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Abstract

In this paper, we propose a new hybridized discontinuous Galerkin method for the
convection-diffusion-reaction problems with mixed boundary conditions. The coer-
civity of the convection-reaction part is achieved by adding an upwinding term. We
give error estimates of optimal order in the piecewise H1-seminorm. Furthermore,
we show that the approximate solution of our scheme is close to that of the reduced
problem when the diffusion coefficient is very small. Some numerical results are
presented to verify the validity of our method.

1 Introduction
The discontinuous Galerkin method (DGM) is now widely applied to various problems in
science and engineering because of its flexibility for the choice of approximate functions
and of element shapes. An issue of DGM is, however, the size and band-widths of the
resulting matrices could be much larger than those of the standard finite element method,
since the DGM is formulated in terms of the usual node values defined in each elements
together with those corresponding to inter-element discontinuities. In order to surmount
this difficulty, it is worth-while trying to extend the idea of DGM by combining with the
hybrid displacement method (see, for example, [8], [9], [10] and [11]). Thus, we introduce
new unknown functions on inter-element edges. We can then obtain a formulation that the
resulting discrete system contains inter-element unknowns only and, consequently, the
size of the system becomes smaller. Recently, in [12], [13] and [14], the author and his
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colleagues proposed and analyzed a new class of DGM, the hybridized DGM, that is based
on the hybrid displacement approach by stabilizing their old method ([10] and [11]). In
[12], we examined our idea by using a linear elasticity problem as a model problem and
offered several numerical examples to confirm the validity of our formulation. After that,
we carried out theoretical analysis by using the Poisson equation as a model problem. In
[14], stability and convergence of symmetric and nonsymmetric interior penalty methods
of hybrid type were studied. The usefulness of the lifting operator in order to ensure
a better stability was studied in [14]. Furthermore, B. Cockburn and his colleagues are
actively contributing to the hybridized DGM for elliptic([18], [15] and [19]), Stokes and
Navier-Stokes problems ([20], [21] and [22]).

The purpose of this paper is to propose a new hybridized DGM for stationary convection-
diffusion-reaction problems with mixed boundary conditions. In [17], Cockburn et al.
proposed hybridization for the diffusion-convection-reaction problems. The stability of
their method is achieved by choosing stabilization parameters according to the convec-
tion. They reported a lot of numerical results and confirmed the validity of their schemes.
However, error analysis seems to be not undertaken. The scheme we are going to propose
is close to the original DGM for convection-diffusion problem ([3] and [4]) and is based on
a certain upwinding technique. As is well-known, there are a lot of methods of upwinding.
Our method, however, differs form any previous methods. For example, our upwinding
technique does not need information on neighboring elements, whereas most of upwind-
ing use information upwind elements. Instead, our upwinding method is introduced in
terms of neighboring edges. To be more specific, we find a hybridized approximation to
convection and reaction terms in the following form∑

K∈Th

[(b · ∇uh + cuh, vh)K + 〈uh − ûh, αvh − βv̂h〉∂K ], (1.1)

where coefficients α and β are decided to satisfy coercivity, as it will be shown later.
Moreover, our proposed scheme is stable even when ε is sufficiently small and it can be
applied to the case ε = 0. We furthermore give stability and optimal order error estimates.

Now let us formulate our continuous problem. Let Ω be a bounded polyhedral domain
in Rn. In this paper, we propose a new hybridized discontinuous Galerkin method for the
convection-diffusion-reaction problems with mixed boundary conditions:

−ε∆u+ b · ∇u+ cu = f in Ω, (1.2a)
u = gD on ΓD, (1.2b)

ε∇u · n = gN on ΓN , (1.2c)
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where ε > 0 is the diffusion coefficient and f ∈ L2(Ω), b ∈ W 1,∞(Ω)n, c ∈ L∞(Ω),
gD ∈ H3/2(Ω), and gN ∈ H1/2(Ω) are given functions. We assume ΓD ∪ ΓN = ∂Ω,
ΓD ∩ ΓN = ∅, and that the inflow boundary is included by ΓD, i.e.,

Γ− := {x ∈ ∂Ω : b(x) · n(x) < 0} ⊂ ΓD,

where n is the outward unit normal vector to ∂Ω. Moreover, we assume that there exists a
non-negative constant ρ0 such that

ρ(x) := c(x)− 1

2
divb(x) ≥ ρ0 ≥ 0, ∀x ∈ Ω. (1.3)

Under these assumptions, there exists a unique weak solution u ∈ H1(Ω) by the Lax-
Milgram theory. We shall pose further regularity on u in the error analysis. This paper
is organized as follows. In Section 2, we introduce finite element spaces to describe our
method, and norms and projections to use in our error analysis. Section 3 is devoted to
the formulation of our hybridized method, and mathematical analysis is given in Section
4. We explain why our proposed DGM is stable even when ε is close to 0 in Section 5.
In Section 6, we report some results of numerical computations. Finally, we conclude this
paper in Section 7.

2 Preliminaries

2.1 Notation
Function spaces and norms Let Th = {Ki}i be a triangulation of Ω in the sense of [13].
Thus, each K ∈ Th is an m-polyhedral domain, where m denotes an integer m ≥ n + 1.
The boundary ∂K of K ∈ Th is composed of m-faces. We assume that m is bounded
from above independently a family of triangulations {Th}h, and ∂K does not intersect
with itself. Furthermore, we set h = maxK∈Th hK , where hK denotes the diameter of K.
The skeleton of Th is defined by

Γh :=
⋃

K∈Th

∂K.

We use the broken Sobolev space over Th defined by

Hk(Th) = {v ∈ L2(Ω) : v|K ∈ Hk(K)},

and L2-spaces on Γh as follows

L2
D(Γh) = {v̂ ∈ L2(Γh) : v̂|ΓD

= gD, v̂|ΓN
= 0},

L2
0(Γh) = {v̂ ∈ L2(Γh) : v̂|ΓD

= 0, v̂|ΓN
= 0}.
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Then, we set V = H2(Th) × L2
D(Γh) and V 0 = H2(Th) × L2

0(Γh). The inner products
are defined as follows

(u, v)K =

∫
K

uvdx, 〈û, v̂〉e =
∫
e

ûv̂ds,

for an element K and an edge e, respectively. Let ‖ · ‖m and | · |m be the usual Sobolev
norms and seminorms. We introduce auxiliary seminorms:

|v|2m,h :=
∑
K∈Th

h
2(m−1)
K |v|2m,K for v ∈ Hm(Th),

|v|2j,h :=
∑
K∈Th

∑
e⊂∂K

∥∥∥∥√ηe
he

(v − v̂)

∥∥∥∥2

0,e

for v ∈ V ,

where hK is the diameter of K and he is the length of e. For error analysis, we define the
HDG norm defined by

|‖v‖|2 := |‖v‖|2d + |‖v‖|2rc ,
|‖v‖|2d := ε

(
|v|21,h + |v|22,h + |v|2j,h

)
,

|‖v‖|2rc :=
1

2

∑
K∈Th

‖|b · nK |1/2(v − v̂)‖20,∂K + ρ0‖v‖20,Ω,

where nK is the unit outward normal vector to ∂K and ρ0 is the positive constant defined
in (1.3).

Finite element spaces Let Uh and Ûh be finite dimensional spaces of H2(Th) and of
L2

D(Γh), respectively. Then we set V h := Uh × Ûh, which is included by V . Similarly,
we define V 0h := Uh × Û0h ⊂ V 0. In this paper, we assume (H1) ∇vh ∈ [Uh]

n for all
vh ∈ Uh and that (H2) Uh includes the piecewise constant functions P0(Th). For example,
we can use polynomials of degree k as Uh or Ûh.

Projections Let Ph denote the L2-projection from H2(Th) onto Uh, and let P̂h denote the
L2-projection from L2

D(Γh) onto Ûh. We define P h : V → V h by P hv := {Phv, P̂hv̂}.
We introduce the L2-projection P 0

h : W 1,∞(Ω) → P0(Th)
n. We also use the projection ·̃

defined by ṽ := {v, v̂|Γh\∂Ω+ P̂hv|∂Ω}, which affects only on ∂Ω. In this paper we assume
the approximate properties (H3): for all v ∈ Hk+1(K), we have

|v − Phv|i,K ≤ Chk+1−i|v|k+1,K for i = 0, 1, (2.1)

‖v − P̂h(v|e)‖0,e ≤ Chk+1/2|v|k+1,K . (2.2)
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Remark Throughout this paper, a boldface lowercase letters except b and n denotes a
function of V , i.e., v indicates {v, v̂} ∈ V . Moreover, the symbol C denotes a generic
constant.

2.2 Inequalities

Theorem 2.1. Let K ∈ Th and e be an edge of K.

1. (Trace inequality) There exists a constant C independent of K and e such that

‖v‖0,e ≤ Ch−1/2
e

(
‖v‖20,K + h2

K |v|21,K
)1/2 ∀v ∈ H1(K). (2.3)

2. (Inverse inequality) There exists a constant C independent of K such that

|vh|1,K ≤ Ch−1
K ‖vh‖0,K ∀vh ∈ Uh. (2.4)

Proof. See [5, p.745].

Lemma 2.2. Assume (H3). Let v ∈ Hk+1 and v = {v, v|Γh
}. Then we have

|‖v − P hv‖|d ≤ Cε1/2hk|v|k+1,

|‖v − P hv‖|rc ≤ Chk+1/2|v|k+1.

Proof. This follows immediately from the definitions.

3 A new hybridized DGM
We are able to state a new hybridized DGM, which we propose in this paper. We first state
our formulation: Find uh ∈ V h such that

Bh(uh,vh) = (f, vh)Ω + 〈gN , vh〉ΓN
∀vh ∈ V h, (3.1)
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where

Bh(uh,vh) := Bd
h(uh,vh) +Brc

h (uh,vh), (3.2)

Bd
h(uh,vh) = ε

∑
K∈Th

[
(∇uh,∇vh)K −

〈
∂uh

∂n
, vh − v̂h

〉
∂K

(3.3)

−
〈
∂vh
∂n

, uh − ûh

〉
∂K

+
∑
e⊂∂K

ηe
he

〈uh − ûh, vh − v̂h〉e
]
,

Brc
h (uh,vh) =

∑
K∈Th

[
(b · ∇uh + cuh, vh)K (3.4)

+ 〈uh − ûh, [b · n]−vh − [b · n]+v̂h〉∂K
]
,

(f, vh)Ω =

∫
Ω

fvhdx, (3.5)

〈gN , vh〉ΓN
=

∫
ΓN

gNvhds. (3.6)

Here ηe is a penalty parameter with ηe ≥ ηmin > 0, he is the length of an edge e, and the
functions [ · ]+ and [ · ]− are defined by

[x]+ = max(0, x), [x]− = max(0,−x). (3.7)

Note that [x]+ + [x]− = |x| and [x]+ − [x]− = x.
Before proceeding to the analysis of (3.1), we state the derivation of it. Multiplying

the both sides of (1.2) by a test function vh ∈ V h and integrating the both sides over Ω,
we have, by integration by parts,∑

K∈Th

[
(∇uh,∇vh)K −

〈
∂uh

∂n
, vh

〉
∂K

+ (b · ∇uh + cuh, vh)K

]
(3.8)

= (f, vh)Ω + 〈gN , vh〉ΓN
vh ∈ V h.

We denote the diffusion part and convection part in (3.8) by D and C, respectively, i.e.,

D(uh, vh) :=
∑
K∈Th

[
(∇uh,∇vh)K −

〈
∂uh

∂n
, vh

〉
∂K

]
, (3.9)

C(uh, vh) :=
∑
K∈Th

(b · ∇uh + cuh, vh)K . (3.10)
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We first derive our formulation of the diffusion part. From the continuity of the flux, we
have ∑

K∈Th

〈
∂uh

∂n
, v̂h

〉
∂K

= 0. (3.11)

Adding (3.11) to (3.9) yields

D(uh, vh) =
∑
K∈Th

[
(∇uh,∇vh)K −

〈
∂uh

∂n
, vh − v̂h

〉
∂K

]
. (3.12)

Symmetrizing (3.12) and adding a penalty term∑
K∈Th

∑
e⊂∂K

〈
ηe
he

(uh − ûh), vh − v̂h

〉
∂K

, (3.13)

we obtain (3.3).
Next, we derive the formulation of the convection part. Let α and β be coefficients to

be determined later, and consider the following form:

Ch(uh, vh) :=
∑
K∈Th

[(b · ∇uh + cuh, vh)K + 〈uh − ûh, αvh − βv̂h〉∂K ] . (3.14)

The coefficients α and β are chosen so that

Ch(vh, vh) =
∑
K∈Th

[
(ρvh, vh)K + 〈((b · n)/2 + α) vh, vh〉∂K (3.15)

−〈(α+ β)vh, v̂h〉∂K + 〈βv̂h, v̂h〉∂K
]
≥ |‖v‖|rc

for any vh ∈ V h. We can find the following sufficient conditions

α+ β = 2((b · n)/2 + α) = |b · n|,

from which it follows that

α = [b · n]−, β = [b · n]+.

Thus we obtain our formulation (3.1).
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4 Error analysis
In this section, we shall establish an error estimates for (3.1).

Lemma 4.1. The following hold.

1. (Boundedness) There exists a constant Cd
b > 0 such that

|Bd
h(w,v)| ≤ Cd

b |‖w‖|d |‖v‖|d ∀w,v ∈ V . (4.1)

2. (Coercivity) There exists a constant Cd
c > 0 such that

Bd
h(vh,vh) ≥ Cd

c |‖vh‖|2d ∀vh ∈ V h. (4.2)

Proof. We first prove the boundedness. Applying the Schwarz inequality for each term of
(3.3), we have

|Bd
h(w,v)| ≤ ε

∑
K∈Th

[
‖∇w‖0,K‖∇v‖0,K (4.3)

+
∑
e⊂∂K

(∥∥∥∥∂w∂n
∥∥∥∥
0,e

‖v − v̂‖0,e +
∥∥∥∥∂v∂n

∥∥∥∥
0,e

‖w − ŵ‖0,e

+

∥∥∥∥√ηe
he

(w − ŵ)

∥∥∥∥
0,e

∥∥∥∥√ηe
he

(v − v̂)

∥∥∥∥
0,e

)]
.

By the trace theorem, we have∥∥∥∥∂w∂n
∥∥∥∥
0,e

≤ Ch−1/2
e (|w|21,K + h2

K |w|22,K)1/2. (4.4)

From (4.3), (4.4), and the Cauchy-Schwarz inequality, it follows that

|Bd
h(w,v)| ≤ max(1 + Cη

−1/2
min , 2) |‖w‖|d |‖v‖|d .

Next, we prove the coercivity. By definition,

Bd
h(vh,vh) ≥ |vh|21,h − 2

∑
K∈Th

∑
e⊂∂K

∥∥∥∥∂vh∂n

∥∥∥∥
0,e

‖vh − v̂h‖0,e + |vh|2j,h (4.5)
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By the trace theorem, the inverse inequality and the Young inequality, we have for δ ∈
(0, 1),

2

∥∥∥∥∂vh∂n

∥∥∥∥
0,e

‖vh − v̂h‖0,e ≤ 2C

he

|vh|1,K‖vh − v̂h‖0,e (4.6)

≤ C

δηe
|vh|21,K + δ

∥∥∥∥√ηe
he

(vh − v̂h)

∥∥∥∥2

0,e

∀vh ∈ Uh.

From (4.5) and (4.6), we obtain

Bd
h(vh,vh) ≥

(
1− C

δηmin

)
|vh|21,h + (1− δ) |vh|2j,h, (4.7)

If ηmin > 4C, then we can take δ =
√

C/ηmin < 1/2, which implies that

1− C

δηmin

> 1/2, 1− δ > 1/2.

Hence we have

Bd
h(vh,vh) ≥ 1

2
(|vh|21,h + |vh|2j,h). =:

1

2
|‖vh‖|2d,h .

Since the norms |‖·‖|d and |‖·‖|d,h are equivalent each other over V h, we obtain the coer-
civity (4.2) .
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Lemma 4.2. The following hold.

1. There exists a constant Crc
b > 0 such that for all v ∈ V , wh ∈ V h,

|Brc
h (ṽ − P hv,wh)| ≤ Crc

b |‖ṽ − P hv‖|rc |‖wh‖|rc

2. (Coercivity) There exists a positive constant Crc
c > 0 such that

Brc
h (vh,vh) ≥ Crc

c |‖vh‖|2rc ∀vh ∈ V 0h.

Proof. For the proof of (1), we first show the following equality:

Brc
h (vh,wh) =

∑
K∈Th

(
− (vh, b · ∇wh)K + ((c− divb)vh, wh)K (4.8)

+ 〈[b · n]+vn − [b · n]−v̂h, wh − ŵh〉∂K
)
.

By Green’s formula,

Brc
h (vh,wh) =

∑
K∈Th

(vh,−b · ∇wh)K + ((c− divb)vh, wh)K

+ 〈(b · n)vh, wh〉∂K + 〈vn − v̂h, [b · n]−wh − [b · n]+ŵh〉∂K
=:

∑
K∈Th

(IK + IIK + III∂K).

Rewrite III∂K as follows:

III∂K = 〈([b · n]+ − [b · n]−)vh, wh〉∂K + 〈vh, [b · n]−wh〉∂K
−〈v̂h, [b · n]−wh〉∂K − 〈vh − v̂h, [b · n]+ŵh〉∂K

= 〈([b · n]+vh − [b · n]−v̂h, wh〉∂K − 〈vh − v̂h, [b · n]+ŵh〉∂K .

Since ∑
K∈Th

〈v̂h, ([b · n]+ − [b · n]−)ŵh〉∂K = 0,

we have ∑
K∈Th

III∂K =
∑
K∈Th

〈[b · n]+vh − [b · n]−v̂h, wh − ŵh〉∂K .
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Thus we obtain (4.8). Next, we will estimate IK . Let us denote η = {η, η̂} := ũ− P hu,
then

IK = (η,−b · ∇wh)K

= (η, (P 0
hb− b) · ∇wh)K − (η, (P 0

hb) · ∇wh)K .

By the property of the projection P 0
h and P hu = P hũ, we have

(η, (P 0
hb) · ∇wh)K = 0.

Using the inverse inequality, we see that

|IK | = |(η, (P 0
hb− b) · ∇wh)K | ≤ C|b|1,∞‖η‖0,K‖wh‖0,K . (4.9)

By using the Schwarz inequality, we have

|IIK | ≤ C(|c|0,∞ + |b|1,K)‖vh‖0,K‖wh‖0,K , (4.10)

and ∑
K∈Th

|III∂K | ≤
∑
K∈Th

〈|b · n|(vh − v̂h), wh − ŵh〉∂K (4.11)

≤
∑
K∈Th

‖|b · n|1/2(vh − v̂h)‖0,∂K · ‖|b · n|1/2(vh − v̂h)‖0,∂K

From (4.9), (4.10), and (4.11), we conclude that (4.8) holds.
We now turn to the proof of (2). By Green’s formula, we have

Brc
h (vh,vh) =

∑
K∈Th

(∫
K

(c− divb/2)v2hdx+
1

2

∫
∂K

(b · n)v2hdx

+ 〈vh − v̂h, [b · n]−vh − [b · n]+v̂h〉∂K
)

=:
∑
K∈Th

(IK + II∂K + III∂K).

By the assumption (1.3), we have

IK ≥ ρ0‖vh‖20,K .
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Since b · n = [b · n]+ − [b · n]−, we have

II∂K + III∂K =
1

2
〈vh, [b · n]−vh〉∂K − 〈v̂h, [b · n]−vh〉∂K (4.12)

+
1

2
〈vh, [b · n]+vh〉∂K − 〈vh, [b · n]+v̂h〉∂K

=
1

2
〈([b · n]− + [b · n]−)(vh − v̂h), vh − v̂h〉∂K

+
1

2
〈([b · n]+ − [b · n]−)v̂h, v̂h〉∂K

=
1

2
〈|b · n|(vh − v̂h), vh − v̂h〉∂K +

1

2
〈(b · n)v̂h, v̂h〉∂K .

Since ∑
K∈Th

〈(b · n)v̂h, v̂h〉∂K = 0,

summing (4.12) over all elements K ∈ Th gives us∑
K∈Th

(II∂K + III∂K) =
1

2

∑
K∈Th

‖|b · n|1/2(vh − v̂h)‖20,∂K .

Thus we obtain the coercivity (4.8).
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From Lemma 4.1 and Lemma 4.2, we get the following lemma

Lemma 4.3. We have the following three properties.

1. (Galerkin orthogonality) Let u be the exact solution of (1.2), and let u = {u, u|Γh
}.

Let uh be the approximate solution by (3.1). Then we have

Bh(u− uh,vh) = 0 ∀vh ∈ V h.

2. There exists a constant Cb independent of h and ε such that

|Bh(v − P hv,wh)| ≤ Cb |‖v − P hv‖| |‖wh‖| v ∈ V ,wh ∈ V h.

3. (Coercivity) There exists a constant Cc independent of h and ε such that

Bh(vh,vh) ≥ Cc |‖vh‖|2 vh ∈ V 0h. (4.13)

Theorem 4.4. Let u be the exact solution of (1.2), and let u = {u, u|Γh
}. Let uh be

the approximate solution by (3.1). Recall that we are assuming (H1), (H2), and (H3). If
u ∈ Hk+1(Ω) then we have the following error estimate:

|‖u− uh‖| ≤ C(ε1/2 + h1/2)hk|u|k+1, (4.14)

where C denotes a positive constant independent of h and ε.

Proof. By using the three properties in Lemma 4.3, we deduce that

Cc |‖uh − P hu‖|2 ≤ Bh(uh − P hu,uh − P hu)

= Bh(u− P hu,uh − P hu)

= Bh(u− ũ,uh − P hu) +Bh(ũ− P hu,uh − P hu)

≤ Cb(|‖u− ũ‖|+ |‖ũ− P hu‖|) |‖uh − P hu‖| .

Hence we have
|‖uh − P hu‖| ≤ C(|‖u− ũ‖|+ |‖u− P hu‖|).

By the triangle inequality and Lemma 2.2, we have

|‖u− uh‖| ≤ |‖uh − P hu‖|+ |‖u− P hu‖|
≤ (C + 1) |‖u− P hu‖|+ C |‖u− ũ‖|
≤ C(ε1/2 + h1/2)hk|u|k+1.

Thus, the proof is completed.
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5 The relation between uh and the solution of the reduced
problem

Let u0 be the solution of the reduced problem of (1.2) :

b · ∇u0 + cu0 = f in Ω, (5.1a)
u0 = gD on ΓD. (5.1b)

Here we assume that ΓD = Γ− and gN ≡ 0, and suppose that the unique existence of a
solution u0 ∈ H2(Ω) to (5.1). Let u0 = {u0, u0|Γh

}. The aim of this section is to show
the approximate solution uh is also close to u0 when ε is very small. This suggests that
our hybridized DG method (3.1) is stable even when ε is sufficiently small.

Theorem 5.1. Let uh be the approximate solution defined by (3.1), and let ũ0 be defined
as above. Then we have the following inequality:

|‖uh − ũ0‖| ≤ C (|‖ũ0‖|d + |‖ũ0 − P hũ0‖|) , (5.2)

where C is a constant independent of ε and h.

Proof. By the consistency of Brc
h (·, ·), we have

Brc
h (u0,vh) = (f, vh), (5.3)

from which it follows that

Bh(ũ0,vh) = (f, vh) +Bd
h(u0,vh) +Bh(ũ0 − u0,vh). (5.4)

Subtracting (5.4) from (3.1) gives us

Bh(ũ0 − uh,vh) = Bd
h(u

0
h,vh) +Bh(ũ0 − u0,vh) ∀vh ∈ V h. (5.5)

Here we claim that

Bh(ũ0 − u0,vh) = Bd
h(ũ0 − u0,vh). (5.6)

In fact, we have

Bh(ũ0 − u0,vh) = Bd
h(ũ0 − u0,vh) +Brc

h (ũ0 − u0,vh)

= Bd
h(ũ0 − u0,vh)

+
〈
P̂h(u0|∂Ω)− u0|∂Ω, [b · n]−vh − [b · n]+v̂h

〉
∂Ω\Γ−
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Since [b · n]− and v̂h vanish on ∂Ω \ Γ−, we have (5.6). Thus (5.5) becomes

Bh(ũ0 − uh,vh) = Bd
h(u0,vh) +Bd

h(ũ0 − u0,vh) (5.7)
= Bd

h(ũ
0
h,vh) ∀vh ∈ V h.

Choosing vh = uh − P hũ0 ∈ V 0h in (4.13), we have

Cc |‖uh − P hũ0‖|2 ≤ Bh(uh − P hũ0,uh − P hũ0)

= Bh(uh − ũ0,uh − P hũ0) +Bh(ũ0 − P hũ0,uh − P hũ0)

≤ |Bd
h(ũ0,uh − P hũ0)|+ |Bh(ũ0 − P hũ0,uh − P hũ0)|

≤ Cd
b |‖ũ0‖|d |‖uh − P hũ0‖|d + Cb |‖ũ0 − P hũ0‖| |‖uh − P hũ0‖|

Then we have

Cc |‖uh − P hũ0‖| ≤ Cd
b |‖ũ0‖|d + Cb |‖ũ0 − P hũ0‖| .

By the triangle inequality,

|‖uh − ũ0‖| ≤ |‖uh − P hũ0‖|+ |‖P hũ0 − ũ0‖|

≤ Cd
b

Cc

|‖ũ0‖|d +
(
1 +

Cb

Cc

)
|‖ũ0 − P hũ0‖| ,

where Cd
b , Cc, and Cb are independent of ε. Thus we obtain the inequality (5.2).
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6 Numerical results

6.1 Convection-dominated case
We consider the case that the diffusion coefficient is very small, ε = 10−9, so that the exact
solution has a boundary layer. Let Ω be the unit square domain, b = (1, 1)T , and c ≡ 0.
The example problem is as follows:

−ε∆u+ b · ∇u = f in Ω, (6.1a)
u = 0 on ΓD = ∂Ω, (6.1b)

where f is given so that the exact solution is

u(x, y) = sin(πx/2) sin(πy/2)
(
1− e(x−1)/ε

) (
1− e(y−1)/ε

)
.

This solution has a boundary layer near x = 1 or y = 1. The meshes we use are the
rectangular meshes with the length of h = 1/N . We computed the approximate solutions
for h = 1/10, 1/20, 1/40, and 1/80 with linear elements. In Figure 3, we display the
graph of the approximate solution for h = 1/10. We can see that no oscillation appears
unlike the classical finite element method. Figure 1 shows that the convergence diagram
in the L2 norm and H1(Th) seminorm on Ω0.9 := (0, 0.9)2. Here we restrict the domain to
Ω0.9 in order to remove the boundary layers. We observe that the convergence rates of the
L2-error and the H1(Th)-error are optimal,i.e., h2 and h, respectively. We also computed
for ε = 10−1 to compare with the convection-dominated case, see Figure 2. In this case, it
can be observed that the convergence rates of the error on the entire Ω are h2 and h in the
L2-norm and H1(Th)-seminorm, respectively.

6.2 Rotating flow problem
Next, we consider the example where b is not constant. Let Ω be the unit square domain
with a slit, i.e., Ω = (0, 1)2 \ {(1/2, y) : 0 ≤ y ≤ 1/2}. We consider the same equation
(6.1) for different coefficients: ε = 10−9, b = (1/2 − y, x − 1/2)T , and f ≡ 0. The
non-homogeneous Dirichlet boundary condition, gD(x, y) = sin2(2πy), is imposed on
the inflow-side slit, and gD = 0 otherwise, see Figure 4. We used the same meshes and
finite element spaces as the previous example. In Figure 5, we display the graphs of the
approximate solution uh and ûh with h = 1/20. Figure 6 shows the cross section of uh at
x = 1/2, which confirms us that our method works well and is stable.
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Figure. 1: L2-error (left) and H1(Th)-error(right) on Ω0.9 for ε = 10−9.
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Figure. 2: L2-error(left) and H1(Th)-error(right) on Ω for ε = 10−1.
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Figure. 3: Approximate solutions uh(left) and ûh(right) for h = 1/10 and ε = 10−9.

Figure. 4: Rotating flow problem.
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Figure. 5: Approximate solutions uh(left) and ûh(right) of the rotating flow problem for
h = 1/20.
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Figure. 6: Approximate solution uh at x = 1/2 of the rotating flow problem for h = 1/20
(left) and h = 1/40 (right).
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7 Conclusions
We have presented a new hybridized scheme for the convection-diffusion-reaction prob-
lems. In our formulation, a unwinding term is added to stabilize the convection-reaction
part. As a result, our scheme is stable even when ε ↓ 0. Indeed, numerical results show that
no oscillation appears in our approximate solutions. We have proved the error estimates
of optimal order in the HDG norm, and discussed the relation between our approximate
solution and the solution of the reduced problem.
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