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A DISCRETE ISOPERIMETRIC INEQUALITY ON LATTICES

NAO HAMAMUKI

Abstract. We establish an isoperimetric inequality with constraint by n-

dimensional lattices. We prove that, among all domains which consist of rect-
angular parallelepipeds with the common side-lengths, a cube is the best shape
to minimize the ratio involving its perimeter and volume as long as the cube is
realizable by the lattice. For its proof a solvability of finite difference Poisson-

Neumann problems is verified. Our approach to the isoperimetric inequality
is based on the technique used in a proof of the Aleksandrov-Bakelman-Pucci
maximum principle, which was originally proposed by Cabré in 2000 to prove

the classical isoperimetric inequality.

1. Introduction

The classical isoperimetric inequality asserts that for any bounded E ⊂ Rn we
have

|∂E|n

|E|n−1
>=

|∂B1|n

|B1|n−1
, (1.1)

where |E| and |∂E| denote, respectively, the volume of E and the perimeter of
E, and Br := {x ∈ Rn | |x| < r} is a ball. This inequality says that among
all domains a ball is the best shape to minimize the ratio given as the left hand
side of (1.1). Related topics to the classical isoperimetric problem or arguments
on its generalization can be found in the book [5] and the survey paper [22]. See
also the recent book [27] for connections with Sobolev inequalities and optimal
transportation.

In this paper we are concerned with the case where E is a collection of rectangular
parallelepipeds with the common shape. To describe the situation more precisely
we first define a weighted lattice. For each i ∈ {1, . . . , n} we fix a positive constant
hi > 0 as a step size in the direction of xi. Then the resulting lattice is

hZn := (h1Z)× · · · × (hnZ) = {(h1x1, . . . , hnxn) ∈ Rn | (x1, . . . , xn) ∈ Zn}.

Consider a subset Ω ⊂ hZn. We define Ω, a closure of Ω, as

Ω :=

{
x+

n∑
i=1

σihiei

∣∣∣∣∣ x ∈ Ω, σ1, . . . , σn ∈ {−1, 0, 1}

}
,

where {ei}ni=1 ⊂ Rn is the standard orthogonal basis of Rn, e.g., e1 = (1, 0, . . . , 0).
Note that this is not a closure in Rn. We also set ∂Ω := Ω \ Ω, a boundary of
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Ω. Given a bounded Ω ⊂ hZn, we define a volume of Ω and a perimeter of Ω as,
respectively,

Vol(Ω) := hn × (#Ω), Per(Ω) := hn ×

(
n∑

i=1

ωi

hi

)
with

ωi = ωi[Ω] =
∑
x∈Ω

#({x± hiei} ∩ ∂Ω),

where hn := h1×· · ·×hn and #A stands for the number of elements of a set A. The
number ωi counts the edges that are parallel to the xi-direction and are connecting
points of Ω with points of ∂Ω. Our definitions of the volume and the perimeter are
natural in that if we let

E = E[Ω] :=
∪

(x1,...,xn)∈Ω

[
x1 −

h1

2
, x1 +

h1

2

]
× · · · ×

[
xn − hn

2
, xn +

hn

2

]
(1.2)

for a given Ω ⊂ hZn, we then have Vol(Ω) = Ln(E), the n-dimensional Lebesgue
measure of E, and Per(Ω) = Hn−1(∂E), the (n−1)-dimensional Hausdorff measure
of ∂E (the boundary of E in Rn).

We denote by Qr and Q̄r, respectively, the open and closed cube in Rn with
center 0 and side-length 2r > 0, i.e., Qr := (−r, r)n ⊂ Rn and Q̄r := [−r, r]n ⊂ Rn.
Let Q̄r(a) := a+Q̄r for a ∈ Rn. The volume and perimeter of Qr are, respectively,
|Qr| = (2r)n and |∂Qr| = 2n(2r)n−1. We are now in a position to state our main
result.

Theorem 1.1 (Discrete isoperimetric inequality). For any nonempty, bounded and
connected Ω ⊂ hZn we have

Per(Ω)n

Vol(Ω)n−1
>=

|∂Q1|n

|Q1|n−1
. (1.3)

Moreover, the equality in (1.3) holds if and only if E[Ω] is a cube, i.e, E[Ω] = Q̄r(a)
for some r > 0 and a ∈ Rn.

Here we say Ω ⊂ hZn is connected if for all x, y ∈ Ω there exist m ∈ N =
{1, 2, . . . } and z1, . . . , zm ∈ Ω such that z1 ∈ {x}, zk+1 ∈ {zk} (k = 1, . . . ,m − 1)

and y ∈ {zm}. Although (1.3) can be regarded as a “continuous” isoperimetric
inequality if we identify Ω with E[Ω] in (1.2), we call (1.3) a “discrete” isoperimetric
inequality since our approach to Theorem 1.1 uses numerical techniques which study
functions defined on the lattice hZn. Note that our result is different from the
classical one in that the minimizer of the left hand side of (1.3) is a cube. This is
a consequence of the constraint by lattices. We also remark that the equality in
(1.3) does not necessarily hold; consider the two dimensional case where h1 = 1

and h2 =
√
2.

The fact that round-shaped subsets are not optimal is observed in the following
way when n = 2. Let h1 = h2 = 1 and Ω ⊂ Z2 be nonempty, bounded and
connected. We choose R = {a, a + 1, . . . , a + M} × {b, b + 1, . . . , b + N} ⊂ Z2 as
the minimal rectangle such that Ω ⊂ R. Obviously, Vol(Ω) < Vol(R) if Ω ̸= R.
We next consider their perimeters. Since Ω is connected, for each x ∈ {a, a +
1, . . . , a+M} there exist (x, y−), (x, y+) ∈ Ω such that (x, y− − 1), (x, y+ +1) ̸∈ Ω.
This implies ω1[Ω] >= 2(M + 1) = ω1[R]. Similarly, we obtain ω2[Ω] >= 2(N + 1) =
ω2[R], and therefore Per(Ω) >= Per(R). We thus conclude that Per(Ω)2/Vol(Ω) >
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Per(R)2/Vol(R), i.e., Ω is not optimal. Note that this argument is not valid if
n >= 3.

On the contrary, if we define a volume and a perimeter of Ω as #Ω and #(∂Ω),
respectively, then a cube is not an optimal shape. This can be seen in the following
simple example. Let n = 2, h1 = h2 = 1 again and consider planar subsets
Ω1 = {(x, y) ∈ Z2 | |x| <= 1, |y| <= 1} and Ω2 = {(x, y) ∈ Z2 | |x|+|y| <= 2}. We then
have #Ω1 = 9, #Ω2 = 13 and #(∂Ω1) = #(∂Ω2) = 12. Thus the square Ω1 is not
a minimizer of the functional (#(∂Ω))2/(#Ω). In the article [10] the author asserts
that if Ω has a minimal #∂Ω, then Ω is roughly diamond-shaped. The author of
[10] also observes inequalities (#(∂Ω))2/(#Ω) > 8 for the two dimensional case and
(#(∂Ω))3/(#Ω)2 > 36 for the three dimensional case without detailed argument.
We do not discuss such problems concerning the functional (#(∂Ω))n/(#Ω)n−1 in
the present paper.

Isoperimetric problems on discrete spaces are studied by many authors. The
recent book [13] gives a survey of isoperimetric problems on graphs (networks) in
Chapter 8. See also [9] for various results including discrete Sovolev inequalities on
finite graphs. The paper [1] is a survey on several discrete isoperimetric inequalities.
The main problem discussed in [1] is to determine an optimal subset of {0, 1}n
equipped with the Hamming metric. Isoperimetric problems concerning lattices can
be found in several previous work; however, their settings and problems are different
from ours. The authors of [15] consider compact and convex subsets in R2 whose
interior contain zero or one lattice point. Under the constraint some inequalities for
geometrical functionals such as an area or a perimeter are derived. The paper [15]
also summarizes known inequalities for geometrical functionals concerning subsets
with the same constraint. See tables in [15] or references therein. Planar convex
subsets are also considered in [2]. The author of [2] gives inequalities involving
the number of interior or boundary lattice points lying in a convex region in the
plane. In [4] isoperimetric problems for lattice-periodic sets are discussed. The
reader is referred to its related work [14, 3, 24] for similar problems concerning
multi-dimensional spaces or non-periodic sets. Properties of planar subsets with
constraint by a triangular lattice are discussed in [11].

For the proof of our discrete isoperimetric inequality we employ the idea by
Cabré. As an application of the technique used in a proof of the Aleksandrov-
Bakelman-Pucci (ABP for short) maximum principle, Cabré pointed out in [8] (and
the original paper [7] in Catalan) that the ABP method gives a simple proof of the
classical isoperimetric inequality (1.1). We refer the reader, if interested in the
ABP maximum principle, to [12, Theorem 9.1] for W 2,n solutions and [6, Theorem
3.2] for viscosity solutions. Discrete versions of the ABP estimate are established
in a series of studies by Kuo and Trudinger; see [16, 21] for linear equations, [17]
for nonlinear operators, [18, 20] for parabolic cases and [19, 20] for general meshes.

Unfortunately, the result in [8] does not cover subsets having corners such as
(1.2) since domains E in [8] is assumed to be smooth in order to solve Neumann
problems on E. To be more precise, the author of [8] takes a function u which
solves the Poisson-Neumann problem

−∆u =
|∂E|
|E|

in E,

∂u

∂ν
= −1 on ∂E,

(1.4)
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and proves (1.1) by studying the n-dimensional Lebesgue measure of the image of
an upper contact set of u under its gradient ∇u. Here ν is the outward unit normal
vector to ∂E. In this paper we solve a finite difference version of (1.4) instead of
the continuous equation. Considering such discrete equations and their discrete
solutions enables us to deal with non smooth domains.

Our proof is similar to that in [8] except that minimizers are not balls but cubes
and that a superdifferential of u is used instead of its gradient ([16]). However, there
are some extra difficulties in our case. One is a solvability of the discrete Poisson-
Neumann problem. Such problems are discussed in the previous work [26, 23, 25,
28], but domains are restricted to rectangles ([26, 23, 28]) or their collections ([25]).
For the proof of our discrete isoperimetric inequality, fortunately, it is enough to
require u to be a subsolution of the Poisson equation in (1.4) and to satisfy the
Neumann condition in (1.4) with some direction ν. For this reason we are able
to construct such solutions on general subsets of hZn. Solutions of (1.4) are not
unique in our discrete case as well as the continuous case since adding a constant
gives another solution. Accordingly, the resulting coefficient matrix of a linear
system which corresponds to the discrete (1.4) is not invertible. Thus an existence
of solutions to the problem will be established by determining the kernel of the
matrix. We will give a proof of this existence result separately from that of the
isoperimetric inequality to increase readability. Another difficulty is to study a
necessary and sufficient condition which leads the equality in (1.3). This is not
discussed in [8].

This paper is organized as follows. In Section 2 we give a proof of the discrete
isoperimetric inequality. Since we use a discrete solution of the Poisson-Neumann
problem in the proof, we show the existence of such solutions in Section 3. In
Appendix we present two results on maximum principles; one is an ABP maximum
principle shown by a similar method to the isoperimetric inequality, and the other
is a strong maximum principle which is used in Section 3.

2. A proof of the discrete isoperimetric inequality

Throughout this paper we always assume

Ω ⊂ hZn is nonempty, bounded and connected.

We first introduce a notion of superdifferentials and upper contact sets, and then
study their properties. Let u : Ω → R. We denote by ∂+u(z) a superdifferential of
u on Ω at z ∈ Ω, which is given as

∂+u(z) := {p ∈ Rn | u(x) <= ⟨p, x− z⟩+ u(z), ∀x ∈ Ω},

where ⟨·, ·⟩ stands for the Euclidean inner product in Rn. It is easy to see that
∂+u(z) is a closed set in Rn. We next define Γ[u], an upper contact set of u on Ω,
as

Γ[u] :={z ∈ Ω | ∂+u(z) ̸= ∅}
={z ∈ Ω | ∃p ∈ Rn such that u(x) <= ⟨p, x− z⟩+ u(z), ∀x ∈ Ω}.
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For x ∈ Ω and i ∈ {1, . . . , n} we define discrete differential operators as follows:

δ+i u(x) :=
u(x+ hiei)− u(x)

hi
, δ−i u(x) := −u(x− hiei)− u(x)

hi
,

δ2i u(x) :=
δ+i u(x)− δ−i u(x)

hi
=

u(x+ hiei) + u(x− hiei)− 2u(x)

h2
i

,

∆′u(x) :=
n∑

j=1

δ2ju(x) =
n∑

j=1

u(x+ hjej) + u(x− hjej)

h2
j

−

2
n∑

j=1

1

h2
j

u(x).

Lemma 2.1. Let u : Ω → R. For all z ∈ Γ[u] we have δ+i u(z) <= δ−i u(z) for every
i ∈ {1, . . . , n} and

∂+u(z) ⊂ [δ+1 u(z), δ
−
1 u(z)]× · · · × [δ+n u(z), δ

−
n u(z)]. (2.1)

Remark 2.2. Since δ+i u(z) <= δ−i u(z) at z ∈ Γ[u], we see δ2i u(z) <= 0 for all i ∈
{1, . . . , n}.

Proof. Let p = (p1, . . . , pn) ∈ ∂+u(z). From the definition of the superdifferential
it follows that u(x) <= ⟨p, x − z⟩ + u(z) for all x ∈ Ω. In particular, taking x =
z ± hiei ∈ Ω, we have

u(z ± hiei) <= ⟨p,±hiei⟩+ u(z);

that is,

u(z + hiei)− u(z)

hi

<= pi 5 −u(z − hiei)− u(z)

hi
.

This implies δ+i u(z) <= δ−i u(z) and (2.1). �

Proof of Theorem 1.1. 1. Take u : Ω → R as a discrete solution of the Neumann
problem

(NP)


−∆u <=

Per(Ω)

Vol(Ω)
in Ω, (2.2)

∂u

∂ν
= −1 on ∂Ω. (2.3)

Here we say u is a discrete solution of (NP) if −∆′u(x) <= Per(Ω)/Vol(Ω) for all
x ∈ Ω, and if, as for the Neumann boundary condition (2.3), for all x ∈ ∂Ω there
exist some i ∈ {1, . . . , n} and σ ∈ {−1, 1} such that x+ σhiei ∈ Ω and

u(x)− u(x+ σhiei)

hi
= −1.

We will prove the existence of such solutions u in the next section (Proposition 3.2).
2. Consider Γ[u], the upper contact set of u on Ω. We claim

Q1 ⊂
∪

z∈Γ[u]

∂+u(z). (2.4)

Let p ∈ Q1. We take a maximum point x̂ ∈ Ω of u(x) − ⟨p, x⟩ over Ω. To show
(2.4) it is enough to prove that x̂ ∈ Ω since we then have x̂ ∈ Γ[u] and p ∈ ∂+u(x̂).
Suppose by contradiction that x̂ ∈ ∂Ω. Take any i ∈ {1, . . . , n} and σ ∈ {−1, 1}
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such that y := x̂ + σhiei ∈ Ω. Since u(x) − ⟨p, x⟩ attains its maximum at x̂, we
compute

u(x̂)− u(y)

hi

>=
⟨p, x̂⟩ − ⟨p, y⟩

hi
=

⟨p,−σhiei⟩
hi

>= −|pi| > −1.

This implies that u does not satisfy the boundary condition (2.3) at x̂ ∈ ∂Ω, a
contradiction.

3. By (2.4) we see

|Q1| = Ln(Q1) <= Ln

 ∪
z∈Γ[u]

∂+u(z)

 <=
∑

z∈Γ[u]

Ln(∂+u(z)). (2.5)

Also, for each z ∈ Γ[u] Lemma 2.1 implies

Ln(∂+u(z)) <= Ln([δ+1 u(z), δ
−
1 u(z)]× · · · × [δ+n u(z), δ

−
n u(z)])

= (δ−1 u(z)− δ+1 u(z))× · · · × (δ−n u(z)− δ+n u(z))

= hn(−δ21u(z))× · · · × (−δ2nu(z)). (2.6)

We next apply the arithmetic-geometric mean inequality to obtain

(−δ21u(z))× · · · × (−δ2nu(z)) <=

(
−δ21u(z)− · · · − δ2nu(z)

n

)n

=

(
−∆′u(z)

n

)n

.

(2.7)

Consequently, combining (2.5)–(2.7) yields

|Q1| <=
∑

z∈Γ[u]

hn

(
−∆′u(z)

n

)n

<=
∑

z∈Γ[u]

hn Per(Ω)n

nnVol(Ω)n
<=

Per(Ω)n

nnVol(Ω)n−1
. (2.8)

Since n = |∂Q1|/|Q1|, it follows that

Per(Ω)n

Vol(Ω)n−1
>= nn|Q1| =

|∂Q1|n

|Q1|n
|Q1| =

|∂Q1|n

|Q1|n−1
.

4. We next assume that the equality in (1.3) holds. In view of Steps 3, we then
have Γ[u] = Ω by (2.8) and

Ln(Q1) = Ln

(∪
x∈Ω

∂+u(x)

)
, (2.9)

Ln(∂+u(x)) = Ln([δ+1 u(x), δ
−
1 u(x)]× · · · × [δ+n u(x), δ

−
n u(x)]) for all x ∈ Ω,

(2.10)

δ21u(x) = · · · = δ2nu(x) =: µ(x) (<= 0) for all x ∈ Ω (2.11)

by (2.5), (2.6) and (2.7), respectively. We claim

∂+u(x) = [δ+1 u(x), δ
−
1 u(x)]× · · · × [δ+n u(x), δ

−
n u(x)] for all x ∈ Ω. (2.12)

Since we have (2.1) and ∂+u(x) is closed, it is enough to show

∂+u(x) ⊃ (δ+1 u(x), δ
−
1 u(x))× · · · × (δ+n u(x), δ

−
n u(x)) for all x ∈ Ω.

Suppose that there were some p ∈ (δ+1 u(x), δ
−
1 u(x)) × · · · × (δ+n u(x), δ

−
n u(x)) such

that p ̸∈ ∂+u(x). Since ∂+u(x) is closed, we would have (p+Br)∩ ∂+u(x) = ∅ for
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sufficiently small r > 0. Then, however, (2.10) would be violated. Thus (2.12) is
proved. Also, as a consequence of (2.12), it easily follows from (2.4) and (2.9) that

Q̄1 =
∪
x∈Ω

∂+u(x). (2.13)

5. We next prove that µ(x) = µ(y) =: µ and

∂+u(y) = ∂+u(x) + hiµei (2.14)

for all x, y ∈ Ω such that y = x + hiei for some i ∈ {1, . . . , n}, where µ(·) is the
function in (2.11). Without loss of generality we may assume x = 0, y = h1e1
and u(x) = 0. We then notice that u(y) = h1δ

+
1 u(0). Fix i ∈ {2, . . . , n} and

set p± := δ+1 u(0)e1 + δ±i u(0)ei ∈ ∂+u(0). Then, since x = 0 ∈ Γ[u], we observe

that u(z) <= ⟨p±, z⟩ for all z ∈ Ω. In particular, letting z = h1e1 ± hiei, we
deduce u(z) <= h1δ

+
1 u(0)± hiδ

±
i u(0) = u(y)± hiδ

±
i u(0), i.e., δ+i u(y) <= δ+i u(0) and

δ−i u(0) <= δ−i u(y). Changing the role of x and y we also have δ+i u(y) >= δ+i u(0) and
δ−i u(0) >= δ−i u(y). Thus

δ+i u(y) = δ+i u(0) and δ−i u(0) = δ−i u(y) (2.15)

for all i ∈ {2, . . . , n}. These equalities imply µ(x) = µ(y) = µ, and then δ±1 u(y) are
computed as

δ−1 u(y) = δ+1 u(x) = δ−1 u(x) + h1µ, δ+1 u(y) = δ−1 u(y) + h1µ = δ+1 u(x) + h1µ.

Namely, we have [δ−1 u(y), δ+1 u(y)] = [δ−1 u(x), δ+1 u(x)] + h1µ, which together with
(2.15) shows (2.14).

6. By translation we may let 0 ∈ Ω. Set R := [−h1/2, h1/2]×· · ·× [−hn/2, hn/2]
and choose z ∈ Rn so that ∂+u(0) = z + µR. Since Ω is now connected, as a
consequence of Step 5 we see µ(x) ≡ µ and ∂+u(x) = ∂+u(0) + µx = z + µx+ µR
for all x ∈ Ω. Therefore (2.13) implies

Q̄1 =
∪
x∈Ω

(z + µx+ µR).

Finally, from translation and rescaling it follows that

Q̄1/|µ|(−z/µ) =
∪
x∈Ω

(x+R) = E[Ω],

which is the desired conclusion. �

3. An existence result for the Poisson-Neumann problem

We shall prove the solvability of (NP), the Poisson equation with the Neumann
boundary condition which appeared in the proof of the discrete isoperimetric in-
equality. Before starting the proof, using a simple example, we explain how to
construct the solutions.

Example 3.1. Consider Ω ⊂ hZ2 which consists of three points P1, P2 and P3 in
the left lattice of Figure 1. We also denote by S1, . . . , S7 all points on ∂Ω as in the
same figure. In order to determine values of u on Ω we solve a system of linear

equations of the matrix form La⃗ = b⃗ which corresponds to the finite difference
equation (NP). However, if we require u to satisfy the Neumann condition (2.3)
at S1 toward the both adjacent points P1 and P3, the linear system may not be
solvable since the number of the unknowns is less than that of equations; in the
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present example they are 10 and 11, respectively. Thus we are tempted to consider
the Neumann condition toward either P1 or P3 since we are now allowed to relax
(2.3) in this way by the meaning of solutions. Then the number of equations
decreases to 10, but, unfortunately, it becomes difficult to study the linear system
since the new matrix L is not symmetric. In addition, we do not know a priori how
to choose the adjacent point toward which the Neumann condition is satisfied.

P1 P2

P3

S2

S1

S3 S4

S5

S6

S7

P1 P2

P3

S2

S3 S4

S5

S6

S7

S1,2

S1,1

Figure 1. Ω = {Pi}3i=1 and ∂Ω = {Si}7i=1. We solve a system
of linear equations for the right lattice, and then define u(S1) :=
max{u(S1,1), u(S1,2)}.

To avoid these situations we regard S1 as two different points S1,1 and S1,2 which
are connected to P1 and P3, respectively, and consider a modified system with new
unknowns u(S1,1) and u(S1,2) instead of u(S1); see the right lattice in Figure 1.
Then the number of the unknowns in our example becomes 11. Thanks to this
increase of the unknowns, it turns out that the modified linear system admits at
least one solution (u(P1), u(P2), u(P3), u(S1,1), u(S1,2), u(S2), . . . , u(S7)). (In the
notation of the proof below we write u(S1,1) = β(1, 1) and u(S1,2) = β(1, 2).) In
the process of proving the solvability we find that the right hand side of (2.2) should
be Per(Ω)/Vol(Ω). Also, for its proof we employ the strong maximum principle for
the discrete Laplace equation.

The remaining problem is how to define u(S1). We define u(S1) as the max-
imum of u(S1,1) and u(S1,2), so that, if u(S1,1) >= u(S1,2), we have −∆′u(P3) <=
Per(Ω)/Vol(Ω) since u(S1) >= u(S1,2) and {u(S1) − u(P1)}/h2 = −1 since u(S1) =
u(S1,1). In this way we obtain a solution of (NP).

Proposition 3.2. The problem (NP) admits at least one discrete solution.

Proof. 1. We first introduce notations. Let Ω = {P1, . . . , PM} and ∂Ω = {S1, . . . , SN0},
where M := #Ω and N0 := #(∂Ω). For each i ∈ {1, . . . ,M} we define subsets

M(i) ⊂ {1, . . . ,M} and N (i) ⊂ {1, . . . , N0} so that {Pi} \ {Pi} = {Pj}j∈M(i) ∪
{Sj}j∈N (i). We also set si := #({Si}∩Ω) for i ∈ {1, . . . , N0}, which stands for the

number of points of Ω adjacent to Si, and N :=
∑N0

j=1 sj . Next, for i ∈ {1, . . . , N0}
we define a map ni : {1, . . . , si} → {1, . . . ,M} such that ni(1) < ni(2) < · · · and

{Si} ∩ Ω = {Pni(j)}
si
j=1. (Such maps are unique.) We denote by n−1

i the inverse

map of ni; that is, Pj is the n
−1
i (j)-th point of (Pni(1), . . . , Pni(si)) if Pj ∈ {Si}∩Ω.

For x, y ∈ Ω such that y = x + σhiei with σ = ±1 and i ∈ {1, . . . , n} we set
h(x, y) := hi. Obviously, we then have h(x, y) = h(y, x). We denote by E(i, j) the



A DISCRETE ISOPERIMETRIC INEQUALITY ON LATTICES 9

(M + N) × (M + N) matrix with 1 in the (i, j) entry and 0 elsewhere. Given a
vector

a⃗ = t(α(1), . . . , α(M), β(1, 1), . . . , β(1, s1), . . . , β(N0, 1), . . . , β(N0, sN0)) ∈ RM+N ,
(3.1)

where tv⃗ means the transpose of a vector v⃗, we define u = u[⃗a] : Ω → R as

u(x) :=

{
α(i) (x = Pi ∈ Ω, i ∈ {1, . . . ,M}),
max{β(i, j) | 1 <= j <= si} (x = Si ∈ ∂Ω, i ∈ {1, . . . , N0}).

2. We consider the following system of linear equations

La⃗ = b⃗, (3.2)

where a⃗ ∈ RM+N is the unknown vector and b⃗ = (bk)
M+N
k=1 ∈ RM+N is given as

bk =


Per(Ω)

Vol(Ω)
(k = 1, . . . ,M),

−1

h(Sj , Pnj(i))
(k = M +

∑j−1
l=0 sl + i with j ∈ {1, . . . , N0}, i ∈ {1, . . . , sj}).

Here s0 = 0. Also, the (M +N)× (M +N) matrix L is defined by

L :=

(
θIM 0
0 0

)
−

M∑
i=1

 ∑
j∈M(i)

E(i, j)

h(Pi, Pj)2
+
∑

j∈N (i)

E
(
i,M +

∑j−1
l=0 sl + n−1

j (i)
)

h(Pi, Sj)2


+

N0∑
j=1

sj∑
i=1

E
(
M +

∑j−1
l=0 sl + i,M +

∑j−1
l=0 sl + i

)
− E

(
M +

∑j−1
l=0 sl + i, nj(i)

)
h(Sj , Pnj(i))

2
,

where IM is the identity matrix of dimension M and θ := 2
∑n

i=1(1/h
2
i ). By

definition L is symmetric. To check the symmetricity we first take i ∈ {1, . . . ,M}
and j ∈ M(i). Then the (i, j) entry of L is −1/h(Pi, Pj)

2. Since j ∈ M(i), we see

Pj ∈ {Pi}. Thus Pi ∈ {Pj} and this implies i ∈ M(j). As a result, it follows that
the (j, i) entry of L is −1/h(Pj , Pi)

2. We next let i ∈ {1, . . . ,M} and j ∈ N (i),

so that the (i,M +
∑j−1

l=0 sl + n−1
j (i)) entry of L is −1/h(Pi, Sj)

2. In this case we

have Sj ∈ {Pi}, and so Pi ∈ {Sj}. Then from the definition of nj it follows that

nj(t) = i for some t ∈ {1, . . . , sj}, i.e., t = n−1
j (i). Since (M+

∑j−1
l=0 sl+n−1

j (i), i) =

(M +
∑j−1

l=0 sl + t, nj(t)), we conclude that the (M +
∑j−1

l=0 sl + n−1
j (i), i) entry of

L is −1/h(Sj , Pnj(t))
2 = −1/h(Sj , Pi)

2. Hence the symmetricity of L is proved.

3. We claim that if a⃗ ∈ RM+N is a solution of (3.2), then u = u[⃗a] is a discrete
solution of (NP). Let x ∈ Ω, i.e., x = Pi for some i. Without loss of generality we
may assume x = P1. Since a⃗ satisfies (3.2), comparing the first coordinates of the
both sides in (3.2), we observe

Per(Ω)

Vol(Ω)
= θα(1)−

∑
j∈M(1)

α(j)

h(P1, Pj)2
−

∑
j∈N (1)

β(j, n−1
j (1))

h(P1, Sj)2

>= θu(P1)−
∑

j∈M(1)

u(Pj)

h(P1, Pj)2
−

∑
j∈N (1)

u(Sj)

h(P1, Sj)2

= −∆′u(P1).
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We next let x ∈ ∂Ω. Again we may assume x = S1. We also let β(1, j0) =
max{β(1, j) | 1 <= j <= s1}. Then the (M + j0)-th coordinates in (3.2) implies

β(1, j0)− α(n1(j0))

h(S1, Pn1(j0))
2

=
−1

h(S1, Pn1(j0))
,

that is,

u(S1)− u(Pn1(j0))

h(S1, Pn1(j0))
= −1.

Consequently, we see that u is a discrete solution of (NP) in our sense.
4. We shall show that (3.2) is solvable. For this purpose, we first assert that

KerL = Rξ⃗, where KerL is the kernel of L and

ξ⃗ = t(1, . . . , 1) ∈ RM+N .

By the definition of L we see that the sum of each row of L is zero. This implies

KerL ⊃ Rξ⃗. We next let a⃗ ∈ KerL, i.e., La⃗ = 0. We represent each component of
a⃗ as in (3.1). Now, by the same argument as in Step 3 we see that u = u[⃗a] is a
discrete solution of

(NP0)


−∆u <= 0 in Ω, (3.3)

∂u

∂ν
= 0 on ∂Ω, (3.4)

where the notion of a discrete solution of (NP0) is the same as that of (NP). We

take a maximum point z ∈ Ω of u over Ω. If z ∈ ∂Ω, there exists some y ∈ {z} ∩Ω
such that u(y) = u(z) since u satisfies the Neumann boundary condition (3.4) at
z. Thus u attains its maximum at some point in Ω. Since Ω is now bounded and
connected, the strong maximum principle (Theorem A.3) for the Laplace equation
ensures that u must be some constant c ∈ R on Ω. From this it follows that
α(1) = · · · = α(M) = c. Also, since La⃗ = 0, we have β(i, j) = α(ni(j)) for all

i ∈ {1, . . . , N0} and j ∈ {1, . . . , si}. As a result, we see a⃗ = cξ⃗ ∈ Rξ⃗. We thus

conclude that KerL = Rξ⃗.

5. Since L is symmetric and KerL = Rξ⃗, we see that (ImL)⊥ = Rξ⃗, where
(ImL)⊥ stands for the orthogonal complement of ImL, the image of L. Thus, for

b⃗′ ∈ RM+N it follows that b⃗′ ∈ ImL if and only if ⟨ξ⃗, b⃗′⟩ = 0. Noting that −1/hi

appears ωi times in a sequence {bk}M+N
k=M+1 for each i ∈ {1, . . . , n}, we compute

⟨ξ⃗, b⃗⟩ = Per(Ω)

Vol(Ω)
×M +

n∑
i=1

(
−1

hi
× ωi

)
=

Per(Ω)

hn
−

n∑
i=1

ωi

hi
= 0.

Consequently b⃗ ∈ ImL, and therefore the problem (3.2) has at least one solution
a⃗ ∈ RM+N . Hence by Step 3 the corresponding u = u[⃗a] solves (NP). �

Remark 3.3. We have actually proved that u, which we constructed as a subsolution,
is a solution of (2.2) in Ω \ ∂Ω. Namely, we have −∆′u(x) = Per(Ω)/Vol(Ω) for all
x ∈ Ω \ ∂Ω. This is clear from the construction of u.
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Appendix A. Maximum principles

A.1. An ABP maximum principle. In Appendix we consider the second order
fully nonlinear elliptic equations of the form

F (∂2
x1
u, . . . , ∂2

xn
u) = f(x) in Ω, (A.1)

where F : Rn → R and f : Ω → R are given function such that F (0, . . . , 0) = 0.

Let δ⃗2u(x) := (δ21u(x), . . . , δ
2
nu(x)). We say u : Ω → R is a discrete subsolution of

(A.1) if F (δ⃗2u(x)) <= f(x) for all x ∈ Ω. As an ellipticity condition on F for our
ABP estimate, we use the following:

(F1) −λ
∑

X⃗ <= F (X⃗) for all X⃗ ∈ Rn with X⃗ <= 0.

Here λ > 0. Also,
∑

X⃗ :=
∑n

i=1 Xi for X⃗ = (X1, . . . , Xn) ∈ Rn and the inequality

X⃗ <= 0 means that Xi <= 0 for every i ∈ {1, . . . , n}. For K ⊂ hZn and g : K → R

the n-norm of g over K is given as ∥g∥ℓn(K) :=
(∑

x∈K hn|g(x)|n
)1/n

. We also set
diam(Ω) := maxx∈Ω,y∈∂Ω |x− y| and |Br| := Ln(Br).

Theorem A.1 (ABP maximum principle). Assume (F1). Let u : Ω → R be a
discrete subsolution of (A.1). Then the estimate

max
Ω

u <= max
∂Ω

u+ CAdiam(Ω)∥f∥ℓn(Γ[u]) (A.2)

holds, where CA = CA(λ, n) is given as CA = (λn|B1|1/n)−1.

A crucial estimate to prove Theorem A.1 is

Proposition A.2. For all u : Ω → R we have

max
Ω

u <= max
∂Ω

u+
diam(Ω)

n|B1|1/n
∥ −∆′u∥ℓn(Γ[u]). (A.3)

Proof. 1. We first prove Bd ⊂
∪

z∈Γ[u] ∂
+u(z), where d is a constant given as

d = (maxΩ u −max∂Ω u)/diam(Ω). If d = 0, the assertion is obvious. We assume
d > 0, i.e., u(x̂) = maxΩ u > max∂Ω u for some x̂ ∈ Ω. Let p ∈ Bd and set

ϕ(x) := ⟨p, x − x̂⟩. We take a maximum point z of u − ϕ over Ω. Then we have
z ∈ Ω. Indeed, for all x ∈ ∂Ω we observe

u(x)− ϕ(x) <= max
∂Ω

u+ |p| · |x− x̂| < max
∂Ω

u+ d · diam(Ω) = max
Ω

u = u(x̂)− ϕ(x̂).

Thus z ∈ Ω, and so we conclude that z ∈ Γ[u] and p ∈ ∂+u(z).
2. By Step 1 the estimate (2.5) with Bd instead of Q1 holds. Thus the same

argument as in the proof of Theorem 1.1 yields

|Bd| <=
∑

z∈Γ[u]

hn

(
−∆′u(z)

n

)n

=
1

nn
∥ −∆′u∥nℓn(Γ[u]).

Applying |Bd| = dn|B1| to the above inequality, we obtain (A.3) by the choice of
d. �

Proof of Theorem A.1. By Remark 2.2 we have δ⃗2u(z) <= 0 for z ∈ Γ[u], and there-

fore the condition (F1) yields −λ∆′u(z) = −λ
∑

δ⃗2u(z) <= F (δ⃗2u(z)). Since u is a

discrete subsolution of (A.1), we also have F (δ⃗2u(z)) <= f(z). Applying these two
inequalities to (A.3), we obtain (A.2). �
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A.2. A strong maximum principle. Although the strong maximum principle
for the Laplace equation is enough for the proof of Proposition 3.2, we consider a
wider class of equations in this subsection. We study homogeneous equations of
the form

F (∂2
x1
u, . . . , ∂2

xn
u) = 0 in Ω. (A.4)

From the ABP maximum principle (A.2) we learn that all discrete subsolutions u
of (A.4) satisfy

max
Ω

u <= max
Ω

u

if (F1) holds. This is the so-called weak maximum principle. Our aim in this
subsection is to prove that a certain weaker condition on F actually leads to the
strong maximum principle and conversely the weaker condition is necessary for it.
Here the rigorous meaning of the strong maximum principle is

(SMP) If u : Ω → R is a discrete subsolution of (A.4) such that maxΩ u = maxΩ u,

then u must be constant on Ω.

Following the classical theory of partial differential equations, we consider only
bounded and connected subsets Ω ⊂ hZn for (SMP). It turns out that the strong
maximum principle holds if and only if F satisfies the following weak ellipticity
condition (F2). It is easily seen that (F1) implies (F2).

(F2) If X⃗ <= 0 and F (X⃗) <= 0 for X⃗ ∈ Rn, then X⃗ must be zero, i.e., X⃗ ≡ 0.

Theorem A.3 (Strong maximum principle). The two conditions (SMP) and (F2)
are equivalent.

To show this theorem we first study discrete quadratic functions. They will be
used when we prove that (SMP) implies (F2).

Example A.4. Let (A1, . . . , An) ∈ Rn. We define a quadratic function q : hZn →
R as

q(x) :=

n∑
j=1

(hjxj)
2Aj for x = (h1x1, . . . , hnxn) ∈ hZn.

Then δ2i q is a constant for each i ∈ {1, . . . , n}. Indeed, we observe

δ2i q(x) =
q(x+ hiei) + q(x− hiei)− 2q(x)

h2
i

=
h2
i (xi + 1)2Ai + h2

i (xi − 1)2Ai − 2h2
ix

2
iAi

h2
i

= 2Ai

for all x = (h1x1, . . . , hnxn) ∈ hZn.

Proof of Theorem A.3. 1. We first assume (F2). Let u : Ω → R is a discrete
subsolution of (A.4) such that u(x̂) = maxΩ u for some x̂ ∈ Ω. This maximality
implies that for each i ∈ {1, . . . , n}

δ2i u(x̂) =
u(x̂+ hiei) + u(x̂− hiei)− 2u(x̂)

h2
i

<=
u(x̂) + u(x̂)− 2u(x̂)

h2
i

= 0.

Thus δ⃗2u(x̂) <= 0. Since u is a discrete subsolution, we also have F (δ⃗2u(x̂)) <= 0. It

now follows from (F2) that δ⃗2u(x̂) ≡ 0, and hence we see that u(x̂) = u(x̂ ± hiei)
for all i. We next apply the above argument with the new central point x̂± hiei if
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the point is in Ω. Iterating this procedure, we finally conclude that u ≡ u(x̂) on Ω
since Ω is now connected.

2. We next assume (SMP). Take any X⃗ = (X1, . . . , Xn) ∈ Rn such that X⃗ <= 0

and F (X⃗) <= 0. We may assume 0 ∈ Ω. Now, we take the quadratic function q in
Example A.4 with Ai = Xi/2 <= 0. By the calculation in Example A.4 we then have

δ2i q(x) = Xi for all i, i.e., δ⃗
2q(x) = X⃗. Thus F (δ⃗2q(x)) = F (X⃗) <= 0, which means

that q is a discrete subsolution of (A.4). Next, we deduce from the nonpositivity of
each Ai that q attains its maximum over Ω at 0 ∈ Ω. Therefore (SMP) ensures that
q ≡ q(0) = 0 on Ω, which implies that Ai = 0 for all i ∈ {1, . . . , n}. Consequently,

we find X⃗ ≡ 0. �
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und Gitterpunktanzahl konvexer Körper im n-dimensionalen euklidischen Raum (German),
Math. Z. 127 (1972), 363–364.

[4] P. Brass, Isoperimetric inequalities for densities of lattice-periodic sets, Monatsh. Math. 127
(1999), no. 3, 177–181.

[5] Y. D. Burago, V. A. Zalgaller, Geometric inequalities, Grundlehren der Mathematischen
Wissenschaften, 285, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1988.
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