0c* 0%b'/0c*, 0%c/oe”, k =

1,...,n — 1, has a polynomial growth rate in z € R? uniformly in € € I.
By [G], we can define 20, k € N, as
~ d_ ok ij 2 d_ okpi k
L= % {%]Z_l aagk (x’o)ﬁx?axj - 2 %(m,O)% - %@,0)} . (2.5)
Our purpose is to present an asymptotic expansion such that
u(t,z) = u’(t,x) + el (t,z) + -+ " op_y(tx) + O(e™), e —0. (2.6)
Here, vy (t,7), k =1,...,n — 1, are given as the solution of

9t 2) + 20t 2) + ot 2) =0, (12) € [0.T) x D,

v(T, ) =0, z €D, (2.7)
W(t,7) = 0, (t,2) € (0,T) x 0D,
where gp(t,z) is given inductively by
gt z) = Lo (t, x) + Zi”,glv?(t, ). (2.8)

=1

_ To state the existence of such a function vp(t, ), we prepare the set H"™*F of g € C([0,T) x
D) satisfying the following conditions:

e There is some MY € C([0,T)) N L*([0,T),dt) such that
lg(t, )| < MI(t)(1+ |z|*™), t€[0,T), z,y € D. (2.9)
e For any compact set K C D there is some M%% e C([0,T)) N LP([0,T), dt) such that
lg(t,x) = g(t.y)| < M@F(t)|z —y|*, t€[0,T), 2,y € K.
Then, we have the next theorem of which proof is given in Section 5.2.

Theorem 2. Assume [A]-[G]. Let g € H™*? for some p > 1/a. Then, the following PDE

%U(t,x) + L%(t, ) +g(t,z) =0, (t,z)€[0,T)x D,

v(T,z) =0, reD,
v(t,x) =0, (t,x) € [0,T] x 9D

(2.10)

has a classical solution v such that
lo(t,z)| < C(1+ |z]*™) (2.11)

for some C > 0 which depends only on a(-,0),b(-,0),c(-,0), D and M?. Moreover, if w is
another classical solution of (2.10) which satisfies |w(t, z)| < C"exp(B|x[?), (t,z) € [0,T] x D,
for some C', 3 >0, then v = w.



We also put the next assumption:

[H] " € g™ for some p > 1/a, where

gmar {g e CY2([0,T) x D)N C([0,T] x D) ;

dg 0,2 g .

- € m,,’*eHm,a,p’ Z,':l,...,d}.
ox? oxtoxd J

It is easy to see that the assumptions [F]-[H] imply ¢ € H™*? for some m; € N.
Therefore (2.7) with & = 1 has a unique classical solution v} under [A]-[H]. Similarly, if
oY, ... v} exist and are subject to G+ for some m;, € N, then the unique classical solution

v,y of (2.7) exists. We introduce our final assumption.
[I] It holds that v) € G"™*? k=1,...,n — 1 for some m, € N.

We remark that v} (¢, ) has the stochastic representation:

(T—t)Arp (X0 r
vp(t,z) = B /0 exp (—/0 c(XS’””,O)dv) go(t + 7, X% dr (2.12)

for k=1,...,n — 1 under [I]. The proof is almost the same as Theorem 5.1.9 in [13].
Now we are prepared to state our main result whose proof is given in Section 5.3.

Theorem 3. Assume [A]-[I]. There are positive constants C,, and m, which are independent
of € such that

ut (t,x) — (u'(t, z) + igkvg(t, o)) < Cp(1 + |z)*™)e™, (t,x) € [0,T] x D.
k=1

3 Semi-Group Representation

In this section we construct a semi-group corresponding to (X? ™) and D, and give another
form of (2.12). We always assume [A]-[I] (or the generalized assumptions in Section 5.1.) We
only consider the case where ¢(t, x,0) is non-negative and independent of ¢; we simply denote
c(x,0) = c(z). Let CP(D) be the set of bounded continuous functions f : D — R such that
f(z) = 0 on dD. Obviously, C¢(D) equipped with the sup-norm becomes a Banach space.
For t € [0,T] and f € CJ(D), we define P f: D — R by

t
PPf(z)=E [exp (— / C(Xq?“)dv> XD L x0m)50y | -
0

We notice that PP f(z) is equal to u®(T — t, ) with the payoff function f.

Theorem 4. The mapping PP : CP(D) — CP(D) is well-defined and (PP)o<i<r is a
contraction semi-group.



Proof. Let f € CJ(D). The relations Py f = f, PP flop = 0 and sup |PP f| < sup|f| are
D D

obvious. The continuity of P f is by Lemma 4.3 in [17]. The semi-group property is verified
by a straightforward calculation. [

Note that (P”); also becomes a semi-group on the set C)(D) of continuous functions f,
each of which has a polynomial growth rate and satisfies f(z) =0 on 0D.
Let g € H"™*P. Observe that

(T—t)/\TD(XO’I) r
/ exp (—/ c(XS’x)dv) g(t +r, X2%)dr
0 0

T—t r
= / exp <—/ c(XB’“)dv) gt + 1, X)) (x00)>pydr,
0 0

(T—t)ATp (X 0:®) r
E / exp (—/ c(XS’x)dv) g(t+ 7, X2")dr
0 0

T—t r
= / E {exp <—/ C(Xg’m)dv> g(t+r, X?’z)l{TD(Xo,z)ZT}] dr
0 0

_ /0_ PPy(t + 7, ) (x)dr.

and we obtain

Thus, under the assumption [H], we see

¢
W(T —t,x) = /P,leouo(T—t—i—r,-)(x)dr

0

t t
- / PPZOPP f(a)dr = / PP, Z9PP f(2)dr. (3.1)
0 0

Similarly we get the following.
Theorem 5. Foreachk=1,...,n—1

v,g(T —t,x)

IRV ) A AT B L

1 CNl Z Bz
(3.2)

Proof. By (3.1), we have the assertion for £k = 1. If the assertion holds for 1,...,k — 1, then
. _
VT = t,2) = / PPLL + " L2 o) HT — t+ to, ) (w)dto
0 =1

t
- / PP, Z0PP f(x)dty



k—1

DR NN

=1 m 1(51 m CNmE ﬁz 1
D D
t to"%k l to— tlgﬁl t1— tQD%BQ 'Ptl—l tlg Ptl f(x)dtl ° 'dtldto

t
= /0 t— togkz (x)dto

v oox [

=2 m=1 (ﬁw)m CNm S Bi=
PtDtl,,gﬁth? tzg,b(’)Q‘Pt?—l%gﬁOB - Ptllj_l tl,jf PtlDf(x)dtl oo dty

N Z Z // / PtDtlg ti— tfg ’ Ptll)l tzgolptll) (x)dtl"'dtl-

1 CNl Z Bz

Thus, our assertion is also true for k. Then we complete the proof of Theorem 5 by mathe-
matical induction. [ |

In particular, when d = 1, D = (I, 00), b(x,0) = p, o(x,0) = 0 and ¢(z) = 0 with constants
[,;n € R and o > 0, the process X?’x is explicitly represented as X,?’x =x + ut + 0By, and it
is well-known that

2z — 1) (X" —

P(mp(X%%) > | X)) = 1 — exp (— l>> on { X" > 1}.

o’t
Therefore, for g € C’g(D) we have
PPg(x) = B[P(tp(X"*) > t|X7)g(X;"") 1 x000y] = /l 9(y)p(t, , y)dy, (3.3)
where
]_ 2(z—1)(y— y—z—pt 2
plt,zy) = (e e (3.4)

!

2mo

We remark that (3.3) is useful for explicit evaluation of (3.1), which is demonstrated in the
next section.

4 Application to Barrier Option Pricing under Stochas-
tic Volatility
Consider the following stochastic volatility model:

dS: = (c—q)Sedt + 0t S:dB!, S = S, (4.1)
dof = e\O — of)dt + cvoi(pdB} + /1 — p2dB?), of = o,

where ¢,q > 0, ¢ € [0,1), \,0,v > 0, p € [-1,1] and B = (B', B?) is a two dimensional
Brownian motion. Here ¢ and ¢ represent a domestic interest rate and a foreign interest rate,
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respectively when we consider the currency options. Clearly, applying It6’s formula, we have
its logarithmic process:

1
dX; = (c—q—5(09))dt + 07dB;, X5 =w =log¥, (4.2)

dof = X0 — o5)dt + evo (pdB} + /1 — p?dB?), 05 = 0.

Also, its generator is expressed as

1.\ o 1,0 , 02 o L1, 402
a: — —_ — = —  — — R — _— 4
Z (C 17357 ) e 27 9aE TV gue TN g re g (49)

In this case, £ defined by (2.5) is given as
2

0
Oxdo A0~ o)

L2 = po® P

(4.4)

We will apply Theorem 12 to (4.1) with d = 2 and d' = 1 and give an approximation formula
for a barrier option of which value is given under a risk-neutral probability measure as

SV, T —c(T— e’
CB;/rfier(T —te ) =E |:€ & t)f<5;—t)1{‘r(L,oo)(SE*"‘I)>T—t}] )

where f stands for a payoff function and L(< S) is a barrier price.
us(t, ) = CVe (T —t,e®) satisfies the following PDE:

Barrier

(5 +2°-¢)wita =0, Gy e 11 %D,

u (T, x) = f(x), z € D,
W (t,1) =0, t € [0, 7).

(4.5)

where f(r) = max{e®* — K,0}, D = (I,00) and [ = log L. We obtain the 0-th order u° as

u(t,w) = PP f(x) = Ele™T F(XT2 )1 (x0) 571y (4.6)
Set o = ¢ — q. Then PF ,f(x) = C55. (T —t,e" a,0, L) is the price of the down-and-out
barrier call option under the Black-Scholes model:
1—2a
e 2 L2
CBS . (T —t,e" a,0,L) = CP(T —t,e*, a,0) — <f) cBs <T —t, —,a,a) . (4.)
e.’L’

Here, we recall that the price of the plain vanilla option under the Black-Scholes model is
given as

CBIT —t,e® a,0) = e T DN (T —t,z,0)) —e T OKN(dy(T — t,z,0)), (4.8)
where

x—logK +at o2
+ =Vt
oVt 2
10

di(t,z,a) =




We show the following main result in this section.

Theorem 6. We obtain an approximation formula for the down-and-out barrier call option
under the stochastic volatility model (4.1):

C5Ve (T, e") = CBS. (T, e® a,0,L) 4+ (0, 2) + O(e?), (4.9)

Barrier Barrier

where

T ) 1.2\ 32
1 2(z—1)(y—1) (y—z—(a—50%)s)
0 —cT - _
vi(0,z) =e / / 1—e Zs e 2025 I(s,y)dyds, 4.10
1(0,2) . rmzs( ) (s,9)dy ( )

2 2 L2
X {CBS T_tve_aaaa) {1+($_1OgL) (1_ _g)} +(ZE—10gL)€_q(T_t)—N<Cl(t,I,O[))}
T o et

+ MO = 0)e®TDeTn(dy(t, z, a))VT —t

— ANO—o0) (%) ’ T Ln(ey(t, 2, a))VT —t

2a
4o e e\ 1702 L?
__o(T—t) P it . s BS _ 4+ =
e A0 — o) 3 (log L) (L) C <T t, e ,a,a) : (4.11)
and
2l —x —log K 2
Cl<t,l',0{) = & o8 +at+g_\/%

oVt 2

Proof. By Theorem 12 and the equality (3.1), we see the expansion

Barrier Barrier

Tt
CoVe (T —t,e")=CES. (T —t,e" a,0,L)+ 5/ PPLYPR ,  f(x)ds + O(?). (4.12)
0

11



T—t
The first-order approximation term v9(t, z) = / PPAPR . f(x)ds is given by
0

T—t
O(tz) = / Ele . Z°PE,_ F(Xr_i_)]ds
T—t 5 B B
- / Ble @0 T -9pL | F(Xr_, )ds
0
T—t 3 o B
= e / PPZOPR, Fx)ds,
0

where PP is defined by (3.3) with the density (3.4), that is,

_ o0 1 2(z—1)(y—1) (y—o—(a—102)5)2 _
PP f(z) = / l—e " %% e 2075 f(y)dy.
Piw = [ ) )

Define 9(t, x) as

(t,z) = jlopil?—tf(ex)
2 0
23&:30 Chasier(T = t, €%, 0,0, L) + e“T7IN(6 — U)%ngrier(T —te0,0,1).

A straightforward calculation shows that the above fucntion agrees with the right-hand side
of (4.11). Then we get the assertion. [

c(T—t)

= e pro

Remark that through numerical integrations with respect to time s and space y in (4.10),
we easily obtain the first order approximation of the down-and-out option prices.

Next, as a special case of (4.1) we consider the following stochastic volatility model with
no drifts:

ds; = oSidB;, S;=S>0, (4.13)
dof = evof(pdB} + /1 — p2dB}), o5=0>0.

where € € [0,1), p € [-1,1] and B = (B*, B?) is a two dimensional Brownian motion. In this
case, we can give a slightly simple approximation formula compared with Theorem 6.
By It6’s formula, the following logarithmic model is obtained.

1
AX; = 5 (o Pdt + ofdB}, Xg =z =log S,

dot = evo(pdB} + /1 — p2dB}?), of = o,

This model is regarded as a SABR model with § = 1 and known as the log-normal SABR (see
[12]). Again, the barrier option price is given by

SVie T €
CBa‘irier(T7 € ) =E [f(ST)l{minogugT 55>L}] )

(4.14)

where f stands for a payoff function and L(< S) is a barrier price.
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The differentiation operators .2, .2 and the PDE are same as (4.3)(4.5) with ¢ = ¢ = 0
and A = 0. Also, the barrier option price in the Black-Scholes model coincides with (4.7) with
no drift, that is,

BS BS S\ ss L?
CBarrler (T’ S) =C (T’ S) -+ ]C T7 o |
L S
where CP%(T, S) is the driftless Black-Scholes formula of the European call option given by
CPB3(T,S) = SN(d\(T,log S)) — KN(dy(T,log S))

with

r —log K + o°t/2
oVt ’
dg(t,l’) = dg(t,$,0) = dl(t,fﬂ) — O'\/%.

d1<t,l’) = d1<t,$,0):

Then, we reach the following expansion formula which only needs 1-dimensional numerical
integration.

Theorem 7. C5Y5 (T, e%) = CEI. (T, e®) + 0%(0, 2) + O(e?), where

W(0,7) = —%Typa {e"n(di(T,x))do(T, x) + Ln(c1 (T, x))er (T, x) }
vpL(xz — ) 1og(L/K) (T (T — s)'/? co(T —s,L/K)+ co(s, L/e")
+ Gy /0 a2 OXP (— 5 ) ds,

eltz) = log(LQ/ifj%”zt/Q, ext,y) = (—logy;;fm) |

Proof. By Theorem 12 and the equality (3.1), we see that the expansion

CsVeE (T,e%) = CE>S (T, e%) 4 evd(0,z) + O(e?)

Barrier Barrier

holds with
T—t 5 B
Ot z) = / PE,  ZOPP f(x)dr. (4.15)
0

Then, we have the following proposition for an expression of v9(0,x). The proof is given in
Section 5.5.

Proposition 1.

0? D 1 0 0? -
0100 - Pr f( )_ §E[(T_TD(X’ ))VPU 0x(9 T T (X0:7) f( )1{TD(X0’I)<T}]'

We remark that the expectation in the above equality can be represented as

T
v0(0,z) = —VpO'

2
D

1 - 0 =
) E[(T — 7p(X®* ))VpJQmPT—TD(XO@)f(Z)1{TD(XO‘I)<T}]

13



T -5 o -
— /0 ( 5 )Vpa2axaapﬁ_sf(z)h(s,x—z)ds, (4.16)

where h(s,x — ) is the density function of the first hitting time to [ defined by

h(s,z —1) = \_/%exp (— {= x;;;s s/2} ) . (4.17)

Now we evaluate

0? = 02 02 e’ L?
2 D _ BS 2 BS
i 3m80Pt fz) = wvpo” oz 800 (t.¢") —vpo 0xdo {(L) ¢ <t’ er > } '

Note that

%CBS (t, ex) — ewn(dl (t, x))\/a (418)

and

Then we have

Vp#%c@s (t,e") = prQexn(dl(t,x))\/l_f{l— dl(t’f)}
= —vpoen(di(t, z))ds(t, z) 0 (4.20)
and
vpo @:(3;0{< )CBS( 5—2)} = vpoLn(ci(t, x))ei(t, z). (4.21)

Combining (4.18), (4.20) and (4.21), we get

8x80Pth(x) = vpo{e®n(dy(t,z))(—da(t,z)) — Ln(ci(t,x))er(t,2) ). (4.22)

Substituting (4.22) into (4.16), we have

vpo?

2

vpo® =L PP ) = wpo Ln(dy(t,))(~da(t, 1)) ~ po Ln(ea(t,D)er(t,])
= o Ln(dy(t. ) (—(da(t,1) + da(t, 1))

, 1 . < {l —log K + %a2t}2) (—2([ — log K)>
= vpo xp [ — :
P \ 2 p 202t a\/g

Thus we obtain

1 ) o2 _
~3 E[(T — mp(X" ))Vﬂazaxa PP xomy S (D)1 x00)<1y]
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T _ {l*logK+%02(Tfs)}2 _ _
= _/ T S)VpO'L ! e 20%(T—3) <—2(l logK)>
0 2 V2T oVl —s
P (s
———e 2025 ds
vV 2mo?s3
_ T _ <\1/2 _ T
vpL{z — 1) log(L/K) [ -9 (_C2(T s,L/K>+cg<s,L/e>)d5_
0

o2mo 53/2 2

(4.23)
By Proposition 1, (4.16), (4.22) and (4.23), we reach the assertion. [

Finally, we show a simple numerical example of European down-and-out barrier call prices

as an illustrative purpose. Denote u’ = C55 . (T, S) and v? = v9(0,1og S). Then we see

C5VE (T, S) ~ u® + !

Barrier

We list the numerical examples below, where the numbers in the parentheses show the error
rates (%) relative to the benchmark prices of C5v% (T, S); they are computed by Monte
Carlo simulations with 100,000 time steps and 1,000,000 trials. We check the accuracy of
our approximations by changing the model parameters. Case 1-6 show the results for the
stochastic volatility model with drifts (4.1), and case 7 shows the result for the lognormal
SABR model (4.13).

Apparently, our approximation formula u" + v improves the accuracy for C}i:;;m(T, S),

and it is observed that ev) accurately compensates for the difference between C575 (T, 5)
and C55 . (T, S), which confirms the validity of our method.

Barrier

1.
S =100, 0 =0.15, ¢=0.01, ¢ =0.0,ev =0.2, p=—0.5,
eA=0.00, 6 =0.00, L =95, T"=0.5, K =100, 102, 105.
Table 1: Down-and-Out Barrier Option
| Strike | Benchmark | Our Approximation (u’ + ev?) | Barrier Black-Scholes (u”) |
100 3.468 3.466 (-0.05%) 3.495 (0.80%)
102 2.822 2.822 (0.00%) 2.866 (1.57%)
105 1.986 1.986 (0.01%) 2.052 (3.36%)
2.

S =100, 0 =0.15, ¢ =0.01, ¢ =0.0,cv = 0.35, p = —0.7,
ed=0.00, 6 =0.00, L =95 T =05, K=100, 102, 105.
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Table 2: Down-and-Out Barrier Option
| Strike | Benchmark | Our Approximation (u” + 1) | Barrier Black-Scholes (u”) |

100 3.421 3.423 (0.07%) 3.495 (2.18%)
102 2.753 2.757 (0.18%) 2.866 (4.13%)
105 1.885 1.890 (0.23%) 2.052 (8.88%)

S =100, o = 0.15, ¢ = 0.05, ¢ = 0.0,ev = 0.35, p = —0.7,
ed=0.00, 6 =0.00, L =95 T =05, K=100, 102, 105.

Table 3: Down-and-Out Barrier Option
| Strike | Benchmark | Our Approximation (u” 4 1)) | Barrier Black-Scholes (u”) |

100 1352 4.349 (-0.07%) 4.399 (1.06%)
102 3.585 3.586 (0.02%) 3.665 (2.24%)
105 2.560 2.563 (0.11%) 2.696 (5.31%)

S =100, ¢ =0.15, ¢=0.05, ¢ =0.1,ev = 0.2, p= —0.5,
eA=0.00, 6 =0.00, L =95, T"=0.5, K =100, 102, 105.
Table 4: Down-and-Out Barrier Option
| Strike | Benchmark | Our Approximation (u” 4 1) | Barrier Black-Scholes (u”) |
100 2.231 2.224 (-0.31%) 2.268 (1.64%)
102 1.758 1.754 (-0.27%) 1.812 (3.02%)
105 1.172 1.168 (-0.31%) 1.243 (6.05%)
d.

S =100, 0 =0.15, ¢ =0.01, ¢ =0.0,cv = 0.2, p = —0.5,
eN=0.2, 0=025 L=095 T=05 K =100, 102, 105.

16



Table 5: Down-and-Out Barrier Option
| Strike | Benchmark | Our Approximation (u” + 1) | Barrier Black-Scholes (u”) |

100 3.523 3.517 (-0.16%) 3.495 (-0.77%)
102 2.891 2.888 (-0.09%) 2.866 (-0.85%)
105 2.066 2.065 (-0.06%) 2.052 (-0.64%)

6.
S =100, 0 =0.15, ¢=0.01, ¢ =0.0,ev = 0.2, p = —0.5,
EA=05, =025, L =95 T =05 K =100, 102, 105.
Table 6: Down-and-Out Barrier Option
| Strike | Benchmark | Our Approximation (u” 4 o) | Barrier Black-Scholes (u”) |
100 3.587 3.594 (0.20%) 3.495 (-2.55%)
102 2.976 2.987 (0.39%) 2.866 (-3.68%)
105 2.170 2.183 (0.59%) 2.052 (-5.41%)
7.

S =100, ¢ =0.15, ¢ =0.0, ¢ =0.0,ev = 0.2, p= —0.5,
eX=00, § =00, L =95 T =05 K =100, 102, 105.

Table 7: Down-and-Out Barrier Option
| Strike | Benchmark | Our Approximation (u” + 1) | Barrier Black-Scholes (u”) |

100 3.261 3.258 (-0.09%) 3.290 (0.90%)
102 2.640 2.639 (-0.02%) 2.686 (1.78%)
105 1.841 1.841 (0.01%) 1.911 (3.77%)

5 Appendix

5.1 Generalization of Main Results

There are several cases in practice that our assumptions [A]-[B] are not satisfied. Hence,
in this section we weaken the assumptions. Let d' € {1,...,d}, and we regard X;™" as
logarithm of the underlying asset prices for + < d’, and as parameter processes such as those
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for a stochastic volatility and a stochastic interest rate for i > d’. For a technical reason
introduced later, we assume I C [0,00) in this section.
Let (2, F, (Fi)e, P) be a filtered space equipped with a standard Brownian motion (By);.

Set

b'(y,e)

~ij _ ?Jiqij(ﬂ(?/
o (y,g) - { )

where 7(y) = (logy', ..., logy® y¥*t, ..., y?) e R%

[A7]

[B’]

[C]

For each ¢ € I it holds that o™ (-,¢),bi(-,e) € £ and that 67 (- ), b'(-,¢) and ¢(x(-), )
are also in £, that is, they are extended to be locally Lipschitz functions (with respect
to the parabolic distance) defined on R¢. Moreover, there exists a solution (X;™); of
SDE (1.3) and for any m > 0 there are m’,C' > 0 such that

sup E[|Yf’y|2m] < Ct"™ 1+ |y|2m/), (t,y) € [0,T] x [O,oo)d/ X ]Rd_d/, eel, (5.1)
0<r<t

where Y7 = o(X7™)) and o(z) = (¢*, . .. Jer? pdH ,2%) € R%.

The function f(z) is represented by the continuous function f:R* — Ras f (x) =
f(e(z)). There exists C; > 0 such that f())? < Cr(1+ ly[*™), y € R%. Moreover,

f(z) =0on R\ D.

In addition to the condition [C], there is a constant A > 0 such that c(t,z,e) <
A5(L A+ |=*™).

Note that Ito’s formula implies that (Y;7¥); is a solution of

AYEY = b(YPY e)dt + (Y7, €)dB,,
Yo' =y

Although Theorem 3.1 in [17] no longer works under [A’]-[B’], we can charaterize u°(t,z) as
the solution of (2.3) in the viscosity sense. To see this, set

1 2 .
e _ = ij i B
g 2 zjzzl (y7 ) 8y18y3 <y7 6) a ) C(ﬂ—(y)a 5)7

d
where a" = E 6* &7k Moreover, define
k=1

D={yeR?; 4y >0,i=1,...,d and n(y) € D}

and 4°(t,y) = v (¢, 7(y)) ((t,y) € [0,T] x D), 0 ((¢,y) € [0,T] x D).
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Theorem 8. Assume [A']-[B']. Then, u®(t,x) is a viscosity solution of (2.3). Moreover,
s (t,y) is a viscosity solution of

—%ﬂa(t,y) — L (ty) =0, (t,y)€[0,T)x D,
a(T,y) = f(y), reD, ) (5:2)
s (t,y) =0, (t,y) € [0,T] x OD
satisfying
sup @5 (t, )| /(1 + [y[*™) < oo (5.3)

(t,y)€[0,T|x D

Proof. The latter assertion is by the similar argument to the proof of Proposition 6. Then,
the simple calculation gives the former assertion. |

Applying Theorem 8.2 in [1] and Theorem 7.7.2 in [15] for (5.2), we have the following
theorem.

Theorem 9. Assume [A']-[C’] and [D]-[E]. If w*(t,y) is a viscosity solution of (5.2) satis-

fying the growth condition (5.3), then u® = w°.
Let H™*P be the same as H™P replacing (2.9) with
o(t.2) < MY {1+ @)™} te0.7), o,y € D.

Moreover we define G™? similarly to G"™®, replacing H™%? and H"™*P in the definition
with H™%? and H™*P, respectively.

[H’] The condition [H] holds replacing G™** with Gmap
[I’] The condition [I] holds replacing G"™“? with G,
The following theorem gives a generalization of Theorem 3. The proof is in Section 5.4.

Theorem 10. Assume [A']-[C"], [D]-[G] and [H']-[I']. Then there are positive constants C,,
and m,, which are independent of € such that

us(t, x) — Ze Wt x))| < Co(1 + |u(2))*™)e”, (t,x) € [0,T] x D.

Here we give another version of generalized assumptions.

[D’] The domain D is given as D = U x R4 where U is a domain in R? whose boundary
OU satisfies the outside strong shpere property.

[E’] The condition [E] holds for € # 0. Moreover ¢”(z,0) = b'(z,0) =0 fori =d +1,...,d,
j=1,...,d and for each compact set K C D there is a positive constant jip x such that

po.r [€? <Z (2,0) < pg l€)? for z € K and & € R,

i,7=1
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[F’] For each y € R“™%, the inequality

H;?XSIGIS{IU”((I ), 0)| + [0 (2, 1), 0)] + le((z, ), 0) [} < o0

holds, where (z,y) = (', xt oyt ,yd’d/) € R? and there exist As(y) > 0 and
€ (0, 1] such that

o7 ((,9),0) = 0¥ (&, ), 0) + ' ((, 9), 0) = b (", 9), 0)[ + [e((x, ), 0) — e((', ), 0)]
< As(y)|z —2'|%, (t,z),(s,2") €[0,T] x U,y € R,

[H”] The condition [H] holds replacing G™*? with G ", where

"7 = {geC"(0.7) x D) C(0.T] x D) ;
0%g

89 m
—= (-, y) € HU’M; D

oxt (7’y)€HmaP .7j:17"‘ad) yeRd_dl}

and 7:[TU”’°"p is the same as H™“P replacing D C R? in the definition with U ¢ R?.
Here h(-,-;y) denotes the function [0,T] x U > (t,z) — h(t,(z,y)) € R for h =
dg/0x",0%g/0x' 02’ .

[”] The condition [I] holds replacing G™*P with G "

Theorem 2 implies the next theorem.

Theorem 11. Assume [A'|-[F'] and [G]. Let g € H7*? for some p > 1/a. Then for each
fized y = (x")4 _a41, the following PDE

Oo(t.0) + Z0(t,2) + glt,a9) =0, (1,2) €[0.7) x U,
v(T,z) =0, reU,
v(t,x) =0, (t,x) € [0,T] x oU

has a classical solution v satisfying (2.11), where

d/
1 /
0 _ % % d
Z,) = 53 1 a”((z,y), 8x18x9 ; b'((z,y), —c((x,y),0), =e€R".

Moreover, if w is another classical solution of (2.10) which satisfies |w(t,z)| < C"exp(f]z|?),
(t,x) € [0,T] x D, for some C', 3 > 0, then v = w.

Using the above theorem instead of Theorem 2 itself, we can prove the following theorem
similarly to Theorem 10.

Theorem 12. Assume [A'|-[F'], [G] and [H"]-[I"]. Then, the same assertion of Theorem
10 holds.
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5.2 Proof of Theorem 2

We consider the following PDE which is equivalent to (2.10) with changing variable t to
T—t

—gv(t,a:) + L%(t,x) +g(t,x) =0, (t,z) € (0,T] x D,

t

(0, 2) = 0, ze D, (5.4)
v(t,x) =0, (t,x) € [0,T] x OD.

We define H™*? as the same as H™*? replacing [0,7") in the definition with (0, 7.
We divide the proof of Theorem 2 into the following two propositions.

Proposition 2. For any g, a classical solution of (5.4) is unique in the following sense: if v
and w are classical solutions of (5.4) and |v(t,z)|+|w(t, z)| < Cexp(B|x|*) for some C, 3 > 0,
then v = w.

Proposition 2 is obtained by the same argument as the proof of Theorem 2.4.9 in [5].

Proposition 3. There exists a classical solution v of (5.4) for g € H™*F with p > 1/a.
Moreover, (2.11) holds.

Proof. By Levi’s parametrix method, we can construct the fundamental solution I'(¢, z; T, &)
for the operator L = —9/0t + £°, that is,

W,(tz) = / /D L(t, i, €)g(r, €)dedr

is continuous in (¢, z), continuously differentiable in z for g € C([0,T] x D). When g is Holder
continuous in x uniformly in ¢ € [0, 7], then we see that W is a solution of (5.4) (See Theorem
1.5.8-1.6.10 in [5]. For more details, please refer to Chapter 1, Section 2—-6.) However functions
in H™*P may not have the regularity at ¢ = 0. So we generalize the argument in Chapter 1
of [5]. We remark that I'(¢, z; 7, &) is given by

D(tai7,€) = Z(t, 27, €) + / / Z(t, v:.0,m)® (0,75 7, €)dndo,
T D

where

Z(t,x;7,8) =

det(a(t, z,0)) Y () - &) —¢)
(r(t — )iz P At —7)

and ®(t,z;7,£) is the solution of
O(t,x;7,8) = LZ(t,x;7,&) + /t/DLZ(t,QZ;O, n)®(o,n;7,&)dndo.
Fix any g € H™*?. We can divide Wy as W, =V, 4+ U,, where
ita) = [ [ 20605 9t eptear,
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t t
U (t, ) = / /D Z(t, v, €)(r, E)dédr, (t,x) = / /D B(t, 57, O)g(r, £)dedr.

We remark that V,, U, and ¢ are well-defined by virtue of (4.9) and (4.15) in [5] and the
property of g. Take 5 € (o — 1/p, ). By Theorem 1.4.8 in [5], we see that

, _ Clz —y|’ Az —¢? §|2 Ay — €
|(I)(t7 T, T, f) - q)(tvyv T, §>| S (t . T)(d+2_(o‘_6))/2 exp t— + exXp _ﬁ

for some C, A > 0. Hence,

. . b M(n)
9t x) — g(t,y)| < C'/O (i =)@/ drlz —yl°

T 1/p t 1/q
< </ (Mg(T))pdT> (/ (t — T)(l(aﬂ)/2)qd7-> lz —yl?, te(0,T], x,y € D
0 0

for some C’ > 0 by virtue of the Holder inequality, where ¢ > 1 is given by 1/p+1/q = 1. Since
(1 — (e — B)/2)q is smaller than 1, we see that (¢, z) is S-Holder continuous in z uniformly
in t € (0,7]. Then, Theorem 1.3.3-1.3.6 and the equality (4.2) in Chapter 1 of [5] imply that
U,(t,x) € C**((0,T] x D) and

LU (La) = —it,x) //{ (¥ (z,0) — @V (f’o»ax?;xj

i,7=1

+0'(x, 0)% — ¢(, 0)}2@, x; 7, €)g(T, £)dédr

= —g(t,x)—i—/o /DLZ(t,a:;T,f)g(T,f)dng. (5.5)

For the volume potential V,, we follow the proof of Theorem 1.3.4 in [5] to find that for
any compact set K C D

d 82

CKMQ’K(T)
oxtozI

G— te(0,T), z€ K, 7€ (0,t), p€(l—a/2,1)

Jg(t7I7T>‘ S

h,j=

for some Cx > 0, where

J(t.7) = /D Z(t, ;7. €)g(r. €)de.

Hence, the dominated convergence theorem implies that V(¢,z) is twice continuously differ-
entiable in z. Similarly, we get V, € C*((0,T] x D) and

LV,(t,x) = —g(t,x) + /Ot/DLZ(t,:L’;T, &)g(r, &)dEdr. (5.6)

Combining (5.5)—(5.6), we obtain
LW, (t.2) = —g(t,2) — / /D (@(t,a37.6) — LZ(t,a37.€)} (7. €)dedr
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v/ t [ [ ] tatair (o mipdsdsds
— _g(t, ) //{ (t,x;7,6) — LZ(t,x;7,€)

—/t/ LZ(t,x;a,n)<1>(0ﬂ7;T,ﬁ)dndd}g(ﬂﬁ)dﬁdT
T D

= —g(t, x)v

which implies that W), is a solution of (5.4). Moreover, since g € H"™%P, using the inequality
(6.12) in p.24 of [5], we get

t <
o(t,2)] < t_Td/Q p—

o [N o (Mo 8P g

1/p
< o[ orepar) i
0
for some C”,C", X' > 0. Then, we complete the proof of Proposition 3. [

5.3 Proof of Theorem 3

First, we generalize the definitions of .27, ¢ and v). We define

> 8 a’ 0?
e _ 1 o k‘ 1
o { Zl/ T
ok 0 ! okc
S R
+Z/ 8 (:17,7“5)6[7’(%Z /0( T) agk(x,rs)dr},
n—2
G(tx) = L0t x) + Ziﬁ?_kvk t,x) + Zz—:k{ “up(t, @) Z D V(t x)}
k=1 k=1 I=k+1

R 2N ()
We consider the following Cauchy-Dirichlet problem:

v(t,x) — Lv(t,x) — g5 (t,x) =0, (t,z) €[0,T) x D,

ot
U<T7 .l’) = 07 S D, (57)
v(t,x) =0, (t,x) € [0,T] x 9D.
For ¢ # 0, we define v = [u® — {u’ + Z efu(t, x) ". Obviously, we see
ut(t,z) = u’(t, x) +Z€vktx + & (t, o). (5.8)
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Proposition 4. The function v is a solution of (5.7).

Proof. 1t is obvious that v (7,x) = 0 for x € D and v} (t,z) = 0 for (¢t,x) € [0,7] x OD.
Apply Taylor’s theorem to (2.3) to ovserve

n—1
L (t,x) = {.,2”0 - ngjko + 8”.3225} u®(t, x). (5.9)
Since u” is the solution of (2.3) with ¢ = 0, we get
0
auo(t, z) + L%°(t, x) = 0. (5.10)

Similarly, by Theorem 2, we have

9 ) =1
at”k(t x) + Lot x) + L2t x) + Z.,iﬂ,?_lv?(t, z) = 0. (5.11)

=1

Combining (5.8)—(5.11) and Theorem 1, we obtain

a 15 15
Hl{av (t, ) + Lo (t,2) + Lo (t, ) + Zzolvlm}

2n—2
+Z {annta:)jL.iﬂavknt:p Z.,i”k,lvltx}
k=n+1 I=k—n+1
4g?n1 {.i%?_lvfl(t, z) + L0 (¢, ;1:)} + e Lo (t,x) = 0,
and thus,
6 € €., 1>
avn(t,x) + L5 (L x) + g5 (t,x) = 0.
This implies the assertion. [ |
Set

D (XSP)AN(T—t) r
o (t,x) =E / exp (—/ C(Xi’x,€)d1}> go(r+t, X>%)dr| .
0 0

By [F]-[I], we find that there are C,, > 0, m,, € N which are independent of £ and the function
M, € C([0,T)) N LP([0,T), dt) determined by u°,2?,...,v%_ | such that

|95t 2)| < CoMu(£)(1 + ™). (5.12)

The inequalities (2.2) and (5.12) imply
T ~
3 (1, 2)] < c;/ M, (r)dr (1 + [2]2™) (5.13)
t
for some C > 0 which is also independent of ¢.
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LI € _ ~€
Proposition 5. v, = v;,.

Proof. The assertion is easily obtained by the similar argument to Theorem 5.1.9 in [13]. W

Proof of Theorem 3. By (5.8) and Proposition 5, we have u®(t, x) O(t, x) —1—25 vi(t, x)

e"v¢ (t,x). Our assertion is now immediately obtained by the inequality (5. 13) [

5.4 Proof of Theorem 10

Let v; and ¢ be as in Section 5.3. Thanks for the assumption I C [0,00), the same
argument as the proof of Proposition 4 tells us that v;, is a viscosity solution of (5.7). Moreover,
we have the next proposition.

Proposition 6. The function v is a viscosity solution of (5.7).

Proof. Until the end of the proof we suppress ¢ in the notation. First, we check the continuity.
By the similar argument to the proof of Lemma 4.2 in [17], we see that v, is continuous on
[0,T) x D. Moreover, by (5.13), we get

T ¢
sup |0, (¢, z)| < C! (1 4 sup |z[*™) {/ M, (r)dr — / Mn(r)dr} — 0, t—=T
z€EKND zeK 0 0

for any compact set K C R%. Thus, v, is continuous on [0,7] x D.

Next, we show that v, is a viscosity subsolution of (5.7). Take any (t,z) € [0,7) x D and
let ¢ be C'*-function such that v, — ¢ has a maximum 0 at (¢,2). We may assume that ¢
and its derivatives have polynomial growth rates in z uniformly in ¢. By the Markov property,
we have

) (T-t)A (D (X7 ,)+h)
E [J(h)’l}n(t + h, X}f)l{TD(Xw)Zh}} =K / J<7")gn(t +, X;:C)drl{TD(X“)Zh} )
0

where J(r) = exp (—/ c(Xff,a)dv). Since 7p(X7%,,) = 0(X") — h on {7p(X*) > h}, we
0

obtain
E [J(h)on(t + h, XP)1irp(xoy>hy] = On(t, 2) [/ J(r)gn(t + 1, X7 )drl{TD(Xz)>h}] Ap,

where

A, =E

(T—t)Arp (X7)
/ J(r)gn(t + 1, X7)drle, x=y<ny | -
0
Therefore,
h
o(t,x) = on(t,2) = E[J(h)0a(t + h, X)) Lirp(xo)2ny] + E[/ gn(t + 1, X7)drlie, (xoy>ny] + Ap
0
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h
< E [J(h)go(t + h, X]:f)l{TD(XZ)Zh}] + E[/O gn(t +r, Xf)drl{TD(Xz)Zh}] + Ay

Applying Ito’s formula to J(r)p(t +r, X)), we get

1 [h 0
——/ EH( +$) (t+7‘,Xﬂ”)+9n(t+r,Xf)}1{fD(Xw>>h}] dr
h /g ot
Ap — o(t,x) P(tp(X*) < h)
; .

< (5.14)

By (5.12) and the Schwarz inequality, we have
T
Ay < CU(1+ o) P™) / M, dt P(rp(X*) < h)!/?
0
for some C > 0. Using (5.1) and the Chebyshev inequality, we obtain

C///
P(mp(X®) < h) < E[sup |X] —z| > dist(z,0D ——————E[su X* —zf?
(Tp(X*) <h) < [0<r<ph| | (z,0D)] < Tst(z. OD)F [re[oa]l "]

C////

dist(z,0D)3 s+l el

for some C!' C" 1 > 0. Thus, letting h — 0 in (5.14), we see that

() ~ Lolta) — g(t.) <O

Hence, 7, is a viscosity subsolution of (5.7). By the similar argument, we also find that o, is
a viscosity supersolution. By the definition of v,,, we easily get v, (7, x) = 0 for z € D and
On(t,z) =0 for (t,x) € [0,T] x OD. [

To see the equivalence v, = v}, we need to give a new proof of Proposition 5 under the

assumptions of Theorem 10.
Proof of Proposition 5. Set uS(t,r) = u’ Zs vp(t,x) + e"5(t,z). The analogous

argument of the proof of Proposition 4 implies that u;, is a viscosity solutions of (2.3). We
easily see that @; has a polynomial growth rate in x uniformly in t. Then, Theorem 9 leads
us to u;, = u°. This equality and (5.8) imply the assertion. |

Now, we obtain the assertion of Theorem 10 by the same way as that of Theorem 3.

5.5 Proof of Proposition 1

First, we notice the following relation:

LYPP f(x) = vpodt <a—5 - o > PP f(x) (5.15)
ot Jz3  Ox? ' '
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Then, using the relations Z°.Z°PP f(z) = LLL°PP f(z) and

o _
(5 +:2") PRT@) =0,
we get

(%+$°) —T; L0PR @) = —ZOPP f(a). (5.16)

Also, we have

9 T—t 82 B _ _
(a + ,%0) / PP, . (V'O028x80PTDf) (x)dr = —L°PP . f(z), z¢€(l,00). (5.17)
0

Therefore, the function

o 2 P pz T—t s0pp 7
77(-157 'I) = 0 PTfth vpo axao_Pr f (ff)d'r - Tgl PTftf(aj) (518>
satisfies the following PDE
0 0
e + 27 | n(t,z) =0, (t,x) € [0,T) x (I,00),
n(T,z) =0, x € (I,00),
T—t - i
77(t> l) = _Tglopig—tf(l)’ te [OaT)
Then Theorem 6.5.2 in [6] implies
1 0,z 2 & b 2
77(0, l’) = —5 E[(T - TD(X ’ ))VpO’ mPT—TD(XO@)f(l)1{TD(XO’Z)<T}]' (519)
By (5.18) and (5.19), we get the assertion. |
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