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Abstract

We provide some language for algebraic study of the mapping class groups for
surfaces with non-connected boundary. As applications, we generalize our previous
results on Dehn twists in [13] and [17] to any compact connected oriented surfaces
with non-empty boundary. Moreover we embed the ‘smallest’ Torelli group in the
sense of Putman [23] into a pro-nilpotent group coming from the Goldman Lie alge-
bra. The graded quotients of the embedding equal the Johnson homomorphisms of
all degrees in the case the boundary is connected.

Introduction

In algebraic study of the mapping class group of a surface, its action on the fundamental
group of the surface plays an essential role. Let Y , be a compact connected oriented
surface of genus g with r boundary components, r > 1, M, , the mapping class group of
Y4r. Choose a basepoint * € 0%, ,. Then the action induces a group homomorphism

DN: M,, — Autm (3, *).

The Dehn-Nielsen theorem says DN is injective if r = 1. If r > 2, it is not injective. In
fact, the right handed Dehn twist along a boundary component without the basepoint * is
a non-trivial element in the kernel of the homomorphism DN. To study the case r > 2, we
have to consider the action of Mg, on a groupoid C, more precisely, a full subcategory of
the fundamental groupoid of the surface ., II¥, ., whose object set has at least one point
in each boundary component. Then, as will be shown in §3.1, the natural homomorphism
DN: M, — AutC is injective.

The purpose of this paper is to provide some language for studying the action of the
mapping class group on such groupoids. In our previous paper [13], we found the Goldman
Lie algebra of a surface acts on the group ring of the fundamental group of the surface as
derivations. This action plays a central role in our language. As a consequence, we come
to the notion of the completed Goldman Lie algebra for any oriented surface. From the
results in [13], in the case for ¥, this Lie algebra includes Kontsevich’s ‘associative’ and
‘Lie’ as Lie subalgebras.

In [13] the authors gave some description of Dehn twists on the surface ¥,;, which
led us to the definition of a generalized Dehn twist along a non-simple closed curve as an
automorphism of the completed group ring of the fundamental group of ¥,;. In [17], the
second-named author proved the Dehn twist along a figure eight is not realized by any
element of M, ;. Our practical goal is to generalize all these results to the case r > 2.



In fact, Theorem 5.2.1 is a generalization of our description of Dehn twists ([13] Theorem
1.1.1) to any oriented surfaces, and Theorem 5.4.2 is a generalization of the non-realizability
as a diffeomorphism of the generalized Dehn twist along a figure eight ([17] Theorem 5.1.1)
to any oriented surfaces of finite type with non-empty boundary.

As was shown in [17] Theorem 3.3.2, the generalized Dehn twist along a closed curve C
is localized inside a regular neighborhood of the curve C'. In almost all cases, the regular
neighborhood has a non-connected boundary. This also leads us to studying groupoids.
Our groupoid-theoretical methods make all the arguments on (generalized) Dehn twists
much shorter than those in [13] and [17]. In our forthcoming paper [14], we prove the
generalized Dehn twists along non-simple closed curves in wider classes are not realized by
any diffeomorphisms.

In our previous papers [13] [17], the notions as Magnus expansions or symplectic expan-
sions played a crucial role. The main theorems and constructions of this paper are basically
free from them, although we have used them in several arguments. Recently Massuyeau
and Turaev [19] developed a theory on generalized Dehn twists without use of Magnus
expansions. Comparing their approach and ours seems very interesting.

The higher Johnson homomorphism of the Torelli group is an important tool to study
the algebraic structure of the mapping class group M ;. If r > 2, theory of higher John-
son homomorphisms for M, , has not been established, since the map DN is not injective.
Moreover it has not been clarified what Lie algebra should be an appropriate target of
the higher Johnson homomorphism in these cases. In §6, we discuss the Johnson homo-
morphisms via our groupoid-theoretical methods. The completed Goldman Lie algebra we
introduce here gives a geometric interpretation of a completion of a Lie algebra introduced
by Morita [20] [21] as an appropriate target of the higher Johnson homomorphism for r = 1,
which is also Kontsevich’s ‘Lie’ [15]. By generalizing this construction and using Putman’s
result on generators of the Torelli groups [23], we embed the ‘smallest’ Torelli group in the
sense of Putman [23] into a pro-nilpotent group coming from the Goldman Lie algebra in
the case g and r are positive. If » = 1, the graded quotients of the embedding equal the
Johnson homomorphisms of all degrees. Moreover, our construction has a compatibility
with respect to an inclusion of surfaces (Proposition 6.3.4). Recently Church [5] introduced
the first Johnson homomorphism for all kinds of Putman’s partitioned Torelli groups. It
would be very interesting to describe an explicit relation between Church’s homomorphisms
and ours.
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1 Special additive categories (SAC’s)

In this and the next sections we develop some algebraic machineries which do not need any
surface topology. What we want to consider is a groupoid version of several constructions
attached to a group, such as the group ring and derivations on the group ring (§1.1), the
completed group ring with respect to the augumentation ideal and its powers (§1.2 and
§2.1), the Hopf algebra structure on the group ring (§2.1), and the abelianization (§2.2).

Let R be a small category. Throughout this paper we denote by ObR the set of
objects in R and write R(po, p1) = Homp (po, p1) for any objects pg and p; € ObR. The
composition o in R gives a multiplication - in R by

-t R(po,p1) X R(p1,p2) = R(Po,p2), MY2="71"72 = "Y20MN.

1.1 Definition of special additive categories

Let K be a commutative ring with unit.

Definition 1.1.1. A small additive category R is called a K -special additive category (K -
SAC) if it satisfies

(i) For any po,p1 and ps € ObR, the additive group R(po,p1) is a K-module, and the
multiplication -: R(po, p1) X R(p1,p2) — R(po, p2) is K-bilinear.



(ii) For any py and p; € ObR with R(po,p1) # 0, there exists an isomorphism in
R(po, p1)-

We denote by myR the set of isomorphism classes in ObR. For any ¢ € ObR the
additive group R (g, q) is an associative K-algebra with unit by the condition (i). Further,
R(po,p1) is a left R(po, po)- and right R(p1, p1)- module.

A typical example of a K-SAC is the free K-module over a groupoid G. For any py
and p; € ObG, we define (KG)(po,p1) to be the free K-module over the set G(pg,p1) =
Homg(po, p1). Clearly KG is a K-SAC, and moKG = myG.

A family of K-endomorphisms D = D®P1): R(py, p1) — R(po,p1), po,p1 € ObR, is
called a derivation of R, if it satisfies Leibniz’ rule

D(uv) = (Du)v + u(Dv)

for any po,p1,p2 € ObR, u € R(po,p1) and v € R(py,p2). Then, for any ¢ € ObR,
D = D@9 is a derivation of the associative K-algebra R(q,q) in a usual sense. It should
be remarked a derivation is not a covariant functor. We denote by DerR the K-Lie algebra
consisting of all derivations of R.

Let R and R’ be K-SAC’s with the same object set. We denote (R ® R')(po,p1) :=
R(po,p1) @K R'(po, p1) for pg,p1 € ObR = ObR’. The tensor product of multiplications
in R and R’ makes R ® R’ a K-SAC whose object set is ObR = ObR/, which we call the
tensor product of K-SAC’s R and R/.

We call a covariant functor F: R — R’ a homomorphism of K-SAC’s, if F(p) = p for
any p € ObR = ObR’, and F: R(po,p1) = R'(po, p1) is K-linear for any py and p; € ObR.
We denote by Hom(R, R’) the K-vector space consisting of all homomorphisms of K-SAC’s
from R to R'.

A homomorphism U € Hom(R,R) is called an automorphism of R, if U: R(po, p1) —
R(po, p1) is a K-linear isomorphism for any py and p; € ObR. We denote by AutR the
group consisting of all automorphisms of R.

1.2 Filtered SAC’s

Definition 1.2.1. A K-SAC R is called filtered, if each R(po,p1), po,p1 € ObR, has a
sequence of K-submodules {F,,R(po, 1) }n>0 such that

(i) FoR(po,p1) = R(po,p1) and F,R(po,p1) D FniaR(po,p1) for any n > 0.
(ii) Fan(po,pl)'Fan(ppr) - Fn1+n2R(pO7p2) for any po, p1,p2 € ObR and ny,ny > 0.

Suppose po, p1,qo and ¢ € ObR satisfy [po] = [q] and [p1] = [¢1] € mR. Let v €
R(po,q0) and § € R(q1,p1) be isomorphisms. Then, from the condition (ii) with ny or
ny = 0, we have

F,R(po, p1) = v(FaR(q0, q1))0 (1.2.1)

for any n > 0. If n < 0, we define F,, R(po, p1) = R(po, p1)-
If we define

grR(po, ;1) = EP er, R(po, 1), g8, R(po,p1) = FuR(po, p1)/Fr1R(po, p1)
n=0



for pg and p; € ObR, then grR is a K-SAC with ObgrR = ObR.
Now, in view of [24] p.265, we consider the following four conditions about a filtered
K-SAC R.

(C1) R(q,q)/FiR(q,q) = K for any g € ObR.

(C2) The algebra grR(q, q) is generated by gr,R(q, q) for any ¢ € ObR. In other words, the
sum of the multiplication and the inclusion F1R(q,q)®" @ F,,+1R(q,q) = F,R(q,q)
is surjective for any ¢ € ObR and n > 1.

(C3) Rlq,q) =lim . R(q,q)/FaR(g q) for any ¢ € ObR.
(C4) The multiplication F1R(q,q)®™ — F,R(q, q) is surjective for any ¢ € ObR and n > 1.

Lemma 1.2.2. These conditions are equivalent to the followings, respectively.
(C'1) R(po,p1)/FiR(po,p1) = K for any po,p1 € ObR with [po] = [p1] € moR.

(C2) If[po] = [p1] € moR, then the sum of the multiplication and the inclusion @), FAR(gi-1, ¢;)®
Foi1R(po,p1) — F.R(po,p1) is surjective for any qi,--+ ,qn-1 € [po] C ObR and
n > 1 with qo = po and q, = p;.

(C73) Rlpo,p1) =lm  R(po,p1)/FuR(po,p1) for any po,p1 € ObR.

(C4) If [po] = [p1] € MR, then the multiplication @), FiR(gi-1,¢) — F.R(po,p1) is
surjective for any qi,- -+ ,qn-1 € [po] C ObR and n > 1 with gy = po and ¢, = p1.

Proof. (C1) < (C'1) and (C3) < (C'3) follow immediately from (1.2.1). (C'2) = (C2)
and (C"4) = (C4) are clear.

Choose an object ¢ € [po] C ObR, and isomorphisms v; € R(q,¢), 0 < i < n. By
(1.2.1), we have F,R(po,p1) = Yo ' FuR(¢, ¢)¥n- On the other hand, we have

n
A\

~

% Y EIR(q,q) - - - FyR(q, q) m

= % '"BAR(, O T RAR(@ )2 et FIR(G, @)Y
= FiR(qo,q1)  FiR(q1,q2) - -+~ FiR(qn-1, qn)-
Hence we obtain (C2) = (C’"2) and (C4) = (C"4). O

Let R be a filtered K-SAC. We define

A~

R(p07p1) = l&n R(p()?pl)/FmR(pOupl)a and

m—ro0

Fnﬁ(po,pl) = @ F.R(po, p1)/ FinR(po, p1) C 7i(po,pl)
m—ro0
for po,p1 € ObR and n > 0. Then R is a filtered K-SAC satisfying the condition (C3).
We call it the completion of R. There is a natural homomorphism R — R of K-SAC’s.
Let R and R’ be filtered K-SAC’s with the same object set. We define

(RER')(po, p1) := Lim (R @ R') (00, 21)/ X,y Frs R(P0, 1) © Fo, R (Do, p1)
n—oo
for po,p1 € ObR = ObR’. Then R&R’ is a filtered K-SAC whose object set is ObR =
ObR’ in an obvious way, which we call the completed tensor product of filtered K-SAC’s
Rand R'. If a®b € (R®R')(po, p1), then its image under the homomorphism R ® R' —
R®R' is denoted by a®b.



1.3 Derivations of a filtered SAC
Let R be a filtered K-SAC. We define

F,DerR :={D € DerR;Vpy,Vp; € ObR,VI > 0, D(F;R(po,p1)) C F11nR(po, 1)}
for any n € Z. It is clear that
[F.,,DerR, F,,,DerR| C F,,, 1n,DerR (1.3.1)

for any n, and ny € Z.

Lemma 1.3.1. Let R be a filtered K-SAC with the condition (C4) and n € Z. If a
deriwation D € Der'R satisfies

D(R(po,p1)) C FuR(po, p1)

for any pg and p; € ObR, then we have D € F,_1DerR. In particular, we obtain
DerR = F_;DerR.

Proof. Let pg and p; be objects in R. We may assume [po] = [p1] € 1R, since R(pg,p1) =0
if [po] # [p1]. Let [ be a positive integer. Choose ¢i,...,q-1 € [po] = [pl] C ObR, and de-
note gy = po and ¢, = p;. From the condition (C4), the multiplication ® R(qi-1,9) —
FR(po, p1) is surjective. Hence it suffices to show D(ujus...u;) € FnH,lR(pg,pl) for any
u; € F1R(¢i—1,q;). Now we have

D Uluz E Uy -+ Uj—1 Dul)uz+1 - Uy,

and uy - wi—1 (Dug)uipy - -up € Fry 1R(po,p1) from the assumption. This proves the
lemma. O

Now we study an analytic function of a derivation D € DerR.

Lemma 1.3.2. Let R be a filtered K-SAC with the conditions (C2) and (C3), and f(t) =
Yoo axt® € K([t]] a formal power series. Suppose a derivation D € DerR satisfies the
following three conditions.

(i) D € FyDerR.

(ii) For any py and p; € ObR, there exists a positive integer v such that D* = 0 on
gr1R<p07p1)'

(iii) For any py and p1 € ObR, D(R(po,p1)) € FiR(po, p1)-

Then the series f(D) = > 2", arD* € End(R(po,p1)) converges for any py and p; € ObR.



Proof. We have
Dn(y_l)H(FnR(PoyPﬁ) C ForaR(po, p1) (1.3.2)

for any n > 1. In fact, we may assume [po] = [p1] € mR, since it is trivial in the case
[po] # [p1]- Then choose qi,...,¢,—1 € [po] = [p1] € ObR, and denote gy = po and ¢, =
p1. From the condition (C2), the multiplication induces a surjection @, FiR(gi-1,¢) @
Foi11R(po,p1) = F,R(po,p1). By the condition (ii) we have DYu; € FyR(g;—1,¢;) for any
u; € FyR(q;—1,q;). Hence D™=V (yyuy - - uy,) € Fy1R(po, p1), while DF, 1R (po, p1) C
F11R(po, p1) from the condition (i). This proves (1.3.2).

For any v € R(po,p1), we have Du € FyR(po,p1) by the condition (iii). Hence, by
(1.3.2), we have D™u € F,R(po,p1) it m > 1+ 33 k(v —1)+1=n+in(n-1)(v-1).
By the condition (C3) the series f(D) converges as an element of End(R(po,p1)). This
completes the proof. [

If K includes the rationals Q, then we may consider exp(t) and 1 (exp(t) — 1) € K[[¢]].

Proposition 1.3.3. Suppose K includes Q and let R be a filtered K-SAC with the condi-
tions (C2) and (C3), and D and D" derivations of R satisfying the three conditions (i)-(iii)
in Lemma 1.3.2. Then

(1) If[D,D’] =0, then the sum D+ D' satisfies the three conditions (i)-(iii), and exp(D-+
D'") = (expD)(exp D').

(2) exp D € AutR.
(3) Ifexp(D) = exp(D’) € AutR, then we have D = D' € DerR.

Proof. (1) The conditions (i) and (iii) are clear. By [D, D'] = 0, we have

(D+ D)™ = i (7;) DD, (1.3.3)

k=0

Hence, if D = D™ = 0 on gr, R(po, p1), then (D+D')"*" = 0 on gr, R(po, p1). This implies
D + D’ satisfies the condition (ii). By (1.3.3) we compute exp(D + D') = (exp D)(exp D’).

(2) It is clear that (exp D)(1,) = 1, for any ¢ € ObR. Leibniz’ formula implies D*(uv) =
PO I; (D7u)(D*7v) for any po,p1,p2 € ObR, u € R(po,p1) and v € R(py, p2). Hence
(exp D)(uv) = (exp D)(u)(exp D)(v), which means exp D is a covariant functor from R to
R itself. By (1), exp(—D) is the inverse of exp D. Hence we obtain exp D € AutR.

(3) We denote f(t) := t(expt —1) =7, ﬁtk € K|[t]]. We have (exp(D) — 1)" =
D" f(D)"™. Hence, as was proved in the proof of Lemma 1.3.2, we have (exp(D) — 1)™u €

F,R(po, p1) for any py,p1 € ObR and u € R(po,p1), if m > n+ sn(n — 1)(v — 1). This
implies log(exp D) = >"7 (717):_1 (exp(D) — 1) converges as an element of EndR(po, p1).
On the other hand, log(exp D) = D (mod D™) for any m > 1. Hence, from the condition

(C3), we have log(exp D) = D. In particular, if exp D = exp D', then we have D = D'. [J




2 Groupoids

Let K be a commutative ring with unit, and G a groupoid. As was stated in §1.1, K@,
the free K-module over G, is a K-SAC with ObKG = ObgG. A homomorphism of K-SAC’s
A: KG — KG® KG is defined by Ay :=~v®~ for any v € G(po, p1), po, p1 € ObG, which
we call the coproduct of KG. If Obg is a singleton, namely, G is a group, then A defines
the standard Hopf algebra structure on the group ring Kg.

2.1 Filtration on K¢

We have the augmentation ¢: KG(¢,q) — K and the augmentation ideal 1G(q,q) :=
Kere C KG(q,q) for any ¢ € ObG. We remark the power 1G(q,q)" is a two-sided ideal of
the group ring KG(q, q) for any n > 0.

Proposition 2.1.1. The K-SAC KG has a filration {F,KG(po,p1)}n>0, Po,p1 € ObG,
such that F,,KG(q,q) = 1G(q,q)" for any n > 0. The filtered K-SAC KG satisfies the
conditions (C1) and (C4).

Proof. Let py and p; be objects in G with [p] = [p1] € MG = meKG. Then, for any
¢ q1 € [po], ¥ € G(po.q); 1 € G(po, @), 6 € G(g,p1), 01 € G(q,p1) and n > 0, we have

v1G(q,9)"0 = 11G(q1,q1)" 01 C KG(po,p1) (2.1.1)

In fact, since the map G(¢,q) — G(qi,q1), * — Y1 ‘ywy 1y, is an isomorphism of
groups, we have v 'vIG(q, )"y 'v1 = IG(q1,q1)". Since IG(q1,q1)" is a two-sided ideal
of KG(qi,q1) and 6;6 'y 1y € G(qi,q1) is an invertible element of KG(q1,q1), we have
IG(q1, )" = IG(q1, q1)"010 'y 'y Hence 1 'vIG(q,q)"v ' = I1G(q1, )" 010 'y,
and so v1G(q,q)"0 = 111G(q1, q1)"01.

Hence we may define

F.KG(po,p1) :=v1G(q,q)"0, n >0,

if [po] = [p1]. In the case [po] # [p1], we define F, KG(po,p1) :=0 C KG(po,p1) = 0.
Next we prove the condition (ii) in Definition 1.2.1

Fang<p07p1) : anKg(plaPQ) C Fn1+n2Kg(p07p2)

for any po,p1,p2 € ObG and ny,ne > 0. Choose v € G(po,p1) and 0 € G(p1,p2). Then
Y o KG(po, p1) = 1G(p1, p1)™ and F,,, KG(p1,p2)0~" = IG(p1, p1)"™?, so that v~ F,,, KG(po, p1)-
F,KG(p1,p2)0~t C IG(p1, p1)™ ™. This proves KG is a filtered K-SAC.

The conditions (C1) and (C4) are clear from the definition of the power of the augmen-
tation ideal 1G(q,q)", n > 0, ¢ € ObgG. O

Following 1.2 we can define the completion of the filtered K-SAC K@, @, which
satisfies the conditions (C1), (C2) and (C3). Since KG satisfies the condition (C4), we
have DerKG = F_{DerKG from Lemma 1.3.1. In particular, any derivation D € DerKG
induces a derivation of the completion I/(E in a natural way. In other words, we have a
natural homomorphism of K-Lie algebras, DerKG — DerKg.



The coproduct A on KG satisfies

AFan(p07pl) C Z Fn1Kg<p07pl) ®Fn2Kg(p07p1) (212)

ni+n2=n

for any po, p1 € ObG and n > 0. In fact, it is easy to see A(IG(q,9)") C 3., 1nymn 1G(0, )™ ®
IG(q,q)™ for any ¢ € ObG. For v € G(po,q) and & € G(q,p1), po,p1 € [q], we have
AF,KG(po,p1) = A(v1G(q,)"6) = (v®@7)AIG(¢,9)") (0 ®6) C 3, 4ny=n 11G(q,0)" 0 ®
YIG(q,9)™6 = D sngen T KG(po, 1) @ F, KG(po, p1), as was to be shown.

Hence A induces a homomorphism of K-SAC’s

A: @%@@@7

which we call the coproduct of @ We denote by DerA[/(?] the Lie subalgebra of Derl/(a
consisting of all the continuous derivations D stabilizing the coproduct A, namely, satis-
fying - o

AD = (D&1 + 1&D)A: KG(po, ;1) = (KGRKG)(po, p1)

for any po, p1 € ObgG.

2.2 Abelianization G2

In this subsection we introduce the abelianization of a groupoid G, G2*¢!. Before defining
the abelianization, we remark that, for any filered K-SAC R, the quotient R/F, R given
by ObR/F,R = ObR and (R/F,R)(po,p1) := R(po,p1)/FnR(po, 1), po,p1 € ObR, is
also a filtered K-SAC. Any derivation D € FyDerR defines a derivation of the quotient
R/F,R in a natural way. In other words, one can define a natural homomorphism of K-Lie
algebras FyDerR — FyDer(R/F,R). Moreover we remark that, for any group G, we have
a natural isomorphism

IG/(IG? = G*™ 2 -1+ rmod[G,G].

Here IG is the augmentation ideal of the integral group ring ZG. The unit 1 € ZG gives
a decomposition ZG/(IG)* = Z & IG/(IG)? = Z ® G**!. The multiplication of any two
elements in G vanishes in the ring ZG/(IG)?. In particular, ZG/(IG)? is a commutative
ring. The conjugate action of G on the ring ZG/(IG)? is trivial.

For any groupoid G, we call the Z-SAC

gabel = ZQ/FQZQ

the abelianization of the groupoid G. The conjugate action of G(gq, ¢) on the ring G#*°(q, q)
is trivial. Hence, for any A € myG and ¢, g2 € A, the isomorphism

G (g1, 1) = 6N g, @2), x> yay !

does not depend on the choice of v € G(g2,¢1). Under this identification we define
HG() == G"q,q), q€X

HG()) is a commutative ring. If pg,py € A, then G*(py, p1) is a left and right HG(\)-
module. We remark vz = z7y € G2 (py, p;) for any v € G(po, p1) and x € HG()N).
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3 Oriented surfaces

Let S be an oriented surface, or equivalently, an oriented 2-dimensional C'*°-manifold.
Throughout this paper, a simple closed curve (SCC) on S means a smooth submanifold
of the interior S\ S which is diffeomorphic to the circle S'. It can be regarded as an
unoriented free loop in S.

Let E be a non-empty closed subset of the surface S. What we actually have in mind
is the case F is a disjoint union of finitely many simple closed curves and finitely many
points. Then we introduce a groupoid C = C(S, E') by setting ObC := E and

C(pmpl) = Homc(po,pl) = HS(pO;pl) = [([0, 1],0, 1)7 (57]9072?1)];

the homotopy set of continuous paths on S connecting pg to py, for pg,p1 € E = ObC. As
usual a path and its homotopy class will be denoted by the same letter, if there is no fear
of confusion. The multiplication 71v2 = 71 + 72, where v1 € C(po,p1), 72 € C(p1,p2) and
Do, P1,p2 € F, means the (homotopy class of) conjunction, which traverses 7, first. The
natural map moC(S, E) — moS is injective.

Let K be a commutative ring including the rationals Q. Then, if G is a finitely generated
free group or a surface group, the completion map KG — KG = 1&171_)C>Q KG/(IG)" is
injective [3] [4]. Hence, if the fundamental group of any connected component of S is

—

finitely generated, then the completion map KC(S, E) — KC(S, FE) is injective.

3.1 Dehn-Nielsen homomorphism

We define the mapping class group of the pair (S, E'), which is denoted by M(S, E), to be
the set of orientation preserving diffeomorphisms of S that fix £ U 0S pointwise, modulo
isotopies relative to £'U dS. A diffeomorphism and its class in M(S, F) will be denoted
by the same letter, if no confusion might occur. Adopting the functional notation, the
product 19 for p1, oo € M(S, E) means the (class of) composition ¢; 0 ps. Then we can
define a group homomorphism of Dehn-Nielsen type

DN: M(S, E) — Aut(KC(S, E)),

by DN(p)(y) = @(v), for v € C(po,p1), po,p1 € E. For any groupoid G we denote by
AutG the group consisting of all covariant functors F: G — G satisfying the conditions
F(po) = po and F: G(po,p1) — G(po,p1) is an isomorphism for any py and p; € Obg.
By definition the Dehn-Nielsen homomorphism DN: M(S, E) — Aut(KC(S, E)) factors
through the group AutC(S, E).

We say S is of finite type, if S is a compact connected oriented surface, or a surface
obtained from a compact connected oriented surface by removing finitely many points in
the interior.

Theorem 3.1.1. Suppose S is of finite type with non-empty boundary, £ C 0S, and any
connected component of S has an element of E. Then the homomorphism DN: M(S, E) —
Aut(KC(S, E)) is injective.

Proof. Let ¢ € M(S,FE) and suppose DN(¢) = 1. Since ¢ is identity on 05, for any
p,q € 0S and v € 11S(p, q), we have p(y) = 7. Moreover, by [7] Theorem 3.1, ¢(7v) is
isotopic to 7. Now we take a system of proper arcs ai, fi,..., 04,084, V1,-..,%—1, and
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AN

Figure 1: thecase g=1,r =2, and n =1

d1,...,0, in S (g is the genus of S, r is the number of components of 95, and n is the
number of punctures), such that the surface obtained from S by cutting along these arcs
is the union of a disk and n punctured disks. See Figure 1.

Applying [8] Proposition 2.8, we may assume ¢ is identity on these arcs. Finally, by
[25], we conclude that ¢ is isotopic to the identity. O

—

If K includes Q and S is of finite type, the completion map KC(S, E) — KC(S, E) is
injective, as was stated in/th\e beginning of this section. Hence the natural homomorphism
DN: M(S, E) — Aut(KC(S, E)) is also injective under the assumption of Theorem 3.1.1.

It would be very interesting if one could find a characterization of the image of the
homomorphism DN for any (S, E).

Next we consider the case E ¢ 05 and E'\ 05 is finite. We number the elements of the
set E\0S,as E\9S ={q),4Y,...,q°}, where s = #(E \ 95) > 1.

Lemma 3.1.2. Assume S is connected and E N OS # 0. Then the kernel of the forgetful
homomorphism AutC(S, E) — AuwtC(S, E N IS) is isomorphic to the fundamental group

Wl(SS,(q?,...,qg)) = Hf:l Trl(Saqg)'
Proof. For any z; € m1(S,¢Y), 1 <i < s, we define F = F(zy,...,z,) € AutC(S, F) by

v, if pg,pr € ENOS,
TioY, if po = %OO and py € EN 35S,
ye, "', ifpo € ENAS and py = ¢,

Tigyxi, b, i po = ¢) and p; = ¢,

Fryi=

for v € C(po, p1)- It is clear that the map

[[7(8,¢)) = AwtC(S,E), (x1,...,x5) = F(xy,..., )

=1

is an injective group homomorphism, and its image is in the kernel of the forgetful homo-
morphism. Hence it suffices to show the kernel is included in the image.
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Let U be an element of the kernel of the forgetful homomorphism. Choose a point
x € FNAS and paths v; € T1S(p;, %), 1 < i < s. Define z; := (Uy;)v~* € US(ps, pi) =
m(S,p;), 1 < i < s. Then x; does not depend on the choice of x and 7;. In fact,
for another ¥ € EN0S and v, € ILS(p;, «’), take some 6 € IIS(x’,%). Then we have
(U~:) 1 U~ = Ui 96) = 7196 € mi(S, *) since U is an element of the kernel of the
forgetful homomorphism. Hence we have (U7!)y, ' = x;. This means U = F(z1,...,x,)
and proves the lemma. [

Let F5(S\ 0S) be the configuration space of ordered distinct s points
F(S\0S) == {(a1, a2, - 4s) € (S\DS)* Vi # V), ¢i # ¢}

Then we have a natural exact sequence
1 — m(Fy(S\09),(&,...,q°) = M(S,E) = M(S,ENdS) — 1
[2] Theorem 4.3. See also [8] Theorem 4.6.

Theorem 3.1.3. Assume S s of finite type with non-empty boundary, any component of
0S has an element of E, and E\0S is a non-empty finite set. Then the kernel of the Dehn-
Nielsen homomorphism DN: M(S, E) — AuwtKC(S, E) is isomorphic to the kernel of the
inclusion homomorphism w1 (Fy(S \ 85), (4%, ...,q°%)) = m(S%, (¢}, ..,4%)). In particular,
the homomorphism DN is injective if and only if §(E \ 0S5) = 1.

Proof. Consider the morphism of exact sequences

1 —— m(Fy(S\09S9) — M(S,E) —— M(S,EnadsS) —— 1

| ! !

1 — m1(S%) —— AwtC(S,E) —— AutC(S,EN09S).

The right vertical arrow is injective from Theorem 3.1.1. The theorem follows from chasing
the diagram. O

3.2 van Kampen theorem

In this subsection we prove the easier half of the van Kampen theorem for the groupoid
C(S,FE). Let Sy and Sy be oriented surfaces, 'Sy and 9'Ss sums of some connected com-

ponents of the boundary 057 and 0S,, respectively, and ¢: 9'S; = &S, an orientation-
reversing diffeomorphism. Moreover let E; C S and Ey C S5 be non-empty closed subsets.
We assume the condition

Any connected component of 0'S; has some point in E; for i = 1,2, and ¢ maps
the set £, N J'S; onto the set Ey N O'S,.

Then we define S3 := S Uy, Sy, E3 = E; U, Ey and E? C E? the image of E; N 'S,
and Fy N J'Sy. We write simply C; := C(S;, E;) for i = 1,2,3. We have the inclusion map
Li: CZ —>Cg for i = 1,2

The van Kampen theorem says Cs is “generated” by C; and Cs. In order to formulate
it in a rigorous way, we prepare some notations. Let py and p; be points in F5. Then we
denote by &(po, p1) the set of finite sequences of points in Fs, A = (g0, q1, . - ., ¢n) € E3" ™,
n > 0, satisfying the conditions
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(i) 4o = po and g, = p1.
(ii) For 1 < j <mn, either {g;-1,¢;} C S1 or {gj-1,q;} C So.

Further we denote by &(pg,p1) the set of pairs (A, 1), A = (¢0,q1,---,qn) € E(Po,p1),
p= (p1,. -, pn) € {1,2}" such that {g;_1,q;} C Sy, for any 1 < j < n. For (\,pn) €
E(po, p1), we denote KC(A, 1) := @)_; KCp,(gj-1,q;)- One can define the multiplication
map KC(A, ) — KCs(po,p1) in an obvious way.

Proposition 3.2.1. The multiplication map

P  KC(\u) = KCs(po,p1)

(Am)EE(po.p1)
18 surjective for any po and py € Fj.

Proof. Take an open tubular neighborhood U of 0'S; U, 0'Ss in S3. Then {S; UU, Sy UU}
is an open covering of S3, and S; is a deformation retract of S; UU for ¢ = 1,2. For any
path ¢: ([0,1],0,1) — (S, po, p1), there exists a positive integer n > 1 such that ¢([Z1, 2])
is included in S; U U or Sy UU for any 1 < 57 < n. Then we may assume f(%) € FE5 for
1 <j<n-—1. Infact,if E(%) € U, the connected component of E(%) in U contains a point
in F2 by the assumption on F; and 0'S;. We insert a path connecting ﬁ(%) to a point in
E? inside U into the path ¢, and deform it to obtain a new path homotopic to the original
path ¢ with ¢(1) € EY. On the other hand, if ¢(£) € S;\ U, where i = 1 or 2, then we can
deform the path ¢ inside S; U U such that E(%) € {po,p1} U EY C E3. Moreover, using the
deformation retraction of S; U U onto S;, we deform the path f([j%l, %]) inside S; or Ss.
Hence we obtain a new path ¢ such that
e For 1 < j <mn, either (([=1, 2]) € Sy or £([E1, L]) C S,

. é(%) isin B3 for 1 <j<n-—1, and
e / is homotopic to the original path relative to {0, 1}.

Then we have £|jo 1)@ £]j1 21 ® -+ @ L|jn=1 ») € KC(A, p) for some (A, 1) € E(po, p1). This
proves the proposition. [

3.3 Automorphisms

From now until the end of §5 we suppose K is a commutative ring including the rationals

Q.
Let S be an oriented surface, and E and E’ closed subsets, as before. If £ C E’, the in-

—

clusion F — E’ induces a homomorphism of filtered SAC’s KC(S, F) — KC(S, E’) and the

forgetful homomorphism ¢: AutK C/(S\,E/ ) — AutK?(;E). In this subsection we study
this forgetful homomorphism. For topological study of surfaces, the group AutKC(S, F)

is too large, so that we begin with introducing an appropriate subgroup of Aut KC(S, F),
A(S,E).

Definition 3.3.1. We define A(S, E) to be the subgroup consisting of all the automor-
phisms U € AwtKC(S, E) satisfying the following four conditions.
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—

(i) U is a homeomorphism with respect to the filtration {F,KC(S, E)}p>o.
(ii) If v € I1S(po, 1), po, p1 € E, is represented by a path included in E, then Uy = ~.

(iii) eU = e: I/(E(pg,pl) — K for any po,p1 € E. Here ¢ is the augmentation, which is
induced by the K-linear map KC(po,p1) — K, C(po,p1) 37— 1.

(iv) AU = (UBU)A: I/(E(po,pl) — (I/(E@)I/(E)(pg,pl) for any po,p1 € E. Here A is the

L—

coproduct of KC as in §2.1.

Clearly the image of the Dehn-Nielsen homomorphism DN: M(S, E) — AutKﬁSTE)
is included in A(S, E), so that we obtain DN: M(S, E) — A(S, E)). We have the forgetful
homomorphism ¢: A(S, E') — A(S, E).

For the rest of this subsection we suppose each component of S is a surface of finite
type and not closed (hence its fundamental group is a finitely generated free group). Let
C; ¢ S\ (FUOY), 1 < i < n, be disjoint simple closed curves which are not null-
homotopic in S. Choose a basepoint *; € C; and a simple loop n;: ([0, 1],{0,1}) — (Cj, *;)
going around C;. We also denote its homotopy class by n; € m(S,*;). We can define

—

n;* := exp(alogn;) € Km(S,*;) for a € K. For any p € C;, we have some t € [0, 1] such

that 7;(t) = p. We define nf, := (mil0,9) " 7" (ilj0,4) € Km1(S,p), which is independent of
the choice of the path 7;|(p. We denote E; := [J;_, C;.

i=1
Proposition 3.3.2. Suppose U € A(S, EU E)) is in the kernel of the forgetful homomor-

phism ¢: A(S,E U E,) — A(S,E). Then there exist some a; = al € K, 1 <i < mn, such
that

v, ifp()vpl € E;
a; .
U/U — ,r]iof)pa()'vﬂ pro E O’io) pl e E;
,U(nill,lpl>717 pro E E7 pl 6 Cil?

nfgt}?ov(nzi,lpl)_la if po € Ciy, p1 € Cyy,
for any v € KC(po,p1), po,p1 € EU Ej.

Proof. For each 1 < i < n, choose a point x € E which is in the connected component

—

containing *;, and a path ; € IIS(*,%;). Consider u; := ~, Y(Uvy;) € Kmi(S,%;). We
have (7:&7)(u@u;) = (Uy)@(Ux;) = (UBU)Ay; = A(vau;) = (7:@7i)Aug, and so wu; is
group-like. Moreover u; does not depend on the choice of * and ~;. In fact, for another
¥ € E and 7/ € IIS(x, %), take some § € IIS(x,*'). Then ~\,~'0 = (Uy)(Uy)~'6
since v}y, 710 € m(S,*') and ¢(U) = 1. Hence we have 7/~ (U~)) = v HU~;) = u;. In
particular, if v/ = v;n;, we obtain ;" u;n; = wu;, since Un; = n; from the condition (ii) in
Definition 3.3.1. Now we have the following.

Proposition 3.3.3. Let S be a surface of finite type and not closed, and C' a simple closed
curve in S which is not null-homotopic in S. Choose a basepoint x € C' and a simple
loop n: (]0,1],{0,1}) — (C,%) going around C. We also denote its homotopy class by
n € m1(S,*). Then the subalgebra

Z(n) == {u € Kmi(S,*);nu = un}
of KW/l(E*) equals the ring of formal power series in n — 1, K|[[n — 1]] = K|[logn]].
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The proof will be given in the second half of this subsection. From this proposition we

obtain u; € K[[n; — 1]]. Since the inclusion homomorphism K[[n; — 1]] — Km(S,*;) is
injective, u; is group-like also in K[[n; — 1]]. Hence we have u; = n;,~* for some a; € K.
We have U~; = v;u; and U~y ™' = (u;) "1y, Since u; does not depend on the choice of v;,
we have

Yo € KC(x,%),Uv = vu;, Yo' € KC(x;,%),Uv' = (u;)" 0. (3.3.1)

Now let po,p1 € EUE; and v € T(E(po,pl).

(i) If po, p1 € E, then Uv = v since ¢p(U) = 1.

(ii) Suppose po = 1, (to) € C;, and p; € E. Choose §; € I1S(p1, *). Then, since Ud; =
0y and U (1 [j0.49)) = hio | [0.80): We have (1 [j0.00)) (U0)01 = U (o 0.10))001) = (i) ™" (i 0.0] )01,
and so Uv =, %, v.

(iii) Suppose py € F and p; = n;,(t1) € C;;,. Choose g € ILS (%, pg). Then, since Udy =
do and U(miljon) ™" = (Mirljon)) ", we have do(Uv)(miljon) ™" = Uov(miljon) ") =
60v(Miy |j0,617) sy, and so Uv = v(n?f}pl) .
__ (iv) Suppose py = ns(to) € Ciy and py = 1i, (1) € Ci,. Then ¥, (1o (0,400 (11 |j0.02) ™" €
KC(*,%;,). Hence we have viotiq (1io10,10) (U0) (1iy |[0,62) ™" = U (Vig (Mio 10,06 0 (i |[0,02]) ™) =
Yio (i 10,66V (i |[0.02)) ™ iy, and s0 Uv = 106, v (%)~

This completes the proof of Proposition 3.3.2. m

As a corollary, we have

Proposition 3.3.4. Let N C S\ (EUO3JS) be a connected compact subsurface with non-
empty boundary, which is not diffeomorphic to the disk D?. Assume the inclusion ho-

momorphism of fundamental groups m (N) — m(S) is injective. Let i: KC(/NEN) —
KC(,STE\U ON) be the inclusion homomorphism. Numbering the boundary components of
ON as ON =[], O;N, we choose *; € O;N and n; € m(N,*;) as in Proposition 3.3.2.

Suppose U € A(N,0ON) and U € A(S, E UOIN) satisfy Uoi =ioU: KCUV,\aN) —
KC(STE\U ON) and U is in the kernel of the forgetful homomorphism ¢: A(S, EUON) —
A(S, E). Then there exist some a; = aZU € K, 1<1i<mn, such that

Uv =m0, 0(;,%,) ! (3.3.2)

—

fOT any v € KC(N7 aN)(p();Pl); Do € aioN; and p1 € a’uN

Proof. Since N # D?, the inclusion homomorphism 7 (9;N) — m(N) is injective. It
follows from the assumption the simple closed curve 0; N is not null-homotopic in S. Hence
we can apply Proposition 3.3.2 to dN, from which it follows that there exist some a; =

al € K, 1<1i<n, such that

aio -1

~ a;
U/U = nio,pov(ni:}]n)

for any v € KC(S, EUAJN)(po,p1), po € 0;, N, and p; € 9;,N.
From the assumption the inclusion homomorphism KIIN (pg,p1) — KILS(po,p1) is
injective for any pg, p; € ON. Since m1(5) is a finitely generated free group, the completion

map KI1S(po,p1) — KILS(po, p1) is also injective. Hence the equation (3.3.2) holds for
any po,p1 € ON and v € KIIN(po,p1), while KIIN (pg,p1) is dense in KIIN (pg,p1) and

U is continuous. Hence the equation (3.3.2) holds for any for any v € KC(N, 9N )(po,p1),
po € 0;, N, and p; € 0;, N. This proves the proposition. n
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The rest of this subsection is devoted to the proof of Proposition 3.3.3.
First of all we need some algebraic facts. Let Hz be a Z-free module of finite rank. We
denote H := Hz @z K and T := [[°_, H®™, the completed tensor algebra generated by

H. Throughout this paper we omit the symbol ® as a multiplication in the algebra T.

Lemma 3.3.5. Let X' € Hy be a primitive element, and X := X' ®1 € H. Then we have
{ueT: Xu=uX}=K[X].

Proof. Tt suffices to prove {u € H®"; Xu = uX} C K[[X]] N H®" by induction on n > 0.
It is clear for the case n = 0.

Choose a Z-free basis { X!}z of Hy with X| = X'. The set {X;}™372 defined
by X; := X/ ®1 € H is a K-free basis of H. Assume n > 1. For any u € H®" there
exist unique elements u; € H®"=V 1 < i < rankHy, such that v = Xu; + D ive Xitli.

If Xu = uX, then X?uy + 3700 X Xju; = Xy X + Y0, Xju X, Since {X; }rankHZ is
linearly independent, we have u; = 0 for ¢ > 2, and Xu; = u; X. Hence, by the inductive
assumption, u; € K[[X]], and so u = Xu; € K[[X]] This completes the induction. O

We remark Lemma 3.3.5 holds for any commutative ring with unit. We identify A2Hy,
with the Z-submodule of Hz®? generated by the set {X'Y' —Y'X"; X' Y’ € Hy}.

Lemma 3.3.6. Let v € A2Hy, be primitive as an element of Hz®?, and vy == v) ® 1 €
AN’H = AN’H; ®; K. Then we have

{u € T;vou = uve} = K[[vo)].

Proof. Tt is clear K[[vg]] is in the LHS. We prove {u € H®";vou = uvg} C K[[vo]] N H®"
by induction on n > 1.

To prove the case n = 1, we consider the adjoint map advy : Hz — H;?% Y —
vyY’ — Y'vj. Since the image (adv))(Hz) is Z-free, Ker(advy) is a direct summand of Hz,
and we have {Y € H;vY = Yuy} = Ker(adv)) ®z K. Assume {Y € H;vY =Yy} # 0.
Then Ker(adv)y) # 0. In particular, we have some primitive element Z' € Hy such that
vhZ' = Z'vly. From Lemma 3.3.5 for K = Z, we have v, = A\Z"* for some \ € Z. Since
vy € A?Hy, this implies v) = 0, which contradicts the assumption v} is primitive, and
proves the case n = 1.

Choose a Z-free basis {v}},; (rankH2)® of 1,2 with v/, = v). The subset {v; }; (rank/12)* Jofined
by v; ;= vl ®1 € A*H is a K- free basis of H®2. Assume n > 2. For any u 6 H®"_ there
exist unique elements u; € H®2 1 < < (rankHz)?, such that u = vou; + sz ViU

If wou = wwvy, then vouy 4 D0, Vovitty = VoLV + Y5y Vittivy.  Since {v; ;o) (rankHz)® 4o
linearly independent, we have u; = 0 for ¢ > 2, and vpu; = uyvg. Hence, by the 1nduct1ve
assumption, u; € K[[vp]], and so u = vou; € K[[UO]]. This completes the induction. O

Further we need some general result on a filtered Q-vector space. Let M = FoM D
FiM D --- be a filtered Q-vector space. Assume the filtration {F,M},>¢ is separated
ﬂ;io F,M =0, and complete M = l'&np%C>Q M/F,M. Let {p,}32, be a sequence of natural
numbers with lim, ., p, = +00. If a sequence {a,};2, C M satisfies a, € F, M for each
q > 0, then the series ) 7 a,x? converges as an element of M = l'glp_}Oo M/F,M for any

r e Q.
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Lemma 3.3.7. If there exists an infinite subset X C Q such that

Vr e X, Zaqa:q =0,

q=0
then we have aq, = 0 for any g > 0.

Proof. 1t suffices to show a, € F,.M for any r > 0. There exists some n = n(r) such that
a, € F,M for any ¢ > n. This implies ZZ:O agr? =0 € M/F.M for any x € X. Since

X is infinite, we have some distinct n + 1 elements xg, x1,...,2, in X. Because of the
Vandermonde determinants, the (n41) x (n+ 1)-matrix (2;/)o<; j<n has an inverse matrix.
Hence we obtain a, € F, M, 0 < Vq < n. This proves the lemma. [

In order to deduce Proposition 3.3.3 from these algebraic facts, we need the notion of
a group-like expansion of a free group [18]. This notion will be also used in §4.3 and §6.1.
Let m be a finitely generated free group, and H the K-first homology group of 7,

H:=H(mK)=1""®, K.

We denote by [x] € H the homology class of z € 7. Let L be the space of all Lie-like
elements in the completed tensor algebra T := [[°_, H®™. The image of the exponential

| —

k
!u

o

exp: L— T\, u— exp(u) := Z
k=0

is a subgroup of the multiplicative group of the algebra T. We denote by u*xv € L the
Hausdorff series of v and v € £. By definition, we have exp(u * v) = (exp u)(exp v).

Definition 3.3.8 (Massuyeau [18]). A map 6: 7 — T is called a group-like expansion, if
0 is a group homomorphism of w into the multiplicative group exp L, and 0(x) = 1 + ]
(mod [[~_, H®™) for any x € .

Any group-like expansion 6 induces a filter-preserving isomorphism of Hopf algebras
[12] [18]
0: Km > T. (3.3.3)
Here the algebra T is filtered by the ideals fp = [, H*" p > 1.

Proposition 3.3.9. Let S be a surface of finite type and not closed, and C a simple closed
curve in S. Choose a basepoint x € C' and let n € m(S,*) be a simple loop around C.
Then there ezists a group-like expansion 0 of the free group m(S,*) such that

(i) 0(n) = exp([n]), if [n] # 0 € H = Hy(S; K),

(i) 0(n) = exp(ny ® 1) for some n) € A*Hy, if [n] = 0 € H. Here n} is primitive as an
element of H,%2.

Proof. From the assumption on S, the fundamental group (S, *) has a presentation

(i, Bi(1 <1< g), (1< g <r)slag, Bi] - [ag, Bglyi - = 1) (3.3.4)

for some g > 0 and r > 1. It suffices to consider the following three cases.
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(1) C is non-separating.
(2) C is separating, and [n] #0 € H.
(3) C is separating, and [n] =0 € H.

(1) By the classification theorem of surfaces, we may take n = «;. Since r > 1,
m (S, *) is freely generated by {a;, 5i(1 < i < g),7;(2 < j < r)}. We can define 6 by
0(as) = explfen]), 0(8:) = exp((B]), 1 <1 < g, and () = exp(f]), 2 < j < r. Clearly
we have 6(n) = exp([n]).

(2) The complement S\ C' has two connected components, so that we have r > 2. By
the classification theorem of surfaces, we may take n=! =~ 1 -+ [as, B1] - - - [, Br] for
some 1 <k <r—1and 0 <h <g. The fundamental group 7 (95, %) is freely generated
by {ai, Bi(1 < i < g),7;(2 < j < r)}. We define () := exp([ev]), 0(5) = exp([fi]),
1 <i < g, and 0(y;) = exp([y;]), 2 < j < r—1. We denote logf(z) = > 7, £,(),
ly(x) € LNOH®P. We define 2,(7) by induction on p > 1. ¢;(~y,) must be [y,]. Assume p > 2
and £,(y,) is defined for ¢ < p—1. Then we define £,(~,) to be minus the H*?-component of

[Veega e ¥y (Zﬁi M%«)) *laa]x[Bi]x(=[aa])x (= [Ba]) % - -xon ][ Bl + (=[ewn] )+ (= [Bnl)-

From this definition we have £,(n*') = +¢,(n) = 0 for p > 2, namely 6(n) = exp([n]).

(3) By the classification theorem of surfaces, we may take n*! = [ay, 81] - - - [an, B4] for
some 0 < h < g. There exists a group-like expansion 6" of the free group (o, 5;(1 < i <
) satistying &'([ar, B1] - [on, fh]) — exp(30, as] A [8]), c.L., Definition 6.1.1 which is
originally due to [18]. See also [16]. The fundamental group (.S, *) is freely generated by
{ai, B:(1 <@ < g),7;(2 < j < r)}. We can define 0 by 0(ai) := 0'(au), 0(8;) == 0'(85), if
1 <i < h, () == exp([a]), 0(8) := exp([Bi]), if h+1 <1 < g, and 6(y;) = exp([;]),
2 < j < 7. Then we have () = exp(£ Y1 [ou] A [B)]). Tt is easy to show that 7 :=
+ 5 ou] A [Bi] € A2H\(S;Z) is primitive as an element of Hy(S;Z)%2, O

We remark [n] € H(S;Z) is primitive in the case (i), and njy € A*H,(S;Z) is also
primitive as an element of H;(S;Z)%? in the case (ii). Hence one can apply Lemmas 3.3.5
and 3.3.6 to these primitive elements, respectively.

Proof of Proposition 3.3.3. 1t is clear K[[n — 1]] C Z(n). Let v € Z(n). For any n € Z>
we have 0 = un™ — n"u = uexp(nlogn) — exp(nlogn)u. It follows from Lemma 3.3.7 that
u(logn) = (logn)u. Apply the group-like expansion 6 in Proposition 3.3.9 to this equation,
we obtain 6(u)f(logn) = O(logn)f(u) € T. Here we remark O(logn) € H or O(logn) € A*H.
Since C' is not null-homotopic in S, we have 0(logn) # 0. Hence, from Lemmas 3.3.5 and
3.3.6, 0(u) € K[[0(logn)]]. Since 0: KE(E*) — T is an isomorphism of algebras, we have
u € K[[logn|] = K[[n — 1]]. This completes the proof. O

4 Completion of the Goldman Lie algebra

Let K be a commutative ring including the rationals QQ. Let S be an oriented surface, F a
non-empty closed subset with the property £\ 95 is closed in S. In this section we recall
the Goldman Lie algebra of an oriented surface, and look at its action as derivations on
the K-SAC KC(S, E). This action turns out to be compatible with the filtrations, and we
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are naturally lead to the definition of the completed Goldman Lie algebra and its action

—

on the completion KC(S, E).

We denote by 7(S) = [S!, S] the homotopy set of free loops on S. The free K-module
over the set 7(S5), K7(5), has a natural structure of a K-Lie algebra, called the Goldman
Lie algebra of S, as follows [9]. For any ¢ € S we denote by | |: m1(S,q) — @(S) the
natural map forgetting the basepoint ¢. For a loop a: S* — S and a simple point p € a,
let oy, be the oriented loop « based at p. Let a and 8 be immersed loops in .S such that
aUpB: StUSt — S is an immersion with at worst transverse double points. For each
intersection p € o N f3, the conjunction a,B, € m (S, p) is defined. Let e(p; o, B) € {£1}
be the local intersection number of o and 3 at p and set

[, B] := Z e(p; o, B)|apBp| € K7(S).

peang

This bracket makes the vector space K7(S) a K-Lie algebra.

Moreover we denote S* := S\ (E\ 05). Let a: S' — S* be an immersed loop and
B:(0,1],0,1) — (S, %0, *1) an immersed path connecting %o € F to x; € F, and suppose
a U 8 has at worst transverse double points. For each intersection p € a N 3, let «, and
£(p; @, B) be the same as before and let ., (resp. [,.,) be the path along f from %, to p

(resp. p to *;). Then the conjunction f,,,0,B € I1S(*q,*1) is defined. For such o and
5, define

o(a)p = Z e(p; v, B) BroppBpsy € KILS(x0,%1) = KC(S, E)(x0, *1).

pEANS

Then, by a similar way to Proposition 3.2.2 [13], we obtain a well-defined homomorphism
of K-Lie algebras
o: K7(S*) — DerKC(S, E).

On the other hand, in §2.1 we introduced a natural homomorphism DerKC(S, E) —

DerKC(S, E). Hence we have a natural homomorphism of K-Lie algebras

o: Kn(S*) — DerKC/(_bTE).
4.1 Filtration on the Goldman Lie algebra

We denote by S, the connected component corresponding to A € myS. Then we have a
direct sum decomposition of K-Lie algebras

K#(S)= €5 K#(Sy). (4.1.1)

AETQS

Now we introduce a K-submodule K7 (S)(n) € Kn(S) for any n > 1. We begin by
considering the case S is connected. Then 7(S) is the set of all conjugacy classes in the
fundamental group (S, q) for any ¢ € S, namely, the forgeful map | |: m1(S, q) — 7(S) is
surjective. We denote by 1, € m(S, ¢) the constant loop based at q. We have

[K1g, + (Imi(S, q)"| = [K1q + (Im(5, 9))"]
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for any n > 1 and any other ¢; € S. In fact, if we choose v € I115(¢1,q), then (K1, +
(IT1(S,¢))")y ' = K1y + (Im1(S, ¢1))™. Hence we may define

K7(S)(n) == |K1,+ (Im(S,q))"|
In the general case, we define
= @ K7(Sy)(n)
AEmOS
for any n > 1. In any cases, we have K7(S)(1) = K7 (S).
Theorem 4.1.1. In the situation stated at the begining of this section, we have
o(K#(S*)(n)) C F,_2Der(KC(S, E))
for any n > 1.

Proof. We may assume S is connected. Choose ¢ € S\ (F U 0S). By Lemma 1.3.1, it
suffices to show o(|ul)(v) C F,_1KC(po,p1) for any n > 1, u € Im(S,q)", po,p1 € E, and
v € C(po, p1). The K-module I7(S,q)" is generated by the set {(x1 —y1)(xa —y2) - - - (2 —
Yn); i yi € m(S,q)}. Putting x1, 2, ..., 2z, and v in general position, we may assume
(iNy) N (z;Ny) =01if i # 5. Then we have

o(|zize - al) (v Z Z €(P; Ty V) Vpop(Ti ) pgTit1 * +* TnT1 * +* Tim1 (%) gp Vo1 »

i=1 pex;Ny

and so

o(l(z1 —y1) (w2 = y2) -+ (0 — ya)[)(7)

n

Z Z € p7 T, ’Ypop(mi)pq(xi-i-l - yi—i—l) ce (ﬁi—l - yi—l)(xi)qpfyppl

=1 pEa:lﬁv
— Z Z e(p; yi, v '7p0p(yi)pq(xi+1 — Yig1) - (i — yi—l)(yi)qp%?pn
=1 p€y;Nry
which is in F,,_1KC(pg, p1). This completes the proof. O

As a by-product we see the filtration of K7(S) is compatible with the bracket.

Theorem 4.1.2. Let S be an oriented surface. Then we have
[K7(S)(ny), K7t(S)(ng)] € K& (S)(ny + ny — 2)
for any ni,ngy > 1.

Proof. We may assume S is connected. Choose a point p € S\ 95, and set E = {p}. By
Theorem 4.1.1, o(u)(v) € Fyyin,oKC(p,p) = (Im (S, p))™ 1272 for any u € K#7(S*)(ny)
and v € (I (S, p))". Hence [u, [v]] = |o(u)(v)| € K7 (S)(n1+n2—2). On the other hand,
the inclusion homomorphism 7 (S*, ¢) — (95, q) is surjective for any ¢ € S* = S\ {p}.
Hence the inclusion homomorphism K7 (S*)(n) — K7 (S)(n) is also surjective for any
n > 1. This proves the theorem. O]
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In particular, if n > 2, K7(S)(n) is a Lie subalgebra of K7 (S) and an ideal of K7 (5)(2).
We define -
K#(5) == lim K#(S)/K#(5)(n),

n—oo

and call it the completed Goldman Lie algebra of the surface S. It is a K-Lie algebra from
Theorem 4.1.2. We define

K#(S)(n) := lim K#(S)(n)/K#(S)(m)

m—ro0

for n > 1. From Theorem 4.1.2 we have
[K7(S)(n1), K7(S)(na)] € K7(S)(ny +ng — 2)

for any nq,ny > 1. For any ¢ € S the quotient map | |: m1(S,¢) — 7(S) induces a natural
map

|]: Km(S,q) — I/(\fr(S)

If £ C S is a non-empty closed subset with the property £\ 0S is closed in S, then the
homomorphism ¢ induces a natural homomorphism of K-Lie algebras

o —

o: K#(5%) — Der(KC(S, E))

by Theorem 4.1.1. Since o(K7(S*)) C F_1DerKC, we have a(f(\fr(S*)) C F_DerKC.
This implies the action of any element of K7 (S*) on KC(S, F) is continuous with respect
to the topology induced by the filtration {F, KC(S, E)},>o0.

As will be shown in §6.1, if S = ¥,; and £ C 0%, then the Lie algebra }/(\7%(2971)
is isomorphic to the Lie algebra of symplectic derivations of the completed tensor algebra
[ oy Hi(X,1; K)®™ and K7(X,1)(2) a completion of Kontsevich’s ‘associative’ a, [15].
These isomorphisms are essentially due to our previous work [13].

4.2 Action on C(S, E)*

Let S be an oriented surface, and E a non-empty closed subset of S with the property £\9S
is closed in S. We consider the abelianization of the groupoid C = C(S, E) introduced in
§2.2. From Theorem 4.1.1 we have o((z—1)?) := o(|(x—1)?|) € FyDerZC(S, E) for any q €
S* and z € m(S*, q). Hence it induces a derivation of C(S, E)**® = ZC(S, E)/F,ZC(S, E),
which we denote 7((z — 1)?) € DerC(S, E)*.

Lemma 4.2.1. (1) We have a((z — 1)*)(v) = 2(z - y)y(z — 1) € C*™(py,p1) for any
Po,P1 € [q] C E and vy € C(po, p1). Here (x -~) € K means the algebraic intersection
number Hy(S*; K) x H\ (S, E; K) — K and we regard x —1 as an element of HC([q]).
In particular, o((x — 1)*)(ZC(po, p1)) C FiZC(po,p1)-

(2) The square o((z — 1)?)? € End(C*(po, p1)) vanishes for any po, p1 € [q] C E.
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Proof. (1) We remark 0 = (v —1)? = (22 —x) — (x — 1) € HC([q]). Put z and ~ in general
position. Then we have

o((z = 1)*)(7) = o(2*)(7) — 20(2)(7)
= 2 Z e(®; %, 7) VponTp Vop — 2 Z e(P; T, 7) VpopTp Yom:

pEXNy pexNy
= 2y Z e, )~ (257 = ) Vo
pexNy

and so
7((z = 1))(7) = 2(z - )y(a* — 2) = 2(x - 7)y(2 — 1).
(2) We write simply D = &((x — 1)?). Then we have

D*y = 2(z-7)D(yz — )
= 2(z-7) -2z yx)ye(e —1) = 2(z-y) - 2z - y)y(z —1)
= 4z -y)*y(z -1 =0.

The last equality follows from (x — 1) = 0 € HC([g]). This completes the proof. O

4.3 Homological interpretation of the completed Goldman Lie
algebra

Let S be a surface of finite type and not closed. In this subsection we give a natural
identification of the completed Goldman Lie algebra of S with the first homology group of
the surface with some twisted coefficients. As a corollary, we prove the completion map
of the Goldman Lie algebra p: K7(S)/K1 — K#(S) is injective. Here 1 € 7(95) is the
constant loop. For the proof of this identification we use a group-like expansion of the
fundamental group 7 (.5) [18]. We adopt the same notation as in §3.3.
First of all, we introduce two local systems S¢(.S) and §C(S) on S. The stalks at p € S
are given by -
SS), == Kmi(S,p), and S8°9),:= Km(S,p),

respectively. Since m1(S) is a free group, the completion map S¢(S) — gSA’C(S ) is injective
3], and HQ(S;gc(S)/SC(S)) = 0. Hence the induced homomorphism H;(S;S8¢(S)) —
H,(S:8%(S)) is injective. In the sequel we regard the former as a submodule of the latter
by this injection.

In [13] §3.4, we introduce a K-linear map

A K#(S) — Hy(S; S%(S)).

This maps a € 7(S) to the homology class induced by the section sy(a) € T'(a*S¢(S))
given by sy(a)(t) := aqw € Km(S,a(t)), t € S'. The kernel of the map A is spanned by
the constant loop 1, KerA = K1 [13] Proposition 3.4.3 (1).

The K-bilinear map B,: Km(S,p) ® Km(S,p) — K7(S), v ® v — |uv|, with the
intersection form on the surface S defines the pairing B( - ): H;(S;8%(S))®? — K#(S).
As was shown in [13] Proposition 3.4.3 (2), we have

[u, v] = B(A(u) - A(v)) (4.3.1)
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for any u and v € K#(S). Similarly we have the pairing B( - ): H1(S;8%(S))®? — 7(\7?(5)
induced by the K-bilinear map gp: Kmi(S,p) ® Kmi(S,p) = K7(5), u® v — |uv|.

Theorem 4.3.1. Let S be a surface of finite type and not closed, and K a commutative
ring including Q. Then the map X\ extends to an isomorphism

—

X K#(S) S Hy(S;89)).

This satisfies N PN ~
A[u, v]) = BO\(w) - Mw))

for any v and v € f(\fr(S)
As a corollary we have

Corollary 4.3.2. Let S be a surface of finite type and not closed, and K a commutative
ring wncluding Q. Then the kernel of the completion map of the Goldman Lie algebra
p: K7(S) — K7(S) is spanned by the constant loop 1 € 7(S).

Proof. Consider the commutative diagram

K#(S) —2— H(S;8°(5S))

|

K#(S) —2= Hy(S;8%(9)).

From Theorem 4.3.1 the map \is an isomorphism, while the right vertial arrow is injective.
Hence the kernel of the completion map equals KerA = K1. O]

To prove Theorem 4.3.1, we use a group-like expansion of the fundamental group m(.5).
Choose a basepoint * € S and denote m = m(S,*). Let 6: 7 — T be a group-like
expansion. See Definition 3.3.8.

We define a lincar map N: T — T by N|yeo := 0 and

N(X; - X,) = ZXi“'XnXl“'Xiq, (4.3.2)
i=1

for X; € H, n > 1. Then 6 induces an isomorphism 6, : H,(S:8%(8)) = N(TY) [13]
(5.3.1), Lemma 6.1.1. Moreover the composite 6, o \: K& — N(T}) equals the map
Xo: K&t — N(T}) defined by Ag(|z|) :== N6(z), z € 7 [13] Lemma 6.3.2. Here we should
remark that the proofs of the lemma and the proposition in [13] work well for group-like
expansions over a commutative ring including Q as well as for symplectic expansions over

the rationals Q. The key to proving the injectivity of the map A is the following lemma.

Lemma 4.3.3. For any n > 1 we have
X H(N(T)) = |K1+ Ix"| (= K#(S)(n)).

To prove this lemma, we need the following.
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Lemma 4.3.4. 0 —» K1 ¢ [T, T] < T N(Ty) — 0 (exact).

Proof. Since N1 =0 and N([u,v]) = N(uv — vu) = 0 for u,v € T, we have K16 [T, T] C
KerN. Since N is homogeneous it suffices to show

(KerN) N H®" (K1 [T, T]) N H®",

for any n > 0. It is clear in the case n = 0. For any X; € H and n > 1, we have
X X 1N(X X, = 12”:)( X, — X X, X X

1 n n 1 n - n' 1 n i n<}1 i—1

— —Z X, X X, € [T, 7).

Hence u — 1 Nu € [T T] for any w € H®". This proves the lemma. O

Proof of Lemma, 4.3.3. Since 0(Ix™) C T, we have Ag(|In"|) € N(T},). It is clear Ag(1) =
N(1) = 0. Hence |[K1+ I7"| C A\~ (N(T,)).

Suppose u € K satisfies NO(u) € N(T,, ). From Lemma 4.3.4, 6(u) € T,+K1+[T,T).
This means 6(u — e(u)l) — 1", [v], w)] € T,, for some v],w| € T. There exist v; and

w; € K7 such that v, — 6(v;) and w] — (w;) € T,,, since T/T}, 2 Kw/m = Kn/Izx"
by (3.3.3). This implies 6(u — e(u)l — "1 [v;, w;]) € T,. Since T/T,, = Kr/Ix", z :=
w—e(u)l — > " [v;,w;] € In". Hence we have |u| = |e(u)l + z| € |K1+ In"|. This
completes the proof. O

Proof of Theorem 4.3.1. From Lemma 4.3.3 the map Ag induces an injective linear map
Xo: K7 (S)/K#(S)(n) — N(Tl)/N( n) for any n > 1. This map is surjective. In fact, for

any u € Ty, there exists some z € K7 such that u—6(z) € T,,, and so Nu— Ag(2) € N(T},).
Hence we have an isomorphism

No: K#(S)/K#(S)(n) = N(Ty)/N(T,)
> 1. Taking the projective limits, we obtain an isomorphism :\\91 }/(\7%(5) 5
fm (Tl) /N(T,) = N /(7: 1), which preserves the filtrations. Hence we obtain an iso-
morphism A := 60,7 o Ag: K#7(S) — H;(S;8¢(S)), which is independent of the choice of a
group-like expansion 6. The latter half of the theorem follows immediately from (4.3.1).
This completes the proof. O]

for any n

5 Dehn twists

In this section we suppose K is a commutative ring including the rationals Q. We shall
generalize results in [13] to any oriented surface S, and those in [17] to any surface of
finite type with non-empty boundary. Let E be a non-empty closed subset of S with the
property £\ 05 is closed in S. We consider the completed Goldman Lie algebra K W(S*)

of S* = S\ (£\05) and the homomorphism of Lie algebras o: K?T(S*) — Der(KC/(ZSTE)).
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5.1 An invariant of unoriented free loops
We begin by defining an invariant of an unoriented free loop C'in S\ (EU0S) = 5*\ 05.
Lemma 5.1.1. Let f(t) € K[[t—1]] be a formal power series int—1 with f(1) = f'(1) = 0.

(1) For a € 7(S*), choose a point ¢ € S* and a based loop x € 7 (S*, q) representing the
free loop a.. Then

fla) = [f(z)] € K7 (57)(2)
is well-defined. In other words, |f(x)| does not depend on the choice of ¢ and x.

(2) If f(t) = f(t™Y), then f(a) = f(a™'). In particular, we may define f(C) := f(a) €
K#(S*)(2) if C = o™, namely, the unoriented free loop C is represented by an
oriented free loop .

(3) o(f(a)) € DerKC satisfies the three conditions (1)-(111) in Lemma 1.3.2. In particu-
lar, we can define the exponential exp(o(f(a))) € AutKC. It satisfies the conditions
(i)-(iii) in Definition 3.3.1.

Proof. (1) Suppose ¢; € S* and x; € m(S*, q1) satisfy |x| = |z1|. Then we have x; =
v~ Loy for some v € 11S*(q,q1), and so f(z1) = v 1f(x)y € KI1S*(q1,q:). This implies
|[f(z)] = [f(2)] € K7 (S7).

(2) is clear.

2)

(3) Since f(a) € l/(\fr(S*)(Q), we have o(f(a)) € FyDerKC by Theorem 4.1.1. On the
other hand, o((x — 1)?) satisfies the conditions (ii) and (iii) from Lemma 4.2.1. Now we
have

f(z) = c(r —1)* mod (x — 1)*,

for some constant ¢ € K, and any element in (z — 1)*K[[z — 1]] induces an element of
FyDerKC by Theorem 4.1.1. Hence o(f(a)) satisfies all the conditions (i)-(iii) in Lemma
1.3.2. The condition (i) in Definition 3.3.1 for exp(a(f(«))) follows from the fact o(f(a)) €
FyDerKC, (ii) from N E = (), and (iii) from Lemma 4.2.1. O

Now we define |
L(t) = L log ) € @t — 1],
Here we remark tL/(t) = logt. From Lemma 5.1.1 we obtain L(C) € ﬁ(S*)(Q) and
exp(o(L(C))) € AutKC for any unoriented free loop C in S*. Furthermore we have

Lemma 5.1.2.
exp(o(L(C))) € A(S, E).

Proof. Tt suffices to prove o(L(C)) € Dera KC, see §2.1. Choose o € 7(S*) such that C' =
a*!'. Forany v € C(po, 1), po, 1 € E, andn > 0, we have o(a™) () = 3 ¢ onn (D5 @ 7) Yap@p™ Yo

so that
o(f(@)() = D elps 7)) vepipf () e
for any f(t) € K[[t — 1]]. In particular,
o(L(C)(v) = Z (P a, 7)vep(108 Q) Vs (5.1.1)
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—

On the other hand, we have A(log ) = (log a,,)®1 + 1@(log ) € K (S, p). Hence

Ac(L(C))y = Z e(p; . 7) (7*p®7*p)(10g ap®1 +1®1log O‘p)('yp*@%*)

peany

= o(L(C)®7 +1@0(L(C))y = (o(L(C)@1 + 180 (L(C))) Ay
This means o(L(C)) € Dera KC, and proves the lemma. O

Let us go back to the situation of Proposition 3.3.4. We take n; € 7 (N, ;) in the
positive direction. Then we define FV € K#(N) by

FU:=> "al L(O:N).
=1

By Lemmas 5.1.1 and 5.1.2, FU € f(\fr(N)(Q) and expo(FY) € A(N,0N). From the
construction, we have

U =expo(FY) € A(N,ON). (5.1.2)

5.2 The logarithm of Dehn twists

Recall the Dehn-Nielsen homomorphism DN: M(S,E) — Aut(KﬁE)). The following
theorem is a generalization of a part of our previous result [13] Theorem 1.1.1, which does
not involve a symplectic expansion and the total Johnson map, to any oriented surfaces.

Theorem 5.2.1. Let S be an oriented surface and E a non-empty closed subset of S with
the property E \ 0S is closed in S. Then the Dehn-Nielsen homomorphism DN maps the
right handed Dehn twist te along a simple closed curve C in S\ (E'U0S) to

o~ L —

DN(t¢) = exp(o(L(C))) € AutKC(S, E).

Proof. We begin by computing [/)l\\l(tc) in the case S is an annulus a = S* x [0, 1]. We regard
St = [0,1]/(0 ~ 1), and define py := (0Omod ~,0), p; = (Omod ~,1), E := {po,p1}
and C = C(a, E). Consider a path 7y: [0,1] — a given by t € [0,1] — (Omod ~,t), a
based loop = € mi(a,p1) given by ¢t € [0,1] — (tmod ~, 1), and a simple closed curve
C = |z*Y. We have o(|z"])(v0) = nyz™ for any n > 0, and o(|z"|) acts trivially on
KC(po,po) and KC(p1,p1). Hence, for any formal power series f(z) € Kmi(a,p;) in x — 1,
the derivation o(f(x)) acts trivially on KC(po,po) and KC(p1,p1), and o(f(x))(y) =
Yorf'(x) € KC(po,p1). Since tL'(t) = log(t), o(L(C))(v) = o(L(x))(v) = 7ologzx.
Clearly exp(o(L(C)))(z) = 2 = DN(t¢)(x). Hence we have

exp(a(L(C))) (1) = 10 = DN(te)(70)-

This proves -
exp(o(L(C))) = DN(tc) € AutKC(a, E), (5.2.1)

namely, the theorem in the case S is an annulus.
Next we consider the general case. Choose a closed tubular neighborhood a of the
simple closed curve C' in the surface S\ (£ U 0S). The boundary da has two connected
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components dpa and dya. Choose a point ¢; on each d;a, i = 0,1. We define S; := S'\ inta,
Se:=a, By := EU{qy,q:} and E5 := {qo, 1 }. Then, in the setting of Proposition 3.2.1,
we have S3 = S1 U Sy =5, B3 = E; and KC3 = KC(S, E1) is generated by KC; and KCs.
We may regard L(C) € f(\fr(Sg*)(Q) for S5 = S*\ {qo,¢1}. Both of exp(c(L(C))) and
ﬁl(tc) act trivially on KC;, and coincide with each other on KCy by (5.2.1). Hence, by
Proposition 3.2.1, they coincide with each other on KC3 = KC(S, E7). Since both of them
are continuous and K(Cs is dense in _[?53, they coincide with each other on [?53 Since
KJSTE) is a full subcategory of [?53, they coincide with each other on KJSTE) This
completes the proof of the theorem. n

5.3 Generalized Dehn twists and their localization

Theorem 5.2.1 motivates us to define a generalization of Dehn twists for not necessarily
simple loops. Let C' be an unoriented free loop in S*\ 0S.

Definition 5.3.1. The generalized Dehn twist along C' is defined as

—

te :=exp(a(L(C))) € A(S,E) C AutKC(S, E).

The case S =X, and E = {x}, where x € 05, is treated in [17].

It is natural to ask whether to is realizable as a diffeomorphism, i.e., is in the image
of DN: M(S,E) — AutKC/(;STE). In this subsection we shall give a criterion for the
realizability of t. To restrict ourself to the case DN is injective, hereafter we assume S is
of finite type with non-empty boundary and work under the assumption of Theorem 3.1.1.

Let End(K7(S)) be the space of filter-preserving endomorphisms of K7 (S). Also let
Aut(K7(S)) be the group of filter-preserving K-linear automorphisms of K7 (S).

Lemma 5.3.2. (1) Let D € DerKC(S, E). Fora € KC(p,p), wherep € E, set|D|(|al) :=
|D(a)|. Then this defines a well-defined K -linear map | |: Der KC(S, E) — End(K7(S5)).

(2) LetU € Aut(KC(S,E)). Fora € KC(p,p), wherep € E, set |U|(|a]) := |U(a)|. Then
this defines a well-defined group homomorphism | |: AutKC(S, E) — Aut(K7(S)).

Proof. Let p,q € FE and assume [p| = [¢] = A € moC. Recall that | |: KC(p,p) — K7(S))
is surjective for any p € E. Take some v € [1S(q,p) and let a € KC(p, p).

(1) Tt is sufficient to prove |D(a)| = |D(vyay™')|. First of all, since 0 = D(1) =
D(yy™!) = (Dy)y'+yD(y!), wehave D(y ') = =y~ (Dy)y~". We compute D(yay ™) =
(Dy)ay™' +y(Da)y~" +~vaD(y~") = y(Da)y~" + (Dvy)ay~" —yay~'(Dy)y~". Notice that
[(Dy)ay~!| = |yay~'(Dy)y~'|. Hence [D(yay~")| = |[y(Da)y~!| = |D(a)|, as desired.

(2) This is clear from |U(yay™t)| = |U(y)UaU(y)7}| = |U(a)]. O

Any filter-preserving endomorphism (resp. automorphism) of K#(S) naturally ex-
tends to an endomorphism (resp. automorphism) of l/(\fr(S) Consequently we have a
K-linear map End(K7(5)) — End([/(\fr(S)) and a group homomorphsim Aut(K7(S)) —
Aut(f(\fr(S)). The diagrams

DerKC(S,E) —— End(K7(95)) AutKC(S,E) —— Aut(K7(9))
L\ J and L\ l
DerKC(S,E) — End(K#(S5)) AWKC(S,E) —— Aut(K#(S))
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commute.
The following theorem is a generalization of [17] §3.3.

Theorem 5.3.3. Suppose S is of finite type with non-empty boundary, E C 0S, and any
connected component of S has an element of E. Let C be an unoriented_immersed free
loop in S\ OS and assume the generalized Dehn twist tc is in the image of DN. Then there

is an orientation preserving diffeomorphism of S fixing OS pointwise, such that DN( ) =tc
and the support of ¢ lies in a reqular neighborhood of C'.

Proof. Take a diffeomorphism ¢ such that 6I\\I(g0) = tc. We shall deform ¢ by isotopies
until it has the desired property.

We claim that if ¢ is a proper arc or an oriented loop in S that is disjoint from C,
then ©(d) is isotopic to 0. The case 0 is a proper arc is clear from U(L(C))5 = 0. To

prove the case 0 is an oriented loop, consider the composite M(S,E) 2% AutKC (S E) = it
Aut(Kw(S)). As we have noted in the proof of Theorem 4.1.2, |o(u)(v)| = [u,|v|] for
u € Ka(S) and v € KC(p p), where p € E. This implies that |o(a)| = ad(a) for
a € K7(S). Therefore |DN( )| = exp(ad(L(C))) € Aut([/(\fr(S)). Since § is disjoint
from C, ad(L(C))§ = [L(C),8] = 0. Thus [DN(¢)|§ = 6 € K#(S). By Corollary 4.3.2,
this implies [DN(¢)|0 — ¢ € K1. Since the action of M(S, E) on K7(S) preserves the
augmentation K7(S) — K, 7 > x — 1, we conclude |[DN(¢)|6 = §. The claim is proved.

Let N = N(C) be a closed regular neighborhood of C'. The Euler characteristic of N
must be non-positive. If C' is simple, then the assertion is clear from Theorem 5.2.1. Thus
we may assume N is neither diffeomorphic to a disk nor an annulus. Let S\Int(N) =[], Si
be the decomposition into connected components. Note that for any A we have S\NON # ().
We shall take a system B, of simple closed curves and proper arcs in Sy by the following
way. Let x(S)) be the Euler characteristic of S.

Case 1. x(S\) > 0. Then S is one of the following: (a) a closed disk, (b) an annulus
of which both the boundary components are in N, (c¢) an annulus of which one of the
boundary component is in 9N, and the other component is in 95, (d) a once punctured
disk. In these cases we let By to be empty.

Case 2. x(Sx) = —1. Then S, is one of the following: (e) a torus with one boundary
component, (f) a pair of pants of which the three boundary components are in N, (g) a
pair of pants of which two boundary components are in 9N, and the other component is in
05, (h) a pair of pants of which one boundary component is in 9N, and the other two com-
ponents are in 95, (i) a once punctured annulus of which both the boundary components
are in ON, (j) a once punctured annulus of which one of the boundary component is in 9N,
and the other component is in 05, (k) a twice punctured annulus. In cases (e)(g)(h)(j), let
B be as in Figure 2. In cases (f)(i)(k), let By be empty.

Case 3. x(Sx) < —2. Let r and ' be the cardinality of mo(ON N S)) and m(9S N Sy),
respectively, and let g be the genus of S\ and n the number of punctures of S). We have
r>1land2g+r+7r +n>4. If v >0, let By be as in Figure 3. If v =0 and g > 0, let
By be as in Figure 4. If 7/ = ¢ = 0, then r +n > 4. We let B, be as in Figure 5.

Finally we set B = |J, Bx. Then B has the following properties.

(1) Any member of B is disjoint from ON.

(2) Any simple closed curve in B is not parallel to a component of ON and the ends of
any arcs in B are in 0.9,
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Figure 2: B, for (e), (g), (h), and (j)

Figure 3: B, for ' > 0

(3) Members of B are pairwise non-isotopic and pairwise in minimal position in S.

(4) The surface obtained from S\ Int(/V) by cutting along B is a disjoint union of surfaces
of the types (a), (b), (¢), (d), (£), (i), and (k)

It is clear that members of B are pairwise non-isotopic and pairwise in minimal position
in Sy. The property (3) for B also follows since N is not a disk or an annulus, as we remarked
before.

From the claim, each component of ON and B is preserved by ¢ up to isotopy. By [8]
Proposition 2.8, we may assume that ¢ is the identity on 9N and B. Consider the restriction
of ¢ to each component of the result of cutting S along ON and B. Each restriction is
a self homeomorphism, and by the property (4) for B, is isotpic to the identity or to a
product of Dehn twists along the boundary components. This implies that ¢|g\mev) is
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Figure 4: B, for ' =0, 9 >0

Figure 5: By for v =g =10

isotopic to a product of Dehn twists along the boundary components of N. This completes
the proof. n

5.4 The generalized Dehn twist along a figure eight

In this subsection we give a generalization of [17] Theorem 5.2.1. We suppose S is of finite
type with non-empty boundary, £ C 0S5, and any connected component of 9S has an
element of F.

Let C' be an unoriented immersed free loop in S*\ 9S. We say C' is a figure eight if the
self-intersections of C' consist of a single double point and the inclusion homomorphism
m(C) — m(S) is injective.

Theorem 5.4.1. Let C' be a figure eight on the surface S. Then exp(o(zL(C))) € A(S, E)

is not in the image of DN for any z € K\ {0}. In particular the generalized Dehn twist tc
1s not realizable as a diffeomorphism.

Proof. Take a regular neighborhood N of C' in S* \ 95, which satisfies the assumptions
of Proposition 3.3.4. Assume exp(c(zL(C))) € A(S, F) is realized by a diffeomorphism ¢.
Then, by Theorem 5.3.3, we may take ¢ as a diffeomorphism whose support is included
in N. In fact, Theorem 5.3.3 only treat the case z = 1, but the proof works as well as for
general z. Then U := exp(—o(zL(C)))p € A(N,ON) satisfies the condition of Proposition
3.3.4. Hence, by (5.1.2), we have

¢ = exp(o(2L(C) + FY)) € A(N,ON).

Here we remark [L(C), FY] = 0 since C N ON = (. The surface N is diffeomorphic to a
pair of pants. We take n;, v;, 1 <17 < 3, as in Figure 6.
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The mapping class group of the pair of pants is free abelian of rank 3, generated
by boundary-parallel Dehn twists (see, e.g., [8] §3.6). By Theorem 5.2.1, we have ¢ =
exp(o(327_, aiL(n;))) € A(N,ON) for some a; € Z. By Proposition 1.3.3 (3) we obtain

o((zL(C) + Y2 (¥ — a;)L(n;)) = 0 € DerKC(N, ON).
On the other hand, we have C' = |(y371n1y3m2 1) *!| and

o((ys mysme ™ )™) () = —m(ys " myse )
for any m > 0. Hence
o(L(C))(m) = log(nzys~'m ™~ 'ys)m.
Further there exist some b and ¢ € K such that

o(30 (@Y — a;)L(n;)) (1) = blog me)mi + e (logms ™)
= (blogny + clog(nays  m1vs)) 1

Here note that vi13™" = (n273 'n173)"y1 for n > 0. Hence we obtain

zlog(mays ™t 1s) + blog ms + clog(nays mys) = 0 € Ky (N, *3). (5.4.1)

The fundamental group (N, *3) is a free group of rank 2, so that there exists an iso-

morphism of K-algebras 6: Km/(N\,*Q) S K{(X,Y)) which satisfies #(log7,) = X and
0(logys 'ms) =Y. Here K((X,Y)) = [[n_,(KX®KY)®™ is the ring of non-commutative
formal power series in indeterminates X and Y. In other words, € is a group-like expansion
of the free group 7 (N, *2). Then the equation (5.4.1) is equivalent to

2X % (=Y)+bX +eX #Y =0€ K{(X,Y)). (5.4.2)

Here X x Y is the Hausdorff series in X and Y. The degree 1 part of (5.4.2) is z(X —
Y)+bX 4+ ¢(X +Y) = 0, so that we have ¢ = z and b = —2z. The degree 2 part is
—2[X,Y] + 3¢[X,Y] = 0. Thus the degree 3 part is
z
6
This contradicts £[Y, [Y, X]] # 0, and proves the theorem. O

Y, [v, X]] = 0.
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6 Kontsevich’s Lie algebras and Johnson homomor-
phisms
In this section we suppose K is a field of characteristic 0. Let S be an oriented surface,

and E a non-empty closed subset of S with the property £\ 9S is closed in S. In §4.1 we
introduced the Lie algebra homomorphism

o: l/(\fr(S*) — Der(KC/(;STE))a

where S* = S\ (F'\ 05), while Dera K G is the Lie subalgebra of DerK'G consisting of all
the continuous derivations D stabilizing the coproduct A for any groupoid G. See §2.1.
We define Lie subalgebras L(S, E') and LT (S, E) of K7(S*) by

L(S,E) = K#(S)(2)No ' (DerakC(S, E)) C K7(S*), and
L*(S,E) = K#(S*)(3)NL(S,E).

LT (S, E) is an ideal of L(S, E).

6.1 Geometric interpretation of Kontsevich’s ‘associative’ and
‘Lie’

In this subsection we study the case S =3 ; and E C 0¥X,;. Then we prove f(\fr(Eg,l)(Q)
is isomorphic to a completion of Kontsevich’s ‘associative’ a4, and L(S, E) a completion
of Kontsevich’s ‘Lie’ I, [15]. These results are essentially due to our previous work [13].
Anyway this means Kontsevich’s ‘associative’ and ‘Lie’ are contructed in a geometric con-
text, and K7(S*)(2) and L(S, E) for a general (S, E) can be regarded as generalizations
of Kontsevich’s ‘associative’ and ‘Lie’, respectively.

To state our previous results [13], we need some notations. Choose a basepoint x € F.
Adopting the notations in §3.3 we denote 7 = m(X,1,%), H := Hy(X,1; K) and T =
[[_o H®™. Let ¢ € m be a boundary loop in the opposite direction, and {A4;, B;}7_, C H
a symplectic basis. The symplectic form w := le A;B; — B;A; € H®? is independent of
the choice of a symplectic basis.

Definition 6.1.1 (Massuyeau [18]). A symplectic expansion 0: © — T is a group-like
expansion which satisfies the equation 6(() = exp w.

As was stated in §3.3, the algebra T has a filtration defined by the ideals fp =
[To—, H®™, p > 1. By the Poincaré duality, we identify / with H* = Hom(H, K) via the
isomorphism H = H*,z ~ (y — (y-)). Then T} is identified with H @ T = H* @ T =
Der(T), the (continuous) derivation Lie algebra of the (filtered) K-algebra T. Recall the
linear map N: T — T introduced in §4.3. Then the image N(ﬁ) = N(f) equals the Lie
subalgebra of ﬁ = Der(f) consisting of symplectic derivations, namely, derivations anni-
hilating the symplectic form w (see [13] §2.7), which we denote a, = Der,,(T). The Lie

subalgebra a, := N (T3) is a completion of Kontsevich’s ‘associative’ ay[15]. Our previous
results are
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Theorem 6.1.2 ([13] Theorem 1.2.1). Let 6: © — T be a symplectic expansion. Then the
map
=Xt K(3g1) = a,,  Xo(|z]) == NO(z), =em,

is a Lie algebra homomorphism. The kernel is the subspace K1 spanned by the constant
loop 1, and the image is dense in N(T1) = a, with respect to the T-adic topology.

Theorem 6.1.3 ([13] Theorem 1.2.2). Let 6 be a symplectic expansion. Then, for u €
K7(¥,1) and v € Km, we have the equality

O(o(u)v) = —Ag(u)f(v).

Here the right hand side means minus the action of \g(u) € a, on the tensor 0(v) € T as
a deriwation. In other words, the diagram

K#(%,1) x Kn —2— Kn

7)\0><9l l@

~

a, X T — T,
where the bottom horizontal arrow means the derivation, commutes.

Note that for any p > 2, N (T ) is a Lie subalgebra of a_” and an ideal of a,. Immediately
from the proof of Theorem 4.3.1 together with Theorem 6 1.2 we obtain

Theorem 6.1.4. Let 0 be a symplectic expansion. The map Ag: K7(¥341) — a, induces
isomorphisms of Lie algebras

—Ng: l/(\fr(Eg,l) 5 a, and —Ag: }/(\7%(2%1)(2) 5 ag.

Under the identification 7} = H @ T = Der(T ), the - Lie subalgebra consisting of all
(continuous) derivations stabilizing the coproduct A on T coincides with H ® L. Here L

is the space of all Lie-like elements in the completed tensor algebra T. The Lie algebra
H® L can be regarded as the (continuous) derivation Lie algebra of the Lie algebra L. We
define the Lie algebra [, by the intersection

[y :=a, N (H®L),

which is a completion of Kontsevich’s ‘Lie’ [, [15]. Here it should be remarked the Lie alge-
bra [, was introduced earlier by Morita [20] [21] as a target of the Johnson homomorphisms
of the (higher) Torelli groups. Moreover we define [ by

F:=1,NT; (Cl,C T =DeT),
which is an ideal of 1.

Theorem 6.1.5. Let 0 be a symplectic expansion. The map No: K7(¥g1) — a, induces
1somorphisms of Lie algebras

“Ng: L(Sg1,%) = Iy, and = Nz LH(Syq, %) — [F.

Here x is a basepoint on the boundary 0% .
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Figure 7: capping

Proof. Taking the projective limits of the diagram in Theorem 6.1.3, we obtain the com-
mutative diagram
K#(3,1) x Kn —— K

a, xT  —— T.

The isomorphism 6: Kr>T preserves the coproducts. Hence the theorem follows from
the definition of [, and [}, and the fact —Ag: K7(¥,1) — a, preserves the filtration. [

6.2 Infinitesimal Dehn-Nielsen theorem

In §3.1 we discussed the injectivity of the Dehn-Nielsen homomorphism DN: M(S, E) —
Aut(KC(S, E)). In view of the results in §5, we may regard the Lie algebra homomor-
phism o: l/(\fr(S ) — Der(KC/(:STE)) as an infinitesimal analogue of the Dehn-Nielsen ho-
momorphism. This subsection is devoted to the proof of the following, an infinitesimal
Dehn-Nielsen theorem.

Theorem 6.2.1. Let S be a compact connected oriented surface with non-empty boundary,
E C 08, and suppose any connected component of S has an element of E. Then the

homomorphism o : f(\fr(S) — Der(KC(S, E)) is injective.

The completion maps K7 (S)/K1 — [/(\fr(S) and KC(S,E) — K/(S,\E) are injective
from Corollary 4.3.2 and [3]. Hence, as a corollary, we have

Corollary 6.2.2. Under the assumption of Theorem 6.2.3 the homomorphism o: K (S)/K1 —
Der(KC(S, E)) is injective.

If S =2%,1, Theorem 6.2.1 follows immediately from Theorems 6.1.3 and 6.1.4. Other-
wise, we have S = X, , for r > 2. We number the boundary components 05 = ]_[;:1 0;S.
Capping each 0;S by a compact surface diffeomorphic to ¥, 1, we obtain S’ =X ,,,_1; as
in Figure 7.

Then we have
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Lemma 6.2.3. 1. The inclusion homomorphism Kmi(S,p) — K7:(S\’,p) is injective
for anyp e S.

2. The inclusion homomorphism f(\fr(S) — f(\fr(S/) is injective.

Theorem 6.2.1 follows from this lemma. We denote S” := S'\ S and E" := E\ 9,5 C
S”. By the assumption on E, each connected component of S N S” has some point in E”.
Hence, from Proposition 3.2.1, KC(5’, F) is generated by KC(S, E) and KC(S", E").

Let u € f(\fr(S) satisfy o(u) =0 € Der(KJSTE)). Clearly o(u) =0 € Der(KC(/STE”)).
Hence we have o(u) =0 € Der(KCTS'TE)). By the injectivity of o for S" = ¥ ., 11, we
have u = 0 € l/(\fT(S’). Using Lemma 6.2.3(2), we obtain u = 0 € f/(\fr(S) This proves
Theorem 6.2.1 modulo Lemma 6.2.3. U

Proof of Lemma 6.2.3. (1) We denote 7 := m1(S,p) and 7" := m1(S, p). The groups 7 and
7’ are ﬁnitely generated free groups. We can choose free generator systems {«;, 5;}Y_; U
{;}iZ1 € 7 and {of, B}~ ' ¢ 7', such that the inclusion homomorphism maps

a; = ol (1<i<yg),

Vi ag-i—a 9+]a;+J 1 é—&-jil’ I<j<r—1)
We write simply H := H,(S;K), H = H|(S" K), A; = [, B; :== [6i],C; == [y] €
H, and A} := [o}], B} := [B]] € H'. Then the sets {4;, B;}}_, U {C }7"_1 C H and

{AL B}f+f ' ¢ H' are K-free bases of H and H’, respectively. Let 6: 7 — T and
¢: ' — T' be group-like expansions, where T = H o H®™ and T = [ o(H)®™.
By the isomorphisms (3.3.3) 0: Kr=Tand 0: Kr' = T’ , the inclusion homomorphism
induces an algebra homomorphism ¢: T — T’ such that

t(A;) = Al + higher terms, (1<i<y),
(B;) = B! + higher terms, (1<i<yg), (6.2.1)
!(C)) = [A};, By ;] + higher terms, (1 <j <7 —1).

Hence it suffices to show any (continuous) algebra homomorphism ¢: T T satisfying
the condition (0.2.1) is injective.

To prove this, we introduce some filtrations on the algebras T and T'. We have H =
H@y ® Hyy where Hyy and Hy) are the linear spans of the sets {4;, B;}{_, and {C} }] L
respectively. We consider the decreasmg filtration on H defined by F1H := H and FyH :=
Hy). It induces a decreasing filtraion on the algebra 7" such that F,T/FiT = K and

an/Fan = @ @ Hiy® - @ Hs,y)
q=1 §1+--04=n

for any n > 1. On 7" we introduce the filtration we consider usually, 77 := [ (H)®™

n > 0. We have
/TTIL+1 - @ H51) Q- ® Héfsn)’

1111
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where (), and H(, are the linear spans of the sets {4}, Bi}{_; and {4, Bl Y5y, re-
spectively. R R

The condition (6.2.1) implies «(F,T") C T, for any n > 0. The map ¢ induces an
isomorphism H ) = Hél) and an injective map H ) — sz) ® H(’g) whose image is a direct
summand of the target. Hence the induced map

ln: FT/Fn+1T_>T/ n+1

is injective for any n > 0.
Now assume there exists a non-zero element  of the map ¢: 7' — T". Since N, Fn T =
0, we have ue F, T\FnHT for some n > 0. On the other hand, we have tn(u mod FnHT)
0eT/T! ny1- This implies u € F,1T, which contradicts u € F,T \ F,,1T. Hence the
kernel of the map ¢: T — T" is zeto. This proves the part (1). O
(2) In view of Theorem 4.3.1, it suffices to show both of the inclusion homomorphisms

Hy(S;8°(S)) — Hy(S;8°(S")), and
Hy(S;8°(S")) = Hi(5;8"(5))

are injective. The injectivity of the former follows from (1) and Hs(S;8%(S")/8%(S)) = 0.
To prove the injectivity of the latter, it suffices to show

Hy(S',5;8¢(5")) = 0. (6.2.2)

By the excision and the Poincaré duality theorem, the second homology group is isomorphic
to H°(S"; 8%(S")). Each connected component S”;, 1 < j <r—1, of $” is of genus 1, and
so has two distinct non-separating simple closed curves. Hence, by Proposition 3.3.3, we
have HY(S";;8¢(S")) =0, 1 < j <r — 1. This means (6.2.2) and proves the part (2). O

This completes the proof of Lemma 6.2.3 and Theorem 6.2.1.

6.3 Higher Johnson homomorphism

Let S be an oriented surface, and £ a non-empty closed subset of S with the property
E\ 08 is closed in S. The group M(S, E) acts on the K-SAC KC(S, E)/F>,KC(S,E) in
an obvious way. We define the Torelli group Z(S, E) of the pair (S, E) to be the kernel of
this action

Z(S,F) := Ker(M(S, E) - AwtKC/F>,KC),

which is independent of the choice of K, a field of characteristic 0. When S = ¥,; and
E C 0%, I(S, E) = 1,,, the Torelli group of genus g with 1 boundary component. But,
in general, as will be shown later, Z(S, E) is the “smallest” Torelli group in the sense of
Putman [23]. It was studied also in [11] and [1]. In order to obtain Putman’s Torelli group
23] of other kinds, it seems to be needed to change the filtration on KC(S, F) to that
induced from a capping by surfaces of positive genus.

From Lemma 1.3.2, the exponential exp(D) converges as an element in A(S, E) for
any derivation D € o(L*T(S, E)). Clearly the image o(L"(S, E)) is a Lie subalgebra of
DerKC(S, B).
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Lemma 6.3.1. The exponential
exp: o(LT(S,E)) — A(S, E)
is injective, and its image is a subgroup of A(S, E).

Proof. The injectivity follows from Proposition 1.3.3 (3). As was shown in Proposition
1.3.3, (expD)™' = exp(—D) € A(S,E) for D € o(L*(S,E)). From the definition,

— L~

o(LT(S,E)) € FiDerKC. Moreover K7(S*) is complete with respect to the filtration

{ﬁ(S*)(n)}nzl Hence the Hausdorff series u v’ of w and v’ € L1 (S, E) converges as an
element of L1 (S, E). This implies exp o (L1 (S, E)) is a subgroup of A(S, E). O

Thus the exponential exp induces a group structure on the set o(L*(S, F)), which is a
pro-nilpotent group.

For the rest of this subsection, we suppose S is compact with non-empty bundary, £ C
05, and each component of 9S has an element of E. From Theorems 3.1.1 and 6.2.1, both
of the Dehn-Nielsen homomorphism DN: M(S, E) — A(S, E) and the homomorphism

—

o: LT(S,E) — Der(KC(S, F)) are injective. In particular, the Lie algebra L*(S, E) has
the structure of a pro-nilpotent group.
Assume the inclusion

DN(Z(S, E)) C expo(L*(S, E)) (6.3.1)
holds. Then we have a unique injective map
7:Z(S,E) = L*(S, E)

such that [SI\\I|I(S,E) = expoooT:Z(S,E) — A(S,E), which is a group homomorphism
with respect to the pro-nilpotent group structure on L™ (S, E). The homomorphism 7 is a
generalization of the higher Johnson homomorphism of Z, ; introduced by Johnson [10] and
improved by Morita [22]. At present we have no suitable presentation of the Lie algebra
LT (S, E). In order to obtain it, we need to generalize Magnus expansions [12] [18] of free
groups to those for groupoids.

The Zariski closure of the image of 7 does not equal the whole L™ (S, E'). This fact was
discovered by Morita [22]. For recent progress on this problem, see [6] and its reference.
From Theorem 5.4.1, the generalized Dehn twist along a null-homologous figure eight is in
the complement of the closure. In our forthcoming paper [14] we will give a candidate for
the defining equation of the Zariski closure.

Now suppose S = ¥,,, g,r > 1, and each component of 95 has a unique point of E.
Then Putman [23] gave an explicit generator system of Z(.S, F) for this (S, F). Using this
remarkable theorem together with our formula for Dehn twists (Theorem 5.2.1), we prove
the inclusion (6.3.1) in this case.

To state Putman’s theorem, we number the boundary components as 9S = [[._, 9;5,
and define a partition P of mo(95) by P = {{1,...,r}}. Our Z(S, E) is identified with
Putman’s Z(S, P) for this P, as follows. For this partition P, Putman’s OH (S) van-
ishes, because Y i [0;S] = 0 € Hi(S;Z). Hence we have H{(S) = Hy(S,FE;Z). By
[23] Theorem 3.3, the group Z(S, P) is exactly the subgroup of M(S, E') which acts triv-
ially on H,(S,E;Z). On the other hand, if %y # %, € E, we have C(S, E)** (%o, %1) =
Z & Hy(S,{*0,*1};Z) as M(S, E)-modules. Thus a mapping class ¢ € M(S, E) acts
trivially on KC/F>,KC if and only if it acts trivially on H(S, E;Z). In other words, our
Z(S, E) equals Putman’s Z(S, P) with P = {{1,...,7}}. Putman proved the following.
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Theorem 6.3.2 (Putman [23] Theorem 1.3). For any partitioned surface (2,,, P) with
g > 1, the group Z(X,,, P) is generated by twists about P-separating curves and twists
about P-bounding pairs.

For our P, a P-separating curve is a simple closed curve C with [C] = 0 € H,(S;Z),
and a P-bounding pair is a pair of disjoint, non-isotopic simple closed curves C; and Cs
with +[C4] = +[Cy] € H1(S;Z). The main theorem in this subsection is

Theorem 6.3.3. The inclusion (6.3.1) holds for g,r > 1.

Proof. In view of Putman’s theorem, it suffices to show the 6l\\|—images of twists about
P-separating curves and twists about P-bounding pairs are in exp(o(L*(S, E))).
Fix an element x € E. Let C' be a P-separating curve represented by some z € (5, *).

Since +[x] = £[C] =0 € H,(S;Z), x — 1 € Im(S,*)?. Hence we have L(z) € ]W@)‘*,
and so L(C) € ?fr(S)(ﬁl) It follows from Theorem 5.2.1 that [/)l\\l(tc) = exp(a(L(C))) €
exp(o(L1(S, E))).

Let C; and Cy form a P-bounding pair. Choose z; and x5 € m(S,*) suth that
C, = |m®|, Cy = |zo*Y and [zy] = [12] € H1(S;Z). We have x; = x12 for some
z € [m(S, %), m(S,%)]. Since z — 1 € Im (S, %)% we have (5 — 1)*> — (z; — 1) =
1(z—1D)zi(z—1)+z1(z—1) (21— 1)+ (21— D)z1(2—1) € Im (S, %)3, while L(z) — 5 (21 —1)?

—

and L(zs) — 3(z2 — 1)? are in ]W@)S. Hence L(z2) — L(z1) € Im(S,*)3, and so

L(Cy) — L(Cy) € K#(5)(3). Since C; N Cy = ), we have [L(C1), L(Cy)] = 0. It follows

from Theorem 5.2.1 DN(t¢, “'tc,) = exp(a(L(Cy) — L(C4))) € exp(a(L*(S, E))).
This completes the proof of the theorem. O

Consequently we obtain the higher Johnson homomorphism
T I(%,,,E) = LT(2,,, E)

in the case ¢ > 1 and r > 2, which is an embedding of the Torelli group Z(%, ,, E) into the
pro-nilpotent group L (X, ,, E'). This homomorphism is natural in the following sense.

Let S and S” be compact oriented surfaces with non-empty boundary, and i: S < S’
an embedding. Assume the genus of each surface is > 1. Choose a single point on each
boundary component of these surfaces, and let £ C 95 and E' C 95’ be the sets of these
points. Then we have the natural homomorphism

t: M(S,E) — M(S', E")
extending diffeomorphisms by the identity on the complement S\ S’. Then

Proposition 6.3.4. There exists a Lie algebra homomorphism i: LT (S, E) — LT(S’, E'),
which depends on the embedding i: S < S', such that the diagram

I(S,E) —— I(S',E
L*(S,E) —— L*($', E')

commautes.
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Proof. First we check the top horizontal arrow is well-defined. Denote Sy := S, Fy := F,

Sy := 5"\ S, and Ey := (EU E’) N S,. Then the inclusion homomorphism H,(S, E;Z) @

H,(Ss, Ey; Z) — Hq(S', EUE"; Z) is surjective, while the inclusion homomorphism H, (S, E'; Z) —

H,(S', E U E";7Z) is injective. Hence the homomorphism ¢ maps Z(S, F) into Z(S’, E').
Moreover the pairs (51, Eq) and (Ss, Es) satisfy the assumption of the van Kampen

theorem (Proposition 3.2.1). Hence KC3 = KC(S’,F U E') is generated by KC(S,E)

and KC(Ss, Es). Hence, if u € [/(\7%(5*) satisfies o(u) = 0 € DerK@E), then we

have o(i(u)) = 0 € DerKC(S’,E U E'). Here i: l/(\fr(S*) — f(\fr(S’*) is the inclusion

homomorphism. This implies the homomorphism

it o(K#(S%)) = o(K#(S™)) C DerKC(S',E U E')

extending derivations by 0 on S is well-defined. Post-composing the forgetful map ¢: Der KC(S’, EU
E') = DerKC(S', E') and restrict ¢poi to LT(S, E), we obtain a Lie algebra homomorphism
i: LY(S,E) — LT(S", E').
From Theorem 6.3.2, the group Z(S, E) is generated by twists about P-separating twists
and twists about P-bounding pairs. It is clear that the diagram commutes on these twists.
This proves the proposition. [

Recently Church [5] introduced the first Johnson homomorphism for all kinds of Put-
man’s partitioned Torelli groups. It would be very interesting to describe an explicit
relation between Church’s homomorphisms and ours.
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