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Abstract

We study the asymptotic behaviour of the difference between the Value at Risks
VaRα(L) and VaRα(L + S) for heavy tailed random variables L and S with α ↑ 1 as
an application to the sensitivity analysis of quantitative operational risk management
in the framework of an advanced measurement approach (AMA) of Basel II. Here the
variable L describes the loss amount of the present risk profile and S means the loss
amount caused by an additional loss factor. We have different types of results according
to the magnitude of the relationship of the thicknesses of the tails of L and S. Especially
if the tail of S is sufficiently thinner than that of L, then the difference between prior
and posterior risk amounts VaRα(L + S) − VaRα(L) is asymptotically equivalent to
the component VaR of S (which is equal to the expected loss of S when L and S are
independent).

Keywords: Sensitivity Analysis, Quantitative Operational Risk Management, Regular
Variation, Value at Risk

AMS Subject Classification: 60G70, 62G32, 91B30

1 Introduction

Basel II (International Convergence of Capital Measurement and Capital Standards: A
Revised Framework) was published in 2004 and in it, operational risk was added as a new
risk category (cf. Basel Committee on Banking Supervision [1] and McNeil et al. [17] for
the definition of operational risk). To measure the capital charge for operational risk, banks
may choose among three approaches: the basic indicator approach (BIA), the standardized
approach (SA), and an advanced measurement approach (AMA). While BIA and SA prescribe
explicit formulas, AMA does not specify a model to quantify a risk amount (risk capital).
Hence banks adopting the AMA must construct their own quantitative risk model and continue
with its periodic verification.

As pointed out in McNeil et al. [17], whereas everyone agrees on the importance of under-
standing operational risk, it is a controversial issue how far one should (or can) quantify such
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risks. Since empirical studies find that the distribution of operational loss has a fat tail (see
Moscadelli [19],) this requires capturing the tail of the loss distribution.

Basel II does not specify a measure of the risk but states that “a bank must be able to
demonstrate that its approach captures potentially severe ‘tail’ loss events” and “a bank must
demonstrate that its operational risk measure meets a soundness standard comparable to a
one year holding period and a 99.9th percentile confidence interval” in Basel Committee on
Banking Supervision [1] (a typical risk measure is the Value-at-Risk (VaR) at the confidence
level 0.999, and we also adopt VaR in this paper). Meanwhile, estimating the tail of an
operational loss distribution is often difficult due to the fact that the accumulated historical
data are insufficient, there are various kind of factors of operational loss, and so on. Thus we
need sufficient verification for the appropriateness and robustness of the model in quantitative
operational risk management.

One of the verification approaches for a risk model is sensitivity analysis (or behaviour
analysis). There are a few interpretations for the word “sensitivity analysis”. In this paper,
we use this word to mean the relevance of a change of the risk amount with changing input
information (for instance, added/deleted loss data or changing model parameters). There is
also an advantage in using sensitivity analysis not only to validate the accuracy of a risk model
but also to decide on the most effective policy with regard to the variable factors. This exam-
ination of how the variation in the output of a model can be apportioned to different sources
of variations of risk will give an incentive to business improvement. Moreover, sensitivity
analysis is also meaningful for a scenario analysis. Basel II claims not only to use histori-
cal internal/external data and BEICFs (Business Environment and Internal Control Factors)
as input information, but also to use scenario analyses to evaluate low frequency and high
severity loss events which cannot be captured by empirical data. As noted above, to quantify
operational risk we need to estimate the tail of the loss distribution, so it is important to
recognize the impact of our scenarios on the risk amount.

In this paper we study the sensitivity analysis for the operational risk model from a theo-
retical viewpoint. In particular, we mainly consider the case of adding loss factors. Let L be
a random variable which represents the loss amount with respect to the present risk profile
and let S be a random variable of the loss amount caused by an additional loss factor found
by a minute investigation or brought about by expanded business operation. In a practical
sensitivity analysis it is also important to consider the statistical effect (the estimation error
of parameters, etc.) for validating an actual risk model, but such an effect should be treated
separately. We focus on the change from a prior risk amount ρ(L) to a posterior risk amount
ρ(L + S), where ρ is a risk measure.

We mainly treat the case where the tails of the loss distributions are regularly varying.
We use VaR at the confidence level α as our risk measure ρ and we study the asymptotic
behaviour of VaR as α → 1. Our framework is mathematically similar to the study of Böcker
and Klüppelberg [5]. They regard L and S as loss amount variables of separate categories
(cells) and study the asymptotic behaviour of an aggregated loss amount VaRα(L + S) as
α → 1 (in addition, a similar study, adopting an expected shortfall (or conditional VaR),
is found in Biagini and Ulmer [2]). In contrast, our purpose is to estimate a more precise
difference between VaRα(L) and VaRα(L+S) and we obtain different results according to the
magnitude relationship of the thicknesses of the tails of L and S.

The rest of this paper is organized as follows. In Section 2 we introduce the framework
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of our model and some notation. In Section 3 we give rough estimations of the asymptotic
behaviour of the risk amount VaRα(L + S). Our main results are in Section 4 and we present
a finer estimation of the difference between VaRα(L) and VaRα(L+S). Section 4.1 treats the
case where L and S are independent. Section 4.2 includes a tiny generalization of the results
in Section 4.1 and we give some results when L and S are not independent. One of these
results is related to the study of risk capital decomposition and we study these relations in
Section 7.1. In Section 5 we present numerical examples of our results. Section 6 presents
some conclusions. All the proofs of our results are in Section 7.2.

2 Settings

We always study a given probability space (Ω,F , P ). For a random variable X and α ∈
(0, 1), we define the α-quantile (Value at Risk) by

VaRα(X) = inf{x ∈ R ; FX(x) ≥ α},

where FX(x) = P (X ≤ x) is the distribution function of X.
We denote by Rk the set of regularly varying functions with index k ∈ R, that is, f ∈ Rk if

and only if lim
x→∞

f(tx)/f(x) = tk for any t > 0. When k = 0, a function f ∈ R0 is called slowly

varying. For the details of regular variation and slow variation, see Bingham et al. [3] and
Embrechts et al. [9]. For a random variable X, we also say X ∈ Rk when the tail probability
function F̄X(x) = 1 − FX(x) = P (X > x) is in Rk. We mainly treat the case of k < 0. In
this case, the m-th moment of X ∈ Rk is infinite for m > −k. As examples of heavy-tailed
distributions which have regularly varying tails, the generalized Pareto distribution (GPD) and
the g-h distribution (see Degen et al. [6], Dutta and Perry [8]) are well-known and are widely
used in quantitative operational risk management. In particular, GPD plays an important
role in extreme value theory (EVT), and it can approximate the excess distributions over a
high threshold of all the commonly used continuous distributions. See Embrechts et al. [9]
and McNeil et al. [17] for details.

Let L and S be non-negative random variables and assume L ∈ R−β and S ∈ R−γ for
some β, γ > 0. We call β (respectively, γ) the tail index of L (respectively, S). A tail index
represents the thickness of a tail probability. For example, the relation β < γ means that the
tail of L is fatter than S.

We regard L as the total loss amount of a present risk profile. In the framework of the
standard loss distribution approach (LDA, see Frachot et al. [10] for details), L is assumed to
follow a compound Poisson distribution. If we consider a multivariate model, L is given by

L =
d∑

k=1

Lk, where Lk is the loss amount variable of the k-th operational risk cell (k = 1, . . . , d).

We are aware of such formulations, but we do not limit ourselves to such situations in our
settings.

The random variable S means an additional loss amount. We will consider the total loss
amount variable L + S as a new risk profile. As mentioned in Section 1, our interest is in how
a prior risk amount VaRα(L) changes to a posterior one VaRα(L + S).
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3 Basic Results of Asymptotic Behaviour of VaRα(L+S)

First we give a rough estimations of VaRα(L + S). We introduce the following condition.

[A] A joint distribution of (L, S) satisfies the negligible joint tail condition when

P (L > x, S > x)

F̄L(x) + F̄S(x)
−→ 0, x → ∞. (3.1)

Then we have the following proposition.

Proposition 1. Under condition [A] it holds that

(i) If β < γ, then VaRα(L + S) ∼ VaRα(L),

(ii) If β = γ, then VaRα(L + S) ∼ VaR1−(1−α)/2(U),

(iii) If β > γ, then VaRα(L + S) ∼ VaRα(S)

as α → 1, where the notation f(x) ∼ g(x), x → a denotes lim
x→a

f(x)/g(x) = 1 and U is a

random variable whose distribution function is given by FU(x) = (FX(x) + FY (x))/2.

When L and S are independent, this proposition is a special case of Theorem 3.12 in Böcker
and Klüppelberg [5] (in the framework of LDA).

In contrast with Theorem 3.12 in Böcker and Klüppelberg [5], which implies an estimate
for VaRα(L + S) as “an aggregation of L and S”, we review the implications of Proposition 1
from the viewpoint of sensitivity analysis. Proposition 1 implies that when α is close to 1, the
posterior risk amount is determined nearly equally by either risk amount of L or S showing
fatter tail. On the other hand, when the thicknesses of the tails is the same (i.e., β = γ,)
the posterior risk amount VaRα(L + S) is given by the VaR of the random variable U and
is influenced by both L and S even if α is close to 1. The random variable U is the variable
determined by a fair coin flipping. The risk amount of U is alternated by the toss of coin
(head-L and tail-S).

4 Main Results

4.1 Independent Case

In this section we present a finer estimation of the difference between VaRα(L + S) and
VaRα(L) than Proposition 1 when L and S are independent. The assumption of independence
implies the loss events are caused independently by the factors L or S. In this case condition
[A] is satisfied. We prepare additional conditions.

[B] There is some x0 > 0 such that FL has a positive, non-increasing density function fL on

[x0,∞), i.e., FL(x) = FL(x0) +

∫ x

x0

fL(y)dy, x ≥ x0.

[C] The function xγ−βF̄S(x)/F̄L(x) converges to some real number k as x → ∞.
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[D] The same assertion of [B] holds by replacing L with S.

We remark that condition [B] (respectively, [D]) and the monotone density theorem (The-
orem 1.7.2 in Bingham et al. [3]) imply fL ∈ R−β−1 (respectively, fS ∈ R−γ−1).

Our main theorem is the following.

Theorem 1. The following assertions hold as α → 1.

(i) If β + 1 < γ, then VaRα(L + S) − VaRα(L) ∼ E[S] under [B].

(ii) If β < γ ≤ β + 1, then VaRα(L + S)−VaRα(L) ∼ k

β
VaRα(L)β+1−γ under [B] and [C].

(iii) If β = γ, then VaRα(L + S) ∼ (1 + k)1/βVaRα(L) under [C].

(iv) If γ < β ≤ γ + 1, then VaRα(L + S) − VaRα(S) ∼ 1

kγ
VaRα(S)γ+1−β under [C] and

[D].

(v) If γ + 1 < β, then VaRα(L + S) − VaRα(S) ∼ E[L] under [C] and [D].

The assertions of Theorem 1 are divided into five cases according to the magnitude rela-
tionship between β and γ. In particular, when β < γ, we get different results depending on
whether γ is greater than β + 1 or not. The assertion (i) implies that if the tail probability of
S is sufficiently thinner than that of L, then the effect of a supplement of S is limited to the
expected loss (EL) of S. In fact, we can also get a similar result to the assertion (i), which we
introduce in Section 7.1, when the moment of S is very small. These results indicate that if
an additional loss amount S is not so large, we may not have to be nervous about the effect
of a tail event which is raised by S.

The assertion (ii) implies that when γ ≤ β + 1, the difference of a risk amount cannot be
approximated by EL even if γ > 1. Let l > 0 and p ∈ (0, 1) be such that P (S > l) = p and l
is large enough (or, equivalently, p is small enough) that VaR1−p(L) ≥ VaR1−p(S) = l. Then
we can interpret the assertion (ii) formally as

VaRα(L + S) − VaRα(L) ≈ 1

β

(
l

VaR1−p(L)

)γ

VaRα(L) ≤ 1

β

(
l

VaR1−p(L)

)β

VaRα(L). (4.1)

Thus it is enough to provide an amount of the right hand side of (4.1) for an additional risk
capital. So, in this case, the information of the pair (l, p) (and detailed information about the
tail of L) enables us to estimate the difference conservatively.

When the tail of S has the same thickness as that of L, we have the assertion (iii). In this
case we see that by a supplement of S, the risk amount is multiplied by (1+k)1/β. The slower
is the decay speed of F̄S(x), which means the fatter the tail amount variable becomes with
an additional loss, the larger is the multiplier (1 + k)1/β. Moreover, if k is small, we have the
following approximation,

VaRα(L + S) − VaRα(L) ∼ k + o(k)

β
VaRα(L), (4.2)
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where o(·) is the Landau symbol (little o): lim
k→0

o(k)/k = 0. The relation (4.2) has the same

form as assertion (ii), and in this case we have a similar implication as (4.1) by letting α = 1−p
and k = (l/VaR1−p(L))β.

The assertions (iv)–(v) are restated consequences of the assertions (i)–(ii). In these cases,
VaRα(L) is too much smaller than VaRα(L+S) and VaRα(S), so we need to compare VaRα(L+
S) with VaRα(S). In estimating the posterior risk amount VaRα(L + S), the effect of the tail
index γ of S is significant. We remark that we can replace VaRα(S) with k1/γVaRα(L)β/γ

when either xβFL(x) or xγFS(x) converges to some positive number (see Lemma 2 in Section
7.2).

By Theorem 1, we see that the smaller is the tail index γ, the more precise is the information
which we need about the tail of S.

4.2 Consideration of Dependency Structure

In the previous section we assumed that L and S were independent, since they were caused
by different loss factors. However, huge losses often happen due to multiple simultaneous loss
events. Thus it is important to prepare a risk capital considering a dependency structure
between loss factors. Basel II states that “scenario analysis should be used to assess the
impact of deviations from the correlation assumptions embedded in the bank’s operational
risk measurement framework, in particular, to evaluate potential losses arising from multiple
simultaneous operational risk loss events” in paragraph 675 of Basel Committee on Banking
Supervision [1].

In this section we consider the case where L and S are not necessarily independent, and
present generalizations of Theorem 1(i)–(ii). Let L ∈ R−β and S ∈ R−γ be random variables
for some β, γ > 0. We only consider the case of β < γ. We assume that (Ω,F) is a standard
Borel space. Then, by Theorem 5.3.19 in Karatzas and Shreve [15], there is a regular condi-
tional probability distribution p (respectively, q) : [0,∞)×Ω −→ [0, 1] with respect to F given
S (respectively, L). We define the function FL(x|S = s) by FL(x|S = s) = p(s, {L ≤ x}). We
see that the function FL(x|S = s) satisfies∫

B

FL(x|S = s)FS(ds) = P (L ≤ x, S ∈ B)

for each Borel subset B ⊂ [0,∞).
We prepare the following conditions.

[E] There is some x0 > 0 such that FL(·|S = s) has a positive, non-increasing and continuous
density function fL(·|S = s) on [x0,∞) for P (S ∈ ·)-almost all s.

[F] It holds that

ess sup
s≥0

sup
t∈K

∣∣∣∣fL(tx|S = s)

fL(x|S = s)
− t−β−1

∣∣∣∣ −→ 0, x → ∞ (4.3)

for any compact set K ⊂ (0, 1] and∫
[0,∞)

sη fL(x|S = s)

fL(x)
FS(ds) ≤ C, x ≥ x0 (4.4)
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for some constants C > 0 and η > γ − β, where ess sup is the L∞-norm under the
measure P (S ∈ ·).

We notice that the condition [E] includes the condition [B]. Under these conditions we
have P (L > x, S > x) ≤ Cx−ηF̄L(x) and then the condition [A] is also satisfied.

Let E[·|L = x] be the expectation under the probability measure q(x, ·). Under the condi-
tion [E], we see that for each φ ∈ L1([0,∞), P (S ∈ ·))

E[φ(S)|L = x] =

∫
[0,∞)

φ(s)
fL(x|S = s)

fL(x)
FS(ds) (4.5)

for P (L ∈ ·)-almost all x ≥ x0. We do not distinguish the left hand side and the right hand
side of (4.5). The left hand side of (4.4) is regarded as E[Sη|L = x].

The conditions [E] and [F] seem to be a little strong, but we give an example. Let U ∈
R−β be non-negative random variable which is independent of L and let g(s) be a positive
measurable function. We define L = g(S)U . If we assume that a ≤ g(s) ≤ b for some
a, b > 0 and FU has a positive, non-increasing and continuous density function fU , then we
have fL(x|S = s) = fU(x/g(s))/g(s) and

fL(tx|S = s)

fL(x|S = s)
− t−β−1 =

fU(tx/g(s))

fU(x/g(s))
− t−β−1.

Since g(s) has upper bound, we see that fL(x|S = s) satisfies (4.3) by using Theorem 1.5.2 of
Bingham et al. [3]. Moreover it follows that for η ∈ (γ − β, γ)

E[Sη|L = x] ≤ b

a
E[Sη]

fU(x/b)

fU(x/a)
, P (L ∈ ·)-almost all x ≥ x0 (4.6)

and the right-hand side of (4.6) converges to (b/a)β+2
E[Sη] as x → ∞. Thus (4.4) is also

satisfied.
Now we present the following theorem.

Theorem 2.

(i) Assume [E] and [F ]. If β + 1 < γ, then

VaRα(L + S) − VaRα(L) ∼ E[S|L = VaRα(L)], α → 1. (4.7)

(ii) Assume [C], [E] and [F ]. Then the same assertion as Theorem 1 (ii) holds.

The relation (4.7) gives a similar indication of (5.12) in Tasche [21]. The right hand side
of (4.7) has the same form as the so-called component VaR:

E[S|L + S = VaRα(L + S)] =
∂

∂ε
VaRα(L + εS)

∣∣∣
ε=1

(4.8)

under some suitable mathematical assumptions. In Section 7.1 we study the details. We can
replace the right hand side of (4.7) with (4.8) by a few modifications of our assumptions:

[E’] The same condition as [E] holds by replacing L with L + S.

[F’] The relations (4.3) and (4.4) hold by replacing L with L+S and by setting K = [a,∞)
for any a > 0.

Indeed, our proof also works upon replacing (L + S, L) with (L,L + S).
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5 Numerical Examples

In this section we confirm numerically our main results for typical examples in the standard
LDA framework. Let L and S be given by the following compound Poisson variables: L =

L1 + · · ·+ LN , S = S1 + · · ·+ SÑ , where (Li)i, (S
i)i, N, Ñ are independent random variables

and (Li)i, (Si)i are each identically distributed. The variables N and Ñ mean the frequency of
loss events, and the variables (Li)i and (Si)i mean the severity of each loss event. We assume
that N ∼ Poi(λL) and Ñ ∼ Poi(λS) for some λL, λS > 0, where Poi(λ) denotes the Poisson
distribution with intensity λ. For severity, we use GPD, whose distribution function is given
by GPD(ξ, σ)(x) = 1 − (1 + ξx/σ)−1/ξ , x ≥ 0.

Throughout this section, we assume that Li follows GPD(ξL, σL) with ξL = 10, σL = 10000
and set λL = 10. We also assume that Si follows GPD(ξS, σS) and λS = 10. We set the
parameters ξS and σS in each cases appropriately. We remark that L ∈ R−β and S ∈ R−γ,
where β = 1/ξL and γ = 1/ξS. Moreover the condition [C] is satisfied with

k =
λS

λL

(σS/ξS)1/ξS(σL/ξL)−1/ξL . (5.1)

To calculate VaR in the framework of LDA, several numerical methods are known. The
commonly used methods are the Monte Carlo approach, the Panjer recursive approach and the
inverse Fourier (or Laplace) transform approach (see Frachot et al. [10]). The direct numerical
integration (DNI) of Luo and Shevchenko [16] is one of the adaptive methods to calculate VaR
precisely when α is close to 1. Their approach is classified as an inverse Fourier transform
approach. A comparison of the precisions of these numerical methods was made in Shevchenko
[20]. We need to have quite accurate calculations, so we apply the method based on DNI to
calculate VaRα(L) and VaRα(L + S).

Unless otherwise noted, we set α = 0.999. Then the value of the prior risk amount VaRα(L)
is 5.01 × 1011.

5.1 The Case of β + 1 < γ

First we consider the case of Theorem 1(i). We set σS = 10000. The result is given in
Table 1, where

∆VaR = VaRα(L + S) − VaRα(L), Error =
Approx

∆VaR
− 1 (5.2)

and Approx = E[S].
Although the absolute value of the error becomes a little large when γ − β is near 1, the

difference between the VaRs is accurately approximated by E[S].

5.2 The Case of β < γ ≤ β + 1

This case corresponds to Theorem 1(ii). As in Section 5.1, we also set σS = 10, 000. The
result is given as Table 2, where Approx = kVaRα(L)β+1−γ/β and the error is the same as
(5.2). We see that the accuracy is lower when γ − β is close to 1 or 0. Even in these cases, as
Figure 1 indicates in the cases of ξS = 0.8 and ξS = 1.8, we observe that the error approaches
0 by letting α → ∞,
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Table 1: The case of β + 1 < γ.
ξS γ − β ∆VaR Approx Error
0.1 9.500 1,111,092 1,111,111 1.68E-05
0.2 4.500 1,249,995 1,250,000 4.26E-06
0.3 2.833 1,428,553 1,428,571 1.26E-05
0.4 2.000 1,666,647 1,666,667 1.21E-05
0.5 1.500 2,000,141 2,000,000 -7.05E-05

Table 2: The case of β < γ ≤ β + 1.
ξS γ − β ∆VaR Approx Error
0.8 0.750 3.64E+06 3.14E+06 -1.36E-01
1.0 0.500 2.02E+08 2.00E+08 -8.38E-03
1.2 0.333 3.31E+09 3.30E+09 -1.73E-03
1.5 0.167 5.69E+10 5.63E+10 -9.98E-03
1.8 0.056 4.36E+11 3.81E+11 -1.26E-01

Figure 1: The change of the approximation error via α in the cases of ξS = 0.8 (circle-
marked solid line) and ξS = 1.8 (cross-marked dotted line). The vertical axis corresponds to
Error × 100% and the horizontal axis corresponds to α.
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5.3 The Case of β = γ

In this section we set ξS = 2(= ξL). We apply Theorem 1(iii). We compare the values of
∆VaR and Approx = ((1 + k)ξL − 1)VaRα(L) in Table 3, where the error is the the same as
(5.2). We see that they are very close.
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Table 3: The case of β = γ.
σS ∆VaR Approx Error
100 1.05E+11 1.05E+11 -2.05E-07

1,000 3.67E+11 3.67E+11 -1.85E-07
10,000 1.50E+12 1.50E+12 -1.43E-07
100,000 8.17E+12 8.17E+12 -8.51E-08

1,000,000 6.01E+13 6.01E+13 -3.46E-08

5.4 The Case of β > γ

Finally we treat the case of Theorem 1(iv). We set σS = 100. In this case VaRα(L) is too
much smaller than VaRα(L + S), so we compare the values of VaRα(L + S) and

Approx = VaRα(S) +
1

kγ
VaRα(S)γ+1−β.

The result is in Table 5.4. We see that the error (= Approx/VaRα(L+S)−1) tends to become
smaller when ξS is large.

Table 5.4 also indicates that the supplement of S has a quite significant effect on the risk
amount when the distribution of S has a fat tail. For example, when ξS = 3.0, the value of
VaRα(L + S) is more than 90 times VaRα(L) and is heavily influenced by the tail of S. We
see that a little change of ξS may cause a huge impact on the risk model.

In our example we do not treat the case of Theorem 1(v), however we also have a similar
implication in this case.

Table 4: The case of β > γ.
ξS VaRα(L + S) Approx Error c.f. VaRα(S)
2.5 2.12E+12 1.52E+12 -2.82E-01 4.00E+11
3.0 4.64E+13 4.56E+13 -1.61E-02 3.34E+13
3.5 2.99E+15 2.99E+15 -3.04E-04 2.86E+15
4.0 2.52E+17 2.52E+17 -5.38E-06 2.50E+17
4.5 2.23E+19 2.23E+19 -2.09E-07 2.22E+19

6 Concluding Remarks

In this paper we introduced the theoretical framework of sensitivity analysis for quanti-
tative operational risk management. Concretely speaking, we investigated the impact on the
risk amount (VaR) arising from adding the loss amount variable S to the present loss amount
variable L when the tail probabilites of L and S are regularly varying (L ∈ R−β, S ∈ R−γ for
some β, γ > 0). The result depends on the magnitude relationship of β and γ. One of these
implications is that we must pay more attention to the form of the tail of S when S has the
fatter tail. Moreover, when γ > β + 1, the difference between the prior VaR and the posterior
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VaR is approximated by the component VaR of S (in particular by EL of S if L and S are
independent).

We have mainly treated the case where L and S are independent except for a few cases
in Section 4.2. As related study for dependent case, Böcker and Klüppelberg [4] invokes a
Lévy copula to describe the dependency and gives an asymptotic estimate of Fréchet bounds
of total VaR. To deepen and enhance our study in more general cases when L and S have a
dependency structure is one of the directions of our future work.

7 Appendix

7.1 The Effect of a Supplement of Small Loss Amount

In this section we treat another version of Theorem 1(i) and Theorem 2(i). We do not
assume that the random variables are regularly varying but that the additional loss amount
variable is very small. Let L, S̃ be non-negative random variables and let ε > 0. We define a
random variable Sε by Sε = εS̃. We regard L (respectively, L + Sε) as the prior (respectively,
posterior) loss amount variable and consider the limit of the difference between the prior and
posterior VaR by taking ε → 0. Instead of making assumptions of regular variation, we make
“Assumption (S)” in Tasche [21]. Then Lemma 5.3 and Remark 5.4 in Tasche [21] imply

lim
ε→0

VaRα(L + Sε) − VaRα(L)

ε
=

∂

∂ε
VaRα(L + εS̃)

∣∣∣
ε=0

= E[S̃|L = VaRα(L)]. (7.1)

By (7.1), we have

VaRα(L + S) − VaRα(L) = E[S|L = VaRα(L)] + o(ε), (7.2)

where we simply put S = Sε. In particular, if L and S are independent, then

VaRα(L + S) − VaRα(L) = E[S] + o(ε).

Thus the effect of a supplement of the additional loss amount variable S is approximated by
its component VaR or EL. So the assertions of Theorem 1(i) and Theorem 2(i) also hold in
this case.

The concept of the component VaR is related to the theory of risk capital decomposition
(or risk capital allocation). Let us consider the case where L and S are loss amount variables
and where the total loss amount variable is given by T (w1, w2) = w1L + w2S with a portfolio
(w1, w2) ∈ R2 such that w1 + w2 = 1. We try to calculate the risk contributions for the total
risk capital ρ(T (w1, w2)), where ρ is a risk measure.

One of the ideas is to apply Euler’s relation

ρ(T (w1, w2)) = w1
∂

∂w1

ρ(T (w1, w2)) + w2
∂

∂w2

ρ(T (w1, w2))

when ρ is linear homogeneous and ρ(T (w1, w2)) is differentiable with respect to w1 and w2. In
particular we have

ρ(L + S) =
∂

∂u
ρ(uL + S)

∣∣∣
u=1

+
∂

∂u
ρ(L + uS)

∣∣∣
u=1

(7.3)
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and the second term in the right hand side of (7.3) is regarded as the risk contribution of S.
As in early studies in the case of ρ = VaRα, the same decomposition as (7.3) is obtained in
Garman [11] and Hallerbach [12] and the risk contribution of S is called the component VaR.
The consistency of the decomposition of (7.3) has been studied from several points of views
(Denault [7], Kalkbrener [14], Tasche [21], and so on). In particular, Theorem 4.4 in Tasche [21]
implies that the decomposition of (7.3) is “suitable for performance measurement” (Definition
4.2 of Tasche [21]). Although many studies assume that ρ is a coherent risk measure, the
result of Tasche [21] also applies to the case of ρ = VaRα.

Another approach towards calculating the risk contribution of S is to estimate the difference
of the risk amounts ρ(L + S) − ρ(L), which is called the marginal risk capital—see Merton
and Perold [18]. (When ρ = VaRα, it is called a marginal VaR.) This is intuitively intelligible,
whereas an aggregation of marginal risk capitals is not equal to the total risk amount ρ(L+S).

The relation (7.2) gives the equivalence between the marginal VaR and the component VaR
when S(= εS̃) is very small. Theorem 2(i) implies that the marginal VaR and the component
VaR are also (asymptotically) equivalent when L and S have regulary varying tails and the
tail of S is sufficiently thinner than that of L.

7.2 Proofs

In this section we present the proofs of our results. Proposition 1 and Theorem 1(iii) are
obtained by the following two lemmas.

Lemma 1. Let X,Y be random variables and assume F̄X ∈ R−β and F̄Y ∈ R−γ for β, γ > 0.
Assume that the joint distribution of (X, Y ) satisfies the negligible joint tail condition (3.1).
Then F̄X+Y (x) ∼ F̄X(x) + F̄Y (x) as x → ∞. Moreover F̄X+Y ∈ R−min{β,γ}.

This is the same as Lemma 4 in Jang and Jho [13]. The following Lemma 2 is strongly
related to Theorem 2.4 in Böcker and Klüppelberg [4] and Theorem 2.14 in Böcker and
Klüppelberg [5] when β = γ.

Lemma 2. Let X ∈ R−β, Y ∈ R−γ be random variables with β, γ > 0. We assume that
F̄X(x) ∼ λF̄Y (xβ/γ), x → ∞ for some λ > 0. Then VaRα(X) ∼ VaR1−(1−α)/λ(Y )γ/β ∼
λ1/βVaRα(Y )γ/β, α → 1.

Proof. For ξ ∈ (1,∞), we put vX(ξ) = VaR1−1/ξ(X) and vY (ξ) = VaR1−1/ξ(Y ). Here we
remark that vX(ξ) (respectively, vY (ξ)) is a left-continuous version of the generalized inverse
function of 1/F̄X (respectively, 1/F̄Y ) defined in Böcker and Klüppelberg [4]. By Proposition
2.13 in Böcker and Klüppelberg [4], we have vX ∈ R1/β.

By Theorem 1.5.12 in Bingham et al. [3], we get (1/F̄X)(vX(ξ)) ∼ ξ and (1/F̄Y )(vY (λξ)) ∼
λξ as ξ → ∞. Thus

λF̄Y (vY (λξ)) ∼ F̄X(vX(ξ)) ∼ λF̄Y (vX(ξ)β/γ), ξ → ∞.

Then we have vY (λξ) ∼ vX(ξ)β/γ. Our assertion is immediately obtained by this relation and
Proposition 2.13 in Böcker and Klüppelberg [4]. �

Here we remark that when lim
x→∞

xγF̄Y (x) (respectively, lim
x→∞

xβF̄X(x)) exists in (0,∞), it

holds that F̄Y (xβ/γ) ∼ xγ−βF̄Y (x) (respectively, F̄X(xγ/β) ∼ xβ−γF̄X(x)).
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Theorems 1(iv)–(v) are directly obtained from Theorems 1(i)–(ii). We omit the proofs of
Theorems 1(i)–(ii), since most of them are included in the following proof of Theorem 2.

Proof of Theorem 2(i). Let l(x, s) = s
fL(x|S = s)

fL(x)
and K(x) =

∫
[0,∞)

l(x, s)Fs(ds) = E[S|L =

x]. Since η > γ − β > 1, the relation (4.4) implies that (l(x, ·))x≥x0
is uniformly integrable

with respect to P (S ∈ ·). Thus K(x) is continuous in x ≥ x0. Moreover, since it follows that

|K(tx) − K(x)|

≤
∫

[0,∞)

s · fL(x|S = s)

fL(x)

∣∣∣∣fL(tx|S = s)

fL(x|S = s)
· fL(x)

fL(tx)
− 1

∣∣∣∣FS(ds)

≤
{

ess sup
s≥0

∣∣∣∣fL(tx|S = s)

fL(x|S = s)
− t−β−1

∣∣∣∣ +

∣∣∣∣ fL(x)

fL(tx)
− tβ+1

∣∣∣∣}(∣∣∣∣ fL(x)

fL(tx)
− tβ+1

∣∣∣∣ + 2tβ+1

)
K(x)

for each t > 0, we see that K ∈ R0 by virtue of (4.3).
We prove the following proposition.

Proposition 2.
FL+S(x) − FL(x)

fL(x)
∼ −K(x), x → ∞.

Proof. By the assumptions L, S ≥ 0 and [E], we have

FL+S(x) − FL(x) = −I1(x) + I2(x) − I3(x) (7.4)

for x > 2x0, where

I1(x) =

∫ 1

0

∫
[0,x/2]

fL(x − us|S = s)sFS(ds)du,

I2(x) = P (L + S ≤ x, x/2 < S ≤ x),

I3(x) = P (L ≤ x, S > x/2).

Since fL ∈ R−β−1, F̄S ∈ R−γ and K ∈ R0, we have

I2(x)

fL(x)K(x)
+

I3(x)

fL(x)K(x)
≤ 2F̄S(x/2)

fL(x)K(x)
−→ 0, x → ∞. (7.5)

To estimate the term I1(x), we define a random variable T by T = S/x and a function J(x)
by

J(x) =

∫ 1

0

∫
[0,x/2]

(1 − us/x)−β−1s
fL(x|S = s)

fL(x)
FS(ds)du.

Then the assumption [F ] implies

1

K(x)

∣∣I1(x)/fL(x) − J(x)
∣∣

≤ 1

K(x)

∫ 1

0

∫
[0,1/2]

xt

∣∣∣∣fL((1 − ut)x|S = tx)

fL(x|S = tx)
− (1 − ut)−β−1

∣∣∣∣ fL(x|S = tx)

fL(x)
FT (dt)du

≤ ess sup
s≥0

sup
r∈[1/2,1]

∣∣∣∣fL(rx|S = s)

fL(x|S = s)
− r−β−1

∣∣∣∣ −→ 0, x → ∞. (7.6)
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Moreover we can rewrite J(x) as

J(x) =

∫
[0,x/2]

(1 − sy)−β − 1

βy
· fL(x|S = s)

fL(x)
FS(ds),

where y = 1/x. Then Taylor’s theorem implies

|J(x) − K(x)|

≤
∫

(x/2,∞)

l(x, s)FS(ds) +

∫
[0,x/2]

∣∣∣(1 − sy)−β − 1 − βsy
∣∣∣

βy
· fL(x|S = s)

fL(x)
FS(ds)

≤ 2η−1C

xη−1
+ (β + 1)y

∫
[0,x/2]

s2

∫ 1

0

(1 − u)(1 − usy)−β−2du
fL(x|S = s)

fL(x)
FS(ds)

≤ 2η−1C

xη−1
+

2β+η̃(β + 1)C

xη̃−1
,

where η̃ = min{η, 2}. Thus

|J(x)/K(x) − 1| −→ 0, x → ∞. (7.7)

By (7.5), (7.6) and (7.7), we obtain the assertion. �

The following lemma is easily obtained from Theorem A3.3 in Embrechts et al. [9].

Lemma 3. Let f be a regularly varying function and let (xn)n, (yn)n ⊂ (0,∞) be such that
xn, yn −→ ∞ and xn ∼ yn as n → ∞. Then f(xn) ∼ f(yn).

Now we complete the proof of Theorem 2(i). Let us put xα = VaRα(L) and yα = VaRα(L+
S). Obviously yα ≥ xα and we may assume xα > x0 (x0 is given in [E]). Since α = FL(xα) =
FL+S(yα), we have

−FL+S(yα) − FL(yα)

fL(yα)
=

FL(yα) − FL(xα)

fL(yα)
=

∫ 1

0

gα(u)du(yα − xα), (7.8)

where gα(u) = fL(xα + u(yα − xα))/fL(yα). Proposition 2 implies that the left hand side of
(7.8) is asymptotically equivalent to K(yα). Moreover, using Proposition 1(i) and Lemma 3,
we have K(yα) ∼ K(xα) as α → 1. On the other hand,

1 ≤
∫ 1

0

gα(u)du ≤ fL(xα)

fL(yα)
(7.9)

and so the right hand side of (7.9) converges to 1 as α → 1 by using Proposition 1(i) and
Lemma 3 again. Thus the right hand side of (7.8) is asymptotically equivalent to yα − xα.
Then we obtain the assertion. �

Proof of Theorem 2(ii). Theorem 2(ii) is obtained by similar arguments to the proof of
Theorem 2(i) by using the following proposition instead of Proposition 2.
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Proposition 3.
FL+S(x) − FL(x)

fL(x)
∼ −kxβ+1−γ

β
, x → ∞.

Proof. Take any 0 < ε < 1. The same calculation as in the proof of Proposition 2 gives us

FL+S(x) − FL(x) = −I1
ε (x) + I2

ε (x) − I3
ε (x),

where Ij
ε (x) is the same as Ij(x) on replacing x/2 with (1−ε)x (j = 1, 2, 3.) By the assumption

[C] and the monotone density theorem, we see that

lim sup
x→∞

I2
ε (x)

xβ+1−γfL(x)
≤ lim

x→∞

F̄S((1 − ε)x) − F̄S(x)

xβ+1−γfL(x)

= lim
x→∞

F̄L(x)

xfL(x)
· xγ−βF̄S(x)

F̄L(x)
·
(

F̄S((1 − ε)x)

F̄S(x)
− 1

)
=

k

β
((1 − ε)−γ − 1). (7.10)

By a similar calculation to the proof of Proposition 2, we get

I1
ε (x)

xβ+1−γfL(x)
≤ C ′

ε

xβ+1−γ

∫
[0,x]

l(x, s)FS(ds) (7.11)

for some positive constant C ′
ε. The assumption [F ] implies that the right hand side of (7.11)

converges to 0 as x → ∞ for each ε. Indeed, if η ≥ 1 then this is obvious. If η < 1, we have

1

xβ+1−γ

∫
[0,x]

l(x, s)FS(ds) ≤ 1

xβ−γ+η

∫
[0,x]

sη fL(x|S = s)

fL(x)
FS(ds) ≤ C

xβ−γ+η
−→ 0, x → ∞.

Thus we get

lim
x→∞

I1
ε (x)

xβ+1−γfL(x)
= 0. (7.12)

By the assumption [F], we have

1

F̄S(x)

∫
((1−ε)x,∞)

F̄L(x|S = s)FS(ds) =
1

F̄S(x)

∫ ∞

x

q(y, {S > (1 − ε)x})FL(dy)

≤ 1

(1 − ε)ηxηF̄S(x)

∫ ∞

x
E[Sη|L = y]FL(dy) ≤ CF̄L(x)

(1 − ε)ηxηF̄S(x)
,

where F̄L(x|S = s) = 1 − FL(x|S = s). Then it holds that

I3
ε (x)

xβ+1−γfL(x)
=

xγ−βF̄S(x)

F̄L(x)
· F̄L(x)

xfL(x)

{
F̄S((1 − ε)x)

F̄S(x)
− 1

F̄S(x)

∫
((1−ε)x,∞)

F̄L(x|S = s)FS(ds)

}
−→ k(1 − ε)−γ

β
, x → ∞ (7.13)

by virtue of the monotone density theorem and the assumption [C].
The relations (7.10), (7.12), (7.13) and I2

ε ≥ 0 give us

−k(1 − ε)−γ

β
= lim inf

x→∞

FL+S(x) − FL(x)

xβ+1−γfL(x)
≤ lim sup

x→∞

FL+S(x) − FL(x)

xβ+1−γfL(x)
≤ −k

β
.

Then we obtain the assertion by letting ε → 0. �
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