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Abstract

We consider an inverse problem of determining coefficient matrices in an N-system of second-order
elliptic equations in a bounded two dimensional domain by a set of Cauchy data on arbitrary subboundary.
The main result of the article is as follows: If two systems of elliptic operators generate the same set
of partial Cauchy data on an arbitrary subboundary, then the coefficient matrices of the first-order and
zero-order terms satisfy the prescribed system of first-order partial differential equations. The main result
implies the uniqueness of any two coefficient matrices provided that the one remaining matrix among
the three coefficient matrices is known.

1 Introduction

Let © be a bounded domain in R? with smooth boundary and let T be an open set on 92 and 'y = 9N \f,
let v be the unit outward normal vector to ). Consider the following boundary value problem:

L(z,D)u = Au+2A0,u +2Bozu+ Qu=0 in$, ul|pr, =0. (1)

Here u = (uq,...,uy) is an unknown vector-valued function and A, B, @ be smooth N x N matrices, i = /—1,

x = (z1,22) € R?, x is identified with z = 21 + iz, € C, 9, = % (8%1 — ia%) and 0 = % (i +z‘a%).

Consider the following partial Cauchy data:

Ca,Bg = {(u, %)h:; L(z,D)u=0 inQ, wulp, =0, uecH (Q)}

The paper is concerned with the following inverse problem: Using the partial Cauchy data Ca, B qQ,
determine matriz coefficients A, B, Q. B

Note that we allowed freely choose Dirichlet data on I' and measure the corresponding %b. In one
special case of N = 1 and A = B = 0, this inverse boundary value problem is related to so called the
Calderén’s problem (see [5]), which is a mathematical realization of Electrical Impedance Tomography.

Similarly to the case of N =1 in [12], the simultaneous determination of all three coeflicients A, B, @ is
impossible, but we can establish some equations for coefficient matrices (A, B, Q) which generate the same
partial Cauchy data.

Our main result is

Theorem 1 Let A;,B; € C5T*(Q) and Q; € C*T*(Q) for j = 1,2 and some o € (0,1). Suppose that
Cay.B1.@1 = Ca5.B,,Q,- Then

Al = A2 and B1 = BQ on f, (2)
28Z(A1 — AQ) + BQ(Al - Az) + (Bl — Bz)Al - (Ql — QQ) =0 n Q (3)

and
2(‘%(.31 — BQ) + AQ(Bl - Bz) + (A1 - AQ)Bl - (Ql - QQ) =0 Q. (4)
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In the case of N =1 and two dimensions, there are many works and we refer to some of them, and here
we do not intend to provide a complete list. In the case I' = 992 of the full Cauchy data, the uniqueness in
determining a potential ¢ in the two dimensional case was proved for the conductivity equation by Nachman
in [16] within C* conductivities, and later in [1] within L> conductivities. For a convection equation see [6].
The case of the Schrédinger equation was solved by Bukhegim [3]. In the case of the partial Cauchy data
on arbitrary subboundary, the uniqueness was obtained in [9] for potential ¢ € C®**(Q), and in [13], the
regularity assumption was improved to C*(Q) in the case of the full Cauchy data and up to W, (€2) with
p > 2 in the case of partial Cauchy data on arbitrary subboundary. The case of general second-order elliptic
equation was studied in the papers [12] and [10]. The results of [9] were extended to a Riemannian surface in
[7]. The case where voltages are applied and currents are measured on disjoint subboundaries was discussed
and the uniqueness is proved in [11]. Conditional stability estimates in determining a potential are obtained
in [17]. For the Calderén problem for the Schrédinger equation in dimension three or more, we refer to
the papers [4], [14], [15] and [18]. To the best knowledge of the authors, there are no publications for the
uniqueness for weakly coupling system of second-order elliptic partial differential equations, and Theorem 1
is the affirmative answer.

Theorem 1 asserts that any two coefficient matrices among three are uniquely determined by partial
Cauchy data on arbitrary subboundary I' for the system of elliptic differential equations. That is,

Corollary 2 Let (A;, Bj,Q;) € CoT(Q)x C5T(Q) x CH*(Q), j = 1,2 for some a € (0,1) and be complex-
valued. We assume that either Ay = Ay or By = By or Q1 = Q2 in Q. Then Ca, B0, = Ca,,B,,Q, tmplies
(A1, B1,Q1) = (A2, B2, Q2) in €.

Proof.
Case 1: Q1 = Q.
Denote R(x, D)(w1,ws) = (20,w1 + Bowi + wa Ay, 205w + Agwy + w1y By ). Therefore, applying Theorem
1, we obtain
R(LL', D)(Al - AQ, B1 - Bg) =0 inQ (5)

and
(A1 — Ao)|g = (B1 — Ba) |z = 0. (6)

Let a function ¢ € C2%(Q) satisfy [V4| > 0 on ©, \ be a large positive parameter and ¢ = e*¥. Then
there exist constants 7y and C independent of 7 such that

|T|%||'LU67¢||L2(Q) < C||(8Zw)67¢||L2(Q), V1 > 19 and Yw € Hy(Q) (7)

and
|T|%||w€7—¢HL2(Q) < C||(3zw)e™ || 120y, VT > 1o and Yw € H(Q). (8)

Consider the boundary value problem
R(l‘,D)(’LUl,'LUQ) = (f17f2) in Qa (w17w2)|6ﬂ =0. (9)

Applying the Carleman estimates (7), (8) to each of N2 equations in (9), we have
2
1 T T T
712 [ (wr, wa)e™ | L2y < C | D fie™ Lz + I(wi, wa)e™ L2y |+ V7 > 70 (10)
i=1

The second term on the right-hand side of (10) can be absorbed into the left-hand side. Therefore we have

2

712 (w1, wa)e™ | L2y < C DN fie™llLay, V7 > 7o. (11)
j=1

Using (11) and repeating the arguments in [8], we prove that a solution of the Cauchy problem (5), (6) is
Z€r0.

Case 2: B; = Bs.



From equation (4), we have
(A — A2)B; = (Q1 — Q2) in Q.

Hence equation (3) can be written as
20, (A1 — Ag) + Ba(A1 — As) — (A1 — A2)B1 =0 inQ, (A — As)z=0. (12)
Using (7), for the boundary value problem:
20,w+ Bow —wB; = f in ), wlgg =0,

we obtain the estimate )
|T‘§ ||’U}€T¢HL2(Q) S C||f€T¢HL2(Q) V’T Z T0- (13)

Using Carleman estimate (13) and repeating the arguments in [8], we prove that solution of the Cauchy
problem (12) is zero. Then equation (4) implies that Q1 = Qa.

The proof in the case A; = Ay is the same.l

Next we consider other form of elliptic systems:

L(z,D)u = Au+ A0y, u + BOr,u + Qu. (14)
Here A, B, @Q are complex-valued N x N matrices. Let us define the following set of partial Cauchy data:

5,473,(3 = {(u, %)h:; L(z, D)u = Au+ Ay, u + Bdy,u+ Qu =0 in Q, ulp, = 0,u € HI(Q)} .

Then one can prove the following corollary.

Corollary 3 Let (1,02 € C’4+°‘(g) and let two pairs of complex-valued coefficient matrices
(A1, B1), (A, By) € C5T2(Q) x C5T(Q) for some a € (0,1). We assume that Q1 = Q2 in Q. Then
(A1,B1) = (AQ,BQ) in ).

Proof. Observe that Z(m,D) = A+ A0, + BO: + @ where A = A+ iB and B = A — i3. Therefore,
applying Corollary 2, we complete the proof. B

Remark. Unlike Corollary 2, in the two cases of A; = Ay and By = Ba, we can not, in general, claim
that (Aq, By, Q1) = (Ag, Ba, Q2). By the same argument as Corollary 2, we can prove only
(i) 52+ = %22 in Qif Ay = Ay in Q.
(i) 92+ = 922 in Qif By = By in Q.

Moreover consider the following example

Q=(0,1) % (0,1),

[ = {(z1,22); 22 =0, 0 <y <1} U{(x1,22)|z2 =1, 0 < 2y < 1},

and let us choose n(xg) € C§°(0,1). Then the operators L(z, D) and e*"L(x, D)e™*" generate the same
partial Cauchy data, but the matrix coefficient matrices are not equal.

2 Preliminary results

Throughout the paper, we use the following notations.

Notations. i = /=1, 1,22,£1,& € RY, 2 = 21 + ize, ( = & + i&, Z denotes the complex conjugate of
z € C. We identify z = (v1,72) € R? with z = 2y +ixy € C, 9, = %(azl — 10y,), Oz = %(&Cl + i0z,),
B = (B1,52),18] = 61+ P2. D = (%6%1’ %8%2). Let x¢ be the characteristic function of the set G. The
tangential derivative on the boundary is given by 0z = 1/28%1 — Vla%z, where v = (v1,19) is the unit outer
normal to 9Q, B(Z,6) = {x € R?%; |a—Z| < 0}, S(7,0) = {x € R?; [z — | = 6}. We set (u,v)12(q) = [, uvdx
for functions u,v, while by (a,b) we denote the scalar product in R? if there is no fear of confusion. For



f : R? — RY, the symbol f” denotes the Hessian matrix with entries % L(X,Y) denotes the Banach

Oxp Oz’
space of all bounded linear operators from a Banach space X to another ]éanach space Y. Let E be the
1 ~ .
N x N unit matrix. We set [lu|| g1,-(q) = (Hu||§[1(9) + |7'|2||u||%2(9))§. Finally for any & € 92, we introduce
the left and the right tangential derivatives as follows:
fl(s) — f(@)

D, (@) = lim S S

where £(0) = 7, {(s) is a parametrization of 9 near T, s is the length of the curve, and we are moving
clockwise as s increases;

b (@) — tim {E) )

s——0 S ’

where £(0) = Z, £(s) is the parametrization of 9 near ¥ , s is the length of the curve, and we are moving coun-
terclockwise as s increases. By ox(Z=) we denote a function f(r,-) such that ||f(7,-)||x = o(Z) as|7] —
+00.

For some a € (0,1), we consider a function ®(2) = ¢(z1,z2) + it)(z1, 22) € C%F*(Q) with real-valued ¢
and v such that
0,2(2)=0 inQ, Imd®

r; =0, (15)
where I'j is an open set on 0f2 such that I'y CC I'§. Denote by #H the set of all the critical points of the
function : 50

H={ze E(z) = 0}.

Assume that ® has no critical points on i and that all critical points are nondegenerate:
HNONCTy, O20(2)#0, VzecH. (16)
Then @ has only a finite number of critical points and we can set:
HA\To=A{Z1,....%0}, HNTo={Tps1,.., Toye}. (17)
Let 092 = Ué\[:l'yj, where «; is a closed contour. The following proposition was proved in [9].

Proposition 1 Let & be an arbitrary point in Q. There exists a sequence of functions {®c}ec(o,1) satisfying
(15), (16) and there exists a sequence {T.},e € (0,1) such that

o0,

~ — ﬁ.
T.eEH.={z¢€ ',

(2) =0}, Z.—T ase— +0.

Moreover for any j from {1,..., N}, we have
HeNy =0 ify;NT #0,

HEQ’VJ'CFQ if’)/jﬂf:q)

and
Im®.(z) ¢ {Im®.(z); x € He \ {Z}} and ImP(T,) # 0.

The following proposition was proved in [12].

Proposition 2 Let T, cc T be an arc with the left endpoint x_ and the right endpoint x oriented clockwise.
For any T € IntT,, there exists a function ®(z) which satisfies (15), (16), Imq"aﬂ\f* =0,

0Im®
or

Teg={rel,; () =0}, cardG < (18)



and

(%)QImII)(J:) #0 VeeG\{z_,z4}. (19)
Moreover
Im®(Z) # Im®(z), VYVreG\{zZ} and Imd(T)#0 (20)
and
D (2 ) () I £0, D_(2,)( ) I £0. (21)

Later we use the following Proposition (see [9]) :

Proposition 3 Let ® satisfy (15) and (16). For every g € L*(Q), we have
/geT(éfg)dx% 0 as T — Ho0.
Q

Moreover

Proposition 4 Let ® satisfy (15), (16), g € I/Vp1 (Q) with some p > 2, gl =0 and suppg C Q. Then

3 1
/ ge™ @ Pdr = o(=) as T — +o0.
Q T

Proof. By the Sobolev imbedding theorem, the function g belongs to C*(£2) for some positive a. Note
that by (16) and the assumption on g, we have

(Vip,v)e™(®—®) Cligllcea s C
l9—%iver les@m = 5 S 5ia (22)
Also Vi Vy Vi
g = V0 g T (uw) |
Since

o+
V |Vg
\Y% <C g

by the Holder inequality we conclude that (Vg, W) € L'(Q). By (16) and assumption that g|3 = 0,

we obtain
L+0 0+-0
Vi ||9||ca(9)
di C C
’g W( WIQ)‘ Z|x—x|2* Z|ac—ac|2 o

Therefore div (g%) € LY(Q). By (22), passing to the limit as § goes to zero, we have

_ _ T(®—D)
J = / g™ P dy = lim g™ P dz = lim g%dz
Q 6—0 Q\Uﬁi[ils(ij,é) 6—0 Q\U[_H; 5(3;,0) 2’LT|V'(/J|
T(®—D) _
= lim %da — lim div (9%)67(@_@@6
0=0 Uttt 5(3,,0) 2iT| V| =0 Jo\Ul Y 5(75,0) 2iT |V
Vi _3
di (@) gy,
= e g e

Using Proposition 3, we finish the proof. B
Consider the boundary value problem

L(z,Dyju=f in Q, ulgg=0.



Proposition 5 Suppose that ® satisfies (15), (16), u € H(Q) and || Al| Lo () + || Bl L) + Q| L (o) < K.
Then there exist 1o = 70(K, ®) and C = C(K, ®), independent of u and 7, such that

ou

T T T 6@ T
|7 ||| ue WHQL?(Q) + [Jue gpH?arl(g) + ng ¢||2L2(F0) + 7'2|||§|U6 gpH%z(m
T 8u T
< C(|(L(z, Dyu)e™ |72y + \T|/f |5|262 ?do) (23)

for all |T| > 7.

For the scalar equation, the estimate is proved in [12] . In order to prove this estimate for the system, it is
sufficient to apply the scalar estimate to each equation in the system and take an advantage of the second
large parameter in order to absorb the right-hand side.

Using estimate (23), we obtain

Proposition 6 There ezists a constant 1o such that for |t| > 7o and any f € L*(Q), there exists a solution
to the boundary value problem

L(z,Dju=f nQ, ulp,=0 (24)
such that
lull @AV ITl < CllfllL2(o)- (25)

Moreover if f/0.® € L%(), then for any || > 7y there exists a solution to the boundary value problem (24)
such that
[ull 1) < CILF/0:2| 20 (26)

The constants C' in (25) and (26) are independent of T.

The proof is exactly the same as the proof of Proposition 2.5 in [12] and relies on the Carleman estimate
(23).
Let us introduce the operators:

1 9(61,62) o1 (51,52)
oty = [ Fagag, oty = [ S,
Then we have (e.g., p.47, 56, 72 in [19]):

Proposition 7 A) Let m > 0 be an integer number and o € (0,1). Then 8;1,8;1 €
E(cm—&-a( ) 07”“"04""1({)))_

B) Let 1 <p<2and1<y< 3. Then 0;',0;' € L(LP(Q), LY(R)).

C)Let 1 < p < co. Then 92* ,8z v € L(LP(), W)(Q)).

For any matrix B € C°*%(Q), consider the linear operators Tz and Pp such that

(20, 4+ B)Tpg=9g inQ; (20:+B)Pgg=g in{} (27)
and
Ty, Pg € L(H*(Q), H*TH(Q)) N L(C**(Q), CF1H(Q)) Vs e [0,6],Vk € {0,1,...6}, (28)
and
Tg, Pp € L((H'(Q))', L*(2)). (29)

The existence of the operators Ts, Pg with the above properties follows from the regularity theory of elliptic
systems on the plane (see e.g., [20]).

Let e € C5°(Q) satisfy |e(z)| < 1, the support of e be concentrated in a small neighborhood of H \ T
and e be identically equal to one in an open set O which contains H \ T'y. We introduce the operators Tp
and Pp by

T = LS (T eByOT, B = L3 (1Y (Lo eByaz (30)

=0 =0



Taking the function e such that fsuppe 1dz is sufficiently small, we have

10 eBllerr().rr)) <1 and |0z eB|lgrr(), 1)) < 1. (31)

Indeed, by Proposition 7 for any p > 1 there exists a number ¢ € (1,p) such that the operators 3;178;1 :
Li(Q2) — LP(Q) are continuous. Therefore

10> eByg|l o) < 102 2(za(@),ze )| Bl L= legl La (o)

) (p—q)/p
< 10 ectoien.zren |Bllo~ o) ( / 1dx) 9l e,

and if fsuppe 1dz is small, then we easily have (31).

upp e

Hence the operators Tp and Bp introduced in (30) are correctly defined.
We define two other operators:

- 1 s oay (DT
Reg= 5@ D0 (ger@ M), Rog = Sr@ g1 (e (v D), (32)

For any N x N matrix B with elements from C1(2), we set
T‘B:‘IB—T’B(l—(3>B‘IB7 PB:mB_PB(l_e)BmB;
ﬁnt =%p.0— eT(g_é)TB(eT(q’_@(l —¢e)B%p.19), (33)

R: B9 ="PBrg9 — €T(¢_$)PB(€T(6_¢)(1 —e)BP5,-9)

and
Tp, = €T($_¢)§B€T(¢‘_6), ;BB ;= eT(@—@);BBeT(E—Q). (34)

For any g € C®(f), the functions R, g and ﬁT,Bg solve the equations:

(204 279:® 4+ B)R,gg=g inQ, (20,+270.9+B)R,pg=g inQ. (35)
We have
Proposition 8 Let B € C*(Q),g € C*(Q), suppg CC {z|e(x) = 1} and gl = 0. Then for p € (1,00), we
have
IRr.50 = 55l + 1Ry = luniey = 0(2) as Ir] = o (36)

Proof. By Proposition 3.4 of [12], for any p > 1, we have

IRes = g ooy + IReg = i liniey = 0(3) s [r] = o, (37)
Propositions 4 and 7 yield
1R g ooy + IR s ey = 0(2) s [r] = oc. (38)
Thanks to (38) and (37), we obtain
%579 — 570, (I)||Lp @ + IBs,r9 — J lLe(e) = o(l) as |1| — oo. (39)
2700 T

By supp g CC {z]e(x) = 1} and (28), (39), we obtain the asymptotic formula:
5 3 o 1
€7 PN Tpe™ =) o (1—€) BT +gll e + €7 Ppe™* ™ o (1—€) BPp.-gll 1oy = 0o(=) as || = cc.
T

The proof is completed. W



3 Proof of Theorem 1

Proof of Theorem 1.
Step 1: Construction of complex geometric optics solutions.
Let the function ® satisfy (15), (16) and T be some point from H \ I'g. Without loss of generality, we

may assume that I' is an arc with the endpoints x.
Consider the following operator:

Li(z, D) = 40,0z + 24,0, + 2B10z + Q1
= (20. 4+ B1)(20: + A1) + Q1 — 20. A1 — B1A;
= (205 + A1)(20. + B1) + Q1 — 2081 — A1 B1. (40)

Let (wq,wp) € C*T%(Q) be a nontrivial solution to the boundary value problem:
’C(l‘, D)(wo,lfﬁo) = (2&211)0 + Ale, 232’[[)0 + Bllzo) =0 in Q, wo + 1170 =0 on Fo. (41)
We have

Proposition 9 Let T be an arbitrary point from H '\ Ty and Z € CN be an arbitrary vector. There exists a
solution (wg, wo) € COT(Q) to problem (41) such that

wo(T) = Z, (42)
. |wo(@)| . _|wo(@)|
1 =1 = 4
vors [T — 2y |9 wowe |z — 24P (43)
and
051 052w () = 051 0g2wo(x) Vo € H\{x} and Yoy +az <6. (44)

Proof. Let us fix a point Z from H \ {zZ}. By Proposition 4.2 of [12] there exists a holomorphic
function a(z) € C7(Q) such that Imalr, = 0, a(¥) = 1 and a vanishes at each point of the set
{z3} UH\ {2} Let (wop,wWo,0) € COT(Q) be a solution to problem (41) such that wgo(Z) = Z. Since
(wo, o) = (a*®wp 0, @ %W ) solves problem (41) and satisfies (44) -(42), the proof of the proposition is
completed. W

Now we start the construction of complex geometric optics solution. Let the pair (wg, Wp) be defined by
Proposition 9. Short computations and (40) yield

Ll(x, D)(woeTq)) = (Ql — 282141 — BlAl)woeTQ, L1 (.T, D)(@OBTE) = (Ql — Z&ZBI — AlBl)zﬂoeTg. (45)
Let e1, eo be smooth functions such that
suppe; CCsuppe=1, e;+ex=1 on €, (46)

and e; vanishes in a neighborhood of 9§ and ey vanishes in a neighborhood of the set H \ Tg.
Denote G, = {z € Q|dist(supp ey, z) > ¢}. We have

Proposition 10 Let B,q € C°T*(Q) for some positive a and § € Wpl(ﬁ) for some p > 2. Suppose that
4% = qlu = 0. There exist smooth functions my € C?(G.) which is independent of T such that for any
G N suppe =, the asymptotic formulae hold true:

- 1 _ 2iT(T) 1
q () [Tt
Rr.5, (e1(q + ;)) = () <+T2 + Ocz(ce)(Tg)> as|t| — +o0, (47)

~ _ —2iT(T) 1
q o) [ Mm—e€
R a,(e1(q + ;)) =77 (Tz + 002(G€)(72)> as|t| — +oo0. (48)



Proof. By the Sobolev imbedding theorem the function § belong to the space C®(2) with some positive
a. Therefore the trace of ¢ on H defined correctly. For all N and for any domain G, with ey > 0 there
exists a function my y € C%(G,,) such that

6—27'1'11) 1

5 (DY ortemort (0 Pa D))

) 24T (T) 1
—2irep TN+, NC
W= T Y@, () (49)

G
This formula follows immediately from the stationary phase argument, the assumption that functions ¢, ¢

equal zero on H, Proposition 4 and the representation of the operator (—1) (39 'eB)N 9 e; in the form:

1

(¥ (GorteB) Vo erg = | RiaOer(ale)ds

where

K(z,8) = Koz,6) ——, K.(z,£) € C°(Q) x C°(Q).

r1 — ifﬂQ — (51 — ng)
Next let 2° = (29,29) be an arbitrary fixed point in €, 9% = afg 855, and 2% = 29 +izY. Let CV =
1 1
—%82_ LeV B for any matrix valued function V(). By Proposition 7 there exists N such that the operator
CcN e £(L3(9),C%(Q)) VYN > N. (50)

N
We write the operator {=2—(19-1¢B)N 9! in the form of the integral operator

)N 1, ona 1 [ Ky(x€ei(§)g(ér &)
5 (50: eB)70; elg_w/Q 21— ixs — (€1 — i)

d&1dés.

Let us estimate the kernel K. Observe that

E

Kn(a9,29,€) = (*UNCNm-

(51)

Since supzoegey‘ﬁ‘@”aﬂﬁHL )—i-supZoEQH e | iy < there exists 7 € (0,1) independent of N such
that

_ _ E .
sup,oeqll0: e lm“Lg(Q) < NN (52)
By (52), (50) we obtain
||ICN(x7.)||(CS(66)QLOC(Q))XC5(§) < CTNiN. (53)

By (53) there exist a function K(z,&) € (C%(Ge) N L®(Q)) x C*(Q) such that

o rrw ol [ K960
Z 5 (—1)3(282 BY 9 'erg=¢e"? w;/ﬂml_im_(&_i&)dﬁ

j=N+42
So, by the stationary phase argument there exists a function m € (C?(G.) N L>(Q)) x C°(Q) such that

. . ~ T eQiT't/J(I) 1
Z 6_27—“[) ( ('“)‘ )]8;1(62”w (q + q)) 6_2”1/}(()72 + OL>=(G?) ( )) Ve > 0, (54)

j=N+2

T

= —271 ol j 9— T q —271 62iTw(5) 1
> TG By o (e D) = (ST oG (). 69
j=N+2



By (54), (55), (49) for any positive € we have :

~ _ 2iTY(T) 1
q (P— mye
To, (ea(g+ )la, =@ (* + om(Gg)(Tz)) as|r| = +oo, (56)
~ _ —2iT(T) 1
q (P m_e
B, - (e1(g+ )l =@ <T2 + 0L°°(Gg)(7—2)) as|r| = 400 (57)
and
~ _ 2iTY(T) 1
q (B— mye
Tp, -(e1(qg+ ;)) g, =) <+72 + 002(G€)(7_2)> as |7 — 400, (58)
~ _ —2iTY(T) 1
q (D m_e
B, r(e1(g+ )l =@ (72 + 002(@;)(72)> as || — +00. (59)

Let positive € be such that supp (1 —e) C G and é < ¢,€” € (¢,¢) Then using (56) we have

T, (D1 BT, e (0 D)) = e T, (1 )BT, (7 Pey(a + 1))
—271 i (T m 1
= 2T, (1= e)xa, By + (1= €)XG,. 002 () +
—9ri i (5 m 1
2Tt +2i QD(JC)TBI((l — e)(l — XG‘//)BIT;_ + (1 — e)(l — XG‘,,)OLoc(Gé)(ﬁ)). (60)

Here in order to obtain the last equality we used (56) and (46). Using (58), (60), (28) and Proposition 7 we
obtain (47). W )
Denote q1 = PA1((Q1 — 282141 — BlAl)wo) — M17Q2 = TBl((Ql — Z%Bl — AlBl)@O) — M2 c C5+O‘(Q),
where the functions M; € Ker(ds + A1) and My € Ker(0, + By) are taken such that
(1 (T) =q2(T) =0, 092022q1(x) = 05105%go(x) Vo € H\{Z} and Vaj + as <5. (61)

1 ~T2 1 TZx2

By Proposition 10, there exist functions m4 € C?(92) such that

N G _ 20 (3) 1
q (T [ M€
R+ 2)) = @0 (T ony () asle] = o (62)
and 2irep(E)
6'2 HO—F m_e—2iTY(@ 1
Rl + 2)) = @0 (P20 oian(5)) aslel = 4oc, (63)

Next we introduce the functions w_1,w_1,a+, by € C%(Q) as a solutions to the following boundary value
problems:

K(z,D)(w_1,@-1) =0 inQ, (w_1+@_1)p, = 2;:@ 2;;6, (64)
05l 0p2w_q(x) = 0y 0g2w_1(z) Vx €M and Yai + ap < 2,
’C($, D)(ai, bi) =0 in €, (ai + bi)lf‘o = M4. (65)
We set pP1 = _(Ql - 2&231 — AlBl)(;{-l)j}b +’LU71) + Ll(l', D)(;?)Z}P)’ D2 = _(Q1 - 282141 - BlAl)(% +
W_1)+Li(z, D)(53%), g2 = Tp,p2—Ms,G1 = Pa,p1— My, where My € Ker(d+A,) and My € Ker(0.+By)
are taken such that
@1(T) = q2(x) =0, 071072q1(x) = 05 072q2(x) Vo € H\ {7} and Va3 +az < 2. (66)
Since nglé, 23;5 € H'(09Q) by (66), there exists a solution (w_»,w_s) € H(Q) to the boundary value
problem B _
K, D)Y(wos, 2) =0 in Q (wa+@2)ln, = g5l + 2555. (67)
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We introduce the functions wo -, Wy » € H'(Q) by

_ w_1 —eq1/20.2 1 546 ~2iTy (%) Q@
Wo,r = Wo + = + 72 (6 a+ +e a— +w_2 282'1)) (68)
and —
il /2058 1, s P p
Wo,r = Wo + o1 — €242/205 + (e, e @y 4Gy — B, (69)
T T 207

Simple computations and Proposition 8 for any p € (1,00) imply the asymptotic formula:

(qn +q1/7)e™®
270, P

~ — e D ~
Ly(z, D) ("R, (e1(q1 + @1 /7)) — — — ™ Rr 4, (e1(q2 + G2/7))

ealge+ @/)e™® ea(q +qi/7)e™

— _ 5 ~
21 0- ) =—Li(z,D)(e"* R+ B, (e1(q1 + @1 /7)) + 57,5 )
P - + o T
—~Ly(2,D)(e™ R+ 4, (e1(q2 + G2/7)) + 62(q227_‘8];/1)7)e )

= —(Q1 —20:B; — AlBl)eTq),f\;‘T,Bl (el +q1/7)) — (Q1 — 20 A1 — B1A1)676RT,A1(61(q2 +q2/7))

_ ela+a/r), 3 e2(g2 + 42/7)
€ Ll(va)( 270, ) e Ll(va)( 27_826

—(Q1 —20:B1 — A1 B)Woe™® — (Q1 — 20, A1 — By Ay)woe™
~(Q1—20:By — A1 By)e™ T (Q) — 20.4) — By Ay)e™®

270.® 270.®

1 e1q1 e2q1 &
— —20=B1 — A{B L D T
+=((Q1—20:51 — Ay 1)232@ + Ly (, )(252(1)))6

1 €242 €242 >
2001 — 20,41 — BA) 2L L2, DY (2L e
+T((Q1 1 1 1)285<I> + Li(x )(265(1)))6

1 1 ~
= —;(Q1 —20:B; — A;By)w_1e"® — ;(Ql — 20, A, — BiA)w_1e™®

~ 1
_(Ql — 28;31 — AlBl)’LUOeT(I) — (Ql — 282A1 — B1A1)woeﬂp + 6T¢OLP(Q)( ) (70)

T

Using this formula, we prove the following proposition.
Proposition 11 For any p > 1, we have the asymptotic formula:
- 3 ~ - 3 - 1
Ly (z, D)(wor€™® + Wo€™ — €™ Rr g, (e1(q1 + @1 /7)) — € "R a, (e1(q2 + @2/7))) = e"Porp(e) (=), (1)
1

(wo,re™® + o.re™® — ™ Re g, (er(ar + @1 /7)) = € Reay(e1(g2 + G2/ T)lrg = €7 F0m ey (73)- (72)

Proof. By (15), (62), (63), (67) and (67)-(69), we have

(wore™® + Wo€™ — ™Ry g, (e1(q1 + @1 /7)) — € PR 4, (e1(g2 + G2/T))ry

= (Wo€™ + Do, €™ = PR gy (er(qr + @1/7)) — €T Ry a, (€1 (a2 + G2/7)))Ir,

1 — 20,9 1 b (F i (T
w-_1 63_‘]1/ + ﬁ(e2”—w($)a+ + eﬂmﬁ(w)ai +w_oy —

fil)

= 7 (wo + 2.5

Wy —e2q2/20:2 1 oip —2ir(7) m (
- iTy(T) ity(@)g o= .
- +T2(e L +e +w_2 265<I>)

—eT“’ﬁr,Bl (er(qn +q1 /7)) — ™" Ry a,(e1(q2 + @2/7))))Iro

+wp +

1 . — . ~ ) - . ~
_ e‘rcp{72(62rr1/;(z)a+ + 672171[1(:1:)a_ + e217’¢(x)b+ + 67217111(:1:) b_)
T
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> -~ T ~ T 1
—€""R; g, (e1(q1 + @1 /7)) — €"?Rr a, (e1(q2 + G2/7)) }r, = € SDOHI(FO)(ﬁ)-

Here in order to obtain the final equality, we used Proposition 10. Similarly to (45) we obtain

_ ~ T ~ 7O
L, D) (wo.ne™ + g oe™ — e2(q + @ /7)™ ealg2 + @2/7)e

)

270,P 27050
_ _ _ Celat+a/n), e
= (Q1 —20:B, — A1 B1)(wo,r 979D Je
~ e + ¢ 3
HQu = 20,1 B @ — AL LI (73)

By (73) and (70), we obtain (71). H
We set O, = {z € Q; dist(z,09Q) < €}. In order to construct the last term in complex geometric optics
solution, we need the following proposition:

Proposition 12 Let A, B € C°%(Q) and Q € C*t*(Q) for some o € (0,1), f € LP(Q) for some p > 2,
dist(To, supp f) > 0, ¢ € H2(Ty), and € be a small positive number such that O, N (H \To) = 0. Then there
exists C' independent of T and 7o such that for all |T| > 79, there exists a solution to the boundary value
problem

L(z,D)w = fe™® inQ, wlr, =qe™?/T (74)
such that
-7 1 -7 —T
VIrlllwe™ ™| 2@) + mll(vw)6 ez + llwe™llmroy < CUlfllre) +llall 4, )- (75)
Proof. First let us assume that f is identically equal to zero. Let (d, d) e HY(Q) x HY(Q) satisfy
K(an)(dagf) =0 il’lQ, (d+d§|r0 =q. (76)

For exitance of such a solution see e.g. [20]. By (45) and (76), we have

d d 5 1 1 ~
L(z, D)(;ef‘b + ;eT‘b) = ;(Q —20,A — BA)de™ + ;(Q —20:B — AB)de™®.

By Proposition 6, there exists a solution w to the boundary value problem
1 1 ~ 5
L(xz, D) = ——(Q — 20,A — BA)de™ — =(Q — 20:B — AB)de™®, |, =0
T T

such that there exists a constant C > 0 such that
C

VIl

l@e " (@) < = (Q — 20.A — BAYE'™ + (Q — 20:B — AB)de™™)|| 12 <

C
\ﬁH(JHH%(FO)
for all large 7 > 0. ~

Then the function (£e™® + geTg) + w is a solution to (74) which satisfies (75) if f = 0.

If f is not identically equal zero, then we consider the function w = 5@7@7577 p(e1qo), where € €
C5°(Q), elsuppe, = 1 and qo = Paf — M, where a function M € C5(Q) belongs to Ker (20, + B) and
chosen such that gol = 0. Then L(z, D)W = (Q — 20:B — AB)w + éey fe™® + 2ee™®qp0-e1 + €™ (205 +
A)(8.eR+.p(e1qo)). Since, by Proposition 8, the function f(r,)) = e "®L(x, D) — f can be represented as
a sum of two functions, where the first one equal to zero in a neighborhood of H and is bounded uniformly
in 7 in L?(Q) norm, the second one is OL2(Q)(%). Applying Proposition 6 to the boundary value problem

L(z, D)w, = feT‘I’ inQ, wsr, =0,

12



we construct a solution such that
[wee™ ™[ g1 @) < CllfllLr -

The function w* — @ solves the boundary value problem (74) and satisfies estimate (75). W
Using Propositions 12 and 11, we construct the last term w_; in complex geometric optics solution which
satisfies

1 1
ViTlllu-1llzz) + —=I(Vu_1)llz2) + u-1llz1-(0.) = 0o(=) as T — +o0. (77)
T

VIl

Finally we obtain a complex geometric optics solution in the form:

up () = wO’TeT‘I) + '&70,7676 - eT‘I)ﬁ,T,B1 (1 +q/7) — eTERT’Al (@2 + Go/7) + €™ Pu_q. (78)
Obviously
Ll(JJ, D)u1 =0 in Q7 ’LL1|F0 =0. (79)

Let u1 be a complex geometrical optics solution as in (78).
Let e € C§°(R™) be a function such that e is equal to one in a ball of small radius centered at 0. We set

2

n(z,s) =e((x —x)e”). (80)
Then the operator

Lo(x,8,D) = e *Ly(x, D)e® = A+ 2(As + 2s17)0, + 2(Ba + 2s1,)0z + Q2
+ (sAn 4 s*(Vn, Vn))E + 251, Ay + 2515 B
is of the form (1) and has the same partial Cauchy data as the operator Ly(z, D). Also for the operator

Ls(x, s, D), one can construct a similar complex geometric optics solution.
Consider the operator

Ly(z,s,D)" = 49.0- — 243 ,0= — 2B} 0. + Q3 , — 2043, — 20.B;
= (20: = A3,)(207 = By ) + Q5 — 20:45 — A3B;
= (20z = B3,,)(20. — A3 ) + Q3 — 20.B; — By A3.

Similarly we construct the complex geometric optics solutions to the operator La(z,s, D)*. Let (wy,w1) €
C5T(Q) be a solutions to the following boundary value problem:

M(z, D)(w1,w1) = ((207 — B3)ws, (20, — A5)w1) =0 inQ, (wi+wi)lp, =0, (81)
Oyl 02wy (x) = 0y 0p2wi(x) Vax € H and Vai + az < 2,

@l L [@@)

=0. 82
T—T L |x — xi|98 T—T L |m — xi‘gs ( )

Such a pair (w1, W) exists due to Proposition 9. We set (w15, W1,s) = €*(wy,w;1). Observe that
Lo(,5, D) (wn,e ™) = (@ — 20545 — A3Bg)wy e,

* ([~ -7 * * * AKN -7
Lo(x,s,D)* (w1 s 7%) = (Q5 — 20,B5 — By As)wy se .
We set
s —s s —sn snp —s s —s
P_py =e"P_pie™ T a5 =T q5¢ ™ Rorny =€"Ros_aze™, R, _p; =€"R_r_pe ",

(83)
g3 = P_p; ((Q3 —20:A2" — A" Bo™)wy) — M3z, qa =T a3;((Q5 —20.B3 — Boa" A" )wy) — My.  (84)

Denote g3, = P_p; ((Q3 — 20:A42" — A" By )wis) — Mss = €”q3,q1s = T_az ((Q3 — 20.B5 —
By"Ay" )W s) — My s = e*'qs where the functions M;, = e*"M;, M3 € Ker(20z — B3) and My €
Ker(20, — A%) are chosen such that

q3(T) = qu(T) =0, 051052q3(x) = 0g0g2qa(x) Vo € H\{T} and Vo +az < 5. (85)
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(T). Therefore we can introduce the functions

By (85) the functions 5425, -1 5.3

w_3z, @,3,&},51 € C%(Q) as a solutions to the following boundary value problems:

M D) ®5) =0 in 0, (wey +@s)ln, = g5 + 5ot (86)
07 0p2w_g(x) = 0y 0g2w_3(xr) Vr €M and VYai + az < 2,
M(z,D)(dx,bs) =0 in € (@s+bs)|p, = M. (87)
Let €143 q3,s€2
—(Q3 — 20:A5 — A5 B3 )( 50, (’g +w_35) = La(z,s,D)*( 25i¢ )s
€144,s q4,5€2
—(Q% — 20,B% — BX A% W_g) — Lo(x,s, D)* (==
(Q5 2 2 2)(28543 +w_3) 2(z,s, D) (28543)
and

g3 =e¢ ""(P-pg p3s — M), @= e N(T-az ps— M),
where M&s € Ker(20z — B;,S),J\Z,s € Ker(20, — A3 ), and (g3,s,qa,s) = (g3, qa) are chosen such that

03,s(T) = qus(T) =0, 05! 052q3,s(x) = 05 092qu,s(x) Vo e H\{Z} and Vog 4+ ap < 2. (88)

Xy T2
The following asymptotic formula holds true:

Proposition 13 There exist smooth functions my € C%(0Q), independent of T and s, such that

~ _ . e2iT (b+(2)) ) 1
Rz —as_(e1(g3,s +3,6/7)) = % + 62”%111(39)(?2) as 7] = 400 (89)
and e
- T?L,€7 1T T Coir 1
Rr-p;_(e1(qas +as/T)) = = +e? %Hl(am(ﬁ) as || = +o0. (90)

Proof. The functions g3 s, gs,s belong to the space C”a( ) 3.5, Ga,s belong to the space WI}(Q) for any
p > 1. By (85) and (88), we have ¢35 = qa,s = G3,s = ¢4,s = 0 on H. By (83) and (84), we have

75/77’,714;5 (61(q3,s + 53,5/7)) = 65777%:77_’7‘4; (61((]3 =+ ag/’]'))

and
Rr—B;_ (e1(qa,s + qu,s/7)) = €"Rr _pz(€1(qa + q1/7)).

Then applying Proposition 10 and taking into account (80), we obtain Proposition 13. B
By (88), there exists a pair (w_4,w_4) € H'(Q) which solves the boundary value problem

M(z, D) (w_g,@-4) =0 i Q (g +@ag)lr, = soe + —, (91)

We set (w_g s, W_3,5) = e (w_z, W_3), (Ax s, bt s) = €’ (ax, b+ ). We introduce the function wy s », W1 s+
by formulas

B w_3 s + €2q3,5/20,P 1 2ir(F) > —2iTy(T)y €2G3,s
Wi e = wis + ;. + (e Ayste atwoas = o5 (92)
and _
_ - W_3s +€2G4,s/20:Q 1 o)y 27T ~ €24,
g s > , 7 1T (z)y s T mb—s 4 93
w1, s, w1,s + - + 2 (6 +,s € ;s T Wy 2&@) ( )
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y (85) and (88), the functions wy s -, w1, s~ belong to H(). Using (38), for any p € (1, +00) we have

~ —7P (73 s
IS 3, e "Pea(qzs + 1)
L DY | — TP A% s > ) T
2(z, 5, D) ( e Ror a3 (e1(gss + =) + 5700
~ q4s
—rd q4,s e 62 (14 s T+
—e R_r_px (e s+ +
—B;_(e1(qa, =) 270
_ g E]v?) s e 61 (J3 s+ q3 =
S D)* T(PR—T s ECILA S
o(z, s, D) <e . Azﬁs(el(q&s"' pn ) 270, ®

Q4é
e 62 q4s+

— Lo (Z‘, S5, D)* (e_Tq)R—T,—B;,S (el (Q4,s + %)) -

279-0
TP * * * *\ > /qvS s PR €2 (Q3 s qg . )
—€"(Q2 = 20:B; = By"As")Rr - a3 (e1(g3.5 + =) + € La(, 5, D) (—— 50— 270, s )
. s
—e Q3 — 20245 — As" By YRor g (e1(qus + 150) + €T Lo(a s, D)*(%)

* * * W_3s\ _+
—(Q5 — 20zA5" — A" By™) (w15 + 73)6 ®

* *\ ( ~ w— —T 1
—(Q3 = 2085 = By A" ) (s + —%)e T Hony(D). (94)

Setting v* = wy s + W1 s e — e TR, 4y (e1(gss + 22)) = e PR, gy (e1(qas + L))
for any p € (1,00), we obtain that

* -7 1 : * -7 1
LQ(ZL',S,D)’U =e WOLP(Q)(;) m Q, v |p0 =e @OHl(FO)(;)- (95)

Using (95) and Proposition 12 and 11, we construct the last term v_; in complex geometric optics solution
which solves the boundary value problem

Lo(x,s,D)v_y = La(z,s,D)v* inQ, wv_q|p, =0" (96)

and we obtain

1
VITlllv-1llzz( Q)+m||(Vv Dlizz@) + lv-illzr- 0. —0(7) (97)

Finally we have a complex geometric optics solution for Schrodinger operator Lo(z, s, D) in a form:

_ _ S g3,
v=wis e T f e — e TR 4y (en(gss + TS ) (98)
—e "R _p; (e1(qas qj’s )) +v_1e7 7%

By (98), (95) and (96), we have
Ly(xz,8,D)v=0 inQ, wv|r, =0. (99)

Step 2:Asymptotic formula.
Let uy = us(s,x) be a solution to the following boundary value problem:

8U2 6U1

Lo(x,8,D)ug =0 in £, wuszloq = uiloq, o 5= 3, — |5 (100)
Setting u = u; — ug, we have
LQ(CC, S, D)u + 2(A1 — Ag,s)azul + 2(31 — BQ,S)agul + (Q1 - QQ’S)Ul =0 inQ (101)
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and 5
uloq = 0, a“|f = 0. (102)

Let v be a function given by (98). Taking the scalar product of (101) with v in L?(Q2) and using (99) and
(102), we obtain

0 = B(ur,v) = / (2(Ar — As. )01 + 2By — Ba.y)deus + (Q1 — Q.)ur, B)da. (103)
Q

Our goal is to obtain the asymptotic formula for the right-hand side of (103). We have

Proposition 14 There exists a constant Cy, independent of T, such that the following asymptotic formula
is valid as || = +o0:

Iy = ((Q1 — Q2,5)u1,v)L2(0f104)
= [ (@1 = Q). Tr) + (@1 = @) )

+@+2W((Q — Q2,5)Wo, W1 5)(T)e 2717 (T) +((Q11 Qo.s)Wo, W, W) (T)e~ 2T (@)
T 7|dety" ()| 2
P— — QTin 1 —27ip \"> V¥ (V v¢) 1
+2Ti BQ((Ql QZS)wO?wLS)e |V7/f‘2 do — 27@ 39((Ql QQS)w()’wl 5)6 |V7/1\2 do +o (T)

Proof. By (68), (69), (61), (66), (78) and Propositions 8 and 4, we have

~ D TP
W_1, +p 3 Qe Qi€
ui(x) = (wg + —)e + (wg + —)e — —_— —
1(@) = (wo T ) (o T ) 270, 270,P

1
+ ewoLQ(Q)(;) as T — +o0. (105)

Using (92), (93), (85), (88), (98) and Propositions 8 and 4, we obtain

~ -7 -7
—2,s ~ —2,8\ —7® s s - 1
v(z) = (w175+7w:’ )e_T(I’—l—(st—l—w:’ )e T<D+q;¢gziq> +qZ’ng(I) +e T¢0L2(Q)(;) as 7 — +oo. (106)

By (105) and (106), we obtain the following asymptotic formula:

- T® TP
_ — _ TP ~ W-1\ 3 . qz2¢ qi1€ T l
(Q1 — Q2,5)u1, U)Lz(Q) (@1 — Q2,5)((wo Jr . ) + (wo + - )e 27’827‘1) 270, ® te OLz(Q)(T))’
(w1,s + w)e_ﬂp + (w1, + W )e T + Q4’Si¢ + a7 + e_woLz(Q)(l))LZ(Q)
' ' 270, 270,® T

= [ (@1 = Q20,75 + 7(@s = @20, 75) + (@1 = Q2.)1. )
+((Q1 — Qa,)wo, W s) + %((Ql — Q25 )w_1,w1,5) + ((Q1 — Qa,5)wo, W—35))dx

1 T1s
g /Q((Ql — Q2,5)wo, ng:"q)) —((Q1 — Qa2,)

q2
mawl,s)
~ q3,s
\s s , ——))d
6%<I> ,W1,5) + ((Q1 — Q2,5)Wo 2(92@)) z

+ /Q ((Q1 = Qo )wo, TR + (Q1 — Qoe)io, Trg)e > )de + o L),

T

_((Ql QQ s)

Applying the stationary phase argument (see e.g., [2]) to the last integral on the right-hand side of this
formula, we complete the proof of Proposition 14. B
We set

D | o~ D —T® |~ -7
U=wyre™" +wore, V=wis.e " +Wisre .
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By the stationary phase argument and formulae (41), (81), (68), (69), (92) and (93), short calculations yield
that there exist constants ki, ki, independent of 7, such that

=2((A1 — A2,6)0:U, V) 20
— (2(A1 _ AQ,S)(ﬁz(woje'ré) T 821710,76‘F<I>), wl,sﬁe*ﬂb + @1,3773*T<I>)L2(Q)

Il
ol
i Mw
N

T2_kl‘ik + eQiTw(%)(((Al - AQ,S)az(I)a-‘ra @I,S)Lz(ﬂ) + ((Al - A275)8Z¢w07g_,S)L2(Q))
+672i7”¢)(9~3)(((141 - A2,S)az¢a—7ﬁ)/1,s)[/2(9) + ((Al - AQ,S)aZQ’lUO,ng’_,S)LQ(Q))
2 ./ (A1 = A2,5)0:0, Wy s)e™ " dw — / (20.(A1 — Az s )wo, Wi 5)e* ™V da
@ Q
= [ 241 - A s, Trw)et o+ [ (= i) (A~ AvJue, W)V do
@ on

o

+o | —

T

3 2 T ~
= ZTka/gk + 6217111(96)(((141 — Ag,s)ﬁz@a+, @173)[/2(9) + ((Al _ A2,s)82¢”LUO, b—,s)L2(Q))
k=1

+6_2i71/)(5)(((141 - A2,s)3z<I>a7, @1,5)L2(Q) + ((Al — AQ,S)aZ@w0;5+,S)L2(Q))

—/((A1 —AZS)B@O,E)(W@—/(Qaz(Al Ay wo, Wi 5)e* ¥ dx
Q Q

—/((Al — Ag}s)wo,Bisst)eQ”wdx +/ (Vl — ng)((Al As S)wo,wl S) 2”¢d0’
Q o
1
+o <) (107)
T

Iy = ((B1 = B2,5)0:U, V) 12(q)
= (2(B1 — Bas) (€7 0zwo ;4 0x(Wo r€™)), w1 5,06 + W1 5767 ) 12(q)

and

3
= Z T2 R 4+ 2 TVE (((By — Ba,s)05®by, wi,5) 12(0) + (B1 — Ba,s) 000, a— s) 12(0))
k—

—

+e 2@ ((By — Ba,s)0:0b_, w1,s) 12(0) + ((B1 — Ba,s)0=®w0, a+s)12(02))

+ / (B, — Ba.s)dewo, Wis)e? % das — / (202(By — Ba. )iy, rs)e >V da
Q Q

/(2(31 B2 g)wo,a w1 g) del’ +/

. ~ —_— — ) ].
(r1 + i) ((B1 — Ba,s)Wo, Wh,s)e 2 4o + o (>
o0 T

3
Z T2 R B + 2TV @ (((By — Bas)0-®by, w1 5) 12(q) + (B1 — Ba,s)0:®Wo, a— ) 2(0))
p

+e 2@ (((By — Ba,g)05®Bb_, wis) 12(0) + (B — Ba,s)3:8Wo, at s)r2(a))

—/((Bl By o) Aywo, Wis)e*™ ™ dx — /(26%(31—Bz,s)@o,m)e_%mdﬂv
Q Q

~ A=~ y . ~ —_— —97 ]-
- / ((B1 = Ba,s)o, A s s)e >V dx +/ (v1 +iva)((B1 — Ba,s)Wo, 1 ,5)e > do + o <7_) - (108)
Q o0

Using (35) and integrating by parts, we obtain

Iy =— /9(2(141 — A2,)0:(e"Re g {er (@ + @1 /7)) + € Ry ay{er (g2 + G2/ 7))
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+2(By — B2 )0=(e" Ry g {e1 (@1 + @1 /7)} + € R {e1(a2 + @2/7)}), V)da

= - /9(2(141 — A )€ (-BiRr s {er(qr + /7)) +eala + @1 /7)) + €0 Ry a, {er (g2 + G2/7)})
+2(By — B2 ) (€7 0:Rr g {er (@ + /7)) + €7 (AR, a, {e1(a2 + @2/7)} + e1(qz + 32/7))), V)da
= [ 2~ A0 (B R er(an + /7)) + el +70/7)

+2(B1 — B )™ (~ AR a fer (@ + R2/7)} + e1(g2 + G2/7)). V)da

+ /9(282(141 — A2 )" Re a{e1(q2 + @2/7)} + 20:(Br — Ba)e ™ Ry g, {er(qr + 31/7)} V)da

+/ (2(A1 — AQ,S)eTgRT,Al{el(qQ +q2/7)},0.V) + (2(B;1 — Bz,s)eT@ﬁr,Bl {er(q1 + q1/7)}, 0:V)dx
Q

- aQ{(Vl — i) (A — Az )e™ Ry a, {er(qz + 32/7)}1. V)

+(v1 +iv2)((B1 = Ba,s)e*Rr g, {er (a1 + @1 /7)}, V) Yo

== [ @4 — A2 )T B R gy fer a1+ /7)) + erlan + /7))
+2(B1 — Bas)e™ (= AiRra, {e1(q2 + G2/7)} + er(az + @2/7)), V)da

+ / (20,(A1 — AQ,S)GTgRT,Al{el(qQ +qa2/7)} +20(B1 — B2,s)eT¢”féT,B1{el(q1 +q1/7)},V)dx
Q

+ / (2(A1 — A )Rroay {er(a2 + B/7)}, 0u01%) + 2By — Bon) Ry {er (a1 +@1/7)}, Osnn)de
Q

+2 / @) (e (s + To/7), Py, (A1 — Aa) (0010 — 70:01.,)))da
Q

o / OB (e (g1 + §1/7), T, (Br — Ban)* (Oow1.s — 70-Gw1.0)))dx
Q

= [ (=) - Az5)e™ Ry, {er (a2 + G2/7)}. V)

+(v1 +i19)((By — Bag)e™ R 5, {er(qr + @1 /7)}, V) }do. (109)

By (62) and (63), the boundary integrals in (109) are O(Z%). By (66) and Proposition 4, we have

2 / @V (130 /7, P (A1 — Agy)* (00 s — 001 ) da
Q

o 1
—|—2/ T (eyqy /7, Tk, ((B1 — Bas)*(0w1,s — 70, Qw1 ) )dx = 0(;) as T — +00. (110)
Q

Applying the stationary phase argument, (110), Propositions 8 and 3, we obtain from (109) that there exists
a constant C; independent of 7 such that

C 3 . ——
I3 = 71 + 2/ eT((I)i(i)) (61QQ,PA1((A1 — Agys)*(—Tﬁg(Pst)))dx
Q
—H/J@E%wﬁ%ﬂ&—Bhﬂﬂ@@%MMMw@)%T%+w. (111)
Q T

Using (35) and integrating by parts, we obtain

h:/m&f@gwum&f&g%L
Q

—€_T¢7€—T,—A;15{61(Q3,s +q3,s/7)} — 6_T$R—T,—B;,S{el(q4,s +qus/T)})dx
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= — / (2(A1 — A273)82150676 —|— 2(B1 — 3275)85’11]067—.:1)7
Q

€_T¢’7€—T,—A; {ei(gs,s + @3,s/7)} + 6_7572—7,—3;5{61(61475 + qa,s/T)})dx

- / (2(A1 - Agys)(azwo + 782<I>w0)67¢, 677—(1)75,77’,,4;,5 {61((]375 + q~3’5/7')})dx
Q

- / (2(By — Ba,s) (810 + 70:®)e", e TR gy {er(qus +as/T)})da
Q

+/ ((20.(A1 — Az )woe™, e R_. _pe{e1(qa,s + Gu,s/T)})
Q

+(20=(By — Ba,)@oe™™, e R_r a5 {e1(gs.s + 3,6/7)}))d
— [ {(n —iva) (A1 — Az s)woe™®, 6_7573—7,—3;15{61 (qa,s + qa,s/T)})
o0

+(v1 + iv2)((By — Bas)woe™®, 8—7@75_77_A;S{el(q3)s +G3,s/7)}) fdo

+ / (2(A1 — Ag)woe™, 0x(e— PR, _ps _{e1(dan + Gan/7)}))dx
) |

+ / (2(B1 — Ba.a)@0e™, 0u(e— ™Ry 23 _{e1(@ae + @/ 7)}))dx
) |

_ / (2AA; — Ag)0.T0e™ + 2By — By)dwoe™,
Q

e R_; a3 {e1(gss +G.s/T)}+ e T R gy {e1(qas + Gas/7)})d

— / (2TZ 4; ((A1 — A2,4)(9wo + 78, Pwp)), e"@=P)ey (g5 + 3,5/7))da
o)

- / (2P~ . ((B1 — Ba,)(8=w0 + 79:0w0)), 7@~ Py (qa,s + Ga,s/7))dx
Q y S

+ [ (20,04 = Ao June™ IR iy {ea(ane + Gae/ )Y
Q

+(20=(B1 — Bay)tioe™®, e R_; _as {e1(gss +s,s/7)}))de

- m{(m — o) ((A1 — Az s)we™, 67767377,73;,5{61@4,5 +qas/7T)})

+(v1 + i) ((By — BQ,S){EOGTE; €7T©7€77—,7A§,5{€1((J3,s +q3,5/7)}) Ydo

+ / (2(A1 — Az Jwoe™, e "By R+ p; {e1(qus + Gus/7)} + e ™1 (qus + Ga,s/7))da
Q N

+ / (2(31 — 3278){[]0675, e—T‘I)A;’Sﬁ_T,_A; 5{61((]375 + 5373/7')} + €_T<D61(Q37s + E]vg,s/T))da?. (112)
o ,

By Proposition 13, the boundary integral in (112) is O(T%) By (88) and Proposition 4, we have

1 _—
- / (2T 4+ (A1 — A2.5) (0w + 70, Pwy)), e™(®= ey g3 ) dx
T Ja 2o
o ————— 1
— / (2P* 5. ((B1 — Ba,s)(0zwo + 10:PWy)), e7(®=Pleqqy s )dx = o(=) as T — +o0. (113)
Q e T

Applying the stationary phase argument, Propositions 8 and 3, and (113), we obtain from (112) that
there exists a constant Co, independent of 7, such that

_G

T

I4 /(QT*,A; ((Al — AQyS)Tazq)'wo),67—(674))61(]375)(1.%
Q \s
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- = 1
- / (2P* g ((B1 — Bas)T0:Pw0), e™(®=Pleyqy s)dx +o(=) as 7 — +oo. (114)
Q 2o ’ T

Step 3:derivation of equations (2)-(4).
We set

Us(z) = wore™® + To ™ — ™Ry g {er(qr + @1 /7)) — € P Rea, {ei(az + G/7)},

Vi(z) = wiare ™ e — e T RO _ay {e1(ass +G5.0/7)}
—€_T¢R—T,—B;TS{€1(Q47S +qus/T)}

By (77), (98) and Proposition 8, we have

G(u_1e™,v — (wl,S’Te_T@ + ’&51’5’76_7—@)) =6(u; — (wo’TeTq’ + ﬁo,TeTg),v,le_”’) (115)

1
_ o(ﬁ

) as T — +oo.

Then

(1/1 + iVQ)((Bl - BQ’S)@O, ﬁl’s)e_giﬂpda (116)

r

6(’(1,17’0) = /(Vl — iUQ)((Al — Ag,s)wo,m)C%deO' +/
I

+o(\ﬁ).

Let @ be given in Proposition 2. Then by (43),(82) and the stationary phase argument, the asymptotic
formula holds:

6(’&171)) :% Z{(Vl — iVQ)((Al — A27(g)’LUO7W7S)62iT¢ + (1/1 + iVQ)((Bl — BQ,S)@O,E)G’Q””’}(:L‘) (117)
z€G
+0(\ﬁ

Since for any T one can find ® such that z € G and Im®(z) # Im®(z) for any x € G \ {T}, we have

) as T — +oo.

((A1 — Ag s )wo, Wi 5) = ((B1 — Bas)Wo,w1,5) =0 on I'y.

These equalities and Proposition 9 imply (2).
Next we claim that

1
&(e™Pu_1,v) = &(u, e "Pu_y) =0(=) as T — +oo. (118)
T
Obviously, by (77) and Proposition 8, we see that

&(e™fu_1,v—-V) = 0(%) as T — +00. (119)

Let x € C§°(2) satisfy x|o\0. = 1. By (77), we have
2

B(e™Pu_1,V) = B Pu_1, xV) + of

~—_

N

= / (2(A; — A3 5)0.(e™Pu_1) + 2(B1 — Ba.s)0=(e"Pu_1),xV)dx + of
Q

= / (2(A1 — A2 5)0.(e™Pu_y), X{DLSeTg) + (2(B1 — Ba,s)0z(e"fu_1), xwi s€™®)dz + of (120)
Q

=
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Let functions wa, ws solve the equations (—0z + B} )wy = 2(A1 — As 5)*W1,s and (=0, + A})ws = 2(B; —
BQ,S)*wl,s-

Taking the scalar product of equation (69) and the function wse™® + wee™® ® after integration by parts
we obtain

/ (28,3(67—47’[1/,1) + A1<€ﬂpu,1), 2(141 — A2,8>*’LA111175676) (121)
Q

_— 1
+(20z(€™Pu_1) + Bi(e"™Pu_1),2(B1 — B2 s) wy s€7®)dx = o(;).

By (120) and (121), we obtain the first equality in (118). The proof of the second equality in (118) is the
same.

By (15), (2), (80), (112), (109), (108), (107) and (118), we have the asymptotic formula:
2171b(x)

(((B1 — Bg,s)ag@b+,w1 s)LZ(Q) + ((B1 — B s)&@wo, )L?(Q)) (122)
+e 2@ (((By — Ba,s)0:0b_, w1,s)12(0) + ((Br — Ba,s)0:®w0, a4 ) r2(0))
+e VO (A1 = A2,6)0:Bay, B ) 2() + (A1 = Az,6)0:®w0,b-) 12()
+e HTVE (A1 — A )0 Pa_, W ,s) 120 + (A1 — A2,5)0.Pwo, b1) 12(0))
Qe TETIIT (Q-Tn m)e FTVET |y Ly
7| det ¢ (z)|2 7| det 9" ()] 2 T

where Q+ = 282(141 - AQ) + BQ(Al — Az) + (Bl - Bg)Al — (Ql - QQ) and Q_

20z(By — Ba) + Ay(B1 —
By)+ (A1 — A2)B1 — (Q1 — Q2) and

P(r) = _27'/(T*—A;((Al — A3,4)0.®e Mwn), g3 + g3 /T)e> TV du
Q

—T/ (2P*_B; ((B1 — Ba,s)0:%e*"wp), q4 + ql/r)e‘zhwdx
Q

or / eV gy + /7. Py (Ar — Age) (0:000.,)))de
Q

—27'/(q1 +q1/7, T, (B — Bg7s)*(82¢’w17s)))62”wdm
Q
Observe that

T2 4 (A1 — Az 5)e™Mwo) + e™wo € Ker TZ 4., P ((B1 — Ba,s)e™wo) + ey € Ker P~ g,

and
le((Al — AQ,S)*’[ELS) +@175 € Ker le, T*Bl((Bl — BQ’S)*U)LS) + W1,s S KerT}‘gl.

Thanks to Proposition 4 and above relations, there exist functions r;, € Ker TfA;7r2,s S
KerPZp. 135 € Ker P}y .1y, € Ker Tp, such that

P(7) 227/(6 Dy, e™(®=P)gz )da:—!—r/(rl,s,eT(a—q’)%)dx
Q Q

+27/(&<I>w0,67(‘1> <I’)q4 )dx+T/(r2,s,eT(‘1>—5)q4)dx
Q Q

+27/ 67(57':1))82‘1)@]24-52/7’, @1,S)dx—|—r/ eT(Efq))(qg,Fg,s)da:
Q Q

_ — 1
+27’/ eT(qu))ql, 0, Qw1 5)dx + 7'/ eT(éfq))(ql,ﬂ’s)d:E +o(=) asT— +oo. (123)
Q Q T

21



Integrating by parts in the above equality, we have
P(r) = —Z/Q(wo,eT( )9,q3.5)dr + 7'/9( ,eT(®=2)g3)dx
—2/9(@0, eT(q’_g)@gq&s)dw + 7'/9(7“2,57 e™(®=®) g, )dx
+2 /Q 67—(6_@)(82,(12,51’5)d$ + T/§267(5_¢)(q2,?3,5>d$
+2 /Q eT(q)_a)(agql,ﬁl,s)dx + T/QeT(q)_g)(qhﬂ,s)dx + o(%) as T — 4o00. (124)

Applying the stationary phase argument, we obtain that there exists a constant Cs, independent of 7, such
that

— 2iTY(T)+s ~ =\ 9iry(T)+s
P(r) = % _ 27T(Q+wo,w1)e s _ 27T(Q,wo,wl)e o
T 7| det " (z)[2 7| det " (T)|2
2T (%) o= 2iT(®)

(D(ls) +D(f)) + (D(6) +D(¢3)), (125)

_1_7 N
7| det ¢ (%)|2 7| det 9" (%)|2

where {1 = (q1,71,5),f2 = (¢2,T3.5), €3 = (r2,5,Ga),la = (r1,5,¢3) and for any smooth function £(z) we set

o) = (aﬁ@)ﬁ_a) o (BEED) 1y (DA %(W(Z‘ﬂ) @

Since ¥ (Z) # 0, we obtain from (125) and (122):

((B1 — Ba,5)0z®by, w1 5) r2(0) + ((B1 — Ba,s)0:Pwo, d— ) 12() (126)
+((A1 = A2,)0:Pay, Wy s) 2o + (A1 — A2)0:Pwo, b ) r2(q)

(Qrwo,wr)e®  D(ly) +D(La) _

[dety”(F)[F  |dety” ()]

and

((Br = B2,s)0=®b_, w1 ) 2() + ((B1 — Ba,s)0z®Wo, . s) 12(0)
+((Ar — A25)0-Pa_, w1 ,5) 2(q) + ((A1 — Az,s)0.Pwo, b+,s)L2(Q)
(Q_wo, wy e’ n D(l) +D(43)
|dety”(F)[2  |dety” ()]

Integrating by parts in (126) and (127), we obtain

= 0. (127)

(1 = iv2)8z8by, wi) 12 (a0) + (1 — iv2)B:PWo, A-) 2 (902 (128)
+((I/1 + iVQ)an)a+, @1)[]2(39) -+ ((I/l + ’L'Z/Q)azéwo,fl;_)L'Z(aQ)
(Q+w0,@1)€s @(64) + :‘D(fz) _
|detg(@)|2 [ dety(7)]?

and

(1 — i12)0=Pb_, w1) 2 (90) + (1 — iv2)OzPWo, ) 2 (00
H((v1 + iv2) 0. Ba, W) 12 90) + (1 + iv2)0.Bwo, by ) 12(00)
(Q_ o, wy)e® N D(4) +©(€3)
[dety”(Z)[2 |dety”()]2

= 0. (129)
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Observe that

NE

D) < Cy (130)
k=1

with the constant Cy independent of s. We prove this inequality for ©(¢4). The proof for remaining terms
is similar. By (80) the functions (A; — Az s)e*"wq are bounded uniformly in the space H'(Q)’. Hence, by
(29,the functions T* ,, (9.®(A; — Az s)e"wy) are uniformly bounded in L?(£2). Then the functions 7y, are
uniformly bounded in L*(2) and Ker T* ,,. Therefore the functions ry ; are uniformly bounded in C®(K)
for any compact K CC Q. Since {1 = (1,5, G3), the proof of (130) is completed.

Passing to the limit in (128) and (129) as s goes to infinity, we obtain (Qwo, w;)(Z) = (Q_wo, w1 )(T) =
0. These equalities and (42) imply the equalities (3) and (4) at point Z. According to Proposition 1, a point
Z can be chosen arbitrarily close to any point of domain Q after an appropriate choice of the function ®.
The proof of the theorem is completed.
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