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Abstract. Let z = f(x, y) be a germ of a C5-surface at the origin in R3 con-
taining several continuous families of circular arcs. For examples, we have a usual
torus with 4 such families and R. Blum’s cyclide with 6 such families. We intro-
duce a system of fifth-order nonlinear partial di↵erential equations for f , and prove
that this system of equations describes such a surface germ completely. As appli-
cations, we obtain the analyticity of f , the finite dimensionality of the solution
space of such a system of di↵erential equations with an upper estimate 21 for the
dimension. Further we prove the non-integrability of the systems corresponding
the surfaces including six continuous families of circular arcs; this result implies a
local characterization of Darboux cyclides.

1. Introduction

In 1848, Yvon Villarceau [12] found that a usual torus includes 4 continuous families

of circles passing through every point of the surface; of course, only two of them are

new. These new circles, so called Villarceau circles, are slanted against the rotation

axis and are not perpendicular to this axis (see Figure 1). Further in 1980, Richard

Blum [1] found that some special cyclides include 4⇠6 continuous families of circles

passing through every point of them (see Figure 2). Here, a general cyclide is defined

by a quartic equation

↵(x2
1 + x2

2 + x2
3)

2 + 2(x2
1 + x2

2 + x2
3)

3X
i=1

�ixi +

3X
i,j=1

�ijxixj + 2

3X
i=1

�ixi + ✏ = 0 (1.1)

Figure 1. A torus and Villarsceau circles
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Figure 2. An example of Blum cyclides:

(x2 + y2 + z2)2 � 6x2 � 4y2 + 4z2 + 1 = 0.

with real numbers ↵ 6= 0,�i, �ij , �i, ✏ (Darboux [2]). Then a usual torus and a 6-circle

Blum cyclide correspond to the case ↵ = 1,�⇤ = 0, �⇤ = 0, �ij = �2ai�ij , ✏ = a2
4 with

0 < a4 < a1 = a2, a3 = �a4, and to that with 0 < a4 < a2 < a1, �a4 6= a3 < a4,

respectively. At the same time, R. Blum gave the following conjecture in [1]:

Conjecture 1. A closed C1-surface in R3 which contains seven circles through each

point is a sphere.

N. Takeuchi [9] (and [11]:the survey of Takeuchi’s results) solved this conjecture

a�rmatively for closed surfaces with genus g  1 by using the intersection number

theory for 1-dimensional homotopy groups. Further, replacing 1-dimensional homo-

topy groups by 1-dimensional homology groups with Z2-coe�cients, we obtained the

following extension in [3]:

Theorem 1.1. We have some positive integer Ng ( 22g+1� 1) for any g = 1, 2, 3, . . .
such that, for 8g � 1, there is no closed surface with genus g in E3 which contains Ng

circles through each point. In particular, we can take N2 = 11.

Moreover, this is strengthened to the following theorem, which is a direct corollary

of Theorem 2.4 in the present paper:

Theorem 1.2. There is no C4-surface in E3 other than totally umbilical surfaces,

which contains 11 circular arcs or line-segments through each point. Here, a totally

umbilical surface means an open subset of a sphere or a plane in E3.

Proof. If a surface M ⇢ E3 satisfying all the conditions in the statement is not totally

umbilical, then there is a non-umbilical point p 2 M . Apply Theorem 2.4 to M at

p. Then we have a contradiction concerning the upper estimate 10 for the number of

circular arcs or line segments on M passing through p. This completes the proof. ⇤

On the other hand, the geometric key tool (Theorem 1 in [8]) in the proof in [9]

can be generalized to the following; that is, the condition “any two of three circles

satisfy some conditions” can be replaced by “either one of three circles satisfies some

conditions with any of other circles”.

Proposition 1.3. Let M be a C1 surface in E3. Suppose that, through each point of

M , there exist three circles of E3 contained in M , and that either one circle of them is

tangent to others or have two points in common. Then M is a totally umbilical surface.

Proof. Let p be any point of M . Suppose that there exist three circles C,C1, C2 passing

through p included in M such that, for each i = 1, 2, C is tangent to Ci at p, or have

two points in common with Ci. Let Si be the sphere (or the plane) including C [ Ci

for each i = 1, 2. If C is tangent to Ci at p, then by Meusnier’s theorem we have that
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Figure 3. The example of a non-cyclide:

(x2 + y2 + z2)2 � 4y2z2 � 4x2 = 0.
This surface has the singularities along x = 0, y = ±z.

Si is the curvature sphere for M at p concerning the common tangent line to C and

Ci. Note that the tangent plane at p to M coincides with the one to Si, and that S1

and S2 include C, respectively. Thus we have S1 = S2. Hence, any two of C,C1, C2

are tangent to each other at p, or have two points in common. Therefore, M satisfies

the conditions in Theorem 1 of [8]. This completes the proof. ⇤

In October 2011, we found in the internet arXiv (110.2338v1) with title:

A surface containing a line and a circle through each point is a quadric

by Fedor Nilov and Mikhail Skopenkov concerning surfaces including several circular

arcs. They found a surface which is not a cyclide, but includes 2 families of circles (see

Figure 3):

(x2 + y2 + z2)2 � 4y2z2 � 4x2 = 0.

Indeed, since we can rewrite this as

x =
p

1� y2 +
p

1� z2,

y = y0, or z = z0 becomes a circle.

Further they proved the following (Theorem 4.3):

Theorem 1.4. Let � be a smooth closed surface in R3 homeomorphic to either a

sphere or a torus. If through each point of the surface one can draw at least 4 distinct

circles fully contained in the surface (and continuously depending on the point)

then the surface is a cyclide.

They extended Takeuchi’s idea on intersection numbers of fundamental groups and

used a classical theorem on the relationship between cospherical circles and cyclides.

So the proof relies on the global information of the surface. On the other hand their

counter example is not a closed surface, but a surface with singularities. At the same

time, they gave a conjecture (also see [7]):

Conjecture 2. 3 distinct continuous families of circles =) cyclides

Our aim is to solve such conjectures or to find all the surface germs containing several

continuous families of circular arcs only by using elementary calculus and di↵erential

equations. In particular we do not use any topological information of the surfaces;

closeness, genus e.t.c..

The plan of this paper is the following: In Section 2, we give the main results The-

orems 2.2, 2.3, 2.4, 2.6, 2.7, 2.10 with the necessary definition Definition 2.1. Section

3 is devoted to the study of fundamental properties concerning circles and surfaces in-

cluding the proofs of Theorems 2.2, 2.3, 2.4. Further, Section 4 is devoted to the study
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concerning our fifth order partial di↵erential equations including the proofs of Theo-

rems 2.6, 2.7. In Section 5, we give some important propositions concerning general

cyclides and the proof of Theorem 2.10. Some of our proofs require heavy calculations,

and so for the readers to check the calculations we prepare three Mathematica source

files and their pdf versions “check-fifth1⇠3” in the following websites for download:

http://www.u-gakugei.ac.jp/~nobuko/manycircles.html

http://agusta.ms.u-tokyo.ac.jp/microlocal/manycircles.html

2. Main results

Definition 2.1. (The key polynomial Z(T )). Let z = f(x, y) be a C4-class function

defined in a neighborhood of (0, 0) 2 R2. Put the Taylor coe�cients of f at (x, y) as

follows: 8>>>>>>>><
>>>>>>>>:

a := fx(x, y), b := fy(x, y),

c0 := fxx(x, y)/2, c1 := fxy(x, y), c2 := fyy(x, y)/2,

d0 := fxxx(x, y)/3!, d1 := fxxy(x, y)/2!,

d2 := fxyy(x, y)/2!, d3 := fyyy(x, y)/3!,

e0 := fxxxx(x, y)/4!, e1 := fxxxy(x, y)/3!, e2 := fxxyy(x, y)/2!2,

e3 := fxyyy(x, y)/3!, e4 := fyyyy(x, y)/4!.

We define some polynomials C(T ), D(T ), E(T ), R(T ), S(T ),K(T ),W (T ) and the key

polynomial Z(T ) in T as follows:

C(T ) := c0 + c1T + c2T
2, D(T ) := d0 + d1T + d2T

2 + d3T
3,

E(T ) := e0 + e1T + e2T
2 + e3T

3 + e4T
4,

R(T ) := (b2 + 1)T 2 + 2abT + a2 + 1,

S(T ) := D(T )R(T )� 2(bT + a)C(T )2,

K(T ) := R0(T )C(T )�R(T )C 0(T ),

W (T ) := bS(T ) + C(T )K(T ) = 2TC(T )2 + (bD(T )� C 0(T )C(T ))R(T ),

where C 0(T ) = @T C(T ), R0(T ) = @T R(T ),...etc..

Z(T ) ⌘ Z(T ;x, y) :=

K(T )2
�
R(T )E(T )� C(T )3

�
+ R(T )K(T )D(T )

�
D0(T )R(T )

� 3(b2 + 1)TD(T )
�

+ D(T )2R(T )[�ab
�
2K(T ) + TK 0(T )

�
� 2(a2 + 1)(b2 + 1)C(T ) +

�
(a2 + 1)c2 + (b2 + 1)c0

�
R(T )]

+ 2R(T )C(T )[(bT + a){D(T )K 0(T )C(T ) + D(T )K(T )C 0(T )

�D0(T )K(T )C(T )}� bD(T )C(T )K(T )]

+ 4C(T )4(bT + a){
�
(a2 � 1)c2 + (b2 + 1)c0

�
(bT + a)

� 1

2
ac1R

0(T ) + 2a(c2 � c0)� bc1}.

It is easy to verify that (the degree of Z(T ) in T )  10. Consider a C4-surface germ

M = {z = f(x, y)} at (0, 0, f(0, 0)). We call

P (t) := Z(t; 0, 0)/(c0(0, 0)� c2(0, 0))

the characteristic polynomial of the surface germ M if

f(0, 0) = fx(0, 0) = fy(0, 0) = fxy(0, 0) = 0, (2.1)

and

fxx(0, 0)� fyy(0, 0) 6= 0. (2.2)
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Indeed, we can always get such conditions (2.1) after some suitable translation and

rotation of R3 for M . Further condition (2.2) means that the origin is not an umbilical

point of M under this expression of M . As we see in Proposition 3.6, we have a more

simplified form:

P (t) =(t2 + 1)
�
D(t){2t(t2 + 1)

�
D0(t)� (5t2 + 1)

�
D(t)}

+ 4(
�
c0 �

�
c2)t

2{(t2 + 1)
�
E(t)�

�
C(t)3}, (2.3)

where
�
cj := cj(0, 0),

�
C(t) := C(t; 0, 0), etc.. There are 16 choices of such Euclidean

coordinate systems for a non-umbilical surface germ, and all the variations of the

characteristic polynomials are

P (t), P (�t),�t10P (1/t),�t10P (�1/t)

(see Remark 3.7). In this sense, the set {t 2 R ;P (t) = 0, t 6= 0} is meaningful, and it

plays a decisive role in our theory. Under the additional condition

d0(0, 0) = d1(0, 0) = d2(0, 0) = d3(0, 0) = 0,

we have P (t) = 4(
�
c0 �

�
c2)t2Q(t) with a polynomial Q(t) of degree 6, which we call the

reduced characteristic polynomial:

Q(t) := (t2 + 1)
�
E(t)�

�
C(t)3. (2.4)

In Proposition 3.6, we will give some examples of characteristic polynomials which have

10 non-zero real distinct roots. On the other hand the characteristic polynomial of any

general cyclide germ have at most 6 non-zero real distinct roots (Proposition 5.2).

Then we have our main theorem:

Theorem 2.2. Let z = f(x, y) be a C4-function defined in U�0 = {x2 +y2 < �2
0} (�0 >

0) satisfying (2.1). Assume that the origin is not an umbilical point of M := {z =

f(x, y), (x, y) 2 U�0}, that is,

c0(0, 0)� c2(0, 0) =
1

2
(fxx(0, 0)� fyy(0, 0)) 6= 0.

Then we have the following (i), (ii), (iii).

(i) Let t0, s0 2 R. If

M \ {y = t0x + s0z} (2.5)

is a circular arc or a line segment in a neighborhood of the origin, then

Z(t0; 0, 0) = 0.

Further, if it is a circular arc, then C(t0; 0, 0) 6= 0 and under an additional

condition t0 6= 0 we have

s0 =
(t20 + 1)D(t0; 0, 0)

2(c0(0, 0)� c2(0, 0))t0C(t0; 0, 0)
.

If it is a line segment, then C(t0; 0, 0) = D(t0; 0, 0) = E(t0; 0, 0) = 0.

(ii) Let t(x, y), s(x, y) be real-valued continuous functions defined in a neighborhood

of (0, 0) such that, for some � > 0 and any (x0, y0) 2 U�, the set

M \ {y � y0 = t(x0, y0)(x� x0) + s(x0, y0)(z � f(x0, y0))} (2.6)

coincides with a circle in a neighborhood of (x0, y0, f(x0, y0)). Assume that

t(0, 0) 6= 0. Consider a continuous function

T (x, y) :=
t(x, y) + fx(x, y)s(x, y)

1� fy(x, y)s(x, y)
(2.7)
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defined in a neighborhood of (0, 0). Then, T (x, y), s(x, y), t(x, y) satisfy the fol-

lowing equations:

Z(T (x, y);x, y) = 0, (2.8)

s(x, y) =
S(T )

W (T )
, t(x, y) =

TK(T )C(T )� aS(T )

W (T )
. (2.9)

Moreover, if t(x, y), s(x, y) are constant on each circular arc (2.6), f is a C5-

function in U�0 and Z 0(t(0, 0); 0, 0) 6= 0, then T (x, y) is a C1-function in a neigh-

borhood of the origin satisfying the following equation:

(@x + T (x, y)@y)T (x, y) =
2S(T )

K(T )
. (2.10)

(iii) Conversely, let f(x, y) 2 C5(U�0), and let T (x, y) be a real-valued C1-function

defined in a neighborhood of (0, 0) satisfying T (0, 0) 6= 0, equations (2.8),(2.10).

Then, t(x, y), s(x, y) defined by (2.9) belong to C1(U�) for a small � > 0, and

satisfy that, for any (x0, y0) 2 U�, the set

M \ {y � y0 = t(x0, y0)(x� x0) + s(x0, y0)(z � f(x0, y0))}
coincides with a circle in a neighborhood of (x0, y0, f(x0, y0)), and that t(x, y), s(x, y)

are constant on this circular arc.

We also get a similar characterization for ruled surfaces.

Theorem 2.3. Let z = f(x, y) be a C3-function defined in U�0 = {x2 +y2 < �2
0} (�0 >

0) satisfying (2.1). Then we have the following (i), (ii).

(i) Let t(x, y), s(x, y) be real-valued C1-class functions defined in a neighborhood of

(0, 0) such that, for some � > 0 and any (x0, y0) 2 U�, the set

M \ {y � y0 = t(x0, y0)(x� x0) + s(x0, y0)(z � f(x0, y0))} (2.11)

coincides with a line in a neighborhood of (x0, y0, f(x0, y0)). Consider a C1-

function

T (x, y) :=
t(x, y) + fx(x, y)s(x, y)

1� fy(x, y)s(x, y)
(2.12)

defined in a neighborhood of (0, 0). Then, line segment (2.11) is included in

{y � y0 = T (x0, y0)(x� x0)}, (2.13)

and we have the following equations:(
C(T (x, y);x, y) = 0,

(@x + T (x, y)@y)T (x, y) = 0.
(2.14)

(ii) Conversely, let f(x, y) 2 C3(U�0), and let T (x, y) be a real-valued C1-function

defined in a neighborhood of (0, 0) satisfying equations (2.14). Then, for some

� > 0 and any (x0, y0) 2 U�, the set

M \ {y � y0 = T (x0, y0)(x� x0)}
coincides with a line in a neighborhood of (x0, y0, f(x0, y0)), and that T (x, y) is

constant on this line segment.

As applications of Theorem 2.2, we have the following theorems:

Theorem 2.4. Let M ⇢ R3 be a C4-surface germ at the origin of R3. Assume that the

origin is not an umbilical point of M . Then, the total number of circular arcs and line

segments (⇢ M) passing through the origin is less than or equal to 10. More precisely,

put

C :={C; C is a circle or a line in R3

6



such that (0, 0, 0) 2 C \ U� ⇢ M for a � > 0},
where U� := {(x, y, z) 2 R3 ;x2 + y2 + z2 < �2}. Then, we have #C  10.

Remark 2.5. It should be noted that our result is independent of any global structure

of M ; for example, free from closeness and genus of the surface. As we see in Proposition

3.6, there is a surface germ at the origin whose characteristic polynomial has 10 non-

zero real distinct roots. This means that Theorem 2.4 gives the best possible estimate

in the sense of the infinitesimal analysis because by Lemma 3.2 such a surface includes

infinitesimally 10 circles passing through the origin. Further we remark here that

Montaldi [5] has also gotten 10 as the upper limit of the number of circles for generic

surface germs by some categorical arguments. On the other hand, our result cover all

the non-umbilical surface germs.

Though equation (2.10)

(@x + T (x, y)@y)T (x, y) =
2S(T )

K(T )

looks like a first order PDE, this is a fifth-order PDE for f(x, y):

5X
j=0

✓
5

j

◆
T j@5�j

x @j
yf(x, y) =

24N(T )

R(T )K(T )3
. (2.15)

This is because T is an analytic function of rf,r2f,r3f,r4f through Z(T ) = 0.

Here N(T ) is a polynomial in T of degree 14 defined by

N(T ) :=�K(T )

0
@(@x + T@y)Z(T )� K(T )2R(T )

24

5X
j=0

✓
5

j

◆
T j@5�j

x @j
yf

1
A

� 2S(T )Z 0(T ), (2.16)

where (@x + T@y)Z(T ) := (@x + T@y)Z(T ;x, y) means a di↵erentiation for each coe�-

cient of Z(T ). It is easy to see that the degree of N(T ) in T is at most 14. As we give

an explicit form of N(T ) in Theorem 2.6, all the coe�cients of N(T ) are polynomials

of derivatives a, b, c⇤, d⇤, e⇤ of f(x, y) introduced in Definition 2.1.

Theorem 2.6. Let z = f(x, y) be a C5-class function defined in a neighborhood of

the origin satisfying (2.1). Assume that the origin is not an umbilical point of M :=

{z = f(x, y)}. Let P (t) be the characteristic polynomial at the origin. For an integer

` (1  `  10), we suppose that there exist ` non-zero real numbers {tk}`
k=1 satisfying

P (tk) = 0, P 0(tk) 6= 0 for each k = 1, . . . , `, and that M includes ` continuous families

of circular arcs associated with {tk}`
k=1. Let Tk(x, y) be the function T corresponding

to non-zero simple root tk; that is, Tk(0, 0) = tk (k = 1, ..., `). Then f is a solution of

the following system of fifth-order partial di↵erential equations:

8>>>><
>>>>:

Z(Tk(x, y)) = 0, Tk(0, 0) = tk,
5X

j=0

✓
5

j

◆
Tk(x, y)j@5�j

x @j
yf(x, y) =

24N(Tk(x, y))

R(Tk(x, y))K(Tk(x, y))3

(1  k  `),

(2.17)

where N(T ) defined at (2.16) is a polynomial in T of degree 14 with the following

explicit form:

N(T ) =

� 5R(T )K(T )2E0(T )
⇥
R(T )D(T )� 2(bT + a)C(T )2

⇤
+ D(T )3R(T )B1(T ) + 2D(T )2D0(T )R(T )2B2(T )

7



�D(T )2R(T )2K(T )
⇥
(3d3T + d2)

�
5R(T )� (b2 + 1)T 2

�
+ (d1T + 3d0)(b

2 + 1)
⇤
+ D(T )2B3(T )

+ 2(bT + a)D(T )D0(T )R(T )C(T )B4(T )

+ 10(bT + a)D(T )D00(T )R(T )2K(T )C(T )2 + D(T )B5(T )

� 4(bT + a)D0(T )R(T )K(T )C(T )3
⇥
5(bT + a)C 0(T ) + 2bC(T )

⇤
+ 4(bT + a)C(T )4K(T )

h
3d0B6(T ) + d1B7(T ) + d2B8(T )

� 3d3TB9(T )
i

+ 4C(T )4B10(T ).

Here, a, b, c⇤, d⇤, e⇤ are the higher-order derivatives of f(x, y), and C(T ), C 0(T ), D(T ),
D0(T ), D00(T ), E(T ), E0(T ), R(T ), R0(T ),K(T ),K 0(T ) are the polynomials in T (or their

derivatives in T ) with coe�cients in polynomials in a, b, c⇤, d⇤, e⇤, which are introduced

in Definition 2.1. Further, B1(T ), ..., B10(T ) are the polynomials in T, a, b, c⇤ given by

the following:

B1(T ) := K(T )
�
42(b2 + 1)R(T )� 20(a2 + b2 + 1)

 
� 4c2R(T )

�
3abR(T )� 2(a2 + b2 + 1� a2b2)T + 2ab(a2 + 1)

 
+ 2(b2 + 1)c1R(T ){3R(T ) + 4abT + 4a2 + 4}
� 4(b2 + 1)R(T )R0(T )c0,

B2(T ) := �
�
4(b2 + 1)T + 5ab

�
K(T )�

�
(b2 + 1)T 2 + a2 + 1

�
K 0(T )

+ 4(a2 + 1)(b2 + 1)C(T )� 2
�
(a2 + 1)c2 + (b2 + 1)c0

�
R(T ),

B3(T ) := K(T )2
�
� 4aR(T )C 0(T ) + 12(b2 + 1)(bT + a)TC(T )

+ 8ab(bT + a)C(T ) + 12bR(T )C(T ) + 2bR(T )(2c0 + c1T )
 

+ K(T )K 0(T )
�
4abT (bT + a)C(T )� 12(bT + a)R(T )C(T )

+ bTR(T )(2c0 + c1T ) + aTR(T )C 0(T )
 

+ K(T )
�
� 4a

�
b2 + 6

�
R(T )C(T )2 �

�
18(b2 + 1)T (bT + a)

+ 16ab(bT + a)� 4b(a2 + 1)
�
R(T )C(T )C 0(T )

+ 8(a2 + 1)(b2 + 1)(bT + a)C(T )2 � 8(bT + a)
�
(a2 + 1)c2

+ (b2 + 1)c0

�
R(T )C(T ) + 4abT (bc1 � 2ac2)R(T )C(T )

+ 4a(b2 + 1)(2c0 + c1T )R(T )C(T )� 2ac2(2c0 + c1T )R(T )2

� 2bc0C
0(T )R(T )2 � 12(b2 + 1)(bT + a)TR0(T )C(T )2

� 8ab(bT + a)R0(T )C(T )2 � 4(bT + a)R(T )R0(T )C(T )C 0(T )

+ 4bR(T )R0(T )C(T )2 � 4(bT + a)R(T )2C 0(T )2

� 8c2(bT + a)R(T )2C(T ) + 4bR(T )2C(T )C 0(T )
 

� 2(bT + a)K 0(T )C(T )
�
2abTR0(T )C(T ) + 5R0(T )R(T )C(T )

+ 6R(T )2C 0(T )
 
� 4(bT + a)K 00(T )R(T )C(T )2

�
R(T ) + abT

�
� 8(a2 + 1)(b2 + 1)(bT + a)R0(T )C(T )3 + 8(bT + a)

�
(a2 + 1)c2

+ (b2 + 1)c0

�
R(T )R0(T )C(T )2

� 8(a2 + 1)(b2 + 1)(bT + a)R(T )C(T )2C 0(T ),

B4(T ) := 2
�
3(b2 + 1)T + 5ab

�
K(T )C(T ) + 5R(T )K(T )C 0(T )

+ 2
�
(b2 + 1)T 2 + a2 + 1

�
K 0(T )C(T )� 8(a2 + 1)(b2 + 1)C(T )2
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+ 4R(T )C(T )
�
(a2 + 1)c2 + (b2 + 1)c0

�
,

B5(T ) := 9C(T )2K(T )3 + K(T )2C(T )2
�
6R0(T )C(T ) + 4R(T )C 0(T )

+ 8b(bT + a)C(T )� 8(bT + a)2C 0(T )
 

� 8(bT + a)2K(T )K 0(T )C(T )3 + K(T )C(T )2
�
� 8(bT + a)(bc1

� 2ac2)R(T )C(T )� 8b(bT + a)R(T )C 0(T )C(T ) + 8b2R(T )C(T )2

� 4b(bT + a)R(T )C(T )C 0(T )� 48(bT + a)2C(T )
�
(a2 � 1)c2

+ (b2 + 1)c0

�
+ 24ac1(bT + a)R0(T )C(T )� 48(bT + a)C(T )

�
2a(c2

� c0)� bc1

�
+ 12(bT + a)2R(T )C 0(T )2 � 8b(bT + a)R0(T )C(T )2

+ 8(bT + a)2R0(T )C(T )C 0(T ) + 16c2(bT + a)2R(T )C(T )

� 8b(bT + a)R(T )C(T )C 0(T )
 

+ 8(bT + a)2K 0(T )C(T )3
�
R0(T )C(T ) + 3R(T )C 0(T )

 
+ 8(bT + a)2R(T )C(T )4K 00(T )

� 16b(bT + a)R(T )C(T )4
�
(a2 � 1)c2 + (b2 + 1)c0

�
� 32(bT + a)2R(T )C(T )3C 0(T )

�
(a2 � 1)c2 + (b2 + 1)c0

�
+ 16a(bT + a)R(T )R0(T )c1C(T )3C 0(T ) + 4abR(T )R0(T )c1C(T )4

+ 8a(b2 + 1)(bT + a)R(T )c1C(T )4 � 8bR(T )C(T )4
�
2a(c2 � c0)

� bc1

�
� 32(bT + a)R(T )C(T )3C 0(T )

�
2a(c2 � c0)� bc1

�
,

B6(T ) := �(b2 + 1)(bT + a) + 2a,

B7(T ) := �(b2 + 1)T (bT + a) + aR0(T ) + 2(aT + b),

B8(T ) := �(a2 � 3)(bT + a) + aTR0(T )� 4a� 4(bT + a)R(T ),

B9(T ) := (a2 � 1)(bT + a) + 2a + 4(bT + a)R(T ),

B10(T ) := K(T )2
�
2bC(T )� 4(bT + a)C 0(T )

 
� 2(bT + a)C(T )K(T )K 0(T ) + K(T )

�
aR0(T )c1C(T )

� 4(bT + a)C(T )
�
(a2 � 1)c2 + (b2 + 1)c0

�
� 4a(c2 � c0)C(T )

+ 2bc1C(T )� 2a(bT + a)2c2(2c0 + c1T )� 2b(bT + a)2c0C
0(T )

+ 2ab(bT + a)c1C(T ) + a(bT + a)2c1C
0(T )

+
1

2
(bT + a)R0(T )c1(2c0 + c1T )� 2(bT + a)(c2 � c0)(2c0 + c1T )

+ (bT + a)c1C
0(T )

 
+ 8b(bT + a)2

�
(a2 � 1)c2 + (b2 + 1)c0

�
C(T )2

+ 16(bT + a)3C(T )C 0(T )
�
(a2 � 1)c2 + (b2 + 1)c0

�
� 8a(bT + a)2R0(T )c1C(T )C 0(T )� 2ab(bT + a)R0(T )c1C(T )2

� 4a(b2 + 1)(bT + a)2c1C(T )2 + 4b(bT + a)C(T )2
�
2a(c2 � c0)

� bc1

�
+ 16(bT + a)2C(T )C 0(T )

�
2a(c2 � c0)� bc1

�
.

Further the converse statement also holds in the sense of (iii) of Theorem 2.2.

Theorem 2.7. Let M : z = f(x, y) be a C5+✓-class surface germ at the origin satisfy-

ing condition (2.1), where ✓ (0 < ✓ < 1) is an exponent for Hölder continuity. Assume

that the origin is not an umbilical point of M . Let P (t) be its characteristic polynomial

at (0, 0). Suppose that M contains two continuous families of circular arcs in the sense

of (ii) of Theorem 2.2, where these families correspond to two distinct non-zero real

simple roots t1, t2 of P (t) = 0, respectively. Then, f is an analytic function which
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is uniquely determined only by the partial derivatives at (0, 0) up to 8th-order. More

precisely, such surface-germs are classified by at most 21 real parameters.

Definition 2.8. A conformal transformation in R3 is a finite composition of transla-

tions, rotations, and the inversions
!
x = �

!
y /|!y |2 (� > 0) in R3. As a result, reflections

and dilations are conformal transformations. Two surface germs M,M 0 at p 2 R3 are

said to be conformally equivalent to each other if there is a conformal transformation

F with F (p) = p such that F (M) = M 0 as a surface germ.

Remark 2.9. A conformal transformation maps a sphere (or (a plane)[{1}) onto

a sphere or (a plane)[{1}: As a result, a circle (or (a line)[{1}) onto a circle or

(a line)[{1}. Hence the total number of circles and lines passing through a point

on a surface is preserved under a conformal transformation. Further it is well-known

that a general cyclide is transformed into another general cyclide by any conformal

transformation. N. Takeuchi [10] proved any general cyclide is conformally equivalent

to a cyclide of the following type:

↵(x2
1 + x2

2 + x2
3)

2 +

3X
i

�iix
2
i + ✏ = 0. (2.18)

Theorem 2.10. Let z = f(x, y) be a C5-class function defined in a neighborhood of

x = y = 0 satisfying conditions (2.1), (2.2). Let P (t) be the characteristic polynomial

at the origin for the surface germ M : z = f(x, y). Suppose that P (t) = 0 has 6

distinct non-zero real simple roots {tk}6
k=1, and that M includes 6 continuous families

of circular arcs corresponding to {tk}6
k=1. Then, f is analytic at x = y = 0, and f

is completely determined by the 11 Taylor expansion coe�cients c0, c2, d⇤, e⇤ at (0, 0).

Furthermore, suppose the following additional conditions

d0 = d1 = d2 = d3 = 0 at (0, 0)

with some generic conditions on c0, c2, e0, e2, e4. Then we obtain that e1 = e3 = 0 at

(0, 0), and that the surface germ z = f(x, y) at x = y = 0 is a general cyclide. More

precisely, M is conformally equivalent to a germ at (0, 0, ⇤) of the following 6-circle

Blum cyclide:

(x2 + y2 + z2)2 � 2a1x
2 � 2a2y

2 � 2a3z
2 + a2

4 = 0, (2.19)

where a1 > a3 > a4 > 0, �a2 > a4. Further this surface (2.19) has the same charac-

teristic roots {tk}6
k=1.

3. Circles and surfaces –the proofs of Theorems 2.2, 2.3, 2.4–

First of all, we prepare some elementary lemmas concerning a circle and a surface

in R3.

Lemma 3.1. Let C be a circle in R3. We assume that C ⇢ {y = tx+sz} and that C is

tangent to a plane {z = ax + by} at the origin, where a, b, t, s are real numbers. Then,

if 4(1� bs) > a2s2, we have the following expression for any point (x, y(x), z(x)) 2 C
su�ciently close to the origin:

z(x) = A1x + A2x
2 + A3x

3 + A4x
4 + O(x5),

where

A1 =
a + bt

1� bs
,

A2 =
(t2 + ast� bs + 1)

2(s2 + t2 + 1)(1� bs)3v

⇥ {(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1},
10



A3 =
(t2 + ast� bs + 1)2(as2 + ts + bt + a)

2(s2 + t2 + 1)2(1� bs)5v2

⇥ {(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1},

A4 =
(t2 + ast� bs + 1)3

8(s2 + t2 + 1)3(1� bs)7v3

⇥ {(s2 + t2 + 1)(1� bs)2 + 5(as2 + ts + bt + a)2}
⇥ {(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1}.

Here, v is the z-coordinate of the center of C. In particular, we obtain the following

equations:

A3 =
2(1� bs)(as2 + ts + bt + a)

(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1
A2

2,

A4 =
(1� bs)2{(s2 + t2 + 1)(1� bs)2 + 5(as2 + ts + bt + a)2}
{(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1}2

A3
2.

Proof. (For the check of calculations, the readers can employ a Mathematica file “check-

fifth1” in our website written in Section 1.) The tangent line to C at the origin is

{y = tx + s(ax + by), z = ax + by}; that is,⇢✓
x,

t + as

1� bs
x,

a + bt

1� bs
x

◆
; x 2 R

�
.

Therefore, putting (u, tu + sv, v) be a center of C, we have

u + (tu + sv)
t + as

1� bs
+ v

a + bt

1� bs
= 0.

Since t2 + ast� bs + 1 > 0 by (as)2 � 4(1� bs) < 0, we get

u = �as2 + ts + bt + a

t2 + ast� bs + 1
v.

From the equation of C :

(x� u)2 + (y � tu� sv)2 + (z � v)2 = u2 + (tu + sv)2 + v2

and y = tx + sz, we get

0 =(s2 + 1)z2 + 2{tsx� s(tu + sv)� v}z
+ (1 + t2)x2 � 2{u + t(tu + sv)}x.

Putting k := s(tu + sv) + v = (s2 + t2 + 1)(1� bs)(t2 + ast� bs + 1)�1v 6= 0, we have

z(x) =
1

s2 + 1

⇣
� tsx + k

�k

r
1� 2kts� 2(s2 + 1){u + t(tu + sv)} + (s2 + t2 + 1)x

k2
x

!

=

�tsx + k

✓
⌧(x)x

2k2
+

⌧(x)2x2

8k4
+

⌧(x)3x3

16k6
+

5⌧(x)4x4

128k8
+ O(x5)

◆

s2 + 1
.

Here

⌧(x) = C + Dx := 2kts� 2(s2 + 1){u + t(tu + sv)} + (s2 + t2 + 1)x,

and so we have

C : =
2(as2 + ts + bt + a)(s2 + t2 + 1)

t2 + ast� bs + 1
v.

11



Therefore for z(x) = A1x + A2x2 + A3x3 + A4x4 + O(x5),

A1 = �u + t(tu + sv)

k
=

(a + bt)(s2 + t2 + 1)

k(t2 + ast� bs + 1)
v =

a + bt

1� bs
,

A2 =
D

2k(s2 + 1)
+

C2

8k3(s2 + 1)

=
(t2 + ast� bs + 1){(s2 + t2 + 1)(1� bs)2 + (as2 + ts + bt + a)2}

2(s2 + 1)(s2 + t2 + 1)(1� bs)3v
,

A3 =
2CD

8k3(s2 + 1)
+

C3

16k5(s2 + 1)

=
(t2 + ast� bs + 1)2(as2 + ts + bt + a)

2(s2 + 1)(s2 + t2 + 1)2(1� bs)5v2

⇥ {(s2 + t2 + 1)(1� bs)2 + (as2 + ts + bt + a)2},

A4 =
D2

8k3(s2 + 1)
+

3C2D

16k5(s2 + 1)
+

5C4

128k7(s2 + 1)

=
(t2 + ast� bs + 1)3

8(s2 + 1)(s2 + t2 + 1)3(1� bs)7v3

⇥ {(s2 + t2 + 1)(1� bs)2 + 5(as2 + ts + bt + a)2}
⇥ {(s2 + t2 + 1)(1� bs)2 + (as2 + ts + bt + a)2}.

Since

(s2 + t2 + 1)(1� bs)2 + (as2 + ts + bt + a)2

= (s2 + 1){(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1}, (3.1)

we get our conclusions. ⇤

Lemma 3.2. Let z = f(x, y) be a C4-function which has a Taylor expansion at (0, 0):

ax + by +

2X
j=0

cjx
2�jyj +

3X
j=0

djx
3�jyj +

4X
j=0

ejx
4�jyj + o((x2 + y2)2).

Let M and H be surface germs at (0, 0, 0) such that

M = {z = f(x, y)}, H = {y = tx + sz}
with some t, s 2 R. Assume that 4(1� bs) > a2s2. Then M \H has an expression in

a neighborhood of (0, 0, 0) such that M \H = {(x, y(x), z(x)); x 2 (�", ")} with

z(x) = A1x + A2x
2 + A3x

3 + A4x
4 + o(x4),

y(x) = (t + sA1)x + sA2x
2 + sA3x

3 + sA4x
4 + o(x4),

A1 :=
a + bt

1� bs
, T :=

t + as

1� bs
, A2 :=

1

1� bs

�
c0 + c1T + c2T

2
�
,

A3 :=
1

1� bs

�
c1sA2 + d0 + (2c2sA2 + d1)T + d2T

2 + d3T
3
�
,

A4 :=
1

1� bs

�
c1sA3 + c2s

2A2
2 + d1sA2 + e0

+(2c2sA3 + 2d2sA2 + e1)T + (3d3sA2 + e2)T
2 + e3T

3 + e4T
4
�
.

In particular, if M \H is a circular arc in a neighborhood of the origin, then A2 6= 0

and we have the following equations:

A3 =
2(1� bs)(as2 + ts + bt + a)

(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1
A2

2, (3.2)
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A4 =
(1� bs)2{(s2 + t2 + 1)(1� bs)2 + 5(as2 + ts + bt + a)2}
{(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1}2

A3
2, (3.3)

where the denominator (a2 + b2)s2 + 2(at � b)s + (b2 + 1)t2 + 2abt + a2 + 1 is always

positive. Conversely, if A2 6= 0, and a, b, cj , dj , ej satisfy (3.2), (3.3), then M \ H
coincides with a circle at the origin up to 4-th order in x.

Proof. Since M \H = {(x, tx + sz, z) ; z = f(x, tx + sz)} and

z(x) = A1x + A2x
2 + A3x

3 + A4x
4 + o(x4),

we have

A1x + A2x
2 + A3x

3 + A4x
4 + o(x4)

= ax + b(tx + s(A1x + A2x
2 + A3x

3 + A4x
4)) + c0x

2

+ c1x(tx + s(A1x + A2x
2 + A3x

3)) + c2(tx + s(A1x + A2x
2 + A3x

3))2

+ d0x
3 + d1x

2(tx + s(A1x + A2x
2)) + d2x(tx + s(A1x + A2x

2))2

+ d3(tx + s(A1x + A2x
2))3 + e0x

4 + e1x
3(tx + s(A1x))

+ e2x
2(tx + s(A1x))2 + e3x(tx + s(A1x))3 + e4(tx + s(A1x))4.

By picking up the coe�cients of x in both sides, we get A1 = a + b(t + sA1), therefore

A1 =
a + bt

1� bs
, or t + sA1 =

t + as

1� bs
⌘ T.

By picking up the coe�cients of x2, we get

A2 = bsA2 + c0 + c1(t + sA1) + c2(t + sA1)
2.

Hence, A2 = (c0 + c1T + c2T 2)/(1� bs). By picking up the coe�cients of x3, we get

A3 = bsA3 + c1sA2 + 2c2(t + sA1)sA2 + d0 + d1(t + sA1)

+ d2(t + sA1)
2 + d3(t + sA1)

3.

Therefore,

A3 =
1

1� bs

�
c1sA2 + d0 + (2c2sA2 + d1)T + d2T

2 + d3T
3
�
.

By picking up the coe�cients of x4, we get

A4 = bsA4 + c1sA3 + c2{s2A2
2 + 2(t + sA1)sA3} + d1sA2

+ 2d2(t + sA1)sA2 + 3d3(t + sA1)
2sA2 + e0 + e1(t + sA1)

+ e2(t + sA1)
2 + e3(t + sA1)

3 + e4(t + sA1)
4.

Hence,

A4 =
1

1� bs

�
c1sA3 + c2s

2A2
2 + d1sA2 + e0

+(2c2sA3 + 2d2sA2 + e1)T + (3d3sA2 + e2)T
2 + e3T

3 + e4T
4
�
.

Combining these results with Lemma 3.1, we have (3.2), (3.3). The positivity of the

denominator of (3.2) follows from the expression (3.1). Conversely, if (3.2) and (3.3)

hold, we set a circle

C := H \ {(x, y, z) ; (x� u)2 + (y � tu� sv)2 + (z � v)2

= u2 + (tu + sv)2 + v2}
with

v =
(t2 + ast� bs + 1)

2(s2 + t2 + 1)(1� bs)3A2
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⇥ {(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1},

u = � as2 + ts + bt + a

2(s2 + t2 + 1)(1� bs)3A2

⇥ {(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1}.

Then, by Lemma 3.1 we obtain the same Taylor expansion A1x+A2x2+A3x3+A4x4+

o(x4) at x = 0 for z̃(x) satisfying (x, ỹ(x), z̃(x)) 2 C. Thus the proof is completed. ⇤

Proposition 3.3. Let a, b, c⇤, d⇤, e⇤, s, t be the coe�cients introduced in Lemma 3.2.

Put T = (t+as)/(1�bs), and let C(T ), D(T ), E(T ), R(T ), S(T ),K(T ),W (T ), Z(T ) be

the polynomials in T introduced in Definition 2.1, whose coe�cients are polynomials in

a, b, c⇤, d⇤, e⇤. Assume that 4(1� bs) > a2s2, C(T ) 6= 0. Then, the system of equations

(3.2), (3.3) under W (T ) 6= 0 is equivalent to the following system of equations:

Z(T ) = 0, s = S(T )/W (T ). (3.4)

Further, the system of equations (3.2), (3.3) under W (T ) = 0 is equivalent to the

following system:8>>>>>>>>>>><
>>>>>>>>>>>:

W (T ) = S(T ) = 0,⇣
R(T )2

�
b2E(T )� bC 0(T )D(T )� bC(T )D0(T )

+C 0(T )2C(T ) + c2C(T )2
�
� C(T )3

�
1 + 5T 2 + (a + bT )2

�⌘
s2

+
⇣
R(T )2

�
� 2bE(T ) + C 0(T )D(T ) + C(T )D0(T )

�
�8(a + bT )TC(T )3

⌘
s

+R(T )2E(T )� C(T )3
⇣
1 + 5(a + bT )2 + T 2

⌘
= 0.

(3.5)

In both cases, we have Z(T ) = 0.

Proof. (For the check of calculations, the readers can employ a mathematica file “check-

fifth1” in our website written in Section 1.) First, we rewrite A2, A3, A4 in Lemma 3.2

as follows:

A2 =
C(T )

1� bs
,

A3 =
D(T ) + sC 0(T )A2

1� bs
=

(1� bs)D(T ) + sC 0(T )C(T )

(1� bs)2
,

A4 =
E(T ) + sC 0(T )A3 + sD0(T )A2 + s2c2A2

2

1� bs

=
(1� bs)E(T ) + sC 0(T )D(T ) + sC(T )D0(T )

(1� bs)2

+
s2C 0(T )2C(T ) + s2c2C(T )2

(1� bs)3
.

Hence, the equation (3.2) is equivalent to the following:

(1� bs)D(T ) + sC 0(T )C(T )

=
2(1� bs)(as2 + ts + bt + a)C(T )2

(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1
.

Since t = (1� bs)T � as, we can rewrite the right side as

2
�
a + (b + s)T

�
C(T )2

R(T )
.
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Hence, (3.2) is equivalent to

(1� bs)D(T )R(T ) + sC 0(T )C(T )R(T )� 2
�
a + (b + s)T

�
C(T )2 = 0,

that is, S(T )� sW (T ) = 0. Therefore, if W (T ) 6= 0,

s =
D(T )R(T )� 2(bT + a)C(T )2

2TC(T )2 �R(T )C 0(T )C(T ) + bR(T )D(T )
=

S(T )

W (T )
.

On the other hand, as for the coe�cient of the right side of (3.3) we have

(1� bs)2{(s2 + t2 + 1)(1� bs)2 + 5(as2 + ts + bt + a)2}
{(a2 + b2)s2 + 2(at� b)s + (b2 + 1)t2 + 2abt + a2 + 1}2

=
⇣
1 + s2 + 5

�
a + (b + s)T

�2
+
�
as� (1� bs)T

�2⌘
/R(T )2.

Hence the equation (3.3) is equivalent to

(1� bs)2E(T ) + s(1� bs)
�
C 0(T )D(T ) + C(T )D0(T )

�
+ s2

�
C 0(T )2C(T ) + c2C(T )2

�

=

⇣
1 + s2 + 5

�
a + (b + s)T

�2
+
�
as� (1� bs)T

�2⌘
C(T )3

R(T )2
.

Since R(T ) = (b2 + 1)T 2 + 2abT + a2 + 1 > 0, this is equivalent to the following:

R(T )2
⇣
(1� bs)2E(T ) + s(1� bs)

�
C 0(T )D(T ) + C(T )D0(T )

�
+ s2

�
C 0(T )2C(T ) + c2C(T )2

�⌘

�
⇣
1 + s2 + 5

�
a + (b + s)T

�2
+
�
as� (1� bs)T

�2⌘
C(T )3 = 0. (3.6)

Multiply (3.6) by W (T )2 and replace sW (T ) by S(T ). Then we obtain the following

equation for T :

R(T )2
⇣
(W (T )� bS(T ))2E(T ) + S(T )(W (T )� bS(T ))

�
C 0(T )D(T )

+ C(T )D0(T )
�

+ S(T )2
�
C 0(T )2C(T ) + c2C(T )2

�⌘

�
⇣
W (T )2 + S(T )2 + 5

�
aW (T ) + (bW (T ) + S(T ))T

�2
+
�
aS(T )� (W (T )� bS(T ))T

�2⌘
C(T )3 = 0. (3.7)

Using equalities W (T ) = bS(T )+C(T )K(T ), S(T ) = D(T )R(T )�2(bT +a)C(T )2 and

the expressions of R(T ),K(T ),K 0(T ), C(T ), C 0(T ) by T , we get

( the left side of (3.7) ) = R(T )C(T )2Z(T ).

Thus we obtain that the system (3.2), (3.3) is equivalent to (3.4) under W (T ) 6= 0.

Further, if W (T ) = 0, the system of (3.2) and (3.3) is equivalent to the system S(T ) =

W (T ) = 0 and (3.6). In particular we have Z(T ) = 0. Further, (3.6) is a quadratic

equation in s as in (3.5). This completes the proof. ⇤

Lemma 3.4. Let f(x, y) be a C4-class function defined in a neighborhood of the origin

of R2, and T be a real variable independent from x, y. We denote by a, b, c⇤, d⇤, e⇤ the

higher-order derivatives of f(x, y) defined in Definition 2.1. Further C(T ), C 0(T ), D(T ),
D0(T ), E(T ), E0(T ), R(T ), R0(T ),K(T ),K 0(T ), S(T ),W (T ), Z(T ) are the polynomials

in T with coe�cients in these derivatives, which are introduced in Definition 2.1. For

any polynomial G(T ) = g0(x, y)+g1(x, y)T + · · ·+gN (x, y)TN in T with coe�cients in
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C1-class functions defined in a neighborhood of the origin of R2, we define a polynomial

LT [G(T )] in T by

LT [G(T )] :=

NX
j=0

T j(@x + T@y)gj(x, y). (3.8)

Then we have the following equalities:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

LT [D(T )] = 4E(T ),

LT [D0(T )] = 3E0(T ),

LT [C(T )] = 3D(T ),

LT [C 0(T )] = 2D0(T ),

LT [R(T )] = 4(bT + a)C(T ),

LT [a] = 2c0 + c1T,

LT [b] = C 0(T ),

LT [bT + a] = 2C(T ),

LT [R0(T )] = 4bC(T ) + 2(bT + a)C 0(T ),

LT [K(T )] = 3R0(T )D(T )� 2R(T )D0(T )

+2C(T )
�
2bC(T )� (bT + a)C 0(T )

�
,

LT [K 0(T )] = 6(b2 + 1)D(T )� 2(d2 + 3Td3)R(T )

+4(bc1 � 2ac2)C(T ),

LT [c0] = 3d0 + d1T,

LT [c1] = 2d1 + 2d2T,

LT [c2] = d2 + 3d3T.

(3.9)

Moreover, if T = T (x, y) is a C1-class function defined in a neighborhood of the origin

of R2 satisfying equation (2.10):

(@x + T (x, y)@y)T (x, y) =
2S(T (x, y))

K(T (x, y))

with W (T (x, y)) 6= 0,K(T (x, y)) 6= 0, then we have

(@x + T (x, y)@y)

✓
S(T (x, y))

W (T (x, y))

◆
=

4C(T )Z(T )

K(T )W (T )2

����
T=T (x,y)

. (3.10)

Proof. (For the check of calculations, the readers can employ a mathematica file “check-

fifth1” in our website written in Section 1.) We have the following direct calculations:

LT [D(T )] =

3X
j=0

T j(@xdj + T@ydj)

= (4e0 + Te1) + T (3e1 + 2Te2) + T 2(2e2 + 3Te3) + T 3(e3 + 4Te4)

= 4E(T ),

LT [D0(T )] =

3X
j=1

jT j�1(@xdj + T@ydj)

= (3e1 + 2Te2) + 2T (2e2 + 3Te3) + 3T 2(e3 + 4Te4) = 3E0(T ),

LT [C(T )] =

2X
j=0

T j(@xcj + T@ycj)

= (3d0 + Td1) + T (2d1 + 2Td2) + T 2(d2 + 3Td3) = 3D(T ),

LT [C 0(T )] = (@xc1 + T@yc1) + 2T (@xc2 + T@yc2)

16



= (2d1 + 2Td2) + 2T (d2 + 3Td3) = 2D0(T ),

LT [a] = fxx + Tfxy = 2c0 + c1T,

LT [b] = fxy + Tfyy = c1 + 2Tc2 = C 0(T ),

LT [R(T )] = 2bT 2LT [b] + 2T (bL[a] + aL[b]) + 2aL[a]

= (2bT 2 + 2aT )(c1 + 2Tc2) + 2(bT + a)(2c0 + Tc1)

= 4(bT + a)C(T ),

LT [bT + a] = T (c1 + 2c2T ) + 2c0 + c1T = 2C(T ),

LT [R0(T )] = 2T2bLT [b] + 2bLT [a] + 2aLT [b]

= 2(2bT + a)C 0(T ) + 2b(c1T + 2c0) = 4bC(T ) + 2(bT + a)C 0(T ),

LT [K(T )] = LT [R0(T )C(T )� C 0(T )R(T )]

=
�
4bC(T ) + 2(bT + a)C 0(T )

�
C(T ) + R0(T )3D(T )� 2D0(T )R(T )

� C 0(T )4(bT + a)C(T )

= 3R0(T )D(T )� 2R(T )D0(T ) + 2C(T )
�
2bC(T )� (bT + a)C 0(T )

�
,

LT [K 0(T )] = LT [2(b2 + 1)C(T )� 2c2R(T )]

= 4bC 0(T )C(T ) + 2(b2 + 1) · 3D(T )� 2(d2 + 3Td3)R(T )

� 8c2(bT + a)C(T )

= 6(b2 + 1)D(T )� 2R(T )(d2 + 3Td3) + 4(bc1 � 2ac2)C(T ),

LT [c0] = @xc0 + T@yc0 = 3d0 + d1T,

LT [c1] = @xc1 + T@yc1 = 2d1 + 2d2T,

LT [c2] = @xc2 + T@yc2 = d2 + 3d3T.

Note that

(@x + T (x, y)@y)

✓
S(T (x, y))

W (T (x, y))

◆

=
W (T )LT [S(T )]� S(T )LT [W (T )]

W (T )2

����
T=T (x,y)

+

�
W (T )S0(T )� S(T )W 0(T )

�
· (@x + T (x, y)@y)T (x, y)

W (T )2

�����
T=T (x,y)

.

Hence, to show (3.10), we have only to prove that

X(T ) := K(T )
�
W (T )LT [S(T )]� S(T )LT [W (T )]

�
+ 2S(T )

�
W (T )S0(T )� S(T )W 0(T )

�
� 4C(T )Z(T ) = 0

as a polynomial in T . Since

W (T ) = bS(T ) + C(T )K(T ), S(T ) = D(T )R(T )� 2(bT + a)C(T )2,

we have the following:

S0(T ) = D0(T )R(T ) + D(T )R0(T )� 2bC(T )2 � 4(bT + a)C(T )C 0(T ),

W 0(T ) = bS0(T ) + C 0(T )K(T ) + C(T )K 0(T ).

Further,

LT [S(T )] = R(T )LT [D(T )] + D(T )LT [R(T )]� 2LT [bT + a]C(T )2

� 4(bT + a)C(T )LT [C(T )],

LT [W (T )] = S(T )LT [b] + bLT [S(T )] + K(T )LT [C(T )]
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+ C(T )LT [K(T )].

Therefore we conclude X(T ) = 0. This completes the proof. ⇤

The proof of Theorem 2.2.

(i) Let t0, s0 2 R. Assume that

M \ {y = t0x + s0z}
is a circular arc or a line segment in a neighborhood of the origin. Since M is tangent

to z = 0 at the origin, we can apply Lemma 3.2 to M \ {y = t0x + s0z}. Therefore,

if M \ {y = t0x + s0z} is a line segment, then we have A2 = A3 = A4 = 0. Hence

Z(t0; 0, 0) = 0 since T = t0, C(T ) = D(T ) = E(T ) = 0 at x = y = 0. Further, if

M \ {y = t0x + s0z} is a circular arc, we have A2 6= 0. Hence C(T ) = c0 + c2t20 6= 0

at x = y = 0. Therefore we can apply Proposition 3.3, and get Z(t0; 0, 0) = 0. When

t0 6= 0, noting that

W (T )|x=y=0 = [2TC(T )2 + (bD(T )� C 0(T )C(T ))R(T )]x=y=0

=
�
2t0(c0 + c2t

2
0)� 2c2t0(t

2
0 + 1)

�
(c0 + c2t

2
0)

= 2(c0 � c2)t0(c0 + c2t
2
0) 6= 0,

we have s0 = [S(T )/W (T )]x=y=0 =
(t20 + 1)D(t0; 0, 0)

2(c0 � c2)t0(c0 + c2t20)
.

(ii) Let t(x, y), s(x, y) be real-valued continuous functions defined in a neighborhood of

(0, 0) such that, for some � > 0 and any (x0, y0) 2 U�, the set

M \ {y � y0 = t(x0, y0)(x� x0) + s(x0, y0)(z � f(x0, y0))}
coincides with a circle in a neighborhood of (x0, y0, f(x0, y0)). Assume that t(0, 0) 6= 0

and that Z 0(t(0, 0); 0, 0) 6= 0. Since f is a C4-function with fx(0, 0) = fy(0, 0) =

fxy(0, 0) = 0, we may assume 4
�
1� fy(x0, y0)s(x0, y0)

�
> fx(x0, y0)

2s(x0, y0)
2 for any

(x0, y0) 2 U�. Further, setting a continuous function

T (x, y) :=
t(x, y) + fx(x, y)s(x, y)

1� fy(x, y)s(x, y)
,

we have W (T )|x=y=0 = 2(c0�c2)t(0, 0)(c0+c2t(0, 0)2) 6= 0. Hence we may also assume

that W (T (x0, y0);x0, y0) 6= 0 for any (x0, y0) 2 U�. Therefore we can apply Lemma

3.2 and Proposition 3.3 to f⇤(x, y) := f(x0 + x, y0 + y) � f(x0, y0) at x = y = 0.

Indeed, since f⇤(0, 0) = 0, a = f⇤x(0, 0) = fx(x0, y0), b = f⇤y (0, 0) = fy(x0, y0), c0 =

(1/2)f⇤xx(0, 0) = (1/2)fxx(x0, y0), ...etc., f⇤ satisfies 4(1� bs(x0, y0)) > a2s(x0, y0)
2,

W (T ) 6= 0 with

T = (t(x0, y0) + as(x0, y0))/(1� bs(x0, y0)) = T (x0, y0).

Hence we have

Z(T (x0, y0);x0, y0) = 0, s(x0, y0) =
S(T (x, y);x, y)

W (T (x, y);x, y)

����
x=x0,y=y0

.

The other equation concerning t(x0, y0) at (2.9) follows directly from s(x0, y0) =

(S/W )x=x0,y=y0 and T (x0, y0) = (t(x0, y0) + as(x0, y0))/(1� bs(x0, y0)). Moreover, we

assume that t(x, y), s(x, y) are constant on each circular arc (2.6), f is a C5-function in

U�0 and that Z 0(t(0, 0); 0, 0) 6= 0. Then T (x, y) is a C1-function in a neighborhood of

the origin by the implicit function theorem which is applied to a C1-function Z(T ;x, y)

of T, x, y with @T Z(t(0, 0); 0, 0) 6= 0. In particular, t(x, y), s(x, y) are also C1-functions

because we have the expressions (2.9). The (x, y)-component of a tangent vector to

{z = f(x, y)} \ {y � y0 = t(x0, y0)(x� x0) + s(x0, y0)(z � f(x0, y0)}
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at (x0, y0, z0) is given by�
1� s(x0, y0)fy(x0, y0), t(x0, y0) + s(x0, y0)fx(x0, y0)

�
.

Hence we obtain two equations from our assumptions:

(@x + T (x, y)@y)t(x, y) = 0, (@x + T (x, y)@y)s(x, y) = 0.

Therefore

(@x + T (x, y)@y)T (x, y)

=
(1� bs)s(@x + T@y)a + (t + as)s(@x + T@y)b

(1� bs)2

= s
(1� bs)(2c0 + Tc1) + (t + as)(c1 + 2Tc2)

(1� bs)2
= s

2c0 + Tc1 + TC 0(T )

1� bs

= S(T )
2C(T )

W (T )� bS(T )
=

2S(T )

K(T )
.

(iii) Conversely, let f(x, y) 2 C5(U�0), and let T (x, y) be a real-valued C1-function

defined in a neighborhood of (0, 0) satisfying T (0, 0) 6= 0 and equations (2.8),(2.10).

Let t(x, y), s(x, y) be functions defined by (2.9) which are belonging to C1(U�) for a

small � > 0. Then by Lemma 3.4 we have

(@x + T (x, y)@y)s(x, y) = (@x + T (x, y)@y)

✓
S(T (x, y))

W (T (x, y))

◆

=
4C(T )Z(T )

K(T )W (T )2

����
T=T (x,y)

= 0.

Further we have

(@x + T (x, y)@y)t(x, y) = (@x + T (x, y)@y)((1� bs)T � as)

= (1� bs)(2S(T )/K(T ))� sT (@x + T@y)b� s(@x + T@y)a

=
2S(T )C(T )� S(T )T (c1 + 2Tc2)� S(T )(2c0 + Tc1)

W (T )
= 0.

Take any point (x0, y0) close to the origin, and consider an integral curve y = '(x)

passing through (x0, y0) for the vector field @x + T (x, y)@y; that is, '(x) is a solution

to the following initial value problem for an ordinary di↵erential equation:

d'(x)

dx
= T (x,'(x)), '(x0) = y0.

Indeed, since T (x, y) is of C1-class, such a solution uniquely exists. By the arguments

above, we know that functions t(x,'(x)), s(x,'(x)) are constant; that is, t(x,'(x)) =

t(x0, y0), s(x,'(x)) = s(x0, y0). Put

C := {
�
x,'(x), f(x,'(x))

�
; x 2 (x0 � ", x0 + ")}

for a su�ciently small " > 0. Then C is equivalent to the following C 0 as a curve germ

at (x0, y0, f(x0, y0)):

C 0 := M \ {y � y0 = t(x0, y0)(x� x0) + s(x0, y0)(z � f(x0, y0))}.
Indeed, since

d

dx

�
'(x)� t(x0, y0)x� s(x0, y0)f(x,'(x))

�
= T (x,'(x))� t(x0, y0)

� s(x0, y0){fx(x,'(x)) + fy(x,'(x))T (x,'(x))}
= T (x,'(x)){1� s(x,'(x))fy(x,'(x))}
� {t(x,'(x)) + s(x,'(x))fx(x,'(x))} = 0,
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we have C ⇢ C 0. Hence C = C 0 as curve-germs at (x0, y0, f(x0, y0)). Therefore, for

any point (x1, y1, f(x1, y1)) 2 C, C is expressed as

M \ {y � y1 = t(x1, y1)(x� x1) + s(x1, y1)(z � f(x1, y1))}.
in a small neighborhood of (x1, y1, f(x1, y1)). Since Z(T (x1, y1);x1, y1) = 0, s(x1, y1) =

S(T (x1, y1);x1, y1)/W (T (x1, y1);x1, y1), by Proposition 3.3 and Lemma 3.2 we con-

clude that C coincides with a circle up to 4th-order at (x1, y1, f(x1, y1)). Note that C
is a plane-curve (C ⇢ {y�y0 = t(x0, y0)(x�x0)+ s(x0, y0)(z�f(x0, y0))}). Therefore

we conclude that C is a circular arc by the next lemma (Lemma 3.5) concerning a

characterization of a circle. Since t(x, y), s(x, y) are constant on C, this completes the

proof of Theorem 2.2 except for the proof of Lemma 3.5.

Lemma 3.5. Let g(x) be a real valued C3-function on an interval (↵,�) ⇢ R. Suppose

the following condition for C = {(x, g(x)) 2 R2 ; x 2 (↵,�)}: For any x0 2 (↵,�), C
coincides with a circle up to 3rd-order in x � x0 as curve germs at (x0, g(x0)). Then

C is a circular arc.

Proof. We fix a x0 2 (↵,�). Let C 0 = {(x, h(x)) 2 R2 ; |x � x0| < "} with a small

" > 0 be the circular arc which coincides with C up to 3rd-order in x� x0 at x = x0.

Let (m,n) 2 R2, R > 0 be the center and the radius of C 0, respectively. Therefore for

some � = ±1, we have

h(x0 + t) =n + �
p

R2 � (x0 �m)2

⇢
1� 2(x0 �m)t + t2

R2 � (x0 �m)2

�1/2

=n + �
p

R2 � (x0 �m)2 � �(2(x0 �m)t + t2)

2
p

R2 � (x0 �m)2

� �(2(x0 �m)t + t2)2

8
p

R2 � (x0 �m)2
3
� �(2(x0 �m)t + t2)3

16
p

R2 � (x0 �m)2
5

+ o(t3).

Hence we get the following:

g0(x0) = � �(x0 �m)p
R2 � (x0 �m)2

,

g00(x0) = � �p
R2 � (x0 �m)2

� �(x0 �m)2p
R2 � (x0 �m)2

3

= � �R2p
R2 � (x0 �m)2

3
,

g000(x0) = � 3�(x0 �m)p
R2 � (x0 �m)2

3
� 3�(x0 �m)3p

R2 � (x0 �m)2
5

= � 3�(x0 �m)R2p
R2 � (x0 �m)2

5
=

3g0(x0)R2

(R2 � (x0 �m)2)2
.

Thus we obtain a di↵erential equation for g(x):

g000(x) =
3g0(x)g00(x)2

1 + g0(x)2
.

Hence we have Z
g000(x)

g00(x)
dx =

Z
3g0(x)g00(x)

g0(x)2 + 1
dx,

and get

g00(x) = C0(g
0(x)2 + 1)3/2
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with some constant C0. Further

C0x + C1 =

Z
g00(x)

(g0(x)2 + 1)3/2
dx =

g0(x)p
g0(x)2 + 1

with another constant C1. Finally we have

g(x) =

Z
C0x + C1p

1� (C0x + C1)2
dx + C2 = �

p
1� (C0x + C1)2

C0

+ C2.

Thus we get an equation of a circle:

(g(x)� C2)
2 + (x + C1C

�1
0 )2 = C�2

0 .

⇤

The proof of Theorem 2.3. Let z = f(x, y) be a C3-function defined in U�0 =

{x2 + y2 < �2
0} (�0 > 0) satisfying (2.1).

(i) Let t(x, y), s(x, y), T (x, y) be the real-valued C1-class functions introduced in the

statement of Theorem 2.3. Since f is a C3-function with fx(0, 0) = fy(0, 0) = fxy(0, 0) =

0, we may assume

4(1� fy(x0, y0)s(x0, y0)) > fx(x0, y0)
2s(x0, y0)

2

for any (x0, y0) 2 U�. Hence we can apply Lemma 3.2 to f⇤(x, y) := f(x0 + x, y0 +

y)� f(x0, y0) at x = y = 0. Therefore we have

0 = A2 =
c0 + c1T + c2T 2

1� bs(x0, y0)
=

C(T (x0, y0);x0, y0)

1� fy(x0, y0)s(x0, y0)
,

and the inclusion

(2.11) ⇢ {y � y0 = T (x0, y0)(x� x0)}
because t(x0, y0) + s(x0, y0)A1 = T (x0, y0). Further, since T (x, y) is constant on line

segment (2.11), we obtain

(@x + T (x0, y0)@y)T (x, y) = 0 at (x0, y0).

Thus we obtain equations (2.14).

(ii) Conversely, let T (x, y) be a real-valued C1-function defined in a neighborhood

of (0, 0) satisfying equations (2.14). Take any point (x0, y0) close to the origin, and

consider an integral curve y = '(x) passing through (x0, y0) for the vector field @x +

T (x, y)@y; that is, '(x) is a solution to the following initial value problem for an

ordinary di↵erential equation:

d'(x)

dx
= T (x,'(x)), '(x0) = y0.

Indeed, since T (x, y) is of C1-class, such a solution uniquely exists. Then, because

dT (x,'(x))

dx
= Tx(x,'(x)) + '0(x)Ty(x,'(x)) = (Tx + TTy)y='(x) = 0,

we have T (x,'(x)) = T (x0, y0) and '(x) = y0 + T (x0, y0)(x� x0). Therefore we get

d2

dx2
f(x,'(x)) =

d

dx

�
fx(x,'(x)) + fy(x,'(x))T (x0, y0)

�
= 2C(T (x0, y0);x,'(x)) = 2C(T (x, y);x, y)|y='(x) = 0.

Hence,

L : = M \ {y � y0 = T (x0, y0)(x� x0)}
= {
�
x, y0 + T (x0, y0)(x� x0), f(x,'(x)

�
}

is a line segment, and T (x, y) is constant on this line segment. Thus the proof of

Theorem 2.3 is completed.
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Before going to the proof of Theorem 2.4, we prepare some basic results on charac-

teristic polynomials and exceptional circles.

Proposition 3.6. Let z = f(x, y) be a C4-class function defined in a neighborhood of

(0, 0) 2 R2. We assume conditions (2.1), (2.2) for f(x, y) at the origin. Then we have

the following results (i) ⇠ (iv) on the characteristic polynomial P (t) for the surface

germ M = {z = f(x, y)} at the origin :

(i) P (t) has the following expressions:

P (t) := Z(t; 0, 0)/(c0 � c2)

= (t2 + 1)D(t){2t(t2 + 1)D0(t)� (5t2 + 1)D(t)}
+ 4(c0 � c2)t

2{(t2 + 1)E(t)� C(t)3}
= �d2

0 +
�
� 4c3

0(c0 � c2)� 6d2
0 + d2

1 + 2d0d2 + 4(c0 � c2)e0

�
t2

+
�
� 8d0d1 + 4d1d2 + 4d0d3 + 4(c0 � c2)e1

�
t3

+
�
� 12c2

0(c0 � c2)c2 � 5d2
0 � 2d2

1 � 4d0d2 + 3d2
2 + 6d1d3

+ 4(c0 � c2)e0 + 4(c0 � c2)e2

�
t4

+
�
� 8d0d1 + 8d2d3 + 4(c0 � c2)e1 + 4(c0 � c2)e3

�
t5

+
�
� 12c0(c0 � c2)c

2
2 � 3d2

1 � 6d0d2 + 2d2
2 + 4d1d3 + 5d2

3

+ 4(c0 � c2)e2 + 4(c0 � c2)e4

�
t6

+
�
� 4d1d2 � 4d0d3 + 8d2d3 + 4(c0 � c2)e3

�
t7

+
�
� 4(c0 � c2)c

3
2 � d2

2 � 2d1d3 + 6d2
3 + 4(c0 � c2)e4

�
t8 + d2

3t
10.

where cj := cj(0, 0), C(t) := C(t; 0, 0), etc..

(ii) Conversely, a real polynomial P (t) =
P10

j=0 ajtj is a characteristic polynomial of

some non-umbilical surface germ z = f(x, y) satisfying (2.1), (2.2) if and only if

P (t) satisfies the following conditions:8><
>:

a1 = a9 = 0, a5 = a3 + a7,

a0  0, a10 � 0,

a0 � a2 + a4 � a6 + a8 � a10 > 0.

(3.11)

(iii) P (t) is not identically zero, and so #{t 2 R ;P (t) = 0}  10. When a3 = a7 = 0

(and so all the odd-degree coe�cients vanish), we have #{t 2 R ;P (t) = 0, t 6=
0}  6.

(iv) There are some examples of characteristic polynomials for non-umbilical surface

germs which have 10 non-zero real distinct roots.

Proof. (For the check of calculations, the readers can employ a mathematica file “check-

fifth1” in our website written in Section 1.)

(i) Since a = b = c1 = 0, we have

R(t) = 1 + t2, C(t) = c0 + c2t
2,

K(t) = 2t(c0 + c2t
2)� 2c2t(t

2 + 1) = 2(c0 � c2)t.

Therefore,

Z(t; 0, 0)

c0 � c2

= 4(c0 � c2)t
2
�
(t2 + 1)E(t)� (c0 + c2t

2)3
�

+ 2t(t2 + 1)D(t)
�
(t2 + 1)D0(t)� 3tD(t)

�
+

1

c0 � c2

(t2 + 1)D(t)2
�
� 2(c0 + c2t

2) + (c2 + c0)(t
2 + 1)

�
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= 4(c0 � c2)t
2
�
(t2 + 1)E(t)� (c0 + c2t

2)3
�

+ 2t(t2 + 1)D(t)
�
(t2 + 1)D0(t)� 3tD(t)

�
+ (t2 � 1)(t2 + 1)D(t)2

= 4(c0 � c2)t
2
�
(t2 + 1)E(t)� (c0 + c2t

2)3
�

+ (t2 + 1)D(t)
�
2t(t2 + 1)D0(t)� (5t2 + 1)D(t)

�
.

Thus we obtain expression (2.3) of P (t). Further by a Mathematica program we

get the explicit form of P (t) in the statement.

(ii) From the simplified expression of P (t) =
P10

j=0 ajtj we obtain

5X
k=0

(�1)ka2k +
p
�1

4X
k=0

(�1)ka2k+1 = P (
p
�1) = 4(c0 � c2)

4 > 0.

Since a1 = a9 = 0, a0  0, a10 � 0 by the explicit form of P (t), we get conditions

(3.11). Conversely, assume that real numbers a0, ..., a10 satisfy (3.11). Put c0 =�
(a0 � a2 + a4 � a6 + a8 � a10)/4

�1/4
> 0, c2 = 0, d0 =

p�a0, d1 = d2 = 0, d3 =p
a10. Then, by using the explicit form of P (t) we can determine e0, e1, e2, e3, e4 in

turn so that the j-th degree coe�cient of P (t) coincides with aj for j = 2, 3, 4, 5, 6.

Therefore, since a7 = a5� a3 and a8 = 4(c0� c2)
4� (a0� a2 + a4� a6� a10), we

get P (t) =
P10

j=0 ajtj . Thus, the characterization by conditions (3.11) is proved.

(iii) The first statement is a direct consequence of (3.11). Suppose that a3 = a7 = 0

(and so all the odd degree coe�cients vanish). Put Q(z) := a0 + a2z + a4z2 +

a6z3 + a8z4 + a10z5. Note that a10 � 0, Q(0)  0, Q(�1) > 0. We have only to

consider the following 4 cases; i) a10 > 0, Q(0) < 0, ii) a10 > 0, Q(0) = 0, iii)

a10 = 0, Q(0) < 0, iv) a10 = Q(0) = 0. In case i), since Q(�1) = �1, Q(�1) >
0, Q(0) < 0, we have #{z 2 R; z < 0, Q(z) = 0} � 2. Therefore the equation

P (t) = Q(t2) = 0 has at least 4 non-real roots. Hence #{t 2 R; P (t) = 0, t 6=
0}  6. In case ii), we have #{z 2 R; z < 0, Q(z) = 0} � 1 and Q(0) = 0.

Therefore we conclude that #{z 2 R; z > 0, Q(z) = 0}  3. Hence #{t 2
R; P (t) = 0, t 6= 0}  6. In case iii),we have Q(�1) > 0 > Q(0). Therefore,

#{z 2 R; z < 0, Q(z) = 0} � 1. Hence, #{t 2 R; P (t) = 0, t 6= 0}  6

because P (t) = Q(t2) and degreez(Q(z))  4. In case iv), we have P (t) =

t2(a2 + a4t2 + a6t4 + a8t6). Therefore our statement is clear. This completes the

proof of (iii).
(iv) Thanks to (ii), we have only to find a real polynomial P (t) satisfying (3.11) with

a0 < 0, a10 = 1 such that P (t) has 10 non-zero real roots x1, ..., x7, y1, y2, y3. Put

s1 := y1 + y2 + y3, s2 := y1y2 + y2y3 + y3y1, s3 := y1y2y3,

and

gj :=
X

1k1<k2<···<kj7

xk1 · · ·xkj

for j = 1, ..., 7. Therefore a0, ..., a9 are written as follows:

a0 = s3g7,

a1 = �(s2g7 + s3g6),

a2 = s1g7 + s2g6 + s3g5,

ak = (�1)k(g10�k + s1g9�k + s2g8�k + s3g7�k) (3  k  6),

a7 = �(g3 + s1g2 + s2g1 + s3),

a8 = g2 + s1g1 + s2,

a9 = �(g1 + s1).

23



Consequently by the three equations 0 = a1 = a9 = a5 � a3 � a7 we get

s1 = �g1, s2 = g6G2(g)/G1(g), s3 = �g7G2(g)/G1(g),

where

G1(g) := g1g6 � g3g6 + g5g6 � g7 + g2g7 � g4g7,

G2(g) := g1g2 � g3 � g1g4 + g5 + g1g6 � g7.

Hence the two inequalities a0 < 0, a0 � a2 + a4 � a6 + a8 � 1 > 0 are written as

follows:

� g2
7G2(g)/G1(g) < 0,

� (g1g6 � g7)
�
(g1 � g3 + g5 � g7)

2 + (1� g2 + g4 � g6)
2
�
/G1(g) > 0.

Therefore conditions (3.11) are all satisfied if

G1(g)G2(g) > 0, G1(g)G3(g) > 0

with G3(g) := g7 � g1g6. On the other hand, y1, y2, y3 are the roots of

0 = y3 � s1y
2 + s2y � s3 =

⇣
y � s1

3

⌘3

� 3p
⇣
y � s1

3

⌘
+ q

with p = (s2
1 � 3s2)/9, q = (9s1s2 � 2s3

1 � 27s3)/27. Hence y1, y2, y3 are all real,

and distinct from each other if 4p3 � q2 > 0; that is,

�G2(g)G4(g)/(27G1(g)3) > 0,

where

G4(g) := �g4
1g2g

3
6 + 4g2

1g2
2g3

6 + g3
1g3g

3
6 � 8g1g2g3g

3
6 + g3

1g2g3g
3
6

+ 4g2
3g3

6 � g2
1g2

3g3
6 + g4

1g4g
3
6 � 8g2

1g2g4g
3
6 + 8g1g3g4g

3
6 � g3

1g3g4g
3
6

+ 4g2
1g2

4g3
6 � g3

1g5g
3
6 + 8g1g2g5g

3
6 � g3

1g2g5g
3
6 � 8g3g5g

3
6

+ 2g2
1g3g5g

3
6 � 8g1g4g5g

3
6 + g3

1g4g5g
3
6 + 4g2

5g3
6 � g2

1g2
5g3

6 � g4
1g4

6

+ 8g2
1g2g

4
6 � 8g1g3g

4
6 + g3

1g3g
4
6 � 8g2

1g4g
4
6 + 8g1g5g

4
6 � g3

1g5g
4
6

+ 4g2
1g5

6 + 4g5
1g2

6g7 � 17g3
1g2g

2
6g7 � g3

1g2
2g2

6g7 + 17g2
1g3g

2
6g7

� 8g4
1g3g

2
6g7 + 19g2

1g2g3g
2
6g7 � 18g1g

2
3g2

6g7 + 4g3
1g2

3g2
6g7

+ 17g3
1g4g

2
6g7 + 2g3

1g2g4g
2
6g7 � 19g2

1g3g4g
2
6g7 � g3

1g2
4g2

6g7

� 17g2
1g5g

2
6g7 + 8g4

1g5g
2
6g7 � 19g2

1g2g5g
2
6g7 + 36g1g3g5g

2
6g7

� 8g3
1g3g5g

2
6g7 + 19g2

1g4g5g
2
6g7 � 18g1g

2
5g2

6g7 + 4g3
1g2

5g2
6g7

� 16g3
1g3

6g7 � 8g1g2g
3
6g7 � g3

1g2g
3
6g7 + 8g3g

3
6g7 + 17g2

1g3g
3
6g7

+ 8g1g4g
3
6g7 + g3

1g4g
3
6g7 � 8g5g

3
6g7 � 17g2

1g5g
3
6g7 � 8g1g

4
6g7

� 8g4
1g6g

2
7 + 45g2

1g2g6g
2
7 + 8g4

1g2g6g
2
7 � 18g2

1g2
2g6g

2
7 � 45g1g3g6g

2
7

+ 8g3
1g3g6g

2
7 � 9g1g2g3g6g

2
7 � 8g3

1g2g3g6g
2
7 + 27g2

3g6g
2
7

� 45g2
1g4g6g

2
7 � 8g4

1g4g6g
2
7 + 36g2

1g2g4g6g
2
7 + 9g1g3g4g6g

2
7

+ 8g3
1g3g4g6g

2
7 � 18g2

1g2
4g6g

2
7 + 45g1g5g6g

2
7 � 8g3

1g5g6g
2
7

+ 9g1g2g5g6g
2
7 + 8g3

1g2g5g6g
2
7 � 54g3g5g6g

2
7 � 9g1g4g5g6g

2
7

� 8g3
1g4g5g6g

2
7 + 27g2

5g6g
2
7 + 62g2

1g2
6g2

7 � 17g2
1g2g

2
6g2

7

� 45g1g3g
2
6g2

7 + 17g2
1g4g

2
6g2

7 + 45g1g5g
2
6g2

7 + 4g3
6g2

7 + 4g3
1g3

7

� 27g1g2g
3
7 � 8g3

1g2g
3
7 + 27g1g

2
2g3

7 + 4g3
1g2

2g3
7 + 27g3g

3
7 � 27g2g3g

3
7

+ 27g1g4g
3
7 + 8g3

1g4g
3
7 � 54g1g2g4g

3
7 � 8g3

1g2g4g
3
7 + 27g3g4g

3
7
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+ 27g1g
2
4g3

7 + 4g3
1g2

4g3
7 � 27g5g

3
7 + 27g2g5g

3
7 � 27g4g5g

3
7

� 72g1g6g
3
7 + 45g1g2g6g

3
7 + 27g3g6g

3
7 � 45g1g4g6g

3
7 � 27g5g6g

3
7

+ 27g4
7 � 27g2g

4
7 + 27g4g

4
7 .

Consequently, we have only to find some real numbers x1, ..., x7 such that

G1(g)G2(g) > 0, G1(g)G3(g) > 0, G4(g) < 0.

Indeed, we can find such examples xj ’s by using “FindInstance” command in

Mathematica program, though we must input at least the four values x1, ..., x4

by trial and errors (otherwise, the procedure never stopped for the seven values).

In this way, we found that

x1 = 1, x2 = �2, x3 = 2, x4 = 3, x5 = 4, x6 = �10, x7 = 1/10

satisfy G1(g) > 0, G2(g) > 0, G3(g) > 0, G4(g) < 0. Thus we obtain the

corresponding values of a0, ..., a10:

a0 = �382464

609019
, a1 = 0, a2 =

2505121816

15225475
, a3 = �3662378874

3045095
,

a4 =
29627935751

15225475
, a5 = �5493568311

6090190
, a6 = �14502009729

60901900
,

a7 =
1831189437

6090190
, a8 = �4181509819

60901900
, a9 = 0, a10 = 1,

which satisfy a5� (a3 +a7) = 0, a0�a2 +a4�a6 +a8�1 > 0. Further the roots

of
P10

j=0 ajXj = 0 are

�10, �2, 1/10, 1, 2, 3, 4, �0.0519793, 0.13882, 1.81316,

where the last three numbers are the approximation values.

⇤

Remark 3.7. As we stated in Definition 2.1, there are 16 choices of Euclidean coor-

dinate systems for a non-umbilical surface germ z = f(x, y) satisfying conditions (2.1),

(2.2). Let (x, y, z) be such a coordinate system. Then x0 = �1x, y0 = �2y, z0 = �3z
or x0 = �1y, y0 = �2x, z0 = �3z for any �1,�2,�3 2 {±1} are also such a system. To

get all the variations of P (t) for a non-umbilical surface germ, it is su�cient to see the

change of P (t) under 4 fundamental transformations; (x, y, z) ! (�x, y, z), (x, y, z) !
(x,�y, z), (x, y, z) ! (x, y,�z), and (x, y, z) ! (y, x, z). Under x ! �x, we have

C(t) ! C(t), D(t) ! �D(�t), D0(t) ! D0(�t), E(t) ! E(�t). Hence, P (t) !
P (�t). Under y ! �y, we have C(t) ! C(t), D(t) ! D(�t), D0(t) ! �D0(�t),
E(t) ! E(�t). Hence, P (t) ! P (�t). Under z ! �z, clearly P (t) ! P (t). Under

(x, y) ! (y, x), we have C(t) ! t2C(1/t), D(t) ! t3D(1/t), D0(t) = d1+2d2t+3d3t2 !
d2 + 2d1t + 3d0t2 = 3t2D(1/t)� tD0(1/t), E(t) ! t4E(1/t). Therefore,

P (t) ! (t2 + 1)t3D(1/t)
�
2t(t2 + 1)(3t2D(1/t)� tD0(1/t))

� (5t2 + 1)t3D(1/t)
�

+ 4(c2 � c0)t
2
�
(t2 + 1)t4E(1/t)� t6C(1/t)3

�
= �t10P (1/t).

Thus, all the variations of P (t) are {P (±t),�t10P (±1/t)}. In this sense, P (t) is essen-

tially unique for a non-umbilical surface germ.

The following lemma is concerning circles contained in the tangent plane of the

surface; for example, M is a torus defined by M := {(
p

x2 + y2 �R)2 + z2 = r2} and

circles C± = {z = ±r, x2 + y2 = R2} for 0 < r < R.
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Lemma 3.8. Let f(x, y) be a C4-function defined in a neighborhood of the origin

satisfying conditions (2.1), (2.2). Let

f(x, y) = c0x
2 + c2y

2 +

3X
j=0

djx
3�jyj +

4X
j=0

ejx
4�jyj + o(

p
x2 + y2

4
)

be the Taylor expansion of f at the origin. Set a surface germ M = {z = f(x, y)}
at the origin, and the tangent plane H = {z = 0} of M at the origin. Suppose that

M \H includes a circular arc C = {z = 0, y = ↵x+�(x2 +y2), x2 +y2 < �2} for some

↵,�, � 2 R with � 6= 0, � > 0. Then we have8><
>:

c0 + c2↵2 = 0,

2c2↵�(1 + ↵2) + D(↵) = 0,

c2(1 + ↵2)(1 + 5↵2)�2 + (1 + ↵2)�D0(↵) + E(↵) = 0.

(3.12)

In particular we have P (↵) = 0. Further, if ↵ 6= 0, then � is uniquely determined by

↵ and D(↵) 6= 0, c2 6= 0. If ↵ = 0, then we have d0 = c0 = c2�2 + d1� + e0 = 0 and

c2 6= 0. Here, D(t), D0(t), E(t), P (t) are the polynomials introduced in Definition 2.1.

Proof. (For the check of calculations, the readers can employ a mathematica file “check-

fifth1” in our website written in Section 1.) We solve y = ↵x+�(x2 + y2) with respect

to y in a neighborhood of the origin as follows:

y(x) =
1

2�

n
1�

p
1� 4(↵� + �2x)x

o

= ↵x + (� + ↵2�)x2 + (2↵�2 + 2↵3�2)x3

+ (�3 + 6↵2�3 + 5↵4�3)x4 + o(x4).

Hence we have

0 = f(x, y(x))

= c0x
2 + c2{↵ + (� + ↵2�)x + (2↵�2 + 2↵3�2)x2}2x2 + d0x

3

+ d1{↵ + (� + ↵2�)x}x3 + d2{↵ + (� + ↵2�)x}2x3

+ d3{↵ + (� + ↵2�)x}3x3

+ (e0 + e1↵ + e2↵
2 + e3↵

3 + e4↵
4)x4 + o(x4)

= (c0 + c2↵
2)x2 +

�
2c2↵�(1 + ↵2) + D(↵)

�
x3

+
�
c2(1 + ↵2)(1 + 5↵2)�2 + (1 + ↵2)�D0(↵) + E(↵)

�
x4 + o(x4).

Therefore by picking up the coe�cients of xj in both sides for j = 2, 3, 4 we obtain

(3.12). Multiplying the third equation of (3.12) by 4↵2(1 + ↵2)c2, we get

0 =(1 + 5↵2)
�
2c2↵(1 + ↵2)�

�2
+ 2↵(1 + ↵2)D0(↵)

�
2c2↵(1 + ↵2)�

�
+ 4↵2(c2 + c2↵

2)E(↵)

=(1 + 5↵2)D(↵)2 � 2↵(1 + ↵2)D(↵)D0(↵)� 4(c0 � c2)↵
2E(↵)

=� P (↵)/(1 + ↵2).

Hence we have P (↵) = 0. Further, the other statements directly follow from (3.12)

and c0 � c2 6= 0. Thus the proof is completed. ⇤

The proof of Theorem 2.4. After a suitable rotation, we can write M = {z =

f(x, y)} with a C4-function f(x, y) defined in a neighborhood of the origin of R2 sat-

isfying conditions (2.1) and (2.2). Put

C :={C; C is a circle or a line in R3
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such that (0, 0, 0) 2 C \ U� ⇢ M for a � > 0},

where U� := {(x, y, z) 2 R3 ;x2 + y2 + z2 < �2}. We choose a tangent vector

(uC , vC , 0) 2 R3 \ 0 to C for each C 2 C. Further we choose a non-zero vector

(xC , yC , zC) 2 R3 satisfying

{xCx + yCy + zCz = 0} � C

for each circle C 2 C. In particular, xCuC + yCvC = 0. Note that C is decomposed

into a direct sum
S9

j=1 Cj :

C1 := {C 2 C;C is a circle with xC 6= 0, yC 6= 0},
C2 := {C 2 C;C is a circle with xC = 0, yC 6= 0},
C3 := {C 2 C;C is a circle with xC 6= 0, yC = 0},
C4 := {C 2 C;C is a circle with xC = yC = 0, uCvC 6= 0},
C5 := {C 2 C;C is a circle with xC = yC = vC = 0},
C6 := {C 2 C;C is a circle with xC = yC = uC = 0},
C7 := {C 2 C;C is a line with uCvC 6= 0},
C8 := {C 2 C;C is a line with vC = 0},
C9 := {C 2 C;C is a line with uC = 0}.

Let P (t) be the characteristic polynomial for the non-umbilical surface germ M at the

origin. Then, we can define a mapping

� : C 3 C 7! vC/uC 2 K := {t 2 R; P (t) = 0} [ {1},
where we define �(C) := 1 if uC = 0. Indeed, for a circle C 2 C1 [ C2 we obtain

�(C) = �xC/yC 2 K by (i) of Theorem 2.2, and for a circle C 2 C4 [ C5 we obtain

�(C) = vC/uC 2 K by Lemma 3.8. Further, for a line C 2 C, �(C) = vC/uC 2 K by

(i) of Theorem 2.2 because C ⇢ M \ {y = �(C)x}. We give the proofs corresponding

to the values of d0, d3, c0, c2, e0, e4. Before going to each case, we note the following

facts (a)⇠(f):

(a) If C2 [ C5 [ C8 6= ;, then d0 = 0 because 0 2 K and so 0 = P (0) = �d2
0 by

Proposition 3.6. In the same way (after exchanging the roles of x and y), we have

d3 = 0 if C3 [ C6 [ C9 6= ;.
(b) By (i) of Theorem 2.2 we know that

� : C1 ! K, � : C7 ! K

are injective, respectively, and that

�(C1) ⇢ K1 := {t 2 R; P (t) = 0, C(t) 6= 0, t 6= 0},
�(C7) ⇢ K2 := {t 2 R; P (t) = C(t) = D(t) = E(t) = 0, t 6= 0}.

(c) By Lemma 3.8, we know that

� : C4 ! K

is injective, and that

�(C4) ⇢ K3 := {t 2 R; P (t) = C(t) = 0, D(t) 6= 0, t 6= 0}.

(d) If C2 6= ;, then c0 6= 0 and #(C2)  2. Indeed, let C be a circle belonging to C2.

Then, by (i) of Theorem 2.2, c0 = C(0; 0, 0) 6= 0, and such a C is locally written

as C = M \ {y = sz} with some s 2 R in a neighborhood of the origin. Therefore

by (3.5) of Proposition 3.3 we have

c2
0(c2 � c0)s

2 + c0d1s + e0 � c3
0 = 0
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because t0 = T = a = b = c1 = 0 in our case. Since c0 6= 0, c0 � c2 6= 0, we have

#(C2)  2. In the same way (after changing the roles of x and y) we have that, if

C3 6= ;, then c2 6= 0 and #(C3)  2.

(e) If C5 6= ;, then by Lemma 3.8 we know that c0 = 0, c2 6= 0 and #(C5)  #{� 2
R; c2�2 + d1� + e0 = 0,� 6= 0}. In the same way (after changing the roles

of x and y) we have that, if C6 6= ;, then we know that c2 = 0, c0 6= 0 and

#(C6)  #{� 2 R; c0�2 + d2� + e4 = 0,� 6= 0}.
(f) If C8 6= ;, then by (i) of Theorem 2.2 we have that c0 = d0 = e0 = 0, and that

#(C8) = 1. Indeed #(C8) = 1 because C 2 C8 is just the line {y = z = 0}. In the

same way (after changing the roles of x and y) we have that, if C9 6= ;, then we

have that c2 = d3 = e4 = 0, and that #(C9) = 1.

Hereafter we enter the case-wise proofs (i)⇠(xii).

(i) (d0d3 6= 0). By (a), we have C2 [ C3 [ C5 [ C6 [ C8 [ C9 = ;. Further, by (b) and

(c) we have

#(C1 [ C4 [ C7) 
3X

j=1

#(Kj) = #(K1 [K2 [K3)  10

because K1 [K2 [K3 ⇢ {t 2 R; P (t) = 0, t 6= 0} and K1,K2,K3 are mutually

disjoint from each other. Hence #(C)  10.

(ii) (d0 = 0, d3 6= 0, c0 6= 0). By (a), we have C3 [C6 [C9 = ;. Further, by (b) and (c)

we have an injection � : C1[C4[C7 ! K1[K2[K3. Since d0 = 0, by Proposition

3.6 we know that P (t) has the form P (t) = t2Q(t) with some polynomial Q(t) of

degree at most 8. Therefore,

#(C1 [ C4 [ C7)  #(K1 [K2 [K3)  #{t 2 R; Q(t) = 0}  8

Since c0 6= 0, we have C5 [ C8 = ; by (e) and (f). By (d) we have #(C2)  2.

Hence we have #(C)  8 + 2 = 10.

(iii) (d0 = 0, d3 6= 0, c0 = 0, e0 6= 0). By the same argument as in (ii), we have

C3[C6[C9 = ; and #(C1[C4[C7)  8. Since c0 = 0, e0 6= 0, we have C2[C8 = ;
by (d) and (f). On the other hand, by (e) we have #(C5)  2. Hence we have

#(C)  8 + 2 = 10.

(iv) (d0 = 0, d3 6= 0, c0 = e0 = 0). By the same argument as in (ii), we have C3 [ C6 [
C9 = ; and #(C1[C4[C7)  8. Since c0 = 0, we have C2 = ; by (d). On the other

hand #(C8)  1 by (f). Further #(C5)  #{� 2 R; c2�2 + d1� + e0 = 0,� 6=
0}  1 by (e) because c2 6= 0, e0 = 0. Hence we have #(C)  8 + 1 + 1 = 10.

(v) (d0 6= 0, d3 = 0, c2 6= 0). By the same argument as in (ii) (after exchanging the

roles of x and y) we have #(C)  10.

(vi) (d0 6= 0, d3 = 0, c2 = 0, e4 6= 0). By the same argument as in (iii) (after exchanging

the roles of x and y) we have #(C)  10.

(vii) (d0 6= 0, d3 = 0, c2 = e4 = 0). By the same argument as in (iv) (after exchanging

the roles of x and y) we have #(C)  10.

(viii) (d0 = d3 = 0, c0c2 6= 0). By (b) and (c) we have an injection � : C1 [ C4 [ C7 !
K1 [K2 [K3. Since d0 = d3 = 0, by Proposition 3.6 we know that P (t) has the

form P (t) = t2Q(t) with some polynomial Q(t) of degree at most 6. Therefore,

#(C1 [ C4 [ C7)  #(K1 [K2 [K3)  #{t 2 R; Q(t) = 0}  6

because K1 [K2 [K3 ⇢ {t 2 R; P (t) = 0, t 6= 0} and K1,K2,K3 are mutually

disjoint from each other. Since c0c2 6= 0, we have C5 [ C6 [ C8 [ C9 = ; by

(e) and (f). Further, by (d) we have #(C2)  2,#(C3)  2. Hence we have

#(C)  6 + 2 + 2 = 10.

(ix) (d0 = d3 = 0, c0 = 0, c2 6= 0, e0 6= 0). By the same argument as in (viii) we have

#(C1 [ C4 [ C7)  6. Since c0 = 0, c2e0 6= 0, we have C2 [ C6 [ C8 [ C9 = ; by (d),
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(e) and (f). On the other hand #(C3)  2,#(C5)  2 by (d) and (e). Thus we

have #(C)  6 + 2 + 2 = 10.

(x) (d0 = d3 = 0, c0 = 0, c2 6= 0, e0 = 0). By the same argument as in (viii) we have

#(C1 [ C4 [ C7)  6. Since c0 = 0, c2 6= 0, e0 = 0, we have C2 [ C6 [ C9 = ; by

(d), (e) and (f). On the other hand #(C3)  2,#(C5) = {� 2 R; c2�2 + d1� +

e0 = 0,� 6= 0}  1 by (d), (e) and e0 = 0. Since #(C8)  1 by (f), we have

#(C)  6 + 2 + 1 + 1 = 10.

(xi) (d0 = d3 = 0, c0 6= 0, c2 = 0, e4 6= 0). By the same argument as in (ix) (after

exchanging the roles of x and y) we have #(C)  10.

(xii) (d0 = d3 = 0, c0 6= 0, c2 = 0, e4 = 0). By the same argument as in (x) (after

exchanging the roles of x and y) we have #(C)  10.

There are no cases with c0 = c2 = 0 because c0 � c2 6= 0. Thus the proof of Theorem

2.4 is completed.

4. The System of fifth order PDE’s

–The proofs of Theorems 2.6 and 2.7–

The proof of Theorem 2.6. (For the check of calculations, the readers can employ

a mathematica file “check-fifth1” in our website written in Section 1.) To prove the

former part of the statement, we have only to prove the equivalency between the fifth-

order equation for f :

5X
j=0

✓
5

j

◆
T j@5�j

x @j
yf(x, y) =

24N(T )

R(T )K(T )3
.

and the first order equation for T :

(@x + T (x, y)@y)T (x, y) =
2S(T )

K(T )

under conditions

Z(T (x, y);x, y) = 0, T (0, 0) 6= 0, Z 0(T (0, 0); 0, 0) 6= 0.

In fact, applying (@x + T (x, y)@y) to Z(T (x, y);x, y) = 0, by the definition (2.16) of

N(T ) we get

0 = Z 0(T (x, y);x, y) · ((@x + T (x, y)@y))T (x, y)

+ (@x + T@y)Z(T ;x, y)|T=T (x,y)

= Z 0(T (x, y);x, y)
2S(T (x, y))

K(T (x, y))
+ (@x + T@y)Z(T ;x, y)|T=T (x,y)

+ Z 0(T (x, y);x, y)

✓
(@x + T (x, y)@y))T (x, y)� 2S(T (x, y))

K(T (x, y))

◆

=
1

K(T (x, y))

0
@�N(T ) +

K(T )3R(T )

24

5X
j=0

✓
5

j

◆
T j@5�j

x @j
yf

1
A
������
T=T (x,y)

+ Z 0(T (x, y);x, y)

✓
(@x + T (x, y)@y))T (x, y)� 2S(T (x, y))

K(T (x, y))

◆
.

Therefore, since K(T (0, 0); 0, 0) = 2(c0(0, 0) � c2(0, 0))T (0, 0) 6= 0, we get the equiva-

lency of two equations. In order to get the explicit form of N(T ), from the definition

of N(T ), we have

N(T ) =�K(T )

0
@(@x + T@y)Z(T )� K(T )2R(T )

24

5X
j=0

✓
5

j

◆
T j@5�j

x @j
yf

1
A
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� 2S(T )Z 0(T )

=�K(T )
�
LT [Z(T )]�K(T )2R(T )LT [E(T )]

�
� 2S(T )Z 0(T ).

Hence we have only to show that

N(T ) + K(T )
�
LT [Z(T )]�K(T )2R(T )LT [E(T )]

�
+ 2S(T )Z 0(T ) = 0,

where N(T ) is the polynomial given in the statement of this theorem. We can check this

equality by using a Mathematica program. Indeed, since LT [⇤] satisfies the Leibnitz

rule

LT [F (T )G(T )] = LT [F (T )]G(T ) + F (T )LT [G(T )],

we can calculate LT [Z(T )] as a derivative in a fictional variable u; that is, after replacing

a, b, RT,RT1, CT,DT,DT1, ET, . . . by a[u], b[u], RT [u], CT [u], DT [u], DT1[u], ET [u],
. . . in the expression of ZT , we take the derivative of ZT in u. Here RT,RT1, CT,DT,
DT1, ET, ZT, . . . are the notations for R(T ), R0(T ), C(T ), D(T ), D0(T ), E(T ), Z(T ), . . .
in the mathematica program, respectively. Then, in the expression of the deriva-

tive of ZT in u, we replace a0[u], a[u], b0[u], b[u], RT 0[u], RT [u], CT 0[u], CT [u], . . . by

LT [a], a, LT [b], b, LT [R(T )], RT, LT [C(T )], CT, . . ., respectively. Further, we can calcu-

late Z 0(T ) in a similar way. At the last step of the proof, we use the explicit forms of

R(T ), R0(T ), R00(T ), C(T ), C 0(T ), C 00(T ),K(T ),K 0(T ),K 00(T ), D(T ), D0(T ), D00(T ) as

polynomials in T . In the expression of N(T ), it is clear that the first term

�5R(T )K(T )2E0(T )
⇥
R(T )D(T ) � 2(bT + a)C(T )2

⇤
is independent from other terms.

Further this term has degree 14 in T . Hence the degree in T of N(T ) is 14. This

completes the proof.

The proof of Theorem 2.7. By Theorem 2.6 we have the following system of

di↵erential equations for f(x, y):8>>>><
>>>>:

Z(Tk(x, y)) = 0, Tk(0, 0) = tk,
5X

j=0

✓
5

j

◆
Tk(x, y)j@5�j

x @j
yf(x, y) =

24N(Tk(x, y))

R(Tk(x, y))K(Tk(x, y))3
,

(k = 1, 2).

(4.1)

First, we claim that this system is an analytic elliptic system of fifth-order equations

for f . To do so, we note that the k-th di↵erential equation is an analytic quasi-linear

equation with the fifth order principal symbol

(⇠ + Tk(x, y)⌘)5,

where ⇠, ⌘ are the symbols for @x, @y, respectively. Indeed, Tk(x, y) is an analytic func-

tion ofrf,r2f,r3f,r4f through the equation Z(Tk(x, y);x, y) = 0 with Z(Tk(0, 0); 0, 0) =

0, Z 0(Tk(0, 0); 0, 0) 6= 0. Further, under T1(0, 0) 6= T2(0, 0) we find that system (4.1) is

elliptic because

{(⇠, ⌘) 2 R2; (⇠ + T1(x, y)⌘)5 = (⇠ + T2(x, y)⌘)5 = 0} = {(0, 0)}
in a neighborhood of x = y = 0. Therefore, by the well-known regularity theory for non-

linear elliptic equations we have the analyticity of f(x, y) at the origin. For example,

we can apply the regularity theorem due to C. B. Morrey Jr. [6] to the following single

(but complex-valued) quasi-linear elliptic equation for f :0
@ 5X

j=0

✓
5

j

◆
T1(x, y)j@5�j

x @j
y +

p
�1

5X
j=0

✓
5

j

◆
T2(x, y)j@5�j

x @j
y

1
A f(x, y)

=
24N(T1(x, y))

R(T1(x, y))K(T1(x, y))3
+
p
�1

24N(T2(x, y))

R(T2(x, y))K(T2(x, y))3
,
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where each Tk(x, y) is written as ⌧k(rf,r2f,r3f,r4f) with some analytic func-

tion ⌧k of rf,r2f,r3f,r4f satisfying Z(⌧k;x, y) = 0. In order to show the fi-

nite dimensionality of the solution space, we introduce some di↵erential operators

Lk`(@x, @y; f) (k = 0, 1, ..., `, ` = 9, 10, . . .) of order ` as follows:

Lk`(@x, @y; f) := (@x + t1@y)`�5�k(@x + t2@y)k
5X

j=0

✓
5

j

◆
T1(x, y)j@5�j

x @j
y

for 0  k  `� 5, and

Lk`(@x, @y; f) := (@x + t1@y)`�k(@x + t2@y)k�5

5X
j=0

✓
5

j

◆
T2(x, y)j@5�j

x @j
y

for `�4  k  `. Here we note that the principal symbol of Lk`(@x, @y; f) at x = y = 0

is

(⇠ + t1⌘)`�k(⇠ + t2⌘)k. (4.2)

Then the solution f to (4.1) satisfies the following system of ` + 1 quasilinear analytic

di↵erential equations of order `:8>>>>>>>>>>><
>>>>>>>>>>>:

Lk`(@x, @y; f)f =

(@x + t1@y)`�5�k(@x + t2@y)k

✓
24N(T1(x, y))

R(T1(x, y))K(T1(x, y))3

◆

(0  k  `� 5),

Lk`(@x, @y; f)f =

(@x + t1@y)`�k(@x + t2@y)k�5

✓
24N(T2(x, y))

R(T2(x, y))K(T2(x, y))3

◆

(`� 4  k  `).

(4.3)

Recalling (4.2), for any ` � 9 we can find all the derivatives

(@x + t1@y)k(@x + t2@y)`�kf(0, 0) (0  k  `)

from (@p
x@q

yf(0, 0); p + q  `� 1). Therefore, since t1 6= t2, we can find inductively all

the derivatives of f at the origin only from (@p
x@q

yf(0, 0); p + q  8). Hence we know

the finite dimensionality of the solution space f . Further, by more precise arguments,

we know that (@p
x@q

yf(0, 0); p + q  8) are determined only by A and B, where

A := (@p
x@q

yf(0, 0); p + q  4),

B :=
�
(@x + t1@y)p(@x + t2@y)qf(0, 0); p, q  4, 5  p + q  8

�
.

Indeed, since (4.3) hold for (`, k) = (5, 0), (5, 5) (that is, the original equations), we

can find

(@x + t1@y)k(@x + t2@y)5�kf(0, 0) (0  k  5)

from the values A and B (see Figure 4). Therefore we get the values

C5 := (@p
x@q

yf(0, 0); 0  p + q  5).

Then, since (4.3) hold for (`, k) = (6, 0), (6, 1), (6, 5), (6, 6), we can find

(@x + t1@y)k(@x + t2@y)5�kf(0, 0) (0  k  6)

from the values A, B, C5. Repeating this argument up to ` = 8, we can determine

finally

@p
x@q

yf(0, 0) (0  p + q  8)

only by A and B. Since f(0, 0) = fx(0, 0) = fy(0, 0) = fxy(0, 0) = 0, and t1, t2 are

functions of A, we know that the solution space f is classified by (15 � 4) + 10 = 21

real parameters.
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p

8

84

4

q

0

Figure 4. The lattice of (p, q).

5. General cyclides and the proof of Theorem 2.10

Before giving a proof of Theorem 2.10, we introduce some results on general cyclides.

Proposition 5.1. Let z = f(x, y) be a C4-function defined in a neighborhood of the

origin satisfying conditions (2.1), (2.2). Assume that M = {z = f(x, y)} coincides

with a general cyclide as a surface germ at the origin. Then we have

e1 =
2d0d1 � d1d2 � d0d3

c0 � c2

, e3 =
�2d2d3 + d1d2 + d0d3

c0 � c2

(5.1)

at (0, 0). Here c⇤, d⇤, e⇤ are the derivatives of f(x, y) introduced in Definition 2.1.

Conversely, if f satisfies conditions (5.1), then there is a unique germ of a general

cyclide M 0 such that the local defining function z = g(x, y) of M 0 coincides with z =

f(x, y) up to the fourth-order derivatives at (0, 0).

Proof. (For the check of calculations, the readers can employ a mathematica file “check-

fifth2” in our website written in Section 1.) Since the expression (1.1) is invariant under

translations and rotations, we can assume under (2.1) that z = f(x, y) is equivalent to

the following:

z = �11x
2 + �22y

2 + �33z
2 + 2�31xz + 2�32yz

+ 2(x2 + y2 + z2)(�1x + �2y + �3z) + ↵(x2 + y2 + z2)2, (5.2)

where �11, �22, �33, �31, �32,�1,�2,�3,↵ are some 9 constants. We write the Taylor

expansion of f(x, y) at (0, 0) as follows:

f(x, y) = c0x
2 + c2y

2 + d0x
3 + d1x

2y + d2xy2 + d3y
3

+ e0x
4 + e1x

3y + e2x
2y2 + e3xy3 + e4y

4 + o((x2 + y2)2).

Therefore we have

c0x
2 + c2y

2 + d0x
3 + d1x

2y + d2xy2 + d3y
3

+ e0x
4 + e1x

3y + e2x
2y2 + e3xy3 + e4y

4

= �11x
2 + �22y

2 + �33(c0x
2 + c2y

2)2 + 2�31x(c0x
2 + c2y

2 + d0x
3

+ d1x
2y + d2xy2 + d3y

3) + 2�32y(c0x
2 + c2y

2 + d0x
3 + d1x

2y

+ d2xy2 + d3y
3)
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+ 2
�
x2 + y2 + (c0x

2 + c2y
2)2
��

�1x + �2y + �3(c0x
2 + c2y

2)
�

+ ↵
�
x2 + y2 + (c0x

2 + c2y
2)2
�2

+ o((x2 + y2)2).

Hence by comparing the coe�cients in both sides we obtain the following equations:

c0 = �11, c2 = �22,

d0 = 2�31c0 + 2�1, d1 = 2�32c0 + 2�2,

d2 = 2�31c2 + 2�1, d3 = 2�32c2 + 2�2,

e0 = �33c
2
0 + 2�31d0 + 2�3c0 + ↵,

e1 = 2�31d1 + 2�32d0,

e2 = 2�33c0c2 + 2�31d2 + 2�32d1 + 2�3(c0 + c2) + 2↵,

e3 = 2�31d3 + 2�32d2,

e4 = �33c
2
2 + 2�32d3 + 2�3c2 + ↵.

Therefore we get

�31 =
d0 � d2

2(c0 � c2)
, �1 =

c0d2 � c2d0

2(c0 � c2)
,

�32 =
d1 � d3

2(c0 � c2)
, �2 =

c0d3 � c2d1

2(c0 � c2)
.

and equations (5.1). Conversely, under (5.1) we put �1,�2, �31, �32 as above, and

�11 = c0, �22 = c2,

�33 =
(c0 � c2)(e0 � e2 + e4)� (d0 � d2)

2 + (d1 � d3)
2

(c0 � c2)3
,

�3 =
(c0 + c2)e2 � 2c2e0 � 2c0e4

2(c0 � c2)2
+

2c2d2
0 + (c0 + c2)(d2

2 � d2
1)� 2c0d2

3

2(c0 � c2)3

+
(3c0 + c2)d1d3 � (c0 + 3c2)d0d2

2(c0 � c2)3
,

↵ =
c2
2e0 � c0c2e2 + c2

0e4

(c0 � c2)2
+

c0c2(d2
1 � d2

2)� c2
2d

2
0 + c2

0d
2
3

(c0 � c2)3

+
(c0 + c2)(�c0d1d3 + c2d0d2)

(c0 � c2)3
.

Then (5.2) is the unique cyclide which coincides with M up to the fourth order in (x, y)

at x = y = 0. ⇤

Proposition 5.2. We inherit the notation M,f(x, y) with the assumptions from Propo-

sition 5.1. Then the characteristic polynomial P (t) at the origin for M has the following

form:

P (t) = �d2
0 + (�4c4

0 + 4c3
0c2 � 6d2

0 + d2
1 + 2d0d2 + 4c0e0 � 4c2e0)t

2

+
�
� 12c3

0c2 + 12c2
0c

2
2 � 5d2

0 � 2d2
1 � 4d0d2 + 3d2

2 + 6d1d3 � 4c2e0

� 4c2e2 + 4c0(e0 + e2)
�
t4 +

�
� 12c2

0c
2
2 � 3d2

1 � 6d0d2 + 2d2
2

+ 4d1d3 + 5d2
3 � 4c2e2 � 4c2e4 + 4c0(3c3

2 + e2 + e4)
�
t6

+ (�4c0c
3
2 + 4c4

2 � d2
2 � 2d1d3 + 6d2

3 + 4c0e4 � 4c2e4)t
8 + d2

3t
10,

where c0, c2, d⇤, e⇤ mean their values at x = y = 0. In particular, we have #{t 2
R; P (t) = 0, t 6= 0}  6.
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Proof. (For the check of calculations, the readers can employ a mathematica file “check-

fifth2” in our website written in Section 1.) This form is directly obtained from the

explicit one in Proposition 3.6 and conditions (5.1). Further, since all the odd degree

terms of P (t) vanish, we have #{t 2 R; P (t) = 0, t 6= 0}  6 by Proposition 3.6. ⇤

Example 5.3. Let M be a six-circle Blum cyclide

(x2 + y2 + z2)2 � 2ax2 � 2by2 � 2cz2 + d2 = 0, (5.3)

such that a, b, c, d are real numbers satisfying a > c > d > 0, b < �d. Then the

characteristic polynomial at (0, 0,�2

p
c + �1

p
c2 � d2) with �1 = ±1,�2 = ±1 is given

by

P (t) =
(a� b)(b� c)(d� b)(d + b)

4(c2 � d2)2(c + �1`)2
t2

⇥
✓

t2 � a� c

c� b

◆✓
t2 � a� d

d� b

◆✓
t2 � a + d

�b� d

◆
.

Indeed, since z2 satisfies

z2 = c� x2 � y2 + �1

p
c2 � d2 + 2(a� c)x2 + 2(b� c)y2

in a neighborhood of (0, 0), we have

z = �2

q
c� x2 � y2 + �1

p
c2 � d2 + 2(a� c)x2 + 2(b� c)y2

= �2

⇣
c� x2 � y2 + �1`

⇣
1 +

(a� c)x2 + (b� c)y2

`2

� ((a� c)x2 + (b� c)y2)2

2`4
+ o((x2 + y2)2)

⌘⌘1/2

= �2

p
c + �1`

⇣
1 +

(a� c� �1`)x2 + (b� c� �1`)y2

�1`(c + �1`)

� ((a� c)x2 + (b� c)y2)2

2�1`3(c + �1`)
+ o((x2 + y2)2)

⌘1/2

= �2

p
c + �1`

⇣
1 +

(a� c� �1`)x2 + (b� c� �1`)y2

2�1`(c + �1`)

� ((a� c)x2 + (b� c)y2)2

4�1`3(c + �1`)

�
�
(a� c� �1`)x2 + (b� c� �1`)y2

�2
8`2(c + �1`)2

+ o((x2 + y2)2)
⌘
,

where ` =
p

c2 � d2. Therefore f(x, y) := z(x, y) � �2

p
c + �1` satisfies conditions

(2.1), (2.2), and so we have the following Taylor coe�cients at the origin:

c0 =
�2 (�1(a� c)� `)

2`
p

c + �1`
, c2 =

�2 (�1(b� c)� `)

2`
p

c + �1`
,

e0 = ��2

2�1(a� c)2(c + �1`) + `(a� c� �1`)2

8`3
p

c + �1`
3

,

e2 = ��2

2�1(a� c)(b� c)(c + �1`) + `(a� c� �1`)(b� c� �1`)

4`3
p

c + �1`
3

,

e4 = ��2

2�1(b� c)2(c + �1`) + `(b� c� �1`)2

8`3
p

c + �1`
3

,
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and all the other coe�cients up to the fourth order vanish at the origin. Hence the

characteristic polynomial at (0, 0,�2

p
c + �1

p
c2 � d2) is

P (t) = 4(c0 � c2)t
2
⇣
(t2 + 1)(e0 + e2t

2 + e4t
4)� (c0 + c2t

2)3
⌘

=
(a� b)(b� c)(d� b)(d + b)

4(c2 � d2)2(c + �1`)2
t2

⇥
✓

t2 � a� c

c� b

◆✓
t2 � a� d

d� b

◆✓
t2 � a + d

�b� d

◆
.

In particular we have the 6 non-zero real roots for P (t) = 0. (For the check of calcula-

tions, the readers can employ a mathematica file “check-fifth2” in our website written

in Section 1.)

In K-T [4] (also see Blumcircles-parameter.pdf, Blumcircles-parameter.nb in our

website written in Section 1), we obtained the concrete expressions of the six continuous

families of circles on some Blum 6-circle cyclides with the explicit forms of Tj(x, y) (j =

1, ..., 6), which are given as follows:

Proposition 5.4. Let M be the six-circle Blum cyclide given at (5.3). Then for each

non-zero real root of P (t) = 0, we have a continuous family of circles in a neighborhood

of (0, 0,�2

p
c + �1

p
c2 � d2) with �1,�2 = ±1. In fact, we have the six non-zero real

roots:

±
r

a� c

c� b
, ±

r
a� d

d� b
, ±

r
a + d

�b� d
.

(i) For the characteristic roots ±
p

(a� c)/(c� b),

with v1 =
p

(a� c)(c� b)(c2 � d2) we have

t1,±(x, y) = T1,±(x, y), s1,±(x, y) = 0,

and

T1,±(x, y) :=

�2(a� c)(c� b)xy ⌥ v1

p
c2 � d2 + 2(a� c)x2 + 2(b� c)y2

(b� c)
�
c2 � d2 + 2(a� c)x2

� .

(ii) For the characteristic roots ±
p

(a� d)/(d� b),

with v2 =
p

2(a� d)(d� b)(c� d) we have

t2,±(x, y) :=n
2(b� c)(a� d)xyz ⌥ �1�2v2

�
� by2 � cz2

+ (x2 + y2 + z2)(y2 + z2)
�o.n

(d� b)z
�
(d� c)(d + x2 + y2

+ z2)� 2(a� c)x2
�
⌥ �1�2v2xy(x2 + y2 + z2 � b)

o
,

s2,±(x, y) :=n
(c� d)y

�
(b� d)(d + x2 + y2 + z2) + 2(a� b)x2

�
± �1�2v2xz(x2 + y2 + z2 � c)

o.n
(d� b)z

�
(d� c)(d + x2 + y2

+ z2)� 2(a� c)x2
�
⌥ �1�2v2xy(x2 + y2 + z2 � b)

o
.

Further T2,±(x, y) = P2,±(x, y)/Q2(x, y) with

P2,±(x, y) :=
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xy
n
� (c2 � d2)

�
3ab� 2ac� 2bc� (a + b� 4c)d� d2

�
+ 2(a� c)

�
� 2ab + ac + 2bc + (a� 3c)d + d2

�
x2

+ 2(b� c)
�
� 2ab + 2ac + bc + (b� 3c)d + d2

�
y2

+ �1

p
c2 � d2 + 2(a� c)x2 + 2(b� c)y2

�
2c2(a + b)� 3abc

+ (ab + ac + bc� 4c2)d

� (a + b� c)d2 + d3 + 2(a� c)(b� d)x2 + 2(b� c)(a� d)y2
�o

± �1v2

q
c� x2 � y2 + �1

p
c2 � d2 + 2(a� c)x2 + 2(b� c)y2

⇥
n

�1

p
c2 � d2 + 2(a� c)x2 + 2(b� c)y2

�
c2 � d2 + (a� c)x2

+ (b� c)y2
�

+ c
�
c2 � d2 + 2(a� c)x2 + 2(b� c)y2

�o
,

Q2(x, y) :=

� (b� d)(c� d)2(2c + d)(c + d)

+ (b� d)(d� c)
�
6ac� 7c2 + 4(a� c)d + d2

�
x2

� (b� c)(b� d)(c� d)(3c + d)y2 � 2(a� c)(b� d)(2a� 3c + d)x4

+ 2(b� c)
�
� 2ab + ac + 2bc + (a� 3c)d + d2

�
x2y2

� �1

p
c2 � d2 + 2(a� c)x2 + 2(b� c)y2

⇥
�
(b� d)(c� d)(2c� d)(c + d)

+ (b� d)
�
4ac� 5c2 � 2(a� c)d + d2

�
x2 + (b� c)(b� d)(c� d)y2

� 2(a� c)(b� d)x4 � 2(b� c)(a� d)x2y2
 
.

(iii) For the characteristic roots ±
p

(a + d)/(�d� b),

setting v3 =
p

2(a + d)(�b� d)(c + d) we have a similar expression to (ii) (only

replace d in (ii) by �d). We omit the detailed forms of T3,±(x, y).

Lemma 5.5. Let Q(t) =
Pn

k=0 qktk be a polynomial in t of degree n(> 0) with coe�-

cients q0, ..., qn 2 C (qn 6= 0). Suppose that Q(t) = 0 has n separate roots t1, ..., tn 2 C.

Let A(t) be a polynomial in t with complex coe�cients, and s1, ..., sm be m(> 0) dif-

ferent complex numbers such that {sp; p = 1, ...,m} \ {tj ; j = 1, ..., n} = ;. Then the

solution (g0, ..., gn�1) 2 Cn to the system

n�1X
k=0

(tj)
kgk =

A(t)Qm
p=1(t� sp)

�����
t=tj

(j = 1, ..., n) (5.4)

is given by

gk = ↵k +

mX
p=1

�p�k,p (5.5)

for k = 0, ..., n� 1. Here �p is the residue of A(t)/(
Qm

r=1(t� sp)) at t = sp given by

�p :=
A(sp)Q

r 6=p(sp � sr)
,

and ↵k’s are the coe�cients of the remainder
Pn�1

k=0 ↵ktk of the division B(t)/Q(t) for

the polynomial

B(t) :=
A(t)Qm

p=1(t� sp)
�

mX
p=1

�p

t� sp
.
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Further, the coe�cient �k,p at (5.5) is given by

�k,p := �
n�k�1X

`=0

q`+k+1(sp)
`
.

Q(sp),

which satisfies

1/(tj � sp) =

n�1X
k=0

�k,p(tj)
k

for any j = 1, ..., n.

Proof. For any p (1  p  m) and any j (1  j  n) we have

1

tj � sp
= �Q(tj)�Q(sp)

(tj � sp)Q(sp)
=

1

Q(sp)
R(tj ; sp)

with R(t; s) := �
Pn�1

k=0(
Pn�k�1

`=0 q`+k+1s`)tk, and so

�k,p = �
n�k�1X

`=0

q`+k+1(sp)
`
.

Q(sp).

Further we have the following unique expression:

A(t)Qm
p=1(t� sp)

= U(t)Q(t) +

n�1X
k=0

↵ktk +

mX
p=1

�p

t� sp

with some polynomial U(t) and some ↵0, ...,↵n�1,�1, ...,�m 2 C. Indeed we have

�p = A(sp)
.0@Y

r 6=p

(sp � sr)

1
A ,

and so
Pn�1

k=0 ↵ktk is the remainder of the division 
A(t)Qm

p=1(t� sp)
�

mX
p=1

�p

t� sp

!.
Q(t).

Consequently for t = tj we get the following:

A(tj)Qm
p=1(tj � sp)

=

n�1X
k=0

↵k(tj)
k +

mX
p=1

�p

tj � sp

=

n�1X
k=0

↵k(tj)
k +

mX
p=1

�p

 
n�1X
k=0

�k,p(tj)
k

!

=

n�1X
k=0

(tj)
k

 
↵k +

mX
p=1

�p�k,p

!
.

Thus we have a solution (g0, ..., gn�1) to (5.4) given by

gk = ↵k +

mX
p=1

�p�k,p.

The uniqueness follows from

det
�
(tj)

k�1; j, k = 1, ..., n
�

=
Y
j>k

(tj � tk) 6= 0.

⇤
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The proof of Theorem 2.10. By Theorem 2.6 we have the following system of 6

di↵erential equations for f(x, y):8>>>><
>>>>:

Z(Tk(x, y)) = 0, Tk(0, 0) = tk,
5X

j=0

Tk(x, y)j

✓✓
5

j

◆
@5�j

x @j
yf(x, y)

◆
=

24N(Tk(x, y))

R(Tk(x, y))K(Tk(x, y))3

(1  k  6).

(5.6)

Since

det
�
Tj(0, 0)k�1; j, k = 1, ..., 6

�
=
Y
j>k

(tj � tk) 6= 0,

the coe�cient matrix
�
Tj(x, y)k�1; j, k = 1, ..., 6

�
is invertible in a neighborhood of

x = y = 0. Therefore we can rewrite (5.6) as follows:8><
>:

Z(Tj+1(x, y)) = 0, Tj+1(0, 0) = tj+1,

@5�j
x @j

yf(x, y) = Gj(rf,r2f,r3f,r4f, T1, ..., T6),

(0  j  5),

(5.7)

where Gj (j = 0, ..., 5) are analytic functions of rf,r2f,r3f,r4f, T1, ..., T6. In par-

ticular, we know that f is a C6-class function in a neighborhood of the origin. Hence f
satisfies all the assumptions in Theorem 2.7, and so we obtain the analyticity of f(x, y)

at x = y = 0. On the other hand, it is easy to see that all the Taylor coe�cients at

the origin of f(x, y) are determined successively by the Taylor coe�cients c0, c2, d⇤, e⇤
at the origin. Thus the proof of the former part of Theorem 2.10 is completed. Now

we suppose the additional conditions

d0 = d1 = d2 = d3 = 0

at (0, 0). Since a = b = c1 = d0 = d1 = d2 = d3 = 0 at (0, 0), by the explicit forms

of N(T ), B10(T ) in Theorem 2.6 we get N(T ; 0, 0) = 0. Hence by equations (5.6) we

obtain

@5�j
x @j

yf(0, 0) = 0 (0  j  5).

To get some necessary conditions on the values c0, c2, e0, ..., e4 at the origin for a solution

f(x, y), we find sixth-order derivatives of f at the origin by using the di↵erential equa-

tions (5.6). Precisely speaking, we find the following coe�cients gj , hj (j = 0, 1, ..., 5)

@5�j
x @j

yf(x, y)

(5� j)!j!
= gjx + hjy + O(x2 + y2)

as x, y ! 0. Since all the fifth order derivatives of f vanish at the origin, concerning

a, b, c⇤, d⇤, e⇤ we have

a = fx(x, y) ⌘ fxx(0, 0)x + fxy(0, 0)y ⌘ 2c⇤0x,

b = fy(x, y) ⌘ fxy(0, 0)x + fyy(0, 0)y ⌘ 2c⇤2y,

c0 = fxx(x, y)/2 ⌘ c⇤0 + (fxxx(0, 0)x + fxxy(0, 0)y)/2 ⌘ c⇤0,

c1 = fxy(x, y) ⌘ c⇤1 + fxxy(0, 0)x + fxyy(0, 0)y ⌘ 0,

c2 = fyy(x, y)/2 ⌘ c⇤2 + (fxyy(0, 0)x + fyyy(0, 0)y)/2 ⌘ c⇤2,

d0 = fxxx(x, y)/6 ⌘ (fxxxx(0, 0)x + fxxxy(0, 0)y)/6 ⌘ 4e⇤0x + e⇤1y,

d1 = fxxy(x, y)/2 ⌘ (fxxxy(0, 0)x + fxxyy(0, 0)y)/2 ⌘ 3e⇤1x + 2e⇤2y,

d2 = fxyy(x, y)/2 ⌘ (fxxyy(0, 0)x + fxyyy(0, 0)y)/2 ⌘ 2e⇤2x + 3e⇤3y,

d3 = fyyy(x, y)/6 ⌘ (fxyyy(0, 0)x + fyyyy(0, 0)y)/6 ⌘ e⇤3x + 4e⇤4y,

e0 = fxxxx(x, y)/24 ⌘ e⇤0 + (fxxxxx(0, 0)x + fxxxxy(0, 0)y)/24 ⌘ e⇤0,

e1 = fxxxy(x, y)/6 ⌘ e⇤1 + (fxxxxy(0, 0)x + fxxxyy(0, 0)y)/6 ⌘ e⇤1,
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e2 = fxxyy(x, y)/4 ⌘ e⇤2 + (fxxxyy(0, 0)x + fxxyyy(0, 0)y)/4 ⌘ e⇤2,

e3 = fxyyy(x, y)/6 ⌘ e⇤3 + (fxxyyy(0, 0)x + fxyyyy(0, 0)y)/6 ⌘ e⇤3,

e4 = fyyyy(x, y)/24 ⌘ e⇤4 + (fxyyyy(0, 0)x + fyyyyy(0, 0)y)/24 ⌘ e⇤4.

Here, c⇤j , e
⇤
j mean their values at the origin, and “A ⌘ 0” means “A = O(x2 + y2)

as x, y ! 0”. Concerning T (x, y), noting K(T ) ⌘ 2T (c⇤0 + c⇤2T
2) � 2c⇤2T (T 2 + 1) ⌘

2T (c⇤0 � c⇤2), we have

Z(T ) ⌘ K(T )2
�
R(T )E(T )� C(T )3

�

⌘ 4(c⇤0 � c⇤2)
2T 2

⇣
(T 2 + 1)

4X
j=0

e⇤jT
j � (c⇤2T

2 + c⇤0)
3
⌘
.

Therefore, since Z 0(T ) 6= 0, we obtain

Tj(x, y) ⌘ tj (j = 1, ..., 6).

From now on, c⇤, e⇤ mean their values at x = y = 0. By Theorem 2.6 we have the

following: (For the check of calculations, the readers can employ a mathematica file

“check-fifth2” in our website written in Section 1.)

N(T ) ⌘
� 5R(T )K(T )2E0(T )

⇥
R(T )D(T )� 2(bT + a)C(T )2

⇤
+ D(T )B5(T ) + 4C(T )4B10(T )

⌘ �5R(T )K(T )2E0(T )
⇥
R(T )D(T )� 2(bT + a)C(T )2

⇤
+ D(T )

�
9C(T )2K(T )3 + K(T )2C(T )2(6R0(T )C(T ) + 4R(T )C 0(T ))

�
+ 4C(T )4

h
K(T )2

�
2bC(T )� 4(bT + a)C 0(T )

 
� 2(bT + a)C(T )K(T )K 0(T ) + K(T )

�
� 4(bT + a)C(T )

�
� c2 + c0

�
� 4a(c2 � c0)C(T )� 2(bT + a)(c2 � c0)(2c0)

 i
⌘ �20T 2(T 2 + 1)(c0 � c2)

2E0(T )[(T 2 + 1)D(T )

� 2(bT + a)(c0 + c2T
2)2] + 4T 2(c0 � c2)

2D(T )(c0 + c2T
2)2

⇥
�
18T (c0 � c2) + 12T (c0 + c2T

2) + 8c2T (T 2 + 1)
�

+ 4(c0 + c2T
2)4
h
4T 2(c0 � c2)

2(2b(c0 + c2T
2)� 8c2T (bT + a))

� 8T (c0 � c2)
2(bT + a)(c0 + c2T

2) + 2T (c0 � c2)
2(�4bT (c0 + c2T

2)

+ 4c0(bT + a))
i

⌘ �20T 2(T 2 + 1)(c0 � c2)
2E0(T )[(T 2 + 1)D(T )

� 2(bT + a)(c0 + c2T
2)2] + 40T 3(c0 � c2)

2D(T )(c0 + c2T
2)2

⇥
�
3c0 + c2(2T 2 � 1)

�
� 160T 3c2(c0 � c2)

2(c0 + c2T
2)4(bT + a)

⌘ 20(c0 � c2)
2
h
T 2
n
� (T 2 + 1)2E0(T ) + 2TC(T )2

�
2C(T ) + c0 � c2

�o

⇥
⇣�

4E(T )� TE0(T )
�
x + E0(T )y

⌘

+ 4T 2C(T )2
n

(T 2 + 1)E0(T )� 4c2TC(T )2
o

(c2Ty + c0x)
i

⌘ 20(c0 � c2)
2T 2

�
A1(T )x + A2(T )y

�
,
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where we used D(T ) ⌘ (4E(T )� TE0(T ))x + E0(T )y, bT + a ⌘ 2(c2Ty + c0x), and

A1(T ) :=
n
� (T 2 + 1)2E0(T ) + 2TC(T )2

�
2C(T ) + c0 � c2

�o

⇥
�
4E(T )� TE0(T )

�
+ 4c0C(T )2

n
(T 2 + 1)E0(T )� 4c2TC(T )2

o
,

A2(T ) := E0(T )
n
� (T 2 + 1)2E0(T ) + 2TC(T )2

�
2C(T ) + c0 � c2

�o

+ 4c2TC(T )2
n

(T 2 + 1)E0(T )� 4c2TC(T )2
o

.

Since we have the equations

5X
k=0

(tj)
k(gkx + hky) ⌘ N(tj)

5R(tj)K(tj)3
⌘ N(tj)

40(c0 � c2)3t3j (t
2
j + 1)

for j = 1, 2, ..., 6, we get the following equations for gj , hj :

5X
k=0

(tj)
kgk =

A1(tj)

2(c0 � c2)tj(t2j + 1)
,

5X
k=0

(tj)
khk =

A2(tj)

2(c0 � c2)tj(t2j + 1)

for j = 1, 2, ..., 6. On the other hand, since {tj} are the non-zero real roots of the

characteristic polynomial P (t), we have Q(tj) = 0 for j = 1, ..., 6 with

Q(t) =

6X
j=0

qjt
j := (t2 + 1)E(t)� C(t)3

= (e4 � c3
2)t

6 + e3t
5 + (e4 + e2 � 3c0c

2
2)t

4 + (e3 + e1)t
3

+ (e2 + e0 � 3c2
0c2)t

2 + e1t + e0 � c3
0.

Therefore we can find (g0, ..., g5), (h0, ..., h5) by using Lemma 5.5 and some Mathemat-

ica program for n = 6,m = 3, s1 = 0, s2 = i(=
p
�1), s3 = �i,

q0 = e0 � c3
0, q1 = e1, q2 = e2 + e0 � 3c2

0c2,

q3 = e3 + e1, q4 = e4 + e2 � 3c0c
2
2, q5 = e3, q6 = e4 � c3

2,

and A(t) = A1(t)/(2(c0� c2)), or A2(t)/(2(c0� c2)), respectively. As for �k,p, we have

�k,1 = �
5�kX
`=0

q`+k+10
`

Q(0)
= �qk+1/q0,

�k,2 = �
5�kX
`=0

q`+k+1i`

Q(i)
= � qk+1 + qk+2i + · · · + q6i5�k

q0 � q2 + q4 � q6 + (q1 � q3 + q5)i
,

�k,3 = �
5�kX
`=0

q`+k+1(�i)`

Q(�i)
= � qk+1 � qk+2i + · · · + q6(�i)5�k

q0 � q2 + q4 � q6 � (q1 � q3 + q5)i

for k = 0, 1, ..., 5.

Case A(t) = A1(t)/(2(c0 � c2)).

�1 =
A1(0)

2(c0 � c2)(�i)(i)
=

A1(0)

2(c0 � c2)
,

�2 =
A1(i)

2(c0 � c2)(i)(2i)
= � A1(i)

4(c0 � c2)
,

�3 =
A1(�i)

2(c0 � c2)(�i)(�2i)
= � A1(�i)

4(c0 � c2)
.
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We can calculate ↵k (k = 0, ..., 5), by Mathematica’s polynomial remainder program

for

A1(t)

2(c0 � c2)t(t2 + 1)
� �1

t
� �2

t� i
� �3

t + i
.

Consequently we have

g0 = ↵0 + �1�0,1 + �2�0,2 + �3�0,3

=
1

2(c0 � c2)(c3
2 � e4)

h
c3
2(24e2

0 + e2
1 � 12e0e2) + e0e

2
3 � 24c2

0c2e0(c
3
2 � e4)

� 24e2
0e4 � e2

1e4 + 12e0e2e4 + c3
0(12c3

2e2 � e2
3 � 12e2e4)

i
g1 = ↵1 + �1�1,1 + �2�1,2 + �3�1,3

=
1

2(c0 � c2)(c3
2 � e4)

h
e1e

2
3 + 2c3

2(21e0e1 � 4e1e2 � 7e0e3)

� 26c2
0c2e1(c

3
2 � e4) + 14c3

0e3(c
3
2 � e4)� 42e0e1e4 + 8e1e2e4 + 14e0e3e4

i
,

g2 = ↵2 + �1�2,1 + �2�2,2 + �3�2,3

=
1

2(c0 � c2)(c3
2 � e4)

h
e0e

2
3 + e2e

2
3 � 32c0c

2
2e0(c

3
2 � e4)� 19e2

1e4

� 24e0e2e4 + 8e2
2e4 + 8e1e3e4 + 16c3

0(c
3
2 � e4)e4 + 16e0e

2
4 + c3

2(19e2
1

+ 24e0e2 � 8e2
2 � 8e1e3 � 16e0e4) + c2

0c2(8c3
2e2 � 3e2

3 � 8e2e4)
i
,

g3 = ↵3 + �1�3,1 + �2�3,2 + �3�3,3

=
1

2(c0 � c2)(c3
2 � e4)

h
e1e

2
3 + e3

3 � 36c0c
2
2e1(c

3
2 � e4) + 12c2

0c2e3(c
3
2 � e4)

� 22e1e2e4 � 16e0e3e4 + 14e2e3e4 + 8e1e
2
4 + 2c3

2(11e1e2 + 8e0e3 � 7e2e3

� 4e1e4)
i
,

g4 = ↵4 + �1�4,1 + �2�4,2 + �3�4,3

=
1

2(c0 � c2)(c3
2 � e4)

h
� 8c6

2e0 � 4c0c
5
2e2 + 16c2

0c
4
2e4 � 4e2

2e4 � 16c2
0c2e

2
4

� 2e4(8e1e3 � 3e2
3 + 4e0e4) + c3

2(4e2
2 + 16e1e3 � 5e2

3 + 16e0e4 � 12e2e4)

+ c0c
2
2(�3e2

3 + 4e2e4) + e2(e
2
3 + 12e2

4)
i
,

g5 = ↵5 + �1�5,1 + �2�5,2 + �3�5,3

=
1

2(c0 � c2)(c3
2 � e4)

h
� 10c6

2e1 � 2c0c
5
2e3 + e3

3 + 2c0c
2
2e3e4 � 4e2e3e4

� 10e1e
2
4 + 6e3e

2
4 + c3

2(4e2e3 + 20e1e4 � 6e3e4)
i
.

Case A(t) = A2(t)/(2(c0 � c2)).

�1 =
A2(0)

2(c0 � c2)(�i)(i)
=

A2(0)

2(c0 � c2)
,

�2 =
A2(i)

2(c0 � c2)(i)(2i)
= � A2(i)

4(c0 � c2)
,

�3 =
A2(�i)

2(c0 � c2)(�i)(�2i)
= � A2(�i)

4(c0 � c2)
.
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We can calculate ↵k (k = 0, ..., 5), by Mathematica’s polynomial remainder program

for
A2(t)

2(c0 � c2)t(t2 + 1)
� �1

t
� �2

t� i
� �3

t + i
.

Consequently we have

h0 = ↵0 + �1�0,1 + �2�0,2 + �3�0,3

=
1

2(c0 � c2)(c3
0 � e0)

h
2c5

0c2e1 � 2c2
0c2e0e1 � e3

1 + 4e0e1e2 + 10c6
0e3

+ e2
0(�6e1 + 10e3) + c3

0(6e0e1 � 4e1e2 � 20e0e3)
i

h1 = ↵1 + �1�1,1 + �2�1,2 + �3�1,3

=
1

2(c0 � c2)(c3
0 � e0)

h
� 16c4

0c
2
2e0 + 16c0c

2
2e

2
0 + 4c5

0c2e2 � e2
1e2

+ c2
0c2(3e2

1 � 4e0e2) + e0(�6e2
1 + 4e2

2 + 16e1e3) + 8c6
0e4 + e2

0(�12e2 + 8e4)

+ c3
0(5e2

1 + 12e0e2 � 4e2
2 � 16e1e3 � 16e0e4)

i
,

h2 = ↵2 + �1�2,1 + �2�2,2 + �3�2,3

=
�1

2(c0 � c2)(c3
0 � e0)

h
12c4

0c
2
2e1 � 12c0c

2
2e0e1 + e3

1 � 36c5
0c2e3 + 36c2

0c2e0e3

+ e2
1e3 + 2e0(4e0 � 11e2)e3 + 2e0e1(7e2 � 8e4)� 2c3

0(7e1e2 + 4e0e3

� 11e2e3 � 8e1e4)
i
,

h3 = ↵3 + �1�3,1 + �2�3,2 + �3�3,3

=
1

2(c0 � c2)(c3
0 � e0)

h
16c3

2e
2
0 � 8c4

0c
2
2e2 � e2

1e2 � 8e0e
2
2 + c0c

2
2(3e2

1 + 8e0e2)

� 8e0e1e3 + 19e0e
2
3 + 32c5

0c2e4 � 32c2
0c2e0e4 � 16e2

0e4 � e2
1e4 + 24e0e2e4

+ c3
0(�16c3

2e0 + 8e2
2 + 8e1e3 � 19e2

3 + 16e0e4 � 24e2e4)
i
,

h4 = ↵4 + �1�4,1 + �2�4,2 + �3�4,3

=
�1

2(c0 � c2)(c3
0 � e0)

h
� 14c3

2e0e1 � 26c4
0c

2
2e3 + 26c0c

2
2e0e3 + e2

1e3 + 8e0e2e3

+ 14e0e1e4 � 42e0e3e4 + 2c3
0(7c3

2e1 � 4e2e3 � 7e1e4 + 21e3e4)
i
,

h5 = ↵5 + �1�5,1 + �2�5,2 + �3�5,3

=
1

2(c0 � c2)(c3
0 � e0)

h
c3
2(e

2
1 + 12(�c3

0 + e0)e2) + e0e
2
3 + 24c0c

2
2(c

3
0 � e0)e4

� e2
1e4 � 12e0e2e4 + 24e0e

2
4 � c3

0(e
2
3 � 12e2e4 + 24e2

4)
i
.

Since gj = @6�j
x @j

yf(0, 0)/(j!(5 � j)!), hj = @5�j
x @j+1

y f(0, 0)/(j!(5 � j)!), we have 5

compatibility conditions:

f1 := 5h0 � g1 = 0, f2 := 2h1 � g2 = 0, f3 := h2 � g3 = 0,

f4 := h3 � 2g4 = 0, f5 := h4 � 5g5 = 0.

We put f⇤j = 2(c0 � c2)(c3
0 � e0)(c3

2 � e4)fj . Then we obtain the following expressions:

f⇤1 = �5(c3
2 � e4)e

3
1 + 36(c3

0 � e0)
2(c3

2 � e4)e3 � (c3
0 � e0)e1e

2
3

+ 12(c3
0 � e0)(3c2

0c2 � e0 � e2)(c
3
2 � e4)e1,

f⇤2 = (c3
0 � e0)(3c2

0c2 � e0 � e2)e
2
3 � 24(c3

0 � e0)(c
3
2 � e4)e1e3
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� (9c3
0 � 6c2

0c2 � 7e0 + 2e2)(c
3
2 � e4)e

2
1,

f⇤3 = �(c3
0 � e0)e

3
3 � (c3

2 � e4)e
3
1 � (c3

2 � e4)e
2
1e3 � (c3

0 � e0)e1e
2
3

+ 8(c3
0 � e0)(c

3
2 � e4)(3c0c

2
2 � e2 � e4)e1

+ 8(c3
0 � e0)(c

3
2 � e4)(3c2

0c2 � e0 � e2)e3,

f⇤4 = �24(c3
0 � e0)(c

3
2 � e4)e1e3 + (c3

0 � e0)(6c0c
2
2 � 9c3

2 � 2e2 + 7e4)e
2
3

+ (c3
2 � e4)(3c0c

2
2 � e2 � e4)e

2
1,

f⇤5 = �5(c3
0 � e0)e

3
3 � (c3

2 � e4)e
2
1e3 + 36(c3

0 � e0)(c
3
2 � e4)

2e1

+ 12(c3
0 � e0)(c

3
2 � e4)(3c0c

2
2 � e2 � e4)e3.

In particular we have

0 = f⇤2 � f⇤4 = (c3
0 � e0)(3c2

0c2 � 6c0c
2
2 + 9c3

2 � e0 + e2 � 7e4)e
2
3

� (c3
2 � e4)(9c3

0 � 6c2
0c2 + 3c0c

2
2 � 7e0 + e2 � e4)e

2
1.

Hence if (c3
0 � e0)(3c2

0c2 � 6c0c2
2 + 9c3

2 � e0 + e2 � 7e4) 6= 0, we get e3 = te1 with

t = ±
s

(c3
2 � e4)(9c3

0 � 6c2
0c2 + 3c0c2

2 � 7e0 + e2 � e4)

(c3
0 � e0)(3c2

0c2 � 6c0c2
2 + 9c3

2 � e0 + e2 � 7e4)
,

and so from f⇤2 = 0 we have⇣
(c3

0 � e0)(3c2
0c2 � e0 � e2)t

2 � 24(c3
0 � e0)(c

3
2 � e4)t

� (9c3
0 � 6c2

0c2 � 7e0 + 2e2)(c
3
2 � e4)

⌘
e2
1 = 0.

Therefore we conclude that, if e1 = e3 = 0 does not hold, then e0 = c3
0 or e0 =

3c2
0c2 � 6c0c2

2 + 9c3
2 + e2 � 7e4 or (a quadratic equation in e0):

0 =
⇣
15c0c

2
2 � 21c3

2 � 5e2 + 16e4

⌘2

e2
0 � 2

⇣
� 378c2

0c
7
2 + 5e3

2

� 153c0c
5
2(6c3

0 + e2) + 18c6
2(57c3

0 + 7e2)� 3c0c
2
2(3c3

0(20e2 � 67e4)

+ e2(10e2 � 41e4)) + 224e4 � 41e2
2e4 + 80e2e

2
4 + 9c2

0c
4
2(30c3

0 � 12e2 + 67e4)

+ c3
2(�224 + 51e2

2 + 27c3
0(13e2 � 46e4)� 201e2e4)� 3c2

0c2(5e2
2 � 41e2e4

+ 80e2
4) + 3c3

0(10e2
2 � 67e2e4 + 112e2

4)
⌘
e0 + 324c8

0c
4
2 + 36c6

2e
2
2 + e4

2

+ 9c6
0(216c6

2 + 12c3
2(5e2 � 19e4) + (2e2 � 7e4)

2)� 108c7
0c

2
2(12c3

2

+ 2e2 � 7e4) + 64e2e4 � 10e3
2e4 � 64e2

4 + 25e2
2e

2
4 + 4c3

2(�16e2

+ 3e3
2 + 16e4 � 15e2

2e4)� 6c0c
2
2(e

3
2 + c3

2(32 + 6e2
2)� 32e4 � 5e2

2e4)

� 18c5
0c2(72c6

2 + 2e2
2 + 6c3

2(3e2 � 17e4)� 17e2e4 + 35e2
4) + 9c4

0c
2
2(36c6

2

� 7e2
2 + 24e2e4 + 25e2

4 � 12c3
2(3e2 + 5e4)) + 6c3

0(90c6
2e2 + 2e3

2 + 96e4

� 17e2
2e4 + 35e2e

2
4 + 3c3

2(�32 + 9e2
2 � 39e2e4))� 3c2

0c2(72c6
2e2

+ c3
2(�128 + 21e2

2 � 120e2e4) + 2(e3
2 + 64e4 � 10e2

2e4 + 25e2e
2
4)).

In other words, for generic c0, c2, e0, e2, e4 we have e1 = e3 = 0. On the other hand,

under c1 = d⇤ = e1 = e3 = 0 we can apply Proposition 5.1. Hence there exists a

unique germ M 0 of a general cyclide at the origin with the same data a, b, c⇤, d⇤, e⇤ at

the origin. Since the characteristic polynomial of M 0 at the origin coincides with P (t),
it has the six distinct non-zero characteristic roots t1, ..., t6 with C(tj ; 0, 0) 6= 0 (8j).
Indeed C(tj ; 0, 0) 6= 0 follows from the assumptions on M at (0, 0) and (i) of Theorem

2.2. Therefore by Lemma 5.6 we know that M 0 includes 6 continuous families of circular

arcs corresponding to characteristic roots t1, ..., t6, and it is conformally equivalent to a
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general cyclide of type (2.18). Hence by the former part of Theorem 2.10 we conclude

that M 0 coincides with our surface germ z = f(x, y). This completes the proof except

for the proof of Lemma 5.6, which is given independently of Theorem 2.10.

Lemma 5.6. Let M = {z = f(x, y)} be a C4-class surface germ at (0, 0, 0) with the

following Taylor expansion at (0, 0):

f(x, y) = c0x
2 + c2y

2 + e0x
4 + e2x

2y2 + e4y
4 + o((x2 + y2)2),

where c0, c2, e0, e2, e4 are real coe�cients with c0 � c2 6= 0. We suppose that M is a

general cyclide as a germ at the origin, and that the characteristic polynomial P (t) at

(0, 0) of M has 6 distinct non-zero real roots t1, ..., t6 with C(tj ; 0, 0) 6= 0 (8j). Then

M is defined by the following equation in a neighborhood of the origin:

0 =� z + c0x
2 + c2y

2 +
e0 � e2 + e4

(c0 � c2)2
z2 + 2�z(x2 + y2 + z2)

+ ↵(x2 + y2 + z2)2, (5.8)

where

↵ :=
c2
2e0 � c0c2e2 + c2

0e4

(c0 � c2)2
, � :=

(c0 + c2)e2 � 2c2e0 � 2c0e4

2(c0 � c2)2
.

Further by some conformal transformation �, M is transformed into a germ at ⌧ =

(0, 0, ⇤) of the following 6-circle Blum cyclide:

(x2 + y2 + z2)2 � 2a1x
2 � 2a2y

2 � 2a3z
2 + a2

4 = 0, (5.9)

where a1 > a3 > a4 > 0, �a2 > a4. In particular this surface (5.9) has the same

characteristic roots {tk}6
k=1 at ⌧ , and for every j = 1, ..., 6 the continuous family of

circular arcs corresponding to tj is transformed by ��1 into the continuous family of

circular arcs on M corresponding to tj.

Remark 5.7. As we mentioned at Remark 2.9, Takeuchi [10] proved that a general

cyclide can be transformed into (2.18) by a conformal transformation. The arguments

there are geometrically very interesting, but they are not germ-fixing arguments. In-

deed, it is not so easy to construct a similar conformal transformation fixing the refer-

ence point.

Proof. (For the check of calculations, the readers can employ a mathematica file “check-

fifth3” in our website written in Section 1.) By Proposition 5.1 and its proof we get

(5.8). Since a = b = c1 = d0 = d1 = d2 = d3 = e1 = e3 = 0 at the origin, the

characteristic polynomial P (t) has the form P (t) = 4(c0 � c2)t2H(t2), where

H(h) := (e4 � c3
2)h

3 + (e4 + e2 � 3c0c
2
2)h

2 + (e2 + e0 � 3c2
0c2)h + e0 � c3

0.

Then, by the assumption, the equation H(h) = 0 has 3 distinct positive solutions

h = h1, h2, h3 with h1 > h2 > h3 > 0. Therefore

(e4 � c3
2)h

3 + (e4 + e2 � 3c0c
2
2)h

2 + (e2 + e0 � 3c2
0c2)h + e0 � c3

0

= (e4 � c3
2)(h� h1)(h� h2)(h� h3),

and so we can write e0, e2, e4 by c0, c2, h1, h2, h3 as follows:

e0 =
1

(1 + h1)(1 + h2)(1 + h3)

n
c3
0 + c3

0h1 + c3
0h2 + c3

0h1h2 + c3
0h3

+ c3
0h1h3 + c3

0h2h3 + 3c2
0c2h1h2h3 � 3c0c

2
2h1h2h3 + c3

2h1h2h3

o
,

e2 =
�1

(1 + h1)(1 + h2)(1 + h3)

n
c3
0 � 3c2

0c2 + c3
0h1 � 3c2

0c2h1 + c3
0h2

� 3c2
0c2h2 � 3c0c

2
2h1h2 + c3

2h1h2 + c3
0h3 � 3c2

0c2h3 � 3c0c
2
2h1h3
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+ c3
2h1h3 � 3c0c

2
2h2h3 + c3

2h2h3 � 3c0c
2
2h1h2h3 + c3

2h1h2h3

o
,

e4 =
1

(1 + h1)(1 + h2)(1 + h3)

n
c3
0 � 3c2

0c2 + 3c0c
2
2 + c3

2h1 + c3
2h2

+ c3
2h1h2 + c3

2h3 + c3
2h1h3 + c3

2h2h3 + c3
2h1h2h3

o
.

On the other hand we consider the surface N with real parameters a, b, k1, k2, k3, d, e:

N : 0 = a + bz + k1x
2 + k2y

2 + k3z
2

+ dz
�
x2 + y2 + z2

�
+ e
�
x2 + y2 + z2

�2
.

We construct � as a composition of 3 conformal transformations; a translation in z-

direction, an inversion with center at the origin, and another translation in z-direction:

� = �3 � �2 � �1 : (x, y, z)
�1! (x0, y0, z0)

�2! (x00, y00, z00)
�3! (x000, y000, z000).

Then after the translation �1 : x = x0, y = y0, z = z0 + t, we have a similar surface

N1 = �1(N) with parameters a0, b0, k01, k
0
2, k

0
3, d

0, e0, where

a0 = a + bt + k3t
2 + dt3 + et4, b0 = b + 2k3t + 3dt2 + 4et3,

k01 = k1 + dt + 2et2, k02 = k2 + dt + 2et2, k03 = k3 + 3dt + 6et2

d0 = d + 4et, e0 = e.

Further, after the inversion:

x0 =
x00

(x00)2 + (y00)2 + (z00)2
, y0 =

y00

(x00)2 + (y00)2 + (z00)2
,

z0 =
z00

(x00)2 + (y00)2 + (z00)2
,

we have a similar surface N2 = �2(N1) with parameters a00, b00, k001 , k002 , k003 , d00, e00, where

a00 = e0, b00 = d0, k001 = k01, k002 = k02, k003 = k03, d00 = b0, e00 = a0.

Again after a translation x00 = x000, y00 = y000, z00 = z000 + s, we have a similar surface

N3 = �(N2) with parameters a000, b000, k0001 , k0002 , k0003 , d000, e000, where

a000 = a00 + b00s + k003 s2 + d00s3 + e00s4, b000 = b00 + 2k003 s + 3d00s2 + 4e00s3,

k0001 = k001 + d00s + 2e00s2, k0002 = k002 + d00s + 2e00s2, k0003 = k003 + 3d00s + 6e00s2,

d000 = d00 + 4e00s, e000 = e00.

We suppose that the last surface is a Blum cyclide, then we get the equations b000 =

d000 = 0. That is,

0 = d0 + 2k03s + 3b0s2 + 4a0s3, 0 = b0 + 4a0s.

Further they are written by using the original parameters as follows (under a = 0):

0 = d + 4et + 2s(k3 + 3dt + 6et2) + 3s2(b + 2k3t + 3dt2 + 4et3)

+ 4s3(bt + k3t
2 + dt3 + et4),

0 = b + 2k3t + 3dt2 + 4et3 + 4s(bt + k3t
2 + dt3 + et4).

Hence we have the following equivalent conditions:

0 = d + 4et + 2s(k3 + 3dt + 6et2) + 2s2(b + 2k3t + 3dt2 + 4et3),

0 = b + 2k3t + 3dt2 + 4et3 + 4s(bt + k3t
2 + dt3 + et4).

Since the second equation above is solvable with respect to s:

s = � b + 2k3t + 3dt2 + 4et3

4(bt + k3t2 + dt3 + et4)
,
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we finally obtain an equation for t:

0 =b3 + 2b2k3t + 5b2dt2 + 20b2et3 + (�5bd2 + 20bk3e)t
4

+ (�2k3d
2 + 8k2

3e� 4bde)t5 + (�d3 + 4k3de� 8be2)t6. (5.10)

In our case, the parameters for the original surface N = M are given by the following:

a = 0, b = �1, k1 = c0, k2 = c2, k3 =
e0 � e2 + e4

(c0 � c2)2
,

d =
(c0 + c2)e2 � 2c2e0 � 2c0e4

(c0 � c2)2
, e =

c2
2e0 � c0c2e2 + c2

0e4

(c0 � c2)2
.

Therefore equation (5.10) for t is written by using c0, c2, h1, h2, h3 as follows:

0 =
⇣
1 + h1 + h2 + h3 + h1h2 + h2h3 + h3h1 + h1h2h3

� 2(c0 + c2h1 + c0h2 + c0h3 + c2h1h2 + c2h1h3 + c0h2h3 + c2h1h2h3)t

+ (c2
0 � c2

0h1 + c2
0h2 + c2

0h3 + 2c0c2h1 + c2
2h1h2 + c2

2h1h3 + 2c0c2h2h3

� c2
2h2h3 + c2

2h1h2h3)t
2
⌘
⇥
⇣
1 + h1 + h2 + h3 + h1h2 + h2h3 + h1h3

+ h1h2h3 � 2(c0 + c2h2 + c0h1 + c0h3 + c2h1h2 + c2h2h3 + c0h1h3

+ c2h1h2h3)t + (c2
0 � c2

0h2 + c2
0h1 + c2

0h3 + 2c0c2h2 + c2
2h1h2 + c2

2h2h3

+ 2c0c2h1h3 � c2
2h1h3 + c2

2h1h2h3)t
2
⌘
⇥
⇣
1 + h1 + h2 + h3 + h1h2

+ h2h3 + h1h3 + h1h2h3 � 2(c0 + c2h3 + c0h1 + c0h2 + c2h1h3

+ c2h2h3 + c0h1h2 + c2h1h2h3)t + (c2
0 � c2

0h3 + c2
0h1 + c2

0h2

+ 2c0c2h3 + c2
2h1h3 + c2

2h2h3 + 2c0c2h1h2 � c2
2h1h2 + c2

2h1h2h3)t
2
⌘
.

Easily to see, the first and the second factors are some permutations of the third factor

in h1, h2, h3. The two roots corresponding to the third factor are given by

t± =
⇣
(c0 + c2h3)(1 + h1)(1 + h2)

± (c0 � c2)
p

(1 + h1)(1 + h2)(h1 � h3)(h2 � h3)
⌘.

⇣
(1 + h1 + h2 � h3)c

2
0 + 2(h1h2 + h3)c0c2

+ (h1h3 + h2h3 � h1h2 + h1h2h3)c
2
2

⌘
. (5.11)

Since h1 > h2 > h3 > 0, we know that the roots for the other two factors are not real.

Therefore if the denominator of (5.11) does not vanish, we have two real solutions t±
as above. Putting

k :=
p

(1 + h1)(1 + h2)(h1 � h3)(h2 � h3) (> 0), w := c0/c2,

we get the following expressions for t± by using c2, w, h1, h2, h3, k:

t± =
⇣
(w + h3)(1 + h1)(1 + h2) ± (w � 1)k

⌘.
⇣
c2

�
(1 + h1 + h2 � h3)w

2 + 2(h1h2 + h3)w + h1h3 + h2h3 � h1h2 + h1h2h3

�⌘
.

By using t = t+, we find s as follows:

s = � b + 2k3t + 3dt2 + 4et3

4(bt + k3t2 + dt3 + et4)

=
n

(c0 � c2)
2 � 2(e0 � e2 + e4)t + 3(2c2e0 � c0e2 � c2e2 + 2c0e4)t

2
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� 4(c2
2e0 � c0c2e2 + c2

0e4)t
3
o.n

4t
�
� (c0 � c2)

2 + (e0 � e2 + e4)t

� (2c2e0 � c0e2 � c2e2 + 2c0e4)t
2 + (c2

2e0 � c0c2e2 + c2
0e4)t

3
�o

= �
n

c2

⇣
� h1h2 + h1h3 + h2h3 + h1h2h3 + 2(h1h2 + h3)w

+ (1 + h1 + h2 � h3)w
2
⌘
k
o.n

2(1 + h1)(1 + h2)(h1 � h3)(h2 � h3)(w � 1)
o

.

Thus we can find (e000)�1, k0003 , k0002 , k0001 , a000. First, we get

1/e000 = 1/e00 = 1/a0 = 1/(bt + k3t
2 + dt3 + et4)

=
�c2(u + vk)

(w � 1)3(h1 � h2)2(h1 � h3)(h2 � h3)(1 + h3)

⇥
✓

w +
h1h2 + h3 + k

1 + h1 + h2 � h3

◆4

,

where

u := h1 + 2h2
1 + h3

1 + h2 � 2h1h2 � h2
1h2 + 2h3

1h2 + 2h2
2 � h1h

2
2

� 4h2
1h

2
2 + h3

2 + 2h1h
3
2 � 2h3 + h1h3 + 2h2

1h3 � h3
1h3 + h2h3

+ h2
1h2h3 + 2h2

2h3 + h1h
2
2h3 � h3

2h3 � 4h2
3 � h1h

2
3 + 2h2

1h
2
3

� h2h
2
3 � 2h1h2h

2
3 + 2h2

2h
2
3 � 2h3

3 � h1h
3
3 � h2h

3
3,

v := 2� 2h2
1 + 4h1h2 � 2h2

2 + 4h3 + 2h2
3.

We prove here that u + vk > 0 under h1 > h2 > h3 > 0. In fact putting positive

numbers p := h1 � h2, q := h2 � h3, r := h3, we get

u + vk = p3(1 + 2q + r) + p(1 + r)2(1 + 2q + r)

+ 2p2
�
1 + q + q2 + 2r + qr + r2

�
p

q(p + q)(1 + q + r)(1 + p + q + r)
�

+ 2(1 + r)2
�
q + q2 + qr +

p
q(p + q)(1 + q + r)(1 + p + q + r)

�
> p2

⇣
p(1 + 2q + r) + 2(1 + q + q2 + 2r + qr + r2)

� 2
p

q(p + q)(1 + q + r)(1 + p + q + r)
⌘

> 0.

This is because concerning the last term we have⇣
p(1 + 2q + r) + 2(1 + q + q2 + 2r + qr + r2)

⌘2

� 4q(p + q)(1 + q + r)(1 + p + q + r)

= 4 + 4p + p2 + 8q + 8pq + 8q2 + 16r + 12pr + 2p2r + 24qr

+ 16pqr + 16q2r + 24r2 + 12pr2 + p2r2 + 24qr2 + 8pqr2

+ 8q2r2 + 16r3 + 4pr3 + 8qr3 + 4r4 > 0.

Further, about k0003 , k0002 , k0001 , a000 we have the following:

k0003 = k003 + 3d00s + 6e00s2 = k03 + 3b0s + 6a0s2

= (k3 + 3dt + 6et2) + 3(b + 2k3t + 3dt2 + 4et3)s

+ 6(bt + k3t
2 + dt3 + et4)s2

=
c2(h1 + h2 + 2h1h2 � 2h3 � h1h3 � h2h3)(w � 1)

2(1 + h1)(1 + h2)(1 + h3)
,

k0002 = k002 + d00s + 2e00s2 = k02 + b0s + 2a0s2
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= k2 + dt + 2et2 + (b + 2k3t + 3dt2 + 4et3)s

+ 2(bt + k3t
2 + dt3 + et4)s2

= �c2(2 + h1 + h2)(w � 1)

2(1 + h1)(1 + h2)
,

k0001 = k001 + d00s + 2e00s2 = k01 + b0s + 2a0s2

= k1 + dt + 2et2 + (b + 2k3t + 3dt2 + 4et3)s

+ 2(bt + k3t
2 + dt3 + et4)s2

=
c2(h1 + h2 + 2h1h2)(w � 1)

2(1 + h1)(1 + h2)
,

a000 = a00 + b00s + k003 s2 + d00s3 + e00s4 = e0 + d0s + k03s
2 + b0s3 + a0s4

= e + (d + 4et)s + (k3 + 3dt + 6et2)s2

+ (b + 2k3t + 3dt2 + 4et3)s3 + (bt + k3t
2 + dt3 + et4)s4

=
�c3

2(u + vk)

16(1 + h1)2(1 + h2)2(h1 � h3)(h2 � h3)(1 + h3)(w � 1)

⇥
✓

w +
h1h2 + h3 + k

1 + h1 + h2 � h3

◆4

.

Therefore the transformed surface M 0 = �(M) is written as

(x2 + y2 + z2)2 � 2Ax2 � 2By2 � 2Cz2 + D2 = 0,

where

A = �k0001 /(2e000)

=
c2
2(h1 + h2 + 2h1h2)(u + vk)

⇣
w + h1h2+h3+k

1+h1+h2�h3

⌘4

4(w � 1)2(h1 � h2)2(h1 � h3)(h2 � h3)(1 + h1)(1 + h2)(1 + h3)
,

B = �k0002 /(2e000)

= �
c2
2(2 + h1 + h2)(u + vk)

⇣
w + h1h2+h3+k

1+h1+h2�h3

⌘4

4(w � 1)2(h1 � h2)2(h1 � h3)(h2 � h3)(1 + h1)(1 + h2)(1 + h3)
,

C = �k0003 /(2e000)

=
c2
2(h1 + h2 + 2h1h2 � 2h3 � h1h3 � h2h3)(u + vk)

4(w � 1)2(h1 � h2)2(h1 � h3)(h2 � h3)(1 + h1)(1 + h2)(1 + h3)2

⇥
✓

w +
h1h2 + h3 + k

1 + h1 + h2 � h3

◆4

,

D =
p

a000/e000

=
c2
2(u + vk)

⇣
w + h1h2+h3+k

1+h1+h2�h3

⌘4

4(w � 1)2(h1 � h2)(h1 � h3)(h2 � h3)(1 + h1)(1 + h2)(1 + h3)
.

Since A > 0, D > 0, A > C and

C �D

A
=

2(1 + h1)(h2 � h3)

(h1 + h2 + 2h1h2)(1 + h3)
> 0,

�B �D

A
=

2(1 + h2)

h1 + h2 + 2h1h2

> 0,
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we have A > C > D > 0,�B > D. Hence M 0 satisfies Blum’s six circle conditions:

A > C > D > 0, D > B,B 6= �D. Further, �((0, 0, 0)) = (0, 0,�s� t�1) =: ⌧ because

(0, 0, 0) ! (0, 0,�t) ! (0, 0,�1/t) ! (0, 0,�s� t�1).

Therefore the surface germ M at the origin is transformed into a six-circle Blum cyclide

M 0 at ⌧ by a conformal transformation �. On the other hand by Example 5.3 and

Proposition 5.4 we have the six characteristic roots at ⌧ 2 M 0

±
r

A� C

C �B
, ±

r
A�D

D �B
, ±

r
A + D

�B �D

and the corresponding continuous families of circles. Since

A� C

C �B
= h3,

A�D

D �B
= h2,

A + D

�B �D
= h1,

we have the same characteristic roots ±
p

h3,±
p

h2,±
p

h1 for M 0 at ⌧ with those for

M at the origin, that is, t1, ..., t6. Further the continuous family of circular arcs on

M 0 corresponding to tj is transformed by ��1 into a continuous family of circular arcs

on M corresponding to tj . Indeed, the conformal image of a circular arc is a circular

arc or a line segment. Let Cj be the circle on M 0 passing through ⌧ = (0, 0,�s� t�1)

corresponding to the root tj . Then the tangent vector to Cj at ⌧ is given by (1, tj , 0).

Since

�(x, y, z) = �3(�2(x, y, z � t))

=

✓
x

x2 + y2 + (z � t)2
,

y

x2 + y2 + (z � t)2
,

z � t

x2 + y2 + (z � t)2
� s

◆

=

✓
x

t2
+ O(r2),

y

t2
+ O(r2),�s� 1

t
� z

t2
+ O(r2)

◆
,

where r =
p

x2 + y2 + z2, the tangent vector to the curve ��1(Cj) at the origin is

the same vector (1, tj , 0). Therefore ��1(Cj) cannot be a line-segment because of the

assumption C(tj ; 0, 0) 6= 0. Hence the conformal image of the continuous family of

circular arcs on M 0 corresponding to tj is transformed under ��1 into a continuous

family of circular arcs on M corresponding to tj . This completes the proof. ⇤
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