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ABSTRACT. We give a unified interpretation of confluences, contiguity relations
and Katz’s middle convolutions for linear ordinary differential equations with
polynomial coefficients and their generalization to partial differential equa-
tions. The integral representations and series expansions of their solutions
are also within our interpretation. As an application to Fuchsian differential
equations on the Riemann sphere, we construct a universal model of Fuchsian
differential equations with a given spectral type, in particular, we construct sin-
gle ordinary differential equations without apparent singularities corresponding
to the rigid local systems, whose existence was an open problem presented by
Katz. Furthermore we obtain an explicit solution to the connection problem
for the rigid Fuchsian differential equations and the necessary and sufficient
condition for their irreducibility. We give many examples calculated by our
fractional calculus.
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1. INTRODUCTION

Gauss hypergeometric functions and the functions in their family, such as Bessel
functions, Whittaker functions, Hermite functions, Legendre polynomials and Ja-
cobi polynomials etc. are the most fundamental and important special functions
(cf. [EMO] Wal (NW]). Many formulas related to the family have been studied and
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clarified together with the theory of ordinary differential equations, the theory of

holomorphic functions and relations with other fields. They have been extensively

used in various fields of mathematics, mathematical physics and engineering.
Euler studied the hypergeometric equation

(1.1) z(1—2)y" + (c— (a+b+1)z)y —aby =0
with constant complex numbers a, b and ¢ and he got the solution

L ala+1)---(a+k—-1)-b(b+1)---(b+k—-1)
(1.2) F(a,b,c;x) = P Y P — 2k,

o0

The series F(a,b,c;x) is now called Gauss hypergeometric series or function and
Gauss proved the Gauss summation formula

L(c)T'(c—a—10)

I'(c—a)l'(c—10)

when the real part of ¢ is sufficiently large. Then in the study of this function an
important concept was introduced by Riemann. That is the Riemann scheme

(1.3) F(a,b,c;1) =

r=0 1 00
(1.4) 0 0 a ;T
l—-c ¢c—a—-b b

which describes the property of singularities of the function and Riemann proved
that this property characterizes the Gauss hypergeometric function.

The equation ([[J) is a second order Fuchsian differential equation on the Rie-
mann sphere with the three singular points {0,1,00}. One of the main purpose of
this paper is to generalize these results to the general Fuchsian differential equation
on the Riemann sphere. In fact our study will be applied to the following three
kinds of generalizations.

One of the generalizations of the Gauss hypergeometric family is the hyperge-
ometric family containing the generalized hypergeometric function ,F,_1(a, 8;x)
or the solutions of Jordan-Pochhammer equations. Some of their global structures
are concretely described as in the case of the Gauss hypergeometric family.

The second generalization is a class of Fuchsian differential equations such as
the Heun equation which is of order 2 and has 4 singular points in the Riemann
sphere. In this case there appear accessory parameters. The global structure of the
generic solution is quite transcendental and the Painlevé equation which describes
the deformations preserving the monodromies of solutions of the equations with an
apparent singular point is interesting and has been quite deeply studied and now
it becomes an important field of mathematics.

The third generalization is a class of hypergeometric functions of several vari-
ables, such as Appell’s hypergeometric functions (cf. [AK]), Gelfand’s generalized
hypergeometric functions (cf. [Gg) and Heckman-Opdam’s hypergeometric func-
tions (cf. [HQO]). The author and Shimeno [OS] studied the ordinary differential
equations satisfied by the restrictions of Heckman-Opdam’s hypergeometric func-
tion on singular lines through the origin and we found that some of the equations
belong to the even family classified by Simpson [Si], which is now called a class of
rigid differential equations and belongs to the first generalization in the above.

The author’s original motivation related to the study in this note is a generaliza-
tion of Gauss summation formula, namely, to calculate a connection coefficient for
a solution of this even family, which is solved in §I4] as a direct consequence of the
general formula ([LZI)) of certain connection coefficients described in Theorem [I4.6
This paper is the author’s first step to a unifying approach for these generalizations
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and the recent development in general Fuchsian differential equations described be-
low with the aim of getting concrete and computable results. In this paper we will
avoid intrinsic arguments and results if possible and hence the most results can be
implemented in computer programs. Moreover the arguments in this paper will be
understood without referring to other papers.

Rigid differential equations are the differential equations which are uniquely de-
termined by the data describing the local structure of their solutions at the singular
points. From the point of view of the monodromy of the solutions, the rigid sys-
tems are the local systems which are uniquely determined by local monodromies
around the singular points and Katz [KZ] studied rigid local systems by defining
and using the operations called middle convolutions and additions, which enables
us to construct and analyze all the rigid local systems. In fact, he proved that
any irreducible rigid local system is transformed into a trivial equation Z—Z =0
by successive application of the operations. In another word, any irreducible rigid
local system is obtained by successive applications of the operations to the trivial
equation because the operations are invertible.

The arguments there are rather intrinsic by using perverse sheaves. Dettweiler-
Reiter [DRI [DR2] interprets Katz’s operations on monodromy generators and those
on the systems of Fuchsian differential equations of Schlesinger canonical form

(1.5) du:Z A

dz T
with constant square matrices A1, ..., 4,.
Here A; are called the residue matrices of the system at the singular points
x = c¢j, which describe the local structure of the solutions. For example, the
eigenvalues of the monodromy generator at x = c¢; are ezﬂﬁA17...,e2”\/jA’L,
where Ay, ..., A, are eigenvalues of A;. The residue matrix of the system at z = oo
equals Ay := —(A; +--- + A,). These operations are useful also for non-rigid

Fuchsian systems.

Related to the Riemann-Hilbert problem, there is a natural problem to determine
the condition on matrices By, By, ..., B, of Jordan canonical form such that there
exists an irreducible system of Schlesinger canonical form with the residue matrices
A; conjugate to B; for j =0,...,p. An obvious necessary condition is the equality

?:0 Trace B; = 0. A similar problem for monodromy generators, namely its mul-
tiplicative version, is equally formulated. The latter is called mutiplicative version
and the former is called additive version. Kostov [Kd [Ko2] called them Deligne-
Simpson problems and gave an answer under a certain genericity condition. We
note that the addition is a kind of a gauge transformation u(z) — (z —¢)*u(z) and
the middle convolution is essentially an Euler transformation or a transformation
by an Riemann-Liouville integral u(z) — ﬁ [ u(t)(x — t)»~1dt or a fractional
derivation.

Crawley-Boevey [CB] found a relation between the Deligne-Simpson problem
and representations of certain quivers and gave an explicit answer for the additive
Deligne-Simpson problem in terms of a Kac-Moody root system.

Yokoyama [Yo2] defined operations called extensions and restrictions on the sys-
tems of Fuchsian ordinary differential equations of Okubo normal form

du
(1.6) (z-T) pri Au.
Here A and T are constant square matrices such that 7' are diagonalizable. He
proved that the irreducible rigid system of Okubo normal form is transformed
into a trivial equation Z—Z = 0 by successive applications of his operations if the

characteristic exponents are generic.
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The relation between Katz’s operations and Yokoyama’s operations is clarified by
[O7] and it is proved there that their algorithms of reductions of Fuchsian systems
are equivalent and so are those of the constructions of the systems.

These operations are quite powerful and in fact if we fix the number of accessory
parameters of the systems, they are connected into a finite number of fundamental
systems (cf. [O6, Proposition 8.1 and Theorem 10.2] and Proposition [@.13]), which is
a generalization of the fact that the irreducible rigid Fuchsian system is connected
to the trivial equation.

Hence it is quite useful to understand how does the property of the solutions
transform under these operations. In this point of view, the system of the equa-
tions, the integral representation and the monodromy of the solutions are studied
by [DR] [DR2} HY] in the case of the Schlesinger canonical form. Moreover the
equation describing the deformation preserving the monodromy of the solutions
doesn’t change, which is proved by [HE]. In the case of the Okubo normal form the
corresponding transformation of the systems, that of the integral representations
of the solutions and that of their connection coefficients are studied by [Yo2], [Hal
and [Yo3], respectively. These operation are explicit and hence it will be expected
to have explicit results in general Fuchsian systems.

To avoid the specific forms of the differential equations, such as Schlesinger
canonical form or Okubo normal form and moreover to make the explicit calcula-
tions easier under the transformations, we introduce certain operations on differ-
ential operators with polynomial coefficients in § The operations in §2] enables
us to equally handle equations with irregular singularities or systems of equations
with several variables.

The ring of differential operators with polynomial coefficients is called a Weyl
algebra and denoted by Wz] in this paper. The endomorphisms of W[z] do not
give a wide class of operations and Dixmier [DIx] conjectured that they are the
automorphisms of W{z]. But we localize coordinate z, namely in the ring W(x) of
differential operators with coefficients in rational functions, we have a wider class
of operations.

For example, the transformation of the pair (z, &) into (z, £ — h(z)) with any
rational function h(z) induces an automorphism of W (z). This operation is called
a gauge transformation. The addition in [DR] [DR2] corresponds to this operation
with h(z) = -2- and A, ¢ € C, which is denoted by Ad((z — ¢)*).

The transformation of the pair (z, %) into (f%,x) defines an important au-
tomorphism L of W{z|, which is called a Laplace transformation. In some cases
the Fourier transformation is introduced and it is a similar transformation. Hence

we may also localize % and introduce the operators such as )\(% —¢)7! and
then the transformation of the pair (z, L) into (z — A(<L)~!, 4 ) defines an en-

domorphism in this localized ring, which corresponds to the middle convolution
or an Euler transformation or a fractional derivation and is denoted by Ad(9~?)
or mcy. But the simultaneous localizations of z and % produce the operator
(L)t ozt = Y32 kla=F1(4L)=*=1 which is not algebraic in our sense and
hence we will not introduce such a microdifferential operator in this paper and we
will not allow the simultaneous localizations of the operators.

Since our equation Pu = 0 studied in this paper is defined on the Riemann
sphere, we may replace the operator P in W(z) by a suitable representative Pe
C(z)P N Wz] with the minimal degree with respect to = and we put RP = P.
Combining these operations including this replacement gives a wider class of op-
erations on the Weyl algebra W[z]. In particular, the operator corresponding to
the addition is RAd((z — ¢)*) and that corresponding to the middle convolution
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is RAd(07*) in our notation. The operations introduced in §2] correspond to cer-
tain transformations of solutions of the differential equations defined by elements of
Weyl algebra and we call the calculation using these operations fractional calculus
of Weyl algebra.

To understand our operations we show that, in Example 2.8 our operations en-
ables us to construct Gauss hypergeometric equations, the equations satisfied by
airy functions and Jordan-Pochhammer equations and to give the integral repre-
sentations of their solutions.

In this paper we mainly study ordinary differential equations and since any or-
dinary differential equation is cyclic, namely, it is isomorphic to a single differential
operator Pu = 0 (cf. §24I), we study a single ordinary differential equation Pu =0
with P € W[z]. In many cases we are interested in a specific function u(z) which is
characterized by differential equations and if u(z) is a function with the single vari-
able x, the differential operators P € W (x) satisfying Pu(x) = 0 are generated by
a single operator and hence it is naturally a single differential equation. A relation
between our fractional calculus and Katz’s middle convolution is briefly explained
in §201

In 3Tl we review fundamental results on Fuchsian ordinary differential equations.
Our Weyl algebra W{z] is allowed to have some parameters 1, ... and in this case
the algebra is denoted by W{z;£]. The position of singular points of the equations
and the characteristic exponents there are usually the parameters and the analytic
continuation of the parameters naturally leads the confluence of additions (cf. §8.3).

Combining this with our construction of equations leads the confluence of the
equations. In the case of Jordan-Pochhammer equations, we have versal Jordan-
Pochhammer equations. In the case of Gauss hypergeometric equation, we have
a unified expression of Gauss hypergeometric equation, Kummer equation and
Hermite-Weber equation and get a unified integral representation of their solu-
tions (cf. Example BH]). After this section in this paper, we mainly study single
Fuchsian differential equations on the Riemann sphere. Equations with irregular
singularities will be discussed elsewhere.

In g4l and §5] we examine the transformation of series expansions and contiguity
relations of the solutions of Fuchsian differential equations under our operations.

The Fuchsian equation satisfied by the generalized hypergeometric series

oo

L () - - - (@n)k k
an  rPelensan b faose) = g (Bt Bu)n1kl "

with  (Y)g :==~v(y+1)-- (v +k—1)

is characterized by the fact that it has (n — 1)-dimensional local holomorphic solu-
tions at x = 1, which is more precisely as follows. The set of characteristic exponents
of the equation at z = 1 equals {0, 1,...,n—1,—F,} with oy +- - -+, = f1+ - +0n
and those at 0 and oo are {1 — 81,...,1— 8,-1,0} and {ay,...,a,}, respectively.
Then if o; and §; are generic, the Fuchsian differential equation Pu = 0 is uniquely
characterized by the fact that it has the above set of characteristic exponents at
each singular point 0 or 1 or co and the monodromy generator around the point is
semisimple, namely, the local solution around the singular point has no logarithmic
term. We express this condition by the (generalized) Riemann scheme

z=0 1 00 A
1-0 [O](n—l) aq A+1
(1.8) : o W=
1_ﬁn—1 an—l A"’k_l

0 —Bn Qp



WEYL ALGEBRA AND FUCHSIAN DIFFERENTIAL EQUATIONS 7

In particular when n = 3, the (generalized) Riemann scheme is

z=0 1 00

1-— 51 0 a1

1—5 (1> ay ;X
0 —f3 a3

The corresponding usual Riemann scheme is obtained from the generalized Rie-
mann scheme by eliminating ( and ) Here [0](,—1) in the above Riemann scheme

means the characteristic exponents 0,1,...,n — 2 but it also indicates that the
corresponding monodromy generator is semisimple in spite of integer differences of
the characteristic exponents. Thus the set of (generalized) characteristic exponents
{[0]¢n=1), —=Bn} at = 1 is defined. Here we remark that the coefficients of the
Fuchsian differential operator P which is uniquely determined by the generalized
Riemann scheme for generic o; and f3; are polynomial functions of o; and §8; and
hence P is naturally defined for any «; and §; as is given by (IZI9). Similarly the
Riemann scheme of Jordan-Pochhammer equation of order p is

r = C C1 tee Cp—1 (0.}
Lo 0p-1) Olp-1y - Olep-1y Mle-n 32,
( . ) )\0 )\1 o >\p—1 )‘p

X+ F+Xpa+XN+E-1N =p-—1

The last equality in the above is called Fuchs relation.
In §8lwe define the set of generalized characteristic exponents at a regular singular
point of a differential equation Pu = 0. In fact when the order of P is n, it is the set

{AMdema)s - -5 [Mmy) } with a partition n = my + --- + my, and complex numbers
Al,...,A\p. It means that the set of characteristic exponents at the point equals
{N+v;v=0,....,mj —land j = 1,...,k} and the corresponding monodromy

generator is semisimple if A\; — \; ¢ Z for 1 < i < j < k. In §61] we define the
set of generalized characteristic exponents without the assumption \; — A\; € Z
for 1 < i < j < k. Here we only remark that when A\; = A\ for ¢ = 1,... k, it
is also characterized by the fact that the Jordan normal form of the monodromy
generator is defined by the dual partition of n = my + - - - 4+ my together with the
usual characteristic exponents.

Thus for a single Fuchsian differential equation Pu = 0 on the Riemann sphere

which has p+1 regular singular points ¢y, . . ., ¢,, we define a (generalized) Riemann
scheme
r = C C1 ce Cp
(110) P‘O,l].(mo,ﬂ [/\171].(7711.1) ! P‘P,l]'(mp,l)
: : ;X
[AOJLO}(mOm,O) [Al,nl](anl) e [Apvnp}(mp,np)

Here n = mj 1+ +mjn, for j=0,...,p and n is the order of P and );, € C.
The (p + 1)-tuple of partitions of n, which is denoted by m = (m;,) j=o,...p , is

v=1,...,n;

called the spectral type of P and the Riemann scheme (LI0). Here we note that
the Riemann scheme ([I0) should always satisfy the Fuchs relation

P Tp
(1.11) HAm}] = Z ijwx\j,y —ordm + idxm =0,

j=0v=1

p TNp
(1.12) idxm := Z Zm?’l, —(p—1)ordm.

j=0v=1
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Here idx m coincides with the index of rigidity introduced by [KZ].

In g6 after introducing certain representatives of conjugacy classes of matrices
and some notation and concepts related to tuples of partitions, we define that
the tuple m is realizable if there exists a Fuchsian differential operator P with
the Riemann scheme ([LI0) for generic complex numbers A;,, under the condition
(CII). Furthermore, if there exists such an operator P so that Pu = 0 is irreducible,
we define that m is irreducibly realizable.

Lastly in §6l we examine the generalized Riemann schemes of the product of
Fuchsian differential operators and the dual operators.

In 71 we examine the transformations of the Riemann scheme under our op-
erations corresponding to the additions and the middle convolutions, which de-
fine transformations within Fuchsian differential operators. The operations induce
transformations of spectral types of Fuchsian differential operators, which keep the
indices of rigidity invariant but change the orders in general. Looking at the spectral
types, we see that the combinatorial aspect of the reduction of Fuchsian differential
operators is parallel to that of systems of Schlesinger canonical form.

As our interpretation of Deligne-Simpson problem introduced by Kostov, we
examine the condition for the existence of a given Riemann scheme in §8 We
determine the conditions on m such that m is realizable and irreducibly realizable,
respectively, in Theorem Moreover if m is realizable, Theorem gives an
explicit construction of the universal Fuchsian differential operator

p dn n—1 dk
Pm: (H(l‘—Cj) )dx—n+z:ak(x,)\,g)@,
(1.13) j=1 k=0

A= ()\j,y) j=0,.ps 9=1(91,...,9N) € cN

v=1,...,n;
with the Riemann scheme (IZI0), which has the following properties.

For fixed complex numbers )\, , satisfying (LTI the operator with the Riemann
scheme (CI0) satisfying ¢y = oo equals Py, for a suitable g € CV up to a left
multiplication by an element of C(z) if A;, are “generic” under the Fuchs relation
([CII) or m is fundamental or simply reducible (cf. Definition and §&H)), etc.
Here ¢g1,...,gn are called accessory parameters and if m is irreducibly realizable,
N = 1—% idxm. Moreover there exist a finite union of complex hyperplanes (cf. Re-
mark [BTH)) in the linear space of the parameters A; , such that A, , are “generic” if
they do not belong to the union. In particular, if there is an irreducible and Iocally
non-degenerate (cf. Definition [T.8) operator P with the Riemann scheme (I0),
then \;, are “generic”.

The coefficients ag(x, A, g) of the differential operator Py, are polynomials of the

variables z, A and g. The coefficients satisfy ‘rgg“g’“ = 0 and furthermore g, can

be equal to suitable a;, ;, under the expression Pp, = Zamxi%j and the pairs
(iv,jy) for v =1,..., N are explicitly given in the theorem.

The universal operator Py, is a classically well-known operator in the case of
Gauss hypergeometric equation, Jordan-Pochhammer equation or Heun’s equation
etc. and the theorem assures the existence of such a good operator for any realizable
tuple m. We define the tuple m is rigid if m is irreducibly realizable and moreover
N =0, namely, Py, is free from accessory parameters.

In particular the theorem gives the affirmative answer for the following ques-
tion. Katz asked a question in the introduction in the book [KZ whether a rigid
local system is realized by a single Fuchsian differential equation Pu = 0 without
apparent singularities (cf. Corollary [2.12]iii)).

It is a natural problem to examine the Fuchsian differential equation Ppu =
0 with an irreducibly realizable spectral type m which cannot be reduced to an
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equation with a lower order by additions and middle convolutions. The tuple m
with this condition is called fundamental.

The equation Pyhu = 0 with an irreducibly realizable spectral type m can be
transformed by the operation Oq. (cf. Definition [[8)) into a Fuchsian equation
Pyv = 0 with a fundamental spectral type m’. Namely, there exists a non-negative
integer K such that Py = 0K, Pm and we define fm := m’. Then it turns out
that a realizable tuple m is rigid if and only if the order of fm, which is the order
of Pgm by definition, equals 1. Note that the operator Onmax is essentially a product
of suitable operators RAd((z — ¢;)») and RAd(07").

In this paper we study the transformations of several properties of the Fuchsian
differential equation Ppyu = 0 under the additions and middle convolutions. If they
are understood well, the study of the properties are reduced to those of the equation
Prmv = 0, which are of order 1 if m is rigid. We note that there are many rigid
spectral types m and for example there are 187 different rigid spectral types m
with ord m < 8 as are given in I5.2

The combinatorial aspect of transformations of the spectral type m of the Fuch-
sian differential operator P induced from our fractional operations is described in §0l
by using the terminology of a Kac-Moody root system (II, W) as in the case of the
systems of Schlesinger canonical form studied by [CB]. Here II is the fundamental
system of a Kac-Moody root system with the following star-shaped Dynkin diagram
and W, is the Weyl group generated by the simple reflections s, for a € II. The
element of II is called a simple root.

Associated to a tuple of (p 4+ 1) partitions m of a positive integer n, we define
an element a,y, in the positive root lattice (cf. 011 ([@H)):

II'={a, @j,;j=0,1,..., v=1,2,...},
Woo := (S0 ; a € T0),
(1.14) p Tl

m = nog + Z Z ( Z mj,i)aj,ua

7=0 v=1 i=v+1

(amlam) =idxm,

We can define a fractional operation on P, which is compatible with the action of
w € Wx on the root lattice (cf. Theorem [A.3)):

{Pm : Fuchsian differential operators} —  {(A(A),om); am € AL}
(1.15) J fractional operations O J Wio-action, +TA8J

{ Py, : Fuchsian differential operators} — {(A(\), am); am € A}

Here 7 € C and

[e%) P oo
A i=ag+ Y (1+v)agw + > Y (1—v)a,,,

v=1 =1v=1
AO’j = i v, —aj,),
(1.16) ”1:1 L
Ao = J00t+ 3 ;)VZI(l — V) Qus
A(N) == —Ag — Zp: i(i /\j,i)ajﬂ/

Ov=1 i=1
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and these linear combinations of infinite simple roots are identified with each other
if their differences are in CA°.

The realizable tuples exactly correspond to the elements of the set A of positive
integer multiples of the positive roots of the Kac-Moody root system whose support
contains g and the rigid tuples exactly correspond to the positive real roots whose
support contain ag. For an element w € W, and an element @ € A, we do not
consider wa in the commutative diagram ([CI5) when wa ¢ A .

Hence the fact that any irreducible rigid Fuchsian equation Pu = 0 is trans-
formed into the trivial equation % = 0 by our invertible fractional operations
corresponds to the fact that there exists w € W, such that wa, = ag because ayy,
is a positive real root. The monotone fundamental tuples of partitions correspond
to ay or the positive imaginary roots « in the closed negative Weyl chamber which
are indivisible or satisfies (a|a) < 0. A tuple of partitions m = (m;,) j=o,..p is

v=1,...,n;
said to be monotone if m; 1 > mjo > - > M, for j =0,...,p. For example, we
prove the exact estimate
(1.17) ordm < 3|idxm| + 6

for any fundamental tuple m in §3.21 Since we may assume
(1.18) p < ilidxm|+3

for a fundamental tuple m, there exist only finite number of monotone fundamental
tuples with a fixed index of rigidity. We list the fundamental tuples of the index of
rigidity 0 or —2 in Remark B3 or Proposition B0l respectively.

Our results in 7] and 8 give an integral expression and a power series ex-
pression of a local solution of the universal equation Pyu = 0 corresponding to the
characteristic exponent whose multiplicity is free in the local monodromy. These
expressions are in 101

In JIT T we review the monodromy of solutions of a Fuchsian differential equation
from the view point of our operations. The theorems in this section are given by
[DR] K2 [Kd. In §IT.2 we review Scott’s lemma [Sd| and related results with
their proofs, which are elementary but important for the study of the irreducibility
of the monodromy.

In I21] we examine the condition for the decomposition Py = Py Pmr of
universal operators with or without fixing the exponents {A; .}, which implies the
reducibility of the equation Pnpu = 0. In §I2.2 we study the value of spectral
parameters which makes the equation reducible and obtain Theorem In
particular we have a necessary and sufficient condition on characteristic exponents
so that the monodromy of the solutions of the equation Ppu = 0 with a rigid
spectral type m is irreducible, which is given in Corollary TZT2] or Theorem
When m; 1 > m;jo > --- for any j > 0, the condition equals

(1.19) (AN)|a) ¢ Z
for all positive real roots a of the Kac-Moody root system satisfying wpya < 0.
Here wy, is the element of W,, with the minimal length so that ay = wmam

(cf. Definition and Proposition [@3v)).

In I3l we construct shift operators between rigid Fuchsian differential equations
with the same spectral type such that the differences of the corresponding charac-
teristic exponents are integers. Theorem gives a recurrence relation of certain
solutions of the rigid Fuchsian equations, which is a generalization of the formula

(1.20) C(F(a, b+1,¢;x) — F(a,b, ¢ a:)) =axF(a+1,b+1,c+ 1;x)

and moreover gives a relation between the universal operator and the shift operator
with respect to the shift of characteristic exponents with free multiplicities.
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The shift operators are useful for the study of Fuchsian differential equations
when they are reducible because of special values of the characteristic exponents.
Theorem [[38 give a necessary condition and a sufficient condition so that the shift
operator is bijective. In many cases we get a necessary and sufficient condition by
this theorem. As an application of a shift operator we examine polynomial solutions
of a rigid Fuchsian differential equation of Okubo type in 133

In §T4T] we study a connection problem of the Fuchsian differential equation
Ppuu = 0. First we give Lemma which describes the transformation of a
connection coefficient under an addition and a middle convolution. In particular,
for the equation Pmu = 0 satisfying mg n, = M1, = 1, Theorem [[44lsays that the
connection coefficient ¢(cg: Ao n, ~ €1:A1,n,) from the local solution corresponding
to the exponent Ag ., to that corresponding to A, in the Riemann scheme (I0)
equals the connection coefficient of the reduced equation Prmv = 0 up to the gamma
factors which are explicitly calculated.

In particular, if the equation is rigid, Theorem [[4.6 explicitly gives the connection
coeflicient as a quotient of products of gamma functions and an easier non-zero
term. For example, when p = 2, the easier term doesn’t appear and the connection
coefficient has the universal formula

TLofl 11171
H F()\Omo - )\O,V + 1) . F()\LV - )\17n1)
v=1 v=1

I r(0w)

m’@m”:m
’ o -1
Mo,ng=M1,n; =

(1.21)  c(co: Aong~>C1:A1n,) =

Here the notation ([CII)) is used and m = m’ & m” means that m = m’ + m”
with rigid tuples m’ and m”. Moreover the number of Gamma factors in the
above denominator is equals to that of the numerator. The author conjectured this
formula in 2007 and proved it in 2008 (cf. [O6]). The proof in §IZ1]is different
from the original proof, which is explained in 143l

The hypergeometric series F'(a,b,c;x) satisfies limg_ 400 F'(a,b,¢c + k;jz) = 1
if |x| < 1, which obviously implies limg_; 4o F(a,b,c + k;1) = 1. Gauss proves
the summation formula (3]) by this limit formula and the recurrence relation
F(a,b,c;1) = %F(a, b,c+ 1;1). We have limy_, oo c(co: Aong + Kk~ c1:
M,n, —k) = 1 in the connection formula (L2I)) (cf. Corollary [47)). This suggests a
similar limit formula for a local solution of a general Fuchsian differential equation,
which is given in §I4.2]

In §I4.3] we propose a procedure to calculate the connection coefficient (cf. Re-
mark [[4.19)), which is based on the calculation of its zeros and poles. This procedure
is different from the proof of Theorem [4.6lin T4l and useful to calculate a certain
connection coefficient between local solutions with multiplicities in eigenvalues of
local monodromies. The coefficient is defined in Definition [ZT7

In T8 we show many examples which explain our fractional calculus in this paper
and also give concrete results of the calculus. In §I5.1] we list all the fundamental
tuples whose indices of rigidity are not smaller than —6 and in §I5.2 we list all the
rigid tuples whose orders are not larger than 8, most of which are calculated by
a computer program okubo explained in §I5. 11} In §I5.3 and §I5.4] we apply our
fractional calculus to Jordan-Pochhammer equations and the hypergeometric fam-
ily, respectively, which helps us to understand our unifying study of rigid Fuchsian
differential equations. In §I5.05] we apply our fractional calculus to the even/odd
family classified by [Bl] and most of the results there have been first obtained by
the calculus.
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In 157 158 and §I5.9] we study the rigid Fuchsian differential equations of
order not larger than 4 and those of order 5 or 6 and the equations belonging to 12
submaximal series classified by [Rd], respectively. Note that these 12 maximal series
contain Yokoyama’s list [Yd]. In §I5.9.2] we explain how we read the condition of
irreducibility and the connection coefficients etc. of the corresponding differential
equation from the given data in JI5.HJI5.9 In §I5.6] we show some interesting
identities of trigonometric functions as a consequence of the concrete value (LZI])
of connection coefficients. We examine Appell’s hypergeometric equations in JI5.10]
by our fractional calculus, which will be further discussed in another paper.

In 16l we give some problems to be studied related to the results in this paper.

In T a theorem on Coxeter groups is given, which was proved by K. Nuida
through a private communication between the author and Nuida. The theorem is
useful for the study of the difference of various reductions of Fuchsian differential
equations (cf. Proposition v)). The author greatly thanks Nuida for allowing
the author to put the theorem with its proof in this paper.

The author express his sincere gratitude to Kazuo Okamoto and Yoshishige
Haraoka for the guidance to the subjects developed in this paper and to Kazuki
Hiroe for reading the manuscript of this paper.

2. FRACTIONAL OPERATIONS

2.1. Weyl algebra. In this section we define several operations on a Weyl alge-
bra. The operations are elementary or well-known but their combinations will be
important.

Let Clz1, . .., z,] denote the polynomial ring of n independent variables x1, . .., x,
over C and let C(z1,...,z,) denote the quotient field of Clz1,...,z,]. The Weyl
algebra W{zy,...,x,] of n variables x1, ..., x, is the algebra over C generated by
T1,...,T, and 8%1’ cee 3% with the fundamental relation
(2.1) [ 25] =[50, 521 =0, [gomowil =61, (1<id,j<n).

We introduce a Weyl algebra Wxy, ..., x,][¢1, ..., &) with parameters &;,...,&y
by
Wiy, ..., zp)lE1, -, En] = Cl&1, ..., EN] % Wlzy,...,op]

and put
W[xla"wxn;fla"'va] = (C(é-lﬂ"'vé-N)%W[xlv"‘van
W(gj17"'7zn;€17"'a€N) ::C(‘Tlv"'7xn7§17"'a§1\/) ® W[:Ela"'vxn]'

Here we have

(2.2) (2,6 = [5%,6] =0 (1<i<n, 1<v<N),
£9-2(9
dx;’ f Ozx; \ f
(2.3) ’ i.ffg.w
:w (f, gEC[Jch...,xmfl,...,fN])
and [aimi?f}:%E(C[mlﬁ"'7xn7£17"'7£N]-

For simplicity we put z = (x1,...,2,) and £ = (&1,...,&n) and the algebras
(C[xla"'vxn]a C(xlv"wxn)v W[xlv"‘vmn][gla"'ﬂg]\f]v W[xlv"‘vmn;é-lv‘",gl\f]a
W(x1,...,xn;&1,...,&N) ete. are also denoted by Clz], C(z), W]z|[¢], W]x;¢&],
W (z;€) etc., respectively. Then

(2.4) Clz,¢] € Wizl[g] € Wlz; €] € W (x;6).
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The element P of W (z;¢) is uniquely written by
ot tan

(2.5) P = Z Pa(ffaf)m (Pa(z,€) € C(z,£)).

a=(a1,..4,an)ezg0

Here Z>o = {0,1,2,...}. If P € W(x;¢) is not zero, the maximal integer ay +
-+ 4 au, satisfying p,(z,€) # 0 is called the order of P and denoted by ord P. If
P e Wlz; €], pa(x,&) are polynomials of = with coefficients in C(¢) and the maximal
degree of p, (x, £) as polynomials of z is called the degree of P and denoted by deg P.

2.2. Laplace and gauge transformations and reduced representatives. First
we will define some fundamental operations on Wz;£].

Definition 2.1. i) For a non-zero element P € W(xz;£) we choose an element
(C(z,&) \ {0})P N W(z; €] with the minimal degree and denote it by R P and call
it a reduced representative of P. If P = 0, we put RP = 0. Note that RP is
determined up to multiples by non-zero elements of C(&).

ii) For a subset I of {1,...,n} we define an automorphism L; of Wx;¢&]:

a (i€l N R (A=) _
(2'6) LI(%) = {(9@3901 (Z g[) ) Ll(xz) = {l‘ia (Z € I) and LI(&V) =&

We put L = Ly, ,} and call L the Laplace transformation of W{x; ].
iii) Let W (z;€) be the algebra isomorphic to W (x;&) which is defined by the
Laplace transformation

(2.7) L:W(a;€) = Wi(x:6) = W(;6).
For an element P € W (z; ) we define
(2.8) Ri(P) =L 'oRoL(P).

Note that the element of W, (z; &) is a finite sum of products of elements of C[z]
and rational functions of (8%1, ce 8%",51, coEN).
We will introduce an automorphism of W (x;§).

Definition 2.2 (Gauge transformation). Fix an element (hq,...,hy) € C(z,&)"
satisfying

(2.9) gz) - gzﬂ (1<i, j<n)
We define an automorphism Adei(hq,...,h,) of W(z;£) by
Adei(hy, ..., hp)(x;) = x4 (i=1,...,n),
(2.10) Adei(hy, .. hn)(35) = 3% —hi (i=1,...,n),
Adei(hq, ..., hn) (&) =& (v=1,...,N).
Choose functions f and g satisfying (%i =h; fori=1,...,n and put f =e9 and
(2.11) Ad(f) = Ade(g) = Adei(hy, ..., hy,).

We will define a homomorphism of W (z;¢).

Definition 2.3 (Coordinate transformation). Let ¢ = (¢1,...,¢,) be an element
of C(x1,...,2m, &)™ such that the rank of the matrix

(2.12) Q= (%)gigm

i/ 1%5<n
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equals n for a generic point (z,§) € C™™N. Let ¥ = (¢ (=, 5)) 1<i<n be an
1<j<m
left inverse of ®, namely, U® is an identity matrix of size n and m > n. Then a

homomorphism 77} from W (z1,...,2n;§) to W(z1,...,zm;§) is defined by

Ty (zi) = ¢i(x) (1<i<n),
2.13 . = .
(2.13) () = S vislw O3 (1<i<n),
j=1
If m > n, we choose linearly independent elements h, = (hy1,...,hym) of C(z, &)™

for v =1,...,m —n such that ¥; 1h,1 + -+ VYimhym =0fori=1,...,n and
v=1,...,m—n and put
m—n

(2.14) K*(¢) == i Zh,,wx e W(x;€).

Jj=1

The meaning of these operations are clear as follows.
Remark 2.4. Let P be an element of W (x;&) and let u(x) be an analytic solution
of the equation Pu = 0 with a parameter £&. Then under the notation in Defini-
tions ZIHZZ, we have (R P)u(z) = (Ad(f)(P))(f(z)u(x)) = 0. Note that R P is
defined up to the multiplications of non-zero elements of C(§).

If a Laplace transform

(2.15) (Rru)(x) = / e TN T T IR gy (1) by Ty 1y - e ey T )dE g - - d,
c

of u(x) is suitably defined, then (L{l’m’k}(RP))(Rku) = 0, which follows from
the equalities 2% z’““ Ri(—zsu) and 0 = [, 6%(e‘wltl_'”_‘”ktku(t,ka, ))dt =

—r; Rru + Rk( ) fori=1,...,k. Moreover we have

f(@)Rr R Pu = f(x) (L{1,...,k} (RP))(RW) = (Ad(f) L.y RP)) (f(2)Riu).
Under the notation of Definition 23] we have T (P)u(¢1(z),...,¢n(x)) = 0 and
Qu(¢1(x), e, qbn(a:)) =0 for Q € K*(¢).

Another transformation of W{z; £] based on an integral transformation frequently
used will be given in Proposition [5.11

We introduce some notation for combinations of operators we have defined.

Definition 2.5. Retain the notation in Definition and recall that f = e9

and h; = 8879

(2.16) RAd(f) = RAde(g) = RAdei(hy,. .., hn) := RoAdei(ha,. .., hn),
AdL(f) = AdeL(h) = AdeiL(hy, . .., hy)

(2.17)

;=L ' oAdei(hy, ..., h,) oL,
RAdL(f) = RAdeL(h) = RAdelL(hl, h)
2.18
(2.18) =L~ ' oRAdei(hy, ..., hy) 0

(2.19) Ad(9"):=L " oAd(z!) oL,
(220)  RAd(9%):=L"'oRAd(z})oL.

Here p is a complex number or an element of C(§) and Ad(9%,) defines an endo-
morphism of W, (x;€).

We will sometimes denote 35, DY Oz, or 0; for simplicity. If n =1, we usually

denote z; by z and 45— by 4m Or 6 or 0. We will give some examples.
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Since the calculation Ad(z7#)0 = a #odoat = a M (zH0+ pa' ) = 0+ pa~!
is allowed, the following calculation is justified by the isomorphism (Z71):

Ad(0™H)a™ =0 og™ o 0"

= (a™8~ py = )mxm lg=—n—1 4 (*u)(*u*})m(mfl)xm7237u72
21

4.4 & u)( p=1)(—p— mH)m!B_“_m)&W

- VZ:;(D”(MV (m> .

This calculation is in a ring of certain pseudo-differential operators according to
Leibniz’s rule. In general we may put Ad(0~#)P = 0 o P o 0" for P € W]x;¢]
under Leibniz’s rule. Here m is a positive integer and we use the notation

(2.21)  (u), ::ﬁ(u+z’), (T) v T(m+1) _ . om

bl m—-—v+DCw+1) (m—v)!’

2.3. Examples of ordinary differential operators. In this paper we mainly
study ordinary differential operators. We give examples of the operations we have
defined, which are related to classical differential equations.

Example 2.6 (n = 1). For a rational function h(z,&) of x with a parameter £
we denote by [h(z,&)dx the function g(z,&) satisfying %g(m,f) = h(z,§). Put
f(z,€) = 9@ and define

d

2.22 -
(2.22) vi=ao .

Then we have the following identities.

(2.23) Adei(h)d = 8 — h = Ad(e) "®)d)g = e h(@)dz o § o o= [ Mz)dz
(2.24) Ad(f)z ==z, AdL(f)0 =0,
(2.25) Ad(Af) = Ad(f)  AdL(Af) = AdL(f),
(2.26) Ad(f)0 =0 —h(x,&) = AdL(f)z ==z + h(9,&),
(2.27) Ad((z —¢) ’\) = Ade(Alog(z — ¢)) = Adei(=2-),
(2.28) Ad((z — )Mz =2, Ad(( — oMo =0- 2,
(229)  RAd((z — )M =Ad((z — c)*) ((z — ¢)0) = (z — ) — A,
RAAL((z — )Mz =L 'o RAd((aU — c))‘)(—(?)
(2.30) =L ' ((z—c)(=0)+ A)

=0@—c)x+A=x20 —cx+ 1+,
(2.31) RAdL(x—ckaza, RAdAL((z — ¢)*) ((0 — ¢)z) = (0 — )z + A,

%)

(2.32) Ad(8*)9 = AdL(zM)9 = 9 + A,

G c)’" )\(:vfc)m B
(2.33)  Ad(e Je=g, Ad(e )0 =0 — Az — )™,

A(z—c)™ m 1 >
(234) RAdL(e™F )z =47 + A9 (m>1),

d—c)'~ mx+>\ (m < —1),

(2.35) Ta-gm(@ Tfy e (9) = ol = )70

Here m is a non-zero integer and A is a non-zero complex number.
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Some operations are related to Katz’s operations defined by [Kz]. The operation
RAd((z — ¢)*) corresponds to the addition given in [DR] and the operator

(2.36) me,, = RAd(07#) = RAdL(z™*)
corresponds to Katz’s middle convolution and the Euler transformation or the
Riemann-Liouville integral (cf. [KD §5.1]) or the fractional derivation

(2.37) (I (u)) (z) = % / ") — )t

(w
Here c is suitably chosen. In most cases, ¢ is a singular point of the multi-valued
holomorphic function u(x). The integration may be understood through an analytic
continuation with respect to a parameter or in the sense of generalized functions.
When u(x) is a multi-valued holomorphic function on the punctured disk around
¢, we can define the complex integral

(2.38) (I%(u))(x) = / ) = s M

¢ ‘starting point x

through Pochhammer contour (z+,c+,x—,c—) along a double loop circuit (cf.
[WW] 12.43]). If (2 — ¢)"*u(2) is a meromorphic function in a neighborhood of the
point ¢, we have

e (F)w) = 1T [Cune - ota
For example, we have
(@ — o)) = ﬁ /I(t —Ma— ) la
x — )Ml
(2.40) = (F(M))/o 1 —s)P s (x—t=(1-s)(z—c))
_ T+ (-
FA+p+1) ’
4r2em A+ v-1

(2.41) fé‘((x — c)>‘) = (z — c)rtL,

L(=\T1Q—pwITA+p+1)
For k € Z>(¢ we have
—An2klem™V1

(2.42) IE((@ = )" log(w — ¢)) = T(1—m(u+k+1)

(z — c)PHr+L,

We note that since

% (u(t)(z — t)“_l) =/ (t)(x —t)* ! - %(u(t)(x - t)“_l)

and
4 (ut)(z—t)") =u'(t)(z — )" —u(t)L(z—t)"
= au/(t)(z — )71 — tu/ (¢)(x — )T — pu(t) (@ — 1),
we have
(2.43) I¢(0u) = O1F (u),

19 () = (9 — )2 (u).
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Remark 2.7. i) The integral (Z31) is naturally well-defined and the equalities
@A) are valid if Re A > 1 and lim,_,. 2~ !u(x) = 0. Depending on the definition
of I}, they are also valid in many cases, which can be usually proved in this paper
by analytic continuations with respect to certain parameters (for example cf. [@G])).
Note that (ZZ3) is valid if I# is replaced by I* defined by (Z3J).

ii) Let € be a positive number and let u(z) be a holomorphic function on

U:a ={zeC;lz—c <eand e (x—¢) ¢ (—0,0]}.

Suppose that there exists a positive number ¢ such that |u(x)(z — ¢)~*| is bounded
on {z € Uly; |Arg(x — ¢) — 0] < &} for any k > 0. Note that the function Pu(z)
also satisfies this estimate for P € W{z]. Then the integration (Z37)) is defined
along a suitable path C' : v(¢) (0 < ¢t < 1) such that v(0) = ¢, v(1) = z and
| Arg(y(t) — ¢) — 0] < 6 for 0 <t < 5 and the equalities [ZZ3) are valid.

Example 2.8. We apply additions, middle convolutions and Laplace transforma-
tions to the trivial ordinary differential equation
du
2.44 — =0
(2.44) o,
which has the solution u(z) = 1.
i) (Gauss hypergeometric equation). Put

P, o 1= RAd(07") o RAd(z™ (1 — 2)*2)0
=RAA(O™M) o R(D — A1 + P2
=RAd(0*) (z(1 — 2)0 — A (1 — ) + Aoz)
=RAAO™)((9 - M) —2(9 — A1 — X2))

(2.45)
= Ad(a_”) ((19 +1-X)0—-O+1)([W— X\ — )\2))
:(19+1—>\1—,u)8—(19+1—u)(19—)\1—)\2—,u)
= (W47 — W+ B)(D+ )
=z2(1-2)0"+ (y— (a+ B+ 1)z)0 — af
with
oa=—\ — Ay —p,

y=1—X —pu.
We have a solution

u(z) = I (z™ (1 - 2)*?)

1 /m)\ A -1
=— [ A -tM@ -t tat
) Jy T OED
[ s =
= s (1 — )P —xs)2ds (t=uxs
L(u) Jo
(2.47) L(Ap + D)o
S S et iy VS VNI I I
DA+ pu+1) (=h2 M 1Hut )
L(Ap + D)zMHr(1 — p)retr
= F(u A+ g+ A1+ o+ 1
F()\1+M+1) (M 1 2T [y AL T [ 30)
LA\ + DaMHi(1 — )~ x
— Fli,—Aas M+ p+ 15 ——
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of the Gauss hypergeometric equation Py, »,,,% = 0 with the Riemann scheme

z=0 1 %)
(2.48) 0 0 1—p P Ty,
AMAp A+p A= —pn

which is transformed by the middle convolution mc,, from the Riemann scheme

r=0 1 00
A1 A2 =AM — X 2

of z*1(1 — z)*2. Here using Riemann’s P symbol, we note that

=0 1 00
P 0 0 1—pn ;X
AM+p Adtpu —Adi—Ade—p
=0 1 00

= gMtrp - —p 0 M+1 sz
0 Ao+p =X

z=0 1 o0
=ML — )2 THPL N~ e —p Mt tutl
0 0 "
z=0 1 00
—aMpd N M+l 0 ;mfl
0 X2 e Hp
=0 1 00
=M1 — )P M = A+l =X xil
0 0 I

In general the Riemann scheme and its relation to mc, will be studied in §6 and
the symbol ‘P’ will be omitted for simplicity.

The function u(z) defined by ([Z47) corresponds to the characteristic exponent
A1+ @ at the origin and depends meromorphically on the parameters A1, Ao and pu.
The local solutions corresponding to the characteristic exponents Ay + p at 1 and
—A1 — A2 — p at oo are obtained by replacing I} by I}" and I%, respectively.

When we apply Ad(z*1(z — 1)*2) to Py, x, ., the resulting Riemann scheme is

z=0 1 00
(2.49) A A 1-M =X, —pu ;T
MAN o Ao+ X +p =A== N =X\ —

Putting A11 = A, A2 = A+ AL+ 4, Ao =AY, Aeg = Ae + Ay + g, Ao =
1—M =My —pand A\ga = —A1 — A2 — A] — A — p, we have the Fuchs relation
(2.50) Aot Ao2t+ A+ A2t A1+ A2=1
and the corresponding operator
P\ = .132(J,‘ — 1)282 =+ JJ(.I — 1)((/\0,1 + /\0,2 + 1)33 + )\171 + )\1’2 — 1)6

+ 20120277 + (A21222 — Ao,1h0,2 — AL1A12)Z + Ari A2

has the Riemann scheme

(2.51)

z=0 1 00
(2.52) Ao Al Agn ;@
Ao A2 Az

By the symmetry of the transposition Aj; and Aj;o for each j, we have integral
representations of other local solutions.
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ii) (Airy equations). For a positive integer m we put

zmtl
(2.53) Pm = LOAd(e m+1 )8
=LO@—-2™) =x—(-0)™.
Thus the equation
(2.54) ZTZ (C)mzu=0

has a solution

m—+1
2.55 ; = — d 0<5<
e we= [ eo(Sgoe)e 0<ism)

where the path Cj of the integration is

Cj:z(t) = e (—o0 <t < 00).

Here we note that ug(z) + - - - + um(x) = 0. The equation has the symmetry under

2ny/=1
the rotation  — e ™1 .

iii) (Jordan-Pochhammer equation). For {c1,...,¢,} € C\ {0} put
P

Py,.oa.i=RAAO™) o RAd(H(l _ cjx)a)a

j=1

— RAd(D™ M)oR(a+Z €% T8

1—cjz
=RAd(O™") (po(x)a + q(w))

= 077 (p (@) + q(@)) " = Y pr(@)o" ™

k=0
with
PooeiN
pole) = [T =), aw) =pole) D2 722
Jj=1 Jj=1 J
_ (P —1\ (&) —p+p—=1\ 1
mia) = (T )+ (1 (@)
a Ia+1)
1= ,0€C).
(5) = rritmgry @2<O
We have solutions
/ H Mz —t)P Nt (j=0,1,...,p, co=0)
of the Jordan—Pochhammer equation Py, ., ,u = 0 with the Riemann scheme
s—1 ... 1 00
C1 Cp
(2.56) Olp-1) -+ [Olp—1) 1= -1 jx
)\1+M P >\P+M _)\1_..._>\p_/1,
Here and hereafter we use the notation
A
A+1

A+k—-1
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for a complex number A and a non-negative integer k. If the component [A](y is
appeared in a Riemann scheme, it means the corresponding local solutions with the
exponents A+ v for v =0,...,k — 1 have a semisimple local monodromy when \ is
generic.

2.4. Ordinary differential equations. We will study the ordinary differential
equation

(2.58) M:Pu=0

with an element P € W (x; &) in this paper. The solution u(x,&) of M is at least
locally defined for x and £ and holomorphically or meromorphically depends on x
and £. Hence we may replace P by R P and we similarly choose P in Wx;¢].

We will identify M with the left W (z;&)-module W (x;&)/W (z;&)P. Then we
may consider ([Z58) as the fundamental relation of the generator u of the module
M.

The results in this subsection are standard and well-known but for our conve-
nience we briefly review them. First note that W(x;¢) is a (left) Euclidean ring:

Let P, Q € W(x;€&) with P # 0. Then there uniquely exists R, S € W(x;€)
such that

(2.59) Q=SP+R (ord R < ord P).

Hence we note that dimg(, ¢) (W(x;f)/W(x;{)P) = ord P. We get R and S in
@359) by a simple algorithm as follows. Put
(2.60) P=a, 0"+ - +a10+ag and Q =b,0" +---+ b0+ by

with a, # 0, by, # 0. Here ay, by, € C(z, ). The division (Z09) is obtained by the
induction on ord Q. If ord P > ord @, ([Z359) is trivial with S = 0. If ord P < ord @,
33 is reduced to the equality Q" = S'P + R with Q' = Q — a;,'b,,0™ " P and
S" =8 —a,;'b, 0™ " and then we have S’ and R satisfying Q' = S'P + R by the
induction because ord @’ < ord ). The uniqueness of ([ZEJ) is clear by comparing
the highest order terms of (ZX9) in the case when @ = 0.

By the standard Euclid algorithm using the division (Z59) we have M, N €
W (z; &) such that

(2.61) MP+NQ=U, PeW(x;&§)U and Q € W(x;&)U.
Hence in particular any left ideal of W(x;€) is generated by a single element of

Wlxz; €], namely, W (x; &) is a principal ideal domain.
Definition 2.9. The operators P and @ in W(x;&) are defined to be mutually

prime if one of the following equivalent conditions is valid.
(2.62) W(z;&) P+ W(z;6)Q = W(x;§),
(2.63) there exists R € W(z;§) satisfying RQu = u for the equation Pu = 0,

(2.64 {the simultaneous equation Pu = Qu = 0 has not a non-zero solution

for a generic value of &.

Moreover we have the following.
(2.65) Any left W(x;§)-module R with dimg(, ¢ R < oo is cyclic,

namely, it is generated by a single element. Hence any system of ordinary differential
equations is isomorphic to a single differential equation under the algebra W (x;¢).

To prove (260 it is sufficient to show that the direct sum M®N of M : Pu =0
and N : Qu = 0 is cyclic. In fact M &N = W(z;&)w with w = u+ (x — )" €
M®N and n = ord P if ¢ € C is generic. For the proof we have only to show
dimg(g,e) W(z;§)w > m + n and we may assume that P and Q are in Wz;¢]



WEYL ALGEBRA AND FUCHSIAN DIFFERENTIAL EQUATIONS 21

and they are of the form (Z60). Fix ¢ generically and we choose ¢ € C such
that a,(c)bm(¢) # 0. Since the function space V = {¢(z) + (z — ¢)"p(z) ; Po(z) =
Qo () = 0} is of dimension m+n in a neighborhood of x = ¢, dimyy (5,¢) W (w; §)w >
m +n because the relation Rw = 0 for an operator R € W (z;€) implies Ry (z) =0
for p € V.

Thus we have the following standard definition.

Definition 2.10. Fix P € W(z;¢) with ord P > 0. The equation (Z18) is irre-
ducible if and only if one of the following equivalent conditions is valid.

(2.66) The left W (z;&)-module M is simple.

(2.67) The left W (x;&)-ideal W (x; )P is maximal.

(2.68) P = QR with Q, R € W(z;§) implies ord@ - ord R = 0.
(2.69) VQ & W(xz;§)P, M, N € W(x; &) satistying MP + NQ = 1.

ST € W(z;§)P with S, T € W(z;€) and ord S < ord P
=S=0o0rTeW(x;&)P.

The equivalence of the above conditions is standard and easily proved. The last
condition may be a little non-trivial.

Suppose T70) and P = QR and ord @ - ord R # 0. Then R ¢ W (x;£)P and
therefore ) = 0, which contradicts to P = QR. Hence [270) implies (Z6]).

Suppose 266), Z69), ST € W(x;&)P and T ¢ W (x;£)P. Then there exists
P’ such that {J € W(x;&); JT € W(x;&)P} = W(x;§)P’, ord P’ = ord P and
moreover P'v = 0 is also simple. Since Sv = 0 with ord S < ord P’, we have S=0.

In general a system of ordinary differential equations is defined to be irreducible
if it is simple as a left W (z;£)-module.

Remark 2.11. Suppose the equation M given in (Z58) is irreducible.

i) Let u(x,€) be a non-zero solution of M, which is locally defined for the
variables z and £ and meromorphically depends on (z,£). If S € W]x;¢&] satisfies
Su(x,&) =0, then S € W(z;£)P. Therefore u(x,&) determines M.

ii) Suppose ord P > 1. Fix R € W (z;§) such that ord R < ord P and R # 0.
For @ € W (z;¢) and a positive integer m, the condition R™Qu = 0 is equivalent
to Qu = 0. Hence for example, if Qi1u+ 0™ Qou = 0 with certain Q; € W(x;§), we
will allow the expression 0~ Qru + Q2u = 0 and 0" Q u(x, &) + Qau(x, &) = 0.

iii) For T & W(x;&)P we construct a differential equation Qv = 0 satisfied by
v = Tu as follows. Put n = ord P. We have R; € W(z; &) such that Tu = Rju
with ord R; < ord P. Then there exist by, ..., b, € C(z,§) such that b, R, +--- +
blRl + boRo = 0. Then Q = bnﬁn +---+ b18+ bo.

2.5. Okubo normal form and Schlesinger canonical form. In this subsection
we briefly explain the interpretation of Katz’s middle convolution (cf. [K4) by [DR]
and its relation to our fractional operations.

For constant square matrices T and A of size n’, the ordinary differential equation

du
2.71 Ly —T)—=A
(271) (el = TS = Au
is called Okubo normal form of Fuchsian system when 7 is a diagonal matrix. Then
(2.72) mey (2l —T)0 — A) = (el — T)0 — (A+ ply)

for generic pu € C, namely, the system is transformed into

(2.73) (2L — T)?J — (A+ puLy)u,
X
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by the operation mc,. Hence for a solution u(x) of ([ZTIl), the Euler transformation

uy(x) = I#(u) of u(x) satisfies (7).
For constant square matrices A; of size m and the Schlesinger canonical form

(2.74) @:Z A4,

of a Fuchsian system of the Riemann sphere, we have

(275 X Zp: 4 A=A A, | and
. _— u, j = 1 e » n u =
dz = T —cj

Here A; are square matrices of size pm. The addition Ad((z — cx)"*) transforms
Aj into A; + pugd; kL, for j =1,...,p in the system (Z74). Putting

c1 1y
A=A +---+A, and T:< ),
cpln
the equation ([Z70) is equivalent to ZTI)) with n’ = pm. Define square matrices of

size n’ by

Ay

N
i

(2.76)

~—

(2.77) Ajp)= )| A - A Ajt+p Aja - A,

Then ker A and ker(A + 1) are invariant under A; () for j = 1,...,p and therefore
A;(p) induce endomorphisms of V' := CP™/ (ker A+ker(A+ /J)), which correspond

to square matrices of size N := dimV, which we put A;(u), respectively, under a
fixed basis of V. Then the middle convolution mc, of ([ZT4) is the system

dw <~ Aj(w)
2.78 oy A
( ) dx Z T —cj v
j=1
of rank N, which is defined and studied by [DRL[DR2]. Here ker ANker(A+p) = {0}
if w#0.
We define another realization of the middle convolution as in [OF §2]. Suppose
i # 0. The square matrices of size n’
J

—

Ay

@19 A{w= ;| a4, and AV () i= AY (1) + - + AY (1)




WEYL ALGEBRA AND FUCHSIAN DIFFERENTIAL EQUATIONS 23

satisfy
(2.80) A(A + pl) = A () A = (Al + 1554 i, € MR, C),

1<j<p

(@81) A+ uly) Ay (1) = AY () A(A + L),
Hence w" := A(A + ul,, )u satisfies
dwY AV (1),

_ J
(2.82) = Z el
j=1
zp: AY () _ (Ai + M(Si,jfm)

and A(A + pl,) induces the isomorphism

~

(2.83)  A(A+puly):V=C"/(K+L,) = VV:=ImA(A+ ul,) cC".
Hence putting A;/(u) i= AY(p)|vv, the system ([ZTF) is isomorphic to the system
dw' A ()

o3 A

(2.84) >
j=1

of rank N, which can be regarded as a middle convolution me,, of [24). Here

wv
1 D
(2.85) w'=| |, w) =) (AA b))y (G=1,....p)
w\/ v=1
p

and if v(z) is a solution of 74, then
P
v — ) C\TH v(x)
(2.86) w"(2) (Z(AJAV + i) I (=) 3
v=1 J=1,p
satisfies (2:84)).

Since any non-zero homomorphism between irreducible W (z)-modules is an iso-
morphism, we have the following remark (cf. 2.4 and §g)).

Remark 2.12. Suppose that the systems (2Z74) and ([Z84)) are irreducible. Moreover
suppose the system (ZX4) is isomorphic to a single Fuchsian differential equation
Pu = 0 as left W(z)-modules and the equation mc, (P)w = 0 is also irreducible.
Then the system (2:84)) is isomorphic to the single equation mc, (P)w = 0 because
the differential equation satisfied by I*(@(x)) is isomorphic to that of I*(Qu(x))
for a non-zero solution v(z) of P& = 0 and an operator @ € W(x) with Qu(x) # 0
(cf. 48 Remark [[4]iii) and Proposition B12).

In particular if the systems are rigid and their spectral parameters are generic,
all the assumptions here are satisfied (cf. Remark [6.171i) and Corollary T2ZT2]).

Yokoyama [Yo2] defines extension and restriction operations among the systems
of differential equations of Okubo normal form. The relation of Yokoyama’s opera-
tions to Katz’s operations is clarified by [O7, which shows that they are equivalent
from the view point of the construction and the reduction of systems of Fuchsian
differential equations.

3. CONFLUENCES

3.1. Regular singularities. In this subsection we review fundamental facts re-
lated to the regular singularities of the ordinary differential equations.
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3.1.1. Characteristic exponents. The ordinary differential equation
n n—1
(3.1) an ()2 +a,_ 1 ()44 + -+ ar(2) % + ap(z)u =0

of order n with meromorphic functions a;(z) defined in a neighborhood of ¢ € C
() has a pole at x = c for a certain j.
an(z)

The singular point x = ¢ of the equation is a regular singularity if it is a removable
singularity of the functions b;(z) := (z — ¢)"Ja;(z)a,(z)~! for j = 0,...,n. In
this case b;(c) are complex numbers and the n roots of the indicial equation

has a singularity at = c if the function

(3.2) bij(c)s(s—1)---(s—j+1)=0

n
j=0
are called the charactersitic exponents of [BJ)) at c.

Let {A1,..., A\, } be the set of these characteristic exponents at c.
If \j — A1 ¢ Zso for 1 < j < n, then ) has a unique solution (z — ¢)* ¢; ()
with a holomorphic function ¢;(z) in a neighborhood of ¢ satisfying ¢ (c) = 1.

Definition 3.1. The regular singularity and the characteristic exponents for the
differential operator

(3.3) P = ap(2) 5 + an-1 (@) g + -+ + a1(2) & + ao(w)

are defined by those of the equation [BI]), respectively. Suppose P has a regular
singularity at ¢. We say P is normalized at ¢ if a,(x) is holomorphic at ¢ and

(3.4) an(c) =aP(c)=---=a" V() =0 and a{V(c) # 0.

In this case aj(z) are analytic and have zeros of order at least j at @ = ¢ for
7=0,....,n—1.

3.1.2. Local solutions. The ring of convergent power series at * = c¢ is denoted by
O, and for a complex number i and a non-negative integer m we put

(3.5) Oc(p,m) :== (x — c)*log” (x — ¢)O,.

Let P be a differential operator of order n which has a regular singularity at

x = cand let {\, -+, \,} be the corresponding characteristic exponents. Suppose
P is normalized at c. If a complex number p satisfies A\; — p ¢ {0,1,2,...} for
j=1,...,n, then P defines a linear bijective map

(3.6) P:O(u,m) = Oc(p,m)

for any non-negative integer m.
Let O, be the ring of formal power series Z;io aj(x—c)l (a; € C) of z at c. For
a domain U of C we denote by O(U) the ring of holomorphic functions on U. Put

(3.7 B.(c) ={zeC;|lz—c|<r}

for r > 0 and

(3.8) Oclpym) := @ (z — )" log” (z — ¢)O,,
v=0

(3.9) O, (e) (1) := P (& — ¢)"log"(z = €) O, (o).

Il
<

v

Then Op, (¢)(pr,m) C Oc(p,m) C @c(,u,m).
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Suppose aj(z) € O(Br(c)) and an(xz) # 0 for € B,(c) \ {c} and moreover
Aj—p¢40,1,2,...}, we have

(3.10) P:OBT(c)O%m) = OBT(c)<M7m)7
(3.11) PO (,m) S Oulp,m).

The proof of these results are reduced to the case when p = m = ¢ = 0 by the
translation x —a—c the operatiop Ad(z™*), and the fact P(Z;nzo fi(x)log’ ) =
(Pfm(z))log’ x + Z?ZOI ¢;(x)log’ x with suitable ¢;(x) and moreover we may as-
sume

When g =m = 0, BII) is easy and ([BI0) and hence [B4) are also easily proved
by the method of majorant series (for example, cf. [OT]).
For the differential operator

Q=L 4 b, (@)L (@)L 4 bo(2)
with b;(z) € O(B,(c)), we have a bijection

Q: O(B.(c)) = O(Brlc)®Cn
(3.12) w w
u(x) —  Pu(x) ® (u(j)(c))ogjgnq
because Q(xz—c)™ has a regular singularity at = ¢ and the characteristic exponents
are —1,—2,...,—n and hence [BI0) assures that for any g(z) € C[z] and f(z) €
O(By(c)) there uniquely exists v(z) € O(B,(c)) such that Q(x — ¢)"v(z) = f(x) —
Qg().

If A\, — A\ ¢ Z~y, the characteristic exponents of R := Ad((a: — c)_’\l_l)P at
x=care A\, —\; — 1 for v =1,...,n and therefore R = S(z — ¢) with a differential
operator R whose coefficients are in O(B,(c¢)). Then there exists vi(x) € O(B,(c))
such that —S1 = S(z — c)vi (), which means P((z — ¢)* (1 + (z — c)vi(z))) = 0.
Hence if A; — A; ¢ Z for 1 < i < j < n, we have solutions u,(z) of Pu = 0 such
that

(3.13) u,(z) = (x — )¢, (x)
with suitable ¢, € O(B,(c)) satistying ¢, (c) =1forv=1,...,n

Put k= #{v; A\, = M} and m = #{v; A\, — A1 € Z>¢}. Then we have solutions
uy(z) of Pu =0 for v=1,...,k such that

(3.14) uy(z) — (z — ) log" (z — ¢) € Op,(oy(A1 +1,m —1).
If Op, (c) is replaced by @C, the solution
co m—1

uy(z) = (x—c) log” Hz—c +Z Z cvij(@—e) T logd (x—c) € Ou(Ar,m—1)
=1 j=0
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is constructed by inductively defining ¢, ; ; € C. Since

P< i nil Cuj(@ — ) log! (z — C)) = *P<(9€ — )M log” H(z —¢)

i=N+1 j=0

N
+ Z Cuij(r — )M Filogd (z — c)) € Op,(¢)(A1 + N,m — 1)
i=1
for an integer N satisfying Re(A; — A1) < N for £ =1,...,n, we have

[e'e) m—1

Z Z cvij(x— )T logd (z —¢) € OB, (¢)(A1 +N,m —1)
i=N+1 j=0

because of BI0) and BII]), which means u,(z) € Op, ()(A1,m).

3.1.3. Fuchsian differential equations. The regular singularity at oo is similarly de-
fined by that at the origin under the coordinate transformation = +— % When

P € W(z) and the singular points of P in C := C U {co} are all regular singular-
ities, the operator P and the equation Pu = 0 are called Fuchsian. Let T be the
subset of C deleting singular points co,...,c, from C. Then the solutions of the
equation Pu = 0 defines a map

(3.15) F:Cou: (simply connected domain) — F(U) C O(U)

by putting F(U) := {u(z) € OU); Pu(x) = 0}. Put

U {z=ci+reV . 0<r<e R<O<R+21} (¢j# )
je,R = {xzreme;r>e—17 R<9<R+27r} (cj:oo).

For simply connected domains U, V' C @,, the map F satisfies

(3.16) FU)cOU) and dimF(U)=n
(3.17) VcU = FV)=FU))lv,
Je > 0, V¢ € F(Uje.r), 3C > 0,3m > 0 such that
(318) C|I - CJ| (Cj 7é 0, T € Uj7€7R)7
l¢(z)] < § Cla|™ (¢j =00,  €Ujer)

for j=0,...,p, VR eR.

Then we have the bijection

(3.19)
{07 + Za] )& € W(z) : Fuchsian} =  {F satisfying (BI6)-BI3)}

w w

P — {U— {ueOU); Pu=0}}.
Here if F(U) = 2?21 Co;(x),

0@ - o)
o det®; G-y .. gD

(3.20) aj(l‘) — (_1) jd:ti@é with b; = ijJrl)Ez‘; gljJrl)Ez;

M) . g(a)
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The elements F; and F; of the right hand side of [BI9) are naturally identified if
there exists a simply connected domain U such that F;(U) = Fa(U).
Let
P=0"+ an_l(a:)a"*l + -4 ag(x)
be a Fuchsian differential operator with p+1 regular singular points ¢y = 0o,cy, ..., ¢p
and let Aj1,..., A, be the characteristic exponents of P at c;, respectively. Since
an—1(x) is holomorphic at * = oo and a,—_1(c0) = 0, there exists a,—1,; € C
such that a,—i(z) = —Y%_, 2224, For ¢ € C we have 2" (9" — cz™19""!) =

Jj=1 xz—c;

9" — (c+ @)ﬂ”’l + Cp—29" "2 4 -+ 4 ¢y with ¢; € C. Hence we have

—3F any - 2 (=0),
n(n—1 .
an71,j+7(2 ) (jzl,...,p),

/\j,1+~--+>\j,n{

and the Fuchs relation

(p—Dn(n—1)
5 :

M=
M=

(3.21) Ay =

i
<

v=1

J

Suppose Pu = 0 is reducible. Then P = SR with S, R € W(z) so that n’ =
ord R < n. Since the solution v(z) of Rv = 0 satisfies Pv(x) = 0, R is also
Fuchsian. Note that the set of m characteristic exponents {\} ,; v =1,...,n'} of
Rv =0 at ¢; is a subset of {\;,; v =1,...,n}. The operator R may have other
singular points ¢, ..., c; called apparent singular points where any local solutions
at the points is analytic. Hence the set characteristic exponents at = = c;- are
{N;, v=1,...,n'} such that 0 < pj1 < pjo < -+ < pjn and p;, € Z for

v=1,...,n and j=1,...,q. Since pj1+- -+ fjn > w

for R implies

, the Fuchs relation

(3.22) 7> Zp: i N pm =)

)V — 2

Fixing a generic point ¢ and pathes v; around ¢; as in (II.20]) and moreover
a base {uq,...,u,} of local solutions of the equation Pu = 0 at ¢, we can define
monodromy generators M; € GL(n,C). We call the tuple M = (Mo, ..., M,)
the monodromy of the equation Pu = 0. The monodromy M is defined to be
irreducible if there exists no subspace V' of C" such that M;V C V; for j =0,...,p
and 0 < dim V' < n, which is equivalent to the condition that P is irreducible.

Suppose Qv = 0 is another Fuchsian differential equation of order n with the
same singular points. The monodromy N = (N, ..., N,) is similarly defined by
fixing a base {v1,...,v,} of local solutions of Qu =0 at ¢. Then
M~N &' 39 GL(n,C) such that N; = gM;g~" (j =0,...,p)

(3.23)
< Qu =0 is W(x)-isomorphic to Pu = 0.

If Qu = 0 is W(x)-isomorphic to Pu = 0, the isomorphism defines an isomor-
phism between their solutions and then N; = M; under the bases corresponding to
the isomorphism.

Suppose there exists g € GL(n,C) such that N; = gM;g~! for j = 0,...,p.
The equations Pu = 0 and Qu = 0 are W (x)-isomorphic to certain first order
systems U’ = A(z)U and V' = B(z)V of rank n, respectively. We can choose
bases {Uy,...,U,} and {V1,...,V,} of local solutions of PU = 0 and QV = 0 at
q, respectively, such that their monodromy generators corresponding y; are same
for each j. Put U = (Uy,...,U,) and V = (V4,...,V,). Then the element of the
matrix VU ! is holomorphic at ¢ and can be extended to a rational function of
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and then VU~! defines a W (x)-isomorphism between the equations U’ = A(x)U
and V' = B(z)V.

Example 3.2 (Apparent singularity). The differential equation

(3.24) z(z—1)(x — c)% + (2 — 2cx + c);l—fc =

is a special case of Heun’s equation (BI9) witha = =A=0and y=0 =1. It
has regular singularities at 0, 1, ¢ and oo and its Riemann scheme equals

r=00 0 1 ¢
(3.25) 0 0 0 O
0 0 0 2

The local solution at z = ¢ corresponding to the characteristic exponent 0 is
holomorphic at the point and therefore * = ¢ is an apparent singularity, which
corresponds to the zero of the Wronskian det ®,, in (B20). Note that the equation
B24) has the solutions 1 and clogx + (1 — ¢) log(z — 1).

The equation ([B24]) is not W (z)-isomorphic to Gauss hypergeometric equation if
¢ # 0 and ¢ # 1, which follows from the fact that ¢ is a modulus of the isomorphic
classes of the monodromy. It is easy to show that any tuple of matrices M =
(Mo, My, My) € GL(2,C) satisfying MaM; My = I is realized as the monodromy
of the equation obtained by applying a suitable addition RAd (xAU(l — x))‘l) to a
certain Gauss hypergeometric equation or the above equation.

3.2. A confluence. The non-trivial equation (z — a)% = pu obtained by the

addition RAd((z — a)*)0 has a solution (z — a)* and regular singularities at z = ¢
and oco. To consider the confluence of the point x = a to co we put a = % Then
the equation is
(1=cz)d+cp)u=0

and it has a solution u(z) = (1 — cx)*.

The substitution ¢ = 0 for the operator (1 — cz)0 + cp € Wz; ¢, p] gives the
trivial equation 9% = 0 with the trivial solution u(z) = 1. To obtain a nontrivial
equation we introduce the parameter A = cu and we have the equation

(1=cx)0+A)u=0

with the solution (1—cz)®. The function (1—cz)* has the holomorphic parameters
c and A and the substitution ¢ = 0 gives the equation (0+ A)u = 0 with the solution
e~ Here (1 —cx)d+ \ = RAdei(l_)‘w)a =RAd((1 - cx)%)a.

This is the simplest example of the confluence and we define a confluence of
simultaneous additions in this subsection.

3.3. Versal additions. For a function h(c, z) with a holomorphic parameter ¢ € C
we put

1 h(z,z)dz
hp(ct, ... cn,x) = T
5,96 (e ) 21mv/=1 Jiz)=r [ =1 (2 — ¢)
(3:26) " h(c, x)

1 ngign,i;ék(ck — ;)

with a sufficiently large R > 0. Put
2 3
(3.27) h(c,z) := ¢ 'log(l — ca) = —x — gzz — %x?’ - %afl — e

Then
(3.28) (1—cx)h(c,x) =—1
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and
_ " Jli<icn, izr(1 — ciw)
(3.29) 1<i<n = Tli<icn, izn(ce — ci)

n—1

The last equality in the above is obtained as follows. Since the left hand side of
B29) is a holomorphic function of (c1,...,¢,) € C™ and the coefficient of ™ is
homogeneous of degree m — n + 1, it is zero if m < n — 1. The coefficient of z"~!
proved to be —1 by putting ¢; = 0. Thus we have

e " tdt

0 H1gi§n(1 —cit)’

eAnhn(cl,‘.,,cn,m) ° ( H (1 _ cw))@o efAnhn(cl,.u,cn,z)

(3.30) hn(c1y.. yen,x) =

(3.31) Isren
- ( H (1- cm))f) + AL,
1<i<n
An
(3 32) 6Anhn(Cl,mvcn7x) B f[ (1 ., ) <l Hl%;ﬁ%n(ck ci)
. = kL
k=1

Definition 3.3 (Versal addition). We put

P PO S M)
AdV(x  1)(ieeni)y) = Ad H(l—ckx) i#h
(3.33) k=1
p n—1
An X
—Adei [ =S At )
(S

(334) RAdV(ﬁ ____ é)()\l’“.’)\p) = ROAdV(ﬁ ____ é)()\l’”.’)\p).

We call RAdV 1 ;)()\1, ..., Ap) a versal addition at the p points é, e Ci
cp c P
Putting
h(c,z) :=log(z — ¢),
we have
 licicn, izn(@ — )
Rl (c1y. .. cn,T) (z—¢;) = 1gizn, i7k =1
" 1§1:£n ' kz::l H1§z‘§n, i;ﬁk(ck —¢i)
and the conflunence of additions around the origin is defined by
. P P W
AdV(, oy (MaseeAp) i=Ad | [ (& - ar) i#k
(3.35) k=1

(3.36)  RAAV{(, ., (A1, Ap) =RoAdV(, . (A1, A).

(a1, (a1,

Remark 3.4. Let gr(c,z) be meromorphic functions of z with the holomorphic
parameter ¢ = (c1,...,¢p) € CP for k=1,...,p such that

1
1—cx

p
ge(c,x) €Y C if 0#ci#c#0 (1<i<j<p 1<k<p).
=1
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Suppose ¢1(¢c, ), ..., gp(c, z) are linearly independent for any fixed ¢ € CP. Then
there exist entire functions a; ;(c) of ¢ € CP such that

n—1

akn
ZHz 1 ( 1*62 )

and (a;j(c)) € GL(p,C) for any ¢ € CP (cf. [03] Lemma 6.3]). Hence the versal
addition is essentially unique.

3.4. Versal operators. If we apply a middle convolution to a versal addition of
the trivial operator 9, we have a versal Jordan-Pochhammer operator.

(3.37) P:=RAA(@ ™) oRAAV (1 1)(Ai,...,\)d

p )\kxk*

Pt Hk:1(1 — c,,:c))

p
= 07 (g ()0 + gl 8”—Zpk yor—k

— RAd(D ) o R(8 +

with
P P P
x) = H(l —cz), q(z)= Z ApzF 1 H (1—cjx),
j=1 k=1 j=k+1

pa) = (T @+ (T e

We naturally obtain the integral representation of solutions of the versal Jordan-
Pochhammer equation Pu = 0, which we show in the case p = 2 as follows.

Example 3.5. We have the versal Gauss hypergeometric operator

Pcl-,CQ;)\lJ\Q,,u = RAd(a_“) ] RAdV(ﬁVi)()\h >\2)8

= RAd(9#) o RAd ((1 - crz) BT EE T (1 - m)ﬁ)

= RAA(97#) 0 RAdei (— 20 — 228 ) 0

c1x

=RAd(0™")oR (8 + 2+ (17c1;\)2(€752z))
=Ad(0™") (0(1 — c12)(1 — cox)0 + O(A1 (1 — c2x) + A2x))
= (1= az)d+ci(p— 1)) ((1 = c22)0 + cop)
+ A0+ (A2 — M) (@0 + 1 — p)
= (1 —c12)(1 — ca)d?
+ ((e1 +e2) (= 1) + A1+ (2crcz(1 = p) + Az — Adcz)w)0
+ (= D) (crcap + Adrca — Aa),

whose solution is obtained by applying I# to

ISR T EEECEN
Koy eaina (@) = (1= 1) 5505 (1~ ep0) 300

The equation Pu = 0 has the Riemann scheme

Y 1 o
c1 C2

(3.38) 0 0 1—p T
&_i_ A2 )+M A2 )+/~L )\1+ A2 — L.

c1 ci(c1—ca ca(ca—c1 cica
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Thus we have the following well-known confluent equations

Peosien =1 —c12)0% + (ci(p— 1) + A1 + X2z)0 — Ao(p — 1), (Kummer)

A1y A2

Kevonine = (L= ea) ™ exp(322),
Pooo,-10 = 0" =20+ (= 1), (Hermite)
Ad(eiﬂ)po,o;mw — (0 — 1a)? + 20— 1a) — (u—1)

=P+ (3 —n—5), (Weber)

2

T
Ko,0,0,51 = exp(/ :ttdt) = exp(:l:%),
0

The solution

of Weber’s equation 3273 = (%2 + pu— %)u is called a parabolic cylinder function

(cf. [(WW] §16.5]). Here the above last line is an asymptotic expansion when z —
+00.

The normal form of Kummer equation is obtained by the coordinate transfor-

mation y =z — % but we also obtain it as follows:

Peyixy dan i= RAA(O7") o Ro Ad(27?) 0 AdV 1 (A1)d
=RA(O") o R(0 - % + 247)
= Ad(07")(0z(1 — c12)0 — d(A2 — (A1 + c1A2)7))
= (@0+1—p)((1—c12)0+cip) — X0 + (M + e1h2)(zd + 1 — p)
=2(l—c12)0® + (L= Ao —p+ (M + (X2 + 21— 2))z)0
+ (=1 + (e +p),
Poxixan = 20 + (1= Xg — p+ Mix)d + Mi(p — 1),
Po—1p0,u = 20?4+ (1= —p—2)0+1—p (Kummer),

A1
c1

Keyog oo (@) = 222(1 —ciz) e, Kooy, (@) = 272 exp(—A\i2).
The Riemann scheme of the equation P .z, », v = 0 is

=0 i 00
(3.39) 0 0 1—p ;T
A A
Aot ohtp =S d—p
and the local solution at the origin corresponding to the characteristic exponent
Ao + p is given by

1 r ESY _
I (Keyag n) (@) = m/o t22(1—ert) = (z — )t
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In particular, we have a solution

1 xr
uw(x) = IN(Ko.—1 mz—/ th2el(x — ) Ldt
( ) O( 0;—1,A )( ) 1—‘(/1,) 0 ( )
(E>\2+H/1 A\ '
= $22(1 — )P Le®ds t=uxs
oG Jo 0 (=)
I(Ag + 1)ztetr
=——= 7 [\ 1, Ao+ 1;
I‘(/\2+u+1)1 1(A2 + 1, u+ X+ 1)

of the Kummer equation Py,_1 x,,,u = 0 corresponding to the exponent Ay + p1 at
the origin. If ¢; ¢ (—o00,0] and x ¢ [0, 00] and Ag ¢ Z>, the local solution at —oo

corresponding to the exponent —\y — 2‘—11 — 1 is given by
L /w (—t)*2(1 — clt)%(x — )" ldt
I(p) J-oo
<xw2/w( sy S
= 1—7) 1+c(s—a)) st ds (s=xz—1)
() Jo €T ( )
)\1:7
01—)+0

EPARY) oo S\

<F(,L)L) /0 <1—;)>\ e s 1ds
—x)M2e® [ s\ A2

= 7( F()u) /0 st e (1—;) ds

~2 F%(:)?)(F&;?Zl;n) (—2)™e” = (=2)™ "2 Fo(= Ao, i 7).

n=0

Here the above last line is an asymptotic expansion of a rapidly decreasing solution
of the Kummer equation when R 3 —x — +4o00. The Riemann scheme of the
equation Pp,_1 x,,,u = 0 can be expressed by

z=0 oo (1)
(3.40) 0 1-p 0
)\2 + 1% —>\2 1

(r) - (re)
A a1 e [e%%
the existence of a solution u(x) satisfying

In general, the expression } with 0 < r; < --- < r; means

k T
x"v
3.41 ~ g (Z , ) f
(3.41) u(x) ~ 2~ " exp VZloz - or |z| = oo

under a suitable restriction of Argx. Here k € Z>o and A, a,, € C.

4. SERIES EXPANSION

In this section we review the Euler transformation and remark on its relation to
middle convolutions.
First we note the following which will be frequently used:

! a—1 -1, I'(a)l(B)
(4.1) /Ot (1—1)”? dt—m,
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(1— 1) = i (== - 1)1-/-!- (y=vtl)
2 = L(y+v),, o= ()
+v v vV,v
:V:O FZ’y)V! t :l;) 7/! t

The integral [@J]) converges if Rea > 0 and Re > 0 and the right hand side
is meromorphically continued to @ € C and 8 € C. If the integral in @Il is
interpreted in the sense of generalized functions, (1) is valid if o ¢ {0,—-1,-2,...}
and 8 ¢ {0,—1,-2,...}.

Euler transformation I* is sometimes expressed by 0~ and as is shown in ([KIl
§5.1]), we have

I*u(z) = ﬁ/ (z —t)"u(t)dt
(4.3) i
_(z=o — s Iy((x — ¢)s + c)ds
- S [ o @ s+ gas
(4.4) ol =1,
(4.5) I7"u(z) = %u(z),
> W o= T(A+n+1 ptn
e Ié‘z_:ocn(:zc—c)’\+ :E_:()F(/\(-l-lﬂ'n‘f‘)l)cn(x_C)M *
46 "= "
_ v+ i (A + Dncn (@ — ) Mutn
T+ p+1) 2= (At i+ 1)y, ’
(4.7) fé‘o i cnxA—n _ eﬂrﬂ Z /\ M - n) cnxA+“_n-

Moreover the following equalities which follow from (I?Zﬂ) are also useful.

Iy Z Cnz (1 — )P

(48) = F(A+1) i (A =+ D 5)mcan#+m+n
) TA+pu+1) = A+ p+ D) pgnm!

_F(A+u+1)(1_x) > ()\+u+1)m+nm' T (ﬁ) :

m,n=0

If A ¢ Zeo (vesp. A+ p ¢ Z>() and moreover the power series > - ¢,t™ has
a positive radius of convergence, the equalities [0 (resp, [@T)) is valid since
I* (resp. I%) can be defined through analytic continuations with respect to the
parameters A and p. Note that I/ is an invertible map of O.(x — ¢)* onto O.(z —
MHif N ¢ {—-1,-2,-3,.. and A+ p ¢ {-1,-2,-3,...}.

Proposition 4.1. Let A and p be complex numbers satisfying A ¢ Z<o. Differen-
tiating the equality (@8] with respect to A\, we have the linear map

(4.9) 1" Ou(A,m) = Oc(\ + p1,m)

under the notation B, which is also defined by @3) if Re A > —1 and Rep > 0.
Here m is a non-negative integer. Then we have

(4.10) ¢ (Z b log? (x — ) — I (¢pm)log™(x — ¢) € OX+ p,m — 1)
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for ¢; € O. and I} satisfies @43). The map @A) is bijective if X+ p ¢ Z<o.
In particular for k € Z>o we have IHO* = OFIF = IF=F on O.(\,m) if A —k ¢
{~1,-2,-3,...}.

Suppose that P € W(x] and ¢ € O (A, m) satisfy Pp =0, P # 0 and ¢ # 0.
Let k and N be non-negative integers such that

N
(4.11) P =>"3 a;;0'((z - c)d)’

i=0 j>0
with suitable a;; € C and put Q = Z?}:o 2250 ci ;0 ((z — )0 — u)j. Then if
A¢{N—-1,N—-2,...,0,—1,...}, we have
(4.12) IH0F Pu = QIM(u) for u € Ou(\,m)
and in particular QI¥(¢) = 0. ‘

Fiz £ € Z. For u(x) = 3372, 5" cij(x — ¢)'log’ (x — ¢) € O(¢,m) we put
(Tyu)(z) = Zso:max{z,Nq} Z;.":O cij(x —¢)'log’(x — ¢). Then
[ (@-9o- 1/)m+1)8kP(u($) — (Tyu)(x)) =0
(—N<v<N-1
ane therefore
H ((m—c)a—u—u)mH)QIé‘(FNu)

—N<v<N-1

:Ig( H ((;v—c)a—u)m+1>8kPu.

(—N<y<N-1

(4.13)

In particular, [T,_y<,<n_1((x —¢)0 — p— y)m+1 QI (P (u)) =0 if Pu=0.

Suppose moreover A ¢ Z and A\+p ¢ Z and Q = ST with S, T € W] such that
x = ¢ is not a singular point of the operator S. Then TI*(p) = 0. In particular,

(4.14) (RAA(0~*)P)IF(¢) = 0.
Hence if the differential equation (RAd((?*“)P)U = 0 s irreducible, we have
(4.15) W (z)(RAA(0™")P) = {T € W(x); TI*(¢) = 0}.

The statements above are also valid even if we replace x —c, I* by %, 1%,
tively.

Proof. It is clear that [0 is well-defined and (I0Q) is valid. Then [ is bijective
because of @6l and [@IO). Since 43) is valid when m = 0, it is also valid when
m =1,2,... by the definition of (J).

The equalities [@0) and (A1) assure that QI#(¢) = 0. Note that TI/(¢) €
O(XA+ p— N,m) with a suitable positive integer N. Since A+ p — N ¢ Z and any
solution of the equation Sv = 0 is holomorphic at x = ¢, the equality S (T 1, é‘(d))) =0
implies TT#(¢) = 0.

The remaining claims in the theorem are similarly clear. O

respec-

Remark 4.2. 1) Let v : [0,1] — C be a path such that v(0) = ¢ and (1) = z.
Suppose u(z) is holomorphic along the path (¢) for 0 < ¢t < 1 and u(y(t)) = ¢(y(t))
for 0 < t <« 1 with a suitable function ¢ € O.(A,m). Then I#(u) is defined by the
integration along the path «. In fact, if the path ~(¢) with ¢ € [0, 1] splits into the
three paths corresponding to the decomposition [0,1] = [0,¢] U [e,1 — €] U [1 — ¢, 1]
with 0 < e < 1. Let ¢; =¢,...,cp be points in C™ and suppose moreover u(x) is
extended to a multi-valued holomorphic function on C\ {c1,...,¢,}. Then I?(u)
also defines a multi-valued holomorphic function on C\ {¢1,...,¢,}.
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ii) Proposition Bl is also valid if we replace O.(\, m) by the space of functions
given in Remark 27 ii). In fact the above proof also works in this case.

5. CONTIGUITY RELATION
The following proposition is clear from Proposition E1l

Proposition 5.1. Let ¢(x) be a non-zero solution of an ordinary differential equa-
tion Pu = 0 with an operator P € W(z]. Let P; and S; € Wz| for j =1,...,N
so that Z;\le P;S; € W[z|P. Then for a suitable { € Z we have

(5.1) > Qi(1H(¢;) =0
by putting
¢j = 5i¢,

5.2
(5:2) Q;j=0"""0oPjod" c Wiz,

(j=1,...,N),

if 9(xz) € O\, m) with a non-negative integer m and a complex number A satis-
fying X € Z and A+ pn ¢ Z or ¢(z) is a function given in Remark[Z] ii). If
P =350, >0 ¢ k00RO with ¢; o € C, then we can assume £ < 0 in the above.
Moreover we have

(5-3) O(IL " (91)) = 11 (1)

Proof. Fix an integer k such that 8*P; = Pj(a, 9) = Zi17i2 Ciy 1,019 with ¢;, 4, €
C. Sin?e 0= Z;\f:l ok P;S;¢, Proposition ] proves 0 = Zjvzl Ig(f?j (0,9)S;0) =
Z;\f:l P; (0,9 — pn)I*(S;¢), which implies the first claim of the proposition.

The last claim is clear from (@A) and {3). O

Corollary 5.2. Let P(§) and K(§) be non-zero elements of Wlx;&]. If we substi-
tute £ and p by generic complex numbers, we assume that there exists a solution
¢e(z) satisfying the assumption in the preceding proposition and that I (¢¢) and
IH(K(&)pe) satisfy irreducible differential equations T (€, p)vr = 0 and T (€, p)ve =
0 with Th (&, 1) and To(§, 1) € W(x; &, ), respectively. Then the differential equa-
tion Ty (&, p)vy = 0 is isomorphic to Ta(&, p)ve =0 as W (x; &, p)-modules.

Proof. Since K(£)-1—1-K(&) =0, we have Q(&, u)I#(¢¢) = O'IH(K (€)pe) with
Q(&,p) = 0 F o K(&) 0 9", Since 0°I#(¢¢) # 0 and the equations T} (&, p)v; = 0
are irreducible for j = 1 and 2, there exist R (&, ) and Ro(&, u) € W(x; &, u) such

that I2(¢¢) = Rui(& 1)Q(E, )11 (pe) = Ru(€, ) I (K (€)¢e) and IH(K (€)de) =
Ro (&, )0 TH(K (&) ge) = Ra(&, )Q(&, ) I#(¢¢). Hence we have the corollary. O

Using the proposition, we get the contiguity relations with respect to the param-
eters corresponding to powers of linear functions defining additions and the middle
convolutions.

For example, in the case of Gauss hypergeometric functions, we have

u>\17>\27u(x) = Ig(l‘)‘l (1 - x)AQ)’
u>\17>\2yﬂ—1(‘r) = 8uh,,\2,u(a:),
au}\lJrl,)\z,,u(x) = (1’(9 +1- M)’LL)\L)\Q,#(I'),
Quny pot1,u(7) = (1= 2)0 + = D)tix, 2o (7).

Here Proposition Bl with ¢ = 2™ (1 — 2)*2, (P, S1, P, S2) = (1,2, —z,1) and
¢ =1 gives the above third identity.
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Since Py, x,,uUx; 2o, (2) = 0 with
P)\17>\27M = (l‘(l — x)(? + (1 — A\ — w— (2 — A= Ay — 2/1,)31‘)8
—(p =11+ X2+ p)

as is given in Example 2.8 the inverse of the relation uy, x, u—1(2) = Oux, x, . (2)
is
z(1=2)0+ (1= A —p— (2= X — A2 — 2u)z)
) = (= 10w+ 2 7 4)
The equalities ux, x, u—1(2) = Qux, r,,u(2) and (Z47) mean
D(A + Dttt
LA+ p)
DA+ Dgtet
- LA+ p)
A+
md‘iF(_Ag, Mt LA+t L)

and therefore ux, x, u—1(x) = Oux, x,,u(2) is equivalent to

(v=DF(a, 8,7 — Liz) = (¥ +7 - )F(a, 8,7 2).
The contiguity relations are very important for the study of differential equations.
For example the author’s original proof of the connection formula ([2I)) announced
in [O6] is based on the relations (cf. §I43]).

Some results related to contiguity relations will be given in I3 but we will not
go further in this subject and it will be discussed in another paper.

Uy g u—1(T).

F(=Xo, M+ 1, 4+ 152)

F(=X, M+ 1L, M +p+ 1)

6. FUCHSIAN DIFFERENTIAL EQUATION AND GENERALIZED RIEMANN SCHEME

6.1. Generalized characteristic exponents. We examine the Fuchsian differ-
ential equations

n m—1
(6.1) P = an(2) e + a1 (2) e + -+ ao (@)
with given local monodromies at regular singular points. For this purpose we first
study the condition so that monodromy generators of the solutions of a Fuchsian

differential equation is semisimple even when its exponents are not free of multi-
plicity.

Lemma 6.1. Suppose that the operator [G1)) defined in a neighborhood of the origin
has a regular singularity at the origin. We may assume a,(x) are holomorphic at

0 and a,(0) = a (0) =--- = a;”‘l)(()) =0 and o' (0) # 0. Then the following
conditions are equivalent for a positive integer k.
(6.2) P=2"R with a suitable holomorphic differential operator R
at the origin,

(6.3) Pz’ =o(z*1) for v=0,...,k—1,
(6.4) Pu=0 has a solution ¥ + o(a:k_l) forv=0,...,k—1,
(6.5) pP= ijpj () with polynomials p; satisfying p;(v) =0

j=0 for 0<v<k—j and j=0,....,k—1.

Proof. [62)) = [@3) < (@3] is clear.

Assume ([E3). Then Pz” = o(z*~!) for v = 0,...,k — 1 implies a;(z) = 2*b;(x)
for j =0,...,k—1. Since P has a regular singularity at the origin, a;(z) = xjcj (2)
for j =0,...,n. Hence we have ([@2]).
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. v o o'e) vt . .
Since Pz” =3 7~ 2" ™p;(v), the equivalence [6.3) < (E.5) is clear. O

Definition 6.2. Suppose P in (@) has a regular singularity at = 0. Under the
notation ([Z.57) we define that P has a (generalized) characteristic exponent [A])
at x = 0 if 2" 7% Ad(z=)(a,(z) "1 P) € W]z].

Note that Lemma [ET] shows that P has a characteristic exponent []() at z =0
if and only if

(6.6) z"ap, () 1P = ijqj(ﬂ) H (0—X—1)

§>0 0<i<k—j

with polynomials ¢;(t). By a coordinate transformation we can define generalized
characteristic exponents for any regular singular point as follows.

Definition 6.3 (generalized characteristic exponents). Suppose P in (G has
regular singularity at x = c¢. Let n = my 4 --- + m, be a partition of the positive
integer n and let A1,..., A, be complex numbers. We define that P has the (set of
generalized) characteristic exponents {[A1](m,), - - -,[Aq)(m,)} and the spectral type
{m1,...,mq} at x = c € CU {oo} if there exist polynomials g,(s) such that

6.7) (z—c)"an(z) ' P=> (@—)'qu(z-0d) [ ] (@-0o-xr —i)

>0 v=1 0<i<m, —{

in the case when ¢ # oo and

(6.8) ", (z) P = Zx_lqg () H H (0 + A +1)
v=1 0<i<m, —¢

>0
in the case when ¢ = oo. Here if m; = 1, [\;](;,,) may be simply written as A;.

Remark 6.4. i) In Definition we may replace the left hand side of (&7 by
é(x)a, ()"t P where ¢ is analytic function in a neighborhood of 2 = ¢ such that
p(c) = --- = ¢ V(c) = 0 and ¢ (c) # 0. In particular when a,(c) = --- =
al” (¢) =0 and a,(c) # 0, P is said to be normalized at the singular point z = ¢
and the left hand side of (1) can be replaced by P.

In particular when ¢ = 0 and P is normalized at the regular singular point = 0,
the condition ([G7) is equivalent to

k
(6.9) H H (s =X —1) | p;(s) (V¢=0,1,...,max{mq,...,my} — 1)

v=10<i<m, —¢

under the expression P = 32 7p;(0).

ii) In Definition the condition that the operator P has a set of generalized
characteristic exponents {A1,...,A,} is equivalent to the condition that it is the
set of the usual characteristic exponents.

iii) Any one of {\, A+ 1, A+ 2}, {[N@2), A+ 2} and {A, [A + 1](2)} is the set of
characteristic exponents of

P=W—-N0-A=1@0—-A=2+x)+2*0 - A+1)

at @ = 0 but {[\](3)} is not.

iv) Suppose P has a holomorphic parameter ¢ € B1(0) (cf. 7)) and P has
regular singularity at @ = c¢. Suppose the set of the corresponding characteristic
exponents is {[A1(£)] () - - - » [Ag()](my) } for t € B1(0)\{0} with A, (t) € O(B1(0)).
Then this is also valid in the case ¢t = 0, which clearly follows from the definition.
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When

we put

Here A\, € C, qp # 0 and ord P = my + - - - +m,. Then the set of the characteristic
exponents of P; is {[\ (¢ Nima)s o gl )] )} with Aj(t) = \j + jt. Since \i(t) —
Aj(t) ¢ Z for 0 < |t| < 1, we can reduce certain claims to the case when the
values of characteristic exponents are generic. Note that we can construct local
independent solutions which holomorphically depend on ¢ (cf. [O4]).

Lemma 6.5. i) Let A be a complex number and let p(t) be a polynomial such that
p(A) # 0. Then for non-negative integers k and m we have the exact sequence

k
0— QoM k—1) — Og(A\m+k —1) P20V o nm— 1) — 0

under the notation ([B.0).
i) Let mq,...,my be non-negative integers. Let P be a differential operator of
order n whose coefficients are in Oy such that

(6.10) p=>"ar]] I @-#k
£=0

v=1 0<k<m,—{

with polynomials T¢. Put Myee = max{ma,...,mq} and suppose ro(v) # 0 for
v=0,...,Mmaez — 1.

Let m" = (mY,...,my, ) bethe dual partition of m := (my, ..., mg), namely,
(6.11) mY = #{j: m; > v},
Then fori=0,...,Mmae —1 and j =0,...,my | — 1 we have the functions

) Mmaz—1 J
(6.12) (@) =a'log’e+ Ny D i atlog
p=i+1 v=0

such that ¢} € C and Pu; j € Oo(Mmaz,J)-

iii) Let ml, ...,m!, be non-negative integers and let P’ be a differential operator

of order n' whose coeﬁcients are in Oy such that

(6.13) P = Z z'r)(9) H H (0 —m, — k)
=0

v=1 0<k<m! —{

with polynomials qy. Then for a differential operator P of the form (GI0) we have

(6.14) P’P:i (Zwyﬁ—kum )H 11 (9 — k).

v=1 0<k<m,+m! —4

Proof. 1) The claim is easy if (p,k) = (1,1) or (¢ — p,0) with g # A. Then the
general case follows from induction on degp(t) + k.

i) Put P =3 ,o,2'pe(¥) and m = 0 if v > Mynes. Then for a non-negative
integer 1/ the multiplicity of the root v of the equation pe(t) = 0 is equal or larger
than m/ pioqr for £=1,2,.... If 0 < v < Mypae — 1, the multiplicity of the root v
of the equation py(t) = 0 equals m,_ ;.
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For non-negative integers i and j, we have

e'pe()atlogl z =2t Y e log” e

o<v<j— 'rnlJrz+1

with suitable ¢; j ¢, € C. In particular, po(d9)z’log?’ x = 0 if j < mY. If £ > 0 and
1+ £ < Mmpax, there exist functions
4 J
vige =Y aijenlog”x
v=0

with suitable a; j ¢, € C such that po(9)v;;, = xpg(9)2’ log’ 2 and we define a
C-linear map @ by

Momaz—1—1 Mmaz—1i—1 J
Qu'logle=— Y wige=— Y Y aijeatlog
=1 =1  v=0
which implies po(9)Qz* logjac = me” ot xépé(ﬁ)xi logj and QMmes = 0.

Putting Tu := 37"~ QVu for u € Y 7mer ™ Z‘;—;é Cx'log’ x, we have

Mmaxz —

PTu = pO TU + Z x pz mod Oo(mmaxaj)
= Do (19)( Q) mod OO (mmazaj)
= Do (19)( Q ( +Q+- Qmm”_l)u mod Oy (mmawaj)

= po(V)u

Hence if j < mY, PTx" log # =0 mod Oo(Mumaz,j) and u; j(z) := Tx’ log’ & are
required functions.
iii) Since

«“ry, () [ (0 —my, — ) - a're) [[ (9 — k)

v=1 0<k’<m/ —¢' v=1 0<k<m,—¢
q
=2 0+ Or() [ ] @—m, -k +0) J[ @-k
v=10<k'<m/, —¢' 0<k<m, —¢

T (0 + Oro(9) ﬁ II (0 — k),

v=10<k<m,+m, —£—L'

we have the claim. O

Definition 6.6 (generalized Riemann scheme). Let P € Wz]. Then we call P
is Fuchsian in this paper when P has at most regular singularities in C U {oo}.

Suppose P is Fuchsian with regular singularities at * = ¢9 = o0, c1,..., ¢, and

the functions Z:((a;)) are holomorphic on C\ {¢y,...,¢p} for j =0,...,n. Moreover

suppose P has the set of characteristic exponents {[Xj1](m; 1)s- - -5 [Njn;l(m,...)} at
jonj

2 = ¢j. Then we define the Riemann scheme of P or the equation Pu = 0 by
T =cCcy= 0 C1 cee Cp

(6.15) [)\071].(7”0,1) [Al,l]'(le) ’ [)\p’l].(mp)l)

[)‘O,no](mo,no) P‘Lnl}(ml‘nl) T P\Pa"p](mp,np)
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Remark 6.7. The Riemann scheme (G.I0]) always satisfies the Fuchs relation (cf. 21])):

nGg Mg v—

(6:16) S Y (et = B

j=0v=1 i=0
Definition 6.8 (spectral type). In Definition [6.8 we put

m = (mo,h <oy MOngs M1, -5Mp 1, .- amp,np)a
which will be also written as mg 1m0,2 * = Mo ng,M1,1+* ,Mp 1+ =My p, for simplic-
ity. Then m is a (p+ 1)-tuple of partitions of n and we define that m is the spectral
type of P.
If the set of (usual) characteristic exponents

(6.17) Aj={N,+i;0<i<m;, —landv=1,...,n,}

of the Fuchsian differential operator P at every regular singular point x = c; are n
different complex numbers, P is said to have distinct exponents.

Remark 6.9. We remark that the Fuchsian differential equation M : Pu = 0 is
irreducible (cf. Definition 2ZI0) if and only if the monodromy of the equation is
irreducible.

If P=QR with @ and R € W(z;€), the solution space of the equation Qv = 0
is a subspace of that of M and closed under the monodromy and therefore the
monodromy is reducible. Suppose the space spanned by certain linearly indepen-
dent solutions uq, ..., Uy, is invariant under the monodromy. We have a non-trivial
™) + -+ blug-l) + bou; = 0 for
j=1,...,m. Then ;—; are single-valued holomorphic functions on CU{oo} exclud-
ing finite number of singular points. In view of the local behavior of solutions, the
singularities of 1% are at most poles and hence they are rational functions. Then
we may assume R = b,,0™ + --- + by € W(x;§) and P € W(z;§)R.

Here we note that R is Fuchsian but R may have a singularity which is not a
singularity of P and is an apparent singularity. For example, we have

(6.18) 2(1-2)8%+(y—az)d+a = (gfx)_l (x(l—x)aJr(’yfax)) ((Zx)a+1).

We also note that the equation 0?u = zu is irreducible and the monodromy of its
solutions is reducible.

simultaneous solution of the linear relations bmuj

6.2. Tuples of partitions. For our purpose it will be better to allow some m;
equal 0 and we generalize the notation of tuples of partitions as in [Of].

Definition 6.10. Let m = (m;, ) =o,1,... be an ordered set of infinite number of
v=1,2,...

non-negative integers indexed by non-negative integers j and positive integers v.
Then m is called a (p + 1)-tuple of partitions of n if the following two conditions
are satisfied.

(6.19) > mjp=n  (j=0,1,...),
v=1
(6.20) mji1=mn (Vj > p).
A (p+ 1)-tuple of partition m is called monotone if
(6.21) mj, >mj,41 (j=0,1,..., v=12,...)
and called trivial if m;, = 0 for j = 0,1,... and v = 2,3,.... Moreover m is
called standard if m is monotone and mjo > 0 for j = 0,...,p. The greatest

common divisor of {m;,;j=0,1,..., v =1,2,...} is denoted by gcd m and m is
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called divisible (resp. indivisible) if gcdm > 2 (resp. gcdm = 1). The totality of
(p + 1)-tuples of partitions of n are denoted by 771()2?1 and we put

(622) Pp+1 = U ’P(Z)U P(n U 7)151)1’ P = U Pp+17
n=0 p=0 p=0
. ordm:=n if me ,
6.23 d if P
(6.24) 1:=(1,1,...) = (mju = 6u1)j=01,.. € PL,
v=1,2,.
p oo
(6.25) idx(m, m’) :ZZ mj,mf, —(p—1)ordm-ordm’,
j=0v=1
p oo
6.26 idxm :=idx(m,m) = m? , — (p— 1) ordm?,
2.V
j=0v=1
) idxm
(6.27) Pidxm :=1— 5

Here ord m is called the order of m. For m, m’ € P and a non-negative integer
k, m + km’ € P is naturally defined. Note that

(6.28) idx(m 4+ m’) = idxm + idx m’ + 2 idx(m, m’),
(6.29) Pidx(m + m’) = Pidx m + Pidxm’ — idx(m, m’) — 1.
For m € 7?151)1 we choose integers ng,...,n; so that m;, = 0 for v > n; and
7 =0,...,p and we will sometimes express m as
m = (m07m13"'?mp)
= moyl, . ,mo’no; e ;m;m, - ,mp,np
=Mo,1" " MOng; M1,1" Mgy ME1 " Mpn,
if there is no confusion. Similarly m = (mg 1, ...,Mon,) if m € Py. Here
m; = (mj1,...,Mjn,) and ordm =m;; +---+mj,, (05 <p).

For example m = (m;,) € P§4) with mq 1 = 3 and mg, = mg, = myo = 1 for
v=1,...,4 will be expressed by

m=1,1,1,1;3,1;1,1,1,1 = 1111,31,1111 = 1%, 31, 1%.

Let G4 be the restricted permutation group of the set of indices {0,1,2,3,...} =
Z>(, which is generated by the transpositions (j,j + 1) with j € Z>¢. Put & =
{0 € 6 ; 0(0) = 0}, which is isomorphic to S

Definition 6.11. The transformation groups S, and S/ of P are defined by
Seo:=H xS,

(6.30) Ste :={(00)i=0,1,...; 0s €6, o3 =1 (i>1)}, H~6,
M}y = Mo (5),0;(v) (j=0,1,..., v=1,2,...)

for g = (0,01,...) € Soo, m = (m;,) € P and m’ = gm. A tuple m € P is
isomorphic to a tuple m’ € P if there exists g € S, such that m’ = gm. We
denote by sm the unique monotone element in S’ _m
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Definition 6.12. For a tuple of partitions m = (mj,,,)1<u<nj € Ppy1 and A =
0<j<p

(Mo )1<vgn, With Az, € C, we define

0<j<p
P& idxm
(6.31) [{Am}] == szﬂ')”)‘j’” —ordm + 5
j=0v=1

We note that the Fuchs relation (GI6]) is equivalent to
(6.32) {Am} =0
p n; mj,—1 n;

P P
i= %Zij,y(mjyy —-1)= %ZZm?V - %(p+ 1)n
=0
+1
)

j=0v=1 =0 j=0v=1

(idxm +(p- l)nz) —

(p—Dn(n-1
S

idxm —n +

N~ N~

6.3. Conjugacy classes of matrices. Now we review on the conjugacy classes of
matrices. For m = (my,...,my) € an) and A = (A1,...,Ay) € CV we define a
matrix L(m;\) € M(n,C) as follows, which is introduced and effectively used by

[O2] and [OF]:

If m is monotone, then

L(m; )\) = (Aij)1<i§N’ Ai,j S M(mi,mj,(C),
N

1<5<
)\lImL 7/: / ’
(6.33) I =
A= Imi,mj = (0, n, — " (i=j—-1)
= om0z = ()
0 (i#74, j—1).

Here I,,, denote the identity matrix of size m; and M (m;, m;,C) means the set of
matrices of size m; x m; with components in C and M (m,C) := M (m,m,C).
For example

A 01
0 » O
L(2, 1,100, h, A) = BV
A3
If m is not monotone, we fix a permutation o of {1,..., N} so that (mg(1), ..., Me(n))
is monotone and put L(m;\) = L(mMy(1), - -, Ma(N); Aa(1)s - - > Aa(N))-
When A; = -+ = Ay = g, L(mm; A\) may be simply denoted by L(m, x).

We denote A ~ B for A, B € M(n,C) if and only if there exists g € GL(n,C)
with B = gAg~1!.

When A ~ L(m;)\), m is called the spectral type of A and denoted by spc A
with a monotone m.

Remark 6.13. 1) f m = (mq,...,mg) € Pl(n) is monotone, we have

j
A~Lm;)\) & rankH(A—)\,,):n—(m1+~-~—|—mj) (j=0,1,...,K).

v=1
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ii) For u € C, put
Then we have
(6.35) Lm; \) ~ P L((m; \),,).
pneC
iii) Suppose m is monotone. Then for y € C
mi
L(m, p) ~ @ J (max{v; m, > j}, p),
(6.36) j=1
J(k,p) 1= L(1", p) € M(k,C).
iv) For A € M(n,C), we put Z(A) = Zyn,c)(4) = {X € M(n,C); AX =
XA}, Then
dim Zys(,c) (L(m, X)) = m} +m3 + - --

v) (cf. [O8 Lemma 3.1]). Let A(¢) : [0,1) — M (n,C) be a continuous function.
Suppose there exist a continuous function A = (A1, ..., Ax) : [0,1) = C¥ such that
A(t) ~ L(m; A(t)) for t € (0,1). Then

(6.37)  A(0) ~ L(m;A(0)) if and only if dim Z(A(0)) =m] + -+ mk.

Note that the Jordan canonical form of L(m; \) is easily obtained by (€33]) and
©34)). For example, L(2,1,1;p) ~ J(3, 1) ® J(1, ).

6.4. Realizable tuples of partitions.

Proposition 6.14. Let Pu = 0 be a differential equation of order n which has a

regular singularity at 0. Let {[A\i](m,)s - - -5 [Agl(m,)} e the corresponding set of the
characteristic exponents. Here m = (mq,...,my) a partition of n.
i) Suppose there exists k such that
AL =A== A,

myp 2> mg 2> > my,
)\j—)\1¢Z (]:k+1,,q)

Let mY = (mY,...,mY) be the dual partition of (m1,...,my) (cf. @II)). Then
fori=0,....m;—1andj=0,... 7miv_H — 1 the equation has the solutions
j .
(6.38) uig(x) =) aM*log” @ - i ().
v=0
Here ¢; ;,(x) € O and ¢;,;(0) =9, forv=0,...,j—1.
ii) Suppose
(6.39) N-NAZV0) (0<i<j<o).

In this case we say that the set of characteristic exponents {[A1]m,),- - -, [Agl(my)}
is distinguished. Then the monodromy generator of the solutions of the equation at
0 is conjugate to

L(m; (62”\/_71’\1 - ,627“/?1/\’1)).

Proof. Lemma [65]ii) shows that there exist u; ;(z) of the form stated in i) which
satisfy Pu; ;(x) € Og(A + mq,j) and then we have v; ;(x) € Op(A1 + mq,j) such
that Pu; j(z) = Pv; j(x) because of (6]). Thus we have only to replace u; j(z) by
wi j(x) — v;, () to get the claim in i). The claim in ii) follows from that of i). O



44 TOSHIO OSHIMA

Remark 6.15. i) Suppose P is a Fuchsian differential operator with regular singu-
larities at = ¢p = 00, ¢1,...,c, and moreover suppose P has distinct exponents.
Then the Riemann scheme of P is (6I5) if and only if Pu = 0 has local solutions
ujv,i(z) of the form

(37 - Cj>>\j,u+i(1 + 0(|$ — Cj|mJ'7V—i—1))
($—>Cj7 z‘:O,...,mj,u—l, j= 1,“_’p)7
I*Ao,p*i(l —|—O(:C7m071’+i+1))

(x — 00, 1=0,...,mp,).

(640) u]‘,l,,i(l') =

Moreover suppose \j, — Aj,» ¢ Z for 1 <v <v' <nj and j =0,...,p. Then

@)ty La(x) (1< <p)
ULU,?,(J;) - {x)\o"’i(ﬁo,y,i(.f) (] _ 0)

with ¢;,.i(z) € O, satisfying ¢;,i(c;) = 1. In this case P has the Riemann
scheme (G15) if and only if at the each singular point x = ¢;, the set of characteristic
exponents of the equation Pu = 0 equals A; in (6I7) and the monodromy generator
of its solutions is semisimple.

ii) Suppose P has the Riemann scheme ([GIH) and A1 = -+ = Ay ,,. Then
the monodromy generator of the solutions of Pu = 0 at © = ¢; has the eigenvalue
2™V =11 with multiplicity n. Moreover the monodromy generator is conjugate to
the matrix L((m1,1,...,m1,n,),e>™V"1A11), which is also conjugate to

(6.41)

J(m}/,l’ e27r\/jlx\1,1) Do J(Tn}/’n/1 , 627”/?1/\1’1).

Here (myq, ... ,miny) is the dual partition of (m11,...,m1,,). A little weaker
condition for A;, assuring the same conclusion is given in Proposition [1.9

Definition 6.16 (realizable spectral type). Let m = (myg,...,m,) be a (p + 1)-
tuple of partitions of a positive integer n. Here m; = (my1,...,m; ;) and n =
myj1+-+mjy, for j =0,...,pand m;, are non-negative numbers. Fix p different
points ¢; (j =1,...,p) in C and put ¢y = oo.

Then m is a realizable spectral type if there exists a Fuchsian operator P with the
Riemann scheme (G.IH) for generic A;, satisfying the Fuchs relation (GI6]). More-
over in this case if there exists such P so that the equation Pu = 0 is irreducible,
which is equivalent to say that the monodromy of the equation is irreducible, then
m is irreducibly realizable.

Remark 6.17. i) In the above definition {)\;,} are generic if, for example, 0 <
mo,1 <ordm and {\;,; (4,v) # (0,1), j=0,...,p, 1 <v <n;}U{1} are linecarly
independent over Q.

ii) It follows from the facts (cf. B22)) in §8I]that if m € P satisfies
6.4 HAm'}| € Z<o ={0,—-1,-2,...} for any m’, m"” € P
(6.42) satisfying m = m’ +m” and 0 < ordm’ < ord m,

the Fuchsian differential equation with the Riemann scheme (GI5)) is irreducible.
Hence if m is indivisible and realizable, m is irreducibly realizable.

Fix distinct p points c1,...,¢, in C and put ¢y = oo. The Fuchsian differential
operator P with regular singularities at * = ¢; for j = 1,...,n has the normal form

(6.43) P = (T](z = )")0" +an1(2)0" " 4+ + a2(2)0 + ao (a),

=1

p
j=
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where a;(z) € C[z] satisfy
(6.44) dega;(z) < (p 1)n
fori=0,...,n—1.
Note that the condition ([G44)) (resp. ([E43) corresponds to the fact that P has
regular singularities at z = ¢; for j =1,...,p (resp. at x = 00).
Since a;(x) = bi(x) [T7_, (z —¢;)? with bi(z) = PV by a7 € Wi satisfy-

ing degb;(z) < (p—1)n+i—pi= (p—1)(n—1i), the operator P has the parameters
{b;,»}. The numbers of the parameters equals

— — 1

Z D(n—i)+1) = (pn+p2n+ )nv

i=0
The condition (z — ¢;)~*P € W{z] implies (9%a;)(c;) = 0 for 0 < ¢ < k — 1 and
0 < 7 < n, which equals (aebi)(cj) =0for0</¢{<k—-—1—dand0<i<k-—1.
Therefore the condition

(6.46) (z —¢;) "™ Ad((z — ¢;) ") P € Wa]

. . . . . =1
gives independent linear equations for {b, ..} since > ;%" (m;,

N (myutl)my,
1) = 5

(myj,v+1)mj,,
2

. If all these equations have a simultaneous solution and they are
independent except for the relation caused by the Fuchs relation, the number of
the parameters of the solution equals

(pn+p n+1 szjymj,y-&- )+

j=0v=1

(6.47) (pnﬂg_nﬂ ZZ o ~ (1S +1

=0v=1

1 p
=3 (p=1n2 =33 m?, +1) = Pidsm.
J=0v

=1

Remark 6.18 (cf. [O6] §5]). Katz [K4 introduced the index of rigidity of an ir-
reducible local system by the number idxm whose spectral type equals m =
(mjy)j=o,..p and provesidxm < 2, if the local system is irreducible.
v=1,...,n

Assume thje local system is irreducible. Then Katz [KZ shows that the local
system is uniquely determined by the local monodromies if and only if idxm = 2
and in this case the local system and the tuple of partition m are called rigid. If
idxm > 2, the corresponding system of differential equations of Schleginger normal
form

p .
(6.48) di‘:z Ay

dz T —aj

J=1
has 2 Pidx m parameters which are independent from the characteristic exponents
and local monodromies. They are called accessory parameters. Here A; are con-
stant square matrices of size n. The number of accessory parameters of the single

Fuchsian differential operator without apparent singularities will be the half of this
number 2 Pidxm (cf. Theorem and [S4).

Lastly in this subsection we calculate the Riemann scheme of the products and
the dual of Fuchsian differential operators.
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Theorem 6.19. Let P be a Fuchsian differential operator with the Riemann scheme

@I8). Suppose P has the normal form (G.43).

i) Let P’ be a Fuchsian differential operator with reqular singularities also at

T =cy=00,C1,...,¢p. Then if P' has the Riemann scheme
T =cyp=0 Cj (]:1,,]))
[/\071 + mo,1 — (p — 1) ord m](m()yl) [/\j,1 + mj71](m/7,71)
(6.49) : : ' ,

Ao +m0.n0 = (p = Vordmfgg oy gy + 15, lems )

the Fuchsian operator P'P has the spectral type m + m’ and the Riemann scheme

r = Cyo = OO c1 ce Cp
P‘O,l](mo,1+m611) [Al,l](m1,1+7n’1‘1) T [)‘pyl](mpJ-i—m;,l)
(6.50) . . .
[)‘O,no}(mo,no +mf 1) [)\17"11](7711‘n1 +my ) T P‘Pa"p](mp,np +M3 )

Suppose the Fuchs relation [032) for @IH). Then the Fuchs relation for [@49) is
valid if and only if so is the Fuchs relation for (G50).
ii) For @ =723 45, qx(2)0F € W (z), we define

(6.51) Q"= (—0)*q(x)

k>0
and the dual operator PV of P by
(6.52) PY = ay(2)(an(z) " P)*
when P =Y, _, ap(z)0". Then the Riemann scheme of PV equals

T =cy=00 ¢ (G=1,...,p)

[2 =71 —mo1— Ao.1)(mo.) [ —mj1 = Ajalm, )
(6.53) :

2 =1 =m0,ng = Aomol(mong) 1= Mim; = Ajnslim, )

Proof. 1) Tt is clear that P’ P is a Fuchsian differential operator of the normal form if

so is P" and Lemmal[G0liii) shows that the characteristic exponents of P'P at = = ¢;

for j = 1,...,p are just as given in the Riemann scheme [E50). Put n = ord m and

n’ = m’. We can also apply LemmaB3liii) to 2~ @Y7 P and z—®=1"" P' under the

coordinate transformation x +— %, we have the set of characteristic exponents as is

given in ([BA0) because =P~ D+0) prp = (Ad(z~P=Dm)g=E=Dn" pr)(g=(F=Dn)p,
The Fuchs relation for ([G.49) equals

j

P . I
Z Zm;7V (AjaV + mj,l/ - 6]70(]7 — 1) Ord m) — Ord m/ _ ldX2m .
j=0v=1
Since
P nj
Z Z m;,(mj,, — 6;0(p — 1) ordm) = idx(m, m’),
j=0v=1

the condition is equivalent to

p Ny .
d
(6.54) SN ml, Ay = ordm’ ’;m ~idx(m, m')
j=0v=1
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and also to

idx(m + m’)

PNy
. v )Aj, = ord " —
(6.55) ZZmJ +mj,)\j,, = ord(m 4+ m’) 5

j=0v=1

under the condition (E32]).
ii) We may suppose ¢; = 0. Then

)P = Zac@_"qg(ﬁ) H (0= A1 — 1),

>0 1<v<n,
0<i<my,, —¢
)TIPY = qe(—0 I v-x.-i-1a’
>0 1<v<n,
0<i<my,,—4£
=> 2"sW) [ W+ u+itl+L-n)
>0 1<v<n,
0<i<my,, —¢
=> 2""sW) [ W+ w—i+mi,—n)
>0 1<v<n,

0<j<mi,,—£
with suitable polynomials ¢, and s, such that ¢g, so € C*. Hence the set of

characteristic exponents of P¥ at ¢y is {[n —my,, — Mol v=1,...,n1}.
At infinity we have

) 'P=Y"aq@) [ 9+ dow + ),

>0 1<v<n,
0<i<mg,, —¢

(an()"'P)* =Y o ""s0) J[ - row—itl—C—n)

>0 1<v<ng
0<i<mg,, —£

=> as(W) [ - Aewti+t2-n—mg,)

>0 1<v<n,
0<j<mo,,—£

with suitable polynomials ¢, and sy with qg, sg € C* and the set of characteristic

exponents of PV at ¢ is {[2 —n —moy — Xowlme,); ¥ =1,...,n0} O

Example 6.20. The Riemann scheme of the dual Py Ap,u OF Jordan-Pochhammer
operator Py,  given in Example ZRliii) is

1 L 0
[1](1)71) [1](1071) [2_2p+ﬂ](p71)
M—p+p—1 - =X—p+p—-—1 M+--+X+p—p+1

7. REDUCTION OF FUCHSIAN DIFFERENTIAL EQUATIONS

Additions and middle convolutions introduced in §2] are transformations within
Fuchsian differential operators and we examine how their Riemann schemes change
under the transformations.

Proposition 7.1. i) Let Pu = 0 be a Fuchsian differential equation. Suppose there
exists ¢ € C such that P € (0 — c)Wlx]. Then ¢=0.
ii) For ¢(z) € C(z), A€ C, p € C and P € Wix], we have

(7.1) P € C[z] RAdei(—¢(x)) o RAdei(¢(z)) P,
(7.2) P € C[OJRAd(0™*) o RAd(9") P,
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In particular, if the equation Pu = 0 is irreducible and ord P > 1, RAd(a_”) o
RAd(0") P = cP with c € C*.
Proof. i) Put P = (0 — ¢)Q. Then there is a function u(z) satisfying Qu(z) = e°*.
Since Pu = 0 has at most a regular singularity at x = oo, there exist C' > 0 and
N > 0 such that |u(z)| < Clz|V for |z| > 1 and 0 < argz < 27, which implies
c=0.
ii) This follows from the fact

Adei(—¢(x)) o Adei(p(x)) = id,

Adei(9(2)) f(@)P = f(x) Adei (9(x)) P (f(x) € Clx)
and the definition of RAdei(¢(z)) and RAd(O"). O

The addition and the middle convolution transform the Riemann scheme of the
Fuchsian differential equation as follows.

Theorem 7.2. Let Pu = 0 be a Fuchsian differential equation with the Riemann
scheme ([@IH)). We assume that P has the normal form ([643).
i) (addition) The operator Ad((x — c;)") P has the Riemann scheme

T = Cop = OO C1 Cj Cp
Mo = Tlmo)  PMtlemay 0 Na+ Tl 0 Pealmen
Moo = Tlmomg)  Pinddimin) 0 Pimy +7lomgy 0 Pomplimpn,)

ii) (middle convolution) Fiz € C. By allowing the condition m; 1 = 0, we may
assume

(7.3) p=Xx,1—1 and N1 =0forj=1,...,p
and #{j; m;1 <n} > 2 and P is of the normal form (©Z3]). Putting

(7.4) d:= ijvl —(p—1)n,
j=0

we suppose
(7.5) mj1>d for j=0,...,p,
(7 6) )\()’l, ¢{0,—1,—2,...,m0’1—mo’,,—d—l—Q}
' if moy,+--+mp1—(p—1)n>2 mq---mp1#0 and v>1,
)\071 + )‘jW ¢ {0, —-1,-2,....m;1 —m;, — d+ 2}
(77) Zf m071 + -+ mj_171 —+ mjﬂj —+ mj+171 —+ 4 mp,l — (p — ].)Tl Z 2,
mij1#0, 1<j<p and v>2.

Then S := 0~1Ad(0~*) [[j-i(x = ¢;)~™3 P € W(x] and the Riemann scheme of
S equals

Tr = Ccy = O C1 cee Cp
[]— - /’L]("mo,l—d) [0](7”1,1—(1) T [O](mp,l_d)
(7.8) Moo =tlmon  Prattdomy - Dozt #lm,.
Moo = Mlmong) A + ) 0 Py + Blmgn,)

More precisely, the condition [[3) and the condition ([L8) for v = 1 assure S €
Wix]. In this case the condition (L8] (resp. (L) for a fixed j) assures that the
sets of characteristic exponents of P at x = oo (resp. ¢;) are equal to the sets given

in [T, respectively.
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Here we have RAA(0*)RP =8, if

(7.9) {)\j,l +mj1 are not characteristic exponents of P

atx =c;j for j =0,...,p, respectively,
and moreover
(7.10) mo1=d or Mg ¢{-d,—d—1,....,1—mg1}.
Using the notation in Definition[Z.3, we have
S =Ad((z — cl))‘o'lﬁ)(m - cl)dT% (—9)~¢ Ad(@f“)T;rcl
(711 : (x—cl)dﬁ(x—cj)_mj~1 Ad((z —c1)1)P
j=1

under the conditions (Al and
(7 12) )\01,/ ¢ {0,71,72,...,m011 7m071,*d+2}
' if moy+--+mp1—pP—-1n>2 m1#0 and v>1.

iii) Suppose ord P > 1 and P is irreducible in ii). Then the conditions (1),
[Ca), ) are valid. The condition [TIQ) is also valid if d > 1.
All these conditions in ii) are valid if #{j ; m;1 < n} > 2 and m is realizable and

moreover \j, are generic under the Fuchs relation with Aj1 =0 for j =1,...,p.
iv) Let m = (m;,,) j=o,..p € 771(71)1. Define d by (L4). Suppose \;,, are complex
v=1,...,n;

numbers satisfying [L3)). Suppose moreover m;1 > d for j = 1,...,p. Defining
m’ € Péi)l and \; , by

(7.13) my, =mj, —0,1d (j=0,...,p, v=1,...,n5),
2— Qo1 (j=0,v=1),
Niw—Ao1+1 (=0, v>1),

(7.14) N =40 8 >0, v= 1;,
ANjv+Xxi—1 (>0, v>1),

we have

(7.15) idsm = idxm’, [{Am}] = { M }H-

Proof. The claim i) is clear from the definition of the Riemann scheme.

ii) Suppose ([H), () and (7). Then
P
(7.16) P = (H(a: — cj)fm-“)P € Wiz].
j=1

Note that R P = P’ under the condition [Z3). Put Q := 8@~ 1"~Xi=1™i1 P/ Here
we note that ([Z3) assures (p — 1)n —3°F_ mjq > 0.

Fix a positive integer j with j < p. For simplicity suppose j = 1 and ¢; = 0.
Since P’ = >_"_a;(2)d’ with dega;(z) < (p—1)n+j —>F_, mj1, we have

N
xmlle’ = Z xNiZTg(ﬂ) H (19 —+ )\O,y —+ Z)
£=0 1<v<ng
0<i<mg,,—¥4
and
P
N = (p — 1)’/1 — ijJ =mg1 +Mmi1 — d
j=2
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with suitable polynomials 7, such that rq € C*. Suppose

(7.17) II @+Xw+i)¢aWa] if N—my1+1<l<N.
1<v<ng
0<i<mo,, —£
Since P’ € Wz], we have
Nl (9) = N gt NI gt Nt Mg () if N —my +1 <0< N

for suitable polynomials s,. Putting s, =7, for 0 < ¢ < N —my ;, we have

N—?’)’L1‘1
Pr= " 2N mats) T 0+ dow +i)
£=0 1<v<ng
0§i<mow,j—€
(7.18) N
+ > g [ 0+ dew +i)
Z:melyl%*l 1<v<ng
0<i<mo,, —£

Note that s9 € C* and the condition (ZI7)) is equivalent to the condition A, +i # 0
for any v and ¢ such that there exists an integer £ with 0 < ¢ < mg, — ¢ —1 and
N —my1+1</¢<N. This condition is valid if (78] is valid, namely, m; 1 = 0 or

)\O,u ¢ {0,—1,...,77’),0,1 — Mo,y — d—|—2}

for v satisfying mg,, > mg1 —d + 2. Under this condition we have

N
Q=Y 09 11 @+i)- [ 0+ row+i),
£=0 1<i<N—my,1—4 1<v<ng
0<i<mg,, —£
N
Ad@MQ=> 0"ssW-p) [ —n+i)
=0 1<i<N—my 1—£
I @+ ] @—p+ren+i)
1<i<mg,1—4 2<v<ng
0S’L‘<m01y—[

since p = Xo,1 — 1. Hence 0701 Ad(0~#)Q equals

177,011—1
> amor sy (9 — p) 11 @—p+i)  J[ @—n+ron+i)
=0 IS’L-SmeLl*Z QSVSRO
0<i<mo,,—¢

N
+ Y o @-p [ @-prd) [ @t i)
f=mg 1<i<N-—mq,1—4 2sv<no
0<i<mg,, —¢

and then the set of characteristic exponents of this operator at oo is

{[]‘ - lu’](moJ—d)? [)\072 - /u’](TYLo,Q)7 M [)\0777«0 - lu](WLo,n,O)}'

Moreover 9~ ™0t =1 Ad(07")Q ¢ W x] if Ao,1 +mo,1 is not a characteristic exponent
of Patooand —Xo1 +1+4+4#mg1+1forl <i< N —my; =mp,1 —d, which

assures %180 [ [ cicnm, (0 =+ 9) [ 2<v<ny (0 —p+ A1y +1i) ¢ OW[z].
== : 0<i<mo,.
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Similarly we have

Pr=>"0om g J[ 00— .-i)
£=0 2<v<ny
0<i<my,,—4
+ Z g [ 9 M —i),
= my, 1+1 2<v<n;
0<i<my,,—4
mi 1
Q=Y ""uw) J] @+ -9
£=0 2<v<n;
0<i<my,, —€
N l—my 1
+ > N I @+ [ @ = —i).
l=my1+1 =1 2<v<ny
0<i<my,, —¢
N
AdO™MQ =) g -p) [ @-p+i)
=0 1<i<l—my
H (ﬁ_M_AI,V_i)
2<v<ng
0<i<my,, —¢€

with go € C*. Then the set of characteristic exponents of 9~™t Ad(p~#*)Q equals

{[O](le—d)v [/\1,2 + H](m1,2)7 ceey P‘l,m + U](’n’u,nl)}
if
H (0= p— A1y — i) & OW|[a]

2<v<n;
0<i<my,, —¢€

for any integers £ satisfying 0 < ¢ < N and N —¢ < myg,;. This condition is satisfied
if (1) is valid, namely, mo 1 = 0 or
)\071 + )\17,, §é {O, —1,... ,M11 — M1,y — d+ 2}
for v > 2 satisfying m;, >m; 1 —d+2
because my, —¢—1<my, +mo1 —N—2=m;, —m;1+d—2 and the condition
VY—pu—A,—i€0W[r] means —1=p+ X\, +i=X1—1+A, +1i.
Now we will prove (ZII). Under the conditions, it follows from (I8 that
P

Pi=am0amN Ad(z01) Hm—c ~miap

— pMmo,itmii— NAd( )\01)P
N

— Zx'rnoJ—@ Ad({lj/\o’l)sé(ﬁ) H (19 — V) H (?9 + )\O,y + Z),

£=0 0<v<{l—N+mq,1 1<v<ng
0<i<mg,, —£

Q:= (-9)N TP

N
N molzxf mo1sé 19_)\0’1) H (—19—)\071—1/)
£=0

0<v<l—N+mq,1

H (=0 + Ao — Aot +14) H (=9 +1)

2SV§TLO Ogigmoyl—z
0<i<mg,, —
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N
Z =9 = Xo,1) H (=9 —1)

=0 1<i<l—mo,1
IIT @=2oa-» JI 04X —2o1+i)
0<v<f—N+mq 1 2<v<ng
0<i<mo,, —£

and therefore

N
Ad(™M)Q = (-0 —0—1)  J[ (=9+Xa1—1-14)
=0 1<i<l—mo,1
I o-1-v) J[ 9+ —1+i).
0<v<f—N+mq 1 2<v<ng

0<i<mo,,—¢
Since

xf—N-‘rml,l
COA I || <—ﬁ—1—u>={ N

N—¢
0<v<l—N+my 3 (=9) e

(
(
x£7N+m171 H (_19_1_1/)7

0<v<N—f—m1 1

N -/ < m171),
N —1¢ > ml,l)v

we have

N
Q = (0™ Ad(O Q=D 2Nt ] (-0 +v)
£=0

0<v<N—f—my 1

so(=9=1)  J] (9+xn-2-v) [] (=0+Xw—1+1)
0<v<f—mg,1 2<v<ng
0<i<mg,, —¢

and

N
gmortmii—N Ad(x)‘ovl_2)TiQ’ = me‘“_e H (9 —v)-se(0—Xo1+1)
Z_

0<v<l—mgo,1

[T @=2a+2+v) J[ O+row—ros+1+9),

0<v<N-—my1—4 2<v<ng
0<i<mg,, —¢

which equals 9701 Ad(07#)Q because [[, (7 —v) = zkoF for k € Zsy.
iv) (Cf. Remark [@4]ii) for another proof.) Since

y4

P
idxm — idxm’ = Zmil —(p—1)n?— Z(mj’l —d)?+(p—1)(n—d)?

=0 =0

p
=2dY mj1— (p+1)d® = 2(p — nd + (p — 1)d°
j=0

- d(2zp:mj,1 —2d—2(p— l)n) =0
7=0

and

P U
E E mjuNju — E:m],y jwv

j=0v=1 j=0v=1
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P

=mo,1(u+1) = (mo1 —d)(1 — p) + p(n —mo1 — Z(” —m;j1))

p
= (Z mj1—d—(p— 1)”)M —mod — (Mo — d) = d,
=0

we have the claim.

The claim iii) follows from the following lemma when P is irreducible.

Suppose A, are generic in the sense of the claim iii). Put m = ged(m)m. Then
an irreducible subspace of the solutions of Pu = 0 has the spectral type ¢m with
1 < ¢ < ged(m) and the same argument as in the proof of the following lemma
shows iii). O

The following lemma is known which follows from Scott’s lemma (cf. §L.19).

Lemma 7.3. Let P be a Fuchsian differential operator with the Riemann scheme
@I3). Suppose P is irreducible. Then

(7.19) idxm < 2.
Fiz = (lo,...,0,) € Z’;Bl and suppose ord P > 1. Then
(7.20)  mo, +mie, +---+mpy, —(p—1)ordm < myy, for k=0,...,p.

Moreover the condition

(7.21) Aoeo + AL o Ape, €Z
implies
(7.22) mo,e, +mae, + - Fmpe, < (p—1)ordm.

Proof. Let M; be the monodromy generators of the solutions of Pu = 0 at c¢;,
respectively. Then dim Z(M;) > Y17, miy and therefore Z?:o codim Z(M;) <
(p+1)n* — (idxm+ (p — 1)n?) = 2n? — idx m. Hence Corollary IT12 (cf. (IT7))
proves

We may assume ¢; = 1 for j = 0,...,p and £ = 0 to prove the lemma. By
the map u(x) — ?:1(3? — ¢;) M 1u(x) we may moreover assume \;j,, = 0 for
j =1,...,p. Suppose A\o1 € Z. We may assume M, --- MMy = I,. Since
dimker M; > m; 1, Scott’s lemma (Lemma [[TTT) assures (T.22)).

The condition (Z20) is reduced to [T22) by putting moe, = 0 and Ao, =
—A1,e, =+ — Apye, because we may assume k = 0 and lo =mng+ 1. O

Remark 7.4. i) Retain the notation in Theorem [[Z2] The operation in Theorem [[2]
i) corresponds to the addition and the operation in Theorem [[2ii) corresponds to
Katz’s middle convolution (cf. [KZ]), which are studied by [DR] for the systems of
Schlesinger canonical form.

The operation ¢(P) := Ad(9~#)dP~1" P is always well-defined for the Fuchsian
differential operator of the normal form which has p + 1 singular points including
oo. This corresponds to the convolution defined by Katz. Note that the equation
Sv =0 is a quotient of the equation ¢(P)u = 0.

ii) Retain the notation in the previous theorem. Suppose the equation Pu = 0
is irreducible and );, are generic complex numbers satisfying the assumption in
Theorem [[2] Let u(z) be a local solution of the equation Pu = 0 corresponding to
the characteristic exponent \; , at £ = ¢;. Assume 0 <¢ <pand 1 < v <n;. Then
the irreducible equations (Ad((z — ¢;)")P)us = 0 and (RAd(0™*) o RP)uy = 0
are characterized by the equations satisfied by u; () = (z — ¢;)"u(x) and us(x) =
I (u(x)), respectively.
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Moreover for any integers kg, k1, . . ., kp the irreducible equation Qus = 0 satisfied
by ug(z) = I (Hf-:l(ac —¢j)¥u(z)) is isomorphic to the equation (RAd(§7*) o
R P)uy = 0 as W (z)-modules (cf. §Z4 and ).

Example 7.5 (exceptional parameters). The Fuchsian differential equation with
the Riemann scheme
T = 00 0 1 c
[5](2) [0](2) [O](2) [0](2)
2—a—-fB—-v—-20 « Ié] vy
is a Jordan-Pochhammer equation (cf. Example 28 ii)) if § # 0, which is proved
by the reduction using the operation RAd(9'~%) R given in Theorem [[2]ii).

The Riemann scheme of the operator

P.=x(x —1)(x —¢)0?
—((a+B+7-6)2*—((a+B—4)c+a+vy—4)z+ (a—2)c)d?
—2(@+B8+7-3)z+(a+B—-2)c+a+y—2+1)d

equals
T =00 0 1 c
[0](2) Ol [0 [l ¢
2—a—-f-v «a B v
which corresponds to a Jordan-Pochhammer operator when » = 0. If the param-
eters are generic, RAd(0)P, is Heun’s operator (8I9) with the Riemann scheme

= 00 0 1 c
2 0 0 0 ,
3—a—-pf—-v a—-1 -1 ~v-1
which contains the accessory parameter r. This transformation doesn’t satisfy ([Z.6))
for v =1.
The operator RAd(9'~*~#~7) P, has the Riemann scheme

T =00 0 1 c
a+B+y-1 0 0 0
a+p+y 1-f—-v 1l—=-y—a 1—a-p

and the monodromy generator at oo is semisimple if and only if » = 0. This
transformation doesn’t satisfy (6] for v = 2.
Definition 7.6. Let

P =ay(z)0" + an—l(x)an_l + -+ aop(w)
be a Fuchsian differential operator with the Riemann scheme (EI0). Here some
m;,, may be 0. Fix £ = ({y,...,£,) € ZV5" with 1 < ¢; < n;. Suppose

T

(7.23) #{jsmje, #nand 0 < j <p} > 2.
Put

(7.24) de(m) :=mge, + -+ mpe, — (p—1)ordm
and

(7.25)

p p
0P = Ad(JJ (& = ¢)9) [ (@ — ¢)™s =™ gmmoto AQ(§'Porto ™" Anin)
j=1 j=1
n p N
QW =m0 () T (@ = )" 0% Ad([ [ (@ = )79 P,

j=1 j=1
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If A;,, are generic under the Fuchs relation or P is irreducible, 9y P is well-defined

as an element of W{z] and

(7.26) J7P = P with P of the form (G.43),

0P eW(x RAd H T —c RAd(E)‘1 Ao, eg = *p,ep)
(7.27) ) =t
. RAd H (x—c¢j it )P

and Oy gives a Correspondence between differential operators of normal form (G43]).
Here the spectral type dym of 9;P is given by

(7.28) Oym :=(mj; ) o<j<p and m)

G =My = 00,0 - de(m)
<v<n;

and the Riemann scheme of 9, P equals

Moy —2ue (j=0, v=14)
. Ao, — Hhe (j:O V7££0)
7.29 O dm ) = (N, th X = ’ ’
( ) é{ m} { m} W1 YRZ )\j’y (1§j§p, 1/25])
Xow+pe (1<j5<p, v#L;)
by putting
p
(730) Mo = Z /\j,gj —1
§=0
It follows from Theorem that the above assumption is satisfied if
(7.31) mje, = de(m)  (j=0,...,p)
and
p
Z 3,5+ —"25)85,k ¢ {Z €Z;(p—1)n— ijlfr(l’*@f)f;j,k +2<i< O}
(7.32) =

for k=0,....,pand v=1,... ny.

Note that Oym € Ppiq is well-defined for a given m € P, if (T3] is valid.
Moreover we define
(7.33) Oom := 0, ym
OmazM 1= 8gma1(m)m with

7.34 .
( ) Uz (m); 1= mln{y; mj, = max{m;1,mjz2,.. }},

(7.35) dmaz(m) := Zp:max{ij, Moy, Mjn, t— (p—1)ordm.

§=0
For a Fuchsian differential operator P with the Riemann scheme (@13 we define
(7.36) OmaxP = 0s,,,.(m)P and Omaz{Am} =00, (m){ m}-
A tuple m € P is called basic if m is indivisible and d;;q,(m) < 0.
Proposition 7.7 (linear fractional transformation). Let ¢ be a linear fractional
transformation of P1(C), namely there exists (3 g) € GL(2,C) such that ¢(z) =

iiig Let P be a Fuchsian differential operator with the Riemann scheme (GIH).

We may assume —% = ¢; with a suitable j by putting cp41 = —%, Apt1,1 = 0 and
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Mpy1,1 = n if necessary. Fix 0 = (by,---{,) € Z’;’Bl. If 31 and (C32) are valid,
we have

0P € W(x) Ad((yx + 6)* )T /TP,

7.37
( ) H:)‘O,Zo+"'+/\p,lp_1~

Proof. The claim is clear if v = 0. Hence we may assume ¢(z) = i and the claim
follows from ([IT]). O

Remark 7.8. 1) Fix A;, € C. If P has the Riemann scheme {A\ym} with dyae(m) =
1, O¢ P is well-defined and 0,4, P has the Riemann scheme Op,q2{Am}. This follows
from the fact that the conditions (X)), (C6) and 7)) are valid when we apply
Theorem [Z.2] to the operation 9,4z : P — OmasP-

ii) We remark that

(7.38) idxm = idx 9pm,
(7.39) ord Opa-m = ord m — dypq. (m).
Moreover if idxm > 0, we have
(7.40) dmaz(m) >0
because of the identity
k PNy
(7.41) (Z mje, — (p—1)ord m) cordm = idxm + Z Z(mﬂj —my,) My
=0 j=0v=1

Ifidxm = 0, then dyq(m) > 0 and the condition dpqq(m) = 0 implies m; , = m;1
forv=2,...,n;and j =0,1,...,p (cf. Corollary B3).

iii) The set of indices £,q,(m) is defined in [C34]) so that it is uniquely deter-
mined. It is sufficient to impose only the condition

(7.42) M 00w (m), = MAX{Mj 1, M2, ..} (j=0,...,p)
on £p,q.(m) for the arguments in this paper.
Thus we have the following result.

Theorem 7.9. A tuple m € P is realizable if and only if sm is trivial (cf. Defini-
tions and GIT) or Opma,m is well-defined and realizable.

Proof. We may assume m € ngi)l is monotone.

Suppose #{j; m;j1 < n} < 2. Then Opq,m is not well-defined. We may assume
p = 0 and the corresponding equation Pu = 0 has no singularities in C by applying
a suitable addition to the equation and then P € W (x)0™. Hence m is realizable
if and only if #{j; m;1 < n} =0, namely, m is trivial.

Suppose #{j; mj1 < n} > 2. Then Theorem assures that 0,,q,,m is realiz-
able if and only if 9,4, m is realizable. O

In the next section we will prove that m is realizable if dyq,(m) < 0. Thus
we will have a criterion whether a given m € P is realizable or not by successive
applications of Jpqz.

Example 7.10. There are examples of successive applications of sod to monotone
elements of P:
411,411,42,33 2872 111, 111,21 *=5 11,11, 11 P25 1, 1,1 (vigid)
211,211, 1111 °=5" 111,111, 111 *°=35° 111,111, 111 (vealizable, not rigid)
211,211,211,31 225" 111,111, 111,21 *°57" (realizable, not rigid)
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22,22, 1111 °=55" 21,21, 111 °=%5? x (not realizablej
The numbers on the above arrows are d(; 1,...)(m). We sometimes delete the trivial
partition as above.

The transformation of the generalized Riemann scheme of the application of
is described in the following definition.

87};:1(11)
Definition 7.11 (Reduction of Riemann schemes). Let m = (mjyl,) j=0,...p €
v=1,...,n;

Pp+1 and A, € Cfor j =0,...,pand v = 1,...,n;. Suppose m is realizable.
Then there exists a positive integer K such that

m> - > ord 9%

max

ordm > ord d,,,4,m > ord 02

max

and s0X, m is trivial or da. (@Igaxm) <0.

(7.43)

Define m(k) € Ppyq, (k) € Z, p(k) € C and A(k);jpec for k=0,..., K by
(7.44) m(0) =m and m(k) =Ope,m(k—1) (k=1,...,K),

(7.45) U(k) = lnae (m(k)) and d(k) = dmas (m(k)),

(7.46) {A(B)anchy} = O A} and (k) = Ak + 1)1 = A(B)1a (v £ €01,

Namely we have

(7.47) XO0)jv=XNo (=0,....p, v=1,...,n;),
(7.48) p(k) = Z)\(k’)j,e(k)j -1,
§=0
)‘(k)o,l’ - 2:“’(k) (J =0, v= g(k)O)a
_ )‘(k)o,l/ - :u(k> (] =0, 1<v<mng v# f(k)o),
(7.49) A@+D”"Awhy (1<j<p, v=ILk)),
AK)jw +u(k)  (1<j<p, 1<v<n; v#Uk);)
/\ k)],u + ( 1)6] 0 uf(k)J),u’(k)a

(7.50) {)\ } l(o) RN {)\ (k) } e(k) {)\ (k+1)m (k+1)} M)

8. DELIGNE-SIMPSON PROBLEM

In this section we give an answer for the existence and the construction of Fuch-
sian differential equations with given Riemann schemes and examine the irreducibil-
ity for generic spectral parameters.

8.1. Fundamental lemmas. First we prepare two lemmas to construct Fuchsian
differential operators with a given spectral type.

Definition 8.1. For m = (m;,);=0.,...p € P +1’ we put
1<v<n;

<v<n;

5.1) N,(m):=(p—1)(r+1)+1
' —#{(j,i) €22 >0, 0<j <p, fing; > n— v},
(8.2) My, 1= Zmax{mj)l, — 3, 0}.
v=1

See the Young diagram in (832]) and its explanation for an interpretation of the
number m; ;.
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Lemma 8.2. We assume that m = (m;,)j=o,...p € P satisfies

1<v<n; P
(8.3) Mj1 > Mjo > > Mjn, >0 and n>mo1 >myg > >my;
and
(8.4) mo1+--+mp1 < (p—1)n.
Then
(8.5) N,(m) >0 (v=2,3,....,.n—1)

if and only if m is not any one of
(k kb ks k ks ko k), (kok ok kK Kk k k),
(8.6) (2K, 2k; k, kK, k; k, k, k, k)
and (3k,3k; 2k, 2k, 2k; k, k, k, k, k, k) with k> 2.
Proof. Put

¢;(t) == ijax{mj’,, —t,0} and ¢;(t) = n(l -

v=1

) for j=0,...,p.
mj,1

Then ¢;(t) and ¢;(t) are strictly decreasing continuous functions of ¢ € [0,m; 1]
and

¢;(0) = ¢;(0) = n,
¢j(mya) = ¢j(mjq) =0,
20,;(8F2) < (1) + ¢;(ta) (0 <t <ty <mya),
¢i(t) = —n; < =B = ¢i(t) 0<t<1).
Hence we have
¢;(t) = ;(t) (0 <t <mjz1, n=mjin;),
0;(t) < ¢;(t) (0<t<m;i, n<m;in;)

and forv=2,...,n—1

Z#{Z S Zzo; (%(Z) Z n—u} = Z[qﬁ;l(n—l/) + 1]

=0 =0
<> (65 (n—v)+1)
=0
< Z(Q;J_I(n —v)+ 1) = Z(V”:Lj,l + 1)

<.
Il
o

§=0
<p-r+@+)=pE-HFr+1)+2.
Here [r] means the largest integer which is not larger than a real number 7.

Suppose there exists v with 2 < v < n — 1 such that [8) doesn’t hold. Then
the equality holds in the above each line, which means

d)‘]_l(n_y)ez (j:O7"'7p)7
(87) n=m;in; (.] :Oy"'vp)7
(p =1 =mo1 + - +mp,.
Note that n = mj;1n; implies m;1 = -+ = My, :%andp—lznio+~-~+,%p <
%. Hencep:3withn0:n1=n2:n3=20TP=2With1:7%0"'”%"‘7712' If
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p =2, {ng,n1,n2} equals {3,3,3} or {2,4,4} or {2,3,6}. Thus we have (B8] with
k=1,2,.... Moreover since
_ — vm; 1 v .
d)jl(n_l/)zgéjl(n_y):ij:iez (J:Oaap)a
n Uz

v is a common multiple of ng,...,n, and thus k& > 2. If v is the least common
multiple of ng,...,n, and k > 2, then (7)) is valid and the equality holds in the
above each line and hence (3 is not valid. O

Corollary 8.3 (Kostov [Ko3]). Let m € P satisfying idxm = 0 and dynqe.(m) < 0.
Then m is isomorphic to one of the tuples in BG) with k =1,2,3,....

Proof. Remark assures that dy,q,(m) = 0 and n = m;n;. Then the proof of

the final part of Lemma B2 shows the corollary. O
Lemma 8.4. Let c,...,c, be p+1 distinct points in CU {oo}. Let ng,n1,...,n,
be non-negative integers and let a;, be complex numbers for 5 =0,...,p and v =
1,...,nj. Putn :=mng+---+ny,. Then there exists a unique polynomial f(x) of

degree n — 1 such that
f@)=aj1+aj2(z—cj))+ 4 ajn(@—c;)" "
(8.8) - to(le =™ (z ¢, ¢ #00),
" f(z) = a1+ aj,zx_l + aj)njajl—"j + o]zt ™)
(x — 00, ¢j = 00).
Moreover the coefficients of f(x) are linear functions of the nu variables a; , .

Proof. We may assume ¢, = oo with allowing n, = 0. Put 2; = no+---+mn;_1 and
no=0. For k=0,...,7 — 1 we define
f (CC) = (37 - Ci)k_ﬁ'i Hi;lo(l' — Cy)n“ (ﬁi <k< ’FLZ’+1, 0<1< p),
T e T ()™ (fip < ks < 7).

Since deg fi(z) = k, the polynomials fo(z), f1(z), ..., fa—1(z) are linearly indepen-
dent over C. Put f(z) = ZZ;S ug fr(x) with ¢, € C and

v = i g—is+1 (T <k <fypq, 0<i<p),
/ Ap, i~k (np <k <n)

by ([BF]). The correspondence which maps the column vectors u := (uy)k=0,...71—1 €
C™ to the column vectors v := (Vk)k=0,... -1 € C™ is given by v = Au with a square
matrix A of size 7. Then A is an upper triangular matrix of size 7 with non-zero
diagonal entries and therefore the lemma is clear. O

8.2. Existence theorem.
Definition 8.5 (Top term). Let
n n—1
P = an(2) iz + an-1(2) fhamr + - + a1 (@) 55 + ao(2)

be a differential operator with polynomial coefficients. Suppose a,, # 0. If a, (x) is
a polynomial of degree k with respect to x, we define Top P := a,, 20" with the
coefficient ay, , of the term z* of a,(z). We put Top P = 0 when P = 0.

Theorem 8.6. Suppose m € ”Plgi)l satisfies (B3). Retain the notation in Defini-
tion [81]
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i) We have Ny(m) =p —2 and
n—1
(8.9) > N,(m) = Pidxm.
v=1

il) Suppose p > 2 and N,(m) >0 forv=2,...,n—1. Put

(8.10) @ = #{i; mo; >n—v, i >0},
(8.11) Im = {(j,v) €7*;¢® <j <+ N,(m) and 1 <v <n—1}

Then there uniquely exists a Fuchsian differential operator P of the normal form
©43)) which has the Riemann scheme [GIH) with co = oo under the Fuchs relation

I8) and satisfies

1 ddegP—j—uaniyi1

612 G g O =% () € fm).

Here (gj,u)(jyy)elm € CPidxm s grbitrarily given. Moreover the coefficients of P

are polynomials of x, \;, and g;, and satisfy

, oP o?P
v I gt — gr
(8.13) ™" Top ( 950 )6 Top P and o7, 0.

Fiz the characteristic exponents \;, € C satisfying the Fuchs relation. Then all
the Fuchsian differential operators of the normal form with the Riemann scheme
@I8) are parametrized by (g;,) € CF'™_ Hence the operators are unique if and
only if Pidxm = 0.

Proof. 1) Since mjy =n—n; <n—2, Ny(m)=2(p—1)+1—(p+1)=p—2and

n—1
STH#{(ji) €7?5i>0,0< 5 <p, Wy >n— v}
v=1
D n—1
:Z< #{iGZZO;TFFLj’i>n—V}—1>
j=0 v=0
P M1 P M1 n;
= Z( mj; — 1) = Z max{m;, —i,0} — 1)
j=0 " i=0 j=0 =0 v=1
) i( n; mj(mj, + 1) 1)
j=0 v=1 2
1 p "y )
=Y ml + D -2).
j=0v=1
= n(n+1 1/ &
> Vot = 0~ (M) ) 1) - (L3 i+ o 10 -2)

I
|
—_
i}
L
3,
+
[N}
|
™
g
3

2,) = Pidxm.
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ii) Put
pn
P= pr"_epf;e(ﬁ)

—Zx—cj ooz —¢)d)  (1<j<n),

hjo(t) 1= Hno Moicmo,—e(t+ 2o +14) (5 =0),
) 14 H0§z<mj,y—e(t — XA —1) (1<j<p),
pLo(t) = qlo(Ohye(t) +150(t)  (degrl,y(t) < deg hye(t)).

Here pfl(t), qu(t)7 rfe(t) and h; ¢(t) are polynomials of ¢ and

(8.14) deghj ¢ = Z max{m;, — ¢,0}.

v=1
The condition that P of the form (643) have the Riemann scheme (GI0) if and
only if ’l"fe = 0 for any j and ¢. Note that a,_(z) € C[x] should satisty

(8.15) degan—_r(r) <pn—k and aEl )k(c]) 0 0<v<n—k-1,1<k<n),
which is equivalent to the condition that P is of the Fuchsian type.

n — n—=k
Put P(k) == ([T7_y (2 — ¢))") fo + ano1(2) o + -+ ani(2) s

Assume that a,—1(2),...,an—k+1(x) have already defined so that deg rp(k D

(k)<n—k.

<

n —k+ 1 and we will define a,_x(z) so that degr;
When k£ =1, we put
P nj mjp—1
Gn-1(x ——an Zx—cj 12 Z ()\j’,,—f—l')
Jj=1 v=1 =0

and then we have deg T PO -1 for j =1,...,p. Moreover we have deg To.0 P

n — 1 because of the Fuchs relation.
Suppose k > 2 and put

() = 4 2oez0 Ok,
n- - _ .
> 050 Gkt (T — )" 6 (j=1,...,p)

with ¢; ;.0 € C. Note that

n—k—l
an—k(x)0" " Zcoul‘(p L (¥ —1)
£>0 =0
n—k—1
ZZCj,k,E(x_Cj)e ((.Z‘—Cj)a—i).
£>0 =0

Then degr; ,5 ) < n—kif and only if deghj, <n —Fk or

1 dr—k P(k—1)
- on =i (et 0)

Namely we impose the condition I6) for all (j, ¢) satisfying

Mo = Zmax{mj,,, —(,0} >n—k.

v=1
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The number of the pairs (7, £) satisfying this condition equals (p—1)k+1—Ny_1(m).
Together with the conditions afll:)k(cj) =0forj=1,...,pandv =0,...,n—k—1,
the total number of conditions imposing to the polynomial a,_x(x) of degree pn—k

equals
pn—k)+(p—1k+1—Ne_1(m)= (pn —k+1) — Ni_1(m).
Hence LemmaB shows that a,,_(z) is uniquely defined by giving cg k¢ arbitrarily

for ¢ | <0< ¢ |+ Ni_1(m) because ¢ | = #{¢ > 0; mge >n — k}. Thus we
have the theorem. O

Remark 8.7. The numbers N, (m) don’t change if we replace a (p + 1)-tuple m of
partitions of n by the (p + 2)-tuple of partitions of n defined by adding a trivial
partition n = n of n to m.

Example 8.8. We will examine the number N, (m) in Theorem In the case
of the Simpson’s list (cf. §I5.2]) we have the following.

(H,: hypergeometric family)
m=n—11,1"1"
m=nn—2n-3,...1;n;n
(EOgy,: even family) m = mm,mm — 11,1*™
m=2m,2m—2,...,2;:2m,2m —3,...,1;2m
(EOgp11: odd family) m = m + 1m, mm1, 12"
m=2m+1,2m—1,...,1:2m+1,2m —2,...,2;2m + 1
m = 42,222, 16
m=6,4,2,1;6,3;6

(Xg: extra case)

In these cases p = 2 and we have N, (m) =0 for v = 1,2,...,n — 1 because
ﬁ’l::{m‘jﬁy; V:07~~~amj,1_1a J:077p}
={n,n,n,n—2n—-3n—4,...,2,1}

See Proposition B.I6lii) for the condition that N,(m) > 0for v =1,...,ordm— 1.
We give other examples:

(8.17)

’ m ‘ PldX‘ IYI ‘ N17N27-~-7Nordm71
221,221,221 0 [52,52,52 0,1,—1,0
21,21, 21,21 (Ps3) 0 |31,31,31,31 1,—1
22,2222 —3 [ 42,4242 0,—2,—1
11,11,11,11 (Dy) 1 [2,2,22 1
111,111,111 (Eg) 1 3,33 0,1
22,1111, 1111 (E7) | 1 |42,4,4 0,0,1
33,222, 111111 (Eg) | 1 | 642,63,6 0,0,0,0,1
21,21,21,111 1 [31,31,31,3 1,0
222,222,222 1 [63,63,63 0,1,-1,0,1
11,11,11,11, 11 2 [2,2,2,2,2 2
55,3331, 22222 2 [10,8,6,4,2:10,6,3;10,5 | 0,0,1,0,0,0,0,0, 1
22,22,22,211 2 [42,42,42,41 1,0,1
22,22,22,22,22 5 | 42,42,42,42, 42 2,0,3
32111, 3221, 2222 8 | 831,841,84 0,1,2,1,1,2,1

Note that if Pidx m = 0, in particular, if m is rigid, then m doesn’t satisfy (&4)).

The tuple 222,222,222 of partitions is the second case in B8] with k& = 2.
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Remark 8.9. Note that [O6 Proposition 8.1] proves that there exit only finite basic
tuples of partitions with a fixed index of rigidity.

Those with index of rigidity 0 are of only 4 types, which are Dy, Fg, Fr and
Es given in the above (cf. Corollary B3, Kostov [Ka3]). Namely those are in the
Soo-orbit of

(8.18) {11,11,11,11 111,111,111 22,1111,1111 33,222,111111}

and the operator P in Theorem with any one of this spectral type has one
accessory parameter in its 0-th order term.

The equation corresponding to 11,11,11,11 is called Heun’s equation (cf. [SW]
[WW]), which is given by the operator

Py gryox=x(z—1)(z— 0)82 + (fy(x —1(z —¢)+ dz(x —¢)
+(a+B+1—y—=08a(x—1))0+afz— N

with the Riemann scheme

(8.19)

z=0 1 c 00
(8.20) 0 0 0 a ;T

11—y 1-6 v+d6—a—-08 B ;A
Here A is an accessory parameter. Our operation cannot decrease the order of
P, 3,5 but gives the following transformation.

Ad(alioé)Pa,ﬁméA = Por gy 80 305

(8.21) o=2—-qa, f=0—-a+1,yY=y—a+1, d=6—a+1,
N=XA+(1-a)(B-6+14(y+—a)).

Proposition 8.10. ([O8 Proposition 8.4]). The basic tuples of partitions with
index of rigidity —2 are in the So-orbit of the set of the 13 tuples

{11,11,11,11,11 21,21,111,111 31,22,22,1111 22,22,22,211
211,1111,1111  221,221,11111 32,11111,11111 222,222, 2211
33,2211, 111111 44,2222,22211 44,332,11111111 55,3331, 22222

66,444, 2222211}

Proof. Here we give the proof in [Of].
Assume that m € Py is basic and monotone and idx m = —2. Note that ([Z41)
shows

p Ny
0= ZDmm —mjy) mj, < —idxm = 2.
Jj=0v=2
Hence ([Z41) implies Z?:o S0 o(mj1 —mj,)m;i, = 0 or 2 and we have only to
examine the following 5 possibilities.

(A) mo1---Mom, =2---211 and mj; = mj,, for 1 <j <p.

(B) mo,1---mon, =3---31 and mj1 =mj,, for 1 <j <p.

(C) mo,1---Mong = 3---32 and mj;i1 = mj,nj for 1 S] S p-

(D) mg1---Myp, =2---21L and my; =mj,, for 0 <i <1< j <p.

(E) mj1 =mj,, for 0 <j <pandordm = 2.

Case (A). If 2---211 is replaced by 2---22, m is transformed into m’ with
idxm’ = 0. If m’ is indivisible, m’ is basic and idxm’ = 0 and therefore m is
211,1%,1% or 33,2211,1°. If m’ is not indivisible, 2m’ is basic and idx m’ = 0
and hence m is one of the tuples in

{211,22,22,22 2211,222,222 22211,2222,44 2222211444, 66}.
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Put m = ng — 1 and examine the identity

p
mj1
Zordjm: p—1+ (ordm)™ (1dxm+ZZmJ1 mjl,mjy>

§=0 =0 v=1

Case (B). Note that ordm = 3m+1 and therefore 5 +1 +L -+ o —1.
Since n; > 2, we have 2p71§ 3m+1 < 1 andp<3

If p=3, we have m = 1, ordm = 4, n—l +ot = %, {n1,n9,n3} = {2,2,4}
and m = 31,22,22,1111.

Assume p = 2. Then = -+ ni =1- 3wf’+1 If min{nl,n2} > 3, n—l + - %
and m < 2 If mln{nl,ng} =2, max{nl,ng} > 3 and 3m+1 > 5 Land m < 5 Note
that E +.-= }2, }g, 170, z and i 7 according to m =5, 4, 3, 2 and 1, respectively.
Hence we have m =3, {nhng} = {2 5} and m = 3331, 55,22222.

Case (C). We have 3m+2—|— L.+l =p—1 Sincen; >2, 1p—1< 3m+2 <1
and p < 3. If p = 3, thenm—l 0rdm—5andn—l+n—2—|—n—13=f, which never
occurs.

Thus we have p = 2, -1 E +Ll=1-3; 3+2 and hence m < 5 as in Case (B). Then
L1 = 1‘71, Ll“ 181, 3 and £ according to m = 5, 4, 3, 2 and 1, respectively.

Hence we have m = 1 and ny = ny = 5 and m = 32,11111,11111 or m = 2 and
ny =2 and ny = 8 and m = 332,44, 11111111.

Case (D). We have 2m+1 + 2m+1 +L4+...+L =p—1. Since n; > 3 for

j22,wehavep—1§g2nf+1:mandm<2 If m =1, then p = 3 and

+ L =2-2 =2 and we have m = 21,21,111,111. If m = 2, then p = 2,

3

=1-% and m = 221,221, 11111.

Case (E). Since m;; = 1 and (ZZI) means —2 = 3°%_;2m;1 — 4(p — 1), we
have p=4 and m = 11,11,11, 11, 11. O

g=3]-

8.3. Divisible spectral types.

Proposition 8.11. Let m be any one of the partition of type Dy, Es, Er or Ey
in Example [8.8 and put n = ordm. Then km is realizable but it isn’t irreducibly
realizable for k = 2,3,.... Moreover we have the operator P of order kordm
satisfying the properties in Theorem 88 ii) for the tuple km.

Proof. Let P(k,c) be the operator of the normal form with the Riemann scheme

T =cy=00 r=c; (j=1,...,p)
[/\071 — k(p — l)ﬂ + kmo,l](mm) [)\j71 + kmj,l](mj,l)

[)‘0,?11 — k(p — l)n + km()’ﬂ(m(),nl) [)‘j,nj + kmj»nj](mj,nj)

of type m. Here m = (mj,,,) j:10 ,,,,, p, n =ordm and c is the accessory parameter
v=1,...,nj

contained in the coefficient of the 0-th order term of P(k,c). Since Pidxm = 0
means

P nj no
Y > mi,=@-n*=3 (p—nmo,,
j=0v=1 v=0

the Fuchs relation (GIG) is valid for any k. Then it follows from Lemma
that the Riemann scheme of the operator Py(ci,...,cx) = P(k — 1,¢)P(k —
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2,¢i—1) -+ P(0,¢c1) equals

r=c=00 x=c¢j(j=1,...,p)
P‘O,l](k’rn ) [)‘j,l](knLn )
(8.22) S S
[)‘07711](1477”0,711) [)\j>nj](kmj,nj)

and it contain an independent accessory parameters in the coefficient of vn-th order

term of Py(cy,...,cx) for v = 0,...,k — 1 because for the proof of this statement
we may assume \;, are generic under the Fuchs relation.
Note that
1 (¥=n-1 modn),
N,(km)=¢ -1 (=0 mod n),

0 (@#0,n—1 modn)

forv=1,...,kn — 1 because

{2i,2i,2i,2i;i=1,2,...,k} if mis of type Dy,
km = < {ni,ni,ni,ni —2,ni —3,...,ni—n+1;i=12...,k}

if m is of type Eg, F7 or Eg

under the notation (82) and (8IT). Then the operator Py(cq,...,cx) shows that
when we inductively determine the coefficients of the operator with the Riemann
scheme ([822) as in the proof of Theorem [B6] we have a new accessory parameter
in the coefficient of the ((k — j)n)-th order term and then the conditions for the
coefficients of the ((k —J)n - 1)—th order term are overdetermined but they are
automatically compatible for j =1,...,k — 1.

Thus we can conclude that the operators of the normal form with the Riemann
scheme B22) are Py(c1,...,ck), which are always reducible. O

Proposition 8.12. Let k be a positive integer and let m be an indivisible (p 4 1)-
tuple of partitions of n. Suppose km is realizable and idxm < 0. Then any
Fuchsian differential equation with the Riemann scheme 822 is always irreducible
if \j., is generic under the Fuchs relation

P TL]' .
d
(8.23) Z Z mj,Aj, =ordm — k- >;m.
j=0v=1

Proof. The above Fuchs relation follows from (G32) with the identities ord km =
kordm and idx km = k? idx m.

Suppose Pu = 0 is reducible. Then Remark ii) says that there exist m’,
m” € P such that km = m’ + m” and 0 < ordm’ < kordm and [{Am}| €
{0,—-1,—-2,...}. Suppose )\, , are generic under [823)). Then the condition [{Am}| €
7 implies m’ = /m with a positive integer satisfying ¢ < k and

Py
HAm }| = Z ngj7y>\j,y — ord /m + £?idx m
j=0v=1
- E(ordm . kldxm) — fordm + £%idxm

={({ —k)idxm > 0.

Hence |Am’| > 0. O



66 TOSHIO OSHIMA

8.4. Universal model. Now we have a main result in §§ which assures the exis-
tence of Fuchsian differential operators with given spectral types.

Theorem 8.13. Fiz a tuple m = (mjvl,) 0<j<p € 77;1)1.
Zns

SVSng
i) Under the notation in Definitions[6.10, [6.10 and[7.6, the tuple m is realizable
if and only if there exists a non-negative integer K such that 9!, ,.m are well-defined

max
fori=1,....K and
ordm > ord dy,q,m > ord 92,,,m > --- > ord ok m

dmaz (0 ., m) = 2ord 0K,

8.24
( ) max m) S 0'

K
m or dpmaz (O e

ii) Fiz complex numbers ;. If there exists an irreducible Fuchsian operator
with the Riemann scheme ([GID) such that it is locally non-degenerate (cf. Defini-
tion[I18), then m is irreducibly realizable.

Here we note that if P is irreducible and m is rigid, P is locally non-degenerate
(cf. Definition [I1.8).

Hereafter in this theorem we assume m is realizable.

iii) m is irreducibly realizable if and only if m is indivisible or idx m < 0.

iv) There exists a universal model Pymu = 0 associated with m which has the
following property.

Namely, Py, is the Fuchsian differential operator of the form

P d” a1 d
Pm = ( — Cj n> —_— n— [ ce I ,
(8.25) jl;[l(x ¢)" ) oo Fan—1(@) g + - (@) -+ ao(2)
aj(x) € C[Aj,l/mgl’ e agN]
such that Pm has regular singularities at p + 1 fizved points x = cp = 00, ¢1,...,¢p

and the Riemann scheme of Py equals @ID) for any g; € C and \;, € C under

the Fuchs relation [GI08). Moreover the coefficients a;(x) are polynomials of x, Aj

and g; with the degree at most (p — L)n+ j for j = 0,...,n, respectively. Here g;

are called accessory parameters and we call Py, the universal operator of type m.
The non-negative integer N will be denoted by Ridxm and given by

0 (idx m > 0),
(8.26) N =Ridxm :={gedm (idxm = 0),
Pidxm (idxm < 0).

Put m = (M) 0<j<p = O ,,m with the non-negative integer K given in i).

max
1<v<n;

When idxm < 0, we define

no
q) = #{i; Zmax{mo’y — 4,0} > ordm — ¢, i > 0},

v=1
Im ={(,v) €2 q)<j<qy+N,—1, 1<v<ordm—1}.
When idxm > 0, we put I, = ().
Then #Iy, = Ridxm and we can define I; such that I, = {I;;i=1,...,N}

and g; satisfy ®I3) by putting g5, = ¢; fori=1,...,N.
v) Retain the notation in Definition[7.11} If A;, € C satisfy

50 M) k) 465 50 (va—t(k) )
¢ {O7 —-1,-2,-3,... ’m(k)jo,f(k)jo — m(k)jm,jo — d(k) + 2}
forany k=0,..., K —1 and (jo,v,) satisfying
(k) o, = MUK)j, 0k);, — d(k) + 2,

(8.27)
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any Fuchsian differential operator P of the normal form which has the Riemann
scheme ([GI5) belongs to Py with a suitable (gq,...,gn) € CN.

(8.28) If m is a scalar multiple of a fundamental tuple or simply reducible,
) B2D) is always valid for any X;,,.
Fiz X, € C. Suppose there is an irreducible Fuchsian differential

(8.29) < operator with the Riemann scheme ([GIH) such that the operator is
locally non-degenerate or K < 1, then B21) is valid.

Suppose m is monotone. Under the notation in 0.1} the condition [B2T) is
equivalent to

(AN)|a) +1 ¢ {0,-1,...,2 — (a]am)}

8.30
(8.30) for any o € A(m) satisfying (a|am) > 1.

Example gives a Fuchsian differential operator with the rigid spectral type
21,21, 21,21 which doesn’t belong to the corresponding universal operator.
The fundamental tuple and the simply reducible tuple are defined as follows.

Definition 8.14. i) (fundamental tuple) An irreducibly realizable tuple m € P is
called fundamental if ordm = 1 or dyax(m) < 0.

For an irreducibly realizable tuple m € P, there exists a non-negative integer
K such that 9% m is fundamental and satisfies (824). Then we call 09X, m is a
fundamental tuple corresponding to m and define fm := 9% m

max °

ii) (simply reducible tuple) A tuple m is simply reducible if there exists a positive
integer K satisfying (824) and ord 9%, m = ordm — K.

Proof of Theorem[813 1) We have proved that m is realizable if d,q,(m) < 0.
Note that the condition d,q,(m) = 2ordm is equivalent to the fact that sm is
trivial. Hence Theorem proves the claim.

iv) Now we use the notation in Definition [[.TTl The existence of the universal
operator is clear if sm is trivial. If d,,4.(m) < 0, Theorem B and Proposition 1T
with Corollary B3] assure the existence of the universal operator Py, claimed in iii).
Hence iii) is valid for the tuple m(K) and we have a universal operator Pk with
the Riemann scheme {A(K)m(x)}-

The universal operator Py, with the Riemann scheme {A(k)mx)} are inductively
obtained by applying dyx) to the universal operator Py with the Riemann scheme
{AMEk+1)m@s1)} for k=K —1, K —2,...,0. Since the claims in iii) such as [8I3)
are kept by the operation gy, we have iv).

iii) Note that m is irreducibly realizable if m is indivisible (cf. Remark
ii)). Hence suppose m is not indivisible. Put k = gedm and m = km’. Then
idxm = k%idxm’.

If idkm > 0, then idxm > 2 and the inequality ([CI9) in Lemma implies
that m is not irreducibly realizable. If idx m < 0, Proposition BI2] assures that m
is irreducibly realizable.

Suppose idx m = 0. Then the universal operator Py, has k accessory parameters.
Using the argument in the first part of the proof of Proposition BII] we can con-
struct a Fuchsian differential operator ]5m with the Riemann scheme {)\m}. Since

Py, is a product of k copies of the universal operator Py and it has k accessory
parameters, the operator P, coincides with the reducible operator Py, and hence
m is not irreducibly realizable.

v) Fix A;, € C. Let P be a Fuchsian differential operator with the Riemann
scheme {\y,}. Suppose P is of the normal form.

Theorem and Proposition assure that P belongs to Py, if K = 0.
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Theorem proves that if 9%, P has the Riemann scheme {A(k)m(y)} and
BZD) is valid, then 05FLP = 9,0k, ., P is well-defined and has the Riemann
scheme {A(k+1)mk41)} for £ =0,..., K —1 and hence it follows from ([Z28]) that
P belongs to the universal operator Py, because X P belongs to the universal
operator P (k-

If m is simply reducible, d(k) = 1 and therefore (827 is valid because m(k);, <
m(k)j ek, < m(k)jew), —d(k)+2for j =0,...,pand v = 1,...,n; and k =
0,.... K —1.

The equivalence of the conditions ([827) and (B30) follows from the argument
in §9.01 Proposition and Theorem [[2.T3]

ii) Suppose there exists an irreducible operator P with the Riemann scheme
©T15). Let M = (Mo, ..., M,) be the tuple of monodromy generators of the equa-
tion Pu = 0 and put M(0) = M. Let M(k+1) be the tuple of matrices applying the
operations in fIT.TIto M(k) corresponding to the operations dy(y) for £ = 0,1,2,.. ..

Comparing the operations on M(k) and 9 ), we can conclude that there exists
a non-negative integer K satisfying the claim in i). In fact Theorem proves
that M(k) are irreducible, which assures that the conditions () and () corre-
sponding to the operations Jyy) are always valid (cf. Corollary I2.T2]). Therefore
m is realizable and moreover we can conclude that 823)) implies (B27). If idx m
is divisible and idxm = 0, then P, is reducible for any fixed parameters A;, and
gi;- Hence m is irreducibly realizable. t

Remark 8.15. 1) The uniqueness of the universal operator in Theorem B3 is
obvious. But it is not valid in the case of systems of Schlesinger canonical form
(cf. Example [T2]).

ii) The assumption that Pu = 0 is locally non-degenerate seems to be not nec-
essary in Theorem BI3ii) and (B29). When K = 1, this is clear from the proof
of the theorem. For example, the rigid irreducible operator with the spectral type
31, 31,31, 31, 31 belongs to the universal operator of type 211, 31, 31, 31, 31.

8.5. Simply reducible spectral type. In this subsection we characterize the
tuples of the simply reducible spectral type.

Proposition 8.16. i) A realizable tuple m € P™) satisfying mo, = 1 forv =
1,...,n is simply reducible if m is not fundamental.

il) The simply reducible rigid tuple corresponds to the tuple in Simpson’s list
(cf. 1D or it is isomorphic to 21111,222,33.

iii) Suppose m € Ppyq is not fundamental. Then m satisfies the condition
N,(m) >0 forv=2,...,ordm — 1 in Definition[81 if and only if m is realizable
and simply reducible.

iv) Let m € Ppyq be a realizable monotone tuple. Suppose m is indivisible and
not fundamental. Then under the notation in 0.1, m is simply reducible if and
only if
(8.31) (a)am) =1 (Va € A(m)),
namely [A(m)] = 1#20) (cf. Remark @I ii)).

Proof. 1) The claim is obvious from the definition.

ii) Let m’ be a simply reducible rigid tuple. We have only to prove that m =
Omaem’ is in the Simpson’s list or 21111,222,33 and ordm’ = ordm + 1 and
dmae(m) = 1, then m’ is in Simpson’s list or 21111, 222, 33. The condition ord m’ =
ordm + 1 implies m € P3. We may assume m is monotone and m’ = 9y, ¢, ¢, m.
The condition ord m’ = ordm + 1 also implies

(Mo — moy,) + (M1 —mag,) + (Mma1 —may,) = 2.
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Since Opaem’ = m, we have my o, > mj1 — 1 for j = 0,1,2. Hence there exists an
integer k with 0 < k < 2 such that m;,, =m;1 —1+0; for j =0,1,2. Then the
following claims are easy, which assures the proposition.

If m=11,11,11, m’ is isomorphic to 13, 13,21.

If m = 13,12, 21, m’ is isomorphic to 14,14, 31 or 14,211, 22.

Fm=1"1"%n—11 withn >4, m’' = 1"t 1"+l nl

If m= 12", nn — 11,nn with n > 2, m’ = 12"+ nnl, n+ 1n.

If m = 15,221, 32, then m’ = 16, 33,321 or 1%,222,42 or 21111,222, 33.

If m = 12"*! n+ 1n,nnl with n >3, m’ = 12"*2 n 4+ 1n+ 1,n + 1nl.

If m = 15,222, 42 or m = 21111, 222,33, m’ doesn’t exists.

iii) Note that Theorem assures that the condition N,(m) > 0 for v =
1,...,ordm — 1 implies that m is realizable.

We may assume m € P;i)l is standard. Put d = mg1+---+mp1—(p—1)n >0
and m’ = Opg,m. Then m} , =m;, —d,1d for j =0,...,p and v > 1. Under the
notation in Definition the operation 0,,,, transforms the sets

m; = {ﬁlj7k ;k=0,1,2,... and T?Lj)k > 0}
into
m) = {mj —min{d,m;1 —k}; k=0,...,max{m;1 —d,m;» — 1}},
respectively because m;; = Y, max{m;, —i,0}. Therefore N,(m’) < N,(m) for
v=1,....n—d—1=ordm’ — 1. Here we note that

n—1 n—d—1
Y Ny(m)= Y N,(m’)=Pidxm.
v=1 v=1

Hence N,(m) > 0 for v = 1,...,n — 1 if and only if N,(m’) = N,(m) for v =
1,...,(n—d) —1 and moreover N,(m) =0 for v =n—d,...,n—1. Note that the
condition that N,(m’) = N, (m) for v =1,...,(n —d) — 1 equals

(832) mj717d2mj7271 for ]:0,,p

This is easy to see by using a Young diagram. For example, when {8,6,6,3,1} =
{mo1,mo,2, Mo 3,M0,4,Mo 5} is a partition of n = 24, the corresponding Young
diagram is as above and then mg 2 equals 15, namely, the number of boxes with the
sign 4+ or —. Moreover when d = 3, the boxes with the sign — are deleted by 04z
and the number mg 2 changes into 12. In this case mo = {24,19,15,11,8,5,2,1}
and mj, = {21,16,12,8,5,2}.

If d > 2, then 1 € m; for j =0,...,p and therefore N, _s(m) — N,,_1(m) = 2,
which means N,_1(m) # 0 or N,,_o(m) # 0. When d = 1, we have N,(m) =
N,(m') forv=1,...,n—2 and N,,_1(m) = 0. Thus we have the claim.

iv) The claim follows from Proposition O

Example 8.17. We show the simply reducible tuples with index 0 whose funda-
mental tuple is of type Dy, Eg, Er or Eg (cf. Example BF]).
Dy: 21,21,21,111 22,22,31,211 22,31,31,1111
Eg: 211,211,1111 221,221,2111 221,311, 11111 222,222,3111 222,321, 2211
222,411, 111111 322,331,2221 332,431,2222 333,441, 3222
E7: 11111,2111,32 111111,2211,42 21111,2211,33 111111,3111,33
22111,2221,43 1111111,2221,52 22211,2222,53 11111111,2222,62
32111,2222, 44 22211,3221,53
Es: 1111111,322,43 11111111,332,53 2111111,332,44 11111111,422, 44
2211111,333,54 111111111,333,63 2221111,433,55 2222111,443,65
3222111,444,66 2222211,444,75 2222211,543,66 2222221,553,76
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2222222653, 77
In general we have the following proposition.

Proposition 8.18. There exist only a finite number of standard and simply re-
ducible tuples with any fixed non-positive index of rigidity.

Proof. First note that m € P,iq if dpge(m) = 1 and ordm > 3 and Ope,m €
Pp+1. Since there exist only finite basic tuples with any fixed index of rigidity
(cf. Remark [@.15]), we have only to prove the non-existence of the infinite sequence

m(o) amam m(l) amam ...... amaz m(k) 8’77l(l.’1' (k + 1) maz .
such that dpe,(m(k)) =1 for £ > 1 and idxm(0) < 0.

Put
m(k); = max{m( )it
a(k); = #{v; m(k);, = m(k);},

[ mk) = k), - 1) (k) > 1),
(k) {oo (m(k); = 1).
The assumption dyaz(M(k)) = dpaz(m(k+1)) = 1 implies that there exist indices
0 < jg < jj such that

_ J(a(k); +1,0(k); = 1) (J = Jr or jp),
S8 ) = {(1, alk); 1) (G # o and 1)

and
(8.34) m(k)o + - m(k), = (p—1)ordm(k) + 1 (p>1)

for k=1,2,.... Since a(k: 1); +b(k+1); < a(k); +b(k);, there exists a positive
integer N such that a(k+1); + b(k +1); =a(k); + b(k); for k > N, which means

>0 (j=jkor ji),
(8.35) b(k);q - 4

=0 (j#jx and jp).
Putting (a;,b;) = (a(N);,b(N);), we may assume by > by > by = bz =--- =0 and
as > az > ---. Moreover we may assume j5V+1 < 3, which means a; =1 for j > 4.

Then the relations (833) and B33) for k = N, N + 1, N + 2 and N + 3 prove that
((a0,bo)," - , (a3, b3)) is one of the followings:

(8.36) ((a0,00), (a1,0), (1,0), (1,0)),

(8.37) ((a0,00), (1,1),(2,0), (1,0)),

(8.38) ((2,2),(1,1),(4,0), (1,0)), ((1,3),(3,1),(2,0), (1,0)),
(8.39) ((1,2),(2,1),(3,0), (1,0)),

(8.40) ((1,1),(1,1),(2,0),(2,0)).

In fact if by > 1, ag = a3 = 1 and we have [B30). Thus we may assume by = 1. If
bp = o0, a3 = 1 and we have 83T). If by = by = 1, we have easily ([840). Thus we
may moreover assume by = 1 < bo < oo and ag = 1. In this case the integers j;/
satisfying b(kz) s =0and 0 < j;/ <2for k> N are uniquely determined and we
have easily (IEEI) or [B39).

Put n = ordm(NN). We may suppose m(N) is standard. Let p be an integer
such that m;o < n if and only if j < p. Note that p > 2. Then if m(N) satisfies
B39) (resp. B3T)), 834) implies m(N) = 1™,1",n — 11 (resp. 1™, mm — 11, mm

or 1", m + 1m,mml) and m(N) is rigid.
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Suppose one of [B3F)—([®Z0). Then it is easy to check that m(N) doesn’t satisfy
B34). For example, suppose (B3J). Then 3mgo; —2 < n, 3m;; —1 < n and

3ma,1 < n and we have mg1 + my1 + moy < [%F2] + [ + [2] = n, which
contradicts to (834). The relations [22] + [2] + [2] < n and 2[2H] +2[2] = 2n
assure the same conclusion in the other cases. O

9. A Kac-MoODY ROOT SYSTEM

9.1. Correspondence with a Kac-Moody root system. We review a Kac-
Moody root system to describe the combinatorial structure of middle convolutions
on the spectral types. Its relation to Deligne-Simpson problem is first clarified by

Le
(9.1) I:={0, (j,v);i=0,1,..., v=1,2,...}.

be a set of indices and let h be an infinite dimensional real vector space with the
set of basis II, where

(9.2) D={oj;iel}={a, ;,;7=0,1,2,..., v=1,2,...}.
Put
(9.3) I' =T\ {0}, ' :=1\{ao},
(9.4) Q:=> Za > Qu=Y Ly
aell aell

We define an indefinite symmetric bilinear form on h by

(ala) =2 (o € I0),
(awlajy) = —6u1,

(a‘ |CY‘ )_ 0 (7’7&] or |.U’7V‘>1)7
Gl Q) = C
-1 (i=j and |p—v|=1).

(9.5)

The element of II is called the simple root of a Kac-Moody root system and
the Weyl group W, of this Kac-Moody root system is generated by the simple
reflections s; with ¢ € I. Here the reflection with respect to an element o € §
satisfying (a|a) # 0 is the linear transformation

(9.6) sa:haxex—Zmaeh
(ale)

and

(9.7) S;i = 8o, for i€l

In particular s;(z) = x — (a;|x)ay for i € I and the subgroup of W, generated by
s; for i € T\ {0} is denoted by W_.

The Kac-Moody root system is determined by the set of simple roots II and its
Weyl group W, and it is denoted by (II, W,).

Denoting o(ap) = ap and o(aj,,) = ay(;), for o € G, we put

(9.8) Wae := G oo X W,
which is an automorphism group of the root system.

Remark 9.1 ([Kd). The set A™ of real roots equals the W,.-orbit of II, which also
equals W,,ag. Denoting

(9.9) B :={f € Q4+ ; suppf is connected and (B,a) <0 (Va €1II)},
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the set of positive imaginary roots AT equals W, B. Here

(9.10) suppB:={a€ll;ny, #0} if 8= Z N

acll

The set A of roots equals A U A™ by denoting A'™ = —AT and A'™m =
A UA™, Put Ay = ANQy, AL = —Ay, AT° = AN Q4 and AT = —A’¢.
Then A = AL UA_, A C Ay and A™ = A’ U A™. The root in A is called
positive if and only if « € Q.

A subset L C II is called connected if the decomposition Ly U Ly = L with
Ly # 0 and Ly # 0 always implies the existence of v; € L; satisfying (v1|vs) # 0.
Note that supp a 3 ag for a € A™™,

The subset L is called classical if it corresponds to the classical Dynkin diagram,
which is equivalent to the condition that the group generated by the reflections
with respect to the elements in L is a finite group.

The connected subset L is called affine if it corresponds to affine Dynkin diagram
and in our case it corresponds to D, or Eg or E; or Eg with the following Dynkin
diagram, respectively.

3
2 4 6 5 4 3 2 1
Oo—O0—"O0O0—"O0O—O0O—0—"0O—>0
33,222, 111111
(9.11) 1

11,11,11,11

o/
2,1111,1111 111,111,111

2 2
1 2 3 4 3 2 1 1 2 3 2 1
o—O0—ADA——0——"0——0——0 O0—"0C—"F0b—NC—=0
2
Here the circle correspond to simple roots and the numbers attached to simple roots
are the coefficients n and n;, in the expression (@I0) of a root cv.

For a tuple of partitions m = (m;,) e P we define

Jj20, v21

Ny = M1+ Mjpg2+ 00y
o0 oo
(912) Qm ‘= Nnog + § § USRI, € Q+a
j=0v=1

K(Qm) := m.
As is given in [Of] Proposition 2.22] we have

Proposition 9.2. i) idx(m,m’) = (am|om’)-
il) Given i € I, we have ay = 8;(tm) with

m —= v v+1

(m071 BN L7 W (L 7 VRS N LT RV ) (’L = (], l/))
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Moreover for £ = (Lo, {1, ...) € ZZ, satisfying €, =1 for v >> 1 we have

0 fj*l
(9.13) op =01, =ap + Z Z Qjp = <H Sj0;—1" " Sj’25j71> (Oéo),

=0 v=1 >0
(0tm|ove)
9.14 Ay, (m) = Sa, (¥m) = Om — 2——p = am — (am|ow)ay.
(9.14) . (m) .(am) (anlar) (tmlove)
Note that
o = nag + Z an’,,aj,l, e AT withn >0
(9.15) i>0v>1

:>n2nj’12nj,22--~ (]:0,17)

In fact, for a sufficiently large K € Z~, we have n;, = 0 for > K and
Sajtajpiitota; @ =0+ (Mj 1 —nj, ), a1+ Fajk) € AT
for « € Ay in [@I3), which means n;,_1 > n;, for v > 1. Here we put n;o =n
and ;o = op. Hence for o« € A} with supp a 3 ag, there uniquely exists m € P

satisfying a = auy-

It follows from (@I4) that under the identification P C Q4 with [@IZ), our
operation J; corresponds to the reflection with respect to the root «y. Moreover
the rigid (resp. indivisible realizable) tuple of partitions corresponds to the positive
real root (resp. indivisible positive root) whose support contains «g, which were
first established by [CB] in the case of Fuchsian systems of Schlesinger canonical
form (cf. [O4]).

The corresponding objects with this identification are as follows, which will be
clear in this subsection. Some of them are also explained in [Of].

’ P ‘ Kac-Moody root system ‘
m am (cf. @I2)
m : monotone aeQy: (o)f) <0 (VBell')
m : realizable acAy
m : rigid a € A suppa D ag

m : monotone and fundamental | o € Qi:a=agor (a|f) <0 (V8 e€1l)
a €Ay, suppa > ag
indivisible or (aja) <0

aEQ.: (alf) <0 (YFel)
indivisible

ae AL (alam) =1 (Va € A(m))

ap € A(m), («|8) <0 (VB ell')

m : irreducibly realizable

m : basic and monotone

m : simply reducible and monotone

ordm no @ =mnoeg+ )., , NisQiy
idx(m, m’) (o |0tm)
idxm (tm|om)
de(m) (cf. [Z24)) (arfom) (cf. @I3))
Pidx m + Pidxm’ = Pidx(m 4+ m’) (aml|om ) = —1

(vyv+1)eG; C S (cf. ([630)) s;v € WL (cf. @)
H~ G, (cf. @30) G in @)

o1 50
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o), Sa, (cf. @I3))

(01, Seo) Woo (cf. @)

{Am} (A(A); @m) (cf. @.IF))

{Am | (AA) + 30m|om)

Ad((z —¢;)7) +7A3; (cf @IF)

Here
(9.16) Ay ={ka;a €Ay, k€ Zsg, suppa > ag},
A(m) C A7 is given in [@30) and A()) € b, is defined as follows.
Definition 9.3. Fix a positive integer p which may be oco. Put
(9.17) I,:={0, (4,v);7=0,1,...,p, v=1,2,..} C T

for a positive integer p and I, = I.

Let b, be the R-vector space of finite linear combinations the elements of II, :=
{a;;1 € II,} and let h; be the C-vector space whose elements are linear combi-
nations of infinite or finite elements of II,, which is identified with Il;c;, Ca; and

contains b,

The element A € hl naturally defines a linear form of h, by (A| - ) and the group

W, acts on by. If p = oo, we assume that the element A = &oap + Y- &), € hY
always satisfies ;1 = O for sufficiently large j € Z>¢. Hence we have naturally

b;;/ C h;;/+1 and b, = szo h;/
Define the elements of b,

oo

P
722 1—uaJ,,,

—_

Ay =

[\D\»—l
l\')

o0

A=Y (i-v)aj; (j=0,....,p, v=0,1,2,...)

i=v+1
oo P (oo}
A =247, — 2000 =ap + Z(l +v)ag, + ZZ (1-v)ay,,
(9.18) L =t
AYyi=Ajo—Apo= Z viog, —aj,) (0<j<k<p),
v=1

A(/\) = ,AO — i i(i )\j,i)aj,u

j=0v=1 i=1
p oo
=—Aog+ Z Z Njw(Ajw—1—Aj0).
j=0v=1
Under the above definition we have
(Aola) (AJkla) =0 (Va €11,
W) =050 G i =01, v,/ =1,2,..)
(A0|Oéz) (Ajolas) =di0 (Vi €1Lp),
[{Am}| = (AQN) + Fm|om),

(A
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p
S()(A()\)) = —( E )\j,l — 1)0&0 + A()\)
Jj=0

(9.23) = —MAO - AO - Z(Z()\O’l — (1 + 5@0),&) o,y

v=1 =1
- EPZ i(zo\m +(1- 5i,o)u)>aj,y

with p = Z?:o Aji— L

We identify the elements of I)X if their difference are in CA°, namely, consider
them in Hp = h; JCAP. Then the elements have the unique representatives in b;j
whose coefficients of o equal —%.

Remark 9.4. 1) If p < oo, we have

p
(9.24) {Aeb); (Ala) =0 (Vaell,)} =CA®+> CAj ;.

j=1

ii) The invariance of the bilinear form ( | ) under the Weyl group W, proves
.
iii) The addition given in Theorem [[.2]i) corresponds to the map A(\) — A(X) +
TABJ with 7€ Cand 1 < j <p.

iii) Combining the action of s;, on h;f with that of sg, we have

(9.25)  A(N) = 80,A(\) € CA® and o = Sa,am when {\o} = 9 {\m}
because of ([[29) and (@23).

Thus we have the following theorem.
Theorem 9.5. Under the above notation we have the commutative diagram

{Pm : Fuchsian differential operators with {Am}} — {(A(X),am); am € A4}
J fractional operations O 1 W -action, +TA8J
{Pm : Fuchsian differential operators with {Am}} — {(A(X),om); am € AL}

Here the defining domain of w € Wy, is {a € Ay ; wa € AL},

Proof. Let T; denote the corresponding operation on {(Pm,{Am})} for s; € Wy
with 4 € I. Then Ty corresponds to d; and when ¢ € I’, T; is naturally defined
and it doesn’t change P,,. The fractional transformation of the Fuchsian opera-
tors and their Riemann schemes corresponding to an element w € W, is defined
through the expression of w by the product of simple reflections. It is clear that
the transformation of their Riemann schemes do not depend on the expression.

Let i € I and j € I. We want to prove that (T;1;)F = id if (s;s;)* = id for
a non-negative integer k. Note that T? = id and the addition commutes with
T;. Since T; = id if i € I’, we have only to prove that (T}17p)® = id. Moreover
Proposition [[7] assures that we may assume j = 0.

Let P be a Fuchsian differential operator with the Riemann scheme (G.I5).
Applying suitable additions to P, we may assume \j; = 0 for j > 1 to prove
(To1Tp)?>P = P and then this easily follows from the definition of 9y (cf. (T25))
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and the relation

00 cj (1<j<p)
)\071 m 0 ma
a4y —ordm)
/\O,u](mo,u) )‘J)V (mj,)
00 ¢ (1<j<p)
To.To ) [Mo2 = Ao,1 + Umo) (0] 1 —a)

§l—2o,1 [_>\0,1 + 2](m0,2—d) P‘j’Q + )‘0’1 - 1}(7",7‘,2)

Moy — X0+ U,y N + 201 = Um, )

00 ¢j (1<j<p)
To,1To [—>\0,2 + 2](m0,1—d) (mj,14+mo,1—mo,2—d)

§10,1=20,2 [)\0,1 - )\0,2 + 1](mo,1)

[0]¢

N2+ X02 = Lmy.a)
Mo =202+ Uime,) [N,

)

v+ A2 — ](mj,,,)

00 ;g (1<j<p
To,1To [)‘0 1](7710 1) [O](mj,l)
§ro,2—1 [)‘0 2](mo 2) >‘ij (mj,2)
[Ao 71/](77740 v [/\ij](mj v)
and (T071T0)3P € Clz] Ad(ﬁ)‘0 2= 1) o Ad(@)‘O 2= Ao, 1) o Ad(@lf Ao, 1)RP =C[z]R

D

Definition 9.6. For an element w of the Weyl group W,, we put
(9.26) Aw) = ATF Nw AT

If w=s;8, 5 with i, € I is the minimal expression of w as the products of
simple reflections which means k is minimal by definition, we have

(927) A(w) = {aik78ik (aik—1)7 SikSik_1 (O‘ik72>7 <oy i Tt Sig (ah)}'

The number of the elements of A(w) equals the number of the simple reflections
in the minimal expression of w, which is called the length of w and denoted by
L(w). The equality @27) follows from the following lemma.

Lemma 9.7. Fiz w € Wy and i € I. If a; € A(w), there exists a minimal
expression w = Sy, Sy -+ 8y with sy = s; and L(ws;) = L(w) — 1 and A(ws;) =
si(A(w) \{a;}). If a; ¢ A(w), L(ws;) = L(w) + 1 and A(ws;) = s;A(w) U {a}.
Moreover if v € W, satisfies A(v) = A(w), then v = w.

Proof. The proof is standard as in the case of classical root system, which follows
from the fact that the condition o; = s, - - - s4,,, (v;,) implies
(9.28) Si = Siy, "'Siz+18izsiz+1 c S

and then w = ws;s; = 84, *++ 84,184, "+ * 54, Si- O

Definition 9.8. For a € @, put

(9.29) h(a) :==no + Z Z n;, if a=mneag + Z Z N, € Q.

j>0v>1 j>0v>1

Suppose m € P,4 is irreducibly realizable. Note that sfm is the monotone
fundamental element determined by m, namely, osfm is the unique element of
Wam N (B U {ao}). We inductively define wm € Wi satisfying wmom = aspm-
We may assume wp, has already defined if h(om/) < h(om). If m is not mono-
tone, there exists ¢ € I\ {0} such that (am|e;) > 0 and then wm = wmrs; with
Qm' = S;Qyy. If m is monotone and m # fm, wy, = WymSo-



WEYL ALGEBRA AND FUCHSIAN DIFFERENTIAL EQUATIONS 7

We moreover define
(9.30) A(m) := A(wm)-
Suppose m is monotone, irreducibly realizable and m # sfm. We define wy, so
that there exists K € Z~q and vy, ...,vx € W, satisfying
Wm = VK S0 - - V2500150,
(VkSo - v1Soam|a) <0 (Vo eII\ {0}, k=1,...,K),

which uniquely characterizes wy,. Note that

(9.31)

(9.32) VRS0 V1800m = Q(so)km (K =1,..., K).

The following proposition gives the correspondence between the reduction of
realizable tuples of partitions and the minimal expressions of the elements of the
Weyl group.

Proposition 9.9. Definition [I.8 naturally gives the product expression wy, =
Siy 8y, withi, €I (1<v<k).

i) We have
(9.33) L(wm) = k,
(9.34) (alam) >0 (Vo € A(m)),
(9.35) h(am) = h(ospm) + Y (0fom).
a€A(m)

Moreover ag € supp « for a € A(m) if m is monotone.
ii) Suppose m is monotone and fm # m. Fiz maximal integers v; such that

M1 — dmae(m) < my,, 41 for j=0,1,... Then
A(m) = 50( H Sj1° sj%)A(s@m) @] {Oéo}
(9.36) FE

Ufao+a1+--+aj,;1<v<vjandj=0,1,...},
(9.37) (o + a1+ +ojlam) =dmnee (M) +mj 41 —my1 (v >0).
iii) Suppose m is not rigid. Then A(m) = {a € A ; (a|am) > 0}.
iv) Suppose m is rigid. Let o € AT¢ satisfying (a|am) > 0 and sqo(am) € A,
Then
a € A(m if (alam) > 1,
(0.38) (m) ' (@lam)
#({a, am — a} N A(m)) =1 if (a|lam) =1
Moreover if a root v € A(m) satisfies (y|om) = 1, then am —y € AT and ag €

supp(atm —7)-
V) Wi i the unique element with the minimal length satisfying Wmom = Qs fm-

Proof. Since h(sya) — h(a) = —(ay|a) = (syay|a), we have

I
™~

h(siz sy a) — h(a) (h(Si; cesya) —h(siy ~si/1a)>

14

(culsiy - sipe) = 3 (5,8, @ lsiy -+ 514)
v=1

Il
o

14

[
M~

N
Il
—

for ¢/, 4, € I and o € A.

i) We show by the induction on k. We may assume k > 1. Put w’ = s;, -+ -84, _,
and oy = Sj,m and a(v) = s, --- 8,04, for v = 1,...k — 1. The hy-
pothesis of the induction assures L(w') = k — 1, A(m’) = {a(1),...,a(k — 1)}
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and (a(V)|am:) > 0 for v =1,...,k — 1. If L(wm) # k, there exists £ such that
a;, = o) and wym = S -+ 8i,_,Si,,, * " Si,_, is a minimal expression. Then
h(am) — h(am’) = —(i, |am’) = —(a(f)|am’) < 0, which contradicts to the defi-
nition of wy,. Hence we have i). Note that (@34]) implies supp a 3 «p if @ € A(m)
and m is monotone.

ii) The equality (@34 follows from

A(Om) N Z Za=A{aj1+- -+, ;v=1,...,v5 v;>0and j =0,1,...}
acIl\{0}

because A(m) = soA(Om) U {ag} and (H §>0 Sj.u; ~--sj’1>a,9m = (sHm-
v; >0

The equality (@31) is clear because (a0|a,;) =d1(m) = dpae(m) and (o, |am) =
Mjp+1 = Myjw-

iii) Note that v € A(m) satisfies (y|am) > 0.

Put w, = s;,,, - si,_,5i, for v = 0,...,k. Then wy = wo and A(m) =
{wy, e, ;v =1,...,k}. Moreover w, w, *a;, € A" if and only if 0 < v/ < v.

Suppose m is not rigid. Let o € A’ with (a|am) > 0. Since (wma|om) > 0,
wma € AT Hence there exists v such that w,a € Ay and w,_1a € A_, which
implies w, o = «;, and the claim.

iv) Suppose m is rigid. Let o € A’¢. Put ¢ = (afam). Suppose £ > 0 and
B = Sqam € Ay, Then am = la+ B, ag = lwma + wmf and (Blam) =
(am — lajam) = 2 — £2. Hence if £ > 2, R3N A(m) = () and the same argument as
in the proof of iii) assures & € A(m).

Suppose ¢ = 1. There exists v such that w,« or w, 5 equals o;,. We may assume
w;ta = a;,. Then o € A(m).

Suppose there exists w8 = «; ,. We may assume vV < v. Then wyam =
Wy 10+ wy_1 8 € AT, which contradicts to the definition of w,. Hence w, 8 =
a; , for v/ =1,... k and therefore § ¢ A(m).

Let v = w;ta;, € A(m) and (y|am) = 1. Put 8 = am — @ = sqam. Then
Wy—10m = w,3 € AT¢. Since f ¢ A(m), we have 3 € A”¢.

Replacing m by sm, we may assume m is monotone to prove g € supp . Since
(Blam) = 1 and (o;|am) < 0 for i € I\ {0}, we have ag € supp .

v) The uniqueness of wy, follows from iii) when m is not rigid. It follows from
@34), Theorem [['TT] and Corollary [7.3 when m is rigid. O

Corollary 9.10. Let m, m’, m” € P and k € Z~o such that
9.39 m=km’ + m", idxm = idxm"” and m’ is rigid.
g

Then m is irreducibly realizable if and only if so is m” .
Suppose m is irreducibly realizable. If idxm <0 or k > 1, then m’ € A(m). If
idxm = 2, then {am’, am»} N A(m) = {am'} or {am~}.

Proof. The assumption implies (otm|om) = 2k? + 2k(Qms|mr) + (Cmer | ) and

hence (o |am) = —k and s, 7 = am. Thus we have the first claim (cf. The-
orem [@0)). The remaining claims follow from Proposition d

Remark 9.11. i) In general v € A(m) does not always imply syam € Ay.
Put m = 32,32,32,32, m’ = 10,10,10,10 and m” = 01,01,01,01. Putting

U = 50,151,152,183,1, We have am' = ap, amr = vag, (Qm'|amr) = —2, So0mr =
20im + 0, VSg0um = g+20um and SquSovag = SgUSoQm = 30m/ +20um = Oy -
Then v = spvay = 20m’ + am» € A(m), (y|am) = (Sov0m’|SoVSoVOm’) =

(amr [S0vam’) = (m’|20m’ + m) = 2 and s, (m) = (Bom’ + 20mr) — 2(200m’ +
Qmr) = —0mr € A_.



WEYL ALGEBRA AND FUCHSIAN DIFFERENTIAL EQUATIONS 79

ii) Define
(9.40) [A(m)] := {(a]am); a € A(m)}.
Then [A(m)] gives a partition of the non-negative integer h(cum) — h(sfm), which
we call the type of A(m). It follows from ([@.33]) that
(9.41) £A(m) < hom) — h(s fm)
for a realizable tuple m and the equality holds in the above if m is monotone and
simply reducible. Moreover we have

(9.42)  [A(m)] = [A(sfm)] U {d(m)} U | J{m;, —mj1 —d(m) € Zo; v > 1},
j=0

P
(9.43) #A(m) = #A(s0m) + Z(min{y; mj, >mj1 —d(m)} — 1) +1

§=0
if m € P, is monotone, irreducibly realizable and not fundamental. Here we use
the notation in Definitions [6.1T] and For example,

’ type \ m \ h{om) \ #A(m) ‘
H, 1", 1" n—11 n?+1 n2
EOs, 12™ mm, mm — 11 2m? + 3m + 1 (2;”) +4m
EO2mi1 127+ + 1m, mm1 2m? +5m+3 (27”;'1) +4m+2
X6 111111, 222,42 29 28
21111,222,33 25 24
P, n—1l,n—11,...€ P, on +1 [A(m)] : 1" (n — 1)
Piomi1 | m+1m,m+1m,m+1m,m+ 1m 6m+1 [A(m)] : 14m . 2™

Suppose m € P11 is basic. We may assume ([B3)). Suppose (aum|ag) = 0, which
is equivalent to Z?:o mj1 = (p—1)ordm. Let k; be positive integers such that

(9.44) (amlaj,) =0 for 1<v<k; and (am|ajr,) <0,
which is equivalent to mj1 =mj2 =+ =mjg, > mj,41 for j=0,...,p. Then
P9 LI
9.45 - > Lo —p—1.
( ) Z kj — Z ordm b
j=0 j=0

If the equality holds in the above, we have k; > 2 and mjk,+1 = 0 and therefore
m is of one of the types Dy or Eg or E; or Eg. Hence if idxm < 0, the set
{kj; 0<j<p, kj > 1} equals one of the set 0, {2}, {2,v} with 2 <v <5, {3,v}
with 3 <wv <5, {2,2,v} with 2 <v <5 and {2,3,v} with 3 < v < 5. In this case
the corresponding Dynkin diagram of {ca, ¢, ;1 <v <kj;, j=0,...,p} is one of
the types A, with 1 <v <6, D, with 4 <v <7 and F, with 6 <v <8. Thus we
have the following remark.

Remark 9.12. Suppose a tuple m € P;Si)l is basic and monotone. The subgroup of
W, generated by reflections with respect to ay (cf. [@I3])) which satisfy (am|ar) =0
is infinite if and only if idxm = 0.

For a realizable monotone tuple m € P, we define

{ao}  (di(m) =0),
0 (da(m)#£0).
Note that the condition (am|ay) = 0, which is equivalent to say that ay is a root of

the root space with the fundamental system II(m), means that the corresponding
middle convolution 9, keeps the spectral type invariant.

(9.46) II(m) := {a;, € Supp m; mj, =m; 41} U {
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9.2. Fundamental tuples. We will prove some inequalities [@47) and (@4]) for
fundamental tuples which are announced in [OF].

Proposition 9.13. Let m € Ppy1 \ P, be a fundamental tuple. Then

(9.47) ordm < 3|idxm| + 6,
(9.48) ordm < |idxm|+2 if p>3,
(9.49) p < i|idxm]| + 3.

Example 9.14. For a positive integer m we have special 4 elements
Dflm) :m?,m?, m? m(m — 1)1 Eém) :m3,m3, m*(m — 1)1
ES 2m)2,m* mP(m— 1)1 E{™ : (3m)2, (2m)?,m®(m — 1)1
with orders 2m, 3m, 4m and 6m, respectively, and index of rigidity 2 — 2m.

Note that Eém), Dim) and 11,11,11,--- € Pﬁ’l attain the equalities ([@47),
[@4]) and @9), respectively.

Remark 9.15. Tt follows from the Proposition @13l that there exist only finite basic
tuples m € P with a fixed index of rigidity under the normalization [3). This
result is given in [OG Proposition 8.1].

Hence there exist only finite fundamental universal Fuchsian differential opera-
tors with a fixed number of accessory parameters. Here a fundamental universal
Fuchsian differential operator means a universal operator given in Theorem
whose spectral type is fundamental (cf. Definition BT4]).

(9.50)

Now we prepare a lemma.
Lemma 9.16. Let a > 0, b > 0 and ¢ > 0 be integers such that a+c—b > 0. Then
b+kc—6 |<k+1 (0<k<5),

(a+c—=0b | <7 (0 <k <6).
Proof. Suppose b > c¢. Then
b+kc—6 b+kb—6
< <k+1
atc_bb - b +
Next suppose b < c. Then
(k+1)(a+c—b)b— (b+kec—06)

(k+1)(c—bb—b—ke+6
(k+1)b—b—k(b+1)+6=6— k.

Thus we have the lemma. O

2
2

Proof of Proposition[@13. Since idx km = k?idxm for a basic tuple m and k €
Z~gp, we may assume that m is basic and idxm < —2 to prove the proposition.

Fix a basic monotone tuple m. Put a = ay, under the notation ([@I2)) and
n = ord m. Note that

(9.51) (ala) = n(alag) + Zan,,,(amj,,,), (o) <0, (a]aj) <O0.

j=0v=1
We first assume that ([@47) is not valid, namely,
(9.52) 3|(a])| + 6 < n.

In view of BIF)), we have (a|a) < 0 and the assumption implies |[(a]ag)] = 0
because |(a|a)| > n|(a|ag)|.

Let Iy be the connected component of {a; € II; (a]o;) = 0 and «; € supp a}
containing «ag. Note that supp o generates a root system which is neither classical
nor affine but Il generates a root system of finite type.
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Put J = {j; 3a;,, € supp am such that (a|a;,) < 0} # 0 and for each j € J
define k; with the condition ([@44). Then we note that

0 1<v<ky),
(alags) = L=y <h)
2Nk, — Njky_y — Nk, < —1 (v =Fkj).

Applying the above lemma to m by putting n = b+ kjc and nj, = b+ (k; — v)c
(1 <v < kj) and njg, 41 = a, we have

(9.5 n—6 <k +1 (1<k <5),
’ (nj7kj71 Nk — 2nj7kj)nj,kj <7 (1 < kj < 6).
Here (alajk;) =b—c—a < —1 and we have [(a]a)| > [(a]aj,)] > 1;;7:-61 ifk; <6

and therefore k; > 3.

It follows from the condition k; > 3 that m € P53 because Il is of finite type and
moreover that Il is of exceptional type, namely, of type Eg or E; or Eg because
supp « is not of finite type.

Suppose #J > 2. We may assume {0,1} C J and kg < k;. Since Il is of
exceptional type and suppa is not of finite type, we may assume ky = 3 and

k1 < 5. Owing to [@E]) and ([@53]), we have

[(e]@)| > no,3(no,2 + 10,4 — 210,3) + N1k, (R1,8y -1 + N1k +1 — 2008,

n—=6 n—=6 n—=6
> 3+1 + 5+1 > 3 7

which contradicts to the assumption.

Thus we may assume J = {0}. For j = 1 and 2 let n; be the positive integer
such that a;,, € suppa and o ;11 ¢ supp . We may assume n; > na.

Fist suppose kg = 3. Then (ni,n2) = (2,1), (3,1) or (4,1) and the Dynkin
diagram of supp o with the numbers m; , is one of the diagrams:

3m
3m 4m  bm 6m 4m  2m
O—O0—0O0—0O—0—0 |(ala)| = 3m
O<k<m 2m
k m  2m  3m dm 3m  2m m
O—O——O0—C0—""C0—"0—"—0—=0 [(a]a)| > 2k(m — k)
om
m 4m  Tm 10m 8m 6m 4m 2m )
O—O—"—O—"C0—""0—""0—0C—=0 [(a]a)| > 2m
For example, when (nq,n2) = (3,1), then &k := mg 4 > 1 because (o|cv,3) # 0 and
therefore 0 < k < m and |(a]a)| > k(m—2k)+m(2m+k—2m) = 2k(m—k) > 2m—2

and 3|(ala)| 4+ 6 — 4m > 3(2m — 2) + 6 — 4m > 0. Hence (@52 doesn’t hold.
Other cases don’t happen because of the inequalities 3 - 3m + 6 — 6m > 0 and
3-2m? +6 — 10m > 0.
Lastly suppose ko > 3. Then (kg,n1,n2) = (4,2,1) or (5,2,1).

m <k <2m 3m
k 2m  3m  4m  5m 6m 4m 2m
© © O O—O0—O—C0O——=0 [(a|a)] > 2m
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O<k<m 3m
k m 2m  3m  4m  bm 6m 4m

2m
O—O—O0—C0O0—0O0—0O0—"—C0—"—C0C—0 |(alo)] = 2(m —1)

In the above first case we have (aja)| > 2m, which contradicts to [@52). Note
that (|aja)| > k- (m —2k) +m -k = 2k(m — k) > 2(m — 1) in the above last case,
which also contradicts to [@52]) because 3 -2(m — 1) + 6 = 6m.

Thus we have proved (@47]).

Assume m ¢ Ps to prove a different inequality [@48). In this case, we may
assume (o|ag) =0, |(aer)| > 2 and n > 4. Note that

(9.54) 2n=mnp1+ni1+---+np1 with p>3andn;; >1for j=0,...,p.

If there exists j with 1 <n;; < 5 — 1, (@.48) follows from (@51 and |(afay1)| =
nji(n+nje =2n51) > 2n1(3 —nj1) 2n—2.

Hence we may assume n;; > ”;1 for 7 = 0,...,p. Suppose there exists j with
nj1 = 251, Then n is odd and ([@EJ) means that there also exists j' with j # j/

and nj; = %52, In this case we have (I45) since

[(aloy1)+ [(elag 1) = nja(n+mnj2—2n;1) +nja(n+ng o —2n;,) > 25t + 251

n

Now we may assume n;; > 5 for j = 0,...,p. Then ([L54) implies that p =3
and nj; = 5 for j =0,...,3. Since (a]a) <0, there exists j with n;2 > 1 and

[(alaj )] + [(alay2)| = nji(n+nj2 — 2n51) + nj2(ng1 +nj3 — 2n5,2)

n

J— n
= Fnj2 +n;2(5 +nj3 — 2nj2)

{> n (nj2 > 1),

=n—2 (nj2=1andn;3=0).

Thus we have completed the proof of ([@4F]).

There are 4 basic tuples with the index of the rigidity 0 and 13 basic tuples with
the index of the rigidity —2, which are given in ([BI8) and Proposition BI0l They
satisfy (@49).

Suppose that ([@49]) is not valid. We may assume that p is minimal under this
assumption. Then idxm < —2, p > 5 and n = ordm > 2. We may assume
n>mngg >ny1 > > np1 > 0. Since (afag) < 0, we have

(9.55) no1+ni1+-cFnp1 >2n>ng1+ -+ np_11.
nitact,iing1+---+np_11=>2n e tuple m' = (mg,...,m,_1) 1s also basic an
In fact, if ng, p—1,1 > 2n, the tuple m’ ,...,mp_1) is also basi d
ala)] = [(am? s am’ )| = n® — n: , > 2, which contradicts to the minimality.
2 vl 127’”>2 hich contradicts to the minimality.
Thus we have 2n;; < nfor j = 3,...,p. If niseven, [idxm| > 3°%_; |(alaj1)| =
§-’:3(n +nj9 —2n;1) > 2(p — 2), which contradicts to the assumption. If n = 3,
assures p = 5 and ng1 = --- = n5o = 1 and therefore idxm = —4, which
p ; ; )

also contradicts to the assumption. Thus n = 2m + 1 with m > 2. Choose k
so that 1,1 > m > ny1. Then |idxm| > 37F_, (alaj1)] = 220 (n+nj2 —
2nj1) > 3(p — k+1). Owing to [@50), we have 2(2m + 1) > km + (p — k) and
k< % < 472“7:13 < 5, which means k£ < 4, |idxm| >3(p—3) > 2p—4 and a
contradiction to the assumption. O

10. EXPRESSION OF LOCAL SOLUTIONS

Fix m = (m;,) J=0. € Pp+1. Suppose m is monotone and irreducibly realiz-
1<v<n;

able. Let Py, be the universal operator with the Riemann scheme (615]), which is
given in Theorem B.I3l Suppose ¢; = 0 and m; ,, = 1. We give expressions of the
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local solution of Pjhu = 0 at = 0 corresponding to the characteristic exponent
Aoy -

Theorem 10.1. Retain the notation above and in Definition [T.11] Suppose \; .
are generic. Let

(10.1) v(z) = ZCVxA(K)l,nlJW
v=0

be the local solution of ( P, )11 =0 at © = 0 with the condition Cy = 1. Put

max

(10.2) )\(k)jmwa: = )\<k)j,£(k)j-
Note that if m is rigid, then

L AK)j maz
1 . = )\(K)l’"l (1 — i> A
(10.3) v(z) == jl;[Q ”

The function

B k=0 F(A(k)l,nl - )\(k)l,mam + :U'(k) + 1)1—‘(7#’(]{:))

S0 s_1 K1 &
/ /0 TT (e — s0) 01
(10.4) 0

So=I

is the solution of Pmu = 0 so normalized that u(x) = 2?1 mod a1 +10y.
Here we note that

Iﬁl(( ) )1, maz ﬁ( 1-— C Sk ))‘(k)jnna:l;)
Sk+1 1—c; sy

k=0 =2 J
hos) o (e
' = ] SK)A(K Vimas

K-1 p
. H (Sz(k)l,vnaw*A(kfl)l,maw H(l _ cj_lsk)A(k)jﬂnam7>‘(k71).7,7nam>.

k=1 j=2

When m 1is rigid,

—
/N
|
Q=
N—
>
°
S
1)
8
N———

u(z) = e <

=2 (vix) 2<j<p €28 VS
1<Eh<K
(10.6) K=t (X@)1,n0 = A(@)1,max + 1)25:2 S o ve

Z.)1,711 - A(i)l,maz + M(Z) + 1>Z§:2 Z£i+1 Vet
(A(Z - 1)s,maz - )\(Z)s maz)

p K
) Vs,i H(SU >Zi=1 Vs,i
Vs7i! Cs

s=2
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When m is not rigid

o0

u(z) = (ﬁ( B ),\(O)Hrm) Z Z

K1 ( )1,"1 - A(i)l,maz + 1)

I 5

vot+3b_, Zf:zdrl Vst

(10'7) o Z 1,ny — )\( )1 maz T :u( ) + 1)V0+Z§:2 Zf(:i+1 Vot
ﬁ - 1>5’ma‘”)vs,x - [ﬁl ﬁ ()‘(Z - 1)s,maz - A(i)s,maz)ysyi
e Z/SJ(! il 2 Vs,i!
P Zf(:1 Vs,i
- Cpyz™® ( ° ) .
! 1;[2 ..

Fiz 5 and k and suppose

(10.8) Uk —1); =(k), when m is rigid or k < K,

) Uk—-1);=0 when m is not rigid and k = K.
Then the terms satisfying vjr > 0 wvanish because (0),,, = Sou,, for vjr =
0,1,2,....

Proof. The theorem follows from ((23)), [(28), (C21), @2) and Q) by the in-

duction on K. Note that the integral representation of the normalized solution of
(5‘mazP)v = 0 corresponding to the exponent A(1),, equals

et F()\(k)l,nl - /\(k)l,max + 1)
IFO@hm—A%hmw+MM+UFPMM)

. e g k)—1
/ Hsk_SkJrl p(k)—

0

—1 (( Sk )A(k)l,rnaz ﬁ( 1 - C )A(k))j,m,aa:>
Sk+1 I—c¢; LSkt

0 Jj=2

£
Il

s

=

k

v(sk)dsk - - dsy

s1=x

= x)‘(l)laﬂl mod I)‘(l)l,"1+100

by the induction hypothesis and the normalized solution of Pu = 0 corresponding
to the exponent A ,, equals

L(A0)1,n, = A(0)1,maz + 1)
T (A0)1,n, — AMO)1,maaz + p(0) + 1)T (—1(0))

@ “AO0)1max P 1 — ¢ m \ —A0)),max

X g

(= s) MO0 ( J ) v(s0)dso
/0 SaMO)l,max J];IQ 1 130

and hence we have (I04]). Then the integral expression ([[04]) with (03], (E:ZI)
and ([@G) inductively proves [I0.G) and ([I0.7).

_Cj
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Example 10.2 (Gauss hypergeometric equation). The reduction (IZ53]) shows
M0)j =Xj, m(0)j, =1 (0<5<2,1<v<2), u0)=—-Xg2—A12— A22,
m(1);1 =0, m(1);, =1 (5=0,1,2),

AD)o1 = Ao +2Xx0,2 +2X12+2X22, A(1)11=A11, A(D)21 = A2y,
AD)o2=2X o2+ A2+ A22, A(L)12=—Ao2—A22, A(1)22=—Xo2 — A1 2
and therefore
AM0) 1, = A0)1mae F0#(0) +1=X12— A1 —(Ao2+ A2+ Ag2) +1
=Xo,1 T A2+ A1,
A0)2,maz — A(1)2maz = AN(0)2,1 — A(L)2,2 = A2;1 + Ao,z + A1 2.

Hence ([I07) says that the normalized local solution corresponding to the charac-
teristic exponent A; o with ¢; = 0 and ¢z = 1 equals

F()‘L2 — A1+ 1):&1,1(1 — )P
Ao+ A2+ )\2’1)1‘(/\0’2 Ao+ )\2,2)

u\xr) =
© =5

(10.9) \

/ (.’I} _ S)AO’2+)\1’2+)\2'2_18_>\0’2_>\1'1_>\2’2(1 _ S)_AO’Q_)\l‘z_)\Q’ldS
0

and moreover ([I0.6]) says

Aot + A2+ A21)u(Ao2 + A2+ >\2,1)ux1,

10.10 R o
| p o m e ;) (A2 = A + 1),

Note that u(z) = F(a,b, c;x) when

T = 00 0 1 T =00 0 1
(10.11) Aol Al A = a 1—c 0
A2 A2 Ao b 0 c—a—>b

The integral expression ([0L9) is based on the minimal expression w = s¢,151,151,250
. . 2 .
satisfying way, = ag. Here ay = 2a9 + ijo aj1. When we replace w and its
minimal expression by w’ = s¢,151,151,25050,1 0 W” = 50,151,151,25052,1, We get the

different integral expressions
F()\LQ — )\111 —+ 1)$>\1’1(1 — Z)Az’l
M2+ A2+ A21)T(Aog + A1z + Az2)

u(z) = I

xT
/ (l‘ _ 3)A0,1+>\1,2+>\2,2*15*)\0,1*)\1,1*)\2,2(1 _ 8)*)\0,1*>\1,2*)\2,1d3
0

10.12
( ) F()\LQ — )\171 + ].)Cﬂ)\l'l(]. — CE))\Z’2

B (X1 + Arz + A22)T( Aoz + Arz + A21)

xT
/ (l‘ _ 3)A0,2+>\1,2+>\2,1*15*)\0,2*)\1,1*%2,1(1 _ 8)*)\0,2*>\1,2*>\2‘2d3.
0

These give different integral expressions of F(a,b, ¢; z) under (IILIT).
Since Sag+ag.1+ap.®m = Om, We have

T =00 0 1 - T = 00 0 1

a l1—c 0 L s<%a—c+1 0 0

b 0 c—a—2>b b—c+1 ¢—1 c—a—0»

B T =00 0 1 e Tr =00 0 1
o~ T
—<a—d+1 0 0 e 1—-d 0

a
b—d+1 d—1 d—a—b0 b 0 d—a—->
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and hence (cf. ([@0])

M * s dfcflscfl a e s)ds
F(C)F(d—c)/0 (=) F(a,b, c;s)ds.

Remark 10.3. The integral expression of the local solution u(x) as is given in
Theorem [0l is obtained from the expression of the element w of W, satisfy-
ing way, € BU{ap} as a product of simple reflections and therefore the integral
expression depends on such element w and the expression of w as such product.
The dependence on w seems non-trivial as in the preceding example but the de-
pendence on the expression of w as a product of simple reflections is understood as
follows.

First note that the integral expression doesn’t depend on the coordinate trans-
formations x — ax and x +— x + b with a € C* and b € C. Since

(10.13) F(a,b,d;z) =

1

[ =— | S et

— _(_1)#—133“—1 [;(% _ S)“_l(%)“+1¢(%)ds,

1
c
we have

(10.14) IH(¢) = —(_1)H—13;u—1 (I%” (xu-&-l(b(x))’z’_)i)

9
1
T

which corresponds to (TII]). Here the value (—1)*~! depends on the branch of the
value of (z — 1)#~! and that of z#~ ! =#(1 — g)r—1.

Hence the argument as in the proof of Theorem shows that the dependence
on the expression of w by a product of simple reflections can be understood by the

identities (I0I4)) and I#*IH2 = [Hrthe (cf. (@) ete.

11. MONODROMY

The transformation of monodromy generators for irreducible Fuchsian systems
of Schlesinger canonical form under the middle convolution or the addition is stud-
ied by [KZ] and [DR] [DR2] etc. A non-zero homomorphism of an irreducible single
Fuchsian differential equation to an irreducible system of Schlesinger canonical form
induces the isomorphism of their monodromies of the solutions (cf. Remark 2T2]).
In particular since any rigid local system is realized by a single Fuchsian differen-
tial equation, their monodromies naturally coincide with each other through the
correspondence of their monodromy generators. The correspondence between the
local monodromies and the global monodromies is described by [DR2], which we
will review.

11.1. Middle convolution of monodromies. For given matrices A; € M(n,C)
for 7 =1,...,p the Fuchsian system

dv A
11.1 — = .
(11.1) dx Z T —cj v
Jj=1
of Schlesinger canonical form (SCF) is defined. Put A9 = —4; —--- — A, and

A = (Ao, A1,...,A,) which is an element of

(11.2) M(n,C)P* .= {(Cy,...,Cp) € M(n,C)P™L; Cy+---+C, =0},
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The Riemann scheme of ([T is defined by

(11.3)
r = Ccop = O C1 cee Cp A
[Xo,1]m M.1]m o [Apalmy,
S S P k= | e M@ E Q)
A
[)‘O,no]mo,no P‘Lnl]ml,nl [)‘pynp]mp,l
if

A] ~ L(mj,la s 7mj,nj;Aj,1a EERE )\j,n]‘) (.] = 07 s 7p)
under the notation (G33). Here the Fuchs relation equals

Py
(11.4) 3D myuAi, =0.
j=0v=1

We define that A is irreducible if a subspace V of C" satisfies A;V C A; for
j=0,...,p, then V = {0} or V = C". In general, A = (A4o,...,4,), A’ =
(A, ..., Al) € M(n,C)P*!, we denote by A ~ A’ if there exists U € GL(n,C)
such that A’ = UA;U ! for j=0,....,p.

For (po, .- ., pp) € CPT1 with g+ - -+, = 0, the addition A’ = (Ap,..., A)) €
M(n,C)5*" of A with respect to (o, ..., ) is defined by Al = Aj + py for
7=0,...,p. -

For a complex number p the middle convolution A := mc,(A) of A is defined
by A; = Aj(p) for j =1,...,p and Ay = —A; —--- — A, under the notation in
28 Then we have the following theorem.

Theorem 11.1 ([DR] [DR2]). Suppose that A satisfies the conditions

(11.5) m ker A; Nker(Ag — 1) = {0} (i=1,...,p, VT € C),
1<j<p
3%
(11.6) ﬂ ker 'A; Nker(*Ag — 7) = {0} (i=1,...,p, VT €C).
1<j<p
i#i
i) The tuple me,(A) = (Ao, ..., Ap) also satisfies the same conditions as above
with replacing A, by A, forv=0,...,p, respectively. Moreover we have
(11.7) me, (A) ~me,(A) if A~A
(11.8) mey o mey, (A) ~ meyy 0 (A),
(11.9) meo(A) ~ A

and A is irreducible if and only if A’ is irreducible.
ii) (cf. [Of] Theorem 5.2]) Assume

(11.10) p=MX17#0 and N1 =0 for j=1,...,p
and
(11.11) Ajv =Aj1 implies mj, < mji
forj=0,...,pandv =2,...,n;. Then the Riemann scheme of mc,(A) equals
T =00 c1 e Cp
[_N}mo,lfd [O]mm*d T [O]mp,lfd
(11.12) o2 = Mmoo M2+ lm, 0 [p2+ pim, .

[)‘O,no - M]mo,no [/\1,711 + /‘l’]ml,nl T [)‘pﬂp + /’L}mp,l
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with
(11.13) d:=mo1+--+mp1—(p—1)ordm.
Example 11.2. The addition of
MC_xg 1 —A12—Aao({A0,2 = Ao1, Ao,1 + A + Aoj2, Aot + Ao + Aan})

with respect to (—A1,2 — A2.2, A1,2, A2,2) give the Fuchsian system of Schlesinger
canonical form
du A1 A2

iz z + 10
A1 Aoat+ A2+ A2 A22
Ay = i ' ' ' and Ag = ’ .
! ( Al2 > 2 (/\0,1 + A1+ Ao >\2,1)
with the Riemann scheme
T =00 0 1
Aol Al Ao (Ao, F o2+ A1+ A2+ A1+ A0 =0).

Aoz Az Agpe
The system is invariant as W(z;A;,)-modules under the transformation \;, —
Ajs—p for j=0,1,2 and v =1, 2.

Suppose A;,, are generic complex numbers under the condition Ao 14+A124+A2 1 =
Ao,2 + A1,1 + A22 = 0. Then A; and Ay have a unique simultaneous eigenspace. In
fact, Ay ((1)) = A2 ((1)) and A, ((1)) = )\2,1((1)). Hence the system is not invariant as
W (z)-modules under the transformation above and A is not irreducible in this case.

To describe the monodromies, we review the multiplicative version of these op-
erations.
Let M = (M, ..., M,) be an element of

(11.14) GL(n,C)?*™ .= {(Gy,...,G,) € GL(n,C)P*; G, --- Gy = I, }.

For (po, ..., pp) € CPT! satisfying pg - - - pp, = 1, the multiplication of M with respect
to p is defined by (poMo, ..., ppMp).
For a given p € C*, we define M; = (M;,,,,/) 1<v<n € GL(pn,C) by

1<0'<p
51/,1/[71 (V ?éj)a
. M, —1 —j 1</ <j-1
Ny = (v 1SV );
pM; (v=v"=j),
p(My —1) (v=j, j+1<v <p)
Let M; denote the quotient Mj\cpn/v of
I,
(11.15) Mj=|M ~1 - pM; --- p(M,—1)]| € GL(pn,C)
I

for j =1,....pand My = (M,...M;)~'. The tuple MC,(M) = (My,...,M,) is
called (the multiplicative version of) the middle convolution of M with respect to

p. Here V = ker(M — 1) + j_, ker(M; — 1) with
My

M =
M,
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Then we have the following theorem.

Theorem 11.3 ([DR} DRA). Let M = (M, ..., M,) € GL(n,C)?™. Suppose

(11.16) () ker(M, —1)Nker(M; —7) ={0}  (1<i<p, ¥r€C),

1<v<p
v<i

(11.17) () ker(M, —1)Nker(M; —7)={0}  (1<i<p, Vr€C).

1<v<p
v<i

i) The tuple MC,(M) = (Mo, ..., M) also satisfies the same conditions as above
with replacing M, by M, for v =0,...,p, respectively. Moreover we have

(11.18) MC,(M) ~ MC,(M') if M~ M,
(11.19) MG, o MC, (M) ~ MC,, (M),
(11.20) MC; (M) ~ M
and MC,(M) is irreducible if and only if M is irreducible.
ii) Assume
(1121) Mj ~ L(mjyl, ey mj_,n].;pjyl, .. »Pj,n_,») fOT’ j = O7 ey Dy
(11.22) p=po1#1 and pj1 =1 for j=1,...,p
and
(11.23) Piv = pj1 implies m;, < mji
forj=0,...,pandv =2,...,n;. In this case, we say that M has a spectral type
m = (mo, sy mp) w}th m; = (mj,l, v ,mjmj).
Putting (My, ..., Mp) = MC,(My, ..., M,), we have
(11.24)

W~ L(mo1 —d,mo2, -, Momg; P 0 p0,25 - 0 Pome)  (5=10),
/ L(mj1—d,mja,...,Mjn.;1,0p52,. . PPjn,) (j=1,...,p).

Here d is given by ([ITI3)).

Remark 11.4. 1) We note that some m;; may be zero in Theorem [IT.Jl and Theo-

rem

ii) It follows from Theorem [[T.1] (resp. Theorem [[T3)) and Scott’s lemma that any
irreducible tuple A € M(n, C)2™ (resp. M € GL(n,C)?*") can be connected by
successive applications of middle convolutions and additions (resp. multiplications)
to an tuple whose spectral type is fundamental (cf. Definition BI4]). In particular,
the spectral type of M is an irreducibly realizable tuple if M is irreducible.

Definition 11.5. Let M = (M, ..., M,) € GL(n,C)}™". Suppose (ITZI). Fix
0= (ly,...,0) € 21;1 and define 9;M as follows.

. {pj,e,- (0<j<p 1<t <ny),
any complex number (0 <j <p, n; <{;),
P = PoP1---Pp;
(Mg, ..., M) := MC,(p1 - - pyMo, py My, p3 " Ma, ..., p, ' Mp),
M = (py -+ p, My, p1 My, pa My, ..., pp M)
Here we note that if £ = (1,...,1) and p;; =1 for j =2,...,p, 9M = MC,(M).
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Let u(1),...,u(n) be independent solutions of [([II]) at a generic point ¢q. Let
v; be a closed path around c; as in the following figure. Denoting the result of
the analytic continuation of @ := (u(1),...,u(n)) along v; by 7;(%), we have a
monodromy generator M; € GL(n,C) such that v;(@) = @M;. We call the tuple
M = (Mo, ..., M,) the monodromy of ([II)) with respect to @ and ~,...,7,. The
connecting path first going along 7; and then going along ; is denoted by ~; o ;.

i 075(@) = v;(aM;)
= v;(a)M;
= aM; M,

MyM,_1 - MMy = I,.

The following theorem says that the monodromy of solutions of the system ob-
tained by a middle convolution of the system (L)) is a multiplicative middle
convolution of that of the original system (ITT).

Theorem 11.6 ([DR2]). Let Mon(A) denote the monodromy of the equation (L.
Put M = Mon(A). Suppose M satisfies (ILI6) and [0 and

(11.26) rank(Ag — p) = rank(My — 2™V"1H),
(11.27) rank(A;) = rank(M; — 1)
forj=1,...,p, then
(11.28) Mon (mc,(A)) ~ MC,2ry=1, (Mon(A)).
Let F be a space of (multi-valued) holomorphic functions on C\ {c1,...,¢p}

valued in C™ such that F satisfies (BI0), (BI6) and BIT). For example the
solutions of the equation ([T} defines F. Fixing a base u = (u(1),...,u(n)) of
F(U) with U 3 ¢, we can define monodromy generators (Mo, ...,M,). Fix u € C
and put p = e2™V=1n and
f(:c-i-,c]--&-,x—,cg-—) U(t)(tg:_c?kldt
vi(z) = and v(z) = (vi(x),...,vp(x)).
(z+,cj+,2—,c;—) u(t)(z—t)* !
/ oy
Then v(z) is a holomorphic function valued in M (pn, C) and the pn column vectors
of v(x) define a convolution JF of F and the following facts are shown by [DR2].
The fnonodfomy generators of F with respect to the base v(x) equals the convo-
Iution M = (My, ..., M) of M given by ([[IIH) and if F corresponds to the space
of solutions of Z.74), F corresponds to that of the system of Schlesinger canonical
form defined by (Ao(p), ..., Ap(p)) in @XI), which we denote by M.
The middle convolution MC,(M) of M is the induced monodromy generators on
the quotient space of CP*/V where V' is the maximal invariant subspace such the

restriction of M on V is a direct sum of finite copies of 1-dimensional spaces with
J

the actions (p=1,1,...,1,p,1,...,1) € GL(1,C)?™ (j =1,...,p) and (1,1,...,1).
The system defined by the middle convolution mc,, (A) is the quotient of the system
M4 by the maximal submodule such that the submodule is a direct sum of finite
copies of the equations (z — cj)flj—z =pw (j=1,...,p) and fli—’: =0.
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Suppose M and MC,(M) are irreducible and p # 1. Assume ¢(z) is a function
belonging to F such that it is defined around x = c¢; and corresponds to the
eigenvector of the monodromy matrix M; with the eigenvalue different from 1.

Then the holomorphic continuation of ®(x) = f(z+’cj+’m7’cr) W) 4t defines

t—Cj

the monodromy isomorphic to MC,(M).
Remark 11.7. We can define the monodromy M = (M, ..., M) of the universal
model Ppuu = 0 (cf. Theorem B3] so that M is entire holomorphic with respect
to the spectral parameters );, and the accessory parameters g; under the nor-
malization u(j)*~Y(q) = §;, for j, v =1,...,n and ¢ € C\ {ci,...,c,}. Here
u(1),...,u(n) are solutions of Puu = 0.

Definition 11.8. Let P be a Fuchsian differential operator with the Riemann
scheme (BIH) and the spectral type m = (m;,) o<j<p . We define that P is Io-

1<v<n;
cally non-degenerate if the tuple of the monodromy generators M := (Mo, ..., M,)
satisfies

(1129) Mj ~ L(mj’l, e 7mj7nj;€27r\/jl>\j’l, . 6277\/_71>\j’".7') ( 1

]:O""7p)7

i

which is equivalent to the condition that
(11.30) dim Z(M;) =m5, +---+m3,  (j=0,...,p).

Suppose m is irreducibly realizable. Let P, be the universal operator with the
Riemann scheme (GI0). We say that the parameters \;, and g; are locally non-
degenerate if the corresponding operator is locally non-degenerate.

Note that the parameters are locally non-degenerate if
Niw =X @Z (j=0,...,p, v=1,....n5, V' =1,...,n;).

Define P, as in Remark iv). Then we can define monodromy generator M; of
P, at © = ¢; so that M, holomorphically depend on ¢ (cf. Remark IT.7)). Then
Remark 613 v) proves that (TT30) implies (IT.29) for every j.

The following proposition gives a sufficient condition such that an operator is
locally non-degenerate.

Proposition 11.9. Let P be a Fuchsian differential operator with the Riemann
scheme [@I3) and let M; be the monodromy generator at x = ¢;. Fix an integer j

with 0 < j < p. Then the condition
11.31) Njw =X LZor (Njw = X ) (Njw 1105, = Ajur = myr) <0
(11. for 1<v<n; and 1<v' <nj

implies dim Z(M;) = mil 4+ 4 m?’nj. In particular, P is locally non-degenerate

if (31 is valid for j =0,...,p.
Here we remark that the following condition implies (I131).

(11.32) Niw — N § Z\{0} for 1<v<mn; and 1<V <n,.
Proof. For u € C we put
Ny={v;1<v<n;, pe{X,No+1,..., 0, +m;, —1}}.
If N, > 0, we have a local solution w,, , () of the equation Pu = 0 such that
(11.33) wyu(z) = (x —¢;)"log"(x — ¢j) + O, (p+1,L,) for v=0,...,N, — 1.

Here L, are positive integers and if j = 0, then z and = — ¢; should be replaced by

Yy = % and y, respectively.
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Suppose ([[I3I). Put p = *™, m) = {mj,; \j, —p € Z} and m/, =

{mp 1. smy,, }withmy,, >mj, 5 >~ >mj,, >1. Then (L3I implies
Lo 1<k<
(11.34) n — rank(M; — p)F < mf’l et mf’k (Lsk<np),
my gyt my (n, < k).

The above argument proving [[T229) under the condition (TI30) shows that the
left hand side of ([T34) is not smaller than the right hand side of (IT.34]). Hence
we have the equality in (IT34)). Thus we have (IT30) and we can assume that

L, =v in (IT33). O

Theorem [[T.3] Theorem [IT.6] and Proposition {1l show the following corollary.
One can also prove it by the same way as in the proof of [DR2] Theorem 4.7].

Corollary 11.10. Let P be a Fuchsian differential operator with the Riemann
scheme ([GI0). Let Mon(P) denote the monodromy of the equation Pu = 0. Put
Mon(P) = (Mo, ..., M,). Suppose

(1135) Mj ~ L(mj»l’ sy Myging s 627“/771)%17 ce aezﬂ—\/jxjmj) fO’f’ j = 07 BERRY 2

In this case, P is said to be locally non-degenerate. Under the notation in Defini-
tion[7.0, we fix £ € Z?{l and suppose ([L23). Assume moreover

(11.36) e & Z,
(11.37) mj, <mje, or N, — N, €% (j=0,...,p, v=1,...,n;).

Then we have
(11.38) Mon(9¢P) ~ 9¢ Mon(P).
In particular, Mon(P) is irreducible if and only if Mon(0,P) is irreducible.

11.2. Scott’s lemma and Katz’s rigidity. The results in this subsection are
known but we will review them with their proof for the completeness of this paper.

Lemma 11.11 (Scott [8d). Let M € GL(n,C)**" and A € M(n,C)2™" under
the notation (IL2) and [ITIA)). Then

p p P
(11.39) > codimker(M; — 1) > codim (] ker(M; — 1) + codim () ker("M; — 1),

=0 =0 =0
» P P
(11.40) > codimker A; > codim (] ker A; + codim (") ker '4;.
=0 =0 =0

In particular, if M and A are irreducible, then

p
(11.41) > dimker(M; —1) < (p— 1)n,
§=0
p
(11.42) > dimker A; < (p — 1)n.
§=0

Proof. Consider the following linear maps:
V =Im(My — 1) x --- x Im(M,, — 1) ¢ C*P*+D),
B: C"=V, v ((My—1)v,...,(Mp,—1)v),
0: V—=C" (vo,...,0p) = My Myvg+ My, --- Mavy + - - - + Mpvp_1 + vp.
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Since Mp-~-M1<M0—1)+~-~+MP(MP,1—1)+(Mp—1) :Mp~--M1M0—1 :07
we have ¢ o § = 0. Moreover we have

P P
ZM M1 (M = 1)v; (1 + > (M, —1)M, - "Mj+1)(Mj — v;
=0 v=j+1
j2 v—1
= '—1 UJ+Z 1"'Mi+1(Mi—1)’Ui
]:0 v=1 i= 0
p Jj—1
=> (M, - 1)(%‘ + D My My (M; — 1)%‘)
§=0 i=0
and therefore Im 6 = g’ oIm(M; —1). Hence
My —1
dimIm ¢ =rank(My —1,..., M, — 1) =rank :
M, — 1
and
Z codimker(M; — 1) = dimV = dim ker 6 + dim Im §
> dimIm g + dimImé
= codim ﬂ ker(M; — 1) 4 codim ﬂ ker("M; — 1).
j=0 7=0
Putting

V=ImAyx---xImA, C crlp+l)

B: C*" =V, v (A,...,Apw),

6:V_>(Cn7 (U07~-'avp)’_>U0+'U1+"'+Up,
we have the claims for A € M(n,C)P*! in the same way as in the proof for M €
GL(n,C)P* O

Corollary 11.12 (Katz [K4 and [SY1). Let M € GL(n,C)?™. The dimensions
of the manifolds

(11.43) Vi :={H e GL(n,C)*"'; H ~ M}
and
(11.44) Vo:={HeGL(n,C)*' Hy~ M; (j=0,...,p)}
are give by
(11.45) dim V; = codim Z(M),
p
(11.46) dimV, = codim Z(M;) — codim Z(M).

Here Z(M) := ?:0 Z(M;) and Z(M;) ={X € M(n,C); XM; = M,;X}.
Suppose M is irreducible. Then codim Z(M) = n? — 1 and

(11.47) Z codim Z(M;) > 2n* — 2.
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P
Moreover M is rigid, namely, V1 = Vs if and only if Zcodim Z(M;) = 2n? — 2.
§=0

Proof. The group GL(n,C) transitively acts on V; as simultaneous conjugations
and the isotropy group with respect to M equals Z(M) and hence dimV; =
codim Z(M).

The group GL(n, C)P*! naturally acts on GL(n,C)?*! by conjugations. Putting
L = {(g;) € GL(n,C)P™; g,Mpg, ' -+ goMogy " = My--- Mo}, Va is identified
with L/Z(My) x --- x Z(M,). Denoting g; = exp(tX;) with X; € M(n,C) and
t € R with [¢| < 1 and defining A; € End(M(n,C)) by A; X = MjXMjfl, we can
prove that the dimension of L equals the dimension of the kernel of the map

v: M(n,C)P* 3 (Xo,..., X, »—>ZA CAj (4 —1)X;

by looking at the tangent space of L at the 1dent1ty element because
exp(tXp) My exp(—tXp) - - - exp(tXo) Mo(—tXo) — Mp--- My

—t(ZA Aji1(A )Xj)M,,.-~M0+o(t).

We have obtained in the proof of Lemma [TIT] that codimkery = dimIm~ =
dim »7_ Im(A; —1) = codim (;_, ker(*A; —1). We will see that (}_, ker(*4; —1)
is identified with Z(M) and hence codim ker v = codim Z(M) and

dim V5 = dim ker v — Z dim Z(M. Z codim Z(M;) — codim Z(M).
7=0
In general fix H € V; and define A; € End( (n,(C)) by X — MjXHj_1 for
j=0,...,p. Note that A,A,_1--- Ay is the identity map. If we identify M (n,C)
with its dual by the inner product trace XY for X, Y € M (n,C), 'A; are identified
with the map ¥ — H;lYMj, respectively.
Fix P; € GL(n,C) such that H; = P;M; P;"". Then
Aj(X)=X & M;XH;' =X & M;X = XP;M;P;' < M;XP; = XP;M;,
'"A;(X)=X & H;'XM; =X & XM; = P,M;P; ' X & P, 'XM; = M;P; ' X
and codimker(A; — 1) = codim Z(M;) and ﬂ?:o ker(*A; — 1) ~ Z(M).
Suppose M is irreducible. Then codim Z(M) = n? —1 and the inequality ([T.Z7)

follows from V; C V5. Moreover suppose Z?:o codim Z(M;) = 2n? — 2. Then
Scott’s lemma proves

p
2% -2 = Zcodim ker(A; — 1)
J=0

p
>n? —dim ({X € M(n,C); M;X = XH;}
§=0

P
+n? —dim (|{X € M(n,C); H; X = XM;}.
j=0
Hence there exists a non-zero matrix X such that M;X = XH; (j =0,...,p) or
H;X=XM; (j=0,...,p). f M;X = XH, (resp. H; X = XM ;) for j=0,...,p,
ker X (resp. Im X) is Mj-stable for j = 0,...,p and hence X € GL(n7 C) because M
is irreducible, Thus we have V; = V5 and we get all the claims in the corollary. [J
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12. REDUCIBILITY

n)

12.1. Direct decompositions. For a realizable (p 4+ 1)-tuple m € 77;4_1, Theo-
rem RT3 gives the universal Fuchsian differential operator Pm(A;,., g;) with the Rie-
mann scheme ([EI8). Here g1, ..., gy are accessory parameters and N = Ridx m.

First suppose m is basic. Choose positive numbers n', n, m/ ; and m/, such
that

n=n'+n", 0<ml, <n', 0<mj, <n"

12.1
(12.1) moq + - +my < (p—1)n', mg,+-+my, < (p—1)n".

We choose other positive integers m/;

"
Vil

" A /
i and my, so that m’ = (mjﬂ/

) are monotone tuples of partitions of n’ and n”, respectively, and moreover

) and m” =
(m

(12.2) m=m'+m".

Theorem shows that m’ and m” are realizable. If {);,} satisfies the Fuchs
relation

p Ny . /
idxm
123) S S g

j=0v=1

for the Riemann scheme {[/\j,l,](m; ) }, Theorem [6.19 shows that the operators
(12.4) Pm”()‘j.,v + m;’,u - 5]’,0(]7 - 1)71/, 92/) ’ Pm/(/\j,m 92)

has the Riemann scheme {[); ,](m, ) }- This shows that the equation Pm (A, g:)u =
0 is not irreducible when the parameters take the values corresponding to (I2Z4]).
In this subsection, we study the condition

12.5 Ridxm = Ridxm’ + Ridx m”
(12.5)

for realizable tuples m’ and m” with m = m’ + m”. Under this condition the
Fuchs relation (IZ3)) assures that the universal operator is reducible for any values
of accessory parameters.

Definition 12.1 (direct decomposition). If realizable tuples m, m’ and m” satisfy
@32 and [IZ3), we define that m is the direct sum of m’ and m” and call
m = m’ +m" a direct decomposition of m and express it as follows.

(12.6) m=m'®m".

Theorem 12.2. Let [I28) be a direct decomposition of a realizable tuple m.

i) Suppose m is irreducibly realizable and idx m’” > 0. Put m' = ged(m’)~'m’.

If m’ is indivisible or idxm < 0, then

o (o)
(oo
orm=m’ & m" is isomorphic to one of the decompositions
3932, 32,221 = 22,22,22.220 @ 10, 10, 10, 10, 001
322,322, 2221 = 222, 222, 2220 & 100, 100, 0001
54,3222, 92221 — 44,2222, 22220 & 10, 1000, 00001

76,544, 2222221 = 66, 444, 2222220 @ 10, 100, 0000001

(12.8)

under the action of WOO.
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il) Suppose idxm < 0 and idxm’ <0 and idxm” < 0. Then m =m’' @ m” or
m =m" & m’ is transformed into one of the decompositions

Y =11,11,11,11 111,111,111 22,1*1* 33,222,1°

my = kX @ (%
m — 1)1 = kk, kk, kk, k(k — 1)1 @ 00,0, £¢, 200
m — 1)1 = kkk, kkk, kkk, kk(k — 1)1 & 060, 000, 0000
m— 1)1 = (2k)% k* k* kkk(k — 1)1 @ (20)%, ¢4, 00
m—1)1 = (3k)2, (2k)3, k°(k — 1)1 & (30)2, (20)3, 450

mm, mm, mm, m
(12.9)

mmm, mmm, mm

(2m)%, m*, mmm

(3m)?%, (2m)3, m®

—~ o~~~

under the action of WOO. Herem, k and ¢ are positive integers satisfying m = k—+£.
These are expressed by

mD4 = kD4 () €D47 mE’j = kEJ (S5) ZE] (j =6,7, 8),

D" =D @Dy, B =BV © (B (j=6,7.8).

(12.10)

Proof. Put m’ = km’ and m” = /m” with indivisible m’ and m”. First note that
(1211) (am|am) = (am/|am/) + 2(C¥m/ ‘am//) + (Ckm//|am//).

ii) Using Lemma I2Z3] we will prove the theorem. If idxm = 0, then ([ZTIT])
and ([ZI2) show 0 = (m’|om”) = kl(omm |om ), Lemma [23] proves idxm’ = 0
and m’ = m” and we have the theorem.

Suppose idxm < 0.

If idxm’ < 0 and idxm” < 0, we have Pidxm = Pidxm’ + Pidxm”, which
implies (om|am~) = —1 and contradicts to Lemma [[2.3]

Hence we may assume idxm” = 0.

Case: idxm’ < 0. It follows from ([[ZTII) that 2 — 2Ridxm = 2 — 2Ridxm’ +
2¢(m,m). Since Ridxm = Ridxm’ + ¢, we have (m|om’) = —1 and the theorem
follows from Lemma

Case: idxm’ = 0. It follows from (IZII)) that 2 — 2Ridxm = 2k{(am |om ).
Since the condition Ridxm = k + ¢ shows (o o) = & — + — + and we have
(o |am) = —1. Hence the theorem also follows from Lemma 2.3

i) First suppose idx m’ # 0. Note that m and m’ are rigid if idx m’ > 0. We have
idxm = idxm’ and idx m = (Qm +lom | m +agm ) = idx m’+20(oom | o ) +202,
which implies (I271).

Thus we may assume idxm < 0 and idxm’ = 0. If K = 1, idxm = idxm’ =0
and we have ([Z71) as above. Hence we may moreover assume k > 2. Then ([ZTT)
and the assumption imply 2 — 2k = 2kf(amy |am) + 202, which means

k—1+ 02
kf '

Here k and ¢ are mutually prime and hence there exists a positive integer m with
k=mf+1 and

7(Ogﬁ/ |05ﬁ") =

m+ 4 1 1
—\ w7 | Xt ) = == < 2
(om o) mlé+1 £+%+m+%
Thus we have m = ¢ = 1, k = 2 and (am|amr) = —1. By the transformation
of an element of Wy, we may assume m' € Pp,yq is a tuple in (IZIG). Since
(v |am) = —1 and agg is a positive real root, we have the theorem by a similar
argument as in the proof of Lemma [[2Z3 Namely, m;] =2 and m; w41 = 0and
m, n,

"
We may assume mj . .

which proves the theorem in view of apyr € A”C. (]

:Oforj:(),...,p—landmg,%ﬂ—kmg%w_i_...:1’
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Lemma 12.3. Suppose m and m’ are realizable and idxm < 0 and idxm’ < 0.
Then

(12.12) (atm|om’) < 0.
If m and m’ are basic and monotone,
(12.13) (am|wam?) < (am|om?) (Vw € Wx).
If (am|am’) =0 and m and m’ are indivisible, then idxm =0 and m = m’.
If (am|am’) = —1, then the pair is isomorphic to one of the pairs
(D, Du) : ((kk, kk, kk, k(k — 1)1), (11,11,11,110))
1210 (ESP, Eg) : ((kkk, kkk, k(k — 1)1), (111,111,1110))
(B, B (((2k)?, kkkk, kkk(k 1),  (22,1111,11110))
(EM, Eg) : (3K 3 kkkkk(k —1)1), (33,222,1111110))

under the action of WOO.

Proof. We may assume that m and m’ are indivisible. Under the transformation of
the Weyl group, we may assume that m is a basic monotone tuple in P, 1, namely,
(atm|ao) <0 and (amleyj,) < 0.

If m’ is basic and monotone, Wy, — am is a sum of positive real roots, which

proves ([[213)).

Put am = nap + Y nj,0;, and m’ = nyag + Y n’ ,a;,. Then

(mlevmn) = mp(@mlao) + D 7, (@),

(12.15)
(amla) <0 (Yo € supp am).

Let k; be the maximal positive integer satisfying mj, = m; 1 and put Iy =
{ao,0j,; 1 <v <k j=0,...,p}. Note that II; defines a classical root system
if idxm < 0 (cf. Remark B.T2]).

Suppose (am|am’) =0 and m € Ppyy. Then mo 1+ - +mp1 = (p— 1) ordm
and supp am, C I because (am|a) = 0 for a € supp ayy. Hence it follows from
idxm’ < 0 that idxm = 0 and we may assume that m is one of the tuples ([2I6)).
Since supp am C supp am and idxm’ < 0, we conclude that m’ = m.

Lastly suppose (am|am’) = —1.

Case: idxm = idxm’ = 0. If m’ is basic and monotone and m’ # m, then it is
easy to see that (am|om’) < —1 (cf. Remark @]). Hence (IZI3) assures m’' = wm
with a certain w € W, and therefore suppm C suppm’. Moreover there exists
Jo and L > kj, such that suppm’ = suppm U {a, k. Qo k;+15 - - - > Ao, } and
Mo k;, = 1 and m;-m,% 41 = 1. Then by a transformation of an element of the

Weyl group, we may assume L = kj, and m’ =7, --- 75,7 (o k) 11 with suitable 7,
satisfying «;, € suppm for v =1,..., N. Applying r;, ---7i, to the pair (m, m’),
we may assume m’ = T (o ks ) - Hence the pair (m, m') is isomorphic to one of
the pairs in the list (IZ14) with & = 1.

Case: idxm < 0 and idxm” < 0. There exists jo such that supp am: > aj, k;
Then the fact idx(m,m’) = —1 implies n} , = 1 and n97kj = 0 for j # jo.
Let L be the maximal positive integer with n) ; # 0. Since (am|aj,) = 0 for
ko+1 < v < L, we may assume L = kg by the transformation r(j; x,+1)0° " 07,1
if L > ko. Since the Dynkin diagram corresponding to IIp U {e;,, ’%} is classical or
affine and supp m’ is contained in this set, idxm’ = 0 and m’ is basic and we may
assume that m’ is one of the tuples

(12.16) 11,11,11,11 111,111,111 22,1111,1111 33,222,111111
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and jo = p. In particular m;’l = ... = m;,k,, =1 and m;,kp+1 = 0. It follows
from (aml|apk,) = —1 that there exists an integer L' > k, 4 1 satisfying suppm =

suppm’U{a,,; kp <v < L'} and my g, = mpx,—1 — 1. In particular, m;, = m;
forv=1,...,kj —d;p and j = 0,...,p. Since Z?:o mj1 = (p— 1) ordm, there
exists a positive integer k such that

m.:,, = km;,l (j:07"‘7p71/:17""kj_§j’p)’
7 k:m;,l -1 (j=np, y:kp).

Hence my,,+1 =1 and L' = k, + 1 and the pair (m, m’) is one of the pairs in the
list (IZI4) with k£ > 1. O

Remark 12.4. Let k be an integer with £ > 2 and let P be a differential operator
with the spectral type Dflk), Eék), E§k) or Eék). It follows from Theorem [6.19 and
Theorem that P is reducible for any values of accessory parameters when the
characteristic exponents satisfy Fuchs relation with respect to the subtuple given
in (IZI4)). For example, the Fuchsian differential operator P with the Riemann
scheme

Mol [Auilwy P2l [A3,1] (k)

Mozl [Mela Pe2ley  Ps2lw-1)

Az + 2k —2

is reducible.

Example 12.5. i) (generalized Jordan-Pochhammer) If m = km’ @ /m” with a
rigid tuples m, m’ and m” and positive integers k and £ satisfying 1 < k < £, we
have
k*+02—1
K
For positive integers k& and ¢ satisfying 1 < k < ¢ and
kK-
P

we have an example of direct decompositions

(12.17) (Om/|omr) = eZ.

(12.18) +1ez,

p+1 partitions

—
Lk, Lk, ... Ltk = 0k,0k, ..., 0k ® (0,£0,...,00

12.19
(12:19) = ((p— Dk = Ok, (p— Dk = k..., ((p — Dk — Ok

@ 20— (p—1)k)0,(2¢ — (p— 1)k)0,...,(2¢ — (p— 1)k)O0.
Here p = 3 + % > 2 and the condition p = 2 implies kK = £ = 1 and the

condition p = 3 implies £ = k + 1. If k = 1, then (am/|am~) = —¢ and we have an
example corresponding to Jordan-Pochhammer equation:

042 partitions

——~—
(12.20) £a,.-- 41 =01,---,010,---, 0.
When ¢ = k + 1, we have (am’|am~) = —2k and an example

s+ 1)k, (K + D)k, (5 + Dk, (k + 1)k
(12.21) = 0k, 0k, 0k, 0k @ (k + 1)0, (k + 1)0, (k + 1)0, (k + 1)0
= (k- 1)k, (k- 1k, (k- 1k, (k- 1)k @ 20, 20, 20, 20.
We have another example
83,83, 83, 83,83 = 03,03, 03, 03,03 & 80, 80, 80, 80, 80

(12.22) =13,13,13,13,13 & 70, 70, 70, 70, 70
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in the case (k,¢) = (3,8), which is a special case where £ = k> — 1, p = k + 1 and
(' |m) = —k.

When p is odd, the equation [IZI8) is equal to the Pell equation
(12.23) v —(m?—1)a* =1

by putting p — 1 = 2m, x = £ and y = mf — k and hence the reduction of the tuple
of partition (IZ19) by Omax and its inverse give all the integer solutions of this Pell
equation.

The tuple of partitions ¢k, ¢k, ..., tk € Pﬁf’ with ([ZI8) is called a generalized
Jordan-Pochhammer tuple and denoted by Ppy1 ¢+%. In particular, P,y , is simply
denoted by P,.

ii) We give an example of direct decompositions of a rigid tuple:

3322, 532,532 = 0022, 202, 202 ¢ 3300, 330,330 : 1
= 1122, 312, 312 @ 2200, 220, 220 :
= 0322, 232, 232 & 3000, 300, 300 :
= 3302, 332, 332 & 0020, 200, 200 :
= 1212,321,321 @ 2110, 211, 211 :
= 2211, 321,312 & 1111, 211,220 :
= 92212,421,322 @ 1110, 111,210 :
= 22922 431,422 @ 1100, 101, 110 :
= 2312,422, 422 @ 1010, 110, 110 :
— 2322, 522,432 @ 1000, 010, 100 :

They are all the direct decompositions of the tuple 3322, 532,532 modulo obvious
symmetries. Here we indicate the number of the decompositions of the same type.

N O O O O

e

Corollary 12.6. Let m € P be realizable. Put m = ged(m)m. Then m has no
direct decomposition [I28]) if and only if

(12.24) ordm =1
or
(12.25) idxm = 0 and basic

or

idxm < 0 and m is basic and m is not isomorphic to any one of tuples

(12.26) in Example @14 with m > 1.

Moreover we have the following result.

Proposition 12.7. The direct decomposition m = m’ @ m” is called rigid decom-
position if m, m’ and m" are rigid. If m € P is rigid and ord m > 1, there exists
a rigid decomposition.

Proof. We may assume that m is monotone and there exist a non-negative integer
p such that m;o # 0 if and only if 0 < j < p+ 1. If orddm = 1, then we may
assumem = (p—1)1, (p—1)1,...,(p—1)1 € P;Ijr)l and there exists a decomposition

(p— 11, (p—1D1,...,(p—1)1 =01,10,...,108 (p— 1)0, (p — 2)1,..., (p — 2)1.

Suppose ord0m > 1. Put d = idx(m,1) =mg1+---+mp1— (p—1)-ordm > 0.

The induction hypothesis assures the existence of a decomposition dm = m’@®m’”
such that m’ and m” are rigid. If Om’ and dm” are well-defined, we have the
decomposition m = 9?m = dm’ @ Om” and the proposition.
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If ordm’ > 1, Om’ is well-defined. Suppose m’ = (6V,gj)j:07___7p Then
P
idx(0m, 1) — idx(m,m’) = > ((mj1 — d — (mj, — by, 1))
§=0

> —d#{j; {; > 1, 0<j < p}.
Since idx(0m, 1) = —d and idx(0m, m’) = 1, we have d#{j; ¢; > 1, 0< j <p} >
d+ 1 and therefore #{j; ¢; > 1, 0 < j < p} > 2. Hence Om’ is well-defined. =~ [

Remark 12.8. The author’s original construction of a differential operator with a
given rigid Riemann scheme doesn’t use the middle convolutions and additions but
uses Proposition I2Z.7)

Example 12.9. We give direct decompositions of a rigid tuple:
721, 3331, 22222 = 200, 2000, 20000 & 521, 1331, 02222 : 15
(12.27) = 210,1110, 11100 & 511, 2221,11122 : 10
=310,1111,11110 ¢ 411, 2220,11112: 5
The following irreducibly realizable tuple has only two direct decompositions:
44,311111,311111 = 20, 200000, 200000 & 24, 111111, 111111
= 02,200000, 200000 @ 42,111111,111111

But it cannot be a direct sum of two irreducibly realizable tuples.

(12.28)

12.2. Reduction of reducibility. We give a necessary and sufficient condition
so that a Fuchsian differential equation is irreducible, which follows from [KZ and
[DRl [DR2]. Note that a Fuchsian differential equation is irreducible if and only if
its monodromy is irreducible.

Theorem 12.10. Retain the notation in JI2Z.1 Suppose m is monotone, realizable
and Opmarm is well-defined and

(12.29) d:=mo1+---+mp1—(p—1)ordm > 0.
Put P = Py, (cf. 829)) and
(12.30) W= /\071 + /\171 + -+ /\p71 -1,
(12.31) Q = O P,
(12.32) P =Py, ,=xo,, gi=g?, Q7 =QIx,.=xs,, gi=g?
with some complex numbers N, and g satisfying the Fuchs relation [{\},}| = 0.
i) The Riemann scheme {\m} of Q is given by
(12.33) M = My = du,
)\j,y = )\jw + ((71) 30 — 51,71)#.

i) Assume that the equation P°u = 0 is irreducible. If d > 0, then u ¢ Z. If the
parameters given by A7, and g7 are locally non-degenerate, the equation Q°v = 0
is irreducible and the parameters are locally non-degenerate.

iii) Assume that the equation Q°v = 0 is irreducible and the parameters given by
AS, and g are locally non-degenerate. Then the equation P°v =0 is irreducible if

and only if

P
(12.34) Z)\;11+5j,jo(Vo_1) ¢ Z for any (jo,vo) satisfying my, ,, >m;j, 1 — d.
=0

If the equation P°v = 0 is irreducible, the parameters are locally non-degenerate.
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iv) Put m(k) := 0% . .m and P(k) = 0k, P. Let K be a non-negative integer
such that ord m(0) > ordm(1) > --- > ord m(K) and m(K) is fundamental. The
operator P(k) is essentially the universal operator of type m(k) but parametrized
by Aju and gi. Put P(k)? = P(k)|x, ,=xc -

If the equation P°u = 0 is irreducible and the parameters are locally non-
degenerate, so are P(k)°u=0 fork=1,...,K.

If the equation P°u = 0 is irreducible and locally non-degenerate, so is the equa-
tion P(K)°u = 0.

Suppose the equation P(K)°u = 0 is irreducible and locally non-degenerate,
which is always valid when m is rigid. Then the equation P°u = 0 is irre-
ducible if and only if the equation P(k)°u = 0 satisfy the condition [[2Z34) for
k=0,..., K—1. If the equation P°u = 0 is irreducible, it is locally non-degenerate.

Proof. The claim i) follows from Theorem [[2and the claims ii) and iii) follow from
Lemma and Corollary ITT0, which implies the claim iv). O

Remark 12.11. i) In the preceding theorem the equation P°u = 0 may not be
locally non-degenerate even if it is irreducible. For example the equation satisfied
by 3F5 is contained in the universal operator of type 111,111, 111.

ii) It is also proved as follows that the irreducible differential equation with a
rigid spectral type is locally non-degenerate.

The monodromy generators M; of the equation with the Riemann scheme at
x = c; satisfy

rank(M; — VT L (M; — VTN < m, (k= 1,..0,n )

for j = 0,...,p. The equality in the above is clear when A;, — \;,» ¢ Z for
1 <v < v < n; and hence the above is proved by the continuity for general A; ,.
The rigidity index of M is calculated by the dimension of the centralizer of M;
and it should be 2 if M is irreducible and rigid, the equality in the above is valid
(cf. [K4, [OF]), which means the equation is locally non-degenerate.

iii) The same results as in Theorem are also valid in the case of the
Fuchsian system of Schlesinger canonical form ([[II]) since the same proof works.
A similar result is given by a different proof (cf. [CB]).

iv) Let (My,...,M,) be a tuple of matrices in GL(n, C) with M,M,_; --- My =
I,,. Then (My,...,M,) is called rigid if for any go,...,g, € GL(n,C) satisfying
gpMpgp’1 ~gp_1Mp_1gp:11 . 'gOMOgO_1 = I, there exists ¢ € GL(n,C) such that
giMigi_l = gM;g~! for i = 0,...,p. The tuple (Mo, ..., M,) is called irreducible
if no subspace V of C" satisfies {0} GV G C" and M;V C V for i = 0,...,p.
Choose m € 73151)1 and {1, } such that L(m;uj1,..., ;) are in the conjugacy
classes containing M, respectively. Suppose (M, ..., Mp) is irreducible and rigid.
Then Katz [KZ] shows that m is rigid and gives a construction of irreducible and
rigid (Mo, ..., M,) for any rigid m (cf. Remark [[T4ii)). It is an open problem
given by Katz [Kz] whether the monodromy generators M; are realized by solutions
of a single Fuchsian differential equations without an apparent singularity, whose
affirmative answer is given by the following corollary.

Corollary 12.12. Let m = (m;,,) o<j<p be a rigid monotone (p + 1)-tuple of
1<v<n;
partitions with ordm > 1. Retain the notation in Definition [71])
i) Fiz complex numbers \;,, for 0 < j <p and 1 < v; such that it satisfies the

Fuchs relation

p Ny
(12.35) > mjuAj, =ordm -1

=0 v=1
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The universal operator Py (A)u = 0 with the Riemann scheme ([LIQ) is irreducible
if and only if the condition

p
(12:36) Y A(K)jek), 46,0, (vo—tk),) £ 2
=0

for any (osve) satisfying m(k)j,., > m(k);, o), — d(k)

is satisfied for k =0,..., K — 1.
ii) Define (k) and u( )jw fork=0,...,K by

(12.37) w(0),=pj (G=0,....,p, v=1...,nj),
P
(12.38) k) = T n(k)j.000,
j=0

(12.39) plk + 1) = (k) 0 - f(R)D0 00
Then there exists an irreducible tuple (Mo, ..., M,) of matrices satisfying

M, My =1I,,
(12.40) poome T

Mj ~ L(mj,la s 7mj,nj;/~Lj,1a s 7Nj,n_7~) (] = Oa s 7p)
under the notation [@33) if and only if

(12.41) H H o =

j=0v=1
and the condition
p
(1242) [T k) sewy; 46,5, vo—tr),) # 1
7=0

for any (osve) satisfying m(k)j,., > m(k);, o), — d(k)

is satisfied for k =10,..., K — 1.

iii) Let (Mo, ..., Mp) be an irreducible tuple of matrices satisfying ([240). Then
there uniquely exists a Fuchsian differential equation Pu = 0 with p + 1 singular
points co, ..., cp and its local independent solutions ui, ..., Uord m %0 a neighborhood
of a non-singular point q such that the monodromy generators around the points c;
with respect to the solutions equal M;, respectively, for j =0,...,p (cf. (II123)).

Proof. The clam i) is a direct consequence of Theorem and the claim ii) is
proved by Theorem [[T.3] and Lemma [[T.11] as in the case of the proof of Theo-
rem [[ZT0 (cf. Remark IT41ii)).

iii) Since gcdm = 1, we can choose \;, € C such that e>™V=T» = 1, , and
Zj,y mj,Aj,, =ordm — 1. Then we have a universal operator Ppy(A;,)u = 0 with
the Riemann scheme (CI0). The irreducibility of (M,,...,My) and Theorem
assure the claim. O

Now we state the condition ([[Z30]) using the terminology of the Kac-Moody root
system. Suppose m € P is monotone and irreducibly realizable. Let {Ay,} be the
Riemann scheme of the universal operator Pp,. According to Remark [[8 iii) we
may relax the definition of £,,,,(m) as is given by (Z2) and then we may assume

(12.43) vpSo - v1SoA(N) € WL A(A(K)) (k=1,...,K)

under the notation in Definition [[T1] and (@3I). Then we have the following
theorem.
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Theorem 12.13. Let m = (mjﬂ,) o<j<p be an irreducibly realizable monotone
tuple of partition in P. Under the notation in Corollary IZ12 and 911, there
uniquely exists a bijection
w: A(m) = {(k,jo,yo);0§k<K, 0<ijo<p, 1<wvy<ny,
(1244) 140 7é E(k‘)JO and m(k)jo,l,o > m(k)jo,f(k)jo — d(k})}
U{(k,0,0(k)o); 0 <k < K}

such that
p

(12.45) Aa) = Z)\ G6(R) 4855, (vo—t(k);) Wwhen w(a) = (K, jo,10)-
7=0

Moreover we have
(@lam) = m(k)jo,vo = m(K)jo eeh),, + d(K)

(a € A(m), (k, jo, ) = w(a))
and if the universal equation Pm(A)u = 0 is irreducible, we have
(12.47) (AN)|a) ¢ Z  for any « € A(m).

In particular, if m is rigid and (Z41) is valid, the universal equation is irreducible.

(12.46)

Proof. Assume ordm > 1 and use the notation in Theorem 210l Since m may
not be monotone, we consider the monotone tuple m’ = sm in S’ _m (cf. Defini-
tion [GIT])). First note that
d—mj1+mj, = (a0 +aji+ -+ ajy—1|am).
Let ©; be the positive integers defined by
Mjpyt1 S Mg —d <My p,
for j =0,...,p. Then
P
Oy =0t with v = (H Sj17- sj,,;j,1>
§=0
and w(m) = $gvsa,, and
A(m) = ZU sovA(m'),

Z:={ap}U U {a+aoj1+-+a;v=1,...,07; —1}.
0<j<p
vi#l

Note that £(0) = (1,...,1) and the condition mj, ,, > mj,1 — d(0) is valid if
and only if vy € {1,...,7;,}. Since

D AO0)j145, 5, v0—1) = (AN)ao + o1 + -+ + Qg 1) + 1,

j=0
we have

L(0) = {(A()\)|a) +1;ac€ E}
by denoting
P
L(k) = {D MRk, 40,50 (vo—tk)y) § 1K) gy > UK, o), — d(k)}
j=0

Applying v=1sp to m and { Ay, }, they changes into m’ and {)\/, }, respectively, such
that A(N) — v~ 1sgA()\) € CAg. Hence we obtain the corollary by the induction as
in the proof of Corollary d
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Remark 12.14. Let m be an irreducibly realizable monotone tuple in P. Fix a €
A(m). We have o = ayy with a rigid tuple m’ € P and

(12.48) {Am }H = (AN ).
Definition 12.15. Define an index idxm (¢()\)) of the non-zero linear form ¢(\) =
?:0 ZZJ:l kjuAj. of with k;,, € Z>¢ as the positive integer d; such that

nj

p nj p
(1249) {Z zj: kj,uej,u; €50 € Z and Z ij’l,ej’l, = O} = 7Zd;.

j=0v=1 j=0v=1
Proposition 12.16. For a rigid tuple m in Corollary IZ13, define rigid tuples
m® . m®) with a non-negative integer N so that A(m) = {m™ ... m™)}
and put
pony ‘
(12.50) GO =33 "mN,  (i=1,...,N).
j=0v=1

Here we note that Theorem 1213 implies that Py (X) is irreducible if and only if
6;(N) €7 fori=1,...,n.

Fiz a function £(X) of \j, such that £(\) = £;(A) —r with i € {1,...,N} and
r € Z. Moreover fix generic complex numbers \;,, € C under the condition £(\) =
HAm}| = 0 and a decomposition Pm(N\) = P"P' such that P, P”" € W(x), 0 <
n' ;= ord P’ < mn and the differential equation P'v = 0 is irreducible. Then there
exists an irreducibly realizable subtuple m’ of m compatible to £(\) such that the
monodromy generators MJ’ of the equation P'u = 0 satisfies
rank(M; — >0y o (M =2k <l e, (R =1, ny)
for 7 =0,...,p. Here we define that the decomposition
(12.51) m=m'+m” (m'e P;ill), m'” € Pz(ﬁ/i)’ 0<n' <n)
is compatible to ¢(\) and that m’ is a subtuple of m compatible to ¢(\) if the
following conditions are valid

(12.52) {Am'}| € Z<p and |{\m~}| € Z,
(12.53) m' is realizable if there exists (j,v) such that m}, =m;, >0,
(12.54) m" is realizable if there exists (j,v) such that m’;,, = mj, > 0.

Here we note [{A\m'} + [{Am~}| =1 if m’' and m" are rigid.

Proof. The equation Py (A)u = 0 is reducible since £(A\) = 0. We may assume
Ajv—Aj #0for1 <v <y <njand j=0,...,p. The solutions of the equation
define the map F given by BIH) and the reducibility implies the existence of
an irreducible submap F’ such that 7'(U) C F(U) and 0 < n/ := dim F'(U) <
n. Then F’ defines a irreducible Fuchsian differential equation P'v = 0 which
has regular singularities at * = ¢y = 00, ¢y, ...,¢, and may have other apparent
singularities c},...,c;. Then the characteristic exponents of P’ at the singular
points are as follows.

There exists a decomposition m = m’+m” such that m’ € P() and m” € P("")
with n” := n —n’. The sets of characteristic exponents of P’ at © = ¢; are

Noyisi=1,...,mj,, v=1,...,n} which satisfy
A;,Vﬂ - )\jﬂ/ E {O, 17 “ee ,mj’,, - 1} and )\‘;,V71 < )\;')y’Q < A < )\;,V,m;-,y
for j =0,...,p. The sets of characteristic exponents at z = c} are {,uj,l, o ,uj,n/},

which satisfy p;; € Zand 0 < pjq < --- < p;n for j=1,...,¢. Then Remark 617
ii) says that the Fuchs relation of the equation P'v = 0 implies [{Am’}| € Z<o.
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Note that there exists a Fuchsian differential operator P € W (x) such that P =
P"P'. If there exists j, and v, such that m}_, =0, namely, m} , =m;,,, >0,
the exponents of the monodromy generators of the solution P'v = 0 are generic
and hence m’ should be realizable. The same claim is also true for the tuple m”.

Hence we have the proposition. O

Example 12.17. i) The reduction of the universal operator with the spectral type
11,11, 11 which is given by Theorem [2.10 is

T = 00 0 1
Aol A1 A2 (Z Ao =1)
(12.55) Aoz A2 Agp

N { T = 00 0 1 }
2X02 A1+ A2 —Ao2 —Az2 —Ag2 — A2

because 1t = Ao,1 + A1,1 + 21 —1 = —Xg2 — A2 — A2 2. Hence the necessary and
sufficient condition for the irreducibility of the universal operator given by ([[234)
is

Ao+ A1+ Aoy E 2,

Aoz + A1+ A1 € Z,

o1+ A2 + A2 ¢ Z,

Ao+ A1+ A € Z,
which is equivalent to
(12.56) Aoyi F A+ Ao ¢7 for i=1,2and j=1,2.
The rigid tuple m = 11,11, 11 corresponds to the real root am = 209 + ag,1 +
a1, + a1 under the notation in §0.11 Then A(m) = {ap, 0 + @j1; 5 = 0,1,2}
and (A|Oéo) = )\071 + )\171 + )\271 and (A|OZO + Oé071) = )\072 + A171 + )\271, etc. under
the notation in Theorem

The Riemann scheme for the Gauss hypergeometric series 2 F1(a, b, ¢; 2) is given
T = 00 0 1
by a 0 0 and therefore the condition for the irreducibility
b l—c c—a—-9»
is
(12.57) a¢Z,b¢7Z, c—b¢Z and c—a ¢ Z.
ii) The reduction of the Riemann scheme for the equation corresponding to

sy (a1, az, a3, B1, f2;7) is

T =00 0 1 5 5
aq 0 [0]2) o 4
fe%) 1-61 B3 (; 4= ;&)
(12.58) az  1=ps
T = 00 0 1
— K as—a1+1 o — 61 0

ag—ay1+1 a3 —P2 a3 —pF3—1

with g = a3 —1. Hence Theorem [[2. 10 says that the condition for the irreducibility
equals

o0 &7 (i=1,2,3),
o =B ¢Z (j=1,2)

together with
a;, — B ¢ 7 (1=2,3, j=1,2).
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Here the second condition follows from i). Hence the condition for the irreducibility

is

(12.59) 0;¢7Z and oy —B; ¢ 7 (i=1,2,3, j=1,2).
iii) The reduction of the even family is as follows:
. Z o [O]O [0]1 T = 00 0 1
a; ) _(251 [—ﬂ?ﬁzz) _LJae—a +1 0 0
a5 1—f az—aor+1 ar—pf1 [ —B3— 1
ag—ar+1 ar— P
Qg
T = 00 0 1
(z—1)"1H oy — B3 0 —a1+f3+1
a3 — B3 a1 — B [0]2)
ag— B3 o1 — B

Hence the condition for the irreducibility is

Q; ¢ Z (Z: 1a27374)7
o — B3¢ 7
together with
ai—ﬁggéZ (i:2,3,4).
041+Oé¢—ﬂj—,83€z (i=2,3,4, j=1,2)

by the result in ii). Thus the condition is

o; & 2, oy
(12.60) #

— P3¢ Z and ay + o — B —
(i=1,2,3,4, j=1,2, k=2,3,4).

Bs ¢ Z

Hence the condition for the irreducibility for the equation with the Riemann scheme

Aot [Mle) [Peale
Ao.2 Al2 [A2,2]2)
12.61 ’ ’ ’
( ) )\073 )\173
A0,4

of type 1111,211,22 is
Aoy + A A Z
(12.62) { 0w F A1t Ao ¢

Ao+ Ao F A1+ A2+ A1+ Ao ¢ Z

(v=1,2,3,4, k= 1,2)
(1<v<v <4).

This condition corresponds to the rigid decompositions

(12.63)

14,212,22 =1,10,1 @ 13,112, 21 = 12, 11,12 ® 1%, 11,12,

which are also important in the connection formula.
iv) (generalized Jordan-Pochhammer) The reduction of the universal operator
of the rigid spectral type 32,32,32,32 is as follows:

Mol [Arile) [Peile) [Asa] 3)}
! : : Aa+2Y Ao =4)
{[/\0,2}(2) A2l [A22]e) [>\3 2](2) Z 91 Z 92
. { )\0’1 — 2,u )\1_’1 )\2,1 )\3,1 }
Moz —#l@) M2+ule) P2+l P2+ ule
with ¢t = Ao1 + A1,1 + A2,1 + A3,;1 — 1. Hence the condition for the irreducibility is
3
PV 7 k=0,1,2,3,4
(1264) Z%:O 53,1465 % ¢ 5 ( 0,1,2,3, )7
> im0+ 60 A1 + 35 0(1 =6 k)Nj2 ¢ Z (k=0,1,2,3,4).



WEYL ALGEBRA AND FUCHSIAN DIFFERENTIAL EQUATIONS 107

Note that under the notation defined by Definition we have
(12.65) idxm (Ao + A1 + A2t 4 Asp) =2

and the index of any other linear form in (264 is 1.
In general the universal operator with the Riemann scheme

{ PMotlw  Paalwy  Peaddw  Pealwe }
Noz2l—1) [PM2le—1) [Aez2le—1) [PAs2]k-1)
(12.66)

3 3
(B> Aja+ (k=1)> X0 =2k)
j=0 §=0
is irreducible if and only if

S (= SN+ (v =1+ 8N 2 (k=10,1,2,3,4),
SV 8 )N + 2320(1/ — 0k N2 & Z (k=0,1,2,3,4),

Jj=0

(12.67) {

for any integers v and v/ satisfying 1 <2v < kand 1 <2/ <k —1.
The rigid decomposition

(12.68) 65,65, 65,65 = 12,21,21,21 @ 53,44, 44, 44

gives an example of the decomposition m = m’ & m” with supp oy, = supp o =

Supp &m’ .
v) The rigid Fuchsian differential equation with the Riemann scheme

z=0 1 C3 Cyq o0
0]y [0]¢9) [Olcoy [0y [60%(8
(

[a](3) [b](3) [C](s) [d}(s) le1] s
€2

)
)

is reducible when
a+b+c+d+3eg+e €7,

which is equivalent to %(60 — ez — 1) € Z under the Fuchs relation. At the generic
point of this reducible condition, the spectral types of the decomposition in the
Grothendieck group of the monodromy is

93,93,93,93,831 = 31, 31, 31, 31,211 + 31, 31, 31, 31, 310 + 31, 31, 31, 31, 310.
Note that the following reduction of the spectral types

93,93,93,93,831 — 13,13,13,13,031 — 10,10, 10, 10,001
31,31,31,31,211 — 11,11,11,11,011
31,31,31,31,310 — 01,01,01,01,010

and idx(31, 31, 31, 31,211) = —2.

13. SHIFT OPERATORS

In this section we study an integer shift of spectral parameters );, of the Fuch-
sian equation Py (A)u = 0. Here Py, () is the universal operator (cf. Theorem RI3)

corresponding to the spectral type m = (m;,,) j=o,...,p - For simplicity we assume
v=1,...,n;
that m is rigid in this section.
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13.1. Construction of shift operators and recurrence relations. First we
construct shift operators for general shifts.

Definition 13.1. For m = (m;,,) j=o,..p € Pl +1, a set of integers (€;,) j=o,....p

v=1,...,n; v=1,...,n;

parametrized by j and v is called a shift compatible to m if

(13.1) Z Z €jmj, = 0.

j=0v=1

Theorem 13.2 (shift operator). Fiz a shift (¢;,) compatible to m € 7)1(,7_:_)1. Then
there is a shift operator Rm (e, \) € W[z] ® C[\;,] which gives a homomorphism

of the equation Pyu(N)v = 0 to Pm(N)u =0 deﬁned by v = Rm(e, \)u. Here the
Riemann scheme of Pm(N) is {Am} = {[Njvlim,.) }J 0,....p and that of Pm(\)
is {A\m} defined by N, , = Xj, + ¢€j,,. Moreover we may ;szsume ord R (€, ) <

ordm and R, (€, \) never vanishes as a function of A and then Ry (e, A) is uniquely
determined up to a constant multiple.

Putting
(13.2) 7= (Tjw) 0<j<p with 7, = (24 (p—1)n)éj0 —my,
1<v<n;
and d = ord Rm (€, ), we have
(13.3) P\ 4+ €)Rm (6, \) = (1) R (e, 7 — X — €)* P (N)

under the notation in Theorem [.19 ).

Proof. We will prove the theorem by the induction on ord m. The theorem is clear
if ordm = 1.

We may assume that m is monotone. Then the reduction {S\{h} of the Riemann
scheme is defined by [[233). Hence putting

(13.4) {61 =€t ep,

EGv=—tiw+ (=190 —0,1)& (j=0,...,p, v=1,...,n,),

there is a shift operator R(e, ) of the equation Pg(X)o = 0 to Pa(N)i = 0 defined
by © = R(€, \)u. Note that

(x — ;)™ =194 Ad(O™H)

—.

P~ ()\) = a’masz()\) = Ad(H(m — Cj)/\j‘l)

j=1

p

H(ac — ;)" Ad(

Jj=1

E*@

(CB - cj)_/\j'l)Pm()‘>7

—

= s

P
Pay(N) = Opas Pm(N) = Ad(] [ (= - ;) H x — ;)™ 9T IAd(0” W )
j=1

<.

=- 1=

(x — ¢;)731) P (N).

P
[Tt — )7 Aa(
j=1

<
Il
—

Suppose \;, are generic. Let u(z) be a local solution of Pn(A)u =0at . = ¢;
corresponding to a characteristic exponent different from A; ;. Then

P
Ha:—c 718“H$—c Nty ()
j=1
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satisfies Pg(A)a(xz) = 0. Putting
o(z) := R(¢, N)a(z),

p
’
:H T —cj) )i g H x —c;)N1d(x),
ol ol

= foc YR(E,\)

j=1

we have Pg(N)i(x) = 0, Peu(N)v(z) = 0 and

Hx—c 718“H$—c Nity(z) = R Hx—c tu(x).

In general, if

P
(13.5) SQH T —c;)9t07 W H T —cj “Nap(z ):Sla_“H(x—cj)_A%lu(x)

j=1
with Sy, 5’2 € Wx], we have

(13.6) Rov(z) = Ryu(x)

by putting

€j,1
k —Ni
g I Tl
Jj=1

€5,1

ZJSQHa W Hx—cj)**é,u
j=1

with suitable integers k1 j, k2 ; and ¢ so that Ry, Ry € W[x; A

We choose a non-zero polynomial Sy € Clz] so that S; = SoR(¢,A) € Wz]. Since
P (X) is irreducible in W(x; A) and Rov(z) is not zero, there exists Rg € W (x;€)
such that RgRy — 1 € W(z;A\)Pm(X\). Then v(z) = Ru(z) with the operator
R=R3R; € W(l‘, /\)

Since the equations Pyu(A)u = 0 and Py,u(N)v = 0 are irreducible W(x; \)-
modules, the correspondence v = Ru gives an isomorphism between these two
modules. Since any solutions of these equations are holomorphically continued
along the path contained in C\ {ci1,...,¢,}, the coefficients of the operator R are
holomorphic in C\ {e1,...,¢c,}. Multiplying R by a suitable element of C(A), we
may assume R € W(z) ® C[\] and R does not vanish at any \;, € C.

c] Ajvtkr ga/i-‘r

=
I
—=
a

.
Il
_

(13.7)
(x _ c] Nj,vtka, JauM

P
I
—=

e
e

.
I
-

Put f(z) = ?Zl(x —¢j)". Since Rm(€,A) is a shift operator, there exists
S (€, A) € W(z; ) such that
(13.8) F T PN+ €)Rm(€,A) = Sm (6, ) f P (N).

Then Theorem G193 ii) shows
Rm(e,)\)*(f_lP (A+6)" = (f"Pm(N) Sm(e, N,
Run(e,A)" - f T Pm(A+ €)Y = [T Pm(N)" - Sm(e, V)",
Rea(e,A)" f ™' Pm(p = A =€) = {7 Pm(p = \)Sm(e,N)",
(13.9) Run(e,p— =€) f T Pm(p) = [~ Pm(pt + €)Smle.p — p— )"

Here we use the notation ([@52) and put pj, = 2(1 —n)d;o +n —m;, and p =
p—A—e. Comparing (I39) with (I38), we see that Sy, (€, A) is a constant multiple of
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the operator R, (e, p—A—¢)* and fRum(e, p—A—€)* f~1 = (f_lRm(e,p—)\—e)f)* =
Rum(e,7— X —¢)* and we have ([I33). O

Note that the operator Ry (€, \) is uniquely defined up to a constant multiple.

The following theorem gives a recurrence relation among specific local solutions
with a rigid spectral type and a relation between the shift operator Ry (e, A) and
the universal operator Pm ().

Theorem 13.3. Retain the notation in Corollary IZI2A and Theorem [13.7] with a
rigid tuple m. Assume mj,, =1 for j=0,1 and 2. Put e = (¢;,), € = (€;,),

G
!
(13.10) €jw = 01000, — 0j20un, and €, = ;00u,n, — 6,200,

forj=0,....pandv=1,...,n;.
i) Define Qm(A) € W(x; A) so that Qm(A)Pm(A+€) —1 € W(z; \)Pm(A + €).
Then
(13.11) Rm(6,A) — C(N)Qm(N\) Pm( A+ €') € W(z; \) Pm())
with o rational function C'(X\) of Aj ..
ii) Let ux(z) be the local solution of Pm(N)u = 0 such that uy(z) = (x — 1) m
mod (x — cl)>‘1m1+1001 for generic A\ ,. Then we have the recurrence relation
K-1
A

(13.12) ua(z) = urge (@) + (1 —e2) [[
v=0

(V + 1)1,711 - )‘(V)Lé(’/h +1
AW)1ny — )‘(V)l,K(U)l +1

Proof. Under the notation in Corollary [212 ¢(k); # n; for j = 0,1,2 and k =
0,...,K — 1 and therefore the operation 9%, on Py()\) is equals to 9%, on

Pm(X + €) if they are realized by the product of the operators of the form (2.
Hence by the induction on K, the proof of Theorem (cf. (33), 36) and

[@31)) shows

(13.13) P\ + é)u(z) = Pm(A + €)v(x)

for suitable functions u(z) and v(x) satistying Pm(A)u(z) = Pm(A+€)v(x) = 0 and
moreover ([[3I2)) is calculated by ([@6]). Note that the identities

“Upnpe(T).

P P p
(e1 —eo) [[@ = eV = T[( = )™ = [[(@ = e) e,
Jj=1 j=1 j=1
PoXNi+€eN L L P AN
H— g —e)N=(o— A e Nite
( ;x_cj)g(x ) ( ;x—cj)jl:ll(x )

correspond to (I312) and [I3I3), respectively, when K = 0.
Note that (I313]) may be proved by (I312). The claim i) in this theorem follows
from the fact v(z) = Qm(A) Pm(A + €)v(z) = Qm(A\) Pm(\ + € )u(z). O

In general we have the following theorem for the recurrence relation.

Theorem 13.4 (recurrence relations). Let m € P™) be a rigid tuple with my ,, =
1 and let ui(\,x) be the normalized solution of the equation Pm(MNu = 0 with
respect to the exponent \i,, at x = c;. Let € be shifts compatible to m for
i =0,...,n. Then there exists polynomial functions r;(x,\) € Clz,\] such that
(roy...,1) #0 and

(13.14) > il Nur(A + €9, z) = 0.

i=0

Proof. There exist R; € C(A) R (e, \) satisfying ui (A + €9, z) = Ryuy (), z) and
ord R; < n. We have r;(z,\) with > ;r;(2z, A\)R; = 0 and the claim. O
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Example 13.5 (Gauss hypergeometric equation). Let Pyxu = 0 and Pyv = 0 be
Fuchsian differential equations with the Riemann Scheme

Tr =00 0 1 Tr =00 0 1
Ao A1 Agnpoand ¢ Agy =Xon Alp = A Aop =A21 o,
A2 A2 Ao M2 =Ao2 Ma=Ada2+1l A=Ay —1

respectively. Here the operators Py = Pxg; x5,M.1,01.2,00.1,00., and Py are given
in ZXEI). The normalized local solution uy(z) of Pyu = 0 corresponding to the
exponent Ao at x =0 is

(13.15) 22 (1 —2)* ' F(Ao1 + Atz + A1, Aoz + A2+ o1, 1 — A + Ap o 2).

T =00 0 1 v = oo 0 1
By the reduction A A A — - ith
y 0,1 1,1 2,1 {)\072 —u /\1,2 Yo )\272 4 M} W
Aoz A2 A2

= Ao,1+ A1+ A21 — 1, the recurrence relation (I3:12)) means
M2 (1 — ﬂf))‘2’1F()\o,1 + A2+ X1, o2+ A2+ A1, L — A1+ Ao )
=2M2(1 =) F(Ao1 + A2 + Aot do2 + A2 + Ao + 1,1 — A + Ao 2)
~Aog A+ Ao At
11—+ X2
cF(Xog+ A2+ A1+ 12+ 24+ A1 +1,2— X1+ A 2;2),

(1 — )t

which is equivalent to the recurrence relation
(1316)  F(aB,7.2) = F(af+L,7;2) — “aF(a+ 1,8+ 1,7+ Liz).
Y

Using the expression (ZXI]), we have
Pyyo — Py =2%(z — 1)0 4+ N12® — (Mo + A2z,
Pyie — Prye = z(x — 1)23 + /\071x2 — (Ao1+ A1)z — A,
(x = 1)Pyje = (a:(z -0+ (Mo2—2)x+ A2+ 1) (PAH/ - PA+5)
= (Ao,1 + A1+ A21)(No2 + A1z + Agp)z(z — 1),
ez —1) "Nzl =10+ (N2 —2)x+ M2+ 1) (Prye — Py) — (z —1)7' Py

= (Ao + A1+ A1) (20 = A2 — ;\2_1?)
and hence (3] says
(13.17) Bun(€,3) = 20 = Atz = Aoa——.
In the same way we have
(13.18) Rn(—e, A+ €)= (z—1)0 — Ago + 1 —Al,l‘"”;l.
Then
(13.19) Rn(—6, A+ €)Rm(e,\) — 7tz — 1)1 Py

=—(Ao1+ A2+ A1) (o2 + A2+ A1)

and since —Rp (6,7 — A —¢)* = —(xa +(A124+2)+ (Ao + 1)&)* =20 — A2 —
1 — (A2,1 +1)-% with 7 given by (I3.2)), the identity (I3.3) means

(13.20) PaBm(e,\) = (20 = (A2 + 1) = (ot + )= ) Pase.
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Remark 13.6. Suppose m is irreducibly realizable but it is not rigid. If the reduc-
tions of {A\m} and {A,,} to Riemann schemes with a fundamental tuple of partitions
are transformed into each other by suitable additions, we can construct a shift op-
erator as in Theorem[[3.2 If they are not so, we need a shift operator for equations
whose spectral type are fundamental and such an operator is called a Schlesinger
transformation.

13.2. Relation to reducibility. In this subsection, we will examine whether the
shift operator defines a W (x)-isomorphism or doesn’t.

Theorem 13.7. Retain the notation in Theorem [I33 and define a polynomial
function cm(€; A) of A, by

(13.21) Rm(—€, A+ €)Rm(€, A) — cm(e; A) € (Wz] ® C[A]) Pm(N).

i) Fiz A], € C. If cm(6;A%) # 0, the equation Pm(A\°)u = 0 is isomorphic to the
equation Pm(A° + €)v = 0. If cm(e; A°) = 0, then the equations Pp(A°)u = 0 and
P (A + €)v =0 are not irreducible.

ii) Under the notation in Proposition[IZ18, there exists a set A whose elements
(i,k) are in {1,..., N} X Z such that

(13.22) em(6 ) =C [[ (L) —k)

(i,k)eN

with a constant C € C*. Here A may contain some elements (i, k) with multiplici-
ties.

Proof. Since u +— Rm(—€, A + €)Rm(€, \)u defined an endomorphism of the irre-
ducible equation Py, (M\)u = 0, the existence of ¢, (€; A) is clear.

If ¢ (€; A°) = 0, the non-zero homomorphism of Py, (A°)u = 0 to Py (A°+€)v =0
defined by v = Rp(€; A°)v is not surjective nor injective. Hence the equations are
not irreducible. If ¢y, (€;A°) # 0, then the homomorphism is an isomorphism and
the equations are isomorphic to each other.

The claim ii) follows from Proposition O

Theorem 13.8. Retain the notation in Theorem [I3_] with a rigid tuple m. Fiz a
linear function £(\) of A such that the condition £(\) = 0 implies the reducibility of
the universal equation Py (N)u = 0.

i) If there is no irreducible realizable subtuple m’ of m which is compatible to
L(N) and £(X+€), £(N) is a factor of cm(€;N).

If there is no dual decomposition of m with respect to the pair £(X) and (A +¢),
2(X\) is not a factor of em(e;N\). Here we define that the decomposition [[ZHI) is
dual with respect to the pair £(\) and L(\ + €) if the following conditions are valid.

(13.23) m’ is an irreducibly realizable subtuple of m compatible to £(N),

(13.24) m” is a subtuple of m compatible to {(\ + €).

ii) Suppose there exists a decomposition m = m’ @ m" with rigid tuples m’ and
m" such that £L(\) = |[{A\m}| + &k with k € Z and {(A+€) = £(X\) + 1. Then £()\) is
a factor of em(€; A) if and only if k = 0.

Proof. Fix generic complex numbers \;, € C satisfying ¢(\) = [{Am}| = 0. Then
we may assume A, —\j,» ¢ Zfor 1 <v <v' <njand j=0,...,p.

i) The shift operator R := Ry (—¢€, A+ €) gives a non-zero W (z)-homomorphism
of the equation Pp(A + €)v = 0 to Pm(A)u = 0 by the correspondence v = Ru.
Since the equation Py, (A)u = 0 is reducible, we examine the decompositions of m
described in Proposition Note that the genericity of A;, € C assures that
the subtuple m’ of m corresponding to a decomposition Py, (\) = P” P’ is uniquely
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determined, namely, m’ corresponds to the spectral type of the monodromy of the
equation P'u = 0.

If the shift operator R is bijective, there exists a subtuple m’ of m compatible
to £(A\) and (X + ¢€) because R indices an isomorphism of monodromy.

Suppose £(\) is a factor of cm(e; A). Then R is not bijective. We assume that
the image of R is the equation P”’% = 0 and the kernel of R is the equation
P! = 0. Then Pyn(A\) = P"P’ and Pu(M + €) = P/P/ with suitable Fuchsian
differential operators P’ and P!’. Note that the spectral type of the monodromy of
P'u = 0 and P/v = 0 corresponds to m’ and m” with m = m’ + m"”. Applying
Proposition IZTI6lto the decompositions Py, (X)) = PP’ and Py (A+€) = P/P!, we
have a dual decomposition [[2Z35]1) of m with respect to the pair £(\) and £(\ + ¢).

ii) Since Pm(A)u = 0 is reducible, we have a decomposition Py, (A) = P” P’ with
0 < ord P’ < ord Py (A). We may assume P'u = 0 and let m’ be the spectral type
of the monodromy of the equation P'u = 0. Then m’ = ¢;m’ + lom” with integers
¢; and {5 because |{dm}| € Z<p. Since P'u = 0 is irreducible, 2 > idxm’ =
2(02 — l10y + ¢3) and therefore (¢1,03) = (1,0) or (0,1). Hence the claim follows
from i) and the identity |[{A\m} + {dm~}| =1 O

When m is simply reducible (cf. Definition BI4)), each linear form of X;, de-
scribing the reducibility uniquely corresponds to a rigid decomposition of m and
therefore Theorem [I3.8 gives the necessary and sufficient condition for the bijectiv-
ity of the shift operator Rm (€, A).

Example 13.9 (EO,). Let P(A)u = 0 and P(\)v = 0 be the Fuchsian differential
equation with the Riemann schemes

Aot [Mle) [Peale) Ao,1 Al [P2ile
Aoz A2 [A2,2](2) and Ao,2 A1,2 [A2,2](2)
0,3 A13 Ao,3 Az +1

Ao4 Aoa—1

respectively. Since the condition of the reducibility of the equation corresponds
to rigid decompositions (IZG3), it easily follows from Theorem that the shift
operator between P(A)u =0 and P(\)v = 0 is bijective if and only if
Xoga+A2+ A2, —1#0 (1<pu<2),
>\0,y + )\07,/ + )\171 + )\173 + )\le + )\272 —1 75 0 (1 <v<v < 3)
In general, for a shift € = (¢; ) compatible to the spectral type 1111, 211, 22, the

shift operator between P(A)u = 0 and P(X + €)v = 0 is bijective if and only if the
values of each function in the list

(13.25) )\O,y + )\1,1 + )\2,“ (1 <v<4 1< < 2),
(1326) AO,V —+ >\07V/ —+ )\171 —+ )\173 —+ )\271 —+ )\272 -1 (]. <v< l// S 4)
are

not integers for A and \ + ¢
(13.27) or positive integers for A and A\ + ¢

or non-positive integers for A and A\ + €.
Note that the shift operator gives a homomorphism between monodromies (cf. (23))).

The following conjecture gives ¢m (€; A) under certain conditions.

Conjecture 13.10. Retain the assumption that m = ()\j,l,) 0<j<p € 7)1(,7_:_)1 is rigid.
v<n;

i) If £(\) = £(\ + €) in Theorem I3/ then £(\) is not a factor of cm(€;N),
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i) Assume mjy ., = man, =1 and

(1328) € = (Gj,u) 0<5<p » €j71, == 5j,151/,n1 — (5]'7251,,712,

1<v<n;
Then we have
(13.29) em(6N) =C 11 { A}

m:m’@m”
’ 7 —1
MY g =M =

with C € C*.
Suppose the spectral type m is of Okubo type, namely,
(13.30) mi1+---+mp1=(p—1)ordm.

Then some shift operators are easily obtained as follows. By a suitable addition we
may assume that the Riemann scheme is

T =00 T =c e T =cp
[A0,1](mo,1) Olm,y (0] (mp )
(13.31) Po2limos)  M2lims) 0 Pe2lon,.
[AO,no](mo,nO) [Alynl](ml,nl) T [)‘p,np](mp,"p)

and the corresponding differential equation Pu = 0 is of the form
P dn n—1 p . dk
n—mji1 _— _ .. \max{k—mj; 1,0 i
PV = [1@ =y 5 [ @ = epymtmnVan(a) 7.
j=1 k=0 j=1
Here aj,(z) is a polynomial of z whose degree is not larger than & — 37, max{k —
m;j1,0}. Moreover we have

no m0,1/71

(13.32) a@) =] J] o+

v=1 =0
Define the differential operators Ry and Rm(A) € W(z] @ C[A] by
(13.33) Ri =42 and Pm(X) = —Rm(A\)Ri +ao(z).
Let Pm(XN)v = 0 be the differential equation with the Riemann scheme
T =00 T =c e T=cp

o1 + Ume,n) [0)(my 1) s [0}y 1)

(13.34) o2 + 1}(mo,2) [A12 — 1](m1,2) Ap2 — 1](mp72)
[)‘O,nn + 1](mo‘n0) P‘Lm - 1](m1,n1) [)‘p,np - 1}(mp,np)

Then the correspondences u = Ry (A)v and v = Ryu give W (z)-homomorphisms
between the differential equations.

Proposition 13.11. Let m = {m; , } 0<j<p be a rigid tuple of partitions satisfying
1<v<n;
@330). Putting

1 j=0,1<v<
(13.35) €jv = i ), 1<v< no),
6V70_1 (1§J§p71§U§n]),

we have
ng mO,r/71

(13.36) em(6N) = TI Qow+Aa+-+ A +1i).
v=1 =0
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Proof. By suitable additions the proposition follows from the result assuming A;, =
0 for j =1,...,p, which has been shown. U

Example 13.12. The generalized hypergeometric equations with the Riemann
schemes

Aot A [A2a]m-n o1 A1 A2,1](n-1)
(1337) )\071, )‘1’1/0 and )\0}1, /\1’1,0 +1
Aon Aln A2.2 Ao,n Ain Az —1

s

whose spectral type is m = 17,1, (n — 1)1 are isomorphic to each other by the
shift operator if and only if

(1338) )‘07V + )\17,,0 + )\271 75 0 (l/ =1,..., n)

This statement follows from Proposition [3.11] with suitable additions.

Theorem [[38 shows that in general P(A)u = 0 with the Riemann scheme {Any}
is W(z)-isomorphic to P(A + €)v = 0 by the shift operator if and only if the values
of the function Ao, + A1, + Ao satisfy (I321) for 1 <v <mnand 1 < p <n. Here
€ is any shift compatible to m.

The shift operator between

M1 A [Meilmen Aoi AL Ao

Ao2 A2 A2,2 Ao2 A2 —1 A2,2
(13.39) . . and ) :

)\O,n >\1,n >\O,n )\1,77,

is bijective if and only if
)\071, + )\1’1 + )\le 7é 0 and >\07V + )\172 + )\271 7& 1 for v= ]., cee,n.

Hence if A\; = 0 and A2 = 1 and Ag;; + A2;1 = 0, the shift operator defines a
non-zero endomorphism which is not bijective and therefore the monodromy of the
space of the solutions are decomposed into a direct sum of the spaces of solutions
of two Fuchsian differential equations. The other parameters are generic in this
case, the decomposition is unique and the dimension of the smaller space equals
1. When n =2 and (cg, ¢1,¢2) = (00,1,0) and Ay and Ay o are generic, the space
equals Cz?21 @ Cxr22

13.3. Polynomial solutions. We characterize some polynomial solutions of a dif-
ferential equation of Okubo type.

Proposition 13.13. Retain the notation in Y31 Let Pm(A)u = 0 be the dif-
ferential equation with the Riemann scheme [I331)). Suppose that m is rigid and
satisfies (I330). Suppose moreover that there exists j, satisfying m;,1 = 1 and
0 < jo < p. Fiz a complex number C. Suppose \o1 = —C and \;, ¢ Z for
j=0,....,pand v =2,...,n;. Then the equation has a polynomial solution of
degree k if and only if C' = k.

We denote the polynomial solution by px. Then p) is a polynomial solution of
P (A + €)v = 0 under the notation (I330). Moreover

(13.40) Rmn(A) 0 Rm(A+€) o0 Rn(A+ (k — 1)e)1

is a non-zero constant multiple of px under the notation [I3.33).
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Proof. Since m = (81,,) o<j<p ® (mj — 61,4) 0<j<p is a rigid decomposition of
1<v<n; 1<v<n;

m, we have Py ()\) = P10 with suitable P, € W(z) when C' = 0. Note that

Ry (A +Le) defines an isomorphism of the equation Py (A+ (£+1)€)ugr1 = 0 to the

equation Py (A + le)ur = 0 by up = Rm(A + le)up4q if C # ¢, the function (I340)

is a polynomial solution of Pp,(A)u = 0. The remaining part of the proposition is

clear. O

Remark 13.14. We have not used the assumption that m is rigid in Proposi-
tion [3.11] and Proposition [3.13] and hence the propositions are valid without this
assumption.

14. CONNECTION PROBLEM

14.1. Connection formula. For a realizable tuple m € P,;; let Phu = 0 be a
universal Fuchsian differential equation with the Riemann scheme

z=0 cp=1 cj Cp = 0
[)‘0,1](7?10,1) [Alal}(ml,l) T [)\jal}(mj,l) T [prl](mp,l)
(14.1) : . . . : .
[AO,no](mo,nO) [)‘l,nl](ml,nl) T [Aj’nj](mj,nj) T [)‘Pa"p](mp,np)
The singular points of the equation are ¢; for j = 0,...,p. In this subsection we
always assume ¢y =0, ¢y =1 and ¢, = oo and ¢; ¢ [0,1] for j =2,...,p— 1. We

also assume that A;, are generic.

Definition 14.1 (connection coefficients). Suppose A;, are generic under the

Fuchs relation. Let uéo’"" and ui\l’”l be normalized local solutions of Py = 0 at
2 = 0 and = 1 corresponding to the exponents \g ., and A1 ,,, respectively, so that
u(/)\o’”o = 720 mod z t10, and ui‘l"’l =(1-2)*m mod (1 —x)H1O;.

Yo

A . . .
Here 1 <yyp<mpand 1 <v; <ng. fmg,, =1, uoo’ is uniquely determined and

then the analytic continuation of ug‘o’”‘) to x = 1 along (0,1) C R defines a con-

nection coefficient with respect to ui\l’"l, which is denoted by ¢(0: Ao,y ~>1:A1,,,)
or simply by ¢(Ao,uy ~» A1,1,). The connection coefficient ¢(1: Ay, ~>0: Ag.,) Or
1,vp

(A, ~ Aoy, ) Of ui\ with respect to u3°=”0 are similarly defined if mq ,, = 1.

Moreover we define c(c; : A, ~¢j Aj,uj) by using a suitable linear fractional
transformation T of C U {oo} which transforms {c;,¢;} to {0,1} so that T'(c,) ¢
(0,1) for v = 0,...,p. If p = 2, we define the map T so that T'(c;) = oo for the
other singular point ¢;. For example if ¢; ¢ [0,1] for j = 2,...,p — 1, we put
T(x) = ;%5 to define c(0: Aoy~ 001 Apy,) Or ¢(00 1 Ap b, 01 X uy)-

In the definition ug‘o’”" (r) = 2?0 ¢(x) with analytic function ¢(z) at 0 which
satisfies ¢(0) = 1 and if Re A1, < Re A1, for v # vy, we have

(14.2) owy~ ) = lim (1—2) g™ (@) (z€[0,1))

by the analytic continuation. The connection coefficient ¢(Ag.,, ~> A1,,, ) meromor-
phically depends on spectral parameters A;,. It also holomorphically depends on
accessory parameters g; and singular points % (j=2,...,p—1) in a neighborhood
of given values of parameters. '

The main purpose in this subsection is to get the explicit expression of the
connection coefficients in terms of Gamma functions when m is rigid and mg, =
miy = 1.

Fist we prove the following key lemma which describes the effect of a middle
convolution on connection coefficients.
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Lemma 14.2. Using the integral transformation Z31), we put
(14.3) (T} yu) () =27 "(1 — )R (1 — z)Pu(w),
(14.4) (S yu) (@) =z~ H I (1 — 2) u(x)

for a continuous function u(z) on [0,1]. Suppose Rea > 0 and Rep > 0. Under
the condition Reb+ Rep < 0 or Reb+ Rep > 0, (T2 u)(x) or S¥,(u)(z) defines
a continuous function on [0, 1], respectively, and we have

I(a+1)

(14.5) T (u)(0) = Sl ,(u)(0) = mu(o),
Top(w)(@) —u(1) , w . Tla+p+)I(—p—b)
0 F w0 ~ w0 T T Tar ey
5 (u)(l) 1 F<a‘+u’+1) a _ b+,u—1u
D 5, w0) ~ o) F(M)F(a+1)/0 FA- T ulod:
Proof. Suppose Rea > 0 and 0 < Repu < —Reb. Then

LT3 (u) (@)

_gmeme(l —a:)_b_“/ 11— (@ — )" u(t)dt (=51, 0 <@ < 1)
0
1
=(1- ac)_b_“/O s4(1 — s1)" 11 — xs1) u(as;)ds;
la 1—s1\#/1—x51\? ds
’/0 31(1—1;) < 1—2 ) “(“1)1—51

— /01(1 — Sz)a(lij)“(l + 1$jgx)bu(x —x32)@ (s1=1— s2)

S2

= [T sa—a) e e (= 2)) T (s = (1))
Since

|sf(1—sp)* M1 - J;sl)bu(xsl)} < max{(1 — s;)Rer—1 1}37 Reb Jmax, lu(t)]

for0<s;<land0<z <2, T, (u)(z) is continuous for z € [0, 2). We have

[(1—s(1— x))as“fl(l + z8)Pu(r — (1 — z)s))| < sRer=1(1 4 §)Reb0121ta<xl u(t)|

for 1 <2 <1land0< s < L and therefore T, (u)(x) is continuous for = € (3,1].

Hence T, () defines a continuous function on [0, 1] and

T*, (1)(0) = i) / (1= sp)shu() @2 = LT )

L(p s2 Tla+p+1)
1 e ds
T;Lulz—/ sM(1 + s)Pu(1)—
L0 = i [ s
s 1 1 1 1 ds
t=th=l-1m ms=1-t1+s=14, s=15-1=14, & =79

I RN _ (—p —b)
F(M)/o (ﬁ) (1— )~ 2u(1)dt = !

The claims for S!', are clear from

LS )(e) = [ st(1= s (1= s uas)ds.
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This lemma is useful for the middle convolution mc, not only when it gives a
reduction but also when it doesn’t change the spectral type.

Example 14.3. Applying Lemma [[4.2] to the solution

p—1

wy (@) = / 2o (1 — e <H (1-5) ) (@ — t)"dt
0 =2 G
of the Jordan-Pochhammer equation (cf. Example[Z8liii)) with the Riemann scheme
=0 ¢ =1 - cj cp =00
[0](;071) [0](17,1) co [0](1)71) c [1 - /’;](pfl) 5
R Y e > P YR

we have

—1
. _ Do+ p+ D=\ —p) § 1\N
C(O.)\o'f',u 1.)\1+/L)— F()\0+1)F(—)\1) jl:[z(l Cj) ,

—1
(Ao +p+1) /1 A A1 T t\Y
A ~1:0)= ————% (1 —t)MtH Il 1——) dt

Moreover the equation Pu = 0 with
P :=RAd(0~*)RAd(z" ) RAA(d~*) RAd (2 (1 — 2))d
is satisfied by the generalized hypergeometric function 3 F» with the Riemann scheme

z=0 1 00
0 [0](2) 1—y
)\/_|_‘u/ 1_)\/_’u_‘u/
M+N+pu+p MAp+p —do—A =N —p—p
corresponding to 111,21,111 and therefore

Qo+ N+t A+ ) = Ch L O8 an
_TQotp+ PN —p) TQo+ N +p+p + DA —p— )
T T+ D0(=N) TN+ N +p+D)T(=A — p)
CTQo+pu+ D)Mo+ XN +p+p' + DDA —p—pf)
a (Ao + DI(=A)L (Ao + X+ p+1)
We further examine the connection coefficient.
In general putting ¢co =0 and ¢; =1 and A\, = ZZ:O Ak,1 — 1, we have

{ z=c¢ (j=0,....,p—1) 00 }
Njw = (5.0 + 05,00 N1 (m,) P + A0ino + Atiny ] (mo.)

.rAO»”O(l—m))‘L"l { T =y oo }
- 7
Pivlimg) ool

270 TPl (1—ej ta) TR { [0](mj.1) [)\pJ + ZZ;(I) )‘kyl](mp,l) }
’ 1
[)\j,u - )\jvl](mjyu) [Apvl’ + Zizo )\kvl](mILD)
'~ Th=o k.1 { (0] (. —a) Ap1+ Zi;(l)_)l\k,l - 2)\1](%,1—61)}
Pw =N+ Mmoo + 200 M1 — M,

(d= mu1—(p—1)n)
k=0
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>‘0al_1(1 ¢ D)

(mJI d)

>\jl/+>\ 1(mj,.)
Y F /\0 10 + A —

)\071 + 1)1_‘()\171

(0. ¢]
Ap1 — 2)‘1](mp71*d) ?
[)‘p,l/ - Al](mp,l/)

— Ay — A1)

A0,nq —A0,15A1,nq — A1,
0,mq 0,1,A1,nq 1,1 ()‘Oyno

X1+ DI (A1 — Ainy)

In general, the following theorem is a direct consequence of Definition and

Lemma [14.2]

Theorem 14.4. Putco =00, ¢;1 =1 and c; € C\ {0} forj=3,..

transformation

.,p—1. By the

RAd(a:A‘UPI_I (1-— ;)’\“> o RAd(@hZi:o f\m) o RAd(on,lﬁ(l _ ﬁ)ﬂ_m)

j=1 J

o
j=1 J

the Riemann scheme of a Fuchsian ordinary differential equation and its connection

coefficient change as follows:

T = ¢4 o0
{Am} = {[ iwlm, u)}10<3<<1’ =4 Widlom;n Poalom,
= Nl Poalimg.)
= { A} = {[Aé,uhm;,y)} 0<j<p
1<v<n;
T =cj o)
= [/\Jz’;l](mj,lfd) [/\;DJ -2 ZZp:O )\k’l + 2](mp,17d)
N + 2 kmo Akt — ]'](mj,u) Apw = 2kmo Ak1 + 1](mp.u)
with
d:m()’l +"'+mp,1 - (p_ l)ordm7
m;‘,u =Mjv _d§”’1 (J =0,...,p, v= 17"'7nj)7
Ny=X1 (G=0,...,p=1), Xy ==2X 1 — =2 11 — M\p1 +2,
)\;‘7y:)‘j7l/+)‘0,1+)‘1,1+".+)\Px1 -1 (j:O,...,p—l, V:2,...,ﬂj),
)\;,V = /\pﬂ, - )\071 - )\p,l +1

and if mo n, =1 and ng > 1 and ny > 1, then

(148) (Aé) ,10 ~ )\/l,nl) _ C()\(Lno > )\1,77.1) )
F(Aome = A01 + DTN = A 0)  TAome = Aoa + DI Arg = Aim,)

Applying the successive reduction by 0p,q, to the above theorem, we obtain the

following theorem.

Theorem 14.5. Suppose that a tuple m € P is irreducibly realizable and mg ,,, =

M1, =1 in the Riemann scheme ([[ZI)).

c()\O,ng ~ )\1777/1 )
E()‘(K)O no W)‘( ) 7711)

_ H ()\(k‘)o no

— /\(k)O,Z(k)o + 1) . F()\<k)1,f(k)1

Then the connection coefficient satisfies

- )‘<k)1,7l1)

Ak +1)on, —

)\(k + l)o,g(]g)o + 1) . F(/\(k + 1)17Z(k)1 — )\(k + 1)1,7“)
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under the notation in Definitions [T11, Here ¢(A(K)ono ~> AN(K)1,n,) is a corre-
Py)v = 0 with the funda-

sponding connection coefficient for the equation (0X,.
mental spectral type fm. We note that

(Ak 4+ Dong = Ak + D)ooy, +1) + Ak + D1ery, — Ak +1)1n,)
= (Mk)one — AK)o,e(k)0 + 1) + (AE) 1000y, — AK)1,m,)
fork=0,..., K —1.

(14.9)

When m is rigid in the theorem above, we note that ¢(Ag ny (K)~> A1 pn, (K)) =1
and we have the following more explicit result.

Theorem 14.6. Let m € P be a rigid tuple. Assume Mo p, = Mip, =1, ng > 1
and ny > 1 in the Riemann scheme [IZ1)). Then

no—1 ny—1
I T(home = Ao +1) - H (A — Ainy)
c )\O,n M'))\1,71 = =1 s
(14.10) (o.ng Y — AE)j,e0x),
I oo I (1- —)
m’'$m’”’ =m Jj=2
m(),ng :m/ll,nlzl

(14.11) Z m;yy = (’I’Ll - 1)mj7,, - 5]‘70(1 — noé,jmo) + (5]',1(1 - n16l,ml)

mEBm =m

M0, =My =1 1<v<n;, 0<j<p)
under the notation in Definitions [(13 and [7.1]]

Proof. We may assume m is monotone and ordm > 1.
We will prove this theorem by the induction on ord m. Suppose

(14.12) m=m'om" with mg, =mj, =1
If 91m’ is not well-defined, then
(14.13) ordm’ =1 and m;-)l =1 for j=1,2,...,p
and 1+my1+---+mp1 — (p—1)ordm = 1 because idx(m, m’) = 1 and therefore

(1414) dl (m) = MmMop.1-

i

If O1m” is not well-defined,

(14.15) ordm” =1 and mfj, =1 for j=0,2,...,p,
dl (m) =mi,.

Hence if dy(m) < mp; and di(m) < mq, Oym’ and dym” are always well-
defined and dym = 9ym’ G dym” and the direct decompositions [([ZI2)) of m
correspond to those of Oym and therefore Theorem [[44] shows ([[ZI0) by the in-
duction because we may assume dp (m) > 0. In fact, it follows from ([ZI3) that the
gamma factors in the denominator of the fraction in the right hand side of ([IZI0)
don’t change by the reduction and the change of the numerator just corresponds
to the formula in Theorem 4.4

If d1 (m) = mg 1, there exists the direct decomposition (IZI2)) with (IZ13) which
doesn’t correspond to a direct decomposition of d;m but corresponds to the term
F(H)\m/}D = F()\()_’nl + )\171 +--+ )\p,l) = F()\6 ni )\6,1 + 1) in m Similarly
if d1(m) = mq 1, there exists the direct decomposition ([ZI2) with (IZIH) and it
corresponds to the term I'([{Am/ }) =T(1 — {Am~}) =T —Xoj1 — A1n, — A21 —

—Ap1) = (A1 — Ay, (cf. @&2T)). Thus Theorem M4.4 assures (IZI0) by

the induction on ord m.
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Note that the above proof with (IZ3]) shows (IZI8). Hence

’I’Lofl ’I’Llfl
Z {Am}] = Z (Aome = Ao +1) + Z ALy = Atny)
/m’@m”:m v=1 v=1
M0umo =My =1 no—1 ny—1

= (no — 1) + (0 = DAo.ng — ZAoﬁZm

p nj—0;1

+ (n1 — 1)(2 Z mjpAj, —n+ 1)

j=0 v=1
’nofl
= (no +ny — 2))\07710 + Z ((nl — 1)m07,, — 1))\0,1,
v=1
ni—1
+Z nlflmlu“i’l)\lu‘{’zznl*lm]u 7,V

j=2v=1
+(n0+n1 —2)—(ny —1)ordm.

The left hand side of the above first equation and the right hand side of the above
last equation don’t contain the term A ,, and therefore the coefficients of A;, in

the both sides are equal, which implies ([ZIT]). O
Corollary 14.7. Retain the notation in Theorem[I].6f We have

(14.16) #m'; m' om” =m with mg,, =m{, =1} =no+n -2,
(14.17) Z ordm’ = (n; — 1) ordm,

m'éBm”:m
/ [ _
mO,nO _ml,nl =1

no—1 ny—1
(14.18) > {0 =D Qomo = Aow + 1)+ > (A — Ay
m'@m':/:m v=1 v=1

’ j— j—
moyno _rnlm1 =1

Let ¢(Aong + 1t~ A1y — 1) be the connection coefficient for the Riemann scheme

{[)\j»” + t((sij(SV”ﬂO - 6],161/ n1 } Then
T A(K)
(14.19) tEToo c(0: Mg + 1~ 1: Ay, — 1) = H2(1 — ;)N
j=

Under the notation in Theorem [12. 13

(14.20) {m";m'@m" =m with mg, =mj, =1}
' ={m' e P;mg,, =1, m, =0, am or am m € A(m)}.

Proof. We have ([[ZI8) in the proof of Theorem [[Z4] and then Stirling’s formula
and ([[4I8) prove (IZ19). Putting (j,v) = (0,n0) in (IZI1)) and considering the
sum »_  for (IZIT]) with j = 1, we have (IZI0) and ([IZI7), respectively.
Comparing the proof of Theorem with that of Theorem I2.13] we have
([IZ20). Proposition @9 also proves ([[Z20). O

Remark 14.8. 1) When we calculate a connection coefficient for a given rigid parti-
tion m by ([[ZI0), it is necessary to get all the direct decompositions m = m’ $m”
satisfying mg ,,, = mY,, = 1. In this case the equality (IZI0) is useful because
we know that the number of such decompositions equals ng + n1 — 2, namely, the

number of gamma functions appearing in the numerator equals that appearing in
the denominator in (IZI0I).
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ii) A direct decomposition m = m’ & m” for a rigid tuple m means that
{@m’, am~ } is a fundamental system of a root system of type Az in Royy + Rayy
such that am = @m/ + am and Qm/  Om

(Oém/|O[m/) = (O[m// |05m”) = 2,
(Oém/|am//) = 71 am’
iii) In view of Definition [E12] the condition m = m’ & m” in ([ZI0) means

(14.21) {2 3+ [{Prr}

Hence we have

=1

C()\O,no ~ )\l,nl) ! C()‘l,nl ~ )‘07’”0)

H sin(|{Am }|7)
(14.22) il

mg, ng = "M1,ny

no—1 ni1—1
H Sin()\o,y — )\1,1,)7T : H Sin()\l,u - )\l,nl)ﬂ-
v=1 v=1

iv) By the aid of a computer, the author obtained the table of the concrete
connection coefficients (IZI0]) for the rigid triplets m satisfying ord m < 40 together
with checking ([[4IT]), which contains 4,111,704 independent cases (cf. JI5.1T).

14.2. An estimate for large exponents. The Gauss hypergeometric series

iaa-i—l (a+k—1)'5(5+1)'“(3+k—1)xk

o B,7;2) - yy+1) - (y+k—1)-k

uniformly and absolutely converges for
(14.23) re€D:={zxeC;lz| <1}

if Rey > Re(a + ) and defines a continuous function on D. The continuous
function F(«, 8,7 + n;x) on D uniformly converges to the constant function 1
when n — 400, which obviously implies

(14.24) lim F(a,B,v+mn;1)=1
n—oo

and proves Gauss’s summation formula (3] by using the recurrence relation

We will generalize such convergence in a general system of ordinary differential

equations of Schlesinger canonical form.
Under the condition

(14.25)

a>0,b>0and c>a+0,

the function F(a,b,c;z) = Y oo (ab‘)ﬂlfz, z¥ is strictly increasing continuous func-

tion of x € [0, 1] satisfying

L(c)T'(c—a—0)

1 SF(G,b,C;.’E) SF(a,b,C,l):m

and it increases if a or b or —c increases. In particular, if

0<a<N,0<b<Nandc>2N
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with a positive integer N, we have

0< F(a,b,c;z)—1
T'(c)T'(c — 2N) ~ (c—N) -
_F(c—N)F(c—N)ili(c—ZN)]\vailiﬂc—N—y

c— N\
<
~ \c—2N

<n (s

N

N N
—1=11 —1
<+c—2N>

. N1y
c—2N c—2N’

Thus we have the following lemma.

Lemma 14.9. For a positive integer N we have

N N
i) — 1| < |1+ ———— -1
Flagia) -1l < (14 g g )

(14.26)

if
(14.27)

r€D, |a|] <N, |[B|<N and Revy>2N.

Proof. The lemma is clear because

‘Z kk'k k‘ _Z (o)) (|5|) | * = F(lal, |8, Re~ — 2N; |]) —

(Re)xk

For the Gauss hypergeometric equation

z(1—az)u”" + (v = (a+ B+ 1)z)u' —afu=0

we have
(zu) 7u/+xu//:1’7u/+((a+5+1)$77)u/+aﬂu
T 11—z
o ap 1 y a+8+1 ,
_1—xu+<x x(l—a:)+ 1—x )xu
_ ap w+ 1*7+O‘+577+1 .
1—=x T 11—z
Putting
(14.28) u= <UO> = (;fﬂ)
U1 P
we have
0 « 0 0
(14.29) , \0 1—7v B a+B—~v+1
n T 1—=x
In general for
, A B
v=—v+ v
T 1-—
we have
o' = Av+ ——Bu
1—=z

= Av+z(av' + (B — A)v).

123
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Thus

Tuy = oy,
zuy = (1= y)ur + z(zv) + Buo + (o + Bur)

(14.30) {

and the functions

uop :F(OL,/B,’)/;Q:),
14.31
( ) mz%F(aH,/ﬁHmH;x)

satisfies (TZ30).

Theorem 14.10. Let n, ng and ny be positive integers satisfying n = ng + nq

(0 A\ . [0 0
and let A = 0 A, , B= B, B, € M(n,C) such that Ay, By € M(ny,C),

Ay € M(no,n1,C) and By € M(ny1,n9,C). Let D(0,m) = D(0,mq,...,my,) be
the diagonal matriz of size n whose k-th diagonal element is my_n, if k> ng and
0 otherwise. Let u™ be the local holomorphic solution of

A —D(0,m) B — D(0,m)
U = u + U

14.32
( ) T 1—2x

at the origin. Then if Rem, are sufficiently large for v = 1,...,n1, the Taylor
series of u™ at the origin uniformly converge on D = {x € C; |x| < 1} and for
a positive number C, the function u™ and their derivatives uniformly converge to
constants on D when min{Remy,...,Rem,, } — +oo with |A;j| + |B;;| < C. In
particular, for x € D and an integer N satisfying

(14.33) 3 (Al N, 1Al < N S 1Bl < N S I(Bwl < N
v=1 v=1 v=1 v=1

we have

2N (N +1)2

min Rem, —4N —1
1<v<n;

. m _ m < m .
(14.34) 1r£nyaécn‘uy (z) — u(0)] max |u;(0)]

if Rem, >5N+4 forv=1,...,n;.
Proof. Use the method of majorant series and compare to the case of Gauss hyper-

geometric series (cf. (IZ30) and (IZ31))), namely, lim. o F(a,b,c;x) =1 on D
with a solution of the Fuchsian system

U = —u-+

/U/,
1—2

(0 A (0 0 (v
=) o= oa) ()

zvy = Agvr,
av) = 2®v] + (1 — z) A1 + 2Bovg + 2B1vy

= Ajv + .’1?(3?1}1 + Bovg + (Bl — Al)vl)
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or the system obtained by the substitution A; — A; — D(m) and B; — B; — D(m).
Fix positive real numbers «, § and ~y satisfying

a>Y (Al (1<i<ng), B> |(Bo)wl (1<i<m),
v=1

at+ B> [(BL—Aw| (1<i<ng),

v=1

v =min{Remy,...,Remy,, } —2  max Z|A1 wl—1>a+p.

<i<ni
Then the method of majorant series with Lemma [Z1T] (IZ£30) and {IZ31) imply
um < maXlgugno |u111n(0>| . F(Oé,ﬁ,’)/;.’li) (1 S { S 7’7/0),
' 8 maxicy<n, [0 (0)] - Fla+ 1,8+ 1,7+ L;z) (ng <i<n),

which proves the theorem because of Lemma [[Z9 with o = § = N as follows. Here
Yoo gy’ < 307 bya for formal power series means |a,| < b, for v € Zx.

Put m = min{Remy,...,Remy, } —2N — 1 and L = maxi<,<p, [uZ*(0)]. Then
72ﬁ1—2N—1andif0§i§no and < D,

(@) = u(0)] < L+ (F(e, B, |2]) —

)
<1((1+7miv=1) )

N -1 N? L2N-1N2
< .
—4N—1> n—4N -1~ m—4N -1

SL(H— _
m
Ifng<i<nandz €D,

()] < § LF(a+ 1,8+ 1,7+ 1iz|)

LN N+1 N+1
< —F— (1+7N+1 ) +1 S—L{V(Z +1).
m—2N —1 — 4N -3 m—2N —1 O

Lemma 14.11. Let A € M(n,L) and put

(14.35) A = g%xn; | A

If positive real numbers my, ..., m, satisfy

(14.36) Moan, := min{my, ..., my} > 2|4|,

we have

(14.37) \(kL, + D(m) — A) [ < (k4 mpin — 2JA)Y (Vh > 0).

Proof. Since
|(D(m) — A)~'| = |D(m) " (I, — D(m) " 4) 7|

= ‘D(m)*l i(p(m)*lA)’“‘
k=0
< iy (14 280 < 211

we have the lemma by replacing m, by m, + k forv=1,...,n. O
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14.3. Zeros and poles of connection coefficients. In this subsection we exam-
ine the connection coefficients to calculate them in a different way from the one
given in I4.T]
First review the connection coefficient ¢(0: A 2~ 1: A1 o) for the solution of Fuch-
r=0 1 00
sian differential equation with the Riemann scheme ¢ XAo1 A1;1 A2,1 p. Denot-
X2 A2 A2

ing the connection coefficient ¢(0: g 2~>1: A1 2) by c({ /A\g; - ii; iz; }), we have

A A A
(1438) g = e({0) LA Pt e L A3 Pt
Ao,2 ~ A2 22 0 Ao,2+A1,24+ A2 2
=F(Xo2+ A2+ A1, h02+ A2+ A22, Xo2 — Ao + 15 1)
under the notation in Definition [4I} As was explained in the first part of §14.2
the connection coefficient is calculated from

(14.40) lim C({ Xoi—n Ar,1tn ij; }> -1

n— 00 Aoz~ A12

C({ Ao,1 A1,1 A2 }) _ C({ Ao,lgko"z - A1,1—A1,2 Ao,2+A1,2+A21 })
(14.39)

and

({ Ao,1 A1, A2 })
(14 41) C MoavAnz Aoz . ()\0,2 + /\1,1 + /\2,2)()\072 + )\171 + )\271)
. c({ Aoi—l Aitl Az }) (Ao2 = Ao1 + 1)(Ar1 — Ar2) .

Ao2 ~ A2 A22

The relation [[Z40) is easily obtained from ({IZ39) and [[424) or can be reduced
to Theorem

We will examine (IZZ1)). For example, the relation (IZLZI]) follows from the
relation ([Z28) which is obtained from

Y =1-@2y—a-p-1)z)F(a,B,v;2) + (v — a)(y = BzF(a, B, 7 + L 2)
=70y = 1DA —=z)F(a, 8,7 — 1;2)
by putting z =1 (cf. [N W] §14.1]). We may use a shift operator as follows. Since

d
2L F(a, B,y;2) = —aBF(a +1,8+1,7+ L)
dz ~

1— —a— 1— 0 —a—
:C({ Ofyw'y (g Bg})%u?—i_c({ O’wifaf,@g})%urly “

and

d —a—p _ —a—pB-1 —a—

Ay P =(a+B—7)1 -2 mod (1-=z)"*F0,
we have

O‘ﬁ —y 0 a+1 1—y 0 «

70({ 0 ~ y—a—B—1 B+1 }) =(a+p— W)C({ 0 ~ vy—a—B8 8 })7
which also proves (IZ41I)) because

( Ao,1 A1,1 A2 ) ( A0,1— 0,2 0 Ao,2+A1,1+ A2 1 )
¢ Ao,2 ~ A12 A2 . ¢ 0 ~ A1,2—A1,1 Ao2FH A1+ A2
( Ao,1—1 Ar,1+1 Az ) B C( Ao,1—Ao,2—1 0 Ao,2F+A1,2+ A2 1+1 )
Ao,z ~ A2 A2 0 ~ A1,2—A1,1—1 Ao2+A1,2+A2 2+1

Furthermore each linear term appeared in the right hand side of ({441 has own
meaning, which is as follows.

. . . A A1 A
Examine the zeros and poles of the connection coefficient c({ )\2; - /\i; /\z; })

We may assume that the parameters );, are generic in the zeros or the poles.
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Consider the linear form Ag 24+ A1,1 +A2,2. The local solution ué‘o’z corresponding
to the characteristic exponent A\ 2 at 0 satisfies a Fuchsian differential equation of
order 1 which has the characteristic exponents Az 2> and A;; at oo and 1, respec-
tively, if and only if the value of the linear form is 0 or a negative integer. In this

case c({ Ao A Az }) vanishes. This explains the term Ag 2 + A1 + 22 in the

Ao,z ~ A12 A2
numerator of the right hand side of (IZAI]). The term A\ 2 + A1,2 + A2 2 is similarly
explained.

The normalized local solution ué” has poles where A1 — Ag2 is a positive
integer. The residue at the pole is a local solution corresponding to the exponent
Ao,2. This means that c({ Jox A1 Az

Xo,2 ~ A2 A22
integer, which explains the term Ag 2 —Ap,1 +1 in the denominator of the right hand
side of (IZ41).
There exists a local solution a()\)ui‘l’1 + b()\)uil’2 such that it is holomorphic for
Aj and b(A) has a pole if the value of A\;; — A1 is a non-negative integer, which

}) has poles where Ag .1 — Ag,2 is a positive

Ao,1 A1,1 A21
Ao,z ~ A12 A2z

explains the term A; 1 — A1 2 in the denominator of the right hand side of ([ZZ)).
These arguments can be generalized, which will be explained in this subsection.
Fist we examine the possible poles of connection coefficients.

means c({ }) has poles where A 2 — A1 1 is non-negative integer. This

Proposition 14.12. Let Pu = 0 be a differential equation of order n with a regular

singularity at x = 0 such that P contains a holomorphic parameter A = (A1,...,AN)
defined in a neighborhood of \° = (XS,...,\%) in CN. Suppose that the set of
characteristic exponents of P at x = 0 equals {[A]¢m,), -5 [AN](my)} with n =

my+---+mpy and

(14.42) A3 =M= A €Z>0 and \] = \] ¢ Z if 1 <i<j<N and j# 2.
Let u; ., be local solutions of Pu = 0 uniquely defined by

(14.43) wj, = 2N mod 2NTMIO, (j=1,... ,mj andv=0,...,m; —1).

Note that uj, =<0 ki (NN TR with meromorphic functions ay, j,,(X) of A
which are holomorphic in a neighborhood of \° if Ao — Ay # A3 1. Then there exist
solutions v;, with holomorphic parameter X in a neighborhood of \° which satisfy
the following relations. Namely

(14.44) vjy=1uj, (B<j<Nandv=0,...,m;—1)

and when A +myi > A§ + ma,

Vi = Uiy (0 <v<m),
(14.45) _ U2,p = ULv4a3 Z by, i1 (0<
2y — v N, o I\ o <v< m2)
A=At /\2’1 ma+Ag | <i<my A=Azt )\2’1
NOAEL L ATEAS, ASEAZ a1 Ay — 1
with the diagram o o o o o
)\(2) )\g + mo — 1
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which illustrates some exponents and when A +my < A§ 4+ ma,

(14.46)
Vo, = U2, (0 <v < mgy),
b o s
iy = Uly — Z & (0SV<min{m1,/\gl})a
’ ’ ) Al — A2+ A9, ’
max{O,mlf)\gyl}S’L<m2 ’
ULy — U2p—2g, by iz i o
s W v v 2 g g, Asasv<m)
A=At >\2’1 max{0,m1—A3 ; }<i<ma A=Azt >\2’1
AN+ A EAS Ay -
with o O O . o
5 Ag=Ag+mi—1 Xg+my—1

O O

and here b, ; € C. Note that v;, (1 <j <N, 0<v <m;) are linearly independent
for any fixed X in a neighborhood of \°.

Proof. See 3] and the proof of Lemma (and [03 Theorem 6.5] in a more
general setting) for the construction of local solutions of Pu = 0.

Note that u;, for j > 3 are holomorphic with respect to A in a neighborhood
of A = A\°. Moreover note that the local monodromy generator M of the solutions
Pu = 0 at = 0 satisfies Hj-vzl(Mo — €2™V=1X) = (0 and therefore the functions
(A1 = A2 = A3 1)uj,, of A are holomorphically extended to the point A = \? for
7 =1 and 2, and the values of the functions at A = \° are solutions of the equation
Pu =0 with A = A°.

Suppose Ay +mq > A +mso. Then u;, (j = 1,2) are holomorphic with respect
to A at A = A\° and there exist b;, € C such that

U2,u|>\=/\D = Ul,v—i-/\g)l |)\=)\° + Z bv,i (ul,i|/\=)\°)
ma+A3  <v<my

and we have the proposition. Here
U2y |r=re = ™2+ Z bl,,i;v’\“” mod x’\Hml(’)o.
m2+A§Y1§u<m1
Next suppose A{ +my < A3 + my. Then there exist b;,, € C such that
(A1 = A2+ A3 )u1) |r=ne = Z by,i (Uz,i)x=x°)

max{0,m1—Ag ; }<i<mz

(0 <v< min{mh )\3,1})’

Uly|r=re = Z bui(uzilx=xo) (A5, <v <my)

max{0,m1—Ag ; }<i<mz

and we have the proposition. O

The proposition implies the following corollaries.

Corollary 14.13. Retain the notation and the assumption in Proposition [IT{.13

i) Let Wj(\,x) be the Wronskian of wj1,...,Ujm; for j = 1,...,N. Then
(A1 — A2+ A3) Wi () and W;(X) with 2 < j < N are holomorphic with respect
to X in a neighborhood of \° by putting

(14.47) (y = max{0, min{my, ma, A3 1, A3 ; +ma —my}}.
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i) Let
N myj

Wy = aj’y’k()\)uj,u,k
>

j=1lv=1
be a local solution defined in a neighborhood of 0 with a holomorphic A in a neigh-
borhood of A\°. Then

(A1 — Az + A3 )" det (aj,u,k(/\)) 1<v<my;
1<k<m;
with
5271 = max{(), min{m1 — A%l, mg}},
52’2 = min{ml, mz},
b =0 (3<j<N)
are holomorphic with respect to A in a neighborhood of \°.
Proof. i) Proposition [4.12] shows that u;, (2 < j < N, 0 < v < m;) are holo-
morphic with respect to A at A°. The functions u;, for min{m;,A3,} <v <my
are same. The functions u;, for 0 < v < min{my, A3 ; } may have poles of order 1
along Ao — A\ = )\571 and their residues are linear combinations of uzyib\zzkﬁ_)\g X
with max{0,m; — A§ 1} <i < my. Since

min{#{v; 0 <v <min{my, A ;}}, #{i; max{0,m1 — A3 ;} <i <my}}
= max{(),min{ml, A3 1, Mg, My —my + )\g,l}},

we have the claim.
ii) A linear combination of v;, (1 < j < N, 0 < v < m;) may have a pole of
order 1 along A1 — A2 + A9 | and its residue is a linear combination of

(w1, + Z butag,itni)a=nag, (A3 <v <min{mi,me+ A3, }),
ma+AS ; <i<my

(UQ,V + Z bu-&-)\g’l,iuzi)|>\2=/\1+Ag)1 (0 Sv<mg— )‘g,l)a

max{0,m1—A3 | }<i<mg

E by,iUQ,i

max{0,m1—AJ ; }<i<ma

ro=n4rg, (0 < v <min{mi,A3,}).

Since
#{v; A3, <v <min{my,my + A3} } = max{0, min{my — A3, ma2}},
#{r;0<v<my— A3}
+ min{#{i; max{0,m1 — X3 ;} <i <ma}, #{v; 0 <v <min{my, 3 ,}}}
= min{my, ma},
we have the claim. O

Remark 14.14. If the local monodromy of the solutions of Pu = 0 at x = 0 is locally
non-degenerate, the value of (A1 — Xy + A3 1) Wi(X) at A = A° does not vanish.

Corollary 14.15. Let Pu = 0 be a differential equation of order n with a reqular
singularity at © = 0 such that P contains a holomorphic parameter A = (A1,...,An)
defined on CN . Suppose that the set of characteristic exponents of P at x = 0 equals
{[Al](ml), ol [/\N](mN)} withn = my+---+my. Letu;, be the solutions of Pu =0
defined by ([£43)
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i) Let Wi(z,\) denote the Wronskian of u11,...,U1,m,. Then
Wl (1’, )‘)
N
Hj:2 HO§V<min{m1,mj} F(Al - /\j +my — V)

is holomorphic for A € CN.

(14.48)

ii) Let
N mj
(14.49) ) =D Ny 1<k <m)
j=1v=1

be local solutions of Pu = 0 defined in a neighborhood of 0 which have a holomor-
phic parameter X\ € CN. Then

det (al,u,k()‘)> 1<v<m;
1<k<m,

N
| H1§ugmin{m1,mj} LA = A1 —ma +v)
is a holomorphic function of A\ € CN.

Proof. Let A?; € Z. The order of poles of ([£48) and that of ([430) along
)\j - /\1 = /\?’1 are

(14.50)

#{v; 0 <v <min{my,m;} and my; —AJ; —v <0}
= ##{v; max{0,m1 — A7} <v < min{m,m;}}

= max{0, min{my,m;, AJ 1 AT +my — mi}}

and
#{v; 1 <v <min{my,m;} and A7, —m; +v <0}
= max{(), min{mi, m;, mi — )\]0471}},
respectively. Hence Corollary [4.13] assures this corollary. O

Remark 14.16. The product of denominator of (IZA])) and that of (IZE0) equals
the periodic function

N
min{my,m;}

T min{mi,m;}
H(_l)[ ’ ]+1(Sin(A1 *)\j)’fr) '

j=2

Definition 14.17 (generalized connection coefficient). Let Pyu = 0 be the Fuch-
sian differential equation with the Riemann scheme

rT=cp=0 cg =1 Co ¢p = 00
(14 51) [)\071}(7”0,1) [Al,l](ml,l) P‘Q,l](mz,l) T [)\p,l](mp,l)
[)\O,no](mo,no) [>\1,nl](m1,n1) [)\27n2](m2yn2) e [)‘Pynp](mp,np)
We assume ca,...,cp—1 ¢ [0,1]. Let u())\f),;”+k (1<v<mny0<k<mg,) and
UT,IU’VJFIC (1 <v<mng, 0<k<m,) belocal solutions of Pyu = 0 such that
(14.52) “g,ou'ﬁk = glootk mod zror+mor Oy,
. u1\7ly,,,+k =(1- m),\l,u+k mod (1 — m))\lyu+m11UOI.
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They are uniquely defined on (0,1) C R when A;, — \;,» ¢ Z for j = 0, 1 and
1 <v < v <nj. Then the connection coefficients cZ’]’f (M) are defined by

’
(14.53) ugly = D el

v k!

Note that ¢, ,’Ck (A) is a meromorphic function of A when m is rigid.
Fix a positive integer n’ and the integer sequences 1 < 19 <19 < --- < 1) <y
and 1 Sz/ll <1/21 < - <I/i, < ny such that

(14.54) n' =m0+ M0 =my b+ My,

Then a generalized connection coefficient is defined by

(14.55)
C(O . [/\07V10](m07y?), ey [)\071’2](”10,,,2) ~ 1 [)‘17’/11]("11,”%)’ ey [/\1 o1 ](mlyyl/))

o

_ vk
T det<cu,k ()\)) VE{V?,...,VQ}, 0<k<mg,, °*
V’E{ull,...,ui,}, 0K <my ./

The connection coefficient defined in §I4.1] corresponds to the case when n' = 1.

Remark 14.18. i) When mg 1 = mq 1, Corollary [ZT5] assures that

¢(0: Mol (moer) ~> 1 [A11)(mes))

IT TOor—Xoj+mor—k)- IT TOw = Xa—mia+k)
2<j<no 2<j<n,
0<k<min{mg,1,mo,;} 0<k<min{mi 1, m1 ;}

is holomorphic for A;, € C.

ii) Let v1,...,v, be generic solutions of Pynu = 0. Then the generalized con-
nection coefficient in Definition [[4.17] corresponds to a usual connection coefficient
of the Fuchsian differential equation satisfied by the Wronskian of the n’ func-
tions vy, ...,v, . The differential equation is of order (:,). In particular, when
n’ = n — 1, the differential equation is isomorphic to the dual of the equation
Py = 0 (cf. Theorem [619) and therefore the result in §I4.0] can be applied to the

connection coefficient. The precise result will be explained in another paper.

Remark 14.19. The following procedure has not been completed in general. But we
give a procedure to calculate the generalized connection coefficient ([Z53]), which
we put ¢(\) here for simplicity when m is rigid.

(1) Let € = (&,,) be the shift of the Riemann scheme {A\m} such that

Gor=-1 (re{1,2,...;,n}\ {#?,...,0%}),
(14.56) G,=1  (we{1,2,....m}\{v,...,vL}),
€, =0  (otherwise).

Then for generic A we show that the connection coefficient (I4.55]) converges
to a non-zero meromorphic function ¢(A) of A by the shift {Aym} — {(A +
k€)m} when Zg > k — oo.

(2) Choose suitable linear functions b;(\) of A by applying Proposition
or Corollary [ZTH to ¢(\) so that e()) := vazl F(bi()\))_l ce(N)e(\) L s
holomorphic for any A.
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In particular, when L = L' = 1 and ) = v{ = 1, we may put

no
{bz} = U {/\071 — )\07]' +mo,1 —V; 0<rv< min{m071,m07j}}
j=2

n1
U U {)\1)]‘ — )\1’1 —mi1+V; 1<v< min{mlyl,ml)j}}.
j=2

(3) Find the zeros of e(A) some of which are explained by the reducibility or the
shift operator of the equation Pyu = 0 and choose linear functions ¢;(\) of

A so that f(A) := HZN=,1 I'(¢;(N)) - e()) is still holomorphic for any .
(4) I N=N'"and },d;(N) = >, ¢;i()\), Lemma [[420 assures f(\) = ¢(\) and
I15: D(6: )
Hij\il L (ci(A)
because f{ A(i)s) is a rational function of A\, which follows from the existence
of a shift operator assured by Theorem [[3.2

(14.57) c(\) = -e(N)

Lemma 14.20. Let f(t) be a meromorphic function of t € C such that r(t) =
[t

is a rational function and

F(t+1)
(14.58) Zwl;rgl_)oof(t +k)=1.
Then there exists N € Z>o and b;, ¢; € C fori=1,...,n such that
(1459) b1+"'+bN201+"'+CN,

N

- T(t+ b
(14.60) ft) = %

[Lo T+ )

Moreover, if f(t) is an entire function, then f(t) is the constant function 1.

Proof. Since limy_, o 7(t + k) = 1, we may assume

It +e)
= Tl (t+b:)
and then )
IS I ot + e +v)
M M e
Since S

m—-—
n—o00 HV_O (JL' + l/)

the assumption implies (IZ59) and (IZG0).
We may assume b; # ¢; for 1 <¢ < N and 1 < j < N. Then the function (IZ60)
with (IZ53) has a pole if N > 0. O

We have the following proposition for zeros of ¢(\).
Proposition 14.21. Retain the notation in Remark[I{.19 and fiz X so that
(14.61) Niw =X @Z (j=0,1 and 0<v <V <n;).

i) The relation c(\) = 0 is valid if and only if there exists a non-zero function

A k A k
v = § : Cu,kuoo’u—‘r _ 2 : ;7ku11,u+

ve{t?,...10} ve{l,..ni\{vi,...v1,}
0<k<mo,, 0<k<mai,,

on (0,1) with Cy, C,, , € C.
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ii) Fiz a shift € = (¢;,,) compatible to m and let Ry (e, \) be the shift operator
in Theorem [I3Q. Suppose Rm(€,\) is bijective, namely, cm(e;\) # 0 (¢f. Theo-
rem [I37). Then c¢(A+¢€) =0 if and only if ¢(A) =0

Proof. Assumption ([[ZE]]) implies that {ugo‘”+k} and {ui‘l’”_k} define sets of basis
of local solutions of the equation Pynu = 0. Hence the claim i) is clear from the
definition of ¢(A).

Suppose ¢(A) = 0 and Rp,(€,\) is bijective. Then applying the claim i) to
Rm(e, \)v, we have ¢(A +¢€) = 0. If Rm (e, A) is bijective, so is Rm(—€, A + €) and
c¢(A + €) = 0 implies ¢(A) = 0. O

Corollary 14.22. Let m = m’ ® m” be a rigid decomposition of m such that

(14.62) SNooomh, > Y my,.

ve{v?, .9} ve{vi,...,v;,}
Then T'([{A\m }]) - ¢(A) is holomorphic under the condition ([Z6I]).

Proof. When [{A\m}/=0, we have the decomposition Py, = Pm»Pm and hence
¢(A) = 0. There exists a shift ¢ compatible to m such that 337_ Sooliml e, =1
Let A be generic under |[{Am}| =0 and [{Am'}| € Z\ {0}. Then Theorem 3] ii)
assures ¢m(€; \) # 0 and Proposition [Z2T] proves the corollary. O

Remark 14.23. Suppose that Remark (1) is established. Then Proposi-
tion and Proposition [4.2]] with Theorem [[3.7] assure that the denominator
and the numerator of the rational function which equals C(C )(\i)g)
tain linear functions of A and therefore (IZ.57]) is valid with suitable linear functions

b;i(M\) and ¢;(\) of A satisfying Zf\;l bi(\) = Zi\il ci(N).

are products of cer-

Example 14.24 (generalized hypergeometric function). The generalized hyperge-
ometric series (7)) satisfies the equation P, («a; 8)u = 0 given by ([I519) and [KLl
§4.1.2 Example 9] shows that the equation is isomorphic to the Okubo system

(14.63)

1 _ﬁn 1
0 Q21 0 1
( . ) di as,1 1 1 -
T — . — = . . . i
dx : - "
. Qp_1,1 n—3 1
0 Qn,1 —Cp—1 —Cp—2 -+ —C2 —c14+(n—2)
with
ul n n
u=1| .|, u=wu and E al,:g By
=1 =1
un v v

Let us calculate the connection coefficient
C(O:O ~ 1:76n) = Erlrlo(]'*x)B”nFn—l(ala ceey Qg 613 T 7Bn—l; l‘) (Re ﬂn > 0)

Applying Theorem [I4.10 to the system of Schlesinger canonical form satisfied by
Ad((1 — z)P»), the connection coefficient satisfies Remark IZI9 i) with ¢(\) = 1,
namely,

(14.64) lim ¢(0:0 ~ 1:=Bn)la;sa,+k, 58+k (1<j<n) = 1.

k—4o0c0

Then Remark [Z4.T9ii) shows that H?:l T'(8;)~1-¢(0:0 ~ 1:—B,) is a holomorphic
function of (a, 8) € C**+(n=1),
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Corresponding to the Riemann scheme (L)), the existence of rigid decomposi-
tions
n n n—1 i n—1 i
—~ ~ ~ —~ ~
1---in-11;1---1=0---01;10;0---1---0®1---10;n —11;1---0---1
for i = 1,...,n proves that [\, T(c;) - [[j—; T(8;)~" - ¢(0:0 ~ 1:—f,) is also
entire holomorphic. Then the procedure given in Remark [[4.19] assures
1o, D(8)
Lo T(ai)

We can also prove ([IZ83) as in the following way. Since

(14.65) c(0:0 ~ 1:—f,) =

iF(oz;ﬂ;a;) = uF(ozl +1,..,0n+ 181 4+1,..., B + 1 2)
dz Bi Bn-1
and
%(1 —2) U+ (1= 2)0)) = Bu(1—2) " 1+ (1 - 2)0y),
we have

c(0:0~ 1:=5,) L ar...op
C(OZOW 1:_6n)‘aj'—>aj+1, Bj—Bi+1 61 n’

which proves ([[Z83]) because of ([[4.64]).

A further study of generalized connection coefficients will be developed in another
paper. In this paper we will only give some examples in 150 and §I5.7.0]

15. EXAMPLES

When we classify tuples of partitions in this section, we identify the tuples which
are isomorphic to each other. For example, 21,111,111 is isomorphic to any one of
12,111,111 and 111,21,111 and 21, 3,111, 111.

Most of our results in this note are constructible and can be implemented in
computer programs. Several reductions and constructions and decompositions of
tuples of partitions and connections coefficients associated with Riemann schemes
etc. can be computed by a program okubo written by the author (cf. §I5TT]).

In §I5.T] and gI5.2] we list fundamental and rigid tuples respectively, most of
which are obtained by the program okubo.

In §I5.3]and §I5. 4 we apply our fractional calculus to Jordan-Pochhammer equa-
tions and a hypergeometric family (generalized hypergeometric equations), respec-
tively. Most of the results in these sections are known but it will be useful to
understand our unifying interpretation and apply it to general Fuchsian equations.

In 150l we study an even family and an odd family corresponding to Simpson’s
list [S1. The differential equations of an even family appear in suitable restrictions
of Heckman-Opdam hypergeometric systems and in particular the explicit calcula-
tion of a connection coeflicient for an even family was author’s original motivation
for the current study of Fuchsian differential equations (cf. [OF]).

In 157 9158 and 159 we study the rigid Fuchsian differential equations of
order not larger than 4 and those of order 5 or 6 and the equations belonging to 12
maximal series classified by [Rd which contain Yokoyama’s list [Yd].

In I5.6] we give some interesting identities of trigonometric functions as a con-
sequence of the explicit value of connection coefficients.

We examine Appell hypergeometric equations in §I5.I0] which will be further
discussed in another paper.

In I5.TTl we explain computer programs which calculate the results described in
this paper.
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15.1. Basic tuples. The number of basic tuples and fundamental tuples (cf. Def-
inition BT4]) with a given Pidx are as follows.

y Pidx | o] 1] 2[ 3] 4] 5] 6] 7[ 8] 9] 10] 11}
# fund. tuples 1| 4133667 | 103|162 | 243 | 305 | 456 | 578 | 720
# basic tuples 4113136|67| 90162 | 243 | 305 | 420 | 565 | 720
# basic triplets 3| 92444 | 56| 97| 144 | 163 | 223 | 291 | 342
# basic 4-tuples 1] 3| 917 ] 24| 45| 68| 95| 128 | 169 | 239
maximal order 6112|1824 |30| 36| 42| 48| 54| 60| 66 | 72

(o] Bew) Nen}

Note that if m is a basic tuple with idxm < 0, then
(15.1) Pidxkm = 1+ k*(Pidxm — 1)  (k=1,2,...).

Hence the non-trivial fundamental tuple m with Pidx m < 4 or equivalently idx m >
—6 is always basic.

The tuple 2m with a basic tuple m satisfying Pidxm = 2 is a fundamental tuple
and Pidx2m = 5. The tuple 422,44, 44,44 is this example.

15.1.1. Pidxm = 1. There exist 4 basic tuples: (cf. [Ka3], Corollary B3]
Dy 11,11,11,11  Eg: 111,111,111 By: 22,1111,1111 By 33,222,111111
They are not of Okubo type. The tuples of partitions of Okubo type with

minimal order which are reduced to the above basic tuples are as follows.
Dy4: 21,21,21,111  FEg: 211,211,1111  E7: 32,2111,11111  Ejs: 43,322,1111111

The list of simply reducible tuples of partitions whose indices of rigidity equal 0
is given in Example BT17

We list the number of realizable tuples of partitions whose indices of rigidity
equal 0 according to their orders and the corresponding fundamental tuple.

ord | 11,11,11,11 | 111,111,111 | 22,1111,1111 | 33,222,111111 | total
2 1 1
3 1 1 2
4 4 1 1 6
) 6 3 1 10
6 21 8 5 1 35
7 28 15 6 1 50
8 74 31 21 4 130
9 107 65 26 5 203
10 223 113 69 12 417
11 315 204 90 14 623
12 616 361 205 371 1219
13 808 588 256 36 | 1688
14 1432 948 ol17 80 | 2977
15 1951 1508 659 100 | 4218
16 3148 2324 1214 179 | 6865
17 4064 3482 1531 194 | 9271
18 6425 5205 2641 389 | 14660
19 8067 7503 3246 395 | 19211
20 12233 10794 5400 715 | 29142

15.1.2. Pidxm = 2. There are 13 basic tuples (cf. Proposition BI0, [O6 Proposi-
tion 8.4]):

+2:11,11,11,11,11 3:111,111,21,21 *4:211,22,22,22

4:1111,22,22,31 4:1111,1111,211 5:11111,11111,32
5:11111,221,221 6:111111,2211,33 *6:2211,222,222
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*8:22211,2222,44 10:22222,3331,55

*12:2222211,444,66

Here the number preceding to a tuple is the order of the tuple and the sign * means
that the tuple is the one given in Example @50 (Dé(lm)7 Eém), Eém) and Eém)) and

8:11111111,332,44

the sign + means d(m) < 0.

15.1.3. Pidxm = 3. There are 36 basic tuples

+2:11,11,11,11,11,11 3:111,21,21,21,21 4:22,22,22,31,31
+3:111,111,111,21 +4:1111,22,22,22 4:1111,1111,31,31
4:211,211,22,22 4:1111,211,22,31 *6:321,33,33,33
6:222,222,33,51 +4:1111,1111,1111 5:11111,11111,311
5:11111,2111,221 6:111111,222,321 6:111111,21111,33
6:21111,222,222 6:111111,111111,42 6:222,33,33,42
6:111111,33,33,51 6:2211,2211,222 7:1111111,2221,43
7:1111111,331,331 7:2221,2221,331 8:11111111,3311,44
8:221111,2222,44 8:22211,22211,44 *9:3321,333,333
9:111111111,333,54 9:22221,333,441 10:1111111111,442,55
10:22222,3322,55 10:222211,3331,55 12:22221111,444,66
x12:33321,3333,66 14:2222222,554,77 x18:3333321,666,99
15.1.4. Pidxm = 4. There are 67 basic tuples
+2:11,11,11,11,11,11,11 3:21,21,21,21,21,21 +3:111,111,21,21,21
+4:22,22,22,22,31 4:211,22,22,31,31 4:1111,22,31,31,31
+3:111,111,111,111 +4:1111,1111,22,31 4:1111,211,22,22
4:211,211,211,22 4:1111,211,211,31 5:11111,11111,41,41
5:11111,221,32,41 5:221,221,221,41 5:11111,32,32,32
5:221,221,32,32 6:3111,33,33,33 6:2211,2211,2211
+6:222,33,33,33 6:222,33,33,411 6:2211,222,33,51
*8:431,44,44,44 8:11111111,44,44,71 5:11111,11111,221
5:11111,2111,2111 +6:111111,111111,33 +6:111111,222,222
6:111111,111111,411 6:111111,222,3111 6:21111,2211,222
6:111111,2211,321 6:2211,33,33,42 7:1111111,1111111,52
7:1111111,322,331 7:2221,2221,322 7:1111111,22111,43
7:22111,2221,331 8:11111111,3221,44 8:11111111,2222,53
8:2222,2222,431 8:2111111,2222,44 8:221111,22211,44
9:33111,333,333 9:3222,333,333 9:22221,22221,54
9:222111,333,441 9:111111111,441,441 10:22222,33211,55
10:1111111111,433,55 10:1111111111,4411,55 10:2221111,3331,55
10:222211,3322,55 12:222111111,444,66 12:333111,3333,66
12:33222,3333,66 12:222222,4431,66 *12:4431,444 ,444
12:111111111111,552,66 12:3333,444,552 14:33332,4442,77
14:22222211,554,77 15:33333,555,771 *16:44431,4444,88
16:333331,5551,88 18:33333111,666,99 18:3333222,666,99
*24:4444431,888,cc
Here a,b, c,... represent 10,11,12,..., respectively.

15.1.5. Dynkin diagrams of basic tuples whose indices of rigidity equals —2. We
express the basic root ayy, for Pidx m = 2 using the Dynkin diagram (See (@.I1]) for
Pidxm = 1). The circles in the diagram represent the simple roots in supp oy, and
two circles are connected by a line if the inner product of the corresponding simple
roots is not zero. The number attached to a circle is the corresponding coefficient
n or n;, in the expression (@I12).

For example, if m = 22,22,22,211, then am = 4a0 + 2a0,1 + 2011 + 2021 +
2031 + 3,2, which corresponds to the second diagram in the following.
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The circle with a dot at the center means a simple root whose inner product
with ay, does not vanish. Moreover the type of the root system II(m) (cf. (@20))

corresponding to the simple roots without a dot is given.

2
2 4 2 1
O O—O
2
11,11,11,11,11 54;  22,22,22,211 D4+ A;
1 2
1 2 3 2 1 1 4 3 2 1
O—=0O O—=0O O O—C0O—-~0
1 2
21,21,111,111  As 31,22,22,1111 Ds
2 1
4 2
2 4 6 4 2 11 2 3 4 3 2 1
o——O0—"C0O—0O—0—0 O0—O0—"O—"O—0—"—0O—=0
922,222.2211 Fe + A, 211,1111,1111 A7 + A,
1
3
1 3 5 4 3 2 1
O—O0O—"CO0O—"C0O—"0O—0——=0
221,221,11111 Dy
4
2 4 6 8 6 4 2 1
Oo—O0O—O0O0—O—O0O—0O—"0—=0
44,2222,22211 E; + A;
5
1 4 7 10 8 6 4 2
O—O0—0O0—0O0—"0O0—"C0—C0O——=0
55,3331,22222 Fs
2
1 2 3 4 5 4 3 2 1
o—O0—"O0O0—"0O0—"O0—O0—"0O—"0O—0
32,11111, 111111 A
3
1 2 4 6 5 4 3 2 1
Oo——0O0—"C0O0—0O0—O0—0O0—"0O—"0O—0

33,2211,111111 Ds + A,
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?6
8 12 10 1
N i

4 8 6 4 2
O—O0—""C0—""C0O0—0—"FC0C—""0C—"—0B——=0
66,444,2222211 Es + A

4
2 5 8 7 6 5 4 3 2 1
O—CO0—"A0O0—O0—O0—""0O0—0O0—"0O—"0—0
44,332,11111111 Dso

15.2. Rigid tuples.

15.2.1. Simpson’s list. Simpson [Si classified the rigid tuples containing the par-
tition 11---1 into 4 types (Simpson’s list), which follows from Proposition
They are Hy,, EO2y,, EO2p, 11 and Xg in the following table.

See Remark [@.IT]ii) for [A(m)] with these rigid tuples m.

The simply reducible rigid tuple (cf. §85]) which is not in Simpson’s list is iso-
morphic to 21111, 222, 33.

’ order \ type \ name \ partitions ‘
n H, hypergeometric family 1™ 1", n—11
2m EOs, even family 12" mm — 11, mm
2m+ 1| EO2mi1 odd family 127+t mml, m+ 1m
6 X6 = 6,2 extra case 111111,222,42
6 V6,6 21111, 222,33
n P, Jordan Pochhammer | n—11,n—11,... € ’PT(LZ_)I

H, = EO,, Hy = EOy = P, Hy = EOs.

15.2.2. Isomorphic classes of rigid tuples. Let 7'\’,1(,1)1 be the set of rigid tuples in

P Put Ry = U, RV, RO = U2, RUY) and R = U2, RU™. The sets

of isomorphic classes of the elements of R](ﬁr)l (resp. Rpy1, R(™ and R) are denoted

7@;";21 (resp. Rp+1, R and R). Then the number of the elements of R("™) are as

follows.
n | #RS [ #RO | n [ #R [ #RM || n| 2R | #rM

2 1 1] 15 1481 2841 || 28 | 114600 | 190465
3 1 2| 16 2388 4644 || 29 | 143075 | 230110
4 3 6 || 17 3276 6128 || 30 | 190766 | 310804
5 5 11 ]| 18 5186 9790 || 31 | 235543 | 371773
6 13 28 || 19 6954 | 12595 || 32 | 309156 | 493620
7 20 441/ 20 | 10517 | 19269 || 33 | 378063 | 588359
8 45 96 || 21 | 14040 | 24748 || 34 | 487081 | 763126
9 74 157 || 22 | 20210 | 36078 || 35 | 591733 | 903597

10 142 306 || 23 | 26432 | 45391 || 36 | 756752 | 1170966
11 212 441 || 24 | 37815 | 65814 || 37 | 907150 | 1365027
12 421 857 || 25 | 48103 | 80690 || 38 | 1143180 | 1734857
13 588 1177 || 26 | 66409 | 112636 || 39 | 1365511 | 2031018
14 1004 2032 || 27 | 84644 | 139350 || 40 | 1704287 | 2554015

15.2.3. Rigid tuples of order at most 8. We show all the rigid tuples whose orders
are not larger than 8.

2:11,11,11 (Hs: Gauss)
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:111,111,21 (Hs : 3F)

:1111,1111,31 (Hy @ 4F3)
:211,211,211 (By, Iy, ay)
:22,22,22,31 (Py4)

:11111,11111,41 (Hs : 5F))
:2111,2111,32 (Cs)
:221,221,221 (as)
:221,32,32,41
:32,32,32,32 (Pys)
:41,41,41,41,41,41 (P5)

:111111,111111,51 (Hg : 6F3)
:111111,321,33 (EOg: even)
:21111,222,33 (76.6)
:21111,3111,33 (C)
:2211,2211,411 (Ge)
:222,222,321 (ag)
:3111,3111,321 (B, II3)
:2211,33,42,51
:222,33,411,51
:321,321,42,51
:33,33,33,42 (Pug)
:33,411,411,42
:33,42,42,51,51 (Ms)
:411,42,42,51,51

:1111111,1111111,61 (Hy)
:211111,2221,52 (Dy)
:22111,22111,52 (FEy)
:22111,3211,43
:2221,2221,43 (87)
:2221,322,421
:2221,331,4111
:31111,322,421
:3211,3211,421
:3211,322,4111
:2221,2221,61,61 (J7)
:3211,331,52,61
:322,331,511,61
:322,43,52,52
:331,43,511,52
:4111,43,511,52
:421,421,52,52
:43,43,43,43 (Py7)
:331,331,61,61,61 (L)
:43,43,43,61,61

:511,511,52,52,61 (Ny)
:52,52,52,61,61,61 (My)

:11111111,11111111,71 (Hg)

3:
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21,21,21,21 (P3)

:1111,211,22 (EO4: even)
:211,22,31,31 (I4, IT3)
:31,31,31,31,31 (Py)

:11111,221,32 (EOs: odd)
:2111,221,311 (Bs, IIl,)
:221,221,41,41 (J5)
:311,311,32,41 (5, IIT3)
:32,32,41,41,41 (Ms)

:111111,222,42 (Dg = Xg: extra)
:21111,2211,42 (FEg)
:21111,222,411 (Fg, IV)
:2211,2211,33 (fBs)
:2211,321,321
:222,3111,321
:2211,222,51,51 (Jg)
:222,33,33,51
:3111,33,411,51 (I, I13)
:321,42,42,42
:33,33,411,42
:411,411,411,42 (Ng, IV™)
:321,33,51,51,51 (Kp)
:51,51,51,51,51,51,51 (F)

:1111111,331,43 (EOy)
:211111,322,43 (v7)
:22111,2221,511 (F)
:22111,331,421
:2221,31111,43
:2221,331,331
:31111,31111,43 (C)
:31111,331,4111 (B, IIl3)
:3211,322,331
:322,322,322 (ay)
:2221,43,43,61
:322,322,52,61
:322,421,43,61
:331,331,43,61
:4111,4111,43,61 (I, I1I3)
:421,421,421,61
:421,43,43,52
:421,43,511,511
:421,43,52,61,61
:43,52,52,52,61
:43,43,61,61,61,61 (K7)
:61,61,61,61,61,61,61,61 (P7)

:11111111,431,44 (EOs)
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8:2111111,2222,62 (Dg) 8:2111111,332,53
8:2111111,422,44 8:221111,22211,62 (FEj)
8:221111,2222,611 (Fy) 8:221111,3311,53
8:221111,332,44 (vs) 8:221111,4211,44
8:22211,22211,611 (Gs) 8:22211,3221,53
8:22211,3311,44 8:22211,332,521
8:22211,41111,44 8:22211,431,431
8:22211,44,53,71 8:2222,2222,53 (fs2)
8:2222,32111,53 8:2222,3221,44 (fs.4)
8:2222,3311,521 8:2222,332,5111
8:2222,422,431 8:311111,3221,53
8:311111,332,521 8:311111,41111,44 (Cs)
8:32111,32111,53 8:32111,3221,44
8:32111,3311,521 8:32111,332,5111
8:32111,422,431 8:3221,3221,521
8:3221,3311,5111 8:3221,332,431
8:332,332,332 (as) 8:332,332,4211
8:332,41111,422 8:332,4211,4211
8:3221,4211,431 8:3311,3311,431
8:3311,332,422 8:3221,422,422
8:3311,4211,422 8:41111,41111,431 (Bs, I14)
8:41111,4211,422 8:4211,4211,4211
8:22211,2222,71,71 (Jg) 8:2222,44,44,71
8:3221,332,62,71 8:3221,44,521,71
8:3221,44,62,62 8:3311,3311,62,71
8:3311,332,611,71 8:3311,431,53,71
8:3311,44,611,62 8:332,422,53,71
8:332,431,44,71 8:332,44,611,611
8:332,53,53,62 8:41111,44,5111,71 (Ig, I1})
8:41111,44,611,62 8:4211,422,53,71
8:4211,44,611,611 8:4211,53,53,62
8:422,422,44,71 8:422,431,521,71
8:422,431,62,62 8:422,44,53,62
8:431,44,44,62 8:431,44,53,611
8:422,53,53,611 8:431,431,611,62
8:431,521,53,62 8:44,44,44,53 (Pys)
8:44,5111,521,62 8:44,521,521,611
8:44,521,53,53 8:5111,5111,53,62
8:5111,521,53,611 8:521,521,521,62
8:332,332,71,71,71 8:332,44,62,71,71
8:4211,44,62,71,71 8:422,44,611,71,71
8:431,53,53,71,71 8:44,44,62,62,71
8:44,53,611,62,71 8:521,521,53,71,71
8:521,53,62,62,71 8:53,53,611,611,71
8:53,62,62,62,62 8:611,611,611,62,62 (Ng)
8:53,53,62,71,71,71 8:431,44,71,71,71,71 (Ks)
8:611,62,62,62,71,71 (Ms) 8:71,71,71,71,71,71,71,71,71 (Fs)

Here the underlined tuples are not of Okubo type (cf. (I330).

The tuples H,,, £O,, and Xg are tuples in Simpson’s list. The series A,, = EO,,,
By, Cn, Dy, By, Fr, Gom, L, Ju, Kn, Lamy1, M, and N, are given in [Rg] and
called submaximal series. The Jordan-Pochhammer tuples are denoted by P, and
the series H,, and P, are called maximal series by [Rd]. The series ay,, 8, vn and
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d,, are given in [Rg] and called minimal series. See §I5.0 for these series introduced
by [Rd. Then 8, = Py, and they are generalized Jordan-Pochhammer tuples
(cf. Example and §I5.9.13)). Moreover 1L, 1T}, IIL,, 11T}, IV and IV* are in

Yokoyama’s list in [Yd] (cf. YI5.9.15).

Hierarchy of rigid triplets

12,12,12 ——21,1%3, 13 ———=31,1*,1* ———41,1°,1° ———51,1°,1¢

1’1’1\\212N221 15— 32 321 1°

212,212 212 32, 213,213 42,23 16

N

312,221,218 321 318,28

221,221, 221*>321,32172212

Here the arrows represent certain operations 9, of tuples given by Definition [Z.6l

15.3. Jordan-Pochhammer family. P,
We have studied the the Riemann scheme of this family in Example 28 iii).

mz(p—ll»P—11,~~~,p—11)eplgfjr)l

xTr = 0 ]_ = % ... cpl_l o0
[O](pfl) [O](pfl) t [0](1,,1) [1 - /L](pfl)
Ao+p MFp o AdpoaiFp A== Apo1 —

[A(m)] =17+ (p—1)
Pp:Hl@Pp—l p—|—1: (p—l)Hl@Hl 01
Here the number of the decompositions of a given type is shown after the decom-
positions. For example, P, = H1 ® P,_1 :p+1 = (p—1)H; & H; : 1 represents the
decompositions

v v

m:10,...70u1,...,10@p—21,...,p—10,...,p—21 (v=0,...,p)
= (p—1)(10,...,10) @ 01,...,0L

The differential equation Pp, (), u)u = 0 with this Riemann scheme is given by

p—1
Pr,(\ 1) i= RAd(97#) o RAd (o T (1 = ¢ja) )0
j=1
and then
p
Pp, (A p) = pr(x)oPF,
(15.2) k=0

)= (T (1T et
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with

(15.3) po(z) =2 H(l —cjz), q(z) = po(z) (*% + Z 1C_j/\cjjx>

It follows from Theorem that the equation is irreducible if and only if
(15.4) N ¢Z (j=0,...,p—1), p¢Z and No+---+ A1 +p ¢ Z.

The normalized solution at 0 corresponding to the exponent Ao + p is

Xo+i LA +p+1) 0 = ERPRS Vi P
up® () = m/ (t’\ 1:[1(1 c;t)? )(a: t)H T dt
. F()\ +M+1) > ( )\p—l)mp_l
o F()\(?+1 / Z Zl 0 'mp_ll

~cmp’1tA°+m1+“'+m”‘l(x— )Hdt

[e.9]

Z Z )\0'|‘1 m1+ My 1( Al)ml"'(_)‘pfl)mp_l

)\0+M+1)m1+ g, m1!~~~mp_1!

mi1= 0 mp—1= 0

CQ "'C;:L_pll Ao+pt+mi+-+my 1

;z:)‘(’*“(lf (Ao + DAy +...+Ap_1c,,_1)x+m>'
Ao+p+1

This series expansion of the solution is easily obtained from the formula in §4]
(cf. Theorem [[0.1)) and Theorem [[33] gives the recurrence relation

Ao u)\o+}L(x))

5N A
(15.5) up” () = ug (@) |y, Ly 7(/\0 Fuo

Ao—Ao+1 °
)\1}—))\171

Lemma [42 with a = A9, b = A\; and u(z) = Hf;;(l — ¢;x)*i gives the following
connection coefficients

c(0:Xg+p~1:XA +p)=

Lo+ p+1DI'(— —
]_f
(>\0+1F 1;[ cj E

1
L(xo+p+1) /1 A M1 T by

c0: Xg+pu~1:0)= = [ Q1 —t)"T* 1—c;t)Mdt

_PQo+p+ 10 +p)

D(u)L(Ao + A1+ p+ 1)

Here we have

Fho+1,=A, A0+ A1 +p+15c2)  (p=3).

(15.6) ’\0"'“ Z Cr(z — 1)k + Z Cp(z — 1) Hutk
for 0 < .Z'A<+1 with Co =¢(0: Adg+p~1:0)and C{ =¢(0: Ao+ p~1: A + p).
k, Ao+H
Since Zoxk is a solution of the equation Pp, (A, u — k)u = 0, we have
(157)  Cu= pooet i ] / - t)“‘“’“*lﬁu — i)t
' T(pw— k)T (Ao+ 1)K Jo i J '
When p = 3,

Po+p+ DTN +p—Fk)

C =
P T =k Mo+ A+ 41— k)k!

Foo+1, =X, Ao+ M +p+1—FKe)
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Put
uxu(x) = F—/ (t’\ H ) (x — t)*dt = 0 Py,
p—1
nn(e) 1= [[(1 - eye)
j=1
We have
Un g1 = O H tyy =070 ey = 8_1u>\7u,
Ung+1A1r o = O M Ung 110y, = O Favy = —pdH 1oy + 20 oy,
(15.8) = —pd M unp + TUA s
U 41, = 0 (1 —cjz)oy = 0 oy + c;ud P oy — cjz0 Foy

= (1 = cjz)urp + cjud tuy

From these relations with Pp uy , = 0 we have all the contiguity relations. For
example

(159) 8“)\07 Ap—1,u+1 = UN, s
Mungt1,... 21 = (20 + 1 — pun p,
U 241, = ((1 —¢;x)0 —¢;j(1— /‘))“A’H

and
P )\ M+1 ij ap J +pn
Pn = (71);;7161'”%_1((7 -1), H)p— 12/\)
:Cl"'Cpfl(u+2_p)pfl()\0+"'+)\p71_ —1)
and hence

(ZPJ )P~ 1)%;» = TPnUxp+1 = —pna_lux,u.

Substituting this equation to ([ILS8), we have Q; € W (a; A, 1) such that Q;ux ,
equals u(x, 15, )0 1. 07 j = 0,...,p — 1, respectively. The operators R; €
W (x; A\, ) satisfying R;jQjux, = ux, are calculated by the Euclid algorithm,
namely, we find S; € W(x; A, p) so that R;Q; + S;Pp, = 1. Thus we also have
T; € W(x; A\, p) such that Tjuy , equals uey, s forj=0,....,.p—1
respectively.

As is shown in §84] the Versal Jordan-Pochhammer operator Ppp is given by

[@232) with

u,j)u:O,.,.,p—l 13 ?

P P P
(15.10) po(x) = H(l —cjz), q(zr)= Zx\kxkfl H (1—c¢jz).
j=1 k=1 j=k+1
If c1,...,cp are different to each other, the Riemann scheme of PPP is
xzcij(jzl,...,p) 00
v [0](17—1) . [1- U](p—l)
A —1)F\;
I | e Er R W i
=) J 1<v<k v 1 1-.--Ck

2
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The solution of ﬁppu = 0 is given by

e

Here the path C' starting from a singular point and ending at a singular point is
chosen so that the integration has a meaning. In particular when ¢; = --- = ¢, =0,
we have

uc(x):/Cexp(—zp:/\;fj)(x—t)“_ldt

j=1
and if A, # 0, the path C starts from co to one of the p independent directions

2w/ =T
)\;le Tt (t>1,v=0,1,...,p— 1) and ends at z.

Suppose n = 2. The corresponding Riemann scheme for the generic characteristic
exponents and its construction from the Riemann scheme of the trivial equation

u' =0 is as follows:

r=0 1 oo

bo co Qo (Fuchs relation: ag +aj +bg +b1 +¢co +c¢1 =1)

b1 CcC1 Qa1

20 (1—z)09—a1-b1-c1 x=0 1 00
—a1—by—c1 —a1—bi—cy —ag+a+1

z1 b1 (1—g)" 1 b1~ =0 1 o0
0 0 of°

Then our fractional calculus gives the corresponding equation

2?(1—z)*u” — 2(1 —z)((ao + a1 + 1)z + by + by — 1)u’

(15.11) ,
+ (CLoal’I — (a0a1 + b0b1 - C()Cl)l‘ + bobl)u = 0,

the connection formula

F(CO — Cl)F(bl — bo + 1)

15.12 0:b 1: =
( ) C( 1 Cl) F(ao + b1 + co)F(a1 + b1 + C())

and expressions of its solution by the integral representation

/w (Ebo(l N :L')CO (1, _ S)a1+b1+01—18—a1—01—b0(1 _ 8)—a1—b1—00—ds
0

15.13
( ) _ T(ap + b1 + ¢o)T'(a1 + b1 + 1)

L'(by —bo + 1)

b ¢b1 (x)

and the series expansion

Z (ap + b1 + co)n(ar + b1 + co)n

1— co,b1+n

= (1 — l')col'blF(ao + b1 4+ co,a1 + by + co, b1 — by — l;x).

Here ¢y, () is a holomorphic function in a neighborhood of 0 satisfying ¢, (0) =
1 for generic spectral parameters. We note that the transposition of ¢y and ¢;
in (IZI4) gives a nontrivial equality, which corresponds to Kummer’s relation of
Gauss hypergeometric function and the similar statement is true for (IEI3). In
general different procedures of reduction of a equation give different expression of
its solution.
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15.4. Hypergeometric family. H,

We examine the hypergeometric family which corresponds to the equations sat-
isfied by the generalized hypergeometric series (7). Its spectral type is in the
Simpson’s list (cf. §I5.2).

m=(1"n—-11,1"): ,F,_1(a, B; 2)

n—11,1",1" =10,1,1®n — 21,17 17}
,n2
(Am)] =1
H,=H, ®H,_1:n*
H, — H, ,
R2E0
Since m is of Okubo type, we have a system of Okubo normal form with the
spectral type m. Then the above R2E0 represents the reduction of systems of
equations of Okubo normal form due to Yokoyama [Yo2]. The number 1 on the

arrow represents a reduction by a middle convolution and the number shows the
difference of the orders.

=0 1 00 z=0 1 00
Aoy [Malm—y A2 1-61 [0n-1)y
Ao,n—1 A2.n—1 1—0Bn1 Q1
AO,n A1,2 )\2,71 0 _ﬁn Qp

n

Z(Ao,u +X )+ —DA1+Me=n—1,

v=1

ar+ -t a, =014+ B
The Riemann scheme of the operator

P = RAd(9~"1) o RAd(z7"1) 0 - -- o RAA(9~#1) 0 RAd (27 (1 — )7 )

equals
T = 1 00
0 [0](11—1) 1= pin—1
(711—1 + /Ln—l) ]- - (777,—1 + /Ufn—l) - ,Ufn—2
n—1 n—1
> (y+ ) L= > (v+w) = s
j=n—2 j=n—2
(15.15) : : )
n—1 n—1
> (v + 1) 1= (v +p) —
j=2 j=2
n—1 n—1 n—1
DGt AHdw A =Y (utw)
j=1 j=1 j=1

which is obtained by the induction on n with Theorem and corresponds to the

second Riemann scheme in the above by putting

’7’4:@'1_64 j:17"'7n_27 712—@1+51—17
(15.16) J Jt+ J ( )
pi=—jp1+ B (G=1...,n=1), pp1=1—ay,.

The integral representation of the local solutions at = 0 (resp. 1 and co ) corre-

sponding to the exponents Z}:ll (vj+ ;) (resp. 7’+Z?;11 pj and —/ 722:11(7]4 +



146 TOSHIO OSHIMA

) are given by

/

(15.17) [Hn-tginer [Hn-2 L g (] — )
by putting ¢ = 0 (resp. 1 and o).

For simplicity we express this construction using additions and middle convolu-
tions by

’

(15.18) w = O Hn-1gpVn-1 .. . g H2,72 97 H2 M1 (1 _ x)"/ .

For example, when n = 3, we have the solution

T t
/ tOl3—,3‘2 (.27 _ t)l—oésdt/ 804‘2—/31(1 _ S)_al+51_1(t _ S)_QQ_ﬁQdS.
c c

The operator corresponding to the second Riemann scheme is

n—1 n
(15.19) Py(a; )= [Jw-8) 0[]0 - ay).
j=1 j=1

This is clear when n = 1. In general we have
RAd(07#) o RAd(2") Py (cx, B)

(
= RAA(") 0 Ad(z") (nH 20+ B;) - 0 — ﬁxﬁJrozj)

7j=1

:]:

=RAd(O™" (1:[ (W48 =1=7)W =) -

Jj=1 J

z(0+ o — ’y))

Il
3 =

n—1
(Hﬁ+ﬁj ) (0 =7+ 10— ]+ 1)@ +a; — 7))

Jj=1

n—1

=[[@+8—v—w) W—v—n+1) Hﬁ”rl— (O +a; =y —p)

j=1

and therefore we have ([2.19]) by the correspondence of the Riemann schemes with

Y ="n and pr = fiy,.
Suppose A;1 = 0. We will show that

i Hn 125 = domdk i
(15200 i II= L N0 — Ao + 1)ik!
)\O’nn TL*].(()\QJ Ao n) 1,...,n ()\0 n )\O,J + 1) 1yen—15 )

is the local solution at the origin corresponding to the exponent )\ ,. Here

Oén (07%
(152]—) nFn—l(Oéla...7anaﬂla-.-7ﬂn—l; Z /6 1)f)(kk')k17k.
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We may assume Ao 1 = 0 for the proof of (IZ20). When n = 1, the corresponding
solution equals (1 —z)7*21 and we have (I5.20). Note that

e Z 1(A25 = Aon)n Aotk
(>\0 n— Ao, + 1)gk!
~ H 125 = Aok PMon+7+k+1) R

P ()Hn 1(/\071 /\0,j+1)kk‘! F()‘O,n+’7+/~"+k+1)

(Ao +v+1) i H?:l()\zj = Xon)k - (Ao + 7 4 D) - gtonTrruth
PQon +v+u+1) 20 T12 Com — Aoy + Vi Ao + 7+ s+ Dkl

Comparing [I5I5) with the first Riemann scheme under A\g1 = A1 = 0and y =,
and g = fu,, we have the solution (IZ20)) by the induction on n. The recurrence
relation in Theorem [[3.3] corresponds to the identity

nFn—l(ala-“aan—laan + l;ﬁlw-wﬁn—l;x)

(15.22) = nFner(@naniBr e Boia)
Q1 Oy
+ﬁx'n}7‘n—l(al+]~a"'aan+1;/81+1""’ﬁn_1+1;x)'
B,

The series expansion of the local solution at x = 1 corresponding to the exponent
v 4+ p1 + -+ pp_1 is a little more complicated.
For the Riemann scheme

Tr =00 0 1
—p2 + 1 [0]2) 0
1=y — 1 — p2 Yo + pio ’

= mmme i — ke Y bR Y2 e

we have the local solution at z =0

182 (1—z) 2 I (1 — ) = 182 (1 — Z z"

n=0

Ij? OV 1+ ()0 ypntn 1— )2

ZF7 1l (1-2)

— IH? i ]‘—‘(’y + 1 + n)(_'Yl)n(_’YZ)m 1-’7/+H1+m+n
0 I'(Y + p1 + 14+ n)min!

m,n=0

o0

_ 3 DOt bm ot m( L) () et
Py +pmp+pe+14+m+n)(H + p + 1+ n)min!

m,n=0

oo

_ L'(y + 1)x7/+u1+u2 Z (Y + 11+ Dingn (Y + D (=71)n(=72) ma™ "
Ly +p+pe+1) = (7 + p1+ p2 + Dman (Y + 1 + 1)pmlnl

=0
Applying the last equality in {3J]) to the above second equality, we have

12 (1 — x)”[‘“x’y/(l — )M

_ Z F ’y +1+n ( '71)71 x'y’+u1+u2+"(1 — x)—’yz
(Y 4 p1 + 1+ n)n!

o0

L(y +p+1+n) (H2)m(=72)m ( x )m
(v +m+pe+14n) (V+m+n+pe+1)pmiie—1

m=0
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_ T(y + 1)xfw+u1+u2(1 — )7 i Y + Dn(=71)n(—72)m (12)m :I:"( T )m
POy + p1 + p2 + 1) (V' + w1+ p2 + mgnmind r—1

I'(y'+1)
(Y +p1 +p2+1)

’ x
Y TR (] — ) TR By (=g, =y, p2, Y + 1Y+ p2 + 1, P 1),

m,n=0

where F3 is Appell’s hypergeometric function ([I549).

Let ufﬁ"(al, cees@n; By ..., Bro1; ) be the local solution of P, (a,f)u = 0 at

2 =1 such that u;?" (a; B;2) = (¢ — 1) mod (z — 1)}~#»O; for generic o and
B. Since the reduction

Ao [0fn—1)  A2n Ao [On—2) Aoy

) )
amaz

—

! ! A
Aon A2 Aog on—1 A2 Ay,

satisfies )\/1)2 = )\1’2 + )\0)1 + )\072 — 1 and )\673 + )\I2J = )\01]‘4,1 + >‘2,j+1 for j =
1,...,n — 1, Theorem [I3.3] proves

ufﬁ"(a;ﬂ;x) = u;ﬁ”(al,...,an +1;81,.. ., Bn1 + 1 2)
(15.23) 1 — Q1
+ﬁ11775u]]: ﬁ"(a;ﬂh...,ﬁn,l—i-l;x).

The condition for the irreducibility of the equation equals
(15.24) Aoy +A1+ A ¢Z (1<v<n, 1<V <n),

which is easily proved by the induction on n (cf. Example [217 ii)). The shift
operator under a compatible shift (e;,,) is bijective if and only if

(15.25) Ao+ A1+ Ao and Ao+ €0 A1 €11+ Ao €2

are simultaneously not integers or positive integers or non-positive integers for each
vel{l,...,ntand v € {1,...,n}.

Connection coefficients in this example are calculated by [Ld and [OTY] etc. In
this paper we get them by Theorem

There are the following direct decompositions (v = 1,...,n).

v

1.1 —11;1...1=0...0T; 1 0:0...010...0
®1...10;n —21;1...101...1.

These n decompositions m = m’ @ m"” satisfy the condition mg ,, = mf,, =1in
([IZ10), where ng = n and ny = 2. Since ng +ny1 — 2 = n, Remark [[48 i) shows
that these decompositions give all the decompositions appearing in (IZI0). Thus
we have

n—1
[[TCom =200 +1) - Tn —Ai2) r(6.)
c(Xon ~ Aij2) = = n = H F(ay)
TT T + A+ ) =t
v=1

lim (1—2)’,Fo_1(a,B;2)  (Ref, >0).

rz—1—-0
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Other connection coeflicients are obtained by the similar way.

c(Xon ~» A2n): When n =3, we have

111,21,111=001,10,100 001,10,010 101,11,110 011,11,110
@110,11,011=110, 11,101 =010, 10, 001 =100, 10, 001

In general by the rigid decompositions

1---1T,n—11,1---11 ?-.-01 10, 0...010-~-00

@l

--10, n721 1---101---11
-1 161 AT, n—21,1---10
@0...010---00 1 0,0---01
forte=1,...,n—1 we have
= )\2k *)\2 n)
A n ~7 A n :
<o, ? 1;[ ({Xom Ar1 Aax}|)
. nl:[ T(Xon — Aok +1)
puie r( ()\O,u)lé;%n Ailm—2)  (A2w)i<v<n—1 )
A12

T (BT (o — o)
()T(Br — o)’

Moreover we have

P(Ae = A+ 1) -T2 T Moy = Aon)
F(‘{(Ao,y)lgvgn—l P‘l,l](n—2) (A2,V)1§y§n, u;ﬁj}’)

c(A1,2~ Aon) =

=

ot AL2
_ H T(1-8,)
ST - ay)’
Here we denote
H1
K1 .
H2 . 4
(Nu)1SVSn = : €C" and (p)1<v<n = ﬁ:ﬁ eC”
#.n v :
fin
for complex numbers g1, ..., fi,.

These connection coefficients were obtained by [Le] and [Yod etc.
We have

—1(a, Byx) = ZCk(l —x)F + ZC,’C(l — z)k=Bn,
k=0 k=0
(15.26) Co=nFy-1(a,3;1) (RepBn <0),
;11 DBy
Co= H FEO‘V;

<
Il
—
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for 0 < x < 1if @ and (B are generic. Since

dk
wnFn—l(avﬁ;x)
(aa)g - (an)k ,
= mnFn—l(al+k»~-~»an+k751+k7«-«75n—1 —|—k,x)7
n—
we have
(1527) Ck: (al)k"'(an)k anl(a1+k7'"7an+k»61+ka'"75n71+k;1)'

Bk (Ba1)ik!"

We examine the monodromy generators for the solutions of the generalized hy-
pergeometric equation. For simplicity we assume ; ¢ Z and 3; — 3; ¢ Z for i # j.

Then u = (ugo’l, . ,ug‘o’") is a base of local solution at 0 and the corresponding
monodromy generator around 0 with respect to this base equals
627”/_1)\0‘1
My =
2™/ =TAo,n

and that around oo equals

Moo _ <Z 6277\/?1)\2’Vc()\0,i PUN )\Q,k)c()\Q,k > )\k"])> i<

k=1 1<55%n
_ zn: 27/ Tha. 11 sin 2m(Ao,i + A1+ A2)
sin 27T()\0,k — >\O,v)

k=1 ve{l,...n}\{k}

H sin2m(Xoyi + A1+ A2w)
1<i<n’

vempgy S0y = Aaw) ) 1sisn

Lastly we remark that the versal generalized hypergeometric operator is

In—1
€1

P =RAd(0 ") o RAd((1 — c1z) "1 ) o---o RAd(O™")

o RAd <(1 — clx)%-i_ﬁ(cltcz) (1 — 021;) 62(0;61)> 0

= RAA(9 1) o RAdei(l%ﬁ) o---oRA(OM)
— G

: N v'x
Ad
° RAdei <1 — + (1—-c12)(1 — cy:)) 0

and when n = 3, we have the integral representation of the solutions

T t s /
7 (1 = cou) +v'u i1 a2 .
—_ _ 221 1 _ c _ H2 .
/c /c eXp( /p (1= cru)(1 = cou) du) (t =) (1=eat) (@ ~1) ds dt

Here ¢ equals + or 4+ or co.
C1 Cc2

15.5. Even/0Odd family. FO,,

The system of differential equations of Schlesinger canonical form belonging to an
even or odd family is concretely given by [Gl]. We will examine concrete connection
coefficients of solutions of the single differential equation belonging to an even
or odd family. The corresponding tuples of partitions and their reductions and
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decompositions are as follows.
m+ 1m, m?1,1?"+ = 10,10,1 @ m?, mm — 11,1?™
=1%1%0,1> @ mm — 1, (m — 2)*1,1>m !
m?, mm —11,1*™ = 1,100,1 & mm — 1, (m — 1)?1,1>m~!
=1%110,12® (m — 1), m — 1m — 21,1>m~2

EO, = H, & EO,_1:2n = Hy @ EO,_, : (Z)

[A(m)] = 1(:)+2
EO, — EO,_
R1EOROEOQ
EO, = Hy, EOs;— Hs
EOs,, (m = (12", mm — 11,mm) : even family)

T = 00 0 1
Ao,1 Aty P2l

)

[>\1,2](m—1) [)‘272}(7”)

Ao,2m A3
2m
Z )\O,l/ + m(>\1,1 + )\2,1 + )\272) + (m — 1))\172 + )\173 =2m —1.
v=1

The rigid decompositions
1---11, mm — 11, mm
—0-.-0T,100, 10 1---10, m — 1m — 11, 01
J j
—0---17, 110, 11 1---00, m — 1m — 21, m — 1m — 1,
which are expressed by EOs,, = Hi & EOsp—1 = Hy ® EOgy, o, give

LA — Ais) et I'(Xo,2m — Ao,j + 1)
Noam ~ Ars) = i : : ’
c(Ao,2 1,3) Z].;.[ C([{o2m A Aeil]) ]1:-[1 F(H Xoj A >\2,1}

Ao2m A2 A22

)

2
D(A1s— A +1)
A Ao.o2m) = . .
C( 1,3 ™ AQ,2 ) 11;[1 [Al,l}(m—l) [)\Z,V](m)
P([S Mop)icv<om—1  M2lim—1)  [A23-id@m-1) ¢|)
A1,3
. 2ﬁ1 T'(Xo; = Ao2m)

Ailm-1)  [A21)m-1)
L(|q Qop)icv<om—1  [Mglm-2)  [A22]m-1)
1,3
These formulas were obtained by the author in 2007 (cf. [Of]), which is a main
motivation for the study in this paper. The condition for the irreducibility is

Mo +Aa+ Ak EZ (1<v<2m, k=1,2),
)\O,V + )\O,u’ + )\1,1 + )\1,2 + )\2,1 + )\2,2 —1 ¢ Z (1 <v<v< 2m, k = 1,2).

The shift operator for a compatible shift (e; ) is bijective if and only if the values
of each linear function in the above satisfy ([327).

)
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For the Fuchsian equation Pu = 0 of type FO4 with the Riemann scheme

r=00 0 1
lai]e) b1 [0]2) 5
(15.28) [az]2)y b2 @
b3 C2
0
and the Fuchs relation
(15.29) 2a1 +2a2 + b1 + by +b3+c1+c2=3

we have the connection formula

I(ci — c2)T(—c2) [[L_, T(1 = by)
(a)T(as) [T,—; T(a1 +as +b, +c1 = 1)

(15.30) c(0:0 ~ 1:¢3) =

Let Q be the Gauss hypergeometric operator with the Riemann scheme

T =00 0 1
ay 17(1170,2701 0
a2 0 C1

We may normalize the operators by
P=a23(1-2)0*+ -~ and Q==z(1—-2)0*+

Then
3

P:SQ—H(a1+a2—|—by+cl—1)-8

v=1

with a suitable S € Wz] and Q is a shift operator satisfying

r=o00 0 1 T =00 0 1
)@ b O sz | 5 [lea+le -1 [
laz]a)y b2 = Slaa+1]@ ba—1

bs 2 bs—1 ecg—1

0 0

Let u§ = 1+4--- and u$*> = (1—x)°+- - be the normalized local solutions of Pu = 0
corresponding to the characteristic exponents 0 at 0 and ¢, at 1, respectively. Then
the direct calculation shows

alazni (a1 +a2+b +Cl—1)

[C_.(1-h) T
Qus? = ca(cg — 1) (1 — )2t 4o

3,0
QU():

Denoting by c(a1,as, by, be, b3, c1,c2) the connection coefficient ¢(0:0 ~» 1:¢3) for
the equation with the Riemann scheme (I528]), we have

3

ai1a9 H(a1 + aso +bu +c1 — ].)
C(a17a27b1;b23b3361302) _ v=1

C(a/1+1,a2+1,b1—1,b2_1,b3_1,61,62_1) 3
(01702 H].*b

which proves ([530) since limg_, o0 c(a1+k, as+k, by —k,ba—k,bs—k,c1,ca—k) = 1.




WEYL ALGEBRA AND FUCHSIAN DIFFERENTIAL EQUATIONS 153

By the transformation x — —*5 we have
r=o00 0 1
0]y 0 Jail)
c1 bi  [az](2)
C2 b2
b3
T =00 0 1

272@1 ai
1—|—cl—a1 a1+b1—1 [a1+a2—1](2)
l4+co—a1 ap+by—1

(1—z)4181=a1 (1)~ a1

a1 +b3—1
T = 00 0 1
211 mb1 (1 _g)l-a1 ez az + by 1 —as
ar+az+by+c—1 0 [0]¢2)
ar+as+by+co—1 by —by
bs — by

and therefore Theorem [[Z4] gives the following connection formula for (I528):

L(by + 1)I'(a1 — as)
F(CLl + bl)F(l — (12)
a1—|—a2—|—b1+02—1;b1—bg—1,b1 —b3—1;1).

C(Oiblw()OZaQ): -3F2(a2+b1,a1+a2+b1+cl—1,

In the same way, we have

F(Cl + 1)F(a1 - ag)
F(al + Cl)F<1 — a2)
a1 +ci,c0 —co+ 1; 1).

c(licg » 00:ag) = - 3F5(by — c1,b2 — ¢1,b3 — ¢1;

We will calculate generalized connection coefficients defined in Definition [Z17
In fact, we get

[ T2—c) [I; T(a1 — a3 +1)
I'(a1) [T, I(ar + by)
[1_ (o — 1) - TTi_o (a2 — a1 — i)
I(1—a)]l—; (1 — a1 —by)

(15.31) 6(12[0](2) ~ OO:[a;2](2)) =

)

(15.32) c(o0:[az](2y ~ 1:[0](2)) =

according to the procedure given in Remark [4.19 which we will explain.

T =00 0 1
ar [0y [0l
The differential equation with the Riemann scheme 2 Bley m is
as Y2
Qg

Pu = 0 with

4
P= Hﬁ—kaj J+0(W=B8)((0-20+m +v2—1)(9—B)
(15.33)

j=1
+ Z oy — (B=2m =292 —4)(B-1) =72 +1).
1<i<j<3
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The equation Pu = 0 is isomorphic to the system

dﬂ_A~+ B
der x—lu’
0 010 0 00O Uy
15.34
(15.34) Af0001370000ﬂfu2
10 0 ¢ 0”7 s 1 a O] |us
0 0 0 ¢ r t 0 b Uy
by the correspondence
uy = u,
us = (z—Dau"+ (1 —a—c)z+a—1)u — su,
us = u’,

uy =23z — D" + (B—a—c)z? + (a—2)2)u”" + (1 —a —c— s)zu/,
where we may assume Revy; > Re~s and
B:ca 71:a+17 72:b+27

4

[[€-)=¢"+(@+b+208 + ((a+)(b+c) — s — )¢

) —((b+c)s+ (a+c)t)E+ st —r.

Here s, t and r are uniquely determined from a1, as, as, ay, 58,71, v2 because b+c #
a + ¢. We remark that Ad(x~¢)a satisfies a system of Okubo normal form.

Note that the shift of parameters (aq, ..., a4, 8,71,72) = ((a1,..., a4, 8—1, 71+
1,72 4+ 1) corresponds to the shift (a,b,c,s,t,r) — (a+ 1,0+ 1,¢c—1,s,t,7).

Let uﬁth,mﬁmm (x) be local holomorphic solutions of Pu = 0 in a neighbor-
hood of = 0 determined by
ui1>~-‘7a4,37“/1,"/2 (0) = 6j’0’

d ,J —
(@ua1>~-<7a4,3771,72)(0) - 5j’1

for j = 0 and 1. Then Theorem [[4.10 proves

i k(@) = G0 (0 =0,1,2,.)

uniformly on D = {z € C; |z| < 1}.
Put u = Va4, = (11 —2) 4, 5., Then Theorem [ZIT proves

klingo (zg%vaﬁ—kﬁh-i-kﬁz-ﬁ-k(x) =0 (¥=0,1,2,...),

3 2
klggo((x —Daim +(2-B-m)r+mn+k-2)5 - s) Ve, f—kiys stk () = 1
uniformly on D. Hence

: d 1 _
kli{go(ﬂua»ﬁ*kﬁ+1”h+k)(w) =1

uniformly on D. Thus we obtain
klggo C(OO:[G‘?](Q) ~ 1:[0}(2))|a1»—>a17k, ci—c1tk, carreatk = 1

for the connection coefficient in (I532]). Then the procedure given in Remark [[4.19]
and Corollary with the rigid decompositions
22,1111,211 = 12,0111,111 & 10,1000, 100 = 12,1011,111 & 10,0100, 100
— 12,1101, T11 @ 10,0010, 700 = 12,1101, T11 & 10, 0010, T00
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prove [[232)). Corresponding to Remark [[Z.19 (4) we note

2 1 3

dHew-1)+> (az—ar—i)=1—a))+ > T(1—a;—b,)

v=1 =0 v=1

because of the Fuchs relation (I529). We can similarly obtain (I5.31]).
The holomorphic solution at the origin is given by

up(z) = Z

m>0, n>0

(a1 4+ ag +bs+ca— 1), HV 1((ay)m+n(a1 +as+b, +c1 — 1)m) gmn

and it has the integral representation

I, I(1—by)

Uglxr) =
(z) (F( )1 —a, —0b,)T (by+cu+a1+a2—1))
/ / / .Z‘ _ 50 b1*a1882+a1*1(80 _ 81)*172*(12
b3+a2 1 81) b3—c1—az— f11+1(81 _ 32)Cl+b1+az+a1*2

.ng+cg+a2+a1 2(1 = sp) 2" rmazmartl g 4 dsy.

The equation is irreducible if and only if any value of the following linear functions

is not an integer.

a1 as
ay+br ar+by ay+by ax+b ax+by az+b3

ai+ag+by+ce1—1 ai+ag+by+eca—1 a;+as+by+ec;—1
a1 +as+by+co—1 aj+ay+byg+ci—1 aj+as+by+co—1.

In the same way we have the connection coefficients for odd family.
EO2,41 (m = (12" mm1,m + 1m) : odd family)

T =00 0 1
Ao,1 Ay Pealmtn
; A2lm)  [A22]m)
A0, 2m+1 A3

sz+1 Ao +m(A1+ A2+ Aa2) + (m+ 1A + A3 =2m.

2 I'(Ak — Aus)
c(Aogm+1 ~ Aig) = H C([{Mozm+1 Mg A2i}])

k=1

i I'(Xo,2m+1 — Aok + 1)

T Aok Al A2
Ao2mt+1 A2 A2

=L}

;
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F()\l,g - >\1,k + 1)
(A1 k)(m) [A2,1](m)

c(A1,3 ~ Ao2my1) = H

k=1
F( ()\Ovl’)lgVSQW [)\1,37k](m_1) [)\2’2](7”)
A3
. ﬁ I'(Xok — Ao,2m+1)
k=1 A]om-1)  [A2,1)m)
(¢ Qowhisv<am Malm-1 Po2lm-1 3 )
v#k
A3
The condition for the irreducibility is
)\O,u+)\1,k+)\271¢Z (1§V§2m+1,k:1,2)7
Aow Ao +Aa+ A+ Ao+l —1¢2Z (I<v<V/ <2m+1, k=12).

The same statement using the above linear functions as in the case of even family is
valid for the bijectivity of the shift operator with respect to compatible shift (¢; ).

We note that the operation RAd(0~#) o RAd(z =2 (1 — z)~*22) transforms the
operator and solutions with the above Riemann scheme of type EO,, into those of

type EOp11:

Mo Pualgzy  Pealesn

P\LZ]([%]) [>\2,2]([%])
Ao,n A3
Ao+ A2+ A2z [Arn— Ay [Ae - )\2,2]([%1])
z*>\1,2(1_z)*>\2,2
. [0}([%—1]) [0]([%])
Aon + A1,z + A2 A1z — Ai2

Aot Azt Ao = A=A+ ulzy Pea = e+l e

e : IZREES )
Ao+ A2+ X — M3z — A2+ p
I—p

15.6. Trigonometric identities. The connection coefficients corresponding to the
Riemann scheme of the hypergeometric family in §I5.4] satisfy

Zc(l tA1,20: A0) - e(0: A 1A 0) =1,
v=1
C(OO . )\2,7;”‘-?0 . /\OW) C(O . )\07V’V">OO . /\271‘) = 51]

v=1

These equations with Remark [4.8iii) give the identities

Xn: Hveqr...n sinoe = vo) ) Sin(zn: Ty — Zn:y”)’
v=1 v=1

— loeq,..np oy sin(zr — 2y

SO o)y sbeemw) 5o o)

et ey 0@ =By S — )
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We have the following identity from the connection coefficients of even/odd families.

n ) ) )
Z sin(xg + s) - sin(zy + t) - H Sln(:%'k + 1z, + 2u)
sin(zg — x,)
k=1 ve{l,..n\{k}

sin(nu+ZxU> ~sin(5+t+(n—2)u+2xl,) if n=2m,
v=1

— v=1

sin<s+ (n—1Du-+ qu) .sin<t+ (n—1Du+ le,) if n=2m+ 1
v=1 v=1

The direct proof of these identities using residue calculus is given by [Od. Tt is
interesting that similar identities of rational functions are given in [Gll Appendix]
which studies the systems of Schlesinger canonical form corresponding to Simpson’s

list (cf. §I5.2]).
15.7. Rigid examples of order at most 4.
15.7.1. order 1. 1,1,1
u(z) = 2™ (1 — )™ {=M1 =X M A}

15.7.2. order 2. 11,11,11 : Hy (Gauss)  [A(m)] =1*
— ) H1 *,Ul + ]- 0 0
wi, = 97 ule) {—)\1 —X2—p1 Artpr At
15.7.3. order 3. There are two types.
111,21,111 : Hz (3F%) [A(m)] =1°
UH, = 8*”2x>‘3uH2

1= pio 0 [0]c2)
A3 — 1 —p2+1 A3+ o
“AM == A3 —pr—pe A+ A3 pr+pe Ae 4 pr + pe

21,21,21,21 : P3 (Jordan-Pochhammer) [A(m)] =1%-2
up, = 0" 2 (1 — )M (e — )2

(1 — (2 0l [0l [0l
“Xo—AM—A—p A+p MHp Aetp

15.7.4. order 4. There are 6 types.
211,211,211 as [A(m)] =102

HH2 s (1- Jt:)>‘4uH2

[—p2 + 1](2) [O](Z) [O](2)
—p1—A3— A —pe+1 Az + U2 Ag + 2
“AM—Ade— A3 =AM —pr—pe A A3+ Fpe Ao+ A4+ ope
1111,31,1111 : Hy (4F3) [A(m)] = 116
5_”333A4UH3
—p3+1 0 [0](3)
—Aa—p2 —pus+1 A4
A3 — A —p1—p2—puz+1 A3+ Ag + p2 + ps

A== A — g2 — g3 At At et s Ae o+ pa o+ e+ ps
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211,22,1111 : EO4 [A(m)] =11

0 (1 —a) Numy, N =Xa+ 1+ o

A2+ 1 — pe—p3+1 [0] 2y [—A2 — p1 — p2 + ps)2)
Ao — A3 —puz+1 A3 + p2 + us
—A1— A3 — 3 A1+ Az + pa + pe + ops [0](2)
—p3 +1

We have the integral representation of the local solution corresponding to the ex-
ponent at 0:

T t s
///(1—t)_’\z_‘“_”?(x—t)”3_1s’\3(t—s)’”_lu’\l(l—u)/\z(s—u)“_ldudsdt.
o Jo Jo

211,22,31,31: I, [A(m)] =16 . 22

072 (co — ) up,

{ [—p2 + 12) [0](3) [0](3) [0]2) }
A3 —p1 —p2+1

Az + p2]2)
A — A2 — A3 — 1 —p2 AL prFpe Ao A4 pr + p2

31,31,31,31,31: P,  [A(m)] =1°-3
up, = 8_“;v)‘0(1 — x)/\l (ca — x))‘2 (cs — a:))‘3

[—u+1]3) 0] [0l [O]a) [0l
“Ao—A2—Az3—p Aot+p Atp Atp As+p
92,22,22,31: P,y [A(m)] = 15-2
8_’/36_%(1 — x)_xl (co — a:)_’\;u}:37 No=Xj+p, =X+ A+ +2u
{ [1—p) A1+ A2+ pl@) [Aot+Ae+pl@) [Ao+ A+ M](z)}
—Xo = A= A [0]2) 0)2) [0)2)

15.7.5. Tuple of partitions : 211,211,211, [A(m)] =1%0.2

211,211,211=H ®H3: 6 =Hy ®d Hy:4=2H, ® H> : 1
From the operations

Tr =00 0 1
1-— 1251 0 0
—op—Pr—m o+ it
T =00 0 1
22 (1—x)P2
—_— 1l—ap—fo— 1 Qg B2
—ap— =B —fo—p1 autartm P+ B2+
Tr = 00 0 1
o—r2 [—p2 4 1] (2 [0](2) [0]¢2)
Z 5
1 =82 —p1 — p2 ) Ba + a2
—ay—B1—PBo—p1—po or+pr+pe B+ Botpn 4 opeo
Tr =00 0 1 )
P2l ol Mde : , , ) =
— )\2’2 )\0’2 )\1,2 with ;(2)\]71 + )\]72 + )\]73) = 3,
A2,3 Ao,3 A3

we have the integral representation of the solutions as in the case of other examples

we have explained and so here we will not discuss them. The universal operator of
type 11,11,11 is

Q= 2*(1—2)%0% — (ax + b)x(1 — 2)0 + (ca® + dx + e).
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Here we have

b=Xo1+ X2~ 1, e =102,
—a—b=X,+XN,—1, c+d+e=N N,
c= /2,1)\/2,27
o1 = az, No2 = o1 + g + pa,
11 = B2, 12 = B1+ B+ pa,
51 =1— B2~ 1 — pa, Noog=—1 — f1— fa— 1 — p2

corresponding to the above second Riemann scheme. The operator corresponding
to the tuple 211,211,211 is

P =RAd(0")Q
= RA(D™) (0 = Xp.)(0 — Np)
F (=207 + (201 + 205 + Ng + Xy — DI+ N N 5 — Mg Mg s — Ao M)
+ 220+ N1 ) (0 + X2) )
= %(0 = Ao 1 — p2) (0 — Xy o — pi2)
+ 00 = pa + 1) (=209 — p2)® + (20,1 +2X 2 + A1 1 + Ao — 1) — o)
AN 2 = X010 2 — /2,1)‘/2,2)
+ (9 — o+ 1) — pg +2)(9 + Ny g — p2) (9 + Ny 5 — pa2).
The condition for the irreducibility:
Xo1+ A1+ A1 € Z,

Ay +AM1+X1 €7, Mo1+Mp+X1¢Z, i1+ 1+ e, ¢Z (v=2,3),
Xojg+Ao2+ A1+ M+ X+ EZ (v, €{2,3}).

There exist three types of direct decompositions of the tuple and there are 4 direct
decompositions which give the connection coefficient ¢(Ag 3~> A1 3) by the formula

([IZI0) in Theorem [T4.Gt
211,211,211 = 00T, 100, 100 & 210,111, 111
— 11T, 210, 111 @ 100, 001, 100
= 101,110,110 @ 110, 101, 101
= 101,110,101 & 110,101,110
Thus we have

151 T(ho3 — Aow +1)
X3+ A+ A21) T(1 = X1 — Az — A21)
. [l Ty —Tis)
Hizg T(Ao1 +Aos + A1+ A2+ Ao+ Agy — 1)

We can also calculate generalized connection coefficient defined in Definition T4.Tt

Aoz~ A1 3) = I

1o (T o1 — Ao +2) - T(Ary — A1 — 1))
H,?j:g (P01 + A +A21) - T(1 = Ao — A1 — Az1))

This can be proved by the procedure given in Remark [4.T9 as in the case of the
formula (I232). Note that the gamma functions in the numerator of this formula

c([Ao,1]2) ~ [A1]2) =
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correspond to Remark [[419] (2) and those in the denominator correspond to the

rigid decompositions

211,211,211 = 100,010,100 & 111,201, 111 = 100,001, 100 & 111,210, 111
= 210,111,111 & 001,100, 100 = 201,111, 111 & 010, T00, 100.

T =00 0 1
The equation Pu = 0 with the Riemann scheme Dol Pl Ol is iso-
0,2 A2 A2
Ao,3 Az A3
morphic to the system
u1
~/ B ~ ~ Ug
= —u-+ u, U= , Ul = U,
T rz—1 Uus3
Uy
0 0 0
10 0 O c1
a= 0 0 aq bl—bg—CQ ’
00 O as
0 0 0 0
B 0 0 0 0
| —a1 —by+cy —by+by+eo by 01’
—a1+as+cy —as—bi+c1 a1 —az—cy by
a1 = >\1,2,
as = A1,3,
b1 = X2 — 2,
b2 - >\2,3 - 17
c1 = —Xo,1,
c2 =X, 1+ A2+ A2+ A0 —1

when A1 (Ao + A2,2) (Ao + Aoz + A2 + A2 3 —2) # 0. Let u(z) be a holomorphic
solution of Pu = 0 in a neighborhood of x = 0. By a direct calculation we have
(a1 —1)(ag — 1) o
(b1 —c1 + 1)(b1 — by — 02)01
(ag +bg +co — 1)ay — (c1 + ca)ag + (a2 — ag + ca)by — (ca + 1)bg — 3 + 1 u(0)
(b1 —c1 + 1)(by — by — ¢2) '
Since the shift described in Remark (1) corresponds to the shift

U1 (0) —

0)+

(a1,a2,b1,b2,c1,¢2) = (a1 — k,az — k, by + k,ba + k, c1,¢2),
it follows from Theorem that

Tim e(o.1)2) > Pale) |y asoa—k, 0as0s-4= 1
A1,2 21,21k, A1z A3tk

as in the proof of (I532) because u;(0) ~ mu’(()) + Cu(0) with C € C
when k& — oo. Thus we can calculate this generalized connection coefficient by the
procedure described in Remark

Using ([8]), we have the series expansion of the local solution at = 0 corre-
sponding to the exponent a; + p1 + pe for the Riemann scheme parametrized by
oy, B and p; with i =1, 2.

a2 (1 —2)P2 i g (1 — x)
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_ Igz F(al + 1) i (al + 1)n(_/61)nxa2<1 _ m)ﬂQxalJ,-’u-i-n
Mo +p+1) o (a1 + p+ 1),n!

_ D(ar + D) (og + ag 4 pg + 1)gertoatrtie

T (o +p1 + Do + g + py + pe + 1)

i (a1 + Dnlar + oo+ p1 + Dman(=B1)n(=B2)m L
(14 p1 + Dplar + g 4+ p1 + p2 + 1) mgnnlm!

m,n=0
~ T(ar + D + ag + py + L)aerteetmtuz(] — g)=F
B (o + p1 + (a1 + as 4+ pn + pe + 1)

Z (041 + ]-)n(al + ag + p1 + ]-)n(,LLQ)m(*/Bl)n(*ﬂQ)mxn( € )m
(a1 +p1 + Dplar + s + p1 + p2 + 1)mpnmin! x—1/

m, n=0
Note that when B3 = 0, the local solution is reduced to a local solution of the
equation at z = 0 satisfied by the hypergeometric series 3Fs (o, ab, af; 81, B x)
and when as = 0, it is reduced to a local solution of the equation corresponding to
the exponent at x = 1 with free multiplicity.
Let ug(aq, aa, 1, B2, i1, pio; ) be the local solution normalized by

uo(a ﬂ ,u'as) _ ma1+a2+u1+u2 c xa1+az+u1+u2+100
b b

for generic a, 8, u. Then we have the recurrence relation

(a1 +1)(or +ag+p1 +1)
ugla, B1 — 1, Bo, u; x) = up(a, B, u; x) +
o(a, 1 Ba, i @) of@ B, s z) (o +p1+1)(ar +ao+p1 +p2+1)

~up(on + 1, az, 81 — 1, Bo, p5 ).

15.7.6. Tuple of partitions : 211,22, 31, 31. [A(m)] =16.2
911,22,31,31 = Hy @ Py :4d = Ho & Hy : 2 = 2H, & Hy : 2
= 010,10, 10,10 & 201,12, 21,21 = 010,01, 10, 10 & 201, 21, 21, 21
=001, 10,10, 10 @ 210, 12, 21,21 = 001, 01, 10, 10 @ 210, 21, 21, 21
= 110,11,11,20 & 101,11, 20, 11 = 110, 11,20,11 @ 101, 11,11, 20
= 200, 20, 20,20  011,02,11,11

Omezy 011,02,11, 11

z=0 % % 00
Mol Ml Peile) [Asile)

0,2 AL2 Aa2 [As2](2)
A23

N0, L(l—ciz)~ A1, A(1—cpz)™ A21

rz=0 ci ci 00
[0]3) [0 ](3) [0 ](2) [A3,1+ Aot + A1+ Aat]a)
Ao2—Ao1 A2 —Anr Aeo—Aon Az 4 Ao+ AL+ A
A2.3 — A2
af*i
c1 c2
0 0

M2+ A = Aor A2 FA = A Ao+ A = Ao [As2 = Asa 1
Ao+ AL — A2q
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The condition for the irreducibility:

)\071 + )\171 + )\27,, + )\37,,/ ¢ 7 (U c {1,2,3}, v e {1,2}),
Aot FAo2+2 0 F Ao+ Ay F A3+ X302 ¢ Z (v e{2,3}),

Hizg T( Mo + Aoz 4+ 2M11 + Aot + Aoy + A1+ Azo — 1)

2
_ I'(A23 — A2u)
c(Xo2~ A2 3) = ,,1;[1 T(1— o — M1 — Azs — Man)

c(Ao2~ A1 2) =

I'(Ao2— o1 +1)(1— %)/\171
T(Mo1+XAo2+2M 1+ A1+ Ao+ A1+ A32— 1)

15.7.7. Tuple of partitions : 22,22,22,31. [A(m)] =18 .2
22,22,22,31 = H; & P3 : 8 = 2(11,11, 11, 20) & 00, 00, 00, (—1)1
=10,10,10,10 9 12,12,12,21 = 10,10,01,10 ® 12,12, 21,21
=10,01,10,10 ¢ 12,21,12,21 = 10,01,01,10 ® 12,21, 21,21
=01,10,10,10 @ 21,12,12,21 = 01,10,01,10 @ 21,12, 21,21
=01,01,10,10 ¢ 21,21,12,21 = 01,01, 01,10 @ 21, 21, 21,21

212,12,12,21
The condition for the irreducibility:

Mo+ A+ X+ A3 €2 (4,5, ke {1,2}),
Ao+ Ao+ A1 F 2+ A+ Ao+ Az + A3 ¢ Z

15.8. Other rigid examples with a small order. First we give an example
which is not of Okubo type.

15.8.1. 221,221,221. The Riemann Scheme and the direct decompositions are

z=0 1 o)
2

Moy M) [Peile
: ; , , 201+ 202+ Aj3) =4,
[)\0)2](2) [)\172](2) [/\2)2}(2) Z( 7,1 7,2 J,S)

0,3 A3 A23
[A(m)] =12
221,221,221 = H; & 211,211,211 : 8 6 = |2,2,2|

=H,® H3:6 11 = |21, 22, 22
=2H,dH;:1
— 10T, 110,110 & 120, 111, 111 = 01T, 110, 110 & 210, 111, 111
— 117,120, 111 & 110, 101, 110 = 11T, 210, 111 & 110,011, 110
121,121,121

Jj=0

and a connection coefficient is give by

I'(Xo3 — Ao,y + 1)
N2 ~o Ay ) = : :
C( 0,37 1’3) H (F(/\O,u + /\073 + /\171 + /\172 + /\271 + /\272 — 1)

v=1
. F(Ay — Ar3) )
TF'(2=Xo1—Xo2—Ap—A13— 21— Ae2) )
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Using this example we explain an idea to get all the rigid decompositions m =
m’ @ m”. Here we note that idx(m,m’) = 1. Put m = 221,221,221. We may
assume ordm’ < ord m”.

Suppose ordm’ = 1. Then m’ is isomorphic to 1,1,1 and there exists tuples
of indices (o, £1,¥f2) such that m}w = 0j,¢;- Then idx(m,m’) = mog, + mie, +
mie, — (3 —2)ordm - ordm’ and we have mg g, + M1, + m1e, = 6. Hence
(mo,ee, M1,0,,M10,) = (2,2,2), which is expressed by 6 = |2,2,2] in the above.
Since £; = 1 or 2 for 0 < j < 2, it is clear that there exist 8 rigid decompositions
with ordm’ = 1.

Suppose ordm’ = 2. Then m’ is isomorphic to 11,11,11 and there exists
tuples of indices (€o1,%0,2,¢1,1,¢1,2,%2,1,¢2,2) which satisfies Z?:o Zi:l mje, =
(3—2)ordm-ordm’+1 = 11. Hence we may assume ({1, %,2,¢1,1,¢1,2,¢2,1,¢2,2) =
(2,1,2,2,2,2) modulo obvious symmetries, which is expressed by 11 = |21, 22, 22|.
There exist 6 rigid decompositions with ordm’ = 2.

In general this method to get all the rigid decompositions of m is useful when
ordm is not big. For example if ordm < 7, m’ is isomorphic to 1,1,1 or 11,11, 11
or 21,111, 111.

The condition for the irreducibility is given by Theorem [ZI0 and it is

Ao+ A+ her¢Z (i, 4, k € {1,2}),
S oY A+ (Mg —Nik) €2 (1 €{0,1,2}, ke {1,2}).

15.8.2. Other examples. Theorem shows that the connection coefficients be-
tween local solutions of rigid differential equations which correspond to the eigenval-
ues of local monodromies with free multiplicities are given by direct decompositions
of the tuples of partitions m describing their spectral types.

We list the rigid decompositions m = m’@m” of rigid indivisible m in P(%) UP?EG)
satisfying mo n, = m1,n, = mg ,, = m{,, = 1. The positions of mg n, and m; ,,
in m to which Theorem [[Z.@] applies are indicated by an overline and an underline,
respectively. The number of decompositions in each case equals ng + n; — 2 and
therefore the validity of the following list is easily verified.

We show the tuple Op,q,m after —. The type [A(m)] of A(m) is calculated by
@22), which is also indicated in the following with this calculation. For exam-
ple, when m = 311,221,2111, we have d(m) = 2, m’ = dm = 111,021,0111,
[A(s(111,021,0111))] = 1°, {m}, — m}, € Zso} U {2} = {1,1,1,1,2,2} and
hence [A(m)] = 19 x 1* .22 = 113. 22 which is a partition of A(m) — 1 = 17.
Here we note that h(m) is the sum of the numbers attached the Dynkin diagram

1.2 153 2 1 corresponding to apm € A .

All the decompositions of the tuple m corresponding to the elements in A(m)
are given, by which we easily get the necessary and sufficient condition for the
irreducibility (cf. Theorem and JI5.9.7).

ordm =25
311,221, 2111 = 100,010, 0001 & 211,211, 2110 6=3,21]|
=100, 001, 1000 & 211, 220, 1111 6=13,1,2|
= 101,110, 1001 & 210,111, 1110 11 = [31,22, 21

= 2(100, 100, 1000) & 111,021, 0111

2 111,021,0111
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[Am)] =17 x1*.2° =1"%.2?
m=H ©211,211,211:6 = H, ®FEOs: 1= H, ® H3 : 6 = 2H, © H3 : 2

311,221,2111 = 211,211,2110 & 100, 010, 0001 = 211,121, 2110 & 100, 100,0001

= 100,001, 1000 @ 211,220, 1111

=210,111,1110 @ 101, 110, 1001 = 201, 111,1110 & 110, 110, 1001
31T,221,2111 = 211,211,2110 & 100, 010, 0001 = 211, 121, 2110 & 100, 100, 0001

=201,111,1110 @ 110, 110, 1001

=101,110,1010 & 210, 111, 1101 = 101, 110, 1100 & 210,111, 1011

32,2111, 2111 = 22,1111,2110 & 10, 1000, 0001 = 10,0001, 1000 & 22,2110, 1111
= 11,1001, 1010 ¢ 21,1110, 1101 = 11,1001, 1100 & 21, 1110, 1011
=21,1101,1110 & 11,1010, 1001 = 21,1011, 1110 & 11,1100, 1001
2 12,0111,0111

[Am)] =17 x17.2=1"%.2
m=H OHs:1=H®FEOs :6=Hy O H3:9=2H $ Hsz:1

221,221, 41,41 = 001, 100, 10, 10 & 220, 121, 31,31 = 001,010, 10, 10 & 220,211, 31, 31
= 211,220, 31,31 @ 010,001, 10, 10 = 121, 220, 31, 31 & 100, 001, 10, 10
2 021,021, 21, 21
[Am)] =1*-2x1*. 2> =15.2*
m=H $22,211,31,31:4=Hy® Hs:2=2H, & Ps: 4
22T,221,41,41 = 001, 100, 10, 10 220, 121, 31, 31 = 001,010, 10, 10 & 220,211, 31, 31
= 111,111, 30,21 ® 110, 110, 11, 20

22T, 32,32, 41 = 101,11, 11,20 & 120, 21, 21,21 = 011, 11, 11,20 & 210, 21, 21, 21
=001, 10,10, 10 & 220, 22, 22, 31
2 021,12,12,21
[Am) =1*-2x1*.22=1".2
m=H; 622222231 :1=H, $211,22,31,31 :4=Hy & Py : 2
=2H, ® P3:2

311,311, 32,41 = 001, 100, 10, 10 @ 310, 211, 22,31 = 211, 301, 22, 31 & 100, 001, 10, 10
=101, 110, 11,20 & 210,201, 21,21 = 201,210,21,21 & 110, 101, 11,20
S 011,011,02, 11

[Am)] =1*x1*.2.3=1%.2.3
m=H, $211,31,22,31:4=H, ® P3: 4

=2H, ®Hs:1=3H, & H,: 1

311,311, 32,41 = 001, 100, 10, 10 & 301, 211, 22, 31
= 101,110, 11, 20 & 210, 201, 21,21 = 101,101, 11,20 & 210,210, 21, 21
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32,32,41,41,41 = 11,11, 11,20, 20 & 21,21, 30, 21, 21
=21,21,21,30,21 & 11, 11, 20, 11, 20
3 02,02,11,11,11
[Am)] =1*x2*.3=1".2".3
m=H OGP :1=H®Ps:3=2H ®&Ps:2=3H & Hy:1

ordm =6 and m € Py

321,3111,222 = 311, 2111, 221 & 010, 1000, 001 7=12,3,2|
= 211,2110,211 & 110, 1001, 011 13 = [32,31, 22|
=210,1110,111 & 111, 2001, 111
2 121,1111,022 — 111,0111, 012

[Am)] =1" x1.2° =1".2°
m = Hy & 311,2111,221 : 3 = Ho & 211,211,211 : 6 = Hs & Hs : 6

=2H1 ® EO4:3

321,3111,222 = 211,2110, 211 & 110, 1001, 011 = 211,2110, 121 & 110, 1001, 101
=211,2110,112 ¢ 110, 1001, 110
= 111,2100, 111 & 210,1011, 111 = 111, 2010, 111 & 210, 1101, 111

321,3117T, 3111 = 221, 2111, 3110 & 100, 1000, 0001 = 100, 0001, 1000 & 221, 3110, 2111

= 211,2101,2110 @ 110, 1010, 1001 = 211, 2011,2110 & 110, 1101, 1001
=110,1001,1100 ¢ 211,2110,2011 = 110,1001, 1010 ¢ 211, 2110, 2101

3 021,0111,0111
[Am)]=1"x1"-2.-3=1"%.2.3
m = Hy §221,2111,311: 6 = H; & 32,2111,2111 : 1
= Hy®211,211,211: 9 =2H, ® Hy: 1 = 3H, ® Hs : 1

321,3111, 3111 = 221, 3110, 2111 & 100, 0001, 1000 = 001, 1000, 1000 & 320, 2111,2111
=211, 2110, 2110 & 110, 1001, 1001 = 211, 2110, 2011 & 110, 1001, 1100
= 211,2110,2011 & 110, 1001, 1100

32T,321,2211 = 211,220, 1111 ¢ 110, 101, 1100 = 101, 110, 1100 & 220, 211, 1111
= 111,210,1110 @ 210, 111, 1101 = 111,210, 1101 & 210,111, 1110

2 121,121,0211 — 101,101, 0011
[Am)] =1"0-2x1". 2> =1".2°
m = H; &311,221,2111 : 4 = H; ¢ 221,221,221 : 2

=Hy®EO4:2=Hy®211,211,211: 4 = H3 & Hj : 2
= 2H; ® 211,211,211 : 2 = 2(110,110,1100) & 101, 101,0011 : 1

321,32T,2211 = 221,221,2210 @ 100, 100, 0001 = 110,101, 1100 & 211,220, 1111
= 211,211,2110 @ 110, 110,0101 = 211, 211,1210 & 110, 110, 1001
=210,111,1110 @ 111, 210, 1101
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411,2211,2211 = 311, 2210, 2111 & 100,0001, 0100 = 311,2210, 1211 & 100, 0001, 1000
=101,1100,1100 & 310,1111,1111 = 201,1110, 1110 & 210,1101, 1101
=201,1110,1101 @ 210,1101,1110
2 211,0211,0211 — 011,001, 0011

[Am)] =1"-2x1*.2° =1".2*
m = H; $311,221,2211:8= Ho G Hy : 2= Hs ® Hy : 4
=2H, @ 211,211,211 : 4

411,221T,2211 = 311, 2111, 2210 & 100, 0100, 0001 = 311, 1211, 2210 & 100, 1000, 0001
=100, 0001, 0100 & 311,2210,2111 = 100, 0001, 1000 & 311, 2210, 1211
=201,1101,1110 & 210,1110, 1101 = 210,1101,1110 & 201, 1110, 1101

411,222, 21111 = 311,221, 21110 & 100, 001, 00001 = 311,212,21110 & 100, 010, 00001
=311,122,21110 & 100, 100,00001 = 201,111, 11100 4 210, 111,10011
=201,111,11010 & 210, 111, 10101 = 201,111, 10110 & 210, 111, 11001
3 211,022,01111 — 111,012, 00111

[A(m)] = 1" x 1*.2% =18 . 23
m = H; ¢ 311,221,2111:12 = Hs ® Hs : 6 = 2H, & EO, : 3

42,2211,21111 = 32,2111,21110 & 10,0100, 00001 = 32,1211,21110 & 10, 1000, 00001
= 10,0001, 10000 & 32,2210,11111 = 31,1111,11110 & 11, 1100, 10001
=21,1101,11100 & 21,1110,10011 = 21,1101,11010 & 21,1110, 10101
= 21,1101,10110 & 21,1110, 11001
2 22,0211,01111 — 12,0111,00111

[Am)] = 1" x1°.27 =1%0. 22
m=H; $32,2111,2111 : 8 = Hi ® EO4:2 = Ho & Hy : 4
=Hs @ Hs:6=2H, & EOy : 2

33,3111, 21111 = 32,2111,21110 & 01, 1000, 00001 = 23,2111,21110 & 10, 1000, 00001
= 22,2101, 11110 11,1010, 10001 = 22,2011, 11110 & 11,1100, 10001
= 11,1001, 11000 & 22,2110, 10111 = 11,1001, 10100 & 22, 2110, 11011
= 11,1001, 10010 & 22,2110, 11101
3 13,1111,01111
[A(m)] = 1" x 1*. 2% = 1%0. 22
m = H, ©32,2111,2111 : 8 = Hy & EO, : 12 = 2H, & Hy : 2

321,3111, 3111 = 221, 3110, 2111 & 100, 0001, 1000 = 001, 1000, 1000 & 320, 2111, 2111
=211,2110,2110 & 110, 1001, 1001 = 211,2110, 2101 & 110, 1001, 1010
=211, 2110,2011 & 110, 1001, 1100
3,021,0111,0111
[Am)]=1°x17-2.-3=1".2.3
m = Hy ©221,2111,311: 6 = Hy & 32,2111,2111 : 1
= H, ®211,211,211: 9 =2H, ® Hy: 1 = 3H, & Hs : 1
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321,311T, 3111 = 100, 0001, 1000 & 221, 3110,2111 = 221, 2111, 3110 & 100, 1000, 0001
= 211,2101,2110 & 110, 1010, 1001 = 211, 2011, 2110 & 110, 1100, 1001
= 110, 1001, 1100 & 211, 2110, 2011 = 110, 1001, 1010 & 211, 2110, 2101

33,221T,2211 = 22,1111,2110 @ 11, 1100, 1001 = 22,1111, 1210 & 11,1100, 0101
=21,1101,1110 & 12,1110, 1011 = 12,1101, 1110 & 21,1110, 1011
= 11,1001, 1100 & 22,1210, 1111 = 11,0101, 1100 & 22,2110, 1111

2 23,1211,1211 — 21,1011, 1011
[Am)] =1"%.2x1* =102
m = H, §32,2111,2111 : 8 = Ho ® EO4: 8 = H3 & Hs : 4
= 2(11,1100, 1100) @ 11,0011,0011 : 1

We show all the rigid decompositions of the following simply reducible partitions
of order 6, which also correspond to the reducibility of the universal models.

42,222, 111111 = 32,122,011111 & 10, 100, 100000
=21,111,111000 & 21, 111, 000111

132,122,011111 — 22,112,001111 — 12,111,000111
[A(m)] = 1%
m:Hl@EOg,lS:Hg@HzglO
33,222,21111 = 23,122, 11111 & 10, 100, 10000

=922,112,10111 @ 11,110, 11000
=21,111,11100 & 12, 111, 10011

—1) 23,122,11111 — 22,112,01111 — 12,111,00111
[A(m)] = 1
m=H ®FEO5:6=Hy®FEO,4:12=H3® H3:6

15.9. Submaximal series and minimal series. The rigid tuples m = {m,,}
satisfying

(15.35) #{m;,; 0<m;, <ordm} >ordm+5
are classified by Roberts [Rd]. They are the tuples of type H,, and P,, which satisfy
(15.36) #{m;,;0<m;, <ordm} =2ordm + 2

and those of 13 series A, = EO,,, By, Cy, Dy, En, Fn, Gom, In, Jn, Kn, Lams1,
M, N, called submaximal series which satisfy

(15.37) #{m;,;0<m;, <ordm} =ordm+ 5.

The series H,, and P,, are called maximal series.

We examine these rigid series and give enough information to analyze the series,
which will be sufficient to construct differential equations including their conflu-
ences, integral representation and series expansion of solutions and get connection
coefficients and the condition of their reducibility.

In fact from the following list we easily get all the direct decompositions and
Katz’s operations decreasing the order. The number over an arrow indicates the
difference of the orders. We also indicate Yokoyama’s reduction for systems of
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Okubo normal form using extension and restriction, which are denoted F; and R;
(i =0,1,2), respectively (cf. [Ya2]). Note that the inverse operations of F; are R;,
respectively. In the following we put

up, =0 Mz (1 — )M (cg — ) - (Cpoy — ) 1,
(1538) UHy = UPy,

(m) x}\ém)

— A M
anL+1 - a uH7n'

We give all the decompositions
(15.39) m = idx(m’, m) - m’ & m"”

for am € A(m). Here we will not distinguish between m’ @ m” and m” © m’
when idx(m’, m) = 1. Moreover note that the inequality assumed for the formula
[A(m)] below assures that the given tuple of partition is monotone.

15.9.1. B,,. (Bgm+1 = IIIm, By, = Ilm, B3 = H3’ By = H2)

UByp 1 = 67“,(1 - x))‘/uHmJrl
m21,m+ 11", m1™* =10,10,01 & mm — 11, m1™, m1™
=01,10,10 ® m?,m1™,m — 11™+1
=1%0,11,11 @ (m — 1)*1,m1™ 1 m — 11™
[A(Bami1)] = 10mHD? 5 2 2 — ymP43m43 2

Bomy1 = H1 © Bopy :2(m+1)
= H, & Cyy, 01
= Hy ® By :m(m+1)
=mH ®Hpp 2

UB,,, = af“lx)‘/(l = m)/\nuHm
mm — 11,m1™, m1™ = 100,01,10 @ (m — 1)*1,m1™ ! m — 11™
=001,10,10 ® mm — 10,m — 11™,m — 11™
=110,11,11 @& m — 1lm —21,m — 11™" 1 m — 11™ 1
[A(Bap)] = 1™ x 127 (m — 1) = 1mD° . (m — 1) - m

By, = Hi ® Boy_1 1 2m
=H; ®Copm—2 01
= Hy ® Bop—2 :m?
=(m-1)H ®Hpy1 1
=mH, & H,, 01

m 1 1
BQerl RQ_E>0 Hm+1a Bn — anla Bn — Cnfl

m m—1
BQm > Hm7 B2m ? Herl
R1EO

15.9.2. An ezample. Using the example of type Ba,, 11, we explain how we get
explicit results from the data written in §I5.9.J] The Riemann scheme of type
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Bopy1 is
00 0 1
Aoty Ml P2l
[)‘0,2](7n) )\1,2 )\2,2
Ao,3 : :
>\1,m+1 )\2,m+2

p nj
Z Z MjuAj = 2m (Fuchs relation).

j=0v=1

Theorem [I2.13] says that the corresponding equation is irreducible if and only if
any value of the following linear functions is not an integer.

Li,=Xi+XMi+X, (i=12 v=2..m+2),
L% :=Xo3 + A1+ Ao,
L, = Xoq + Aoz + A1+ A+ dog +Ag, — 1
(L=2,....m+1, v=2...,m+2),
Li=Xoi+Ma+A1  (i=1,2)
Here L;,, (resp. L?) correspond to the terms 10,01,01 and H; ® Bay, : 2(m + 1)
(resp. 01,10,10 and Hy & Cyyy, : 1) in 15011

It follows from Theorem RBI3] and Theorem M2.13] that the Fuchsian differential
equation with the above Riemann scheme belongs to the universal operator if

LP¢{-1,-2,....1—-m} (i=1, 2).
Theorem [[L0] says that the connection coefficient ¢(A1 41 ~» A2,m+2) equals

I Tt = A+ 1) - T T = Momyo)

pn=1
2 +1
[T T = L) - TS T(EG0) - TLZ T = L o)

and
[ TOmgr = Ay + 1) - [T, T(Mo.i — Aos)
(1= L2) 15 (L)
[0 TQomsz — A +1) - TT T — Aoss)
[T DL o) T2 (L3 )
We also explain how we get the data in §I5.9.1] Since Opay : Bamy1 = m :=

mml,m + 11m m1™t — H, .1 = m' := 0m1,11™,01™*!, the equality (@42)
shows

[A(Bam+1)] = [A(Hpg1)] U {dy11(m)} U {m] , —m; >0}

2 2 2
_ 1(m+1) % ml % 1m+2 . ml _ 1(m+1) % 1m+2 . m2 —1m +3m+3 | m2.

(M, m41 ~ Ao3) =

)

c(A2,mt2 ~ Ao3) =

Here we note that {m/, —m/, >0} = {m, 1,1} =172 . m! and [A(Hnq1)]
is given in §15.4

The decompositions mH® H,,1+1 and By & Ba,, etc. in {I5. 9 Tlare easily obtained
and we should show that they are all the decompositions [[2.39)), whose number is
given by [A(Bam+1)]- There are 2 decompositions of type mH; @ Hyy, 11, namely,
Bopmy1 = mml,m + 11™, m1™*t = m(100,10,10) & --- = m(010,10,10) & -- -,
which correspond to L} for i = 1 and 2. Then the other decompositions are of
type m’ @ m” with rigid tuples m’ and m” whose number equals m? + 3m + 3.
The numbers of decompositions By @ Ba,, etc. given in §I5.9.1] are easily calculated
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which correspond to L}VV etc. and we can check that they give the required number
of the decompositions.

15.9.3. Cp. (Cy = EO4, C3 = Hs, Cy = H>)

UCsmq1 = 87#le,an«0+1
m+ 1m, m1™* m1™+ =10,01,10 & m?, m1™, m — 11" +!
=11,11,11 @ m(m — 1), m — 11™m — 11™

[A(02m+1)] _ 1(m+1)2 % 12m+2 cm - (TTL _ 1)

— 1(m+1)(m+3) ). (m—1)

Comy1 = H1 ® Copy :2m 42
= H2 D Cgm,Q : (m + 1)2
= mH1 D Hm+1 01

:(m—1>H1 EBHerQ 01

(2) (m)

UC,,, = 5‘7”/33)"(1 - x)f)‘r’““ UH,. .
m2,ml™, m—11"" =1,10,00 ® mm — 1,m — 11™" 1 m — 11!
=1211,11® (m — 1)%,m — 11™"  m — 21™
[A(Capm)] = 104D 5 14 (g — 1)2 = 175 H3m42 (g 1)2
Com = H1 & Copp—1 1 2m 4+ 2
= Hy ® Coppn :m(m+1)
=(m-1)H ®Hpy1 :2

T

—1
C s H, C T H
2m—+1 R2EOROED m—+1s 2m—+1 m+2

—1 1
C o~ F C, — C,_
™ pigoRoE0 T T " n-l

15.9.4. D,,. (Dg = X : Extra case, D5 = EOs)

up, =071 (1— @) TS TH TRy
Up, = 0 M (1 — x)*)‘lf“*’“”uD5
up, =0 (1 — ac)_’\@anf2 (n>7)
(2m —1)2,2™1,2™721° = 10,01,10 & (2m — 2)2,2™,2m 316
=10,10,01 @ (2m — 2)2,2m 112, 2m =314
=(m—1)1,1"0,1" 1> @ m1,1m1,1m 213
m>2 = [A(Damgr)] = 16mF2 . 2m=D(m=3) , 16 92m=3 _ 16m+8  gm(m=2)
Doyy1 = H1 @ Doy, tm—2
= H,| P Es,, :dm
=H,), ® Hpnt : 10
=2H; ® Dsyy :m(m —2)
(2m —2)2,2™,2™731° = 10,1,01 @ (2m — 3)2,2m11,2m731°
=(m-1D1,1m 1313 @ (m - 1)1, 1™, 1m 313
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m >3 = [A(Dyy)] = 10710 2m=Dm=4) 16 g2m=4 _ 16m+10 . gm{m=5)
Doy, = Hy & Doy :6m
=H, ¢ H, : 10
=2H, ® Doypp—oa  :m(m —3)
D, miE>O Dy, Dy —>Dp_1, Dapmi1 — Fom

15.9.5. E,. (E5 = C5, E4 = EOy4, B3 = Hj)

Up, = & NOTRTREGTR(] — x)/\gu,%
ug, =0 Mug,
ug, =07 H (1 — QIJ)MLUEW2 (n>5)
(2m —1)2,2m~ 113 27113 = 10,01,10 @ (2m — 2)2,2™ 112, 2™ 214
=(m-DL1m 1™ g ml, 1m 3, 12
=(m—-2)1,1"710,1" 0@ (m + 1)1,1m 112, 1m 113

m>2 = [A(E2m+l)] — 16m-2 2(m—2)2 « 16 .92m=3 _ 16m+4 2(m—1)2

Eopmy1 = H1 & Eapy, :6(m—1)
=H, 19 Hpu2 :1
=H,, ® Hy11 : 9
=2H, @ Eypy :(m—1)?

(2m —2)2,2m~112 2m=21% = 10,10,01 & (2m — 3)2,2™ 213, 2m~213
=10,01,10 @ (2m — 3)2,2™~11,2m 315
=(m—2)1,1"70,1" 21 @ ml, 1™ 112, 1m 213
=(m-11,1"'1,1m 212 @ (m — 1)1, 1™, 122

m Z 2 = [A(E2m>] — 167)7,—4 A 2(m—2)(m—3) X 16 . 227)7,—4 — 16m+2 . 2(m,—1)(m—2)

Eop = H1 ® By c4(m—1)
=H{ ® Doypy—1 :2(m —2)
=Hp 1 ®OHpyr 4
=H, ®H, : 6

=2H1@E2m_2 (m—l)(m—?)
En 25 By 9, En—En_1, FEam — Doy
R2EO0

15.9.6. F,,. (F5 = Bs, Fy = EOy, F5 = H3)

UF; = UH4
up, = 3_“4(1 _ m)—/\l—k(()S)—M(S)U&
up, =97H(1— l‘))\;"LLFTHQ (n>5)
(2m — 1)1%,2™1,2m~ 113 = 10,10,01 @ (2m — 2)12,2m 112 2m 112
=10,01,10 ® (2m — 2)12, 2™ 2m =214
= (m—1)1,1"0, 1™ "1 @ ml1,1™1,1m 112
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m>1 = [A(Fypq1)] = 14T 20m=1m=2) g4 g2m=2 _ qdm+s gm(m=1)
Fopy1 = H @ Gopy :3m
= H| D Fy,, tm—1
=H,, & Hyni1 : 6
=2H) @ Fopmqr :m(m—1)
(2m —2)1%,2™ 2m=21% = 10,1,01 @ (2m — 3)1%,2m~11,2m~ 213
=(m—-1)1,1",1"212@ (m — 1)1,1™,1m 212
m>2 = [A(Fyp)] = 1472 2m=D(m=3) y 14 92m=3 _ 14m+6  gm(m=2)
Fopy=Hy ® Fopp_y  :4m
=H, ®H,, : 6
=2H1 @ Foppeg :m(m—2)

2 1 1
Fn RZ_E>OFn72’ Fn—>Fn717 F2m+1_>G2m

15.9.7. Gom. (G4 = By)
UG, = um,
UG, = 0 1™ (1 — x)*’zm UGy, _,
(2m — 2)12,2m~112, 2™~ 112 = 10,01,01 & (2m — 3)12,2m~11,2m~213
=(m—2)1,1"70, 1™ 0 @ m1, 1™ 112 1M1
m>2 = [A(Gap)] = 14m=2. 2m=2)% y 14 92m=3 _ 4m+2  9(m-1)*

Gom = H1 & Fopyq s dm
=Hp 1®Hpyr 12
=2H, ®Gap_s :(m—1)

Gom =H® Fopy 1 = Hypy 1 © Hypy

2 1
Gom — Go(m— Gom — Fop_
2m R2E0 2(m—1)» 2m 2m—1

15.9.8. I,. (Iopmyr = 1017, Iy, =117, I5 = Ps3)
Ulppir = o N (c— x)/\”uHm
(2m)1l,m+ lm,m+ 11" m+ 11™
=10,10,10,01 & (2m — 1)1, mm, m1™, m+ 11"}
=20,11,11,11 @ (2m — 2)1,mm — 1,m1™ ! m1™*
[A(Jome1)] =17 x 12" om - (m+1) = 1™ 727 . (m + 1)

Iopmt1 = Hi @ Ioy, 1 2m
= HQ S>) Igm_l : m2
= mH1 D Hm+1 01

=(m+1)H, ®H,, :1

up,, =07 (1—cx) ug,,
(2m — 1)1, mm, m1™,m + 11™"*
=10,01,01,10 ® (2m — 2)1,mm — 1,m1™ ! m1m*

=20,11,11,11 6 (2m — 3)1,m — Im — 1,m — 111 m1™—2
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[A(Lm)] = 1™ x 1™ 2 = 170740 2
Iy = Hy @ Iop—1  :2m
=Hy®Ipp—o :m(m-—1)
=mH ®H, :2

m—+1 m m
12m+1 — Hma 12m+1 — Hm+17 I2m — Hm7 In — In—l

I — Ioyy — Iop—
ImHl piRo 2™ papo 22

15.9.9. Jo. (Jy= I, J3 = Py)
uy, = (c— :10)’\/uH2
Ugy = Up,
uy, = a_MiLfE)\;LUJTL72 (n>4)
(2m)1, (2m)1,2™1,2™1
=10,10,01,10 & (2m — 1)1, (2m — 1)1,2™, 2m~111
= (m—1)1,m0,1™0,1™0 & (m + 1), m1,1™1,1™1
[A(Jomgr)] = 12m . 20m=1% 12 92m—1 _ 12m+2 gm?
Joms1 = H1 ® Jop, :2m
=H,®Hn1 12
=2H,® Jop_o m?

(2m — 1)1, (2m —1)1,2™ 2™ 112
=10,10,1,01 & (2m — 2)1, (2m — 2)1,2™ 11,2m 11
= (m—1)1,m0,1™, 1™ "1 @m0, (m — 1)1,1™, 1™ 1
[A(Jap)] = 17 9(m—1)(m=2) y 2 92m-2 _ 12m+2  gm(m—1)
Jom = H1 & Jam—1 :2m
=H,, ®H, 12
=2H ® Jo—2 :m(m—1)

Jn = Jpoo (n>6), Jn—> Juy
R2E0

15.9.10. K,,. (K5 =M;, K4 =14, K3 = Ps3)
UKamy1 = g (¢~ x))‘/ (" — JI)X,UPM

m+ 1m,m + Im, (2m)1, (2m)1, (2m)1,... € PZTFY

=11,11,11,20,20,...  mm — 1,mm — 1, (2m — 1)0, (2m — 2)1, (2m — 2)1, ...

[A(Kopy1)] =1 (m = 1) xm? - (m+1)=1"" . (m —1)-m? - (m+ 1)

Komy1 = Ho ® Kopy 1 :m+1
=(m—-1)H, ® Ppya :1
=mH & P11 02
=(m+1)H, @ P, 01

UK, =07 (¢ — )V up,
mm,mm — 11, (2m — 1)1, (2m — 1)1,... € PCTY
= 01,001, 10,10, 10, ... ® mm — 1,mm — 10, (2m — 2)1, (2m — 2)1, ...
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=11,110,11,20,20,... & m — lm — 1,m — 1m — 21, (2m — 2)0, (2m — 3)1,.. ..

[A(Kyp)] =1 (m = 1) x 1-(m—1)-m? =12 (m — 1)% . m?
Kom = H1 ® Kom—1 12
=Hy ® Kopm—2 im
=(m-1)H, ®Ppy1 :2
=mH, ® P, 22

m—+1 m m—1
Komi1 — Pny,  Komia =y P, Komg1r — Prgo

m m—1 1
K2m ?Pma K2m — Perla K2m _>K2m71

15.9.11. Lopmy1. (Ls = Js, Ly = Hs)

ULoypir = aiulx)\,quH
mml, mml, (2m)l, (2m)1,... € PSTQH)

= 001,010, 10,10, ... & mm0, mm — 11, (2m — 1)1, (2m — 1)1, ...
=110,110,11,20,... ® m — Im — 10,m — Im — 11, (2m — 1)0, (2m — 2)1, . ..
[A(Lami1)] =172 m x 12 -m3 = 1T .
Lopm+1 = H1 & Ko, 4
=Hy® Lopm1 :m
=mH &P,y :4
Lomi1 = H1 ® Kam, Lomi1 = Ha® Lam—1

m 1
L2m+1 ? Pm+la L2m+1 ? K2m
R2E0

15.9.12. M,,. (M5 = K5, My = I;, M3 = P3)

Uy = 0P T TNz (0g — 2)5 - (g — ) b2,
(2m)1, (2m)1, (2m)1, (2m — 1)2,(2m —1)2,... € Pays

=m—11,m0,m0,m —11,m —11,... & m+ 10,ml,ml, ml,ml,...
=m —10,m —10,m — 10,m — 21, m — 21, ...
em+1l,m+1l,m+11,m+11,m+11,...
[A(Mapi1)] =14 x 2™ (2m —1) =1*-2™ . (2m — 1)

Momi1 = P11 © Py 01
=5y @ Pm+1 03
= 2H1 D M2m—1 m

01

uMgm e a_N’/ (63 . x)A/S e (Cerl — :L')/\;n+1uH2
2m
(2m —2)12, (2m — D)1, (2m — D1, (2m —2)2,... € PCTY
=01,10,10,10, ... (2m — 2)1, (2m — 2)1, (2m — 2)1, (2m — 3)2, ...
=m—21,m—10,m —10,m —21,...®&ml,ml,ml,ml,...

=m-11m—-11,m0,m—-11,...&m —11,m0,m —11,m — 11,...
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[A(Myp)] =1 x 12. 2™ (2m —2) =1°.2m7 1. (2m — 2)
Moy, = Hy & Moy, :2
=Pn_1® Pnt1 12
=P, ® P, 12

=2H| & Msy,,_o tm—1
01

n—2 2 1
M, — Hy, M, — M,_3, DMy, oy M1 = M3

15.9.13. N,,. (Ng = IV*, N5 =I5, Ny = G4, N3 = Hs)
Uy = 0 2 (3 — )% - (Cgr — @) g,
(2m — 1)12, (2m — 112, (2m)1, (2m — 1)2, 2m — 1)2,... € P
= 10,01, 10, 10, 10. ..
® (2m —2)1%,(2m — 1)1, (2m — 1)1, (2m — 2)2, (2m — 2)2, . ..
=m-—11,m—-11,m0,m—11,m —11,... & ml,ml,ml,ml,ml,...

[A(Ngpi1)] =14 x 142771 2m —1) =18 . 2™ (2m — 1)

Nopy1 = Hy © Moy, 14
=Py ® Pt 4
:2H1 @Ngm_l tm—1

:(2m—1)H1€BH2 01

UN,,, = a—“'x%a — x)/\ll(c;; - x)’\é e (em — l’)/\:"qu (m > 2)
(2m —2)12, (2m — 2)1%, (2m — 2)12, (2m — 2)2, (2m — 2)2,... € P")
=01,10,10,10,10...
@ (2m —2)1,(2m — 3)12, (2m — 3)1%, (2m — 3)2, (2m — 3)2, ...
=m-11lm-11,m—-11,m—-11,m —11,...
em—-11,m—-11,m—11,m—11,m — 11, ...
[A(Noy)] = 1% x 1%.2m72. (2m — 2) = 110. 2™~ 2. (2m — 2)

Nop = Hy @ Nopp—1 : 6
=P,® P, 14
:2H1 @Ngm_g :m—2

:(277172)H1@H2 01

—2 2 1 1
N, 3 H,, N, 3N, o, Nopi1 — M, Noyy — Nopp1
n ) n n ) m-+ RLEO ms m RLEO m

15.9.14. minimal series. The tuple 11,11, 11 corresponds to Gauss hypergeometric

series, which has three parameters. Since the action of additions is easily analyzed,

we consider the number of parameters of the equation corresponding to a rigid tuple

m = (m;,) o<j<p € Pz(ﬁ)l modulo additions and the Fuchs condition equals
1<v<n;

(15.40) no+ny+---+n, — (p+1).

Here we assume that 0 <m;, <nfor1 <v <njand j=0,...,p.

We call the number given by ([5.40Q) the effective length of m. The tuple 11,11, 11
is the unique rigid tuple of partitions whose effective length equals 3. Since the
reduction 0,4, never increase the effective length and the tuple m € P3 satisfying
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Omaz = 11,11,111is 21,111,111 or 211,211, 211, it is easy to see that the non-trivial
rigid tuple m € P3 whose effective length is smaller than 6 is Hy or Hs.
The rigid tuple of partitions with the effective length 4 is also uniquely deter-

mined by its order, which is
Pyomi1 :m+1m,m+1m,m+ 1m,m+1m
(15.41)
Py op : m 4+ 1m — 1, mm, mm, mm

with m € Z~o. Here Py 2,41 is a generalized Jordan-Pochhammer tuple in Exam-
ple [ZHi).

In fact, if m € P is rigid with the effective length 4, the argument above shows
m e Pgand n; =2for j=0,...,3. Then?-ZJ Omj,l—i—zj o(n—m;1)?—2n?
and Z?:o (n—2m;1)? =4 and therefore m = Py 2,41 0F Py o,

We give decompositions of Py ,,:

m+1I,mm+1,mm+1,mm+1,m
=kk+1Lk+1,kk+1,kE+1k
em—-k+1l,m—-k—1m—-km—-km-km—-—km—km-—k
=2(k+1,k;k+ 1, k;k+ 1,k;...)
&m—2k—1,m—2k;m—2k—1,m—2k;m—2k—1,m—2k;...
[A(P4,2m+l)] — 14m—4 . 2m—1 X 14 . 2 — 14m . 2m

Pyomi1 = Pa2k+1 ® Paaim—r) 4 (k=0,...,m—1)
=2P;op41 D Paom—ar—1 1 (k=0,...,m—1)
Here P _,, = —Pp, and in the above decompositions there appear “tuples of

partitions” with negative entries corresponding formally to elements in A" with
@I2) (cf. Remark [@IT11)).

It follows from the above decompositions that the Fuchsian equation with the
Riemann scheme

00 0 1 c3

Notlim+r) Aoty P2l [Asalemtn
[Ao,2](m) [A12](m) [A2,1] (m) [A3.2](m)

4
Z (m+1)Aj1 +mhj2) =2m (Fuchs relation).
7=0

is irreducible if and only if

SN (k401 +1-26,1)8)Nw ¢Z  (i=0,1,...,5, k=0,1,...,m).
j=0v=1

When m = Py 5,,, we have the following.
m+1,m—1;m,m;m,m;m,m
=k+1Lkk+1,kk+1,kk+1k
em—km—-k—1m—-k—1m—-km-k—1m—-km—-k—1,m—k
=2(k+1,k— 1k, ki k, k; k, k)
®&m—2k—1,m—2k+ 1;m—2k,m — 2k;m — 2k,m — 2k;m — 2k;m — 2k
[A(Pyopm)] = 14m=4 . 2m=1 5 14 = 14m . om~1
Pyom = Piorri(=k+ 1L kk+1,k..)® Promoky1 4 (k=0,...,m—1)
= 2Py 21 @ Pyom—ak 1

1 2
Pypn = Pyn1, Pioms+1 = Prom—1
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Roberts [Ro] classifies the rigid tuples m € P41 so that

1 1
(15.42) — 4+ —2>p—1
no Ny

They are tuples m in 4 series «, (8, -y, d, which are close to the tuples rEs, rE7,
rEg and 7Dy, namely, (no,...,np) = (3,3,3), (2,2,4), (2,3,6) and (2,2,2,2), re-
spectively (cf. (@45)), and the series are called minimal series. Then §,, = Py, and
the tuples in the other three series belong to P3. For example, the tuples m of type
o are

asm =m + lmm — 1, m>, m3, ag = Hj,

(15.43) ) 9 )
agm+1 =mm=El,m*m+t1lm m=E1l, a4 = By,

which are characterized by the fact that their effective lengths equal 6 when n > 4.
As in other series, we have the following:

[67%% i) Ap—1, O3m+1 i A3m—1
[Aazm)] = [Alazmn-1)] x 1°, [A(azm-1)] = [A(azm-2)] x 1%,
[A(azm-2)] = [Aazm-1)] x 1°-2
[Alagm-1)] = [A(ag)] x 110071 gm=l — 110m=6 . gm=1
[Aaz,)] =11m" 1. 2mt
[A(agm_s)] = 110m—10  gm-1

asm =m+ 1lmm — 1,m3,m3

=kkk —1,k*k — 1,k*k — 1
©(m—k+1Dm—k)(m—Fk),(m—k?*m-k+1),(m—Ek?*m-—k+1)
= k4 1k — 1k, k3, K3
S(m—k+D(m—k)(m—-k—1),(m—k)?>, (m—-k)?

= 2(k + 1kk — 1, k% k)

® (m —2k —1)(m — 2k)(m — 2k + 1), (m — 2k)3, (m — 2k)3

o3m = 03k—1 D A3 (m—Fk)+1 19 (k =1,..., m)
= asr D A3(m—k) 1 (k=1,...,m—1)
:2a3k®a3(m,2k) 01 (k:l,...,m—l)

agm—1 = mmm — 1, mmm — 1, mmm — 1
=kk—1k—1,kk -1k —1,kk — 1k —1
&(m—-km-k+1)(m—-k),(m—Ek)(m—-k+1)(m—k), -
=Fk+1kk — 1,3 k3
&(m—k—1)(m—-k)(m—-Fk),(m—k)(m—-k)(m-—k-1),---
= 2(kkk — 1, kkk — 1, kkk — 1)
® (m —2k)(m — 2k)(m — 2k + 1), (m — 2k)(m — 2k)(m — 2k + 1), - -

3m-1=azpo(=kk—1k—=1---)Dagmm-r41 :4 (k=1,...,m)

= azr D A3(m—k)—1 6 (k=1,...,m—1)
01

= 2a35-1 D A3(m—2k)+1 (k=1,....m—1)
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agmo=mm—Im—-—1,mm—-—Im—-1,mm—-—1m—1
= kkk — 1, kkk — 1, kkk — 1
&m—-k(m—-k—-1)(m—k),(m—k)(m—-k—-1)(m—k),---
=k+1kk — 1,k k3
em—-k—1)(m—-k—-1)(m-—k),m—k)m—k—-1)(m—-k—1),---
=2(kk — 1k —1,kk — 1k — 1,kk — 1k — 1)

& (m —2k)(m — 2k +1)(m — 2k + 1), (m — 2k)(m — 2k + 1)(m — 2k + 1), - - -
m—2 = azp_1(=kk—1Lk—1-)Dagmm-p-1 4 (k=1,....m—1)
= a3k D a3(m—k)—2 6 (k=1,...,m—1)
= 2032 D A3(m—2k)+2 1 (k=1,...,m—1)
The analysis of the other minimal series
Bam,2 = (2m + 1)(2m —1),m* m? Ba2 = Hy
Bama = (2m)%,m*, (m + 1)m?(m — 1) Bus = EO,
Bam+1 = (2m)(2m +1),(m+ 1) 3 (m+1)m? Bs = Cs, B3 = Hs
Bams2 = (2m + 1), (m + 1)2m?, (m + 1)*m?
Yom2 = (3m +1)(3m — 1), (2m)*,m° 6,2 = Ds = Xg
Yom,3 = (3m)?, (2m +1)(2m)(2m — 1), m° Y63 = EOg
Yom,6 = (3m)?, (2m)?, (m + 1)ym*(m — 1)
Yom+1 = (3m)(B3m £ 1), (2m)?(2m £+ 1),m°(m + 1) = EOs
Yomez = (3m £ 1)(B3m £ 1), 2m)2m £ 1)2, m*(m£1)?  ~, = EO,
Yomas = (3m +2)(3m + 1), (2m + 1)3, (m + 1)>m? 3 = Hs

and general P, , will be left to the reader as an exercise.

15.9.15. Relation between series. We have studied the following sets of families of
spectral types of Fuchsian differential equations which are closed under the irre-
ducible subquotients in the Grothendieck group.

{H,} (hypergeometric family)

{P.} (Jordan-Pochhammer series)

{4, = EO,} (even/odd family)

{Bn, Cyn, H,} (3 singular points)

{Cy, Hy,} (3 singular points)

{D,, E,, H,} (3 singular points)

{Fn, Gam, Hp} (3 singular points)

{I,, H,} (4 singular points)

{Jn, Hp} (4 singular points)

{K,, P} ([2£2] singular points)

{Lom+1, Kn, Pn} (m + 2 singular points)

{M,, P,} ([2£2] singular points) O {Mam+1, Pn}
{N,, M,, P,} ([2£2] singular points) D {Nomi1, My. P}
{P1n, =0} (4 effective parameters)
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(6 effective parameters and 3 singular points)

Yokoyama classified m = (m;,) o<j<p € Pp41 such that
1§_V§_nj

179

(15.44) m is irreducibly realizable,
(15.45) mo1+--+mp_11=(p—1)ordm (m is of Okubo type),
(15.46) mj, =1 (0<j<p—1,2<wv<nj).
The tuple m satisfying the above conditions is in the following list given by [Yd
Theorem 2] (cf. [Rd]).
’ Yokoyama \ type \ order \ p+1 \ tuple of partitions ‘
I, H, n 3 1", n—-11,1"
I P, n n+1 n—11,n—-11,...,n—11
11, By, 2n 3 nl™ n1" nn — 11
IT;, Iop 2n 4 nl™, n+ 11" 2n — 11, nn
I11,, Bopi1 | 2n+1 3 n1"t n 4+ 117 nnl
T, Tomi1 | 2n+1] 4 |n+1ln+ 11", 2n)ln+1n
v Fo 6 3 21111, 411, 222
v No 6 1 411,411,411, 42

15.10. Appell’s hypergeometric functions. First we recall the Appell hyper-
geometric functions.

(15.47)

(15.48)

(15.49)

(15.50)

Fi(a; 8,857 2,0) = Y
F2<a;ﬁaﬁ/;’7a7/;xay): Z

Fy(a,0/; 8,85 vimy) = Y

oo

(@) mtn(B)m(B)n 2"

(V) m+nm!n!

3

m,n=0

) () mtn(B)m (B8 )n iy
(Vm (Y )nm!n! )

m,n=0

(@)m (@) (B)m (B )n oyt

m
(V)m4nm!n!

)
m,n=0

o0

Fy(a; 857,75 2,y) = Z —(a)m+n(ﬁ)m+nxmy7".

They satisfy the following equations

Similar equations hold under the symmetry x < y with («, 8,7) + (¢, 8',7/).

(V)m (Y )nm!n!

m,n=0
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15.10.1. Appell’s Fy. First we examine Fj. Put
u(z, y) ::/ P11y — o — ) dt (t= as)
0

1
= / 21 — 8)P (y — 2s)7 711 — 5)* " Lds
0

1 y—1
= gt Ayl / s (1 — )M (1 - x5)5<1 — gs) ds,
0 x

hy == a%(x — 1)'8(x — y)Wﬁl.
Since the left ideal of Wz, ] is not necessarily generated by a single element, we

want to have good generators of RAd(9;*) o RAd(hy) (W [z, y]0, + Wz, y]d,) and
we have

Pi=Ad(hy)dy =0y — = — 0 — ,

r x—1 z—y
v—1
Q= Ad(hx)ayzaerm_y,

R::xP+yQ=333x+yay_(a+7_1)_xﬂ_xl’

S=0(z-1)R=0+1)W+y —a—F—7+1) -0, (Vs +0, —a—v+1)
T:=09;%08500)
=W = A+ 1)+ —a—B—7—A+1) =0,V +0y —a—v—A+1)

with
a=—a—F—vy=—A+1L, b=1-X c=2—a—v— A\

This calculation shows the equation Tu(z,y) = 0 and we have a similar equation by
changing (z,y,v,\) — (y,z, \,y). Note that TFy(a;b,V';¢;x,y) = 0 with b’ = 1—~.
Putting

v(z,z) = Ij , (x*(1 - z)P(1 — z2)77 1)
= /m t(1—t)P(1 — 2t) "Lz — t)* 1 dt
0

1
= 3:0"“‘/ 51 —xs)P(1 — xzs)Y (1 — s)*~Lds,
0

we have
u(z,y) =y "o, 3),
a1 — o1 — ol — N~ B =V atmin o
(1=t 1 -2t = > o t 2",

m,n=0

oo

B Fla+m+n+1)(=8)m(l—9)n aty+m+n n
v(x,z) = Z F(a+u+m+n+1)m!n! v ¢

m,n=0

_ F(a—l—l) - (a'i'l)m-&-n(_ﬂ)m(l_')/)n m4n_n
-7 +uF(a+u+1) Z (a4 p+ Dpmgnmlin! v
Fa+1)
Fa+p+1)

m,n=0

= .,L.(X"FH

Fila+1;-8,1—v;a+pu+1;z,22).
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Using a versal addition to get the Kummer equation, we introduce the functions

Uc(may) = /0$ ta(]' - Ct)g(y - t)’Yil('T - t))\ilv
hez i=ax%(1 — cx)g(a: —y) L

Then we have

Bx

1—ca’

R:=Ad(he ) (Ws +9y) = 9p + 9, — (a0 +7 —1) +
S :=,(1—cx)R
=W+ 1)(B—c(Wa+Vy—a—7+1) + (Vs +9, —a—y+1),
T :=Ad(0"MR
=W —A+D)(B—c(Wat+y—A—a—v+1))+0,(Js+9, —A—a—vy+1)
and hence u.(z,y) satisfies the differential equation
(z(l — cx)0? + y(1 — cx)0,0,
+2-—a—-7=-A+@B+A=2+cla+y+A=1))z)d + (A —1)9,
— (A= 1)(ﬁ+c(a+7+A—1)))u=0.

15.10.2. Appell’s Fy. To examine Fy we consider the function
v(z,y) = /A MM (st — s — 1) (1 — sz — ty)Hds dt
and the transformation
(15.55) JE(u)(z) = /A w(ty, ..., tn)(1 —t1zy — -« — tpwy) dty - - - dty,

for function u(zq,...,u,). For example the region A is given by
v(z,y) = / M2 (st — s — 1) (1 — sz — ty)Hds dt.
<0, t<0

Putting s — s, t = ¢t~ and |z] + |y| < ¢ < 3, Aomoto [Ad] shows

c+oot c+o01 , -8
/ / s (1 — 5 — ¢)71+Y a2 (1 T y) ds dt
— o S t

47T () )
== Fila: B .
F()F()M(a—v—9"+2) w(a; 857,75 2, y),

which follows from the integral formula

(15.56)

n

1
1 n+1+°‘” mrptoci —Qnt1
: Iy ( - t») dty ---dt,
iy / 1 / H Dot :

—0o0t

n 7001 i=1
(15.57) o " !
_ F(ZJ +11 o — n)
125 T (ay)
Since

Jﬁ(u) = Jg_l(u) - qujg_l(xvu)
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and
d t)(1 t
E(U( )(1— Z vTy) )
= Z—Z(t)(l - Zt,,:r,,) — pu(t)z; (1 — Zt,,xl,) -1
we have

=~z T () (@),
JH (61(3:zu)) —x;0;JH (u),
T2 (Or) = pai 2 ()
= pai Y (u) + pa Yo, T (@)
= i () + w5 X 2 (0, (o)
= pa; S (u) — x; qua JiH ()
and therefore
(15.59) JE(Ou) = z; (1 — > 2,0, ) JH (u).

Thus we have
Proposition 15.1. For a differential operator

B SR
Oé=(oc17~~-70tn)EZ§0

B=(B1,....Bn) €L,
we have
JE(Pu(z)) = JHP)JE (u(z)),
15.61 & S &
. 2P = s [Tt~ 0" T (00 -1’
a, B k=1 v=1 k=1

Using this proposition, we obtain the system of differential equations satisfied by
JH(u) from that satisfied by u(z). Denoting the Laplace transform of the variable
x = (x1,...,2,) by L, (cf. Definition 2TI), we have

n

(15.62) J;CAL;1<192) = 19i, J;jL;l(xZ) = T; (M — Zﬁy)
v=1
We have
Ad(aM P (ay — 2 - )0, = 0, - 2 - oW1
T TY—T—Y
)\2 /\3((17 — 1)

Ad(zMy*2 (xy — 2z —y)™)0, =0, — = — =~
(™ (zy WOy =0y =t - LT

Ad(ac)‘ly’\2 (zy —x — y))‘?’) (z(z —1)0,)
As(x — 1) (zy — x)

=2(r—1)0, — \(x—1) — pE———




WEYL ALGEBRA AND FUCHSIAN DIFFERENTIAL EQUATIONS 183

Ad(az:)“y)‘2 (vy —x — y)’\") (z(x —1)0, — y0y)
=2(z—1)0 —y0y — M(z —1) — Aa — A3(z — 1)
= 29y — 9y — 9y — (AL + A3)z + AL — Ao + A,
Oz Ad(x)‘ly)‘2 (xy —x — y)>‘3) (z(z — 1), — ydy)

(15.63)
= 6xm(19m — A1 — /\3) — 31(191, + 19y — A1+ Ay — )\3)
and

Jﬂlct,y (aﬂcm(ﬁx — M= A3) =0, (Vp + Uy — A1+ Ao — /\3))
=V, (149 + M+ A3) —2(—p+ 0, +9,)(2+ 0y + 9y + A1 — A2+ A3).

Putting
=W+ — )W+ + M — Ao+ A3+2) —0,(Vg + A1 + A3+ 1)
with
a=—p, B=M-dA+A+2, y=M+A3+2,
we have Tv(z,y) = 0 and moreover it satisfies a similar equation by replacing

(2,9, A1, A3,7) by (y,z,A3,A1,7"). Hence v(z,y) is a solution of the system of
differential equations satisfied by Fy(«; 857,752, y).
In the same way we have
(v=B8-8 -1z
l—z—y
Ay T (1 =2 — ) TP (0, — 20+ 0y))
=W, —F+1) -z +9y —v+3),
ng;,y (ax(ﬂx —B+1) = 0pz(I. + Py — v+ 3))
= a0 Dy (D~ )+ 02— O~y — 7 +3)

= (W + 0y = )W+ B) = W+ 0y +7 = 1)).

Ad(xﬁ_lyﬁ,_l(l —r— y)'y_ﬁ_ﬁl_l)ﬁw =0, —B8+1+

9

which is a differential operator killing F («; 5, 8';v; ¢, y) by putting 4 = —« and in
fact we have

B g BB =1 _ g — o)
//>0 10 " (1 —-s—1) (1 — sz —ty) “dsdt
—5—t>0

B+m—1,8"+n—1 . 77ﬁ75'71( ) mgnx™Y"
//>0 =0 Z s t (1—s—t) e dsdt

—s5—t>0 m,n=0

o~ LB +m)ITB +n)C(y=B=B) (Wmtn_m o
Z F'(v+m+n) . m!n—: oY

m, n=0

_TBTBI)O=B=8) 0 n ar
= F(")/) Fl(aa67ﬂ 77"777?/)'

Here we use the formula

FADT(A2)I'(As)

A1—12—1 Az—1 _
P21 g — ) lgsdt = .
5 (1—s-1) s TOu + As + A3)

(15.65)

s>0, t>0
1—s—t>0



184 TOSHIO OSHIMA
15.10.3. Appell’s F5. Since

Ty:= Jy‘a/m—lJ;a(az(q?m —B+1) = 0px(Vy + Uy — v +3))
= Jy—a/((—ﬁx —a)(—Vy — B) + O (Vs + 9y — 7+ 2))
= (191-+(1)(19$+/8)—8w(19w+19y+,y_1)

with ([.64), the operator T5 kills the function

B=1,8~1(1 _ o« _ \1—B—=B'=1(1 _ . y—a(1 _ ,\—a’
/820, 1505 P (1—s—1) (1—as) (1 —yt)"“dsdt
1=s-t>0
o0 / L
:/ Z 55+m—1tﬁ’+n—1(1_S_t)’y—ﬁ—ﬂ’—lwdsdt
520, £>0

> m!n!
1252150 m, n=0

_ v PB+m)@ + )y =B = B)(@)m(@)n m n
N Z L(y+m+n)m!n! ey

m, n=0

_ F(ﬂ)r(ﬂ/)r(’y B 6 B ﬂ/) /. /. ..
- F(’Y) FB(avavﬂvﬂ”y,xay)'

Moreover since
Th o= Ad(9;*) Ad(9," ) (W + 1) (V2 — A1 — A3) — 0u(Py + 0y — M + A2 — A3))
=W +1=p)(We =M = A3 — 1) = 0p(Vp + 0y — A1+ Ao — A3 —pu—p)
with ([2.63) and
a=-X—-A—p, B=1l-p vy=-M+l—-d—p—p +1,

the function
y ,
(15.66) us(x,y) = / / MM (st — s — )M (x — )Py — t)* s dt

satisfies Tqus(z,y) = 0. Hence us(z,y) is a solution of the system of the equations
that Fs(a, o5 B8, 8';7; x,y) satisfies.

15.10.4. Appell’s F5. Since

Op Ad(zM (1 — 2™ 1)) 2 (1 — )0,
= 8w.13(1 — x)@x — ()\1 — 1)81 + 6$()\1 + Ao — 2)33
=0px(—Vp+ M+ XA —2)+ 0, (9= A1+ 1)

and
Ty = JE, (Ou(=00 + A + A — 2) + 02(U — A1 + 1))
= 0,0 +1+ XM+ X2 —2) +a(p—0, —0y) (-1 =0, — A1 +1)
= 2 (0 + M)W + 9y — 1) = 0a0a + M + 23— 1))
with

o = —l, 6:)‘17 ’Y:)\l+)\2,
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the function

() // A — L /\2 1t>‘1*1(]_ft)>‘l271(171'$fyt)ud8dt

/ / )\1+m71(1 B S)/\zflt)\/lJrnfl(l _ t))\éfl (_N)'m|+n xmy"ds dt

m, n=0

i A1 +m)P(A2) PG + 1)E) (W msn m, o
(OO A +m) TG + Xy +m) mlnl + Y

_ F()\l)r()\z)r()\ﬁ)r()\é) i A)mA)n(=mtn  m, n
F(/\l + )\2)1“()\’1 + )\/2) e ()\1 + )\g)m()\/l + /\’2)nm'n'

is a solution of the equation Thu = 0 that Fa(«; 8, 5';7v,7'; x, y) satisfies.
Note that the operator T5 transformed from T34 by the coordinate transformation
(z,y) = (3. ) equals

=W — )0y — ) — 20, (Vs + Yy —7v+1)

and the operator
Ad(z= Y~ )Ty = 0, (0 + @ — B) — 2(Vs + @) (V0 + 9y + 0+ o/ —y + 1)

together with the operator obtained by the transpositions = < y, a < o' and
B+ ' defines the system of the equations satisfied by the functions

(15.67) {Fz(a +ad —vy+La,dia—-p+1,0 -5 +1z,y),

2=y~ Fy(a, 0 8,857 2, 1),
which also follows from the integral representation (I5.66) with the transformation
(.’L' Y,S, t) (E?l l71)

y?'s’t

15.11. Okubo and Risa/Asir. Most of our results in this paper are constructible
and they can be explicitly calculated and implemented in computer programs.

The computer program okubo [O8] written by the author handles combinatorial
calculations in this paper related to tuples of partitions. It generates basic tu-
ples (cf. §I57)) and rigid tuples (cf. §I52), calculates the reductions originated by
Katz and Yokoyama, the position of accessory parameters in the universal model
(cf. Theorem B3 iv)) and direct decompositions etc.

The author presented Theorem in the case when p = 3 as a conjecture
in the fall of 2007, which was proved in May in 2008 by a completely different
way from the proof given in §I4.], which is a generalization of the original proof
of Gauss’s summation formula of the hypergeometric series explained in §I43
The original proof of Theorem in the case when p = 3 was reduced to the
combinatorial equality (IZI0). The author verified (IZI0) by okubo and got the
concrete connection coefficients for the rigid tuples m satisfying ord m < 40. Under
these conditions (ordm < 40, p = 3, mon, = M1y, = 1) there are 4,111,704
independent connection coefficients modulo obvious symmetries and it took about
one day to got all of them by a personal computer with okubo.

Several operations on differential operators such as additions and middle convo-
lutions defined in 2] can be calculated by a computer algebra and the author wrote
a program for their results under Risa/Asir, which gives a reduction procedure of
the operators (cf. Definition [.TT]), integral representations and series expansions of
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the solutions (cf. Theorem [[0]), connection formulas (cf. Theorem [[4H), differen-
tial operators (cf. Theorem B3 iv)), the condition of their reducibility (cf. Corol-
lary [ZT21)), recurrence relations (cf. Theorem [[33ii)) etc. for any given spectral
type or Riemann scheme ([LI0) and displays the results using TEX. This program
for Risa/Asir written by author contains many useful functions calculating rational
functions, Weyl algebra and matrices. These programs can be obtained from
http://www.math.kobe-u.ac.jp/Asir/asir.html

ftp://akagi.ms.u-tokyo.ac.jp/pub/math/muldif
ftp://akagi.ms.u-tokyo.ac.jp/pub/math/okubo.

16. FURTHER PROBLEMS

16.1. Multiplicities of spectral parameters. Suppose a Fuchsian differential
equation and its middle convolution are given. Then we can analyze the corre-
sponding transformation of a global structure of its local solution associated with
an eigenvalue of the monodromy generator at a singular point if the eigenvalue is
free of multiplicity.

When the multiplicity of the eigenvalue is larger than one, we have not a satis-
factory result for the transformation (cf. Theorem [[Z1H). The value of a generalized
connection coefficient defined by Definition [Z.17 may be interesting. Is the proce-
dure in Remark [Z.T9 always valid? In particular, is there a general result assuring
Remark [4.T9] (1) (cf. Remark [423)? Are the multiplicities of zeros of the gener-
alized connection coefficients of a rigid Fuchsian differential equation free?

16.2. Schlesinger canonical form. Can we define a natural universal Fuchsian
system of Schlesinger canonical form [Z74]) with a given realizable spectral type?
Here we recall Example

Let Pp, be the universal operator in Theorem Is there a natural system of
Schlesinger canonical form which is isomorphic to the equation Ppu = 0 together
with the explicit correspondence between them?

16.3. Apparent singularities. Katz [KZ proved that any irreducible rigid local
system is constructed from the trivial system by successive applications of middle
convolutions and additions and it is proved in this paper that the system is realized
by a single differential equation without an apparent singularity.

In general an irreducible local system cannot be realized by a single differential
equation without an apparent singularity but it is realized by that with apparent
singularities. Hence it is expected that there exist some natural operations of
single differential equations with apparent singularities which correspond to middle
convolutions of local systems or systems of Schlesinger canonical form.

The Fuchsian ordinary differential equation satisfied by an important special
function often hasn’t an apparent singularity even if the spectral type of the equa-
tion is not rigid. Can we understand the condition that a W (z)-module has a
generator so that it satisfies a differential equation without an apparent singular-
ity? Moreover it may be interesting to study the existing of contiguous relations
among differential equations with fundamental spectral types which have no appar-
ent singularity.

16.4. Irregular singularities. Our fractional operations defined in §2] give trans-
formations of ordinary differential operators with polynomial coefficients, which
have irregular singularities in general. The reduction of ordinary differential equa-
tions under these operations is a problem to be studied. Note that versal additions
and middle convolutions construct such differential operators from the trivial equa-
tion.
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A similar result as in this paper is obtained for certain classes of ordinary differ-
ential equations with irregular singularities (cf. [Hi]).

A “versal” path of integral in an integral representation of the solution and
a “versal” connection coefficient and Stokes multiplier should be studied. Here
“versal” means a natural expression corresponding to the versal addition.

We define a complete model with a given spectral type as follows. For sim-
plicity we consider differential operators without singularities at the origin. For a

realizable irreducible tuple of partitions m = (m;,,) o<j<p of a positive integer n
1<v<n;
Theorem B.I3] constructs the universal differential operator

p n n—1 k
., d
(16.1) Pm = H(l —ejp)" oo+ Y an(@ e N g) o
j=1 k=0
with the Riemann scheme
Z = 00 1 . 1
Polomoy Pl 0 el
[)‘O,no](mo,ng) [Al,nl](mlynl) U [)‘P,np](mp)”p)
and the Fuchs relation
P TL]' .
d
SN i =n -
‘ RS 2
j=0v=1
Here ¢ = (¢co,...,¢p); A = (\j) and g = (g1,...,9n) are parameters. We have

cicj(c; —¢;) # 0 for 0 < i < j < p. The parameters g; are called accessory
parameters and we have idxm = 2 — 2N. We call the Zariski closure Py, of Py in
W z] the complete model of differential operators with the spectral type m, whose
dimension equals p + Z?:o nj + N — 1. It is an interesting problem to analyze the
complete model P,.

When m = 11,11, 11, the complete model equals

2
(1—ciz)?(1— czm)de? —(1=cz)(1—cox)(ar 12+ a1,0)% + a0,2x2 + ap1x + o0,

whose dimension equals 7. Any differential equation defined by the operator belong-
ing to this complete model is transformed into a Gauss hypergeometric equation,
a Kummer equation, an Hermite equation or an airy equation by a suitable gauge
transformation and a coordinate transformation. A good understanding together
with a certain completion of our operators is required even in this fundamental
example. It is needless to say that the good understanding is important in the case
when m is fundamental.

16.5. Special parameters. Let Py, be the universal operator of the form ([[6.1]) for
an irreducible tuple of partition m. When a decomposition m = m’+m" with real-
izable tuples of partitions m’ and m" is given, Theorem gives the values of the
parameters of Py, corresponding to the product Py Pm. A W(z, £)-automorphism
of Ppu = 0 gives a transformation of the parameters (A, g), which is a contiguous
relation and called Schlesinger transformation in the case of systems of Schlesinger
canonical form. How can we describe the values of the parameters obtained in this
way and characterize their position in all the values of the parameters when the
universal operator is reducible? In general they are not all even in a rigid differen-
tial equation. A direct decomposition 32,32, 32,32 = 12,12,12,12$2(10, 10, 10, 10)
of a rigid tuples 32,32, 32, 32 gives this example (cf. (IZG3)).
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Analyse the reducible differential equation with an irreducibly realizable spectral
type. This is interesting even when m is a rigid tuple. For example, describe the
monodromy of its solutions.

Describe the characteristic exponents of the generalized Riemann scheme with
an irreducibly realizable spectral type such that there exists a differential operator
with the Riemann scheme which is outside the universal operator (cf. Example
and Remark BIH)). In particular, when the spectral type is not fundamental nor
simply reducible, does there exist such a differential operator?

The classification of rigid and simply reducible spectral types coincides with
that of indecomposable objects described in [MWZ] Theorem 2.4]. Is there some
meaning in this coincidence?

Has the condition ([828)) a similar meaning in the case of Schlesinger canonical
form? What condition on the spectral type does assure that the local system has
a realization of Schlesinger canonical form?

Give the condition so that the monodromy group is finite. Give the condition so
that the centralizer of the monodromy is the set of scalar multiplications.

Suppose m is fundamental. Study the condition so that the connection coeffi-
cients is a quotient of the products of gamma functions as in Theorem [I4.8] or the
solution has an integral representation only by using elementary functions.

16.6. Shift operators. Calculate the polynomial function ¢y, (€; ) of A defined in
Theorem [[37 Is it square free? See Conjecture

Study the shift operator or Schlesinger transformation of a system of Schlesinger
canonical form with a fundamental spectral type. When doesn’t it defined or when
is it not bijective?

16.7. Several variables. We have analyzed Appell hypergeometric equations in
15,100 What should be the geometric structure of singularities of more general
system of equations when it has a good theory?

Describe or define operations of differential operators that are fundamental to
analyze good systems of differential equations.

A series expansion of a local solution of a rigid ordinal differential equation
indicates that it may be natural to think that the solution is a restriction of a
solution of a system of differential equations with several variables (cf. Theorem [[0.1]

and I53HI5A). Study the system.

16.8. Other problems.

e Are there analyzable series £ of rigid tuples of partitions different from the
series given in I5.9F Namely, £L C P, the elements of L are rigid, the
number of isomorphic classes of £ NP are bounded for n € Z~ and the
following condition is valid.

Let m = km’ + m” with k € Z~( and rigid tuples of partitions m, m’
and m”. If m € £, then m’ € £ and m” € L. Moreover for any m” € L,
this decomposition m = km’+m" exists withm € £, m’ € £ and k € Z~.
Furthermore £ is indecomposable. Namely if £ = £’ U £” so that £’ and
L" satisfy these conditions, then £’ = £ or L" = L.

e Characterize the ring of automorphisms and that of endomorphisms of the
localized Weyl algebra W (x).

e In general, different procedures of the reduction of the universal operator
Pnu = 0 give different integral representations and series expansions of
its solution (cf. Example [[0:2] Remark and the last part of §I5.3).
Analyze the difference.
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17. APPENDIX

In this section we give a theorem which is proved by K. Nuida. The author
greatly thanks to K. Nuida for allowing the author to put the theorem with its
proof in this section.

Let (W, S) be a Coxeter system. Namely, W is a group with the set S of gen-
erators and under the notation S = {s;; ¢ € I'}, the fundamental relations among
the generators are

(17.1)  s7 = (si8;)™ =e and m; ; =m;,; for Vi, j, k € satisfying i # j.

Here m; ; € {2,3,4,...} U{oo} and the condition m; ; = co means (s;s;)™ # e for
any m € Zsg. Let E be a real vector space with the basis set II = {a;; 7 € I} and
define a symmetric bilinear form ( | ) on E by

(17.2) (oslai) =2 and (alay) = —2cos ——.
mi,j

Then the Coxeter group W is naturally identified with the reflection group gen-
erated by the reflections s,, with respect to «; (¢ € I). The set A of the
roots of (W, S) equals WII, which is a disjoint union of the set of positive roots
Af{ = AN ZaGH Zsoo and the set of negative roots Ap := —Aﬁ. Forwe W
the length L(w) is the minimal number & with the expression w = s;,8;, - -S4,
(i1,... i € I). Defining Ap(w) := Af; Nw™ LA}, we have L(w) = #An(w).

Fix f and ' € A and put

(17.3) VVBﬁ, ={weW;p =wp} and W* .= Wg
Theorem 17.1 (K. Nuida). Retain the notation above. Suppose VV; # 0 and
there exist no sequence Si,, Si,, - - - Si, of elements of S such that
k>3,

174
(17.4) si, sy, (1<v<v <k),

M, iy 0nd my, g, are odd integers (1 <v <k).
Then an element w € Wg s uniquely determined by the condition
(17.5) L(w) < L(v) (Yo € WJ).
Proof. Put ALY := {y € Af:; (8]7) = 0}. First note that the following lemma.

Lemma 17.2. Ifw € VV[ﬁ satisfies (LLH), then wAﬁ C Afr.

In fact, if w € Wg, satisfles (IZH) and there exists v € Aﬁ satisfying wy €
Ap, then there exists j for a minimal expression w = s;, CSin ) such that
Sijr1 Sin Y = Qg which implies Wg, DV I= WSy = Syt Siy;_y Sijpy
and contradicts to ([TZH)).

It follows from [Bx that the assumption ([Z4) implies that W# is generated by
{sy;7€ Aﬁ} Putting I1# = Aﬁ\{ﬁ’yl +roys € Aﬁ; Y2 & Ry, v5 € Aﬁ and r; >
0 for j = 1,2} and S? = {s,; v € I}, the pair (W*, SP) is a Coxeter system and
moreover the minimal length of the expression of w € W# by the product of the
elements of S? equals #(Aﬁ Nw 'Ag) (cf. [N Theorem 2.3]).

Suppose there exist two elements w; and wy € T/Vé/f satisfying L(w;) < L(v)

©Sing (w)

for any v € W//ﬁ and j = 1, 2. Since e # wl_lwg € WP, there exists v € Aﬁ

such that wflwgv € Ay. Since —wflwgv € Aﬁ, Lemma [[7.2] assures —wsy =
wi (—wy 'wey) € Afy, which contradicts to Lemma 72 O
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The above proof shows the following corollary.

Corollary 17.3. Retain the assumption in Theorem [I7.1, For an element w €
Wg,, the condition (LAl is equivalent to wAﬁ C AL

Let

(17.6)

[Ao]
[AK]

(BH]
(Br]
[CB]
[DR]
[DR2]

[Dix]
[EMO]

(Ge]
(G]

[Ha
[HF]
(HY]
[HO]
(Hi]

[Kc]
[Kz]

[Kh]
[Ko]
[Ko2]
[Ko3]
[Ko4]
[Le]
MWZ]
[Nu]

[Oc]
[OTY]

[O1]

w € Wg, satisfying (CLH)). Then

Wg, = w<57; (v|B) =0, ve Af{>
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