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Abstract

Four 4-dimensional Painlevé-type equations are obtained by isomonodromic deformation of Fuchsian
equations: they are the Garnier system in two variables, the Fuji-Suzuki system, the Sasano system,
and the sixth matrix Painlevé system [30]. Degenerating these four source equations, we systematically
obtained other 4-dimensional Painlevé-type equations. If we only consider Painlevé-type equations whose
associated linear equations are of unramified type, there are 22 types of 4-dimensional Painlevé-type
equations: 9 of them are partial differential equations, 13 of them are ordinary differential equations.
Some well-known equations such as Noumi-Yamada systems are included in this list. They are written
as Hamiltonian systems, and their Hamiltonians are neatly written using Hamiltonians of the classical
Painlevé equations.
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1 Introduction

Succeeding to elliptic functions, Painlevé transcendents are studied from various viewpoints, as special
functions defined by nonlinear differential equations. Usually, Painlevé equations are classified into six
types. However, if we consider rational surfaces called spaces of initial values, Painlevé equations of the
third type fall into three types, distinguished by number of parameters. Thus, it is reasonable to consider
that there are 8 types of Painlevé equations [29].

The Painlevé equations are written in Hamiltonian systems [26]. Let us see the explicit forms of them:
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These are non-autonomous Hamiltonian system with ¢ as independent variable, p and ¢ as canonical

variables. Corresponding autonomous systems of them can be solved by using elliptic functions.



Remark 1.1. As for Painlevé equation of the fifth type, it is sometimes convenient to use another Hamil-

tonian for calculations:
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changes the above Hy into a biquadratic polynomial
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In general, nonlinear differential equation may have singular points whose positions are not determined
only by the equation. In this case, positions of singular points also depend on initial values. We call such
singular points movable singularities. As in the case of differential equations satisfied by elliptic functions,
when movable singularities of an equation are at most poles, we say that the equation has Painlevé property.
The Painlevé equations enjoy the Painlevé property. If we limit our attention to second order algebraic
differential equations in the normal form and eliminate the cases when it is integrable by elementary functions
or solved by solutions of linear equations or elliptic functions, there are no other equations than Painlevé
equation having the Painlevé property [28, 7].

The theory of Painlevé equations is generalized to higher order nonlinear differential equations, and some
important equations are proposed and investigated. For examples, Gordoa, Joshi, and Pickering proposed
a higher order generalization of the second and the fourth Painlevé equations [9]. According to Koike’s
work, they turned out to be restrictions of independent variables of the classically known Garnier systems
[21]. However, some equations such as Noumi-Yamada systems or the Sasano system still remain beyond
understanding by the framework of classical Painlevé equations or Garnier systems.

In appearance, these equations seem to be sporadic, and not well-organized compared to the case of
2-dimensional phase space. This article aims to make a theory of clear classification when the phase spaces
are of four dimension.

Let us review 2-dimensional case. There are at least two ways effective for the classification. One of
them is the theory of initial value spaces initiated by Okamoto. Thanks to this, we can characterize the
Painlevé equations by rational sufaces [25]. These surfaces are similar to rational elliptic surfaces but are
slightly different. It corresponds to the fact that autonomous limits of Painlevé equations lead to differential
equations satisfied by elliptic functions. For the higher dimensional cases, more difficult theory of algebraic
varieties will be needed; it might be interesting though.

We want to apply the other theory for higher-dimensional cases. That is to say, we try to approach via
the deformation theory of linear differential equations. This theory was initiated by R.Fuchs, who obtained
the sixth Painlevé equation from deformation of a second-order Fuchsian type equation with four singular
points [4]. Non-Fuchsian equations are derived from Fuchsian equations by degeneration such as confluence

of singular points. These limit procedures induce degenerations of the Painlevé equations [8, 13].
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In the scheme above, we only considered confluence processes. If we also consider degenerations of Jordan

canonical forms of principal parts of coefficient matrices, the degeneration scheme becomes as follows:
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This scheme was obtained by Ohyama and Okumura [24]. Newly added parts require Puiseux series for
formal solutions of corresponding linear equations. We say that such equations are of ramified type, and
distinguish from the unramified case.

From now on, we use the term “Painlevé-type equations” for nonlinear equations derived by generalized
isomonodromic deformations of linear differential equations. There are two problems when we want to use
corresponding linear equations for the classification of Painlevé-type equations. One of the problems is the
fact that there are more than one corresponding linear equations for one Painlevé-type equation. The other
problem is the fact that the number of linear equations that we should consider is not finite, if we do not
limit the sizes of linear equations.

However, transformation theory of linear equations has developed, and now we can conquer these prob-
lems. Katz’s two transformations called middle convolution and addition are important, and they preserve
corresponding Painlevé-type equations [16, 3, 10]. If we fix the number of parameters corresponding to the
dimension of phase spaces of Painlevé-type equations, Fuchsian equations fall into finite types of equations
by the two transformations. In particular, when phase space is 4-dimensional, equation is equivalent to one
of the 13-types via Katz’s transformations. There are four non-trivial Painlevé-type equations corresponding
to these linear equations. These deformation equations are expressed in forms of Hamiltonians [30].

There are also several interesting works attempting to construct a similar theory for non-Fuchsian equa-
tions [1, 2, 11, 17, 36]. However, we do not take this way; we apply classification of Fuchsian equations and
consider degeneration to classify Painlevé-type equations.

As a result, we obtained 22 types of equations, as we shall see in the next section. Among these 22 types,
9 of them are partial differential systems, and 13 are ordinary differential systems. It sometimes happen that
different degenerations yield the same Painlevé-type equation. In these cases, corresponding linear equations
transform to one another by the Laplace transformation. We shall see such interesting topics in the last
section.

Here, let us see the degeneration scheme beforhand.
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The symbols used in the scheme will be explained in Section 3. The theory of isomonodromic deformation
has been well studied since the work of Jimbo, Miwa, and Ueno [15]. In their article, eigenvalues of leading
terms of linear equations are assumed to be distinct. To classify Painlevé-type equations, however, we
introduce a notion of spectral type, and also consider cases when such eigenvalues are not necessarily distinct.
If we consider examples such as generalized hypergeometric function, it is natural to include these cases.
In this article, we express Hamiltonians of Painlevé-type equations by Hamiltonians of classical Painlevé
equations. These are very effective tools to identify equations.

This article is organized as follows. In the next section, we introduce 22 types of Hamiltonian systems.
In the third section, we explain local data of linear equations. In the fourth section, we explain procedure of
degeneration through confluences of singularities. In the fifth section, we show Lax pairs for Painlevé-type
equations. In the last section, we comment on several things that we should pay attentions to. Detailed
calculations of degenerations are written in the appendix.

We only deal with equations of unramified-type. More equations are derived from ramified linear equa-
tions [19].
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2 List of Hamiltonians

There are 22 Hamiltonian systems that we treat in this paper. However these do not include the case that
associated linear equations have singularities of ramified type. We will deal with only the unramified cases
in this paper. We expect a further research including ramified case. Before we go into the explanation about
the theory, let us see the expressions of the 22 Hamiltonians.

In the first place we look at the Garnier system and degenerate Garnier systems, which are classical
systems found in the early 20th century. On the degeneration scheme of this family, a detailed study is now
well known [20], though we introduce new expressions for some of these systems.

The first system is the Garnier system, which is obtained from a deformation of a Fuchsian equation with
5 regular singular points [8]. In the original paper of R. Garnier, the dependent variables are the positions
of apparent singular points. However the equation does not have Painlevé property, that is, the solution
has movable algebraic singularities. H. Kimura and K. Okamoto used symmetric functions of apparent
singularities as dependent variables, so that the Hamiltonian system enjoys the Painlevé property [22]. The
following Hamiltonian coincides with theirs, although they do not use the Hamiltonian of the sixth Painlevé

equation:
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Relation between canonical variables and parameters of associated linear equations will be explained later.

The second is the degenerate Garnier system obtained by a confluence of two regular singular points;
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Remark 2.1. These canonical variables are different form the hitherto known [20]. The original Hamilto-



nians were written as
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This expression is not symmetric in the canonical variables, while the Hamiltonians (2.2)—(2.3) are symmetric.
Besides, they are expressed simply by using the Hamiltonian of the fifth Painlevé equation. The other

degenerate Garnier systems below are expressed in a similar fashion. 0O

The next Hamiltonians are ones of the degenerate Garnier system associated to a linear equation with

two irregular singular points and one regular singular point:
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The following is associated to a linear equation with two regular singular points and one irregular singular

point:
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The following system is the degenerate Garnier system associated to a linear equation with only two

irregular singular points:
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The next system is associated to a linear equation with one regular singular point and one irregular point:
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Remark 2.2. In the expression above we did not use a Painlevé Hamiltonian. If we do so, we need power

functions. When we change the variables as
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Here appears the fourth Painlevé Hamiltonian. 0

Concerning a linear equation with only one irregular singular point, which is obtained by a confluence of

all singularities, we have the following system:
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We have 7 systems which have two independent variables so far. In Kimura’s original paper [20], there
are 8 systems, but the last system denoted as (9/2) is obtained from a deformation of a linear equation with
singular point of ramified type; so we put aside this one.

In the degeneration scheme, further two degenerate Garnier systems appear. These two systems are
associated to linear systems of rank two with singular points of ramified type but these are also associated to
unramified linear systems of rank three. These rank three systems are obtained by confluence of singularities
from Fuji-Suzuki system. With respect to degenerate Garnier systems of ramified type, all of them are
obtained by H. Kawamuko and there are 9 systems in all [18].

The first one of them is associated to a linear equation with two irregular singular points, which is

obtained from degereration of linear system of rank three associated to Fuji-Suzuki system:
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The second one is associated to a linear equation possessing only one irregular singular point, which is



obtained by confluence of all singular points from a linear equation associated to Fuji-Suzuki system:
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We have already seen the 9 partial differential systems with two independent variables so far, and we will
see the 13 ordinary differential systems below.

We have three more systems which are obtained from the isomonodromic deformation of Fuchsian equa-
tions, apart from the Garnier system. These are the Fuji-Suzuki system, the Sasano system, and the system
which we call the sixth matrix Painlevé system. We begin with the Fuji-Suzuki system. It was obtained

from the similarity reduction of a Drinfel’d-Sokolov hierarchy [5]:
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Remark 2.3. Before the result of Fuji and Suzuki, Tsuda calculated isomonodromic deformations with
respect to a class of Fuchsian equations including 21,21,111,111 from a viewpoint of reduction theory of his
UC hierarchy. Although his system of equations was not written in the form of the Hamiltonian system,
it was found that his system includes the Fuji-Suzuki’s coupled sixth Painlevé system in the paper [30]. In
the aftermath Tsuda gave a Hamiltonian expression to the whole systems in his class [35]. In this paper we
will call this system the Fuji-Suzuki system because they were the first ones who gave the expression of the

coupled sixth Painlevé system. 0

A degeneration from the above Fuji-Suzuki system produces the following Hamiltonian:
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Further degeneration also produces the following Hamiltonian:
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We call Hamiltonian systems of H ?g and H ﬁg degenerate Fuji-Suzuki systems. Special function solutions

of these equations are calculated in the paper [33].

The famous Noumi-Yamada systems are written in the form of Hamiltonian system by using the following



Hamiltonians:
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These two systems are obtained by degenerations from both the Fuji-Suzuki system and the Sasano system.

Remark 2.4. The Noumi-Yamada systems are well known in the following expression:
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as systems of equations for the unknown function fo,..., fi, (I = 4 or 5) [23]. These systems coincide with
the Hamiltonians above by putting p1 = f2, g1 = — f1, p2 = f4, and g2 = —f1 — f3. Here the parameters are
a=—-ay, =—ao, v=—as3, 0 = —ay, € = —a5 [32]. O

We introduce another coupled Painlevé system called Sasano system. Sasano systems were obtained
by a generalization of space of initial values for the Painlevé equations [31], and it is also calculated from
similarity reduction of Drinfel’d-Sokolov hierarchy [6]:
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This system is different from the Fuji-Suzuki system of type Agl) in its “coupling term”.
Degenerations give the following Hamiltonians:
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In this article, we call these two systems degenerate Sasano systems.

At the end we introduce five Hamiltonian systems which we call matrix Painlevé systems:
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Here the matrices P and @ satisfy the relation [P, Q] = (o« — w)K (K = diag(1l,—1)), and canonical
variables can be written as

1 P,
pr=trP, q = =trQ, ps= 712, q2 = —Q12Q21.
2 Q12

We denote (1,2)-component of matrix P as Pj3, and so on.

3 Local data of linear equations

In this section, we present the notion of spectral type which is needed to classify linear differential equations.
We consider the following first-order system:

dy
dx

where A(x) is an m X m matrix whose entries are rational functions in x.

(3.1) = A(2)Y,

In the case of Fuchsian systems, in addition to the size of matrix and the number of singular points,
the multiplicity of characteristic exponents at each singularity plays an important role. Let us consider the
system of Schlesinger normal form, namely, the system of linear differential equations whose coefficient A(z)

has the following form

(3.2) A(z) = ——
i=1 g

Here A; is an m x m matrix. In this case, the spectral type is an (n + 1)-tuple of partitions of m:

m}m%...mlll,m%...mi,...,m?...mﬁ,mfo...mf:o, Zmé =m for i=1,...,n,00
This means there are m (1 < j < ;) identical characteristic exponents at singular point « = u;. Here we
have assumed that A;’s and Ay = Z?:l A; are diagonalizable.

More generally, we would like to define the spectral type for a system of linear differential equations with
irregular singularities, i.e., A(z) is a matrix of general rational function in . In such a case, what corresponds
to each singular point is not merely a partition, but a refining sequence of partitons. Let A = (A1,...,\p)
and p = (pa,. .., ftg) be partitions of a natural number m, namely, Ay +--- 4+ X\, = p1 + -+ - + pg = m. Here
Ai’s and p;’s are not necessarily put in descending or ascending order. If the index set of A is divided into
disjoint union {1,2,...,p} = Ii [+~ [[ 1y and py = > ;.7 A; holds, then we call A a refinement of . Let
[po, - - ., pr] be an (r+ 1)-tuple of partions of m. When p;11 is refinement of p; for allé (i =0,...,7r—1), we
call [po,...,pr] a refining sequence of partions.

Now we introduce a convenient notation to express a refining sequence of partitions. Let us take a

sequence
[(6,4,2),(4,2,4,1,1),(2,2,2,3,1,1,1)]

10



as an example. First, write the rightmost partition:
2223111.

Second, put the numbers that are grouped together in the central partition in parentheses:

(22)(2)(31) (1) (D).

Finally, put the numbers that are grouped together in the leftmost partition in parentheses:

((22)(2)(B)((1)(1).-

Thus we can express the sequence as ((22)(2))((31))((1)(1)).
In what follows we briefly outline how the formal canonical form at an irregular singularity is computed,
and how the canonical form is described by the refining sequence of partitions.

Now suppose that the equation (3.1) has a singularity at the origin. Then we have the Laurent expansion

dy Ag Ay
. — = 2y
(3.3) - (W =t ) ,

where A; (j =0,1,...) is an m x m matrix. Here we assume A is diagonalizable (see the next Remark).
Thus we choose the gauge of (3.3) so that Ay is diagonal. We denote eigenvalues of Ag by 7,...,t% . Since

we are interested in irregular singular case, we assume r > 0. It is known that if
£t 1<i<l I+1<j<m),

then the equation (3.3) can be converted into

4z By, B
&2 2Li)z
dx <wr+1 to T ) ’

where

Bi 0] , .
B; = ( o ) ; Biy € Mi(C), B3y € My,—i(C)
under a gauge transformation by a formal power series

Applying the procedure repeatedly, we can formally decompose the equation (3.3) into the direct sum of
systems in each of which the leading term has only one distinct eigenvalue (block diagonalization). If the
leading term of some block is diagonalizable (i.e., scalar matrix), we can cancel out the term by a scalar

gauge transformation, thus the block reduces to the one with a lower value of r.

Remark 3.1. When the leading term of (3.3) is not diagonalizable, in order to make a formal solution, we
generally need to take an appropriate covering z = £* and to take a shearing transformation with respect to
€. Then P(x) becomes a Puiseux series. We call the linear equation with such a singularty ramified type.
A linear equation that does not need a Puiseux series is called unramified type. As we have mentioned in

section 1, we consider only the linear equation of unramified type in the present paper. 0

Under the assumption of unramifiedness, the equation (3.3) can be transformed into

dy To Ty T,
o AR D
dx <x’"+1 * a” o x * >

11



Here T}’s are diagonal matrices and Ty = Ag. Since this equation is a direct sum of single equations, we can
cancel terms other than the principal part by means of suitable gauge transformation by a diagonal matrix
whose entries are formal power series. As a result, it turned out that equation (3.3) can be transformed into

the following canonical form

(3.4) g:<x?il+?+~.~+€”>}f
under a gauge transformation by some formal power series.
If we write the diagonal entries of T; as t; (j=1,...,m), we can express the canonical form as follows:
z=0
GO ty
g8t

The table which is made by arranging all canonical forms at each singular point is called Riemann scheme.
As we can see from the procedure to obtain the canonical form, the canonical form has a nested structure; the
leftmost column is divided into some groups, and in the next column, the corresponding groups are divided
into some groups again, and so on. The refining sequence of partitions of m that express the multiplicity of
t;- is called spectral type at singularity = 0. A tuple of spectral types of all singular points (separated by
“7) is called a spectral type of the equation.

The following matrix

is a fundamental solution matrix of (3.4). The degree of the polynomial in exponential function with respect

to 1

is called the Poincaré rank at the singular point x = 0. The Poincaré rank of a regular singular
point is 0. In ramified case, this part becomes a polynomial in ~'/* then the Poincaré rank is non-integer
rational number. When we want to express only the Poincaré rank of each singular point, we attach the
number “Poincaré rank plus 1”7 to each singular point and connect them with “4”. We call it the singularity
pattern of the equaion. At the unramified singularity, the number “Poincaré rank plus 1”7 is equal to the
number of partitions in the refining sequence of partitions. In this article, we use singularity patterns and
spectral types to specify linear equations.

For example, in the degeneration scheme, H f,‘; is written with the singularity pattern 3 + 1 and the
spectral type ((11))((1)), 111. Tt means, the associated linear equation of Had, has one irregular singularity
of Poincaré rank two and one regular singularity.

4 Procedure of degeneration

In this section, we explain confluence of singularities of linear differential equations and the way how they
induce the degeneration of Painlevé-type equations.

As an example, we treat the degeneration of Aél)—type Fuji-Suzuki system to Aél)—type Noumi-Yamada
system. It corresponds to the confluence of singularities of 21,21,111,111-type Fuchsian system that leads
to (2)(1),111, 111-type equation.

12



Consider the following system of linear differential equations

dY
4.1 — = A(2)Y,
Ay A Ay

whose Riemann scheme is given by

=0 z=1 z=t z=0
0 0 0 07°
69 0 0 03°
69 ot 0t 03°

Thus its spectral type is 21,21,111,111.
Now we put t = 14 ¢t and take the limit € — 0 so that the singular point 2 = ¢ merges to x = 1. Suppose

the coefficient matrix

AO —ELZAl A1 + At
4.3 Alr) = — = =
(43) (z) :c+(33—1)(a:—1—6t) x—1—et
tends to

~ 7(0) i(=1) 7(0)
(4.4) A(z) = Ao A A4

x Jr(av—l)QJraz—l

as € — 0. Here the coefficient (4.4) corresponds to a system of linear differential equations with spectral

type (2)(1),111,111, whose Riemann scheme is

—— B
0 0 0 g
0 0 0 05°
A S~

By comparing (4.3) and (4.4), we obtain
lim (—et0') = lim tr(—ctA;) = tr([l(l_l)) =1,
e—0 e—0
lim (6" +6') = lim tr(A; + A;) = tr(A?) = ¢,
E— E—
lim (67 + 63) = lim tr(Ao) = tr(AL)) = 69 + 69,
E— E—
Take the above into account, we put the following relations:
00 =00 (i=12), 0'=—e"' 0'=0"+e" 0°=0 (j=12.3).
Furthermore, we define a canonical transformation in the following manner:
g =1+etq, pr=c TP, @=1+ctd, p=c'T P,
H;i‘g = M H +t7 (Prdy + P2da))-

It is easy to check that lim._,o H = H Jf‘,‘} In this way, we obtain Aél)—type Noumi-Yamada system.
In the case of two dimensional phase space, the source equation of degeneration scheme, which governs

deformation of Fuchsian equation, is the sixth Painlevé equation. Meanwhile, in the 4-dimensional case we
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have four source equations, namely, the Garnier system in two variables, the Aél)-type Fuji-Suzuki system,

the Dél)—type Sasano system, and the sixth matrix Painlevé system [30]. Accordingly, there are four series
of degenerations.

The linear equation associated to the Garnier system has the same spectral type at each singular point,
that is, 11. Thus the spectral type of its confluent equation is uniquely determined by the singularity pattern.
For example, there is only one linear differential equation with three regular singular points and one irregular
singular point of Poincaré rank one, which corresponds to 2+ 1+ 1+ 1. Its spectral type is (1)(1),11,11,11.

On the other hand, spectral types of linear equations associted to the remaining three equations, the
Fuji-Suzuki system, the Sasano system, and the sixth matrix Painlevé system are 21,21,111,111, and
31,31,22,1111, and 22,22,22,211, respectively. Each equation includes singularities with different spec-
tral types. In this case, it is not sufficient to give only the singularity patterns to specify confluent linear
equations. Let us consider, for example, degenerate equations of the Fuji-Suzuki system corresponding to
24+ 1+ 1. Since the spectral type of their source is 21,21,111,111, the confluence of 21 and 21 leads to
(2)(1),111,111, the confluence of 111 and 111 leads to (1)(1)(1),21,21, and the confluence of 21 and 111
leads to (11)(1),21,111.

The figure in section 1 is the degeneration scheme of 4-dimensional Painlevé-type equations in terms of
confluence of singularities of associated linear equations represented by their spectral types. The data on
degenerations are given in the appendix.

As the closing of this section, we make some remarks on the degeneration scheme.

First, the correspondence of Painlevé-type equation to the linear equation is not one-to-one. For example,
the deformation of (2)(1),111,111 and (11)(11),22,31 are governed by the same equation, the Aél)—type
Noumi-Yamada system. In fact, these two linear equations (2)(1),111,111 and (11)(11), 22, 31 are converted
into each other by the Laplace transform. The Laplace transform will be discussed in section 6.

Secondly, it is impossible to merge two singular points without changing the number of accessory pa-
rameters unless one of the spectral types of singular points is a refinement of the other. Therefore, for
example, the linear equation with only one irregular singularity (i.e. corresponds to 4) does not appear in
the degeneration scheme of the 31,22,22,1111 system since singularity of type 22 and 31 cannot be merged.
For the formula of rigidity index, see [34].

Finally, we would like to comment on the number of deformation parameters. Some degenerate 21,21,111,111
system admit 2-dimensional deformation. Those are (1)(1)(1), 21,21, and ((1)(1))((1)),21, and (2)(1), (1)(1)(1),
and (((1)(1)))(((1))) (see section 5 for details). As to those equations, we obtain Hamiltonians correspond
to them not by confluence from 21,21,111,111, but from (1)(1)(1),21,21. Here the deformation equation of
(1)(1)(1),21,21 in Hamiltonian form is calculated by the use of the technique described in an appendix of
[14].

5 Isomonodromic deformation of linear equations
We will devide the linear equations into four families, and describe each of them in detail.

5.1 Garnier system and degenerate Garnier systems

In the first place, we will see a system of deformation equations associated with the Garnier system of two
variables.
The Garnier system is obtained from isomonodromic deformation of a Fuchsian equation with five regular

singular points. This Fuchsian equation is denoted by the singularity pattern 1 + 1+ 1+ 1+ 1. Local data
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that characterize linear equation are given by characteristic exponents at each singular point, and this type
of Fuchsian equation can be reduced to a system with the following Riemann scheme by a suitable gauge

transformation:
r=0 =1 z=t =ty =00

0 0 0 0 0

6° 0! ot 62 05°
The Fuchs relation is written as 8° + 01 + 6% + 0% + 69° + 05° = 0. We will see a parameterization of the
Fuchsian system. In this case the deformation system is simply written by using coefficients of the Fuchsian

system.
aY_(AO+ A Ay Ay >Y,
(5.1) ox T r—1 x—1t x—1
aY Atl aY Atg
—=- Y, —=- Y.
8751 Xr — tl 8t2 Xr — t2

Here Ag, Ay, and A; are given as follows:

-1
1 - 1
AE = < u) PilAEP < ’U,> ’ (5 = OaLtl’tQ)’

A 1 qa | 42 - 1
Ao = 9071++>, Ay = 6" 465 — prat — pacs, 1),
0 (0) < t1 to 1 DLt + paga — OF° ( 2 P1q1 — P2g2 )

~ 1 ¢ Qi 1 O
Ay, = 0" +piqi, —— |, where P = “ .
tipi t; =ogr 1

Here a is the (2, 1)-element of the matrix Ao = —Ag— Ay — Atl - Atz.
The compatibility conditions of these systems produce a Hamiltonain system. This is the partial differ-
ential system called Garnier system and the system is given by the following Hamiltonians:

69,601,060t 02 t1 q,p
5.2 bt — 1) gL (050500, 0
( ) 7,( i ) Gar,t; 0?07080 ' t2’ q2, P2

=t;(t; — 1) H o5, 0"
= 1;\l; VI 0t1790+9ti+1+1
1

ot — tit1
+ tiv1(t; — D) (pF1icr + 0" (i1 — pi))ai ) (i € Z/27Z).

iti qi7pi) + (2¢ipi + Giv1pit1 — 0" — 205°)q1g2pia

{t:i(t; — 1)(pigi + 0")pigit1 — ti(tivs — 1) (2pigi + 0")pis1gisa

Furthermore the parameter u, which expresses gauge freedom, satisfy the following equations:

1 Ou
53 Bt = )3 55 = {201t~ @) + 6"+ 265°) — 20ipags + 18",
1 ou 1 . ta
(5.4) ta(ta — 1)5715 = @2{2p2(t2 — q2) + 0 +205°} — 2qap1qu + 1207
2

In particular, time evolution of p;,¢; (i = 1,2) is independent of u’s behavior.
In the second place, we will see the non-Fuchsian system obtained by a confluence of two singular points

from the above Fuchsian system. This system is expressed by the singularity pattern 24+ 1+ 1+ 1.

Singularity pattern: 2+1+4+141
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Riemann scheme is given by

x=0 z=1 z=1t/ty T =00
—_—
0 0 0 0 0% )
6° ot LK —t; 65°

and then the Fuchs-Hukuhara relation is written as 60 4+ 0 + 6! + 09° + 05° = 0. The system of deformation

equations are expressed as

)4 A A A
_<0+ ! +m_tt2+Aoo>Y

ox r r—1 2
(55 oY A oy LA
2 41t

Fox + B et Y.
at, (2“ 1t t) S
Here
1 - 1
As‘( > As( >, (£=0,1,1),
u u

Ao = <1> (,Ul/\l + foAg — o — 0" — 07°, —piA1 — pada — 950) )

. 1 N 0
A = ) (9 _Hl/\h ,Ul) A ( ) (9 —uz/\2, uz) Aoo = ( ) y
)\1 tl
1 0 (*Agg))lz
AD = —(Ay+ A1 + A) - .
50 ( 0 1 t I (—Aé?)zl 0

The Hamiltonians are given as

0s° 01 tl /\1 1251
5.6 H2+1+1+1 25 . . i
(5:6) Gar.h 0, —00 — 17 t5" Mg, o
~ 0940, 60 4 9t + 9%°
= Hy ( 2 o ! ;h;%m) +

222 (13— (i — 6Y)

1

b = Ae) — ) (a (A — Ay — 6),

t1 —t2
05,0 t1 A1,
5.7 2+ 2 AL
( ) Gar,ta 9t7_90_17t27 )\27#2
o (00405, 600+ 0" + 67 A
:HV< ’ ot ! ;tQ;)\z,Mz) = 1(1—)\2)(u2_(u2/\2_9t))
1
i (1= A2) = ) (e = Ar) = 69).

Notice that Hy is different from Hy (see the beginning of Introduction).
When we change canonical variables as A\; = 1—(%1, w1 = q1(p1g1—0Y), Ao = 1—(%2, and po = q2(p2gqa—06Y),
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the Hamiltonians are given as
(5.8) 2L 95",91 1 oqi,;m
Garyty eta —60 — 1’ t2’ q2, P2

09 + 6 4+ 6°, 260 4 9° + 6°
:HV< ! v ;t1;ql,p1) +%1(p2qz(qz—1)+9t(q1—qz))

700 _ 0%0
1
— (p1(q1 — g2) — 0" ) (p2(q1 — g2) +6"),
11—t
05°,0"  ti q,;m
5.9 H2+1+1+1 2 : 1; )
( ) Garytz Hta —0° —1 12 q2, P2

(90 + 6 + 65°, 200 + 05° + 65°
:HV

0 _ oo ;t2§CI27P2) —&-p—z(plql(ql 1)+ 0 (g2 — @)
1

to

1
— (1@ = a2) = 0 (pa2(@r — @) +0).
22—t
The gauge u satisfy the equations:
1 0u 1 10u po
5.10 S = g _pooy. U _ P2
( ) u 8t1 tl (pl + ! 2 )’ u 0152 t2
Singularity pattern: 3+141
When Riemann scheme is given as
=0 xz=t2—1 T = 00
—_—
0 0 0 0 oy ’
6° 6t -1 to 6

then the Fuchs-Hukuhara relation is written as §° 4 6! + 65° + 65° = 0.

The system of deformation equations is given as

0 (0)
n_ (AO P +AGY +A§;2>x> Y,

or \ = x — (ta — t1)
(5.11)
oy A© oy AP _
or A it | S G Py N D
oty x—(ta—t1) Oty r— (ta —t1) o
Here

1
~ 1 - (1
u u
. ) 0
AP = (qf> (P2 —paga +6°), A = ((111> (p1, —piqn +0), AL? = ( 1> ,

iy _ [0 pigy+page + 657 B 0 (—AGY)y
AOO - ) Bl — (_1) .
1 ta (—A% )21 0

The Hamiltonians are written as

(5.12) 3L (01’90. by, q1,p1>
Garty 0% "t g2, p2
= Hiy (0",05°:t15q1,p1) + p2gop1 + — {p1(q1 — g2) — 0" H{palg — q1) — 6°},
0,0° t1 qi,m
5.13 H3HL ( oY >
(5.13) Garta \ 0 "ty ga, po

1
= Hyy (9079?)#2;(127272) trqape + — t (g —q2) — 91}{172((]2 - q1) — 90}~

to
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The gauge u satisfies

1 0u 1 Ou
5.14 - = ——— =ty — po.
( ) u 8t1 P u 6t2 2 2
Singularity pattern: 2+42+1
Rienmann scheme is given by
z=0 =1 T =00
— —_——
0 0 0 0 o5 ’
Lo o —t1 05°

and the Fuchs-Hukuhara relation is written as % + 01 4 65 + 65° = 0.

The system of deformation equations is given as

(-1) 40 )
N _ (AO T +Aoo> Y,

O 2 x z—1
(5.15)
oY (=1) oy ALY
—=|E B 0 Y, — =LY
8t1 ( 2+ 51t tl.’E ’ 8t2 tgx
Here
1 o 1
_k ~
u u
S ty 1 . A — 01 — 0% — 1AL — o)Xy — 6S°
AgV =2 (1 — 2, p2), AP = 1t L padn = 200 .
t1 \1 piAL + (1 — po)Ao — 08 — 67 —p1 A — 65

A 1 0
AD — (}\ > (i 400, ), As = < . ) , AD = (A0 + A0y,
1

1

_ 20
Ey = 0 , B, = & (()0) (mAshz )
1 t1 \ (—Ax )21 0

The Hamiltonians are expressed as

~ 90 91 tl /\1 1251
5.16 t H2+2+1 ’ . . ’
( ) 1HGarn 05°,05° 7 to" Ao, pio

00+ 03,00 + 050
=t Hy ( 2 o ! §t13)\1a,u1> + (A = 0") A1 — pa)pada + pa Ao

- i—jmm S 1) = 0 (O — 1) + 1),

~ 90 91 tl /\1 1251
5.17 to 2T R
(5:17) 2 Garts 05°,05° 7 ta" Ao, o

t
= toHi(Dg) (05°, —0% ta; Ao, p12) — i Aa + f(ul(kl —1) = 0" (u2(A — 1) + 1).

If we change the canonical variables as

1
A=1- o = qi(pig — 0%),
1
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then we obtain

gl 9o 1 q1,m
5.18) ¢ HZH2! ( ’ s
(5.18) PHGart \ g0 — 91 — 907 157 gy, py
—03°,6° — 0t 1 ! E
=t Hy UL e itiqnp )+ aga(pray — 0) + paga (0" + 1 — 2p1a1) — opi(p2 — 1),
61 + 63 "
gl 9o 1 q1,m
5.19)  toHZH2T! ( ’ s
(5.19) 2HGarts \ _go g1 — 627 £, o, py
t
= toHui(Dg) (05°, =0 t2:q2,p2) — (1 — 0" )q2(qr — 1) + 1572101 (P2 = 1)
1

The gauge u satisfies

1ou pi+67°—-60 10u ¢

5.20 — = — = .
( ) u 8t1 tl ’ u 8152 tz
Singularity pattern: 342

Riemann scheme is given by
=0 T = 00

—_—— ———
0 0 0 0 6 |

ti 00 -1 ty 65

and then the Fuchs-Hukuhara relation is written as 6° 4 5° + 63° = 0.

The system of deformation equations is expressed as

(-1 4O
oY (AO i ACY 4 Aég%) Y,
x

or 2
(5.21) Cy
oy AL ) _
— = Y, — = (=AY 4+ By,
ot, tr Oty (-T2 + BY,
where

-1
i 1 - (1
u U

L . - - —4° 2 t
Aé n_ (2 (—q1, qugo+1t1), Aéo) _ P1q1 + P2q2 q2(p2q2 )+ p1( qéﬂh + 1) 7
D2 P1q1 — p2g2 +0

A(=2) _ 0 L ALY = 0 pig1 — pagz — 07° B = 01 (_A(()gl))l2 |
o0 1 o0 -1 —to (—Ag ))21 0

The Hamiltonians are given by

(5.22)
t1 q1,p1 Q192
Hétftl (9079?; ; = Hi(Dg) (—05°,60° 4+ 15t1;q1,p1) — 1 — —— (g2 — P2 + t2) + p1p2 — g2,
’ ta q2,p2 tq
(5.23)
t1 q1,p1
Héﬁh <9079To; t;; 32 i) = Hiv (0°,07°; 2592, p2) — p1au(p2 — 2g2 — t2) — quga + tip1.

The gauge u satisfies

1 0u qn 1 0u
5.24 27— 22Tt —ps.
( ) u Oty t1’ w0ty 2~ P2
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Singularity pattern: 441
Riemann scheme is given by

z=0 Tr =00

0 0 0 0o 6 |
6° 1 2t t1+t3 63

and then the Fuchs-Hukuhara relation is written as 6° 4 65° + 65° = 0.

The system of deformation equations is expressed as

(0)
‘;—Y = <A0 +AGY + AG?z + Agg?’)m?) Y,
T
(5.25)
oY oYy oo
Here

-1
_ 1 =k 1 A 42

AR = AR . A = , —pag2 +0°)
€ ( u> € u 0 1 (pz P2q2 )

a3 _ (0 Ay 0 m R TG I pi(q1 +t2) — paga — 07° ’
- -1 -~ L =2t - —q1 +1t2 p—t —13

0 ALY
"o <A§2))21 ( 0)12 ’ Tl(oo>:<0 t1+t§>’ E2:<0 1>.

The Hamiltonians are given by

(5.26)

t1 qu,p
HER (90,9?’; t;; q;’p;) = Hy (=605 t15q1,p1) 4 p2a2(q1 — @2 + t2) + papa2 + 6°¢o,

(5.27)

t
4+1 0 1 g1,
HGar,tg (0 aafoa tg’ QQ,pz)

= —p3q2 — top2qs + t3paga + 0°tage — 05°po + pipa(q1 — 2q2 + t2) + qra2(p2ge — 6°) + 0%p1 + tipago.

The gauge satisfies

1 Ou 1 Ou
5.28 2 g —1 o 2
( ) w ot q1 2; w oty b2 1 2
Singularity pattern: 5
Riemann scheme is given by
T =00

0 0 0 0 o ’
-1 0 -2ty —t; 65°
and Fuchs-Hukuhara relation is written as 67° + 05° = 0.

The system of deformation equations are expressed as

% = (AG92° + A2 + ACY + ALV Y,
(5:29) oY (—4) (-3) Y (—4). 2 A(-3) (—2) | p(-2)
gZ(Aoo -+ AL )Y’ £:<AOO i+ AV e+ ALY + T, )Y,
1 2
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where

—1
Ak — (1 Acw (1),
0o w 50 u
A — 0 ALY = 0 g CAGY —q2 —p1 7
h 1 - -10 ~ —q1 g2+ 2t

ACD = pr— a2 1y — (P2 — g2 — 2t2)q2 — 0F° , TC = 0 )
—D2 P11t qig2 +t —2to

The Hamiltonians are given by

Yty go,po
o 1 G111
Yt o, po

t q, .
(5.30)  Heups, (9”' Lo pl) = —qi(q1p1 — 07°) + q2(qu(p2 + q2) — 2p1 + t1) + p1(p2 — 2t2),

(5.31)  Hegpy, (9 > = Hrv (—1,07%;2t2;q2,p2) + q192(q192 — 2p1 + 1) + p1(p1 — p2q1 — t1).

The gauge satisfies

1 Ou 1 ou

—_ = —— = 2ty — po.
w oty q1, u Oty 2 — P2

(5.32)

5.2 Fuji-Suzuki system

Singularity pattern: 1+1+4+1+41
Spectral type: 21,21,111,111

Riemann scheme is given by

xr=0 z=1 z=t z=0
0 0 0 0°

69 0 0 03°

69 o 0t 03°

and then the Fuchs relation is written as 0(1) + 08 + 0+ 0t + 65° + 05° + 65° = 0.

The system of deformation equations is expressed as

Y (A A A
8—(0+ L+ t>Y,

(5.33) ox T r—1 x—t
o4
o x—t
Here
1 0 0
Ae =U P YA PU, P= ﬁ 1 0, U=diag(l,u,v), (£=0,1,1),
1 c
0 —05° <b+ eloo(iego> 0;030530 1
n 9? qu ! qu ! n ' q1 q2
Ag=10 0  pilga—q)+05+63], A= |ty (9t+p1Q1 + D2g2, — —7)7
0 0 0 tpo
1
A= | pigs — 05— 09 | (—prar — page — 00 — 0" —67°, 1, 1),
P2ge — 05°
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a=—tp1(prar + p2az + 0") + (praa — 09 — 05°) (p1q1 + p2go + 67 + 6" + 65°),
b= —tpa(p1qs + paga + 0") + (P22 — 05°) (pras + paga + 05 + 6" + 65°),
c=pa(q1 — q2) +65°.
The Hamiltonian is given by
(094 05°,05.00 g,
(5.34) Hpg ( ? 91’29?7938 it; 3;12)
05°,09 + 0" + 05°

03 +05°,0" + 03°
VI (9t+9§o79§)_98+17 3q1,p1 | + Hvi 0%_,_075_’_0%0,9?_08_080_’_17 742, P2

+ ﬁ((ﬂ —1)(g2 — D{(p1g1 — 09 — 05°)pa + p1(paga — 05°)}.

The gauge parameters u, v satisfy

(5.35)

t(t — 1)%% =2p1q1(t — @1) +paga(t — go) + (=67 + 65 — 6" — 67° +605°)q1 + 03°q2 + qupa(1 — go) + 16",
(5.36)

¢t — 1)%% = qi{p1(t — q1) + 05 + 05°} + @2 {2p2(t — g2) — 67 — 6" — 67° + 63°} + prga(t — qr) + 16"

Singularity pattern: 2+4+141
Spectral type: (2)(1),111,111

Riemann scheme is given by

0 0 0 65°
69 0 0 05°
09 t o 05°

and the Fuchs-Hukuhara relation is written as 69 + 09 + 61 + 03¢ + 05° + 05° = 0.
The system of deformation equations is expressed as

—1 0 0
ay<A; ) +Ag>+Ag>>K
X

Oz (x—1)2 x-1
(5.37) 1
oY 1 [AlY
- Y.
ot z—1 t
Here
1 0 0
Aék) = U_lp_lAék)PU, P = 9”202“’ 1 0 ) U = diag(laua U)7
0f°i0§° (b"" chlic();c) egoiego 1
09 t(g2—1) tlqn — 1) 1
AV =10 69 palar—a)+03+05 |, ATV = paft | (1 p2tt,—t, 1),
0 0 0 p1/t
69 + 01 + 05° + 05° t(1 — go) t(1—q)
~ 0 [o') oo
Ag ) — —a *08702 pQ(QZ *(h) 703702 ’
—b p1(q1 — q2) — 03° —03°
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ta = pa(g2 — 1)(p1 + pa + 1) — (63 + 05°) (p1 + 1) — (205 + 6" +265° + 63°)ps,
th=pi(q — 1)(p1 +p2 +t) — 05 (p2 +t) — (63 + 0" + 65° + 205°)py,
c=pi(g —q)+65°.
The Hamiltonian is given by
0° —0° —1,0°,—605°  q1,m
5.38 tHas (71 78 8o T2 b
(5:38) NY( 09 +05°,609 — 69 42, P2

0° — 1,09 — 09 +6° —0° —0° — 1
:tHv(l S ;t;q1,p1>
—0° +03° +1

09+ 607° — 0° — 1,60 — 09 +67° — 05° — 65° — 1
+tHy ( 20 3 _poo _‘_1000 j—&ool+ 1 2 3 ;tﬂ]z,]?z) +2p1p2qi(q2 — 1).
1 2 3

The gauge parameters satisfy

1du 0 0 0o 0 0o
(5.39) taa =p1(1—2q1) + 2p2 +t)(1 — q2) — 67 + 05 — 67° + 05° + 65°,

1dv 0 0 0o [e%e) 0o
(5.40) tﬂﬁ =(2p1 +t)(1 — q1) + 2p2(1 — q2) — 67 + 65 — 07° + 65° + 65°.

Spectral type: (11)(1),21,111

Riemann scheme is given by

r=0 r=1 rx=0o

——
0 0 0 6
0 0 05°

t 69 0! 03°
and the Fuchs-Hukuhara relation is written as 89 + 63 + 1 4 65° + 05° + 65° = 0.

The system of deformation equations is expressed as

(1) 40 40
8Y_<AO LAY A )Y,

or 2 T z—1
(5.41) X
oy 1AV
= =_= Y.
ot T t
Here
1 0 0
AP =utp AP PU, P = 7= 1 0|, U=diag(,u,v),
0% 1900 (b + 9§cace<>C> 05 iego 1
1 1
A — | = 0'.1.1), AV = —1/q, —1
1 P | (man +p2q2 +607,1,1), Ay 0 —1/q1,—1/q2),
—Dp2q2 0
~(0 —p1qi — p2q2 — 0" — 07° -1 -1
Aé ) = —tq1(prq — 09 — 05°) piq1 — 05° P1q1 ,

—tqa(p2q2 — 05°) q2(p2g2 — 03°) /a1 p2q2 — 05°

a=tq(piq — 0 — 05°) + pra1(prqr + p2ge + 60"),

b= tq2(p2gz — 05°) + p2g2(P1q1 + pago + 0,
1 1

c=— —0) (= — — | + 6.
QZ(pQQQ 3)((11 q2> 3
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The Hamiltonian is given by

01,609,0%°  q1,p
5.42 tHA4< SN T )
( ) rs 9807630 q2, P2

09 + 01 4+ 03° + 0,01 +0° —0° — 1
=tHv< ! gl e ;t;thl)
3
0! + 63,0 +07° — 0 — 1 -
+tHv( T g ;t;qQ,pz) +p1(g2 — D{p2(a1 + q2) — 05}

The gauge parameters satisfy

1du 1dv
(5.43) tp o = @2(p2g2 — p2 — 05°) — q1(2p1 + p2 + 1) — 6, t o = —p1(q1 + q2) — (2p2 + t)g2 — 0"
Spectral type: (1)(1)(1),21,21
Riemann scheme is given by
r=0 x=1 T = 00
N
0 0 0 oy 7
0 0 —t1 05°
69 01 —ty  65°

and the Fuchs-Hukuhara relation is written as 8° + 1 4 65° + 05° + 65° = 0.

The system of deformation equations is expressed as

0 4
o _ (ADOJFAO+ = )Y,
x

(5.44) Ox x—1

oY oY

8t1 ( 2% + 1) ) 3152 ( 3T + 2) 5
where

AP =utAPU, B =UT'BU, U = diag(l,u,v),

3
0 1
AOO = tl ) AéO) = M1 (Ml)\l + M2>\2 + 907 _)\17 _A2)7
to o
1
AP = | — 65 | (i hy — poda + 01 +05° + 62, 1, 1), Ey = diag(0,1,0), Es = diag(0,0,1),
pr2A2 — 03°
0 (Az()O)+A§0))12 0 0 0 (A(()o)+A(10))13
t t
By = | A0+A0) 1 AO+A) | B, = (AL +AO )y
1 f 0 f1—ts ’ 2 0 0 —
0 (Ag”+A1)s0 0 AP +AM)a1 (AP +A)s 0
Tt —ta to to—11
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The Hamiltonian is given by

(5.45) e ( 0°,00 t1 A, ul)

05°,05° 7 ta" Ao, o

~ (600" 4 65°
=t Hy ( 00
05°

st /\17u1> + (1= Ar)pada(p1 — pa A + 65°)
tq
+ t1 —to

~ 90 91 t A J250
5.46 to 21141 ’ S
(5.46) PHGart | g% 03005 1y’ g, pia

/60,6 4 65
=toHy ( go ? ;tz;A27H2> + (1= A2)pa A (p2 — p2A2 +05°)
3

(11 (A1 = A2) = 05°) (2 (A2 — A1) — 05°),

to
to — 11

(11 (A1 — A2) = 05°) (2 (A2 — A1) — 05°).

When we change the canonical variables as
1 o0 1 o0
A =1- o p1 = qi1(p1g1 —05°), Ao =1— P p2 = q2(p2g2 — 03°),
1 2

then we obtain

00 +07°,05° ti q1,py o'+ 05°,0° + 01
5.47 H2+1+1+1 1v2 Y1 Al — H 2 e
( ) Gar, t1 0?,0?71 ’tQ’QQ,pQ A\ 701 yl1541,01
P1po0
+ H[93 (@1 — q2) + p2g2(q2 — 1)]
1 oo -
+ t— 1y ((q1 — q2)p1 — 65°) ((q2 — q1)p2 — 05°)
00 +67°,05° t1 q1,p1 0! + 65°,0° + o1
5.48 H2+1+1+1 1 Y2 : : ) — H 3 ;t g2,
(>4 Gorte N 05,07 =17t qupa) 6! b
P2 h00
+ 105 (2 — ) + mar(a - )]
1 . -
Ry (g2 — q1)p2 — 605°) (a1 — q2)p1 — 65°) .
2—t
The gauge parameters satisfy
t 0 t —t + 05°t
(5.49) ba g4 21q1(q1 — 1) — (205° + t1)q1 — paga — 01 + p2q2(t1q1 — tage) + 03 21127
u Oty ty —t2
tige O —prqi(tiqy + (t2 — 2t1)g) + 65t .
(5.50) 192 9v p1qi(tiqn + (t2 1)g2) +055tiq (o1 + 0o,
v 8tl t1 — t2
taqr Ou  paga(taqe + (t1 — 2t2)q1) — 0°taqe
(5:51) u Oty t — to (p2 +03°)q1,
t ov t —t + 65°t
(5.52) 0 00 (g — 1) — (205 +12)gs — pray — 0 — 2022 = 110) £6Fha
v Oto t; — to

Singularity pattern: 341
Spectral type: ((11))((1)),111
Riemann scheme is given as




and then the Fuchs-Hukuhara relation is written as 69 + 69 + 05° + 05° + 65° = 0.
The system of deformation equations is expressed as

oy [AS? . AT . A7
or \ a3 x? ’

x
(5.53)
o _ A,
oz
where
1 0 0
AP —up AP Py, P = 7= L0, U=diag(l,u,v),
T <b+ ) i |
A 1 X Pitp2—t @ @ A -0 0 0
Aéﬁz) =|0](111), A((Jil) = —p2 —p2 —DP2 | A((JO) =| e -0 0 [,
0 —P1 —p1 D1 —b - 05

a=pa(p2 — qa — t) + pip2 + 07 + 05, b=pi(pr — @1 —t) + pip2 +65°, c=pi(g—q)+05°.

The Hamiltonian is given by

07° —03° = 1,605°  q1,;m
5.54 HA4 ( 1 3 » V3 ;t, ’
( ) Ny _0507 9(1) + 950 q2, P2

= Hyy (63°,05° — 05° — 1;t;5q1,p1) + Hiv (69 + 65°,05° — 05° — 05° — 1515 g2, p2) + 2p1q1po-

The gauge parameters satisfy

1 du 1dv
5.55 —— =—p; —2 t, ——=q —2p1 —2 t.
(5.55) T = P2t ettt S =a -2 - 2pa
Spectral type: ((1)(1))((1)),21
Riemann scheme is given by
=0 T = 00
—_—~
0 0 0 6
0 -1 t; 05
6° -1 ty 65

and the Fuchs-Hukuhara relation is written as §° + 65° + 05° + 65° = 0.

The system of deformation equations is expressed as

(0)
o _ (Ago2>x +ACY 4+ AO) Y,

(5.56) Oz v
oY oY
(B +B)Y, 2 = (—Fyr+ ByY,
ot (—F2x + By)Y, oty (—FEsz + Bo)Y,
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where

AP =utAPU, B =U'BU, U = diag(1,u,v),

0 0 -1 -1
AE;Q) = 1 , AE;” =|-pga+6° -t 0 ,
1 —p2g2+63° 0 —to
1
AD = | py | (01g1 + pago + 6°, —q1, —q2), Es = diag(0,1,0), Ej = diag(0,0,1),
D2
0 1 0 0 0 1
B = | pa - 05° 0 mlo )08 | B=| 0 0 pilo—t)-be
0 1)2(q2t1—31t)2—9§° 0 Page — 05° P2(Q2t;31t)1—9§° 0

The Hamiltonians are given by

: 05°,03° t1 qi,p1
557 H3+1+1 ( 2 73 : : ?
( ) Gar,ty 9o t2 g2, D2

= Hyy (05°,6°t15q1,p1) + pagapr + {p1(a1 — q2) — 05°H{pa(g2 — qu) — 057},

05°,05° t1 qi,p1
5.58 H3+1+1< S
(5.58) Garta 00 Tty g2, p2

t1 — 12

{p1(q1 — q2) — 03" Hpa(q2 — q1) — 057}

= Hiv (05°,0% t2;g2,p2) + praupo +

to — 1
The gauge parameters satisfy
1 0u 1 0v
(5.59) (t1 —t2)—5— =palqn — q2) + (t1 —t2)(qu + 1) + 037, (t1 —t2)—=— =p1(qe — q1) + 057,
u 8t1 v 8t1
1 0u 1 0v oo
(5.60) (ta —t1)—o— =palq1 — q2) + 037, (ta —t1)—=— =p1(q2 — q1) + (t2 — t1)(q2 + t2) + 605°.
u Otg v Oty
Singularity pattern: 242
Spectral type: (11)(1),(11)(1)
Riemann scheme is given as
z=0 T =00

—— ——
00 0 6°

0 6 0 65
t 0y 1 6y
and the Fuchs-Hukuhara relation is written as 69 + 63 + 65° + 65° + 65° = 0.
The system of deformation equations is expressed as

(-1 4O
N _ (AO + A +Aoo> Y,

or 2 T
(5.61)

oy Al

00y

ot tx
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where

1 0 0
AP =u=tp AP PU, P= | -pa 1 0|, U=diag(1,u,v),
. P292(91—q2)+07° g2
N O T
-1 —p1q1 — p2g2 — 05° -1 -1
A= | pa | (1,0,0), AP = | g1 (prax — 69 — 05°) prq1 — 05° P
D2q2 q2(p2g2 — 07°) q2(p2ge — 07°) /a1 p2qz — 07°
1
ALY = tt/qut
0 0 (7/QI7 /qQ)'
0
The Hamiltonian is given by
(5.62) tHE3, (-99, —0F, —05°, —0°; t; q”’l)
q2,p2

= tH1(Ds) (—0? —05°,605° — 05°:t; g1, p1) + tHui(Dg) (—65°,05° — 05°;t; g2, p2)
+ prga{p2(qn + ¢2) — 07°)}-

The gauge parameters satisfy

(5.63) tmldfu = q2(p2q2 — 07°) + t, ldv 1
u dt vdt g9
Spectral type: (2)(1),(1)(1)(1)
Riemann scheme is given by
z=0 T =00
—— ——
0 0 0 6oy
0 0 —t1 05°
1 60—ty 605

and the Fuchs-Hukuhara relation is written as 6° + 65° + 65° + 65° = 0.

The system of deformation equations is expressed as

) A(*l) A(O)
a = ( 02 + =0 + Aoo K
xr

o

(5.64) *
oY oY
5t = (Bxx + By)Y, 5 (B3w + B2)Y,
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B;=U"'B,U, U =diag(1,u,v),

0 1
Aso = t ) A(()_l) =|p | (=p1—p2+1, 1, 1),
to D2
—07° —q1 —q2
AE)O) = | —pigi(p1 +p2—1)+0(p2 — 1) + (05° — 65°)p1 —05° pi(qn —q2) —05° |,
—p2q2(p1 +p2 — 1) +05°(p1 — 1) + (65° — 65°)p2  pa(g2 — 1) — O5° —63°
3(0) 3 (0)
0 (A0t1)12 0 0 0 (A()t )13
Bo— | @s 0 AP | g | 0 @
t1 t1—t2 ’ to—11
(A(())) (A(U)) (A(U))
0 t10*t232 0 Dt2 = t20*t132 0

The Hamiltonians are given by
(5.65)

o I 05°,05° t1 qi,m
M Gart 0 Tt g2, p2

) = t1 Hii(Ds) (—05°,607° — 05°5t15q1, 1)

o0 t o0 (o]
+ qi(q1pip2 — 03°p2) + i _1t2 (p1(qr — g2) — 05°) (p2(g2 — q1) — 65°),
(5.66)
14141 (05°,05° t1 qui,pi) 00 oo oo, g .
tQHGar to ! ) - t2HIH(D6) (_03 791 - 03 it2; QQaPZ)
' 07 ta q2,p2
t
+ q2(g2p1p2 — 03°p1) + 5 ftl (P11 — q2) = 65°)(p2(q2 — 1) — 65°).
The gauge parameters satisfy
1 Ou
(5.67) t1(ty — tz)ﬂﬁ = (t1 — t2)(1 = 2p1)q1 + p2(taqn — t1g2) + 0371,
1
10v .
(5.68) bty —t2) o = 6 (65 = 2pian) +pi(tes + tiaa),
1
1 0u oo
(5.69) talts —t1) — 5= = t2(05° — 2p2q2) + p2(ta2qr + trg2),
2
1 611 oo
(5.70) ta(ta — t1)58? = (t2 — t1)(1 — 2p2)q2 + p1(t1g2 — taqr) + 057 t2.
2

Singularity pattern: 4
Spectral type: (((1)(1)))(((1)))

Riemann scheme is given by

Tr = o0

—_—

0 0 0
0 4

1
1 0 ¢t

o1
05°
05°

and the Fuchs-Hukuhara relation is written as 7 + 65° 4 05° = 0.

The system of deformation equation is expressed as

oy
Ox
oy
oty

(5.71)
= (—EQZE + Bl)}/,
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where

AW —y—tAPy, B, =U'B,U, U = diag(1,u,v), (i=1,2),
0 0o -1 -1 —p1 — P2 —q1
ACY = -1 ALY =1 0 0|, ARV = pia -2 gt
-1 -p2 0 0 p2q2 — 0% p2
0 -1 0
Bi=|-p gopinla-e)+0+a 2 n(a —a) 05} |
0 2 {pa(qe — @) — 05°} e {pi(ee — q) + 650}
0 0 ~1
Bo=| 0 i {pe(e —a) +605°) 2pim(a —a) -6} |,

—p2

E, = diag(0,1,0), E5 = diag(0,0,1).

The Hamiltonians are given by

ta’ q2,p2

54141 th Q1,p1>
5.72 HZ 05°,65°;
(5:72) Gar)ty ( 208 0ty o, P2
= Hy (=05 t1;q1, p1) + pip2 +
5 t
(5.73) Hé:;’r (95070??0; 1, Q1,P1>
(

1
= Hii (=05 t2; g2, p2) + p1p2 + ——— (p1(q1 — q2) — 65°) (p2(q2 — 1) — 05°).

The gauge parameters satisfy

ou

oty

(5.74) dv

5.3 Sasano system

Singularity pattern: 1+1+4+141
Spectral type: 31,22,22,1111
Riemann scheme is given by

i pe(e — @) — 052} i {pi(ee —a) +65°) + @

ot

ty —t2

to — 11

ou

oty

ov

r=0 z2=1 z=t z=00

0
0
0
00

and the Fuchs relation is written as 6° 4+ 201 +

The system of deformation equation is expr
”
(5.75) O
o _
ot

0 0 6°

0 0 o |,
ot 6 03°

ot ot 03°

20" + 65° + 05° + 05° + 63° = 0.

essed as

A A A

Ao 1 n t >
x—t

T r—1
A

Ly,
x—t

Y,

)
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(p1(q1 — g2) — 05°)(p2(gq2 — q1) — 65°),

—q2
b1
p2 —t2



Here Ay, A1, and A; is given as follows:

Ae =U'PYA:PU, (£=0,1,t), U = diag(1,u,v,w)

~ Jr i
(007 (A0)127 7.f1+(11f1t#7 1+qtl>a

S
o
I
o o o~

. I JEN A 9= g
A§ = <B2§> (0612 - CSB{:’ Cf)? (6 = 17t)a P = ase

o O = O
S R O O
_ o O O

_ ( p2q2 — 03° —p2(g2 — q1) + f2 + 65° )
' (1= f1)(p2g2 — 0°) +p1gz —(q2 —q1)(p1 + p2(1 = f1)) — 0 fr + f3 )’

él _ fl 1 : Bt _ tpg f2 , C‘t _ m _qu ,
fi-1 1 tpr +p2(1— £1)  f3 - f 1

(05° = 0°) f1 = p1(ge — q1) + 0" + 0" + 65° + 65°,
(632 = 05°) fo = (p2(g2 — q1) — 05°) (P21 (1 = f1) — g2) + 6" +63°)
—p2q1((p1 +p2(1 = f1))(q2 — q1) + 05° f1),
(05" = 05°) f5 = (p1 + p2(1 = f1)){(05° — 05°)an fu
+ (g1 — g2)(qupr + qepa — 01 — 05° — 63°)} + 055 (6" + 63°) f1,

Coyia = ~(n +pa)lan —an) + (05~ )+ (7= BOEEZD Y gy (120

oepS

a5 = (C1B1 + CyBy — (0 + 0" )21, a3 = (B1(C1 By — ') + By(Cy By — 0'Ix)) 11,
a3 = (BL(C1B1 — 0'I2) + By(CeBy — 0'1) )21

The Hamiltonian is given by

900_900 900_900 900—900 q1.p1
7 (it — 1\ gPe (0T — V20 = U505 =08
(5 6) ( ) S’s( 020’917025 ’7(]27])2
—00 — 01 — 0" — 05° — 03°, —0" — 05° + 6°
=tt—1)H 1 3 2 3 4
( ) VI<_01_080—0:?07904_01_'_026_'_980_'_050_’_17 541,01

95(3)0’91 -t
0t —05° + 030 — 0 + g0 + 17 P2

+2(q1 — Dpaga(pi(qn — t) + 0 + 0" + 60" + 0 + 65°).

+t(t — 1)Hyy (

The gauge parameters satisfy

1du 1 (das o noo
(5.77) wdt  axF ( di + (677 — 63 )p1>,
1dv 1 das®
(5.78) vdl - ax ( d? + (07° — 03°)(fap1 + p2(p1qa + p2g2 + 9t)> ,
3
1 dw 1 das®
(5.79) T < d;fl + (077 = 05°)(fspr + (p1 + p2(1 = f1)) (P11 + p2gz + 9t)> .
¥
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Singularity pattern: 2+1+1
Spectral type: (2)(2),31,1111

Riemann scheme is given by

0 0 0 63°
0 0 0 65° ’
0 t o 05°
0° t o 03°

and the Fuchs-Hukuhara relation is written as 8° + 20% + 05° + 05° + 03° + 63° = 0.

The system of deformation equation is expressed as

(-1) © 40
ay< A7) AP A )Y,

Oz (x—1)2 x-1
(5.80) )
ot x—1 t ’
where
1 0 0 O
. . —=22i 1 0 0
AW —y-1p-i4Vpy, p=| T . U = diag(1,u, v, w),
e 010
g 0 0 1
~ (-1 I A A A fi 1 - P2 fa
A = A tI +CB —C 5 C = ,B = )
' <31>< 2 1) ! <f1—1 1) ' <p1+(1—f1)p2 I3
—0° — 93° ae [Hl-q)+@a—q¢ 1-¢
4@ |0 —pi(a - 1) 65 0 0
asi 0 —03° 0o |’
a41 0 0 —920
1
- (0) 0
Ay " = (90 fi il —D+q@—aq q1_1)7
0
0
ar2 = (q1 — V) (fifa + f3) = (q1 — @2)(f2 + p2) — (0" + 05° + 65°),
az1 = (p2 + f2)p1(1 — q1) + p2((t + p2)(1 — q2) — 0% — 63° + 65°) + t65°
+ f2(0" +605° + 63°),
as1 = (pr — (f1 = Dp2)((p2 + 1)1 — q2) + p1 (1 — qu) — 0° — 65° + 65°)
= fa(p1(qz — 1) = (f1 = 1)(65° — 05°)) — (fr — D)tO7°,
foble—a) + 0 02+ 05 (b2t )01 —g2) +0° + 057 + OF°) 4 057
0 — 0 ’ b5 — 03° !
fy = Prtp = 1)) (2 + D0 — ¢0) +0" +05° +05°) — t03°f1

05 — 05

fo=(p2+ f2)(q1 — @2) + (fifo + f3)(1 — q1) + (0" + 605° + 05°).

32



The Hamiltonian is given by

FTDs <9°+91+95°+9§°,—9f°+920+1,9§°—95@—9;0'# ql,p1>
Ss

5.81
(5:81) —00 — 01 — 03 — 07, —00 — 0 — 0 — 0 —1 ' g2,

—00 — 9t — 0 —0° — 1,00+ 01 +60° +60° +0° —0° — 1
—tH 3 4 ) 1 2 3 4 e
v( _0$O+920+1 q1,P1
00 + 01 +207° + 6050 — 1,07 + 0 + 65° +05° — 05° + 63° — 1
tH: ’ it
+ V( _00—01—20?0_1_1 ) 76127172)

+ 2p2q1(pr(qr — 1) +6° + 6" + 67° + 63°).

The gauge parameters satisfy

t du
(5.82) —EEZ(tJr?pz)(l—ql)erl, o = (t+2p2)(1 — q2) + p1 + 0" + 265°,
t dw
L =(t+2 2p9)(1 — q1) — 6 — 265°.
— (t+2p1 + 2p2)(1 — qv) i

Spectral type: (11)(11),31,22
Riemann scheme is given by

—
0 0 0 6
0 o o0 6 |
00t g

0 0t o

and the Fuchs-Hukuhara relation is written as 6° + 20" + 05° + 05° + 03° + 03° = 0.
The system of deformation equation is expressed as
oYy A A
9z (0+ 11+A00>Y
(5.83) a; roors
— = (—Ey ® Lx + B)Y,
ot
where
Ae =U AU, By =U"'BU, U = diag(1,u,v,w),
—h—na
Ay — —fa —p2q2 + f5(f1 +p1q1) y
9@0 9°°
— fotpa( q%;_qel&)eq 6F6F g g Lof—0 by fz(];gojeeie ) 40l 920) 7
—fi —f3
7= 9°° )f4+9§°f2} 7@@195@ {(q%— q%)f4+(91+9f°+92°)9§°} y
1 0
fi-1 - % fi+ 0! —f3—91—9f>

000
( Tt —05°

02 B, = 0 1A + A1l
Oy —tIQ %[AO —|—A1]271 0] ’
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fi=piai(g — 1) = 0°q1,  fa=p2ge(q2 — 1) — (0" +05° +0°)q2,  f3 = (pl(QZ —q1) + 077,

1
fr=p2@2fr —pravfo,  fs = o (p2a2(qr — q2) + (0" +65° + 920)‘]2)-
(91 — 03 )(h

The Hamiltonian is given by

91 05° —01 — 0 —0%° q1,P1
5.84) tHL: L ! 4 ot 0 )
( ) NY <01+050+020,919500§0 QQ,pQ

Ot + 6,09 + 9t Ol —6° 4+ 603°,0° + 6!
=tHy ( ' g1 ;t;ql,m) +tHy < 1900 +29<x> ;t;qz,pz) + 2p1p2qi(g2 — 1).
- 1 4

The gauge parameters satisfy

1 du

(5.85) *tfhlhaa =qq2(p2 — 2p1 +05° — 07°) + 1 (2p1g1 — o' — 94) - 91(127
1dv

(5.86) t‘haa = qp2(1 = 2¢2) — 2p1qa(qn — 1) + (£ + 61 + 205° 4 65° + 65°)qy + 67,
1 dw

(5.87) tnge o = Q12(2p1 + 4 07° — 05°) — 1 (2prqr — 05° — 05°) + 0" o

Spectral type: (111)(1),22,22

Riemann scheme is given by

=0 =1 x=00

—
0 0t 6
0 0o 0 er |

6% o1 0 603
60 o1 0 6og°
and the Fuchs-Hukuhara relation is written as 200 + 20 4 65° + 05° + 05° + 05° = 0.
The system of deformation equation is expressed as

(e B
(5.88) Oox x -1 >
o _ (—E1z + B)Y.
ot !
Here

A¢ =U*AU, B=UT'BU, U =diag(l,u,v,w),

~ I PN A
A5 - (Bi) (9512 - 05355 Cﬁ) (5 = 071)7 Aoo =-tk, E1= diag(1’070’0)7

BOZ Ha f2 , C'O: (I=f)M =2 -\ ’
pr— (fi—=Dpz  f3 1-f; 1

B1< HaAg — 03° Jo+ p2(A — X2) + 0 ),C'1< h 1>’
Az + (1= fi)(pede = 05°)  f3+ (M — A2)(p2(l — f1) + p1) — f10F° fi—1 1
0 (Ao + A1)z (Ao + A)is (Ao + Ar)ia
oL (Aot A 0 0 0
(Ag + A1)z 0 0 0 ’
(Ao + A1) 0 0 0
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p1( A2 — A1) + 600 + 0 4 05° 4 05°

fl = ego — 920 5

= p2do (p2(N2 = A1) — 01 —203°) — pa M1 (6° + 05° — 05°) +03°(0" + 65°)

? 05° — 03° ’

o (A2(p2(A1 = A2) + 0" +603° +603°) + (6° + 03° — 03°)M\1) ((fr — Dpz — pa) — [105°(0" + 05°)
0 — 0 '

The Hamiltonian is given by
~ 6%, 0%, 0%° A
(5.89) tHDs ( RGO 1”“)
02 793 ) >\17N1
- _91_900_90090+900_900
— 2 3 2 3
V( —200 — 61 — §° — f5°
+2p2 A2 (A1 — 1) (1 (Ar — 1) + 60° + 01 + 65° + 65°).

0 pl

~ 0°,0
;t;)\lalH) +tHV( goo ;t;)\Qa,UQ)
3

The gauge parameters satisfy

(5.90)

t du
—EE:()\1—1)(2ﬂ2)\2+ul()\1—1)—91—‘950—920)+t—9f0+9§°>

(5.91)

td
—;d—;’ = (A = D(pa(ha = 1) + 0% 4+ 6" +07° +05°) + Ao (2u2(Ag — 1) — 0" — 265°) + ¢ — 00 — 67° + 657,
(5.92)
t dw 0 0o oo 0 1 oo
—E% = 2()\1 — 1)(/11)\1 +/,62/\2) +)\1(9 +91 —94 )—|—t— 207 — 6 — 291 .

When we change the canonical variables as

1 1
M=l 11 = q2(gap2 + 0° + 01 + 67° +65°), do=1-, po = aqr(qpy — 0" = 05%),
2 1

then we obtain

09, 91 9 q 03, 9° — 9!

Ds 0L, 017, , q1,p1) 3 .
(593) tHS's ( oéx;’ggo’ at7 q27p2> _tHV< 91 7t7(I17P1)
—209 — 30 — 9 — 03° — 203°, —0° — 91 — 20°
Lot ° % it g, p2
00 + 201 + 05° + 65° A

+ 2p2q1 (p1(q1 — 1) — 6" — 6°).

oty (

Singularity pattern: 3+1
Spectral type: ((11))((11)),31
Riemann scheme is given by

rz=0 Tr = 00
—_—~

0 0 0 6o

0 0 0 @65 )

0 1 -t 65

6° 1 —t 6

and the Fuchs-Hukuhara relation is written as 8° + 65° + 05° + 65° + 65° = 0.
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The system of deformation equation is expressed as

)
oy _ <Agg2)x+A£;1) + Ao ) Y,
(5.94) Oz v
oY

Here

AT = U AU, B =UTIBU, U = diag(1,u,v,w),

Agm = —EQ X 12, E2 = dlag

(0,1),
0 0 fa (f3 +05° — eéj%pzoﬁ) —fa(f2 — p2qu + 05°)
o0 000 o0 o0
ACD 0 0 —fafs +05°) + geg= i(fa + 1) fa(f2 — P2 +03°) + 65
oo 1
. (11 ;&:E 1 t 0
+,
e 1 gelgs 1 0 t
—p2fa
- —p1+pafa . 0 —[Agl)]m
4O _ [ ( s - ) By = E
0 1 1 +F o fs paa—fo il WIS 0
fi=piq —05° =05, fa=poge— 07" — 07,
fy = 0101 =05 = 05)(page — OF —05°) —poqr (o — 03 —0) . _ fi—pio
03 — 05° ’ 05° — 07"
The Hamiltonian is given by
—05° — 03°,05° + 0 q1,m
5.95 H"“( P it
(59) MU 0 -0, 0 G2, P2

= Hyv (05° +05°, —07° — 03°: g1, p1) + Hiy (05°,60°5 ¢ g2, p2) + 2q1p1po.
The gauge parameters satisfy

1 oo __ Hoo 1
(o6 L _ (0 =0F)m  ldv

0 — 65° 1d
_ , ——Q1—t—|—(1 5°)p1 w
u di P1g2 — f1 v dt

000_000
CoLdw o O =08
p1g2 — f1 w dt

P1g2 — f1
Singularity pattern: 242

Spectral type: (2)(2), (111)(1)
Riemann scheme is given by

z=0 T = 00
—— —

0 0 t o
0 0 0 65 ’
1 6° 0 63
1 6° 0 6g°
and the Fuchs-Hukuhara relation is written as 260° + 65° + 65° + 03° + 63° = 0.
The system of deformation equations is expressed as

(=1) (0)
(5.97) * v x
oYy
— =(—F B)Y.
gr ~ "Bt D)
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Here

AY — 14, YU, A =—tB;, B=UTBU, U =diag(l,u,v,w), By = diag(1,0,0,0),

—01° a2 1-fi)m—q -a
AO(O) _ | ma+ 0° + 05° +603°  —05° 0 0

asi 0 —0%° 0o |’

a4 0 0 *020

~ (=1) I (~1) p(=1) (-1) (1) b2 f2
A = _ I — C B C 9 B = ?
’ (B(() 1)> ( L 0 0 ) 0 pr+ (1= fi)p2 f

0 (A5 (AT (A )

(-1 _ f1 1 AL (A(()_l))Zl 0 0 0
“% = 1) By ’

fi— (AO )s1 0 0 0

(AT 0 0 0

(05° — 03°) 1 = —p1(q1 — q2) + 0° + 05° + 05°,
(05° = 65°) fo = (q1 — q2)p2(1 — p2) — p2(6° + 65° + 65°) + 65°,
(05— 03°)fs = (1 — fi)pa+ p1)((@1 — 42)(p2 — 1)+ 00 + 63° + 6°) + 16,
a2 = faqu +p2(g2 — @) + f2((fr = D)q1 + q2) — 6° — 05° — 63,
az1 = p2(03° — 05°) + paaa(1 — p2) — prax(fa + p2) — 05 + f2(6° + 65° + 65°),
as1 = (P11 + (p2 — 1)g2 + 05° — 03°)((f1 — Dp2 — p1) + fa(—prqa + 0% + 05° + 63°) + (f1 — 1)05°.
The Hamiltonian is given by
0°,6%°, . a1,m
9§°79§°,’t7 Q27p2>
= tHin(Dg) (0° + 05° 4 05°, —0° — 203°; t: g1, p1) + tHui(Dg) (—05°, —0° — 205°; t; g2, po)
+ 2p2q1 (pran + 6° + 05° + 65°).

(5.98) tHO* (

The gauge parameters satisfy

t du t dv

(5.99) s (1 —=2p2)q1 +07° — 05°, o (1—2p2)go + 0° + 67° + 65°,
t dw

(5.100) — = (1—2p; —2p2)qs — 0° — 05° — 6.

w dt

5.4 Matrix Painlevé systems

Singularity pattern: 14+1+4+1+1
Spectral type: 22,22,22.211

Riemann scheme is given by

=0 z=1 z=t z=0
0 0 0 07°
0 0 0 0° ,
6° gt 0t 0°
6° o' 0t 03°
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and the Fuchs relation is written as 200 + 201 + 20° + 205 + 65° + 03° = 0.
The system of deformation equations is expressed as

8Y AO Al At

T2 Y,

Ox ( x * z—1 * x—t

ay Ay

ot x—t

(5.101)

Here Ay, A1, and A; are given as

Ae = (U @ diag(v,1)) ' X YA X (U @ diag(v,1)), (£ =0,1,1),

do= (g) (#r0-1). - (Pin @> ('L~ PQ + ©.1).

A = (;;) (9% +QP, —1@) , UeGL(2), veC*.

Here, @, P, and © are

0= @ 1  p— p1/2 —p2 o- 5 7
—q@ q paga — 0 —05° —60°  pq/2 05°

where § = 0° + 0! + 6.
. L I, O
The matrix X is given by X = 7 .l where
2

Z=(0°—0) =Y QP+ 0 +6°) + (QP + 0 + 6°)* — t(PQ + 6" P).

The Hamiltonian is given by

_n0 _pgt _poo _pl pt
(5.102) t(t—l)H\Iy{at( 6% — 6" — 67, G,G,t,ql,m)

90+1,6‘1+6‘§O ' 7qg,pg
=tr[Q(Q - 1)(Q—t)P* +{(0° +1— (6 +65° + 05°) K)Q(Q — 1)
+01(Q — 1)(Q — 1) + (0 +205° — 1)Q(Q — )} P + (0 + 05°)(6° + 0" + 0°)Q)] -

The gauge parameters satisfy

(5.103)
t(t — 1)% = MU,
My =p1(2q1 — t)(1 — q1) — (0° + 6" 4+ 65° — 65°)q1 + 2p2gqe
+2qipa(qr(qn — ¢ = 1)+ = go) + (057 — 05 = 1)t + 67 + 0" — 03° + 05° + 1,
Mg = p1(2q1 — ) + 2paga + 2qupa(t — qu) + 607 + 6" + 67° — 657,
Moy = 2(0 4 05° + 05°)q1 (t — 1) — (2p2gz + 6° + 0" + 67° — 05°)go
+ p1g2(t — 2q1) + 2q1p2g2(q1 — 1),
Mao = ((q1 — t)p1 + 07 + 0" + 67° — 05°)q1 — 2tpago + g2 (4p2qy — p1) + (07 + 60" + 65° + 65°)t,
(5.104)
t(t— 1)%% =2q1((t + V)p1 + 0" +205°) — p1 (3¢5 +t) + 2(t + V)p2go + 2¢1p2(q1(q1 —t — 1) +t — 3¢2)

+ prga+ (00 + 0" +260° +265° — 1)t + 6° + 6 — 05° + 63° + 1.
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Singularity pattern: 2+1+1
Spectral type: (2)(2),22,211
Riemann scheme is given by

r=0 r=1 T =00
—

0 0 0 f°

0 0 0 g ;

00—t 00 o

00—t 0 6

and the Fuchs-Hukuhara relation is written as 209 + 20! + 205° + 05° + 65° = 0.

The system of deformation equations is expressed as

or \ = (x—1)2 =x—-1)""

‘lY:_ 1 <A§—1)>Y
ot z—1 t

Here A(()O)7 Ag_l), and A§0> are given as follows:

(5.105)

Ae = (U @ diag(v, 1))_1/15(U @ diag(v, 1)),
AY = < 2 )(—t(fz —Q)—17,-1D) = G, <02 02 )Gll,

—Z+Q 0y —tI
A0 _ —(0°+67°) L + (P +1)Z P+t
1 0°Z - Z(P+1)Z  ~Z(P+1)-©
% (P+)Q—6"—6"— 67
"\P+HQ-P—00— o> —¢ 011, i

A = < I}) (0°L, — (P + t)Z,—tI, — P),
Z =0 -0) = (P+1)Q(Q — 1)+ (20° + 0 +207°)Q — 6° — 6* — 67°],

S )
Q—-72-1, Q—Z L-Q+7Z I

Here, @, P, and © are

Q- g 1 p_ p1/2 —p2 o— 05°
- q)’ page — 00 — 01 —603° — 05 p1/2)’ 05°

The Hamiltonian is given by

(5.106)  tHY' ( L ql"m)

60+ 01 + 652, —6° — 61 — 05 — 17" go,py
= t[P(P+1)Q(Q — 1)+ (6° + 0 + 05°)P — (0° + 0" +205° — 1)tQ — (260° + 6" + 26°°) PQ)].

39



The gauge parameters satisfy

aU
5.107 t— = MU
( ) 7 ;
3
My =(1-2q1) (2p1 + 2t> +2(q1(q1 — 1)p2 — 2p2ga + 0° + 07° — 05°),

Mo = (2q1 — 1)p2 — p1 — 2t,
Moy = (p2go — 0° — 0" — 65° — 05°)(1 — 2¢1) + (p1 + 2t)ge,

1
Msy = (1—2q1) (2p1 + t> — 2paga + 46° + 30" + 407° + 205°,

1d
(5108) t;dfz = pl(l - 2(]1) - 2tql - 2p2(]2 + 2P2Q1(Q1 - 1) +t+ 490 + 301 + 49?0 + 20;0

Spectral type: (2)(11),22,22
Riemann scheme is given by

z=0 x=1 x=0

——
0 0 0 6oy
0 o 0 e |

6° 6! t 0%°
6° ! t 0
and the Fuchs-Hukuhara relation is written as 209 + 20! + 205° + 05° + 03¢ = 0.

The system of deformation equations is expressed as

)4 A(O) A(O)
o _ (Aoo + =2+ 1)y,
A

(5.109) Oz v—1
oYy
E = (7E2 & IQZL' =+ Bl)K
where

Ag = (diag(1,v) ® U) "' A¢(diag(1,v) @ U),

_ (02 O j0 _ (QP +6°+ 67 < ~0. Yo- 0, g oo>

A© = <<QP+"O+"T°><Q‘IZ> ‘@> (12, NP+ 0 o 0)0 —QP—GO—(’TO})-

tQ
Furthermore
. 1 ) A+ 47 .
Bl = (dlag(l, 'U) ) U)7 [A[()O)-'!‘Ago)h] Ot (dlag(l, 'U) D U),
t 2

where [Aéo) + Ago)]ij is the (i, 7)-block of the matrix /1(()0) + /150). Here, @, P, and © are

- @)’ paqe — 00 — 0L —0° —0° py/2)’ 65°

The Hamiltonian is given by

_90 - 91 - 9(1x>’90 _el.t_ q1,P1

5.110) tHMat ( it
( ) v 9179,??0 q2, P2

) = tr[Q(Q—1)P(P+t)+(6°—0")QP+6" P+(0°+65°)tQ).
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The gauge parameters satisfy

dU tgr —O0° +605° +1 t
(5.a11) (L (AT U,
~tqo 2p1q1 + 3tqy — p1 + 2p2q2 — 2qip2(qn — 1) —n —t
1dv
(5.112) i (2¢1 — Dp1 — 2q1p2(qn — 1) + 2tqr + 2page — t +6° — 67, =06+ 360" +307° + 65° — 1.

Singularity pattern: 341
Spectral type: ((2))((2)),211
Riemann scheme is given by

z=0 T =00
—_——
0 0 O 05°
0 0 0 05° ;
-1t 6° 65°
-1t 6° 63°

and the Fuchs-Hukuhara relation is written as 209 + 209 + 03° + 6° = 0.

The system of deformation equations is expressed as

(-2) 4D 40)
8Y<Ao LAY A )Y,

or 3 2 T
(5.113)
(=2)
al - Ag Y.
ot x

Here 14(()72)7 A((fl)7 and AE)O) are given as follows:
Aék) = (U @ diag(v, 1))_1Agk)(U @ diag(v, 1)),

A(()_Q): & (=L = Z,~1), Ag_l): PrQ T P )
—z _IPZ—QZ—-7Q—t7—-Q —ZP—Q

. 05°
A =~ ( o g)  Z=(67-0) (P~ Q-1)Q 6"~ b7,

Here, @, P, and © are

o=(® '), p= 51/2 ) g (07 .
G2 paqz — 07 — 07° —0° p1/2 05°

The Hamiltonian is given by

(5.114) Hiy* (90 +207° =1, =0" — 07°,07° — 05° — L;t; ‘“’pl)
q2, P2

=tr[PQ(P — Q —t) — (0" + 65°)P + (0" + 205° — 1)Q).

The gauge parameters satisfy

(5.115)

dU —3p1 4+ 2(p2 + 2)q1 + 2t +2 1 dv
(_ 2P 120 4+ 2)0 P )U, =2(p2 + Vg1 —p1 + 1.

dt (p2+2)go + 00 +05° + 05 2¢; +t— B vdt

Spectral type: ((2))((11)),22
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Riemann scheme is given by

x=0 T = 00
—_—~

0 0 0 65

0 0 0 65 )

6° 1 —t 65

6° 1 —t 65

and the Fuchs-Hukuhara relation is written as 2609 + 205 + 65° + 05° = 0.
The system of deformation equations is expressed as

(0)
WAz aC) + D)y
ox o & T ’

ov
ot

(5.116)
= (B @ Ihx + B1)Y,

where

AP = (ding(1,v) & U) AL (diag(1,v) & U),

e 0, O S 0, PQ-0\ —P
AGH = (72 2 AGH = (72 , AP = , QP +6°1,),
oo (Oz —1Ip > I, tl, 0 I (Q, QP +071)

0) —[AGY 0
B, = (_21) [ ]12 s Ey = .
_[Aoo ]21 02 1

Here, @, P, and © are

o=[® 1  p= 51/2 AR 05° .
—q2 1 P2aga — 00 — 07° —05° p1/2 03°

The Hamiltonian is given by
(5.117) HMat <—90 — 03,69, 05 ¢; Z“?) = tr[QP(P— Q — 1) +6°P — (6° + 65°)Q).
2,12
The gauge parameters satisfy

U [—q —t -1 1dv
5.118 - = U -— =p —2(p2+1)q —t.
(5.118) o ( o o (et 3 2t> o =P 2z Da

Singularity pattern: 242
Spectral type: (2)(2),(2)(11)
Riemann scheme is given by

z=0 T =00
—— —
00 1 6°

0 0 16 |
t 00 0 05
t 0 0 0

and the Fuchs-Hukuhara relation is written as 209 + 209 + 63° + 65° = 0.
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The system of deformation equations is expressed as

(=1) (0)
oz 2 x

(=1)
al — ,l <A0 ) Y.
ot x t

Here A(()_l)7 A(()O), and A, are given as follows:

(5.119) ’

AP = (U @ diag(v,1)) AP (U @ diag(v, 1)),

S I A —6°I, —Q X -, O
ACY = [ 2 (1 - P, L), AL =712 , A= ,
0 (P (t( ),tl2),  Ag 7 _e o o

Z =(QP +60° +20°)P — (QP + 60° + 65°).

Here, Q, P, and © are

o= '), p- 51/2 ) g (05 .
—q2 q1 P2aga — 00 —07° —05° p1/2 03°

The Hamiltonian is given by

(5.120)
LH YD) (90 + 0%, —0° — 205°, —05°: 1 gg) = tr[Q*P? — (Q* — (¢0° +207)Q — )P — (6° + 65°)Q).
The gauge parameters satisfy
(5.121) v _ (2p2¢1 —p1 + D)@ p1—2p2q1 — 1
dt 2q1(paga — 0° = 07° = 03°) — (p1 —1)g2 2p2g2 + (p1 — 1)gu +6° +267° |
1dv
(5.122) b = 2p2(qF — q2) —2(p1 — 1)qu +0° + 265°.
Singularity pattern: 4
Spectral type: (((2)))(((11)))
Riemann scheme is given by
T =00
0 0 0 6y
0 0 0 6y ’
-1 0 —t 6%
-1 0 —t 65

and the Fuchs-Hukuhara relation is written as 267° 4 05° + 65° = 0.

The system of deformation equations is expressed as

= (AY + AGYw + ACY ),
(5.123) aiﬁ
- = (ACYe+ BYY,
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where

AR — (U & diag(v, 1)) " A®(U @ diag(v, 1)),

A -3) _ 0 0 A _ o I ACD — -P+Q>+t Q
O I \-P+@ 4t 0) T \(P-@2-1)Q-6 P-Q?)’
I
= (U & diag(v, 1))~ ( POt 02> (U @ diag(v, 1)).

Here @, P, and © are

_ p1/2 —D2 o — 03°
g2 page — 05° —0° p1/2) 05°

The Hamiltonian is given by

q2, P2

(5.124) HMat (—e;” F1,6° + 13t ‘“’pl) = tr[P? — (Q2 + )P + (6° — 1)Q].
The gauge parameters satisfy

du (2 0 1d
(5.125) — = ( (@ +p2) ) U, L= 2(q1 + p2)

dt 0 0 v dt

6 Complements to the classification

There is a couple of notices that we should mention concerning 4-dimensional Painlevé-type equations and
their degeneration scheme.

First of all, as we have already mentioned, different linear equations sometimes induce the same Painlevé-
type equations. In this sense, there is no one-to-one correspondence of linear equations in the scheme to 4-
dimensional Painlevé-type equations. However, as far as we know, cases when the same nonlinear equations
appear are only those cases when corresponding linear equations transforms one another by the Laplace
transformations. It is an interesting question whether or not, in general, linear equations with the same
Painlevé-type equation transform one another by the Laplace transformation or some other transformations.

Within this scheme, there are seven deformation equations that have two different linear equations.

Let us see the Laplace transformation in a case when there are one irregular singularity of Poincaré rank

1 and some regular singularities. In this case, the linear equation can be expressed as

d

(6.1) —

Ly~ [Q (x1, —T)*1P+s} Y

where [ = Z?Zl rankA;, @ is m x [ matrix, and P is [ X m matrix. Matrices T and S are diagonal.

This equation can be rewritten as

(6.2) (di_s ¢ ><Y>:0.
-P a2, -T Z

Let us apply the Laplace transformation (z,d/dz) — (—d/d¢,€). Regarding this equation as equation of Z,
the equation reads
d

(6.3) i

7= [P(g[me)*1Q+T} 2,
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which is similar to the original one. Such calculation tells us four correspondences:

(1)(1),11,11,11 < (1)(1)(1), 21,21 (2)(1) 111,111 « (11)(11), 31,21

(2)(2),31,1111 < (111)(1),22,22  (2)(2),22,211 « (2)(11), 22, 22.
0
Remark 6.1. If we put S = diag(0,1,t), T 0 in the above correspondence, we obtain trans-
formation that leads equation with spectral type (2)(1 1) ) to % + 14 1+ 1-type degenerate Garnier
system. 0

When the Poincaré rank is 2, calculation becomes more complicated. For an equation

d .
(6.4) —Y = [Q (@I, = T) "' P+ Sy + S1z| Y,

- Sl S12
let us put S; = diag(ay, ..., ax,0,...,0), and S; = diag(ay, ..., ar)D We also assume that Sy = ( Sgl 532 ,
0 0

Q2 2
Py isl x k, and Py is I x (m — k) matrixD

We can rewrite the equation as

Y;
Q= ( o ,P=(P,P),Y = < Yl ) . Here, St is k x k matrixCQq is k x [, Q2 is (m — k) x [ matrix,

&5 - Sw -5 —@Q1 Y
(6.5) -Sg! £-57  —Q Y, | =o.
—P1 —P2 .13[[ -T Z

If we do the Laplace transformation (x,d/dz) — (—d/d§,€), we can eliminate
(6.6) Yo = (Elmn-r = 53°) (S5 Y1 + Q22).

Thus, the equation becomes
d { Y

6.7 — N

o (%)

~ 1 ~ —1 ~ —1 &
_ Si o S§° _22y—1/ @2l S1 St S Q) St
= l( _p, ) ({lm—k — 557)" (55, Q2) + ( _p 7 > 5( 0

Such calculation tells us three correspondences:

(1), 11,11 = (HOY(W)2L (L)1), 111 (11))(11)), 31
((2))((2)),211 = ((1))((2)), 22

0 1
Remark 6.2. If we put T = diag(0,1), S; = ( 0 > , we can obtain transformation that leads degenerate
Garnier system of type % + 1+ 1 to the Painlevé-type equation associated with linear equation of type
((M)WN()))- O

We should also mention that, sometimes, the degenerate linear equations may admit more freedoms of
deformation than the source equation. In our degeneration scheme, such phenomena can be only seen in the
degeneration of Fuji-Suzuki system.
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What can be counted as freedoms of deformation are positions of singular points and data in Riemann
scheme except exponents of formal monodromies. If we exclude parameters that can be normalized to 0
or 1 or other constants by automorphisms of P!, that is to say, linear fractional transformations and gauge
transformations, then the rest is deformation parameters and the number of deformation parameters is
dimension of the deformation.

Within the degenerations of Fuji-Suzuki system, four Painlevé-type equations associated with linear
equations of spectral types (1)(1)(1),21,21 and ((1)(1))((1)),21 and (2)(1),(1)(1)(1) and (((1)(1)))(((1)))
are expressed as partial differential equations with two independent variables. For example, when the spectral
typeis (1)(1)(1),21, 21, we can assume that the singular points are at 0, 1, 0o, and that the Riemann scheme

can be reduced by gauge transformation of scalar matrices as

r=0 x=1 T = 00
—_——
0 0 0 oy
0 0 —t1 05°
6° ot —ty  O5°

In this case, t; and t3 become deformation parameters. Its deformation equation is expressed by H, (2;-57{+1+1.

This is the reason why degenerate Garnier systems appear in the degeneration scheme of Fuji-Suzuki system.

On the other hand, we can also consider usual degeneration from 21,21,111,111:
x— (1 —etx)/(1 —ct), t — 1/(1 — et),
0? — et 0t =6 0t — 6t

07° — —me 1+ 0°, 05° — —noe L + 05°, 65° — 05°,

(1-et)n - 1
_— — —(1 — — l1—-—
A T R (I —et)qi(prar — 65°) (=g )’
(1 —Et)QQ 1
_ — " — —(1 — ¢t — f° 1—— .
L s S (1 —et)ga(p2g2 — 05°) 1 n

This yields Hamiltonian
0100’950’0??0 q1,P1
tH S5 123
( 907 o1 q2, P2
=tHy (6°,605°,0%; (2 — m)t; q1,p1) + tHy (6°,05°,0"; —mit; g2, p2)
+p1p2(20102 — @1 — ¢2).

This Hamiltonian is a restriction of Héfgi““. Similar stories are true for other three systems, and they
Sp141+1 S41+41 .
correspond to H3+1+17H2+ T and g2 , respectively.
P Gar Gar ’ Gar P y

By the way, we omitted Fuchsian equations with only three singular points for they do not admit defor-
mation. Do not they admit deformation when they are degenerated? The answer is yes; some of Fuchsian
equations admit deformation when they are degenerated. However, we can see that all the equations derived
from the rest 9 equations by confluences of singular points can be transformed to one of the equations in
the scheme by the Laplace transformation. Thus, if we put equations of ramified-type aside, then all the
equations are included in this list.

According to Oshima’s classification of Fuchsian equations with four accessory parameters, those with
only three singular points have following spectral types:

211,1111,1111 221,221,11111 32,11111,11111 2222222211 33,2211,111111

44,2222 22211 44,332,11111111 55,3331,22222 66,444,2222211.
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If we consider confluences of two regular singular points, then we obtain 17 equations:

(11)(1)(1),1111  (1)(1)(1)(1),211  (2)(2)(1),11111  (11)(11)(1),221

(111)(11),11111 (1)(1)(1)(1)(1),32 (2)(2)(2),2211 (2)(2)(11),222

(111)(111),2211  (11)(11)(1)(1),33 (22)(22),22211 (22)(211),2222 (2)(2)(2)(11),44

(1111)(1111),332 (111)(111)(11),44 (222)(2211),444 (22)(22)(211),66.
Among these 17 equations, the following 6 equations do not admit deformations:

(111)(11),11111 (111)(111),2211 (22)(22),22211 (22)(211),2222

(1111)(1111),332 (222)(2211),444.
If we consider the Laplace transformation of 11 equations which admit deformations, then the leading terms
at irregular singularities become scalar matrix, since the original ones have only one regular singularity. Thus,
we can eliminate these leading terms at irregular singularities by gauge transformation of scalar matrices.
As a result, they become Fuchsian equations, and they are already classified.

For example, we can see a correspondence as below:
(11)(1)(1),1111 « (111),111,21,21 ~ 21,21,111,111.

Similarly, we can find correspondences for the rest 10 equations:

(1)(1)(1)(1),211 < 11,11,11,11,11  (2)(2)(1), 11111 « 31,22,22,1111
(11)(11)(1),221 « 21,21,111,111  (1)(1)(1)(1)(1),32 > 11,11,11,11,11
(2)(2)(2),2211 « 22,22,22,211  (2)(2)(11),222 « 22,22,22,211
(11)(11)(1)(1),33 — 21,21,11,11  (2)(2)(2)(11), 44 < 22,22,22 211
(111)(111)(11),44 < 211,1111,1111  (22)(22)(211), 66 « 222,222, 2211.

For the last two equations, their original deformations are trivially solved, and corresponding Fuchsian
equations do not admit deformations. Other equations correspond to one of the four Fuchsian equations
corresponding to 4-dimensional Painlevé-type equations.

For 9 equations in Oshima’s list, if we consider confluences of three regular singular points to one points,
then we obtain 5 equations:

(M) (AD)ADYW) (OO (2)@)AD) (2@)(2)(11)).

They are same as one of the degenerate systems of the four 4-dimensional Painlevé-type equations.

In this paper, we depend on the idea that all Painlevé-type equations of unramified non-Fuchsian systems
with 4-dimensional phase space are derived from the four Painlevé-type equations of the Fuchsian equations
by degeneration processes. If we degenerate equations after applying middle convolution, do not we come up
with new equations that are not derived from the original equations? In fact, when the dimension of phase
space is equal to or greater than 6, such a case happens. However, when the dimension of phase space is 2
or 4, it is proved that such a case does not happen [12].

A Data on degenerations

In this appendix, we give explicitly the canonical transformations with ¢ that link two Hamiltonians in each
degeneration. The way of degenerations of Hamiltonians are explained in section 4. It is not necessary to
change the data that do not appear in the table below. Note that the terms in Hamiltonian that do not
contain the canonical variables p; and ¢; are irrelevent to Hamiltonian system, thus we add or subtract such
terms as needed.
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Here we omit the following five degenerations

21,21,111,111 — (1)(1)(1),21,21, (11)(1),21,111 — ((1)(1))((1)), 21,
(2)(1),111, 111 — (2)(1), (1)(1)(1),  (11)(1), (11)(1) — (((1)(1))(((1))),
((11))((1)), 111 — (((1)(1)))(((1)))

since the number of deformation parameters increases.

A.1 Garnier system
1+14+14+14+1 — 2414141

0" — —e71 02 = 0" 0 — 05° et 050 — 65°,
t1 — (et1) ™', to — to/t1, Hy — —etiHy, —ctitoHy,, Hy, — t1Hy,,

p(1—q) +p2(1 —go) +60" + 6" +6° )
; p1— et — 1 —1)—-07),
eti(qn — 1)(p1(qn — 1) — 61) p1— et = Dpi(a = 1) = 07)

tage = 1)(p2(g2 — 1) — 6") py @ = Dipi(gr —1) — o)
ti(q — Dpa(q — 1) —0%) 72 t2(q2 — 1) '

24+1+141 — 34141

g2 —

0° — 05 +c72, 08 — 0%, 077 — 05°, 03° — 05° — 05° — &2,

t) — —e My —e7 % ty —» —e Mty — % Hy, — —eH;,, Hy, — —cH,,,
1
1—eq’

1
1—

@ — pr— (L—eq)(e ' p(l—eq) + 6",

g2 — e p2— (1 —eq2) (e 'pa(l — eq2) + 6°).
2

2414141 — 24241
00 — —e71 0t = 00 et ty — ety Hy, — Hyy, He, — E_lth,

1
p1— (1 —@a){(1—-q)p1 + ‘91}7 q2 — *5, P2 — q2(ep2qa — e’ — 1).
2

q — 5
1—-q

24+2+1 — 342

0f — 72, 05° = 05° +e 2ty —e My —e % ty — e My, Hy, — eHy,, Hy, — eHy,,

e(p1q1 — p2qz — 07°) 1+ eqo -
q1 — , P1 — e(p1q1 7p2q2—9 1+5QQ + g2},
5(p1Q1 — P24z — efc)(l + qu) + q2 52q2 { ( 1 )( ) }

g2 — —tlga P2 — D 4,
o h

24+24+1 — 441

00 — —2:73 9 — 9°, 05° — 65° + 2673, t1 — —e 2o e 3, ty » e My + 675,

H, — —2H,,, H,, — ‘H, . q — D) - (g2 + ep1)(p2(g2 + ep1) — 6°)
t1 ta) to t1 q2+€p1; ep1 5

—p1(1+eqr) + e(p2ga + 07°)

=5 , p2— 1 —&%py.
1

q2 —
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3+14+1 — 342

0 — -1 0t =00+t =ty —ety, H, — — 'Hy,, Hy, — ¢ 'Hy, + Hy,,

q q1
q1 — €tip1 + g2, p1 — 717 P2 — p2+ —.
ety ety

3+14+1 — 4+1

3

3

0! — &6, 03° — 0° — e 0t —met1 —2e73, ty > —e My — e~

Hy — e 'Hy, Hy, — —eHy,, q1 — —ep1, p1 — € 'q1 —€ >, @2 — € 'qo, p2 — epo.
3+2 — 5

0° — 374, 03 — 03° — 3™ t1 —me St e Mo 4+e75, ty -ty — 372,

Hy — e Hy,, Hyy — —e YHyy + Hyyy, 1 — € 3qi+e7%, p1 — %p1 — e2qo, po = p2 —e tqr — 2672

4+1 — 5
3 3
6% — —8_12, Gfo — 9?0, t1 — —et1 + 6_2t2 + 16_8, to — —€2t2 + 58_47
Hy, — —e 'Hy,, Hy, —» —¢ °Hy, —¢ °Hy, —e %qo, 1 — —¢ 'q1 — /2, p1 = —e %o,
2G2 + 3 (q1q2 — p1) — €°05°

-2 -5 -8
€ ; € —t2)te¢ +e .
q2 — 1+ e3¢5 + 2(pa — 12) b2 — (p2 —t2) )1

A.2 Fuji-Suzuki system

1+1+1+1— 241+1
21,21,111, 111 — (2)(1), 111, 111

Ol — —e71 0 0 vl t s 1+4et, H— e H(H+t Y piq + p2g2)),

g1 — L+etq, pr—e 't p1, o —> 1+etqe, pa — e 't pa.
21,21,111,111 — (11)(1), 21,111

00 — 09— 09— 09 0" -7t —et, H—e 'H,

o — 1/q, pr — —qa(prg1 — ‘9(1) —05°), @2 — 1/q2, p2 — —q2(p2g2 — ‘950)

24+14+1— 3+1
(2)(1), 111,111 — ((11))((1)), 111

9? — 9(2) +e72, 98 — 9?, 0' - -2t — — Y42 H— —¢cH,

@1 = €q1, p1 — € 'p1, qa — £qa, P2 — € pa.
(11)(1),21, 111 — ((11))((1)), 111

0! =72 09 -0 —e? t - —e Mt —e? H— —cH,

q — p1— (1—eq) (0) +05° + e 'pas — pago) ,

l—egq’

qo — p2— (1—ceq) (05 +c'p1 — i) -

1—5111,
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(1)(1)(1), 21,21 — ((1)(1))((1)), 21
0F =72, 0° = 0° —e 2t — —e My —e7 % ty — —e My — e 2,

Ht1 — —€Ht1, Ht2 — —E‘:th,

1 1
qu p1— (1—€Q1) (%(1—5(11)4‘930), q2 —

D2
i (1= o) (2201 - ) + 0°)
— v (- ea) (21— cw) +63

q1 —

1—
24+14+1— 242
(11)(1), 21,111 — (11)(1), (11)(1)

Ol el 0 0 — e, 0 0, t—ct, H e L (H_IWM)

t
q1 q2
G — ——, p1 — —€tp1, G2 — ——, p2 — —€tpa.
et et
(D(1)(1),21,21 — (2)(1), (1)(1)(1)
00 - —c71 0t - 00 + et ty — ety to — eto, Hy — 6_1Ht1, H;, — 5_1Ht2,
1 1
1 N — —05).
e —eq(p1qr — 05°), @2 — o — £q2(p2q2 — 63°)
24+2— 4
(2)(1), (H)(D)(1) — ((LDO))N((1)))
0 — 2572, 05° — —03°, 05° — —03° t1 — —e7 — 676, to — —& oy — 676, Hy — —54Ht1, Hy, — —€4Ht2
a1 — e (L+e(q —05°/p1)), pr— ep1, g2 — e *(1+e(g2 — 05°/p2)), p2 — po.

3+1— 4
(M M)((1)), 21 — (W) (1))

0 -6 - - - - -
0° — —7°, 0° — 0 + ¢ 6t — ety — 2673, ty — ety — 272, Hy, — ¢ 'H, , H, — ¢ 'H,,,

1

G e e pi—ep, o — e g +eTd, po— epo.

A.3 Sasano system

14+1+414+1-2+1+1
31,22,22, 1111 — (2)(2),31, 1111

' -0 —c71 0t et = 14et, H— e Y(H A+t prgy + p2go)),
@ — 1+etq, pp—e 't p1, g2 — L+etq, pp — e 't pa.
31,22,22, 1111 — (11)(11), 31,22
0 — el 0° =00 —eh 0 — 00—t 05° — 070, 0° — 05°,
t — 1/et, H— —et?H — t(p1q1 + p2q2),
@1 — 1/etqe, pr — —etqa(paga — 0" — 05° — 03°), qa — 1/etqr, pr — —etqi(prqr — 05°).

31,22,22, 1111 — (111)(1), 22, 22

1
t— H—-e'H

00 — el 0t =0, 6° - p® — 71, , ,
1—=¢t

-1 .
(1 —et) L —et 0 o0 00
Q1—>q1(176t),p1—>Q1( et)(prqn +6° + 0" + 07° + 65°),
qQﬁ&, p2—7q2(1—€t)(p2q2_91_9§0)
q2(1 — et)
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24+1+1— 3+1
(11)(11), 31,22 — ((11))((11)),31

0f — 72 0° =0 —e 2 05° —0° —e 2 t— —c Ht—e? H— —cH,

q1 — p1— (1 —eqz)(e 'pa(l — eq2) + 65°),

l—eq’

q2 — p2— (L—eq)(e ' pr(1 —eqr) + 65° + 65°).

l—eq’
(2)(2),31, 1111 — ((11))((11)), 31

Ol — —72,0° - 0° +72 0° -0 +e 2 t—» —e t—ec 2 H— —cH,

1 _
=g .= (L—eq)(e'pr —pign — 0° — 05° — 05°),
—E&q1
1 _
@2 = 7 . P2 — (1 —eq2) (e "2 — p2ga + 63°).
—EQ2
24+14+1— 242

(2)(2),31,1111 — (2)(2), (111)(1)

00 — el 0t =9, 0° -0 — et — —et, H— —e! (H _ i T P24z J;pzq?) ,
@ — e 't g, pr—etpr, g — et g, pa — etpo.
(111)(1), 22,22 — (2)(2), (111)(1)

00 - 0% -t 0t et t —et, H— e 'H,

1 1
q — “ p1— eqi(prqr +0° +605° +05°), g2 — “ P2 — q2(e(p2g2 — 05°) — 1).
1 2

A.4 matrix Painlevé system

14+14+1+1-2+41+1
22,22,22,211 — (2)(2), 22,211

0t e 0t -0t —e7 t > 14¢t, H— e 'H,
Q—1—¢cP, P—c1Q.

22,22,22,211 — (2)(11), 22, 22

0 — 1 0 = 0° —c t — (et)7!, H — —ct?H — et tr(PQ),
Q— (e1)7'Q7Y, P — —et(QP +6° +67°)Q.

24+1+1— 341
(2)(2), 22,211 — ((2))((2)), 211

0 -0 —c2 0w t e (—t+et), H— —cH,

Q—¢eQ, P—c P
(2)(2),22,211 — ((2))((11)), 22

' — 72,0 = 05° —c72 0° =0 —e 2t »e Y (—t—et), H— —¢(H+trP),

Q—(1+eP) ™, P {(P+e)(-P+Q+t)+0°+20° +c72 —1}(eP +1).
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(2)(11),22,22 — ((2))((11)), 22
O =72 0° -0 —c 2 t e (~t—cY), H— —¢H,
Q—(1-eQ) ", P={(Q-e )P +0"+6° —?}eQ —1).

24141242
(2)(2),22,211 — (2)(2),(2)(11)

00—t 0t 0% 0° - 0° —ct t —et, H—c'H Q— P, P— —Q.
(2)(11),22,22 — (2)(2), (2)(11)
0 — -1 0 -0+t t—»et, H—e 'H,
Q— (—eQ)™!, P —e(QP —<7' +67)Q.

24+2— 4
(2)(2), (2)(11) — (((2)))(((11)))

00 — 273 0 -0 42673t — —e M —eC H— —c'(H +t1Q),
Q—c31-eQ), P—eX(—P+Q+1).

3+1— 4
((2))((2)), 211 — (((2)))(((11)))

00 — 70 05° = 05°+70 0 -0 +e 0 t et -2 H—e'H,
Q—e'Q+e 3 P—ecP+30F - +1)n
((2))((11)),22 — (((2)))(((11)))

00 — —70, 0° 50 476 t et —273 H— e Y(H+ trQ),
Q— —'Q+e 3 P— —¢(P—-Q%—1t).
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