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Abstract

We prove that the 842 link complement is the minimal volume ori-
entable hyperbolic manifold with 4 cusps. Its volume is twice of the vol-
ume V8 of the ideal regular octahedron, i.e. 7.32... = 2V8. The proof
relies on Agol’s argument used to determine the minimal volume hyper-
bolic 3-manifolds with 2 cusps. We also need to estimate the volume of a
hyperbolic 3-manifold with totally geodesic boundary which contains an
essential surface with non-separating boundary.

1 Introduction

For hyperbolic 3-manifolds, their volumes are known as a topological invariant.
The structure of the set of the volumes of hyperbolic 3-manifolds is known.

Theorem 1.1. (Jørgensen-Thurston) (Benedetti-Petronio [4, corollary E.7.1
and corollary E.7.5]) The set of the volumes of orientable hyperbolic 3-manifolds
is a well-ordered set of the type ωω with respect to the order of R. The volume of
an orientable hyperbolic 3-manifold with n-cusps corresponds to an n-fold limit
ordinal.

This theorem gives rise to the problem of determining the minimal volume
orientable hyperbolic 3-manifolds with n cusps. The answers are known in the
cases where 0 ≤ n ≤ 2.

• In the case where n = 0 (closed manifold),

Gabai, Meyerhoff and Milley [9] showed that the Weeks manifold has the
minimal volume. Its volume is 0.94....

• In the case where n = 1,

Cao and Meyerhoff [6] showed that the figure-eight knot complement and
the manifold obtained by the (5,1)-Dehn surgery from the Whitehead link
complement have the minimal volume. Their volume is 2.02... = 2V3,
where V3 is the volume of the ideal regular tetrahedron.

• In the case where n = 2,

Agol [2] showed that the Whitehead link complement and the (−2,3,8)-
pretzel link complement have the minimal volume. Their volume is 3.66... =
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Figure 1: The 842 link and a link whose complement is homeomorphic to that of
the 842 link

4
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k=0
(−1)k

(2k+1)2 = V8, where V8 is the volume of the ideal regular octahe-

dron.

In the case where n ≥ 3, Adams [1] showed that the volume of an n-cusped
hyperbolic 3-manifold is not less than nV3. Agol [2] conjectured the following:

• In the case where 3 ≤ n ≤ 10,

the minimally twisted hyperbolic chain link complement has the minimal
volume.

• In the case where n ≥ 11,

the (n− 1)-fold covering of Whitehead link complement has the minimal
volume.

In this paper, we prove this conjecture in the case where n = 4.
Theorem 1.2. The minimal volume orientable hyperbolic 3-manifold with 4
cusps is homeomorphic to the 842 link complement. Its volume is 7.32... = 2V8.

We remark that this link is not unique one to determine the complement. For
example, the complement of the link on the right of Figure 1 is homeomorphic
to the 842 link complement.

We will prove Theorem 1.2 in Sections 4 and 5. The proof owes much to
Agol [2].

2 Review of Agol’s argument

In this section, we set up some notation and review the argument used by Agol
[2] to determine the minimal volume of 2-cusped hyperbolic 3-manifolds. We
treat compact smooth 3-manifolds with boundary and corner. We only consider
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surfaces in a compact 3-manifold which are properly embedded or contained in
the boundary. Let I = [0, 1].

Let M be a 3-manifold with boundary. For a properly embedded surface
X ⊂M , let M \\X denote the path-metric closure of M −X. We will say that
X is essential ifX is incompressible and ∂-incompressible and has no component
parallel to the boundary. Essential surfaces are not assumed to be connected.

A finite volume orientable hyperbolic 3-manifold can be the interior of a
compact 3-manifold with the boundary which consists of tori. Its boundary
component is called a cusp. When we say a hyperbolic manifold in what follows,
it often means this compact manifold. We also consider hyperbolic manifolds
with totally geodesic boundary. In this case there may be annular cusps which
adjoin the totally geodesic boundary. The double of a hyperbolic manifold M
with totally geodesic boundary is the manifold obtained from two copies 0f M
by gluing along the totally geodesic boundary. Then two annular cusps form
one torus cusp in its double.

We introduce the notion of pared manifolds. It was defined by Thurston
[18] to characterize a topological property of geometrically finite hyperbolic
manifolds.
Definition 2.1. (Thurston [18, Section 7], Morgan [15, Definition 4.8]) A pared
manifold is a pair (M,P ) such that

• M is a compact orientable irreducible 3-manifold,

• P ⊂ ∂M is a union of annuli and tori which are incompressible in M ,

• every abelian, noncyclic subgroup of π1(M) is peripheral with respect to
P (i.e. conjugate to a subgroup of the fundamental group of a component
of P ), and

• every map ϕ : (S1 × I, S1 × ∂I) → (M,P ) which induces injective maps
on the fundamental groups deforms, as maps of pairs, into P .

P is called the parabolic locus of the pared manifold (M,P ), and an annular
component of P is called a pared annulus. We denote by ∂0M the surface
∂M − int(P ).

A pared manifold (M,P ) is called acylindrical if every map ψ : (S1×I, S1×
∂I) → (M,∂0M) which induces injective maps on the foudamental groups de-
forms either into ∂0M or into P .

Since a finite volume orientable hyperbolic 3-manifold is atoroidal, it is a
pared manifold. Conversely the following holds:
Theorem 2.2. Let (M,P ) be an acylindrical Haken pared manifold, and assume
that ∂0M is incompressible. We assume that M is not a 3-ball, a T 2 × I or a
solid torus. Then M−P admits a finite volume hyperbolic structure with totally
geodesic boundary ∂0M . This hyperbolic structure is unique up to isometry.

Since the double DM of an acylindrical pared manifold (M,P ) is atoroidal,
DM admits a finite volume hyperbolic structure. Then the diffeomorphism
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swapping the two copies of M can be taken to be an isometry. The fixed point
set ∂0M is totally geodesic [Leininger 13, Lemma 2.6].

When a hyperbolic manifold is cut along an essential surface, the obtained
manifold is a pared manifold.
Lemma 2.3. (Agol [2, Lemma 3.2]) Let M be a finite volume orientable hy-
perbolic 3-manifold, and ∂M be the parabolic locus P of M . Let X ⊂ M be an
essential surface. Then (M \\X,P \\∂X) is a pared manifold.

Theorem 2.4. (JSJ decomposition for a pared manifold) (Jaco-Shalen [11], Jo-
hannson [12], Morgan [15, Section 11]) Let (M,P ) be a pared manifold such that
∂0M is incompressible. There is a canonical set of essential annuli (A, ∂A) ⊂
(M,∂0M) called the characteristic annuli. It is characterized up to isotopy by
the property that they are the maximal collection of non parallel essential annuli
such that every other essential annulus (B, ∂B) ⊂ (M,∂0M) may be relatively
isotoped to an annulus (B′, ∂B′) ⊂ (M,∂0M) so that B′ ∩ A = 0. Then each
complementary component (L, ∂0L) ⊂ (M \\A, ∂0M \\∂A) is one of the following
types:

1. (T 2 × I, (T 2 × I)∩ ∂0M), where one of the boundary components T 2 × ∂I
is a torus component of P .

2. (S1 × D2, (S1 × D2) ∩ ∂0M), which is a solid torus with annuli in the
boundary.

3. (I-bundle, ∂I-subbundle), which is an I-bundle over a surface whose Euler
characteristic is negative, and the I-bundle over the boundary is contained
in A ∪ P .

4. (L,L∩∂0M), where L has no essential annuli whose boundary is contained
in L ∩ ∂0M .

A neighborhood of a torus component of P is either of type 1 or of type 4.
One of the boundary components T 2 × ∂I of type 1 is a torus component of
P , and the intersection of the other boundary component and ∂0M is essential
annuli in the torus. The intersection (S1 ×D2) ∩ ∂0M in a component of type
2 is essential annuli in ∂(S1 ×D2). The union of components of type 3 is called
window. A component of type 4 is acylindrical pared manifold (L,L − ∂0M).
The union of the components of type 4 is called guts and denoted by Guts(M,P ).
A torus boundary component of the guts is a torus component of P .

The definition of guts in [2] is a bit different from ours. In [2] guts are defined
to be the union of types 1, 2 and 4. The definition in [3] is same as ours, and it
is appropriate for our purpose.

Let M be a finite volume orientable hyperbolic manifold. For an essential
surfaceX ⊂M , (M\\X,P \\∂X) is a pared manifold by Theorem 2.3. Therefore,
we can define Guts(X) = Guts(M \\X,P \\∂X). Then the components of
Guts(X) admit hyperbolic structures with geodesic boundary by Theorem 2.2.
Hence the volume vol(Guts(X)) is defined. This volume is not greater than the
volume of M .
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Theorem 2.5. (Agol-Storm-Thurston [3, Theorem 9.1]) Let M be a finite
volume orientable hyperbolic manifold, and X ⊂ M be an essential surface.
Then

vol(M) ≥ vol(Guts(X)) ≥ V8
2
|χ(∂Guts(X))|.

Moreover, the refinement by Calegari, Freedman and Walker [5, Theorem
5.5] implies that M is obtained from ideal regular octahedra by gluing along the
faces when the equality holds.

The estimate of vol(Guts(X)) from below in Theorem 2.5 follows from the
following theorem.
Theorem 2.6. (Miyamoto [14, Theorem 5.2]) Let M be a hyperbolic manifold
with totally geodesic boundary. Then vol(M) ≥ V8

2 |χ(∂M)|. Moreover, M is
obtained from ideal regular octahedra by gluing along their faces when the equality
holds.

Lemma 2.7. Let M be a finite volume orientable hyperbolic 3-manifold, and
X ⊂ M be a non-empty essential surface. Then each component of Guts(X)
has negative Euler characteristic.
Proof. Since the Euler characteristic of every closed 3-manifold is 0, χ(Guts(X)) =
1
2χ(∂Guts(X)). Assume that there is a component L of Guts(X) such that
χ(L) ≥ 0. Since no component of ∂Guts(X) is a sphere, χ(L) = 0 and ∂L
consists of tori. Since M is atoroidal, ∂L ⊂ ∂M . This implies L = M by
connectedness of M . This contradicts the fact that X is not empty. □

This lemma implies that χ(∂Guts(X)) ≤ −4 if Guts(X) is not connected.

We will use annular compressions to obtain a surface whose guts is not empty.
Definition 2.8. Let (X, ∂X) ⊂ (M,∂M) be an essential surface in a 3-
manifold. A compressing annulus is an embedding i : (S1 × I, S1 × {0}, S1 ×
{1}) ↪→ (M,X, ∂M) such that

• i∗ induces injective maps on π1,

• i(S1 × I) ∩X = i(S1 × {0}), and

• i(S1 × {0}) is not isotopic in X to ∂X.

An annular compression of (X, ∂X) ⊂ (M,∂M) is the surgery along a com-
pressing annulus i(S1 × I). Let U be a regular neighborhood of i(S1 × I) in
M \\X, and put ∂0U = ∂U ∩ (X ∪ ∂M) and ∂1U = ∂U − (X ∪ ∂M). Then the
surface X ′ = (X − ∂0U) ∪ ∂1U is called the annular compression of X. If X is
essential, X ′ is also essential. We will say that A0 = ∂U ∩ ∂M is the annulus
in the boundary created by the annular compression (Figure 2). This annulus
is not contained in the window of M \\X ′.
Lemma 2.9. ([2, Lemma 3.3]) Let M be a finite volume orientable hyperbolic
manifold. Let X ⊂M be an essential surface. If X has a compressing annulus,
let X ′ be the annular compression of X. Then the annulus in the boundary
created by this annular compression is not contained in the window of M \\X ′.
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i(S1 × I)

A0

Figure 2: An annular compression

The following lemma is used in the proof of [2, Theorem 3.4]. Lemmas 2.9
and 2.10 imply that a torus or an annulus in the boundary is contained in the
boundary of the gut regions after we perform annular compressions as many
times as possible.
Lemma 2.10. Let M and X be as above. We assume that a T 2× I component
or an S1×D2 component intersects a component T of ∂M . Then we can perform
an annular compression for X toward T .

The following theorem is a result in Culler-Shalen [8, Theorem 3]. We will
use it to find an essential surface to start the proof of Theorem 4.2.
Theorem 2.11. Let M be a finite volume orientable hyperbolic manifold with
n cusps, and let ∂M = T1 ∪ · · · ∪ Tn, where Ti is a torus for 1 ≤ i ≤ n. Let k
be an integer such that 1 ≤ k ≤ n. Then there is an essential surface X ⊂ M
such that ∂X ∩ Ti ̸= ∅ for 1 ≤ i ≤ k and ∂X ∩ (Tk+1 ∪ · · · ∪ Tn) = ∅.

3 Essential surfaces in 3-manifold with bound-
ary

In this section we find an essential surface in a hyperbolic 3-manifold with
geodesic boundary. Using this we will estimate the volume of a hyperbolic 3-
manifold with geodesic boundary with at least 4 cusps. Essential surfaces are
found by a homological argument for 3-manifolds, and it is not necessary to
assume the hyperbolic structure.
Lemma 3.1. (Hatcher [10, Lemma 3.5]) Let M be a compact orientable 3-
manifold. Then the rank of the boundary homomorphism ∂∗ : H2(M,∂M ;Q) →
H1(∂M ;Q) is half of the dimension of H1(∂M ;Q).
Lemma 3.2. Let L be an orientable hyperbolic 3-manifold with geodesic bound-
ary S, with k annular cusps A1, . . . , Ak and with n−k torus cusps Tk+1, . . . , Tn,
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where 1 ≤ k ≤ 3 and n ≥ 4. Assume that χ(S) = −2. Then there is an essential
surface Y ⊂ L such that Y ∩ S = ∅ and [∂Y ] ̸= 0 ∈ H1(∂L;Z).
Proof. The union S′ = S ∪A1 ∪ · · · ∪Ak is a closed surface of genus 2. We note
that there are only two types of essential closed curves in S′, one separates S′

and the other does not. There are no pairs of disjoint separating curves in S′.
We can take k−1 annuli of {A1, . . . , Ak} such that the complement of them

is connected. The image of ∂∗ : H2(L, ∂L;Q) → H1(∂L;Q) is an (n − k + 2)-
dimensional subspace of H1(∂L;Q) ∼= Q2(n−k)+4 by Lemma 3.1. We consider
the subspace V of H1(∂L;Q) spanned by all the elements represented by curves
in A1, . . . , Ak−1, Tk+1, . . . , Tn. Since the dimension of V is 2(n − k) + (k − 1),
V intersects Im(∂∗) in a non-trivial subspace of H1(∂L;Q). Hence there exists
a non-zero element z in H2(L, ∂L;Q) such that ∂∗z ̸= 0 and z belongs to V .
By taking a multiple of z, there exists a non-zero element z′ in H2(L, ∂L;Z)
such that ∂∗z

′ ̸= 0 and ∂∗z
′ is represented by a union of closed curves in

A1, . . . , Ak−1, Tk+1, . . . , Tn. We can find an essential surface Y representing
z′ such that ∂Y ⊂ A1 ∪ · · · ∪Ak−1 ∪ Tk+1 ∪ · · · ∪ Tn. □

4 Estimate of volume

Now we are going to estimate the volume of a hyperbolic manifold with geodesic
boundary. Lemma 3.2 and Theorem 4.1 imply that the volume of an orientable
hyperbolic 3-manifold with 4 cusps and with geodesic boundary is not less than
2V8.
Theorem 4.1. Let L be an orientable hyperbolic 3-manifold with geodesic
boundary S. Suppose that there is an essential surface Y ⊂ L such that Y ∩S = ∅
and [∂Y ] ̸= 0 ∈ H1(∂L;Z). Then there is an essential surface Y ′ such that
χ(∂Guts(L \\Y ′)) ≤ −4 and vol(L) ≥ 2V8.

If χ(S) ≤ −4, then vol(L) ≥ 2V8 by Theorem 2.6. Hence we may assume
that χ(S) = −2. Let S′ denote the surface which is the union of S and the
annular cusps of L. ∂L consists of S′ and the torus cusps of L.

We will find an essential surface Y ′ such that χ(∂Guts(L\\Y ′)) ≤ −4. Then
χ(∂Guts(DL\\(DY ′∪S)) ≤ −8, whereDL is the double of L (i.e. the hyperbolic
manifold obtained from two copies of L by gluing along the geodesic boundary
S) and DY ′ is the union of two copies of Y ′ in DL. Then Theorem 2.5 implies
vol(DL) ≥ 4V8, and so vol(L) ≥ 2V8.

We will find a gut component intersecting S. For this we need to know how
a window component intersects S.
Lemma 4.2. Let L, S and Y be as above. Assume that S intersects a component
(J, ∂0J) of the window of L \\Y . Then (J, ∂0J) is a product I-bundle and
intersects S only on one component of the ∂I-bundle.
Proof. Suppose that the base space of J is non-orientable. Since ∂0J is con-
nected, ∂0J ⊂ S. We take a simple closed curve α in J such that α is projected
to an orientation-reversing loop in the base space of J . There is a simple closed
curve β in ∂0J such that [β] = [α]2 ∈ π1(DL) ⊂ Isom+(H3). If β is homotopic
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to the boundary of ∂0J , the base space of J is a Möbius band. It contradicts
the definition of the window. Hence [β] ∈ π1(S) ⊂ Isom+(H2) is hyperbolic
element. The simple closed curve β is homotopic to a simple closed geodesic β′

in S [16, Theorem 9.6.5]. But the fact that [β′] = [α]2 contradicts the fact that
an element represented by a simple closed geodesic in a hyperbolic manifold has
no roots [16, Theorem 9.6.2]. Therefore no twisted I-bundle intersects S.

Suppose that the base space of J is orientable and both components Q0

and Q1 of ∂0J are contained in S. Since χ(Q0) = χ(Q1) < 0, there are (not
necessarily simple) closed curves γi ⊂ Qi (i = 0, 1) such that γi is not homotopic
to the boundary of Qi and γ0 and γ1 are homotopic in L. Let γ′i be the closed
geodesic in Qi homotopic to γi. Since L is totally geodesic, the two closed
geodesics γ′0 and γ′1 are homotopic in L. It contradicts the uniqueness of the
closed geodesic in a homotopy class. Therefore a product I-bundle intersects S
on at most one side of the ∂I-bundle. □
Proof of Theorem 4.1. Let Y0 be an essential surface in L such that Y0 ∩ S =
∅ and [∂Y0] ̸= 0 ∈ H1(∂L;Z). Moreover let |χ(Y0)| be minimal among the
surfaces satisfying these conditions. Since L has no essential sphere, disk, torus
or annulus, χ(Y0) < 0. Let p : L \\Y0 → L be the natural projection.

(i) First we consider the case where S intersects a component (J, ∂0J) of
the window of L \\Y0. Then χ(J) is equal to −1 or −2. We will show that
χ(J) = −1. Assume that χ(J) = −2. S ∩ p(J) is a 2-punctured torus or
a 4-punctured sphere. (If it is a closed surface, Y0 ∩ p(J) is a component of
Y0 which is parallel to S′. It contradicts that Y0 is essential.) Let Y ′

0 be the
surface which is the union of Y0 − (Y0 ∩ p(J)) and annuli (Figure 3). If there
is an annulus in L − Y0 whose boundary is two components of the frontier of
Y0 − (Y0 ∩ p(J)), we glue Y0 − (Y0 ∩ p(J)) and this annulus (the upper of Figure
3). Since Y0∩p(J) is connected, the orientation matches. Otherwise, there is an
annular cusp which is homotopic to the frontier of Y0−(Y0∩p(J)). Then we can
glue Y0− (Y0∩p(J)) and the two annuli, where on of the boundary components
of each annulus is contained in this annular cusp (the lower of Figure 3). Then
[Y ′

0 , ∂Y
′
0 ] = [Y0, ∂Y0] ∈ H2(L, ∂L;Z). We obtain an essential surface from Y ′

0 by
compressing if necessary. Then |χ(Y ′

0)| < |χ(Y0)|, contradicting the choice of
Y0. Therefore χ(J) = −1.

We will find an essential surface Y1 such that S intersects only one component
of the window of L \\Y1. If S intersects only one component of the window
of L \\Y0 already, put Y1 = Y0. Suppose that S intersects two components
(J, ∂0J) and (J ′, ∂0J

′) of the window of L \\Y0. Let Y ′
0 the surface which is the

union of Y0 − (Y0 ∩ p(J)) and a surface in p(J ′) (Figure 4). Then [Y ′
0 , ∂Y

′
0 ] =

[Y0, ∂Y0] ∈ H2(L, ∂L;Z). Note that since the orientation may not match, we
cannot construct a surface as Figure 3. If Y ′

0 is not essential, we obtain an
essential surface smaller than Y0 by compressing Y ′

0 . Since it contradicts the
choice of Y0, Y

′
0 is essential.

Suppose that S intersects two components of the window of L \\Y ′
0 again.

Then one of these two components is contained in p(J ′). We can perform the
above construction again and remove a part of Y ′

0 which is contained in the
boundary of the window. Since no I-bundle can intersect S essentially along
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Y ′
0
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Y ′
0

S′
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Figure 3: Constructions in the case where S intersects a component of the
window whose Euler characteristic is −2

S′

Y0

Y ′
0

S′

Y0

annular cusp

Y ′
0

S′

S′J J ′

J J ′

Figure 4: Constructions in the case where S intersects 2 components of the
window whose Euler characteristics are −1

9



both components of the boundary by Lemma 4.2, the part of the obtained sur-
face in p(J ′) is not contained in the boundary of the component of the window
which intersects S and lies on the same side as p(J). Hence the above construc-
tion can be performed only finitely many times.

Let Y1 be the essential surface obtained by performing the above construction
as many times as possible. The Euler characteristic of the intersection of S
and the window of L \\Y1 equals −1. Therefore the Euler characteristic of the
intersection of S and Guts(L\\Y1) is equal to−1. In particular, Guts(L\\Y1) ̸= ∅.

We will find an essential surface Y2 such that χ(∂Guts(L \\Y2)) ≤ −4. If
χ(∂Guts(L \\Y1)) ≤ −4, put Y2 = Y1. Suppose that χ(∂Guts(L \\Y1)) = −2.
Since the Euler characteristic of ∂Guts(L \\Y1)− S′ is equal to −1, it is either
a 1-punctured torus or a 3-punctured sphere.

Suppose that ∂Guts(L \\Y1) − S′ is a 1-punctured torus. Then ∂Guts(L \
\Y1)−S′ can contain a pared annulus, and Y1 ∩∂Guts(L \\Y1) is a 1-punctured
torus or a 3-punctured sphere. If Y1 ∩ ∂Guts(L \\Y1) is a 1-punctured torus, let
Y ′
1 be the surface which is the union of Y1 − (Y1 ∩ ∂Guts(L \\Y1)) and a surface

in p(J ′) (Figure 5). If Y1 ∩ ∂Guts(L \\Y1) is a 3-punctured sphere, we obtain
the surface Ỹ1 by modifying Y1 around the pared annulus in ∂Guts(L \\Y1)−S′

(Figure 6). Here Ỹ1 ∩ ∂Guts(L \\Y1) is a 1-punctured sphere. Thus we obtain
an essential surface Y ′

1 as the union of Ỹ1 − (Ỹ1 ∩ ∂Guts(L \\Y1)) and a surface
in p(J ′) (Figure 5).

Suppose that ∂Guts(L\\Y1)−S′ is a 3-punctured sphere. ∂Guts(L\\Y1)−S′

does not contain a pared annulus. Let Y ′
1 be the surface which is the union of

Y1 − (Y1 ∩ ∂Guts(L \\Y1)) and a surface in p(J ′).
We have obtained a surface ∂Y ′

1 in these ways. Then [Y ′
1 , ∂Y

′
1 ] ̸= [Y1, ∂Y1] ∈

H2(L, ∂L;Z) in general, but [∂Y ′
1 ] = [∂Y1] ̸= 0 ∈ H1(∂L;Z). Since |χ(Y1)| =

|χ(Y0)|, Y1 is essential.
Since Y1 ∩ ∂Guts(L \\Y1) cannot be contained in the window of L \\Y ′

1 ,
S ∩ ∂Guts(L \\Y1) is not contained in the window of L \\Y ′

1 . Hence we can
consider that Guts(L \\Y ′

1) contains S ∩ ∂Guts(L \\Y1). Since Y1 is essential,
the added surface in the window is not contained in Y ′

1 ∩ ∂Guts(L \\Y ′
1). Hence

the above construction can be performed only finitely many times.
Let Y2 be the essential surface obtained by performing the above construction

as many times as possible. Then χ(∂Guts(L \\Y2)) is no longer equal to −2,
and χ(∂Guts(L \\Y2)) ≤ −4.

(ii) Suppose that S intersects no component of the window of L \\Y0. Then
χ(Guts(L\\Y0)∩S) = −2. Assume that χ(∂Guts(L\\Y0)) = −2. ∂Guts(L\\Y0)
is a closed surface which is the union of a surface in S and annuli. since L is
atoroidal, ∂Guts(L \\Y0) contains the closed surface S′. Hence ∂Guts(L \\Y0)
consists of S′ and some torus cusps of L. The connectivity of L implies that
L = Guts(L \\Y0). It contradicts that Y0 is non-empty. Therefore χ(∂Guts(L \\
Y0)) ≤ −4. □

We prove the essential part of Theorem 1.2.
Theorem 4.3. Let M be an orientable hyperbolic manifold with 4 cusps. Then
vol(M) ≥ 2V8. Moreover, if vol(M) = 2V8, M is obtained from two ideal regular
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S′
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1

Figure 5: Constructions in the case where ∂Guts(L \\Y1) = −2

Y1 pared annulus
Ỹ1

Figure 6: A construction around a pared annulus in ∂Guts(L \\Y1)− S′
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octahedra by gluing along the faces.
Proof. It is sufficient to find an essential surface X ⊂M such that χ(∂Guts(X))
≤ −4. Then Theorem 4.3 follows from Theorem 2.5.

Let T1, . . . , T4 be the cusps of M . We take an essential surface X0 such that
X0 ∩ T1 ̸= ∅ and X0 ∩ Ti = ∅(2 ≤ i ≤ 4) by Theorem 2.11. We perform annular
compressions for X0 as many times as possible to obtain an essential surface X1.
When annular compression is performed, the number of boundary components
of the surface increases and its Euler charactersitic does not change. Since
the Euler characteristic of each component of the obtained essential surface is
negative, annular compressions can be performed only finitely many times.

We will show that Guts(X1) intersects T2, . . . , T4. Let k be the number of
the cusps intersecting X1(1 ≤ k ≤ 4). Let T1, . . . , Tk be the cusps intersecting
X1. Let A2, . . . , Ak be the annuli in T2 \\∂X1, . . . , Tk \\∂X1 created by the
last annular compressions to T2, . . . , Tk. Since there are no compressing annuli
any more, Lemma 2.10 implies that A2, . . . , Ak are not contained in a solid
torus component of the JSJ decomposition of M \\X1 and Tk+1, . . . , T4 are not
contained in a T 2 × I component of it. Since compressing annuli to different
cusps can be taken disjointly, we may change the order of annular compressions
to different cusps. By Lemma 2.9, A2, . . . , Ak are not contained in the window
of M \\X1. Therefore A2, . . . , Ak, Tk+1, . . . , T4 ⊂ ∂Guts(X1).

If Guts(X1) is not connected, then χ(∂Guts(X1)) ≤ −4 as desired. Suppose
that Guts(X1) is connected. Then A2, . . . , Ak, Tk+1, . . . , T4 are contained in
one component N of M \\X1. We will find an essential surface X2 such that
∂Guts(X2) contains at least 4 pared components.

(i) Suppose that (T1 \\∂X1)∩N ̸= ∅. If N = Guts(X1), let A1 be an annulus
which is a component of (T1 \\∂X1) ∩ N . Otherwise let A1 be an separating
annulus of the JSJ decomposition intersecting Guts(X1). In either case, A1 is
a pared annulus of Guts(X1) different from A2, . . . , Ak. Then it is sufficient to
put X2 = X1.

(ii) Suppose that (T1 \\∂X1) ∩ N = ∅. Let X ′
1 = X1 ∩ p(N), where p :

M \\X1 → M is the natural projection. Then X ′
1 is an essential surface in M

and T1 ∩X ′
1 = ∅. X ′

1 is the union of the components of X1 intersecting N . If
we cannot perform an annular compression for X ′

1 to T1, Guts(X ′
1) contains a

neighbourhood of T1 which is in the complement of N . Since Guts(X ′
1) is not

connected, χ(∂Guts(X ′
1)) ≤ −4. Then it is sufficient to put X2 = X ′

1.
If we can perform an annular compression for X ′

1 to T1, we obtain X2 by
performing annular compressions to T1 as many times as possible. Let A1

be the innermost annulus in T1. Since X1 is obtained by performing annular
compressions as many times as possible, there is no compressing annulus for X ′

1

to A2, . . . , Ak, Tk+1, . . . , T4 in p(N). Hence there is no compressing annulus for
X2 to A2, . . . , Ak, Tk+1, . . . , T4 in p(N). Since the surface which is obtained by
filling X ′

1 with A2, . . . , Ak consists of components of a surface in the process
of the annular compression from X0 to X1, it is essential. This implies that
A1, . . . , Ak is not contained in the window of M \\X2 by Lemma 4.3. Therefore
A1, . . . , Ak, Tk+1, . . . , T4 ⊂ Guts(X2).

Finally, we will find an essential surface X such that χ(∂Guts(X)) ≤ −4. If
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Figure 7: A construction of an essential surface the boundary of whose guts is
no more than −4

k = 4, the 4 annuli A1, . . . , A4 are disjoint and not homotopic each other in the
non-torus components of ∂Guts(X2). This implies that χ(∂Guts(X2)) ≤ −4.
Then It is sufficient to put X = X2.

If 1 ≤ k ≤ 3, vol(Guts(X2)) ≥ 2V8 by Theorem 4.1. Therefore vol(M) ≥ 2V8
by Theorem 2.5. But we need to findX in order to prove thatM is obtained from
2 octahedra when the equality holds. Lemma 3.2 and Theorem 4.1 imply that
there is an essential surface Y in Guts(X2) such that χ(∂Guts(Guts(X2)\\Y )) ≤
−4. Then Y intersects some ofA1, . . . , Ak, Tk+1, . . . , T4, whereA2, . . . , Ak, Tk+1, . . . , T4
is contained in ∂M . If A1 is contained in ∂M or does not intersect Y , X3 ∪ Y
is properly embedded in M . Since Guts(X2 ∪ Y ) = Guts(Guts(X2) \\Y ),
χ(∂Guts(X2 ∪ Y )) ≤ −4. Then it is sufficient to let X = X2 ∪ Y . If A1 is
contained in the interior of M and intersects Y , X3 ∪ Y is not properly em-
bedded in M . Suppose that A1 ∩ Y is the union of l simple closed curves.
Let X be the union of 2 surfaces parallel to Y , X2 ∩ ∂Guts(X2) and l + 1
times of X2 − ∂Guts(X2) (Figure 7). Since Guts(X) is homeomorphic to
Guts(Guts(X2) \\Y ), χ(∂Guts(X)) ≤ −4. □

5 Realization of hyperbolic manifold

In this section we will prove that an orientable hyperbolic 3-manifold obtained
from 2 ideal regular octahedra by gluing along the faces is homeomorphic to the
complement of the 842 link. This completes the proof of Theorem 1.2.

Thurston calculated the volume of the complement of the 842 link in [17, Ch.
6, Example 6.8.6] and it is equal to 2V8. Moreover, SnapPy [7] has the list of
the orientable hyperbolic 3-manifolds obtained from 8 ideal regular tetrahedra
by gluing along the faces. These imply the uniqueness of the minimal volume
orientable hyperbolic 3-manifold with 4 cusps, but we prove it here by an ele-
mentary argument examining the possible ways of gluing along the faces of 2
octahedra.
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Figure 8: Gluings of the faces around vertices which are glued together

The 12 vertices of the 2 octahedra correspond the 4 cusps of the hyperbolic
manifold. We look at the number of vertices corresponding to each cusp. Since
the edge angles of an ideal regular octahedron are right angles, 4 edges of the 2
octahedra should be glued together.
Claim 5.1. If there is a cusp consisting of 1 vertex x, the faces around x are
glued as in the upper part of Figure 8. If there is a cusp consisting of 2 vertices
a and b, the faces around a and b are glued as in the lower part of Figure 8.
Proof. If there is a cusp consisting of 1 vertex x, the 4 edges around x are glued
together, and each face around x is glued with the opposite face.

Suppose there is a cusp consisting of 2 vertices a and b. Assume that a and b
are contained in one octahedron. If a and b are adjacent, no edges can be glued
with the edge between a and b. If b is opposite to a, we can glue no pairs of faces
which are contained in different octahedra. This contradicts the connectivity.
Hence a and b are contained in different octahedra.

We consider how the 8 edges around a are b are glued. Since a and b are
glued, the 4 edges around a cannot be glued together. If 3 edges around a and
1 edge around b are glued together, 2 adjacent faces around a are glued (the left
of Figure 9). Then the edge between the 2 faces can be glued with no edges.
Hence 2 edges around a and 2 edges around b are glued together. Assume that
adjacent edges around a are glued. Let x and y be the vertices opposite to a
and b respectively. If x and y form 2 cusps with themselves, there are 2 edges

14
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x y

Figure 9: An impossible example in the case where 2 vertices form a cusp

glued with no other edges. Since there are 4 cusps, there is a cusp consisting
of x and y. There are 2 edges glued with no other edges even in this case (the
right of Figure 9). Therefore opposite edges around a are glued and the way of
gluing is determined. □
Claim 5.2. There is no cusp consisting of 3 vertices.
Proof. Assume that there is a cusp consisting of 3 vertices a, b and c. If a, b and
c are vertices of one octahedron, 2 positions are possible (the left of Figure 10).
If a, b and c are the vertices of one face, this face cannot be glued with another
face. Otherwise, at least one of a, b and c is contained in a face of the octahedron
containing a, b and c. This implies that no pair of faces of different octahedra
can be glued. Hence a, b and c are not contained in one octahedron. We assume
that b and c are contained in one octahedron without loss of generality. Then 2
positions are possible (the right of Figure 10). If b and c are adjacent, no edges
can be glued with the edge between b and c. Hence c are opposite to b. Let x
be the vertex opposite to a. Since only the 4 faces around x do not contain a,
b or c, the 4 faces cannot be glued with any faces of the other octahedron.

Assume that x does not form a cusp with itself. Suppose that adjacent faces
around x are glued. Then the 5 vertices except a of the octahedron containing
a are glued together. There are 2 vertices y and z which form 2 cusps with
themselves on the octahedron containing b and c. The 4 vertices around y are
glued together by Claim 5.1 (Figure 11). This contradicts that b is glued only
with a and c. Hence opposite faces around x are glued.

Suppose that opposite faces A and B around x are glued twistedly, i.e. the
2 vertices corresponding with x in A and B are not glued. Then 2 opposite
vertices on the octahedron containing a are glued with x. Since the 5 vertices
except a of the octahedron containing a cannot be glued together, the other
faces C and D around x are glued twistedly. The 4 faces around a are glued
with faces of the other octahedron because of the correspondence of the vertices
and the fact that adjacent faces around a cannot be glued. Hence there is a
vertex which forms a cusp with itself on the octahedron containing b and c
(Figure 12). This contradicts that b is glued only with a and c.

Hence x forms a cusp with itself. Since 4 edges are glued together, the faces
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Figure 11: It is impossible that 5 vertices of an octahedron are glued together.
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Figure 12: It is impossible that opposite faces are glued twistedly.
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Figure 13: The way of gluing of the octahedra (i)

around a are glued with faces of the other octahedron. At least 3 vertices of
the octahedron containing b and c are glued with the 4 vertices except a and x.
Since we must obtain 4 cusps, there is a vertex which form a cusp with itself.
It is contradiction. □

Claim 5.2 implies that there is a cusp consisting of 1 or 2 vertices. Suppose
that there is a cusp consisting of 1 vertex x. The 4 vertices around x are glued
together. The 4 faces A,B,C and D around the vertex a opposite to x are glued
with faces of the other octahedron. a is glued with only 1 vertex b because of
Claim 5.2 and the fact that 7 vertices are glued. Since the 8 vertices around
a and b are glued together, the vertex y opposite to b forms a cusp with itself.
The numbers of the vertices corresponding the cusps are 1, 1, 2 and 8. By Claim
5.1 the way of gluing is determined as Figure 13 (i).

Suppose that there is no cusp consisting of 1 vertex. Then there is a cusp
consisting of 2 vertices a and b. A,A′, B,B′, C, C ′, D and D′ around a and b
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Figure 14: The way of gluing of the octahedra (ii)

are glued as Figure 8. Since no cusp consists of 1 vertex, the 2 vertices x and y
opposite to a and b respectively are glued together. The numbers of the vertices
corresponding the cusps are 2, 2, 4 and 4. The face E adjacent to A is glued
with the face E′ adjacent to B′ because of the correspondence of the vertices
and edges. The way of gluing is determined as Figure 14 (ii).

Both cases of (i) and (ii) give homeomorphic spaces by Figure 15 and they
are the 842 link complements by Figure 16.
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