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ABSTRACT. We discuss the inverse boundary value problem of determining the potential
in the two dimensional stationary Schrédinger equation from the pair of all Dirichlet data
supported on an open subset I'y and all the corresponding Neumann data measured on an
open subset I'_. We prove global uniqueness, under some conditions, for the case that I'
and ['_ are disjoint. We construct appropriate complex geometrical optics solutions using
Carleman estimates with a singular weight to prove the main result.

1. Introduction

We consider the problem of determining a complex-valued potential ¢ for the Shrodinger
equation A 4 ¢ in a bounded two dimensional domain from the following boundary data.
Let 00 =T_UT, UTg where '_NT, =TyNTy = (. The input is located on Iy and the
output is measured on I'_. It is well-known that this problem is closely related to Calderén’s
problem in the situation when the voltage potential is applied on the surface I', and the
current is measured on the surface I'_.

The unique determination of the potential ¢ in the two dimensional case initially was
proved in the case of full data, I'y = I'_ = 9 under some restrictions on the potential ¢,
8], [9], [10]. Recently A. Bukhgeim [3] removed these restrictions for the case of full Cauchy
data.

For the case of partial data, in [6] the authors showed that the potential ¢ can be uniquely
determined if I'y =T_ = I and T is an arbitrary fixed open set on 9.

The main result of this manuscript is the unique identifiability of the potential ¢ under
some geometric conditions on the sets I'1. To the best of our knowledge this is the first unique
determination result for Calderon’s problem when the voltage is applied and the current is
measured on disjoint surfaces.

In a bounded simply connected domain Q C R? we consider the Shrodinger equation

Au+qu=0 inQ, ulp,ur. =0.

Let I'y, T'_ and 'y C 02 be non-empty open subsets of the boundary such that 0€) =
ryur_urly, F+ NI_=0,T, = U?:1Pi,j, where sets I'y. ; are open in 0f2.
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We introduce the following set of Cauchy data:

(1.1) C, = {( Ou ) | (A+q@u=0nQ, ulr,ur. =0, u € Hl(Q)}.

u|p+,$ r

We need the following geometric assumption on the position of the sets I'y ; on €2

Assumption A. If we are starting the clockwise movement from some point of the set
I'y ; before arriving to another component I'y ,, we have to pass through a component I'¢ ;.

Our main result gives global uniqueness by measuring the Cauchy data with input on I'}
and output on I'_.

Theorem 1.1. Let q; € C*t(Q), j = 1,2 for some a > 0 and let q; be complez-valued.
Then if

Cq = Cq,
we have

q1 = Q2.

Now we apply the above result to Calderén’s problem. A bounded and positive function
v(z) models the electrical conductivity of Q. Then a potential v € H'(2) satisfies the
Dirichlet problem

div(yVu) = 0in Q,

(12) u‘rour_ =/

where f € H %(8Q) is a given boundary voltage potential. The Cauchy data is defined by
ou . .
(1.3) A, = {(u|r,, @‘Lﬂdlv(wvw =0 in Q, u‘rour, =0, ulp, =f}.

Theorem 1.2. Let v; € C*%(Q), j = 1,2 for some a > 0 and let vy; be positive functions.
Assume A, = A,,. Then v1 = 7».

Uniqueness for C* conductivities for the case when I'y = I'y = 90 was proved in [§]. The
regularity condition was relaxed in [2] and [1]. In particular in [1] uniqueness was shown for
arbitrary L> conductivities. For the case of partial data when I'y = I'_ is an arbitrary open
subset of the boundary global uniqueness was shown in [6] for C3T¢(Q2) conductivities.

A brief outline of the paper is as follows.In section 2 we give some preliminary results and
estimates needed in the construction of the appropriate complex geometrical optics solutions.
In section 3 we construct these solutions. In section 4 we prove the main result.

2. Preliminary results

Throughout the paper we use the following notations.

Notations. i = /—1, 21,29,&1,& € RY, 2 = 21 + iz, ( = & + i€, Z denotes the complex
conjugate of z € C. We identify x = (1, 75) € R? with 2 = z; +ix, € C. 9, = %(3361 —10y,),
Oz = +(0y, +10s,). The tangential derivative on the boundary is given by 0z = 1/26%1 - 1/18%2,

with v = (11, 12) the unit outer normal to 992, B(Z,0) = {z € R?||x — Z| < ¢}, [ : R? - R},
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f" is the Hessian matrix with entries 5=—— o°f a , L(X,Y) denotes the Banach space of all bounded
linear operators from a Banach space X to another Banach space Y.
Let ®(2) = (1, z2) +ith (21, 72) € C*(Q) be a holomorphic function in Q with real-valued

p and 1:

(2.1) 0:®(2) =0 in Q.

Denote by H the set of critical points of the function ¢
H={z€Q[0.9(z) = 0}.

Assume that ® has no critical points on ' UT_, and that all the critical points are nonde-
generate:

(2.2) HNON= {0}, O*®(z)#0, VzeH.
Then we know that ® has only a finite number of critical points which
7‘[ = {517 ...,f@}.

Assume that ® satisfies
(2.3) Fo={2€0Q(v,Vy) =0}, T'_={xedQ(v,Vy) <0}
Consider the boundary value problem
L(z,D)u=Au+qu=f in €
{ ulaq = 0.
For this problem we have the following Carleman estimate with boundary terms.

Proposition 2.1. Suppose that ® satisfies (2.1), (2.2), (2.3) u € H}(Q) and ¢ € L>(Q).
Then there exist 1o = To(L, ®) and Cy = C1(L,®) independent of u and T such that for all
|| > 70

T T au T 6(P T
ITlue™ e + lue™ i@ + 15, € Nzawor.) + 7 115 1ue™ 2
(2.4) < C(Lw DY) ey + 17l | r@rzewda»
+

Let us introduce the operators:

o 9(¢, Q) 9(¢, Q)
oty = o [ 25%acnac - - [ 45D igag,

o (=% (—z
1 9(¢. <) 9(¢, Q) -
9=~ 27r2/QC—zd€/\d<_ w/gzg—zdfd& %7

Then we have (e.g., p.47 and p.56 in [11]):

Proposition 2.2. A) Let m > 0 be an integer number and o € (0,1). Then 97,071 €
ﬁ(Cm—i—a(ﬁ) Cm—&-oc—l—l(ﬁ)).
B) Let 1 <p<2and1<~y<z%. Thend;' 07" € L(L(), L7(2)).
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We define two other operators:
Ry .g = 67(5_‘1))8;1(967(‘1)_6)), éq) g = 67(5_¢)8;1(96T(¢_6)).

In [7] we prove the following

Proposition 2.3. Let g € C*(R2) for some positive . The function Re g is a solution to
(2.5) O-Rirg — 7(0-8)Rorg = g in Q.
The function éqwg solves
(2.6) azéq,,fg + T(8Z<I>)§q>ﬁg =g nf.
Using the stationary phase argument we show

Proposition 2.4. Let g € L'(Q) and the function ® satisfy (2.1), (2.2). Then
lim|T|H+oo/geT(q>(z)_q’(Z))dx =0.
Q

Denote
O, = {z € Qldist(z,00) < €}.
We have

Proposition 2.5. Let a > 0, g € C*T*(Q), g

0. =0 and gl = 0. Then

g = g 1
2.7 Re rg+ + ||Rep rg — =o| - as || — 4o0.
27) REX T L2(Q) *77 70.9 12(9) (7) 4
Consider the following problem
(2.8) L(z,D)u = fe™ in Q, wulr,ur. = ge’.

We have

Proposition 2.6. (see [7]) Let ¢ € L>(Q). There exists 1o > 0 such that for all T > 7y there
exists a solution to the boundary value problem (2.8) such that

1

(2.9) \/HIIVUG_WIIB(Q) HVTll[ue™ [ r20) < Calll Fllzz) + 9l 3 - 1))

Let € be a sufficiently small positive number. If suppf C G, = {x € Q|dist(z,H) > €} and
g = 0 then there exists 79 > 0 such that for all T > 1o there exists a solution to the boundary
value problem (2.8) such that

(2.10) [Vue™ || 20) + |7|llue™ | r2(0) < C3(e)[| fllz2(e)-
We have

Proposition 2.7. Let ¢ € L>=(Q) and let suppg C T'_ and gA/|0,p| € L*(T_). Then there
exists 1o > 0 such that for all T > 1y there exist a solution to (2.8) such that

VITlllue” ™ || 2y < CallgA/ 10v el 2@
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3. Complex geometrical optics solutions

In this section, we construct complex geometrical optics solutions for the Schrodinger
equation A + g; with ¢; satisfying the conditions of Theorem 1.1. Consider

(3.1) Li(z,D)u = Au+qu=0 in .
We will construct solutions to (3.1) of the form
(3.2)
uy () = ™3 (a(2)4ao(2) /7)+e™ P (a(2) + a1 (2) /7)+e P u_+e™Puy+e Pury,  up|rour. = 0.

Thanks to assumption A, the set I'y consists of four arcs : I'y = g1 UT'g2 U g3 U T4,
the set I'_ consists of two arcs I'_ = I'_; UI'_, and the set I'} also consists of two arcs
I't =141 UTI'4 5. Denote the endpoints of the arc I'g; as Z; +.

Proposition 3.1. Let © € € be an arbitrary point. There exists a smooth holomorphic
function a in ) such that

a(¥) #0, Realr, =0, V¥a(i;1)=0 Vke{l,...,100}, Vje{0,... 4}
Proof. Consider the following linear operator
R(v) = (w(®), w(#js), ., 0: w(d;)),
where
O;w=0 inQ, Rew=v ondf, suppvCl,.

Clearly image of the operator R is closed. Let b(z) be a smooth holomorphic function in
Q2 such that b(Z) = 1 and Reb|r,or. = 0. By Proposition 5.1 there exists a sequence of
holomorphic functions {w;}32, € C19%+%(Q) such that

wy, — 0+4dmb in C*T*(TyuUT.) and w(%) — 0.

Using the classical results on solvability of the Cauchy-Riemann equations we construct the
sequence of holomorphic functions wy such that

Wy, — 0 in C'F*(Q)), Rewy = Rew, on yUT_.

Consider the sequence vy = b + (W — wy). We have R(vg) — (1,0,...,0). The proof of
proposition finished. O

Without the loss of generality, using some conformal mapping if necessary, we may assume
that I'_ and I'; belong to the line {xs = 0} and domain € itself is located below the line
zo = 0.

We construct the holomorphic function ® with domain (g, such that Q2 C g, satisfies
(2.1), (2.2) and
ORe ® ORe @

ov Ir- <0, ov
The domain §2¢ has the following properties:

(3.4) QCQp, LoC 0, (LU )N =0, 0% c .

(3.3) Im ®|r, = 0, Ir, > 0.
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Therefore, thanks to Assumption A, the set 0 \ 02 consists of four disconnected curves
which we denote as I's 1,1's,2, ['p 3, ' 4. Counting the clockwise assume that I's ; located
between I'y; and I'g 9, I's 2 located between I'g o located between I'g o and I'y 3, I'p 3 located
between I'y3 and I'g4, 'p 4 located between I'g4 and I'p;. Assume in addition that each
component ['g ;, can be parameterize by the function v, € 012[£k7+7 Tpt1,— ], where &y 4, Tpp1 -
are the endpoints of the arcs I'y , and &5 _ = 27 _. Let us start the construction of the function
®. Consider functions ; with domain R such that v; is positive on (Z; 4, %41, ), otherwise

v; 1s zero,

d Vi dkfy‘ dll’}/' . du’)/' .

dtkj ( J» +) = dtkj ($]+1 —) =0 Vke {07 S 1O}a Tnj(xjd-) 7& 0, Fﬂj(xj-l-l,—) 7é 0,
there exists some small positive € such that
(3.5)

vi(e) = (w1=250)" Yoy € (&4, 850+€), (1) = (Ej-—2)" Yoy € (a1, —€ Ty ).
We introduce the domain €25 for any small positive § as follows. From below it is bounded
by the boundary of 92 form above by segments I'g ;, and the graphs of functions d+;.

By vs we denote the outward unit normal derivative to 025 and by 75 we denote the
clockwise unit tangent derivative to 0€25. We set

Dsie = { (21, 0v(21)) |21 € [Th 4, Try1, -]}

Let Cy,Cs,C3,C4 be rational positive numbers
m

(36) Cr = —k my, Ny, € 7
ny

and 1) be harmonic function in €2, continuous on ) such that

( ~'(; = Cl on F(),l, 'lg = Cg on Fo’g;

Y =—Cy on Foz, Y =—-C4 on F074;
(3.7) 0t <0 on (&1, 82, ) U (&34, 84 );
(?{—‘@Z) >0 on (1%274_, i’gv_) U (i’47+,[i17_);
[0 €C7(09), e C(0\ Uk o).

Moreover we assume that

limg, -, , 00, ¥ (21,0)/ (x4 — 21)° <0 k= 1,3,
limg, 54, 100, 1@(:1}1, 0)/(Zrs —21) >0k =24,
limg, 5z, +08x1¢(a:1, 0)/(Zg— —x1)° <0k =24,

/
hmxlﬁmkﬁ,oaxliﬂCUl, O)/(i[}k’, — x1> >0k= 1, 3.
Let function 15 be the harmonic function in Qs such that for any j € {1,...,4}

(3.8) vs =1 onUp Tox,  ¥s(wr,dv(x1)) = ¥(21,0) on [t &ju,-].

For all sufficiently small 0, counting clockwise, between I'y; and I'y » function 5 is monotone
decreasing, also it is monotone decreasing on the arc between I'y 3 and I'g 4. This function is
monotone increasing on the arcs between I'g 5 and I'g 3 and also on ark between I'y 4 and I'y ;.
Once the function s is constructed, using the Cauchy-Riemann equation, we construct the
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function @5 such that the function s + it)s is holomorphic. The following inequalities are
true for all sufficiently small positive ¢§

0 0
(3'9) 8%}?5 |F5 1Uls 3 < 07 0(105 |F5 2Ul's 4 >0,
0 .
(310) hnlmaxk ++0 afj (xb 67k(x1))/(xk,+ - xl)ﬁ >0k= 17 37
dps

limg, 4, 05— B0 (21,671 (21))/(Fp- —21)® >0 k =2, 4.

s

5 (1, 076+1(21)) /(T — xl)G <0k=24,
Vs

(3.11) limg, 4, , 05—
. 5 i
llmxﬁjk,+_oa—ﬁ(xl, Srsp(11)) /(e — 21)° <0 k = 1,3.

At the endpoints of I'go and I'g4 function 5 reach its minimum and at endpoints of I'y;
and Iy 3 function s reach its maximum. By (3.8) we have

(3.12) (¢s,0s5) = (@,0) in C*(Q) asd — 40.

Here  is a harmonic function in Q such that d:(p + 1)) = 0.

By (3.9)-(3.11) for all sufficiently small positive ¢ the holomorphic function ps-+it);s satisfies
(2.3).

Consider the domain G_ = {(z1, z2) |22+ < 21 < 25 _, —72(x1) < 290 < 0}U{(21, 22)|Ta44 <
1 < &y, —0v4(x1) < 29 < 0}. We claim that there exist a positive constant Cj such that

s

(3.13) ws(x) — s(x1, —x9) > Csl(x) Vo e G, 5
Z2

——(z) < =Csly(z) Vreg_,

where f(l’) - minye{i2,+,i4,+563,—,561,—} |‘T1 - y|7|$2|,£1(l’) = minye{i2,+,5€4,+563,—,@1,—} |$1 - y|6'
Indeed, suppose that the second inequality in (3.13) fails for all small positive §. By (3.9),
(3.12) this is possible only for a sequence of the points x5 such that it converges to the set

D_ ={xy 4,29, 23,24} Taking if it is necessary a subsequence we may assume that xs
converges to the single point of the set D_. Let it be the point 5 ;. By the Cauchy-Riemann
equations % = ad"; for any point of 9€25. So by (3.10) there exists a positive constants C

and € independent of 0 such that

9 R
8% —C(xy — 1 +) on {z|r € sy, dist(2a 4, ) < €}.
Vs

Taking into account that by (3.5) 75 = (8(z1 — £2.4)7,1)/(1 4 64(x1 — #54)™*)2 we obtain

0 C ) L
S w) < —5 (@1 —d2s)" Vo € {(or a1 € [fae das + €, = )},
2
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Using (3.5), (3.12) and the Taylor’s formula for any z € {(x1, z2)|x1 € [T24, T2 ++e€], —072(21)
9 < d72(z1)} we have

IN

2905

2
0x3

0
ﬁ(ﬂfl,xz) =

Dy (21 — &2.4)° + 2C572(21) =

(21, Q) (w2 — 072(21)) < —

~

C . . C .
(3.14) — (o = 0 )® + 20 (xy — G0 )t < —Zﬁ(xl — d94)S
So we finish the proof of second inequality in (3.13)

Let x € G_. Using (3.14) we have

(z1,072(71)) +

[\3|Q>

D
8962

ws5(1) — ps(r1, —72) < @5(21,0) — ps5(x) =
Cs [° Cs .

7 (951 - f2,+)6d§ = _—( 1 1U2,+)6I2.

0
(3.15) / Ocps (11, €)dE < — 2

The proof of (3.13) is finished.
Consider the domain G, = {(z1,22)|%a+ < 21 < &5, —07y2(x1) < 29 < 0FU{(21, 22)|Ta+ <

1 < &y, —0y4(x1) < 29 < 0}. similarly one can prove that all sufficiently small positive §
there exist a positive constant Cs such that for any z from G,
- ) -
(3.16) ws(x) — ps(x1, —x9) < —Csl(z) and a—?(m) > Csly(z),
2

where E(l‘) = miny€{£2,+75»‘4,+7§31,77513,—} ’1’1 - y|7|l‘2|,£1($) = minyé{i2,+,§?4,+,i1,f@3,7} |Z‘1 - y|6'
At this point we fix the parameter § such that inequalities (3.13), (3.16) hold true. The
holomorphic function ¢s + it)s satisfies (2.3), all internal critical points if they exist are
nondegenerate. This function might have some critical points in the set {Z; 4,7 =1,...,4}.
Let tangential derivative of 15 will not be equal to zero on some open set I'. By Corollary 5.1
there exists a harmonic function ¢ + mﬂ such that Imqﬁ = 0 on 0€2s and %§|ij, ., not equal to
zero for all j. Then the function ¢s + €@ + i(¢s + z[z) does not have critical points on the set
{Z;+,7=1,...,4} for all small positive e. In fact this function can not have more then one
internal critical point. Indeed it is known (see e.g. [12]) that if & is the internal critical point
of the harmonic function 1 the set {z € 9Q|i(x) = 1(Z)} consists of at least four points.
Moreover the set {z|)(z) = ¥ (&)} consists of two continuous curves intersecting at &. These
curves divide domain © in four domains Q = U;_, Q.. If there exists another internal critical
point Z; it should belong to some domain 2. But in this case the condition that there exist
four different points z; from 0€; such that ¢(2;) = ¢(x;) obviously fails. Construction of
of the weight function ® is complete. If an internal critical point of ® exists we denote it as
T.

The amplitude function a(z) is not identically zero on Q and has the following properties:

(3.17) a€C%Qs), 0:a=0, Realr, =0, |a(z)] < Crlz — ;2" Vje{l,...,4}.

Such a function can be constructed in the following way: Using the C* conformal mapping
IT we map the domain 2 into bounded domain O with 00 € C*°. Applying the Proposition
3.1 we construct the holomorphic function A € C'(0) such that Re Algry) = 0 and
0,A(2;+) = 0 for any k less or equal 100. Then we set a(z) = Ao Il
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Let the polynomials M;(z) and Mj3(Z) satisfy

(3.18) (- aq) — My)(2) =0, w€HU{dps,bk=1,...,4},j=0,1,2,
(3.19) K07 (aq) — M3)(x) =0, z€HU{ipe,k=1,...,4}, j=0,1,2,
and

(3.20) OFMy(351) = OFM3(2,+) =0 Vk e {3,...,100} and Vj € {1,...,4}.
By (3.18)-(3.20) and (3.17) we have

(3.21)

|8§1(aq1) —M1(2)| S Cg|£L'—IIAfk7:|:|1OO, |8Z_1(Eq1) —M3<2)| S Cg|I—i’k7:t|100 Vk € {]_, ce ,4}
Finally ag,a; € C%(Qg) are the holomorphic functions such that
(0 (aqy) — M) | (9;'(@qy) — Ms)

(ao +a1)lr, = 10.D 10.0 ;

and there exists a positive constant C' such that
(3.22) lax(z)| < Colz — 24 ° Vi € {1,...,4}, Vk € {0,1}.

We introduce the function u_(7,-) by formula
(3.23) e u_(1, 1) = —x-(e™Va + eTi’d) + w,(x)e™?,
where U(z) is the holomorphic function
(3.24) U(z) = p(x1, —x2) — 10(1, —12) T EG_UG,.

In order to construct w, we introduce the following functions
(3.25) a(ry,m9) = Rea(xy, —x9) —ilma(xy, —x9) € G UG,
and
(3.26) ag(x1,x2) = Reag(xy, —xo) —ilmag(xy, —x9) € G UGy, k€ {0,1}.

The function x is constructed in the following way. Let u € C§°(—2,2) and pf_1,1) = 1. We
set

' (1 — p((21 — B4 )7) — (g — &3 )750) ) pu(wa77)
for x eV ={(z1,22)|Z24+ <21 < Ty, —072(21) < 29 < 0},
321 xlw) = (1= (1 = Fa)790) = ul(21 = 1) 7)) u(7 )
for =z € VQ = {(Il,ﬁg)’l’4+ < T < i’l — —6’)/4<$1) < ) < 0}7
L 0 for x=¢ VU

For all sufficiently large 7
(3.28) suppx- N C G_.
Let function w, be solution to the following boundary value problem:
Aw,e™) + g1 (w,e™) = 1, = o1 (e7 @+ an/7) + €7 (@ + ao/7)
(3.20) e, A @+ an/7) + e (@ + ao/7)) i D,
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(330) (wTeTL’D)|FOU[‘7 =0.
Denote g, = [xr, Al(e™ (@ + a1 /7) + €" (@ + 4o /7)). We claim that
1
(3.31) lgre™ ™ r2() = O(;) as T — +o0.
Indeed the operator [x,,A] is the first order operator :[x,, A] = 2(Vx,, V) + Ay, where
(3.32) VXl = ™), [ Axr ey = O(7) as [7] = +oo.
By (3.27) there exists 7 such that for all 7 > 7, we have

supp Ax,, suppVx, C Zy(7) UZy(7),

where
1 2 ) 2 2 ) 2 2
Il(T) = {(x17x2)|_l S ) S 1 X € [IZHF + _L"'E&_ — T] U [3347_,'_ + T’$17_ _ T]}’
T7 T7 T80 T80 T80 T80
2 1 2 ) 2 1
Ir(1) = {(21,22)|0 < 25 < -, 1 € [&32++ , Loy + ]U[CL‘&*_—L,SU?,,f——L]
T7 7‘80 7‘80 T 80 T80
R 1 2 R 2 1
UlTg 4 + —, —|U[Z1,- — —, % — —]}
T80 T80 T80 T80
Observe that
(3.33) Ti(t)UZy(T) C G,
Applying (3.17), (3.12) (3.32), (3.33) we have
(3.34) le™[xr, A€ (@ + a1 /7) + €7 (@ + G0/7)) | ooz,
< lleT™ Ax-(e™ (@ + ay/7) + e (@ + ao/7)) |z
+2/le (€™ (Vxr, V)(a+ a1/7) + €™ (Vxz, V(@ + ao/7)) || ()
+2|lre (™ (Vxr, VI) (@ + a1 /7) + €™ (VXr, V) (@ + G0/7)) | 1 (z,)
=7 =1 1
S |7_|3 sup €—T<p+TRe\I/ S |7_|3 sup e TCgZ(z < |7_|3 —7CsTBO T T :O(_z) as T — 400

x€Zy(T) z€Zy(T) T

Using (3.17), (3.22), (3.32) we have

(3.35) le™™ [z, A€ (@ + @ /7) + €™ (@ + a0/7)) |l z2)
< ||e_T“"AXT(eT‘I’(A +ay/7)+ eT‘Ij(d + o/ 7)) Lo (z2)

+2[le™ (e (Vxr, V) (@ + ar/7) + €™ (Vxr, V)(@ + d0/7)) || oo (2)

+2[|Te ¢ (e T\I’(VXT,V\I/)(CL—i—al/T) +e™(Vxr, V) (a + 00/ 7)) Lo (2s)

< [[Ax-((a+ai/7) + (a+ ao/T))|| L (z)

+2[[(Vxr, V(@ +a1/7) + (VXr, V)(@ + ao/7)| L (z2)

+H2/|7((Vxr, VE)(@ + ar/7) + (VXr, V(@ + ao/7)) |2 (z) = O(
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The inequality (3.34) and (3.35) implies (3.31) immediately. By (3.13) and (3.24)
(3.36) le ™ xrq (€Y (@ + ay/7) + e (a + ao/7T))||2() = o(1) as T — +oo.

Using (3.31), (3.36) and the fact that supp x, N H = () we can apply the Proposition 2.6 to
obtain the solution to the boundary value problem (3.29), (3.30) such that

1
(3.37) |wr||z2() = o(;) as T — +00.

The function wuy; is given by

1 .~ 1
(3.38) ull:—Ze’wR@,T(el(agl(aql)—]\/[1)) 1 _ZT’”Rq) _-(e1(0; (aql) Msy))

e ey (07 (aqy) — My) eV ey(07 (@qy) — M)

T 40,9 T 40,

Y

where functions e, e; € C*°(€2) are constructed so that

(3.39) e1 + ey =1 on Q, ey, vanishes in some neighborhood of H

and e vanishes in a neighborhood of 0€).

Let u15 be solution to the inhomogeneous problem

(3-40) A(Uu@w) + quize™ = —qru €’ + he™  in
(341) U2 = dlﬂ— + dQ,T + dgﬂ— on FO U F_,
where

hy = eV A (62(3z1(GQ1) - Ml)) 4 e TA (62(8;1@&— M3))

470, 470,
(3'42) —agqle”d’/T — a_lqle*”w/T,
and di.- = ( ””’”R@T(el(f9 (ag1) = M) + = Ro,1(e1(9, @) — My))), dor = xr_(1 =
XT)Re {eZT'([}a} d3 L= eiTY 62( 4(gq‘;))*]wl) + 71-7‘7,0 62( N 4(;2(1;) MS) . aoeﬂ'zw_:-ae—-mw '

By (3.17), (3.22) there exists a constant C1o independent of 7 such that
< G

dgT/\/i < , &

So applying the Proposition 2.7 we obtain solution for the initial value problem L; (z, D)(e™u121) =

(3.43)

L2(I'.)

0,u12.1|r, = 0,u127|r_ = ds, which satisfies the estimate

1
(3.44) |u12,7][22(0) = 0(;) as T — +oo.
Since

lqruny + bl 2y < Cu(8)/I7]"° W6 € (0,1)
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and by the stationary phase argument ||di ;|| z2(rqur_) = O(Z) there exists a solution to the

initial value problem L;(x, D)(e™*uiar) = 0, w1 17|rour. = d1, which satisfies the estimate
1
(3.45) uiz,r1|| 200 = o(;) as T — +00.

Finally, by (3.17) [|d1+ || z2qreur_) = O(Z5). So applying the Proposition 2.6 we obtain solution

to the initial value problem L;(x, D)(e™ui2 1) = 0, w12 111|rour. = da» which satisfies the
estimate

1
(3.46) w1z, 111l 22(0) = 0(;) as T — +o00.

Setting w2 = wia r7 + Ur2,17 + U127 We obtain solution to (3.40), (3.41) satisfying
1

(347) ||u12”L2(Q) = O(;) as 7 — +00.

Now consider the sequence of 7; such that

(348) T = 27rjn1n2n3n4.

For each 7; from this sequence our solution u; satisfies the zero Dirichlet boundary condition
on FO url_.
Consider now the Schrodinger equation

(3.49) Ly(x,D)v =Av+qv=0 in Q.
We will construct solutions to (3.49) of the form
(3.50) v(z) = e (a4 bo/T) + e T (a+ b /T) + e P + e o, vlp, = 0.

The construction of v repeats the corresponding steps of the construction of w;. The
only difference is that instead of ¢; and 7, we use ¢» and —7 respectively. Let polynomials
Ms(z), M4(Z) be such that

(3.51) (- (aq) — My)(x) =0, x€HU{dps,k=1,...,4},j=0,1,2,
(3.52) (07 (@q) — My)(z) =0, ze€HU{dps,k=1,...,4}, j=0,1,2,
and

(3.53) OFMy(24) = OFMy(%;4) =0 VEk€{3,...,100} and Vj € {1,...,4}.

Finally by, b; are holomorphic functions such that
(05 (agz) — Ms) (97 (ags) — M)

bo+B1) |y = —
( 0+ 1)|F0 46;,3@ 482,@
and there exists a positive constant (5 such that
(3.54) bk (z)] < Chalx — 34> Vi € {1,...,4}, Vk € {0,1}.

Let

~

(355) bj(fﬂl,l'Q) = Re bj(ﬂ?l, —.TQ) —2Im b]-(xl, —I'Q) Vo € Q+, ] S {O, 2}
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We set
(3.56) e v (T, x) = —Xa (e TV (a + bo/7) + eV (a + by /7)) + W (x)e T

The function y, is constructed in the following way. Then we set

)T — )

for x€Vy={(a1,2)|t14 <1 <i2—,—571(951) <z <0},

(3.57) Xr(2) = (1= pl(21 — &34 )7%0) — )

for x e Vy={(r1,22)|T3+ § 1 < Ty, —573(371) < x5 <0},
0 for =¢ VsUV,.

\

Let function w, be solution to the following boundary value problem:

A(ire™™?) + go(ire7™) = Xrga(e ™ (a+bo/7) + e (@ + b /7))

(3.58) +[%r, Al(e ™ (a + bo/7) + e ¥ (a+ by /7)) in Q,
(Wre ™) |rour. = —€ " ®(a+ by/7) + ¢ (a+ by /7)
(3.59) %€ (@ + bo/7) + e (a + by /7).

Denote §, = [Xr, Al(e ™Y (a4 bo/7) + € ™Y (a + by /7)). We claim that
o 1
(3.60) G- L2() = 0(;) as |1| = +oo.

Indeed the operator [x,,A] is the first order operator :[X,, A] = 2(Vx,, V) + Ax, where

L

(3.61) IV (@) = O 1), [|A%s||n=(0) = O(75) as |r] = +oc.

By (3.57) we have

supp VX-, supp Ax, C fl(T) U Zy(7),

where
- 1 2 R R 2
Il(T)—{(ml,l'Q)‘—lSQ?gS—l, $1€[$1++ Ty - — L]U[LC3+—|— $47,—T]},
T7 T7 T80 T80 T80 T80
- 2 ) R 2 . 2 . 1
I2(T>:{<$1,$2)’0§[B2§—l, $1€[$1+—|— 1,x1++T]U[$2_—T’x2___1]
T7 T80 T80 T80 T80
N 1 2 R 2 1
UlZs 4 + — T34 + — ) U [y — —, Ty - -}
T 80 T80 T 80 T80

Observe that

(3.62) Ti(r)UT(r) C T_.
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Applying (3.17), (3.32), (3.62) we have

(3.63) e [r, AJ(e™™ (@ + bo/7) + €™ (@ + by /7)) oo 21
< e AR (e (@ + bo/T) + ¢ (@ + by /7))l oo 2y

+2]e7 (e (Ve V) (@ + bo/7) + €Y (Vir, V)(@ + b1 /7)) oo

+2||7em (e (Vir, VI) (@ + by /7) + €™ (Viir, V) (@ + b1 /7)) oo 2

B
<|7]® sup ere—TRev < |7 sup e ~7Csl(w ) < |T[3e TR OTT = O(—Q) as |1| — +oo.
z€Ty(T) z€Zy (T) T

Using (3.17), (3.22), (3.32) we have

(3.64) €72 [, Al (@ + bo/7) + €™ (@ + b1 /7) | ooz

<€A (e (@ + bo/7) + e (@ + by /7))

+2)e™ (e ™ (V Xy, V)@ + bo/7) + € 7Y (VXr, V) (a4 by /7))
+2|7e™ (e Y (Vir, VU) (@ + bo/7) + ¢ 7Y (vxf,vqf)(mbl/f )HLOO )
< [|AXA((@ + bo/7) + (@ )
+2/[(VXr, V)(@ + bo/7) + (Vr, )(a+b1/r)HLoo ()
+2/7((VXr, VO) (@ + bo/7) + (VXr, V) (@ + by /7)) ooz = O(%) as |7| — +o0.

The inequality (3.63) and (3.64) implies (3.60) immediately. Using (3.31), (3.36) and the
fact that supp x> N H = () we can apply the Proposition 2.6 to obtain the solution to the
boundary value problem (3.29),(3.30) such that

1
(3.65) |lwe|z2) = 0(;) as |1| = +o0.
The function vy; is given by
1 .~ 1.
(3.66) v = —Ze‘”wR@,_T(el(é?;l(qQa) - My)) — ZewwR@,T(el(az_l(Qﬁ) — My))
T ey(0z ag) — Ms) N €'Y e5(0; ! (agy) — My)
T 40, T 40,9 ’
Denote

1 1=
_riv p [ €200z (ag2) — M>) v [ €207 (ag) — My)
= A( 0.0 Tera 170.3

by b
—?(h@ v ?(be .

The function vy is a solution to the problem:

(3.67) A(vize"?) + qauige” ¥ = —qeuyie” ¥ — hoe 77 in
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(3.68) Via|rur, = CZLT + 0?2,7 + CZ3,7'7

where di, = ©"Rg _,(e1(0; " (ag) — Ma)) + 5~ R (e1(0; (ags) — M), dor = xr, (1 —
. ~ iTY e :1 a — —iTY e ;! a — —Ti bie™?

x-)Re {e_Twa}’ d3r = efw — 4(8zqc21>) A + © T = 2l 4(azq<21>) Ml bue w:rble J

By (3.17), (3.22) there exists a constant C' independent of 7 such that

~ [0
d3,7’/ 8_;0

Applying the Proposition 2.7 we obtain the solution to the initial value problem Lo (z, D)(e™ "% v ) =

< s,
7]

(3.69) |

L2 (I'y)

0,v12,1lr, = 0,v12,7]r, = ds which satisfies the estimate

1
(3.70) v12,1]l2) = 0(;) as T — +oo.

Since
lg2v11 + hallL2(0) < Cra(8)/|7|'0 Vs € (0,1)

and by the stationary phase argument HOZLTHLz(pOUer) = O(Z) there exists a solution to the

initial value problem Ly(z, D)(e™ ™ v12,11) = 0,v12,11|rour, = di,» which satisfies the estimate

1
(371) ||1}12,II||L2(Q) = O(;) as T — +o0.

Finally, by (3.17) ||d~177-||L2(FOUF+) = O(Z). So applying the Proposition 2.6 we obtain solution
to the initial value problem Lo(z, D)(e™™Pvig,111) = 0,v12,111|rour, = dar which satisfies the
estimate

1

(372) ||U127[[[||L2(Q) = 0(;) as 7 — +o00.

Setting v1a = v12,177 + V12,17 + V127 We obtain solution to (3.40), (3.41) satisfying
1

(3.73) |v12]L2(0) = 0(;) as T — +00.

For each 7; defined by (4.19) this sequence our solution v satisfies the zero Dirichlet boundary
condition on I'g U T'_.

4. Proof of the theorem.

Proposition 4.1. Let function VU determined in (3.24) and holomorphic function ® con-
structed in Section 3 has an internal critical point . Then for any potentials qi,q2 €
C*(Q), a > 0 with the same Cauchy data and for any holomorphic function a satisfying
(3.17) and My(z), Ma(2), M3(Z), My(Z) as in Section 3, then

7r(q|a|2)(§)Re e2irj]m<1>(5)

4.1 i
(4. |(det Im®")(7)|3

+ /qu(ao +bo) +a(@ + b))de
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1 8:1(GQQ) — M2 8_1(q26) — M4)
+ = Z +qa z d
/Q (qa az(I) qa OZ(D T
1 8;1(aq1) —M1 _3;1(dq1) —M3
-1, (qa XX ) dw

1 1
+ / anRe{_—}da—/ qa2Re{_—}dU:01 as T; — +00o
. lal 5.7 — @) s |al 5,.(T @) (1) ;

where ¢ = q1 — g2 and the sequence 1; given by (4.19).

Proof. Let uy be a solution to (3.1) and satisfy (3.2), and us be a solution to the following
equation

Aug + qaua =0 in Q,  uslan = uian.
Since the Cauchy data are equal, we have

Vus =Vu; onl_.

Denoting u = u; — ug, we obtain

) ou
(4-2) Au+ gu = —qu; in €, U|aQ = E‘F_ =0.

Let v satisfy (3.49) and (3.50). We multiply (4.2) by v, integrate over € and we use
vlr, = 0 and 2% = 0 on I' to obtain [, quyvdz = 0. By (3.2), (3.50) and (3.47), (3.73), we
have

0= / quivdr = / q(a® + @ + |a|?e™ (@) 4 |a|?e (22)
0 0

1 _ U

+T—(a(a0 + bo) + 6(61 + bl)) + uneTJ“”(ae 7P + ae JCD)
J

+(ae™® + ae"®) vy e ) dx

+/ q(e7 a4+ e T Pa)u_e"Pdx
Q

3 1
(4.3) +/ q(e®a + e"%a)v e ¥dr + o (—) , 1> 0.
Q

7j

The first and second terms in the asymptotic expansion of (4.3) are independent of 7;, so
that

(4.4) / q(a® +a@*)dx = 0.
Q
Let the functions functions ey, es be defined in (3.39). We have

q(|a|267j(¢—¢)_|_|a|267—]-(<1>—<1>))d$:/elq(|a|267j(<1>—61>)+|a|267j(<1>—<1>))dx
Q

S— 55—

eaq(|al?e™®®) + |af2e" (2= dz.

_|_
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By the Cauchy-Riemann equations, we see that sgn(Im ®”(zy)) = 0, where sgn A denotes
the signature of the matrix A, that is, the number of positive eigenvalues of A minus the
number of negative eigenvalues (e.g., [5], p.210). Moreover we note that

det Im ®”(2) = —(0,,02,0)* — (8; p)? # 0.

To see this, suppose that det Im ®”(z) = 0. Then 9,,0,,¢(Rez,Im z) = 82 p(Rez,Imz) =
0 and the Cauchy-Riemann equations imply that all second order partial derivatives of
functions ¢, at the point z are zero. This fact contradicts the assumption that critical
points of the function ® are nondegenerate.

Observe that if ® has the critical point in €2 it can not have any critical point on I'y. Then
by (2.2)  is the only critical point of this function on Q. Using stationary phase (see p.215
in [5]), we obtain

7qla?(Z)Re p2rilm (@) . ( 1 )
o .

4.5 /e q(la 267 (2=2) 4 |26 (PP dy = 2 -
(45) o (la al ) 7;|(det Im ®”)(7)|2

Integrating by parts we have

/62q(|a|267]-(<1>—<1>)+|a|2€7-j(<1>—¢’))dx
Q

(V) veTj(<I>—5)) (Ve VeTJ'@—@))
= /equa|2 ’. Y dz
0 2iT;| V|2 2i7;|Vp|?

. eaqlal’Vy (@—3) _ 7;(d-d)
— — d - 7—J 75 d
/Q v (2”]' V|2 (e ‘ e

Q|a|2 oY (®—3) i(D—®)
[ 75 ( e’ d
+ /é,Q Sim Vol ov )do

2 _
_ _/ div <62Q|a| Vlé’) (erj (@—®) _ fj(<1>7<1>)>dx
supp e2 2ZTJ |V1/J|

Q|a|2 o, i —275itp 1
+ / —_— T — e do + o(—) as T; = +o00.
r_ur, 207 V|2 8V( ) (Tj) I

In the last equality, we used that e(®=®) — ¢7(®=®) — () on Ty which follows since by (2.3)
Im® = 0 on Iy, and (3.17) in order to show that div <652i’7l‘1ﬂ) and =29 are bounded

2i7;| V|2 2i7;| V|2
functions. Applying Proposition 2.4 we obtain

- — 1
/ eaq(|al?e@=®) 4 (a2 P dr = o(—) as 1; — +oc.
Q 7j
Since the function v is strictly monotone on I'_ UT'y we have
glal* 0y 2ritp —27jit 1
—————— (""" — 7" do = 0o(—) as T; = +00.
Jov. o = olz)

Therefore

- - 1
(4.6) / q(|a?e @) 4 || @) dr = o (—) :
0

Tj
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Next we claim that

(4.7)
2 1
/ q(e7%a + e Pa)u_e P dr = / alal Re { — } do +o(—) asT; = 400,
9 _ T O, (¥ — @) 7
and

_ 2 1
4.8 / e a+ e e”“’dx:/ alal Re{ — }
( ) QQ( )+ - 8@(111—@)
Indeed, by (3.56) and (3.24)

K::(/ﬁq@‘”¢a—%e‘”¢aﬁhf”@dx::/ﬂq&f”¢a-%e‘”¢axmy@”@@?17%757
Q Q

+€Tj\y(a + &1/7]))d1' = / QXTj (ameﬁ'(a_@) + ameﬁ(a—é)
Q

tala+ a1 /7)€" ta(a + ay/7;)e V) da =

- Vo — 27__1.1#1 (V1+iV2)
rlala+ag/7j)) ——=— t+ala+ap/7;)e""" - ——="—
| v falatind e P R ST Pyt s

(Vl — il/g)

~ —27;1 ]‘ P ~
+a(a+ a1 /T))e 273 ¢§m + ala + a1/7))

V2

TJOM (\I[ — (I))

)do —

1 o S

- /(B1 (7, D)*(gx~ala + ao/;))e” "™ + By(z, D)*(qx-,a(a + ao/7;))e? =
i Ja

—{—Bg(l‘, D)*(qXTja'(a + dl/Tj))eTj(qj_q>) + B4($a D)*(qugd(a’ + dl/Tj))eTj(qj_é)>d$7
where

Bl(ZE,D) = #, BQ(.T, D) = L,
am(qj - (I)) 82(\1; - (I))
0 9,
Bs(z,D) = ————, By(z,D) = ——2—.
82(\11 - ) axz( - CI))
By (3.17) the boundary integrals in (4.11) can be estimated as O(Tij). Integrating one more
time we have

K / . ( aa N aa ) J
— — = g
r_ \Tj05, (U —®)  7;0,(V - ®)

| I ——— o e
5 /Q(Bl(x, D)*(qx~(ala + ao/7)))e™ ™™ + By(x, D) (qxrala + ao/7;))e™ ¥~
+Bs(x, D)*(qx-a(a + dl/Tj))eTj(lI,_q>) + By(x, D)*(qx,a(a + dl/Tj))eTj(‘I’_‘f’))dx =

1 aa aa
IC+—+/ — + __)d
tholC) _qCﬁMW—® vﬂa@—w)”

* A * T\ 2w L + 1
+ [ (10 D) (a0 /) o + Bale, D) (ol o))y AL
o0 Tj a:m(\ll - q))

2720,(T — D)

. —orip (V1 — . _ . 12
B, D) ol o )7 5~ b Bl D) (v ala+ /7))~ g

7;20,,(V — @)
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where

K=
2 o (B DY ala T aor)e” ™= 4 (Bale, D)oo+ o)~
+(Bs(@, D)")*(axrala+ a1/7;))e ) 4 (By(x, D)) (gx~;a ala + ay/7;))e” "™ ®)dz.

Since

(4.9) Re (¥ — ) <0 Vaeg.

by (3.13) we have

1| < Ti/ (I(Bi(x, D)*)*(gx~ala + do/75))| + |(Ba(x, D)*)*(gx+a(a + ao/7;))|
57 Jsupp x-. g

+[(Bs(z, D)) (qxwala + a1 /7)) + [(Ba(w, D)) (qxra(a + a1 /75))])dz <

C 1 CT]ég =0 i as T, o

(4.10) ?/uppr ng_ |51(1L“)|2dx = T (Tj) ;e

Again, by (3.17) the boundary integrals in (4.11) can be estimated as O(%). By (3.27) the
boundary integral in (4.12) can be estimated as o(L).

(4.11) K= / q(e™® a+ei® a)vpe Pdx = / q(equ’a—|—6”5&)2”(@_”@(@—1—60/@)
Q Q

+e Y (a+by/7y))de = [ X, (ala+bo/7;)e” Y +G(a + by/7;)e D)
Q
. ) 1
ta(a+by/7)e Y L ala + by /1y)e T D) dr 4+ o( =) =
Tj
1 (Vl + ng)

7j0n, (¥ — @) (/) 27;0:(¥ — @)

Vo

- / 4r, (ala + b/ )
o0

Vo

T 0, (U — CTD)

1 — S o
o / (Bi(x, D) (axr,a(a + bo/7))e™ ™) + By(x, D) (qitr,ala + bo/75))e 7
i JQ

1 (0 —i .
+a (a—i—bl/T]) i (—W2)+&(a+bl/7j)

27,0.(U — D) Jdo =

+Bs(x, D) (g~ a(a + by /7))e” "™ + By(x, D)*(qXr,ala + by/7;))e” =) da

1
+o(—) as 1, = +o0.

Tj
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By (3.17) the boundary integrals in (4.11) can be estimated as o(* ) Integrating one more
time we have

~ aa aa
4.12 K=- — + = d
( ) /F+ ! <Tj6x2(qj - QD) Tjaﬂm(qj - (I))) 7

L [ (Bu(e, DY (a5, (ala + bo/m))e ™

Tj Q
+Bs(x, D) (qX+a(a + I;I/Tj))e_”(q’_q)) + By(z, D)*(qX~,a(a + bl/T])) T]'(\I'_é))dx =
q
Ly

~ 1 aa aa
K Y — — | d
o) [ o(ooti—e * raa—w)
___ b e e—tmiwl (i)
7_]28:02(5_ (I)) + BQ(xa D) (QXT (CL+b0/T]>) 27—]’285(\1/ _ (I))

" 4 By(w, D) (q¥r,ala + bo/7y))e 7

_ /8 ) (Bl(x, D) (g ala + bo/7,))

B . w1 (1 — i) Vs
+ * + . 2rjip —  \TL e - <
B3($7D) (QX‘rja(aJ b1/7]))e > j2 52(\11 ) +B4(£C,D) (qXT (a+bl/T])) j2 IQ(\i] )) do,

where

(4.13) 1
% / ~ ((Bule, D)y)*(axnala + bo/75))e "V + (By(w, D)*)* (g~ a(a + bo/75))e V)
upp x-,NG+

+(Bs(x, D)*)*(qXryala + by /73))e” = 4 (By(w, D)*)*(qXr,a(a + by /75))e 7P da.
Observe that
(4.14) Re(V — @) >0, Vzeg,.

By (4.14), (3.13) we have

K| < %/ ~ ((Bi(a, DY)V (akr,ala + bo/m))| + |(Balx, D)) (a%r,a(a + bo/75))]
J Uupp x-; NG+
+[(Bs(, D)) (axryala+ by /7)) + |(Bi(w, D)) (qXrala + b /7)) )dx <
C 1 CT]’SO _, 1
(4-15) ?/SUPPXTJ-HQ |€1(.T)’2d‘r§ sz - (Tj)'



DETERMINATION OF THE POTENTIAL FROM PARTIAL CAUCHY DATA 21

Using the argument similar to (4.15) we obtain the second formula in (4.8). We calculate
the two remaining terms in (4.3). By (3.38) and Proposition 2.5 we have:

FS 1
(4.16) / quiie7?(ae” " +a@e ) dr = o(—)
Q 7j
e"® (- (aqy) — M) em® (87 (agqy) — M)
N z z —7;® —7;® dr =
/Q ( T 40,9 + T 40,9 q(ae +ae ) x

_ / er® M a0 (aq) — M) | P a0 (@) — My)
0 q 7 48Z(I) T; 48,2_(1)

a (0 (aq) — M a (07 (aq)) — M. 1
_ /q(_( Z ( Q1> 1)+_( z ( ql) 3))d{[’+0(—):
o \7Tj 40, T; 40,9 Tj
a (0-'(aq1) — My) @ (07 aq) — Ms) 1
— ——= ——= d — P — .
\/Qq (Tj 48ZCD + Tj 462,(1) T O(Tj) AT oo
Similarly by (3.66) and Proposition 2.5
(4.17) Jo quiie™ % (ae™® + ae®)dr =
7 = ! (ag2)— M e~ Ti® (97 (ag2)— T T
la ( o O e ) 7 05 ) M4>) (ac™® + @™ ®)dz + o( %) =

e~ TP (97 (ag2)=Ma) | TP a(97 (ags)— M.
qu< - 40,0 + 19.0 >

a 07 '(ag2)— M. g 07 \(a
+f9q<7_j (453) 2+T_j (452(@ )dx+o()

(aq ) M. a az a
Joa <TJ Be T ™ (452c1> ) d + ol ) as 7j = +00

Therefore, applying (4.4), (4.6), (4.7), (4.8), (4.17), (4.16), in (4.3), we conclude that

2)(7)Re 27 1M (@) B
27r(q]a| J(@)Ree — + / q(a(ag + bo) +a(a; + by))dx
|(det Im®”)(Z)|2 Q
1 8;1((1612) — M2 _82_1(QQ6) — M4
1, <qa XX ) “
1 8;1((]10/) — M1 _8_1((]16) — M3
=1 (q& XX ) dx
N / ( aa N aa ) is
T ! 70y (U — @) 7,0, (¥ — @)
aa aa
— q = + = ) do = o(1
[t =) =
as 7; — +00. The proof of proposition is finished. O

End of proof of Theorem 1.1. First we observe that any smooth holomorphic function
® = ¢ + i) such that (2.3) holds true can be approximated by the sequence of harmonic
functions constructed in Section 3. Moreover the function satisfying (2.3) has at most one
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internal critical point. Therefore by Proposition 4.1 the function ¢ is zero at this critical
point. Consider the set of harmonic functions 1 satisfying the following

function 9 equal to some constant on each connected component of the set I'y;
o
o7t <0

o
o7
We show that the set of critical points of harmonic functions ¢ with above properties is
dense in Q. In order to do that it suffices to consider the following. Let 9Q = Uj_ T,
where T’y is ark and I'; N Ty, = 0 for any k& # j and Q is the unit ball centered at zero.
Consider the set of harmonic functions ¢ with the boundary data |, = Ck. We claim
that for generic choice of I'y we can find a constants Cj, such that Vi (0) = 0. Indeed since
W(x) = % 02ﬂ¢(eit) ‘i;‘le; dt we have 0,1(0) = % 02ﬂ¢(eit)eitdt.
Indeed, let C7 = 0,Cy; = 1 and the endpoints of the arcs I'y on the complex plane are
given by €°, e, €2 ¢ with 0 < 6, < 0, < 035 < 2m. Then

i0.0(0) = Co(e ™ — e72) 4 Cy(e™2 — 708) 4 (7% — 1),
The equation 9,1(0) = 0 equivalent to

C3(e—i92 _ €—i93><€i61 _ 6’502) + (e—i93 _ 1)(ei91 _ €i92)

|e*i91 _ 67i92|

|1“7 > (.

Cyp=—

The existence of real valued solutions Csy, C3 to this equation is equivalent to
Im<€i(91—92) + ei(02=63) _ ei(91—93)) £ 0.

This clearly holds true for generic position of 6;.

In the set I'y UTI'_ we make the choice of four points Z1,...,24 such that &1 € 14,22 €
I'y—,23 € I'o 4,29 € I'y_. Denote by fl, o f4 the arks connecting these points. Consider
the conformal mapping II which transforms the domain 2 into the unit ball and point Z into
the center of the coordinate system. Above we show that under generic choice of the points
Z; there exists a harmonic function vy which is equal to some constant on each ark I1(T';).
Consider the boundary data y(II). The corresponding harmonic function we denote as zﬂ
The function 2/3 is equal to constant C; on each ark f‘j and it has only one the nondegenerate
critical point located at . Without loss of the generality we may assume that Cy = 0
multiplying if this is necessary the function vy o Il by nonzero constant we may assume that
Cy = —1. Observe that Cy < 0 and C3 > Cs. (Otherwise if at least one of these inequalities
fail the function g o II can not have the internal critical point.) In small neighborhood
F C U?erjd: of the points of discontinuity of the function g o Il we approximate it by
a sequence {puy} strictly monotone decreasing or strictly monotone increasing functions.
Outside of F the function u; are equal to corresponding constants.

Moreover

e — o o I in L*(09).
We claim that for all sufficiently large & the harmonic functions ¢y such that ¥g|sq =
have a unique internal critical point which we denote as ;. Moreover Z; — . Our proof is
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by contradiction. Suppose that for large j functions 1); do not have internal critical point or
the sequence converges to some point y # Z. Indeed for any €y CC 2

Y — o oIl in C?(£p).

n the other hand it is known that the number of zeros N of a holomorphic function f(z) in
domain G given by formula

_ L 0.f s
210 Joc: f(2)

Solving the system of Cauchy-Riemann equations we construct the the holomorphlc function
2

®; = @;+iv;. By (?7?) for all sufficiently small positive 6 and all large k 5 $(56) gz(zziﬁ’;)dz =

1. This means that the function ¢y + i)y has the critical point in the ball B (:L‘ d). But this

function can not have more than one critical point. So y = . Proof of the theorem is

complete. [

(4.19)

5. Appendix.

Consider the Cauchy problem for the Cauchy-Riemann equations

06 0 99 0
(93[:1 81’2, axg 8x1

(5.1) L(g,¥) = ( )=0 inQ  (¢,9)[r, = (b1(2), ba()),

(0 + i) (Z) = oy

Here z1,...2x be an arbitrary fixed points in 2. We consider the pair by, by and complex
numbers C' = (¢g 1,11, C21,---CoN,C1N, C2n) as initial data for (5.1). The following propo-
sition establishes the solvability of (5.1) for a dense set of Cauchy data.

Proposition 5.1. There exists a set O C C10(Ty)2 x C such that for each (by, by, C) € O,
(5.1) has at least one solution (¢,v) € (C1°(Q))2 and O = C*°(T)? x C.

Consider the Cauchy problem for the Cauchy-Riemann equations

0 oY 0 0
62) L6 =G -2t 2l 2 0 i (6.0, = 0).0),
!

0 v ,
@W‘i‘“ﬁ)(%‘):%,j, Vje{l,...N} and Vil €{0,...,5}.

Here Zy,...Zx be an arbitrary fixed points in 2. We consider the function b and complex
numbers C' = (¢ 1, €11,C21,C31,C41,C51 - --Co.NsC1N; C2.N+ C3.N, C4N, C5n) as initial data for
(5.1). The following proposition establishes the solvability of (5.1) for a dense set of Cauchy
data.

Corollary 5.1. There ezists a set © C C%(Tg) x CN such that for each (b,C) € O, problem
(5.2) has at least one solution (¢,v) € C5(Q) x C%(Q) and O = C*(T') x COV.

Now we give the proof of Proposition 2.7.
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Proof. Let us introduce the space
1 9 ov
H= UEHO(Q)|AU+q0v€L(Q),—V =0
with the scalar product
(Ul, UQ)H = / 62T@(AU1 + qul)(AUQ + QQUQ)d.%‘.
Q

By Proposition 2.1 H is a Hilbert space. Consider the linear functional on H : v — [, vfdr+
fo g%da. By (2.4) this is the continuous linear functional with the norm estimated by a

constant C’12(erw||L2(Q)/T% + lge™ A/10vll| 2r_y). Therefore by the Riesz representation
theorem there exists an element v € H so that

/v?dx—l—/ g@daz/e%“’(Aﬁ+ q00)(Av + gov)dz.
Q r - ov Q

Then, as a solution to (2.8), we take the function u = €*™?(Av + ¢o0). O
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