
UTMS 2011–2 January 21, 2011

Global uniqueness in determining
the potential for the two dimensional

Schrödinger equation from cauchy data
measured on disjoint subsets of the boundary

by

Oleg Yu.Imanuvilov, Gunther Uhlmann,

and Masahiro Yamamoto

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



GLOBAL UNIQUENESS IN DETERMINING THE POTENTIAL FOR
THE TWO DIMENSIONAL SCHRÖDINGER EQUATION FROM
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Abstract. We discuss the inverse boundary value problem of determining the potential

in the two dimensional stationary Schrödinger equation from the pair of all Dirichlet data

supported on an open subset Γ+ and all the corresponding Neumann data measured on an

open subset Γ−. We prove global uniqueness, under some conditions, for the case that Γ+

and Γ− are disjoint. We construct appropriate complex geometrical optics solutions using

Carleman estimates with a singular weight to prove the main result.

1. Introduction

We consider the problem of determining a complex-valued potential q for the Shrödinger

equation ∆ + q in a bounded two dimensional domain from the following boundary data.

Let ∂Ω = Γ− ∪ Γ+ ∪ Γ0 where Γ− ∩ Γ+ = Γ0 ∩ Γ± = ∅. The input is located on Γ+ and the

output is measured on Γ−. It is well-known that this problem is closely related to Calderón’s

problem in the situation when the voltage potential is applied on the surface Γ+ and the

current is measured on the surface Γ−.

The unique determination of the potential q in the two dimensional case initially was

proved in the case of full data, Γ+ = Γ− = ∂Ω under some restrictions on the potential q,

[8], [9], [10]. Recently A. Bukhgeim [3] removed these restrictions for the case of full Cauchy

data.

For the case of partial data, in [6] the authors showed that the potential q can be uniquely

determined if Γ+ = Γ− = Γ̃ and Γ̃ is an arbitrary fixed open set on ∂Ω.

The main result of this manuscript is the unique identifiability of the potential q under

some geometric conditions on the sets Γ±. To the best of our knowledge this is the first unique

determination result for Calderón’s problem when the voltage is applied and the current is

measured on disjoint surfaces.

In a bounded simply connected domain Ω ⊂ R2 we consider the Shrödinger equation

∆u+ qu = 0 in Ω, u|Γ0∪Γ− = 0.

Let Γ+, Γ− and Γ0 ⊂ ∂Ω be non-empty open subsets of the boundary such that ∂Ω =

Γ+ ∪ Γ− ∪ Γ0, Γ+ ∩ Γ− = ∅, Γ± = ∪2
j=1Γ±,j, where sets Γ±,j are open in ∂Ω.
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We introduce the following set of Cauchy data:

(1.1) Cq =
{(

u|Γ+ ,
∂u

∂ν

∣∣∣
Γ−

)
| (∆ + q)u = 0 inΩ, u|Γ0∪Γ− = 0, u ∈ H1(Ω)

}
.

We need the following geometric assumption on the position of the sets Γ±,j on ∂Ω.

Assumption A. If we are starting the clockwise movement from some point of the set

Γ±,j before arriving to another component Γ±,k we have to pass through a component Γ∓,ℓ.

Our main result gives global uniqueness by measuring the Cauchy data with input on Γ+

and output on Γ−.

Theorem 1.1. Let qj ∈ C2+α(Ω), j = 1, 2 for some α > 0 and let qj be complex-valued.

Then if

Cq1 = Cq2
we have

q1 ≡ q2.

Now we apply the above result to Calderón’s problem. A bounded and positive function

γ(x) models the electrical conductivity of Ω. Then a potential u ∈ H1(Ω) satisfies the

Dirichlet problem

(1.2)
div(γ∇u) = 0 in Ω,

u
∣∣
Γ0∪Γ−

= f,

where f ∈ H
1
2 (∂Ω) is a given boundary voltage potential. The Cauchy data is defined by

(1.3) Aγ = {(u|Γ+ ,
∂u

∂ν

∣∣∣
Γ−

)|div(γ∇u) = 0 in Ω, u
∣∣
Γ0∪Γ−

= 0, u|Γ+ = f}.

Theorem 1.2. Let γj ∈ C4+α(Ω), j = 1, 2 for some α > 0 and let γj be positive functions.

Assume Aγ1 = Aγ2 . Then γ1 ≡ γ2.

Uniqueness for C2 conductivities for the case when Γ0 = Γ± = ∂Ω was proved in [8]. The

regularity condition was relaxed in [2] and [1]. In particular in [1] uniqueness was shown for

arbitrary L∞ conductivities. For the case of partial data when Γ+ = Γ− is an arbitrary open

subset of the boundary global uniqueness was shown in [6] for C3+ϵ(Ω) conductivities.

A brief outline of the paper is as follows.In section 2 we give some preliminary results and

estimates needed in the construction of the appropriate complex geometrical optics solutions.

In section 3 we construct these solutions. In section 4 we prove the main result.

2. Preliminary results

Throughout the paper we use the following notations.

Notations. i =
√
−1, x1, x2, ξ1, ξ2 ∈ R1, z = x1 + ix2, ζ = ξ1 + iξ2, z denotes the complex

conjugate of z ∈ C. We identify x = (x1, x2) ∈ R2 with z = x1+ ix2 ∈ C. ∂z = 1
2
(∂x1 − i∂x2),

∂z =
1
2
(∂x1 + i∂x2). The tangential derivative on the boundary is given by ∂τ⃗ = ν2

∂
∂x1

−ν1 ∂
∂x2
,

with ν = (ν1, ν2) the unit outer normal to ∂Ω, B(x̂, δ) = {x ∈ R2||x− x̂| < δ}, f : R2 → R1,
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f ′′ is the Hessian matrix with entries ∂2f
∂xk∂xj

, L(X, Y ) denotes the Banach space of all bounded

linear operators from a Banach space X to another Banach space Y .

Let Φ(z) = φ(x1, x2)+iψ(x1, x2) ∈ C2(Ω) be a holomorphic function in Ω with real-valued

φ and ψ:

(2.1) ∂zΦ(z) = 0 in Ω.

Denote by H the set of critical points of the function Φ

H = {z ∈ Ω|∂zΦ(z) = 0}.

Assume that Φ has no critical points on Γ+ ∪ Γ−, and that all the critical points are nonde-

generate:

(2.2) H ∩ ∂Ω = {∅}, ∂2zΦ(z) ̸= 0, ∀z ∈ H.

Then we know that Φ has only a finite number of critical points which

H = {x̃1, ..., x̃ℓ}.

Assume that Φ satisfies

(2.3) Γ0 = {x ∈ ∂Ω|(ν,∇φ) = 0}, Γ− = {x ∈ ∂Ω|(ν,∇φ) < 0}.

Consider the boundary value problem{
L(x,D)u = ∆u+ qu = f in Ω,

u|∂Ω = 0.

For this problem we have the following Carleman estimate with boundary terms.

Proposition 2.1. Suppose that Φ satisfies (2.1), (2.2), (2.3) u ∈ H1
0 (Ω) and q ∈ L∞(Ω).

Then there exist τ0 = τ0(L,Φ) and C1 = C1(L,Φ) independent of u and τ such that for all

|τ | > τ0

|τ |∥ueτφ∥2L2(Ω) + ∥ueτφ∥2H1(Ω) + ∥∂u
∂ν
eτφ∥2L2(Γ0∪Γ−) + τ 2∥|∂Φ

∂z
|ueτφ∥2L2(Ω)

≤ C1(∥(L(x,D)u)eτφ∥2L2(Ω) + |τ |
∫
Γ+

|∂u
∂ν

|2e2τφdσ).(2.4)

Let us introduce the operators:

∂−1
z g =

1

2πi

∫
Ω

g(ζ, ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫
Ω

g(ζ, ζ)

ζ − z
dξ2dξ1,

∂−1
z g = − 1

2πi

∫
Ω

g(ζ, ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫
Ω

g(ζ, ζ)

ζ − z
dξ2dξ1 = ∂−1

z g.

Then we have (e.g., p.47 and p.56 in [11]):

Proposition 2.2. A) Let m ≥ 0 be an integer number and α ∈ (0, 1). Then ∂−1
z , ∂−1

z ∈
L(Cm+α(Ω), Cm+α+1(Ω)).

B) Let 1 ≤ p ≤ 2 and 1 < γ < 2p
2−p . Then ∂

−1
z , ∂−1

z ∈ L(Lp(Ω), Lγ(Ω)).



4 O. IMANUVILOV, G. UHLMANN, AND M. YAMAMOTO

We define two other operators:

RΦ,τg = eτ(Φ−Φ)∂−1
z (geτ(Φ−Φ)), R̃Φ,τg = eτ(Φ−Φ)∂−1

z (geτ(Φ−Φ)).

In [7] we prove the following

Proposition 2.3. Let g ∈ Cα(Ω) for some positive α. The function RΦ,τg is a solution to

(2.5) ∂zRΦ,τg − τ(∂zΦ)RΦ,τg = g in Ω.

The function R̃Φ,τg solves

(2.6) ∂zR̃Φ,τg + τ(∂zΦ)R̃Φ,τg = g in Ω.

Using the stationary phase argument we show

Proposition 2.4. Let g ∈ L1(Ω) and the function Φ satisfy (2.1), (2.2). Then

lim|τ |→+∞

∫
Ω

geτ(Φ(z)−Φ(z))dx = 0.

Denote

Oϵ = {x ∈ Ω|dist(x, ∂Ω) ≤ ϵ}.
We have

Proposition 2.5. Let α > 0, g ∈ C2+α(Ω), g|Oϵ = 0 and g|H = 0. Then

(2.7)

∥∥∥∥RΦ,τg +
g

τ∂zΦ

∥∥∥∥
L2(Ω)

+

∥∥∥∥R̃Φ,τg −
g

τ∂zΦ

∥∥∥∥
L2(Ω)

= o

(
1

τ

)
as |τ | → +∞.

Consider the following problem

(2.8) L(x,D)u = feτφ in Ω, u|Γ0∪Γ− = geτφ.

We have

Proposition 2.6. (see [7]) Let q ∈ L∞(Ω). There exists τ0 > 0 such that for all τ > τ0 there

exists a solution to the boundary value problem (2.8) such that

(2.9)
1√
|τ |

∥∇ue−τφ∥L2(Ω) +
√

|τ |∥ue−τφ∥L2(Ω) ≤ C2(∥f∥L2(Ω) + ∥g∥
H

1
2 ,τ (Γ0)

).

Let ϵ be a sufficiently small positive number. If suppf ⊂ Gϵ = {x ∈ Ω|dist(x,H) > ϵ} and

g = 0 then there exists τ0 > 0 such that for all τ > τ0 there exists a solution to the boundary

value problem (2.8) such that

(2.10) ∥∇ue−τφ∥L2(Ω) + |τ |∥ue−τφ∥L2(Ω) ≤ C3(ϵ)∥f∥L2(Ω).

We have

Proposition 2.7. Let q ∈ L∞(Ω) and let supp g ⊂ Γ− and g/
√
|∂νφ| ∈ L2(Γ−). Then there

exists τ0 > 0 such that for all τ > τ0 there exist a solution to (2.8) such that√
|τ |∥ue−τφ∥L2(Ω) ≤ C4∥g/

√
|∂νφ|∥L2(Γ−).
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3. Complex geometrical optics solutions

In this section, we construct complex geometrical optics solutions for the Schrödinger

equation ∆ + qj with qj satisfying the conditions of Theorem 1.1. Consider

(3.1) L1(x,D)u = ∆u+ q1u = 0 in Ω.

We will construct solutions to (3.1) of the form

(3.2)

u1(x) = eτΦ(z)(a(z)+a0(z)/τ)+e
τΦ(z)(a(z) + a1(z)/τ)+e

τφu−+e
τφu11+e

τφu12, u1|Γ0∪Γ− = 0.

Thanks to assumption A, the set Γ0 consists of four arcs : Γ0 = Γ0,1 ∪ Γ0,2 ∪ Γ0,3 ∪ Γ0,4,

the set Γ− consists of two arcs Γ− = Γ−,1 ∪ Γ−,2 and the set Γ+ also consists of two arcs

Γ+ = Γ+,1 ∪ Γ+,2. Denote the endpoints of the arc Γ0,j as x̂j,±.

Proposition 3.1. Let x̃ ∈ Ω be an arbitrary point. There exists a smooth holomorphic

function a in Ω such that

a(x̃) ̸= 0, Re a|Γ0 = 0, ∇ka(x̂j,±) = 0 ∀k ∈ {1, . . . , 100}, ∀j ∈ {0, . . . , 4}.

Proof. Consider the following linear operator

R(v) = (w(x̃), w(x̂j,±), . . . , ∂
100
z w(x̂j,±)),

where

∂z̄w = 0 in Ω, Rew = v on ∂Ω, supp v ⊂ Γ+.

Clearly image of the operator R is closed. Let b(x) be a smooth holomorphic function in

Ω such that b(x̃) = 1 and Re b|Γ0∪Γ− = 0. By Proposition 5.1 there exists a sequence of

holomorphic functions {wk}∞k=1 ⊂ C100+α(Ω̄) such that

wk → 0 + iIm b in C100+α(Γ0 ∪ Γ−) and wk(x̃) → 0.

Using the classical results on solvability of the Cauchy-Riemann equations we construct the

sequence of holomorphic functions w̃k such that

w̃k → 0 in C100+α(Ω̄), Re w̃k = Rewk on Γ0 ∪ Γ−.

Consider the sequence vk = b + (w̃k − wk). We have R(vk) → (1, 0, . . . , 0). The proof of

proposition finished. �

Without the loss of generality, using some conformal mapping if necessary, we may assume

that Γ− and Γ+ belong to the line {x2 = 0} and domain Ω itself is located below the line

x2 = 0.

We construct the holomorphic function Φ with domain ΩΦ, such that Ω ⊂ ΩΦ, satisfies

(2.1), (2.2) and

(3.3) ImΦ|Γ0 = 0,
∂ReΦ

∂ν
|Γ− < 0,

∂ReΦ

∂ν
|Γ+ > 0.

The domain ΩΦ has the following properties:

(3.4) Ω ⊂ ΩΦ, Γ0 ⊂ ∂ΩΦ, (Γ+ ∪ Γ−) ∩ ∂ΩΦ = ∅, ∂ΩΦ ∈ C10.
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Therefore, thanks to Assumption A, the set ∂ΩΦ \ ∂Ω consists of four disconnected curves

which we denote as ΓΦ,1,ΓΦ,2, ΓΦ,3,ΓΦ,4. Counting the clockwise assume that ΓΦ,1 located

between Γ0,1 and Γ0,2, ΓΦ,2 located between ΓΦ,2 located between Γ0,2 and Γ0,3, ΓΦ,3 located

between Γ0,3 and Γ0,4, ΓΦ,4 located between Γ0,4 and Γ0,1. Assume in addition that each

component ΓΦ,k can be parameterize by the function γ̃k ∈ C12[x̂k,+, x̂k+1,−], where x̂k,+, x̂k+1,−
are the endpoints of the arcs Γ0,k and x̂5,− = x̂1,−. Let us start the construction of the function

Φ. Consider functions γj with domain R1 such that γj is positive on (x̂j,+, x̂j+1,−), otherwise

γj is zero,

dkγj
dtk

(x̂j,+) =
dkγj
dtk

(x̂j+1,−) = 0 ∀k ∈ {0, . . . , 10}, d11γj
dt11

(x̂j,+) ̸= 0,
d11γj
dt11

(x̂j+1,−) ̸= 0,

there exists some small positive ϵ̂ such that

(3.5)

γj(x1) = (x1−x̂j,+)11 ∀x1 ∈ (x̂j,+, x̂j,++ϵ̂), γj(x1) = (x̂j+1,−−x1)11 ∀x1 ∈ (x̂j+1,−−ϵ̂, x̂j+1,−).

We introduce the domain Ωδ for any small positive δ as follows. From below it is bounded

by the boundary of ∂Ω form above by segments Γ0,k and the graphs of functions δγj.

By νδ we denote the outward unit normal derivative to ∂Ωδ and by τ⃗δ we denote the

clockwise unit tangent derivative to ∂Ωδ. We set

Γδ,k = {(x1, δγk(x1))|x1 ∈ [xk,+, xk+1,−]}.

Let C1, C2, C3, C4 be rational positive numbers

(3.6) Ck =
mk

nk
mk, nk ∈ Z

and ψ̃ be harmonic function in Ω, continuous on Ω̄ such that

(3.7)



ψ̃ = C1 on Γ0,1, ψ̃ = C3 on Γ0,3;

ψ̃ = −C2 on Γ0,2, ψ̃ = −C4 on Γ0,4;

∂τ⃗ ψ̃ < 0 on (x̂1,+, x̂2,−) ∪ (x̂3,+, x̂4,−);

∂τ⃗ ψ̃ > 0 on (x̂2,+, x̂3,−) ∪ (x̂4,+, x̂1,−);

ψ̃ ∈ C5(∂Ω), ψ̃ ∈ C∞(∂Ω \ ∪4
k=1Γ0,k).

Moreover we assume that

limx1→x̂k,++0∂x1ψ̃(x1, 0)/(x̂k,+ − x1)
6 < 0 k = 1, 3,

limx1→x̂k,++0∂x1ψ̃(x1, 0)/(x̂k,+ − x1)
6 > 0 k = 2, 4,

limx1→x̂k,−+0∂x1ψ̃(x1, 0)/(x̂k,− − x1)
6 < 0 k = 2, 4,

limx1→x̂k,−−0∂x1ψ̃(x1, 0)/(x̂k,− − x1)
6 > 0 k = 1, 3.

Let function ψδ be the harmonic function in Ωδ such that for any j ∈ {1, . . . , 4}

(3.8) ψδ = ψ̃ on ∪4
k=1 Γ0,k, ψ̃δ(x1, δγj(x1)) = ψ̃(x1, 0) on [x̂j,+, x̂j+1,−].

For all sufficiently small δ, counting clockwise, between Γ0,1 and Γ0,2 function ψδ is monotone

decreasing, also it is monotone decreasing on the arc between Γ0,3 and Γ0,4. This function is

monotone increasing on the arcs between Γ0,2 and Γ0,3 and also on ark between Γ0,4 and Γ0,1.

Once the function ψδ is constructed, using the Cauchy-Riemann equation, we construct the
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function φδ such that the function φδ + iψδ is holomorphic. The following inequalities are

true for all sufficiently small positive δ

(3.9)
∂φδ
∂νδ

|Γδ,1∪Γδ,3 < 0,
∂φδ
∂νδ

|Γδ,2∪Γδ,4 > 0,

limx1→x̂k,++0
∂φδ
∂νδ

(x1, δγk(x1))/(x̂k,+ − x1)
6 > 0 k = 1, 3,(3.10)

limx1→x̂k,+−0
∂φδ
∂νδ

(x1, δγk−1(x1))/(x̂k,− − x1)
6 > 0 k = 2, 4.

limx1→x̂k,++0
∂φδ
∂νδ

(x1, δγk+1(x1))/(x̂k,+ − x1)
6 < 0 k = 2, 4,(3.11)

limx1→x̂k,+−0
∂φδ
∂νδ

(x1, δγ5−k(x1))/(x̂k,− − x1)
6 < 0 k = 1, 3.

At the endpoints of Γ0,2 and Γ0,4 function ψδ reach its minimum and at endpoints of Γ0,1

and Γ0,3 function ψδ reach its maximum. By (3.8) we have

(3.12) (φδ, ψδ) → (φ̃, ψ̃) in C2(Ω̄) as δ → +0.

Here φ̃ is a harmonic function in Ω such that ∂z̄(φ̃+ iψ̃) ≡ 0.

By (3.9)-(3.11) for all sufficiently small positive δ the holomorphic function φδ+iψδ satisfies

(2.3).

Consider the domain G− = {(x1, x2)|x̂2,+ ≤ x1 ≤ x̂3,−,−δγ2(x1) ≤ x2 ≤ 0}∪{(x1, x2)|x̂4,+ ≤
x1 ≤ x̂1,−,−δγ4(x1) ≤ x2 ≤ 0}. We claim that there exist a positive constant Cδ such that

(3.13) φδ(x)− φδ(x1,−x2) ≥ Cδℓ(x) ∀x ∈ G−,
∂φδ
∂x2

(x) ≤ −Cδℓ1(x) ∀x ∈ G−,

where ℓ(x) = miny∈{x̂2,+,x̂4,+ x̂3,−,x̂1,−} |x1 − y|7|x2|, ℓ1(x) = miny∈{x̂2,+,x̂4,+ x̂3,−,x̂1,−} |x1 − y|6.
Indeed, suppose that the second inequality in (3.13) fails for all small positive δ. By (3.9),

(3.12) this is possible only for a sequence of the points xδ such that it converges to the set

D− = {x1,+, x2,−, x3,+, x4,−}. Taking if it is necessary a subsequence we may assume that xδ
converges to the single point of the set D−. Let it be the point x̂2,+. By the Cauchy-Riemann

equations ∂φδ
∂νδ

= −∂ψδ
∂τ⃗δ

for any point of ∂Ωδ. So by (3.10) there exists a positive constants Ĉ

and ϵ independent of δ such that

∂φδ
∂νδ

≤ −Ĉ(x1 − x̂1,+)
6 on {x|x ∈ Γδ,2, dist(x̂2,+, x) < ϵ}.

Taking into account that by (3.5) ν⃗δ = (8(x1 − x̂2,+)
7, 1)/(1 + 64(x1 − x̂2,+)

14)
1
2 we obtain

∂φδ
∂x2

(x) ≤ −Ĉ
2
(x1 − x̂2,+)

6 ∀x ∈ {(x1, x2)|x1 ∈ [x̂2,+, x̂2,+ + ϵ], x2 = δγ2(x1)}.
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Using (3.5), (3.12) and the Taylor’s formula for any x ∈ {(x1, x2)|x1 ∈ [x̂2,+, x̂2,++ϵ],−δγ2(x1) ≤
x2 ≤ δγ2(x1)} we have

∂φδ
∂x2

(x1, x2) =
∂φδ
∂x2

(x1, δγ2(x1)) +
∂2φδ
∂x22

(x1, ζ)(x2 − δγ2(x1)) ≤ −Ĉ
2
(x1 − x̂2,+)

6 + 2C5γ2(x1) =

−Ĉ
4
(x1 − x̂2,+)

6 + 2C(x1 − x̂2,+)
11 ≤ −C6

4
(x1 − x̂2,+)

6.(3.14)

So we finish the proof of second inequality in (3.13)

Let x ∈ G−. Using (3.14) we have

φδ(x)− φδ(x1,−x2) ≤ φδ(x1, 0)− φδ(x) =∫ 0

x2

∂ξφδ(x1, ξ)dξ ≤ −C6

2

∫ 0

x2

(x1 − x̂2,+)
6dξ = −C6

2
(x1 − x̂2,+)

6x2.(3.15)

The proof of (3.13) is finished.

Consider the domain G+ = {(x1, x2)|x̂2,+ ≤ x1 ≤ x̂3,−,−δγ2(x1) ≤ x2 ≤ 0}∪{(x1, x2)|x̂4,+ ≤
x1 ≤ x̂1,−,−δγ4(x1) ≤ x2 ≤ 0}. similarly one can prove that all sufficiently small positive δ

there exist a positive constant C̃δ such that for any x from G+

(3.16) φδ(x)− φδ(x1,−x2) ≤ −C̃δ ℓ̃(x) and
∂φδ
∂x2

(x) ≥ C̃δ ℓ̃1(x),

where ℓ̃(x) = miny∈{x̂2,+,x̂4,+,x̂1,−,x̂3,−} |x1 − y|7|x2|, ℓ̃1(x) = miny∈{x̂2,+,x̂4,+,x̂1,−,x̂3,−} |x1 − y|6.
At this point we fix the parameter δ such that inequalities (3.13), (3.16) hold true. The

holomorphic function φδ + iψδ satisfies (2.3), all internal critical points if they exist are

nondegenerate. This function might have some critical points in the set {x̂j,±, j = 1, . . . , 4}.
Let tangential derivative of ψδ will not be equal to zero on some open set Γ̃. By Corollary 5.1

there exists a harmonic function φ̂+ iψ̂ such that Im ψ̂ = 0 on ∂Ωδ and
∂φ̂
∂τ⃗
|x̂j,± not equal to

zero for all j. Then the function φδ + ϵφ̂+ i(ψδ + ψ̂) does not have critical points on the set

{x̂j,±, j = 1, . . . , 4} for all small positive ϵ. In fact this function can not have more then one

internal critical point. Indeed it is known (see e.g. [12]) that if x̂ is the internal critical point

of the harmonic function ψ the set {x ∈ ∂Ω|ψ(x) = ψ(x̂)} consists of at least four points.

Moreover the set {x|ψ(x) = ψ(x̂)} consists of two continuous curves intersecting at x̂. These

curves divide domain Ω in four domains Ω = ∪4
k=1Ωk. If there exists another internal critical

point x̂1 it should belong to some domain Ωk. But in this case the condition that there exist

four different points xj from ∂Ωk such that ψ(x̂1) = ψ(xj) obviously fails. Construction of

of the weight function Φ is complete. If an internal critical point of Φ exists we denote it as

x̃.

The amplitude function a(z) is not identically zero on Ω and has the following properties:

(3.17) a ∈ C6(ΩΦ), ∂za ≡ 0, Re a|Γ0 = 0, |a(x)| ≤ C7|x− x̂j,±|100 ∀j ∈ {1, . . . , 4}.

Such a function can be constructed in the following way: Using the C4 conformal mapping

Π we map the domain ΩΦ into bounded domain O with ∂O ∈ C∞. Applying the Proposition

3.1 we construct the holomorphic function A ∈ C120(O) such that ReA|Π(Γ0) = 0 and

∂zA(x̂j,±) = 0 for any k less or equal 100. Then we set a(x) = A ◦ Π.
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Let the polynomials M1(z) and M3(z̄) satisfy

(3.18) ∂jz(∂
−1
z (aq1)−M1)(x) = 0, x ∈ H ∪ {x̂k,±, k = 1, . . . , 4}, j = 0, 1, 2,

(3.19) ∂jz̄(∂
−1
z (aq1)−M3)(x) = 0, x ∈ H ∪ {x̂k,±, k = 1, . . . , 4}, j = 0, 1, 2,

and

(3.20) ∂kzM1(x̂j,±) = ∂kz̄M3(x̂j,±) = 0 ∀k ∈ {3, . . . , 100} and ∀j ∈ {1, . . . , 4}.

By (3.18)-(3.20) and (3.17) we have

(3.21)

|∂−1
z (aq1)−M1(z)| ≤ C8|x− x̂k,±|100, |∂−1

z (aq1)−M3(z)| ≤ C9|x− x̂k,±|100 ∀k ∈ {1, . . . , 4}.

Finally a0, a1 ∈ C6(Ω̄Φ) are the holomorphic functions such that

(a0 + a1)|Γ0 =
(∂−1
z (aq1)−M1)

4∂zΦ
+

(∂−1
z (aq1)−M3)

4∂zΦ
,

and there exists a positive constant C such that

(3.22) |ak(x)| ≤ C9|x− x̂j,±|3 ∀j ∈ {1, . . . , 4}, ∀k ∈ {0, 1}.

We introduce the function u−(τ, ·) by formula

(3.23) eτφu−(τ, x) = −χτ (eτΨâ+ eτΨ̃â) + wτ (x)e
τφ,

where Ψ(z) is the holomorphic function

(3.24) Ψ(z) = φ(x1,−x2)− iψ(x1,−x2) x ∈ G− ∪ G+.

In order to construct wτ we introduce the following functions

(3.25) â(x1, x2) = Re a(x1,−x2)− iIm a(x1,−x2) x ∈ G− ∪ G+,

and

(3.26) âk(x1, x2) = Re ak(x1,−x2)− iIm ak(x1,−x2) x ∈ G− ∪ G+, k ∈ {0, 1}.

The function χτ is constructed in the following way. Let µ ∈ C∞
0 (−2, 2) and µ|[−1,1] = 1. We

set

(3.27) χτ (x) =



(1− µ((x1 − x̂2,+)τ
1
80 )− µ((x1 − x̂3,−)τ

1
80 ))µ(x2τ

1
7 )

for x ∈ V1 = {(x1, x2)|x̂2,+ ≤ x1 ≤ x̂3,−,−δγ2(x1) ≤ x2 ≤ 0},
(1− µ((x1 − x̂4,+)τ

1
80 )− µ((x1 − x̂1,−)τ

1
80 ))µ(x2τ

1
7 )

for x ∈ V2 = {(x1, x2)|x̂4,+ ≤ x1 ≤ x̂1,−,−δγ4(x1) ≤ x2 ≤ 0},
0 for x /∈ V1 ∪ V2.

For all sufficiently large τ

(3.28) suppχτ ∩ Ω ⊂ G−.

Let function wτ be solution to the following boundary value problem:

∆(wτe
τφ) + q1(wτe

τφ) = rτ = χτq1(e
τΨ(â+ â1/τ) + eτΨ(â+ â0/τ))

+[χτ ,∆](eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ)) in Ω,(3.29)
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(wτe
τφ)|Γ0∪Γ− = 0.(3.30)

Denote gτ = [χτ ,∆](eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ)). We claim that

(3.31) ∥gτe−τφ∥L2(Ω) = O(
1

τ
) as τ → +∞.

Indeed the operator [χτ ,∆] is the first order operator :[χτ ,∆] = 2(∇χτ ,∇) + ∆χτ where

(3.32) ∥∇χτ∥L∞(Ω) = O(τ
1
10 ), ∥∆χτ∥L∞(Ω) = O(τ

1
5 ) as |τ | → +∞.

By (3.27) there exists τ0 such that for all τ ≥ τ0 we have

supp∆χτ , supp∇χτ ⊂ I1(τ) ∪ I2(τ),

where

I1(τ) = {(x1, x2)|
1

τ
1
7

≤ x2 ≤
2

τ
1
7

, x1 ∈ [x̂2,+ +
2

τ
1
80

, x̂3,− − 2

τ
1
80

] ∪ [x̂4,+ +
2

τ
1
80

, x̂1,− − 2

τ
1
80

]},

I2(τ) = {(x1, x2)|0 ≤ x2 ≤
2

τ
1
7

, x1 ∈ [x̂2,+ +
1

τ
1
80

, x̂2,+ +
2

τ
1
80

] ∪ [x̂3,− − 2

τ
1
80

, x̂3,− − 1

τ
1
80

]

∪[x̂4,+ +
1

τ
1
80

, x̂4,+ +
2

τ
1
80

] ∪ [x̂1,− − 2

τ
1
80

, x̂1,− − 1

τ
1
80

]}.

Observe that

(3.33) I1(τ) ∪ I2(τ) ⊂ G+.

Applying (3.17), (3.12) (3.32), (3.33) we have

∥e−τφ[χτ ,∆](eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ))∥L∞(I1)(3.34)

≤ ∥e−τφ∆χτ (eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ))∥L∞(I1)

+2∥e−τφ(eτΨ(∇χτ ,∇)(â+ â1/τ) + eτΨ(∇χτ ,∇)(â+ â0/τ))∥L∞(I1)

+2∥τe−τφ(eτΨ(∇χτ ,∇Ψ)(â+ â1/τ) + eτΨ(∇χτ ,∇Ψ)(â+ â0/τ))∥L∞(I1)

≤ |τ |3 sup
x∈I1(τ)

e−τφ+τReΨ ≤ |τ |3 sup
x∈I1(τ)

e−τC̃δℓ(x) ≤ |τ |3e−τC̃δτ
−7
80 τ

−1
7 = O(

1

τ 2
) as τ → +∞.

Using (3.17), (3.22), (3.32) we have

∥e−τφ[χτ ,∆](eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ))∥L∞(I2)(3.35)

≤ ∥e−τφ∆χτ (eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ))∥L∞(I2)

+2∥e−τφ(eτΨ(∇χτ ,∇)(â+ â1/τ) + eτΨ(∇χτ ,∇)(â+ â0/τ))∥L∞(I2)

+2∥τe−τφ(eτΨ(∇χτ ,∇Ψ)(â+ â1/τ) + eτΨ(∇χτ ,∇Ψ)(â+ â0/τ))∥L∞(I2)

≤ ∥∆χτ ((â+ â1/τ) + (â+ â0/τ))∥L∞(I2)

+2∥(∇χτ ,∇)(â+ â1/τ) + (∇χτ ,∇)(â+ â0/τ)∥L∞(I2)

+2∥τ((∇χτ ,∇Ψ)(â+ â1/τ) + (∇χτ ,∇Ψ)(â+ â0/τ))∥L∞(I2) = O(
1

τ 2
) as τ → +∞.
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The inequality (3.34) and (3.35) implies (3.31) immediately. By (3.13) and (3.24)

(3.36) ∥e−τφχτq1(eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ))∥L2(Ω) = o(1) as τ → +∞.

Using (3.31), (3.36) and the fact that suppχτ ∩ H = ∅ we can apply the Proposition 2.6 to

obtain the solution to the boundary value problem (3.29), (3.30) such that

(3.37) ∥wτ∥L2(Ω) = o(
1

τ
) as τ → +∞.

The function u11 is given by

(3.38) u11 = −1

4
eiτψR̃Φ,τ (e1(∂

−1
z (aq1)−M1))−

1

4
e−iτψRΦ,−τ (e1(∂

−1
z (aq1)−M3))

−e
iτψ

τ

e2(∂
−1
z (aq1)−M1)

4∂zΦ
− e−iτψ

τ

e2(∂
−1
z (aq1)−M3)

4∂zΦ
,

where functions e1, e2 ∈ C∞(Ω) are constructed so that

e1 + e2 ≡ 1 on Ω, e2 vanishes in some neighborhood of H(3.39)

and e1 vanishes in a neighborhood of ∂Ω.

Let u12 be solution to the inhomogeneous problem

(3.40) ∆(u12e
τφ) + q1u12e

τφ = −q1u11eτφ + h1e
τφ in Ω,

(3.41) u12 = d1,τ + d2,τ + d3,τ on Γ0 ∪ Γ−,

where

h1 = eτiψ∆

(
e2(∂

−1
z (aq1)−M1)

4τ∂zΦ

)
+ e−τiψ∆

(
e2(∂

−1
z (aq1)−M3)

4τ∂zΦ

)
−a0q1eiτψ/τ − a1q1e

−iτψ/τ,(3.42)

and d1,τ = ( e
iτψ

4
R̃Φ,τ (e1(∂

−1
z (aq1) −M1)) +

e−iτψ

4
RΦ,−τ (e1(∂

−1
z (aq1) −M3))), d2,τ = χΓ−(1 −

χτ )Re {eiτψa}, d3,τ = eiτψ

τ

e2(∂
−1
z (aq1)−M1)

4∂zΦ
+ e−iτψ

τ
e2(∂

−1
z (aq1)−M3)

4∂zΦ
− a0eτiψ+a1e−τiψ

τ
.

By (3.17), (3.22) there exists a constant C10 independent of τ such that

(3.43)

∥∥∥∥∥d3,τ/
√

|∂φ
∂ν

|

∥∥∥∥∥
L2(Γ−)

≤ C10

|τ |
.

So applying the Proposition 2.7 we obtain solution for the initial value problem L1(x,D)(eτφu12,I) =

0, u12,I |Γ0 = 0, u12,I |Γ− = d3,τ which satisfies the estimate

(3.44) ∥u12,I∥L2(Ω) = o(
1

τ
) as τ → +∞.

Since

∥q1u11 + h1∥L2(Ω) ≤ C11(δ)/|τ |1−δ ∀δ ∈ (0, 1)
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and by the stationary phase argument ∥d1,τ∥L2(Γ0∪Γ−) = O( 1
τ2
) there exists a solution to the

initial value problem L1(x,D)(eτφu12,II) = 0, u12,II |Γ0∪Γ− = d1,τ which satisfies the estimate

(3.45) ∥u12,II∥L2(Ω) = o(
1

τ
) as τ → +∞.

Finally, by (3.17) ∥d1,τ∥L2(Γ0∪Γ−) = O( 1
τ2
). So applying the Proposition 2.6 we obtain solution

to the initial value problem L1(x,D)(eτφu12,III) = 0, u12,III |Γ0∪Γ− = d2,τ which satisfies the

estimate

(3.46) ∥u12,III∥L2(Ω) = o(
1

τ
) as τ → +∞.

Setting u12 = u12,III + u12,II + u12,I we obtain solution to (3.40), (3.41) satisfying

(3.47) ∥u12∥L2(Ω) = o(
1

τ
) as τ → +∞.

Now consider the sequence of τj such that

(3.48) τj = 2πjn1n2n3n4.

For each τj from this sequence our solution u1 satisfies the zero Dirichlet boundary condition

on Γ0 ∪ Γ−.

Consider now the Schrödinger equation

(3.49) L2(x,D)v = ∆v + q2v = 0 in Ω.

We will construct solutions to (3.49) of the form

(3.50) v(x) = e−τΦ(a+ b0/τ) + e−τΦ(a+ b1/τ) + e−τφv11 + e−τφv12, v|Γ0 = 0.

The construction of v repeats the corresponding steps of the construction of u1. The

only difference is that instead of q1 and τ , we use q2 and −τ respectively. Let polynomials

M2(z),M4(z̄) be such that

(3.51) ∂jz(∂
−1
z (aq1)−M2)(x) = 0, x ∈ H ∪ {x̂k,±, k = 1, . . . , 4}, j = 0, 1, 2,

(3.52) ∂jz̄(∂
−1
z (aq1)−M4)(x) = 0, x ∈ H ∪ {x̂k,±, k = 1, . . . , 4}, j = 0, 1, 2,

and

(3.53) ∂kzM2(x̂j,±) = ∂kz̄M4(x̂j,±) = 0 ∀k ∈ {3, . . . , 100} and ∀j ∈ {1, . . . , 4}.

Finally b0, b1 are holomorphic functions such that

(b0 + b1)|Γ0 = −(∂−1
z (aq2)−M2)

4∂zΦ
− (∂−1

z (aq2)−M4)

4∂zΦ
.

and there exists a positive constant C12 such that

(3.54) |bk(x)| ≤ C12|x− x̂j,±|3 ∀j ∈ {1, . . . , 4}, ∀k ∈ {0, 1}.

Let

(3.55) b̂j(x1, x2) = Re bj(x1,−x2)− iIm bj(x1,−x2) ∀x ∈ G+, j ∈ {0, 2}.
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We set

(3.56) e−τφv+(τ, x) = −χ̃τ (e−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ)) + w̃τ (x)e
−τφ.

The function χ̃τ is constructed in the following way. Then we set

(3.57) χ̃τ (x) =



(1− µ((x1 − x̂1,+)τ
1
80 )− µ((x1 − x̂2,−)τ

1
80 ))µ(x2τ

1
7 )

for x ∈ V3 = {(x1, x2)|x̂1,+ ≤ x1 ≤ x̂2,−,−δγ1(x1) ≤ x2 ≤ 0},
(1− µ((x1 − x̂3,+)τ

1
80 )− µ((x1 − x̂4,−)τ

1
80 ))µ(x2τ

1
7 )

for x ∈ V4 = {(x1, x2)|x̂3,+ ≤ x1 ≤ x̂4,−,−δγ3(x1) ≤ x2 ≤ 0},
0 for x /∈ V3 ∪ V4.

Let function w̃τ be solution to the following boundary value problem:

∆(w̃τe
−τφ) + q2(w̃τe

−τφ) = χ̃τq2(e
−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ))

+[χ̃τ ,∆](e−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ)) in Ω,(3.58)

(w̃τe
−τφ)|Γ0∪Γ− = −e−τΦ(a+ b̂0/τ) + e−τΦ (a+ b̂1/τ)

+χ̃τ (e
−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ)).(3.59)

Denote g̃τ = [χ̃τ ,∆](e−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ)). We claim that

(3.60) ∥g̃τeτφ∥L2(Ω) = o(
1

τ
) as |τ | → +∞.

Indeed the operator [χ̃τ ,∆] is the first order operator :[χ̃τ ,∆] = 2(∇χ̃τ ,∇) + ∆χ̃τ where

(3.61) ∥∇χ̃τ∥L∞(Ω) = O(τ
1
10 ), ∥∆χ̃τ∥L∞(Ω) = O(τ

1
5 ) as |τ | → +∞.

By (3.57) we have

supp∇χ̃τ , supp∆χ̃τ ⊂ Ĩ1(τ) ∪ Ĩ2(τ),

where

Ĩ1(τ) = {(x1, x2)|
1

τ
1
7

≤ x2 ≤
2

τ
1
7

, x1 ∈ [x̂1,+ +
2

τ
1
80

, x̂2,− − 2

τ
1
80

] ∪ [x̂3,+ +
2

τ
1
80

, x̂4,− − 2

τ
1
80

]},

Ĩ2(τ) = {(x1, x2)|0 ≤ x2 ≤
2

τ
1
7

, x1 ∈ [x̂1,+ +
1

τ
1
80

, x̂1,+ +
2

τ
1
80

] ∪ [x̂2,− − 2

τ
1
80

, x̂2,− − 1

τ
1
80

]

∪[x̂3,+ +
1

τ
1
80

, x̂3,+ +
2

τ
1
80

] ∪ [x̂4,− − 2

τ
1
80

, x̂4,− − 1

τ
1
80

]}.

Observe that

(3.62) Ĩ1(τ) ∪ Ĩ2(τ) ⊂ Γ−.
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Applying (3.17), (3.32), (3.62) we have

∥eτφ[χ̃τ ,∆](e−τΨ(â+ b̂0/τ) + e−τΨ(â+ b̂1/τ))∥L∞(Ĩ1)(3.63)

≤ ∥eτφ∆χ̃τ (e−τΨ(â+ b̂0/τ) + e−τΨ(â+ b̂1/τ))∥L∞(Ĩ1)

+2∥eτφ(e−τΨ(∇χ̃τ ,∇)(â+ b̂0/τ) + e−τΨ(∇χ̃τ ,∇)(â+ b̂1/τ))∥L∞(Ĩ1)

+2∥τeτφ(e−τΨ(∇χ̃τ ,∇Ψ)(â+ b̂0/τ) + e−τΨ(∇χ̃τ ,∇Ψ)(â+ b̂1/τ))∥L∞(Ĩ1)

≤ |τ |3 sup
x∈Ĩ1(τ)

eτφ−τReΨ ≤ |τ |3 sup
x∈Ĩ1(τ)

e−τC̃δ ℓ̃(x) ≤ |τ |3e−ττ
−7
80 C̃δτ

−1
7 = O(

1

τ 2
) as |τ | → +∞.

Using (3.17), (3.22), (3.32) we have

∥eτφ[χ̃τ ,∆](eτΨ(â+ b̂0/τ) + eτΨ(â+ b̂1/τ)∥L∞(Ĩ2)(3.64)

≤ ∥eτφ∆χ̃τ (e−τΨ(â+ b̂0/τ) + e−τΨ(â+ b̂1/τ))∥L∞(Ĩ2)

+2∥eτφ(e−τΨ(∇χ̃τ ,∇)(â+ b̂0/τ) + e−τΨ(∇χ̃τ ,∇)(â+ b̂1/τ))∥L∞(Ĩ2)

+2∥τeτφ(e−τΨ(∇χ̃τ ,∇Ψ)(â+ b̂0/τ) + e−τΨ(∇χ̃τ ,∇Ψ)(â+ b̂1/τ))∥L∞(Ĩ2)

≤ ∥∆χ̃τ ((â+ b̂0/τ) + (â+ b̂1/τ))∥L∞(Ĩ2)

+2∥(∇χ̃τ ,∇)(â+ b̂0/τ) + (∇χ̃τ ,∇)(â+ b̂1/τ)∥L∞(Ĩ2)

+2∥τ((∇χ̃τ ,∇Ψ)(â+ b̂0/τ) + (∇χ̃τ ,∇Ψ)(â+ b̂1/τ))∥L∞(Ĩ2) = O(
1

τ 2
) as |τ | → +∞.

The inequality (3.63) and (3.64) implies (3.60) immediately. Using (3.31), (3.36) and the

fact that suppχτ ∩ H = ∅ we can apply the Proposition 2.6 to obtain the solution to the

boundary value problem (3.29),(3.30) such that

(3.65) ∥wτ∥L2(Ω) = o(
1

τ
) as |τ | → +∞.

The function v11 is given by

(3.66) v11 = −1

4
e−iτψR̃Φ,−τ (e1(∂

−1
z (q2a)−M2))−

1

4
eiτψRΦ,τ (e1(∂

−1
z (q2a)−M4))

+
e−iτψ

τ

e2(∂
−1
z (aq2)−M2)

4∂zΦ
+
eiτψ

τ

e2(∂
−1
z (aq2)−M4)

4∂zΦ
.

Denote

h2 = e−τiψ∆

(
e2(∂

−1
z (aq2)−M2)

4τ∂zΦ

)
+ eτiψ∆

(
e2(∂

−1
z (aq2)−M4)

4τ∂zΦ

)
−b0
τ
q2e

−iτψ − b1
τ
q2e

iτψ.

The function v12 is a solution to the problem:

(3.67) ∆(v12e
−τφ) + q2v12e

−τφ = −q2v11e−τφ − h2e
−τφ in Ω,
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(3.68) v12|Γ0∪Γ+ = d̃1,τ + d̃2,τ + d̃3,τ ,

where d̃1,τ = eiτψ

4
R̃Φ,−τ (e1(∂

−1
z (aq2) −M2)) +

e−iτψ

4
RΦ,τ (e1(∂

−1
z (aq2) −M4)), d̃2,τ = χΓ+(1 −

χτ )Re {e−τiψa}, d̃3,τ = eiτψ

τ

e2(∂
−1
z (aq2)−M2)

4∂zΦ
+ e−iτψ

τ
e2(∂

−1
z (aq2)−M4)

4∂zΦ
− b0e−τiψ+b1eτiψ

τ
.

By (3.17), (3.22) there exists a constant C independent of τ such that

(3.69)

∥∥∥∥∥d̃3,τ/
√
∂φ

∂ν

∥∥∥∥∥
L2(Γ+)

≤ C13

|τ |
.

Applying the Proposition 2.7 we obtain the solution to the initial value problem L2(x,D)(e−τφv12,I) =

0, v12,I |Γ0 = 0, v12,I |Γ+ = d̃3,τ which satisfies the estimate

(3.70) ∥v12,I∥L2(Ω) = o(
1

τ
) as τ → +∞.

Since

∥q2v11 + h2∥L2(Ω) ≤ C14(δ)/|τ |1−δ ∀δ ∈ (0, 1)

and by the stationary phase argument ∥d̃1,τ∥L2(Γ0∪Γ+) = O( 1
τ2
) there exists a solution to the

initial value problem L2(x,D)(e−τφv12,II) = 0, v12,II |Γ0∪Γ+ = d̃1,τ which satisfies the estimate

(3.71) ∥v12,II∥L2(Ω) = o(
1

τ
) as τ → +∞.

Finally, by (3.17) ∥d̃1,τ∥L2(Γ0∪Γ+) = O( 1
τ2
). So applying the Proposition 2.6 we obtain solution

to the initial value problem L2(x,D)(e−τφv12,III) = 0, v12,III |Γ0∪Γ+ = d̃2,τ which satisfies the

estimate

(3.72) ∥v12,III∥L2(Ω) = o(
1

τ
) as τ → +∞.

Setting v12 = v12,III + v12,II + v12,I we obtain solution to (3.40), (3.41) satisfying

(3.73) ∥v12∥L2(Ω) = o(
1

τ
) as τ → +∞.

For each τj defined by (4.19) this sequence our solution v satisfies the zero Dirichlet boundary

condition on Γ0 ∪ Γ−.

4. Proof of the theorem.

Proposition 4.1. Let function Ψ determined in (3.24) and holomorphic function Φ con-

structed in Section 3 has an internal critical point x̃. Then for any potentials q1, q2 ∈
C2+α(Ω), α > 0 with the same Cauchy data and for any holomorphic function a satisfying

(3.17) and M1(z),M2(z),M3(z),M4(z) as in Section 3, then

(4.1) 2
π(q|a|2)(x̃)Re e2iτjImΦ(x̃)

|(det ImΦ′′)(x̃)| 12
+

∫
Ω

q(a(a0 + b0) + a(a1 + b1))dx
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+
1

4

∫
Ω

(
qa
∂−1
z (aq2)−M2

∂zΦ
+ qa

∂−1
z (q2a)−M4

∂zΦ

)
dx

− 1

4

∫
Ω

(
qa
∂−1
z (aq1)−M1

∂zΦ
+ qa

∂−1
z (aq1)−M3

∂zΦ

)
dx

+

∫
Γ−

q|a|2Re
{

1

∂x2(Ψ− Φ)

}
dσ −

∫
Γ+

q|a|2Re
{

1

∂x2(Ψ− Φ)

}
dσ = o(1) as τj → +∞

where q = q1 − q2 and the sequence τj given by (4.19).

Proof. Let u1 be a solution to (3.1) and satisfy (3.2), and u2 be a solution to the following

equation

∆u2 + q2u2 = 0 in Ω, u2|∂Ω = u1|∂Ω.

Since the Cauchy data are equal, we have

∇u2 = ∇u1 on Γ−.

Denoting u = u1 − u2, we obtain

(4.2) ∆u+ q2u = −qu1 in Ω, u|∂Ω =
∂u

∂ν
|Γ− = 0.

Let v satisfy (3.49) and (3.50). We multiply (4.2) by v, integrate over Ω and we use

v|Γ0 = 0 and ∂u
∂ν

= 0 on Γ̃ to obtain
∫
Ω
qu1vdx = 0. By (3.2), (3.50) and (3.47), (3.73), we

have

0 =

∫
Ω

qu1vdx =

∫
Ω

q(a2 + a2 + |a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ)

+
1

τj
(a(a0 + b0) + a(a1 + b1)) + u11e

τjφ(ae−τjΦ + ae−τjΦ)

+(aeτjΦ + aeτjΦ)v11e
−τjφ)dx

+

∫
Ω

q(e−τjΦa+ e−τjΦa)u−e
τjφdx

+

∫
Ω

q(eτjΦa+ eτjΦa)v+e
−τjφdx+ o

(
1

τj

)
, τj > 0.(4.3)

The first and second terms in the asymptotic expansion of (4.3) are independent of τj, so

that

(4.4)

∫
Ω

q(a2 + a2)dx = 0.

Let the functions functions e1, e2 be defined in (3.39). We have∫
Ω

q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx =

∫
Ω

e1q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx

+

∫
Ω

e2q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx.
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By the Cauchy-Riemann equations, we see that sgn(ImΦ′′(x̃k)) = 0, where sgn A denotes

the signature of the matrix A, that is, the number of positive eigenvalues of A minus the

number of negative eigenvalues (e.g., [5], p.210). Moreover we note that

det ImΦ′′(z) = −(∂x1∂x2φ)
2 − (∂2x1φ)

2 ̸= 0.

To see this, suppose that det ImΦ′′(z) = 0. Then ∂x1∂x2φ(Re z, Im z) = ∂2x1φ(Re z, Im z) =

0 and the Cauchy-Riemann equations imply that all second order partial derivatives of

functions φ, ψ at the point z are zero. This fact contradicts the assumption that critical

points of the function Φ are nondegenerate.

Observe that if Φ has the critical point in Ω it can not have any critical point on Γ0. Then

by (2.2) x̃ is the only critical point of this function on Ω̄. Using stationary phase (see p.215

in [5]), we obtain∫
Ω

e1q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx = 2
πq|a|2(x̃)Re e2τjiImΦ(x̃)

τj|(det ImΦ′′)(x̃)| 12
+ o

(
1

τj

)
.(4.5)

Integrating by parts we have∫
Ω

e2q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx

=

∫
Ω

e2q|a|2
(
(∇ψ,∇eτj(Φ−Φ))

2iτj|∇ψ|2
− (∇ψ,∇eτj(Φ−Φ))

2iτj|∇ψ|2

)
dx

= −
∫
Ω

div

(
e2q|a|2∇ψ
2iτj|∇ψ|2

)
(eτj(Φ−Φ) − eτj(Φ−Φ))dx

+

∫
∂Ω

q|a|2

2iτj|∇ψ|2
∂ψ

∂ν
(eτj(Φ−Φ) − eτj(Φ−Φ))dσ

= −
∫
supp e2

div

(
e2q|a|2∇ψ
2iτj|∇ψ|2

)
(eτj(Φ−Φ) − eτj(Φ−Φ))dx

+

∫
Γ−∪Γ+

q|a|2

2iτj|∇ψ|2
∂ψ

∂ν
(e2τjiψ − e−2τjiψ)dσ + o(

1

τj
) as τj → +∞.

In the last equality, we used that eτj(Φ−Φ) − eτj(Φ−Φ) = 0 on Γ0 which follows since by (2.3)

ImΦ = 0 on Γ0, and (3.17) in order to show that div
(
e2q|a|2∇ψ
2iτj |∇ψ|2

)
and q|a|2

2iτj |∇ψ|2 are bounded

functions. Applying Proposition 2.4 we obtain∫
Ω

e2q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx = o(
1

τj
) as τj → +∞.

Since the function ψ is strictly monotone on Γ− ∪ Γ+ we have∫
Γ−∪Γ+

q|a|2

2iτj|∇ψ|2
∂ψ

∂ν
(e2τjiψ − e−2τjiψ)dσ = o(

1

τj
) as τj → +∞.

Therefore ∫
Ω

q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx = o

(
1

τj

)
.(4.6)
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Next we claim that

(4.7)∫
Ω

q(e−τjΦa+ e−τjΦa)u−e
τjφdx =

∫
Γ−

q|a|2

τj
Re

{
1

∂x2(Ψ− Φ)

}
dσ + o(

1

τj
) as τj → +∞,

and

(4.8)

∫
Ω

q(eτjΦa+eτjΦa)v+e
−τjφdx =

∫
Γ+

q|a|2

τj
Re

{
1

∂x2(Ψ− Φ)

}
dσ+o(

1

τj
) as τj → +∞.

Indeed, by (3.56) and (3.24)

K =

∫
Ω

q(e−τjΦa+ e−τjΦa)u−e
τjφdx =

∫
Ω

q(e−τjΦa+ e−τjΦa)χτj(e
τjΨ(a+ â0/τj)

+eτjΨ(a+ â1/τj))dx =

∫
Ω

qχτj(a(a+ â0/τj)e
τj(Ψ−Φ) + ā(a+ â0/τj)e

τj(Ψ−Φ̄)

+a(a+ â1/τj)e
τj(Ψ−Φ) + ā(a+ â1/τj)e

τj(Ψ−Φ̄))dx =∫
∂Ω

qχτj(a(a+ â0/τj)
ν2

τj∂x2(Ψ− Φ)
+ ā(a+ â0/τj)e

2τjiψ
1

2

(ν1 + iν2)

τj∂z̄(Ψ− Φ)

+a(a+ â1/τj)e
−2τjiψ

1

2

(ν1 − iν2)

τj∂z(Ψ− Φ)
+ ā(a+ â1/τj)

ν2
τj∂x2(Ψ− Φ̄)

)dσ −

− 1

τj

∫
Ω

(B1(x,D)∗(qχτja(a+ â0/τj))e
τj(Ψ−Φ) +B2(x,D)∗(qχτj ā(a+ â0/τj))e

τj(Ψ−Φ̄)

+B3(x,D)∗(qχτja(a+ â1/τj))e
τj(Ψ−Φ) +B4(x,D)∗(qχτj ā(a+ â1/τj))e

τj(Ψ−Φ̄))dx,

where

B1(x,D) =
∂x2

∂x2(Ψ− Φ)
, B2(x,D) =

∂z̄

∂z̄(Ψ− Φ)
,

B3(x,D) =
∂z

∂z(Ψ− Φ)
, B4(x,D) =

∂x2
∂x2(Ψ− Φ̄)

.

By (3.17) the boundary integrals in (4.11) can be estimated as o( 1
τj
). Integrating one more

time we have

K =

∫
Γ−

q

(
aā

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ

+
1

τj

∫
Ω

(B1(x,D)∗(qχτj(a(a+ â0/τj))e
τj(Ψ−Φ) +B2(x,D)∗(qχτj ā(a+ â0/τj))e

τj(Ψ−Φ̄)

+B3(x,D)∗(qχτja(a+ â1/τj))e
τj(Ψ−Φ) +B4(x,D)∗(qχτj ā(a+ â1/τj))e

τj(Ψ−Φ̄))dx =

K1 + o(
1

τj
) +

∫
Γ−

q

(
aa

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ

+

∫
∂Ω

(B1(x,D)∗(qχτja(a+ â0/τj))
ν2

τj2∂x2(Ψ− Φ)
+B2(x,D)∗(qχτj ā(a+ â0/τj))e

2τjiψ
1

2

(ν1 + iν2)

τj2∂z̄(Ψ− Φ)

+B3(x,D)∗(qχτja(a+ â1/τj))e
−2τjiψ

1

2

(ν1 − iν2)

τj2∂z(Ψ− Φ)
+B4(x,D)∗(qχτj ā(a+ â1/τj))

ν2
τj2∂x2(Ψ− Φ̄)

)dσ,
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where

K1 =
1

τj2

∫
suppχτj∩G−

((B1(x,D)∗)2(qχτja(a+ â0/τj))e
τj(Ψ̄−Φ) + (B2(x,D)∗)2(qχτj ā(a+ â0/τj))e

τj(Ψ̄−Φ̄)

+(B3(x,D)∗)2(qχτja(a+ â1/τj))e
τj(Ψ−Φ) + (B4(x,D)∗)2(qχτj ā(a+ â1/τj))e

τj(Ψ−Φ̄))dx.

Since

(4.9) Re (Ψ− Φ) ≤ 0 ∀x ∈ G−

by (3.13) we have

|K1| ≤
1

τj2

∫
suppχτj∩G−

(|(B1(x,D)∗)2(qχτja(a+ â0/τj))|+ |(B2(x,D)∗)2(qχτj ā(a+ â0/τj))|

+|(B3(x,D)∗)2(qχτja(a+ â1/τj))|+ |(B4(x,D)∗)2(qχτj ā(a+ â1/τj))|)dx ≤

C

τj2

∫
suppχτj∩G−

1

|ℓ1(x)|2
dx ≤ Cτj

12
80

τj2
= o(

1

τj
) as τj → +∞.(4.10)

Again, by (3.17) the boundary integrals in (4.11) can be estimated as o( 1
τj
). By (3.27) the

boundary integral in (4.12) can be estimated as o( 1
τj
).

K̃ =

∫
Ω

q(eτjΦa+ eτjΦa)v+e
−τjφdx =

∫
Ω

q(eτjΦa+ eτjΦa)χ̃τj(e
−τjΨ(a+ b̂0/τj)(4.11)

+e−τjΨ(a+ b̂1/τj))dx =

∫
Ω

qχ̃τj(a(a+ b̂0/τj)e
−τj(Ψ−Φ) + ā(a+ b̂0/τj)e

−τj(Ψ−Φ̄)

+a(a+ b̂1/τj)e
−τj(Ψ−Φ) + ā(a+ b̂1/τj)e

−τj(Ψ−Φ̄))dx+ o(
1

τj
) =

−
∫
∂Ω

qχ̃τj(a(a+ b̂0/τj)
ν2

τj∂x2(Ψ− Φ)
+ ā(a+ b̂0/τj)e

−2τjiψ
1

2

(ν1 + iν2)

τj∂z̄(Ψ− Φ̃)

+a(a+ b̂1/τj)e
2τjiψ

1

2

(ν1 − iν2)

τj∂z(Ψ− Φ)
+ ā(a+ b̂1/τj)

ν2
τj∂x2(Ψ− Φ̄)

)dσ −

+
1

τj

∫
Ω

(B1(x,D)∗(qχ̃τja(a+ b̂0/τj))e
−τj(Ψ−Φ) +B2(x,D)∗(qχ̃τj ā(a+ b̂0/τj))e

−τj(Ψ−Φ̄)

+B3(x,D)∗(qχ̃τja(a+ b̂1/τj))e
−τj(Ψ−Φ) +B4(x,D)∗(qχ̃τj ā(a+ b̂1/τj))e

−τj(Ψ−Φ̄))dx

+o(
1

τj
) as τj → +∞.
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By (3.17) the boundary integrals in (4.11) can be estimated as o( 1
τj
). Integrating one more

time we have

K̃ = −
∫
Γ+

q

(
aa

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ(4.12)

− 1

τj

∫
Ω

(B1(x,D)∗(qχ̃τj(a(a+ b̂0/τj))e
−τj(Ψ−Φ) +B2(x,D)∗(qχ̃τj ā(a+ b̂0/τj))e

−τj(Ψ−Φ̄)

+B3(x,D)∗(qχ̃τja(a+ b̂1/τj))e
−τj(Ψ−Φ) +B4(x,D)∗(qχ̃τj ā(a+ b̂1/τj))e

−τj(Ψ−Φ̄))dx =

K̃1 + o(
1

τj
)−

∫
Γ+

q

(
aa

τj∂x2(Ψ̄− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ

−
∫
∂Ω

(
B1(x,D)∗(qχ̃τja(a+ b0/τj))

ν2

τj2∂x2(Ψ− Φ)
+B2(x,D)∗(qχ̃τj ā(a+ b̂0/τj))e

−2τjiψ
1

2

(ν1 + iν2)

τj2∂z̄(Ψ− Φ)

+B3(x,D)∗(qχ̃τja(a+ b̂1/τj))e
2τjiψ

1

2

(ν1 − iν2)

τj2∂z(Ψ− Φ)
+B4(x,D)∗(qχ̃τj ā(a+ b̂1/τj))

ν2

τj2∂x2(Ψ̃− Φ̄)

)
dσ,

where

K̃1 =(4.13)

1

τj2

∫
supp χ̃τj∩G+

((B1(x,D)∗)2(qχ̃τja(a+ b̂0/τj))e
−τj(Ψ−Φ) + (B2(x,D)∗)2(qχ̃τj ā(a+ b̂0/τj))e

−τj(Ψ−Φ̄)

+(B3(x,D)∗)2(qχ̃τja(a+ b̂1/τj))e
−τj(Ψ−Φ) + (B4(x,D)∗)2(qχ̃τj ā(a+ b̂1/τj))e

−τj(Ψ−Φ̄))dx.

Observe that

(4.14) Re (Ψ− Φ) ≥ 0, ∀x ∈ G+.

By (4.14), (3.13) we have

|K̃1| ≤
1

τj2

∫
supp χ̃τj∩G+

(|(B1(x,D)∗)2(qχ̃τja(a+ b̂0/τj))|+ |(B2(x,D)∗)2(qχ̃τj ā(a+ b̂0/τj))|

+|(B3(x,D)∗)2(qχ̃τja(a+ b̂1/τj))|+ |(B4(x,D)∗)2(qχ̃τj ā(a+ b̂1/τj))|)dx ≤

C

τj2

∫
supp χ̃τj∩G+

1

|ℓ1(x)|2
dx ≤ Cτj

12
80

τj2
= o(

1

τj
).(4.15)
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Using the argument similar to (4.15) we obtain the second formula in (4.8). We calculate

the two remaining terms in (4.3). By (3.38) and Proposition 2.5 we have:∫
Ω

qu11e
τjφ(ae−τjΦ + ae−τjΦ)dx = o(

1

τj
)(4.16)

−
∫
Ω

(
eτjΦ

τj

(∂−1
z (aq1)−M1)

4∂zΦ
+
eτjΦ

τj

(∂−1
z (aq1)−M3)

4∂zΦ

)
q(ae−τjΦ + ae−τjΦ)dx =

−
∫
Ω

q

(
eτj(Φ−Φ)

τj

a(∂−1
z (aq1)−M1)

4∂zΦ
+
eτj(Φ−Φ)

τj

a(∂−1
z (aq1)−M3)

4∂zΦ

)
dx

−
∫
Ω

q

(
a

τj

(∂−1
z (aq1)−M1)

4∂zΦ
+
a

τj

(∂−1
z (aq1)−M3)

4∂zΦ

)
dx+ o(

1

τj
) =

−
∫
Ω

q

(
a

τj

(∂−1
z (aq1)−M1)

4∂zΦ
+
a

τj

(∂−1
z (aq1)−M3)

4∂zΦ

)
dx+ o(

1

τj
) as τj → +∞.

Similarly by (3.66) and Proposition 2.5∫
Ω
qv11e

−τjφ(aeτjΦ + aeτjΦ)dx =(4.17)

+
∫
Ω
q
(
e−τjΦ

τj

(∂−1
z (aq2)−M2)

4∂zΦ
+ e−τjΦ

τj

(∂−1
z (aq2)−M4)

4∂zΦ

)
(aeτjΦ + aeτjΦ)dx+ o( 1

τj
) =∫

Ω
q
(
e−τj(Φ−Φ)

τj

a(∂−1
z (aq2)−M2)

4∂zΦ
+ eτj(Φ−Φ)

τj

a(∂−1
z (aq2)−M4)

4∂zΦ

)
dx

+
∫
Ω
q
(
a
τj

∂−1
z (aq2)−M2

4∂zΦ
+ a

τj

∂−1
z (aq2)−M4

4∂zΦ

)
dx+ o( 1

τj
) =∫

Ω
q
(
a
τj

∂−1
z (aq2)−M2

4∂zΦ
+ a

τj

∂−1
z (aq2)−M4

4∂zΦ

)
dx+ o( 1

τj
) as τj → +∞

Therefore, applying (4.4), (4.6), (4.7), (4.8), (4.17), (4.16), in (4.3), we conclude that

2
π(q|a|2)(x̃)Re e2iτjImΦ(x̃)

|(det ImΦ′′)(x̃)| 12
+

∫
Ω

q(a(a0 + b0) + a(a1 + b1))dx

+
1

4

∫
Ω

(
qa
∂−1
z (aq2)−M2

∂zΦ
+ qa

∂−1
z (q2a)−M4

∂zΦ

)
dx

−1

4

∫
Ω

(
qa
∂−1
z (q1a)−M1

∂zΦ
+ qa

∂−1
z (q1a)−M3

∂zΦ

)
dx

+

∫
Γ−

q

(
aa

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ

−
∫
Γ+

q

(
aā

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ = o(1)

as τj → +∞. The proof of proposition is finished. �

End of proof of Theorem 1.1. First we observe that any smooth holomorphic function

Φ = φ + iψ such that (2.3) holds true can be approximated by the sequence of harmonic

functions constructed in Section 3. Moreover the function satisfying (2.3) has at most one
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internal critical point. Therefore by Proposition 4.1 the function q is zero at this critical

point. Consider the set of harmonic functions ψ satisfying the following

function ψ equal to some constant on each connected component of the set Γ0;

∂ψ

∂τ⃗
|Γ+ < 0;

∂ψ

∂τ⃗
|Γ− > 0.

We show that the set of critical points of harmonic functions ψ with above properties is

dense in Ω. In order to do that it suffices to consider the following. Let ∂Ω = ∪4
k=1Γk,

where Γk is ark and Γj ∩ Γk = ∅ for any k ̸= j and Ω is the unit ball centered at zero.

Consider the set of harmonic functions ψ with the boundary data ψ|Γk = Ck. We claim

that for generic choice of Γk we can find a constants Ck such that ∇ψ(0) = 0. Indeed since

ψ(x) = 1
2π

∫ 2π

0
ψ(eit) 1−|z|2

|eit−z|2dt we have ∂zψ(0) =
1
2π

∫ 2π

0
ψ(eit)eitdt.

Indeed, let C1 = 0, C4 = 1 and the endpoints of the arcs Γk on the complex plane are

given by e0, eiθ1 , eiθ2 , eiθ3 with 0 < θ1 < θ2 < θ3 < 2π. Then

i∂zψ(0) = C2(e
−iθ1 − e−iθ2) + C3(e

−iθ2 − e−iθ3) + (e−iθ3 − 1).

The equation ∂zψ(0) = 0 equivalent to

C2 = −C3(e
−iθ2 − e−iθ3)(eiθ1 − eiθ2) + (e−iθ3 − 1)(eiθ1 − eiθ2)

|e−iθ1 − e−iθ2 |
.

The existence of real valued solutions C2, C3 to this equation is equivalent to

Im(ei(θ1−θ2) + ei(θ2−θ3) − ei(θ1−θ3)) ̸= 0.

This clearly holds true for generic position of θj.

In the set Γ+ ∪ Γ− we make the choice of four points x̂1, . . . , x̂4 such that x̂1 ∈ γ1,+, x̂2 ∈
Γ1,−, x̂3 ∈ Γ2,+, x̂2 ∈ Γ2,−. Denote by Γ̂1, . . . Γ̂4 the arks connecting these points. Consider

the conformal mapping Π which transforms the domain Ω into the unit ball and point x̃ into

the center of the coordinate system. Above we show that under generic choice of the points

x̂j there exists a harmonic function ψ0 which is equal to some constant on each ark Π(Γ̂k).

Consider the boundary data ψ0(Π). The corresponding harmonic function we denote as ψ̂.

The function ψ̂ is equal to constant Cj on each ark Γ̂j and it has only one the nondegenerate

critical point located at x̃. Without loss of the generality we may assume that C0 = 0

multiplying if this is necessary the function ψ0 ◦Π by nonzero constant we may assume that

C4 = −1. Observe that C2 < 0 and C3 > C2. (Otherwise if at least one of these inequalities

fail the function ψ0 ◦ Π can not have the internal critical point.) In small neighborhood

F ⊂ ∪2
j=1Γj,± of the points of discontinuity of the function ψ0 ◦ Π we approximate it by

a sequence {µk} strictly monotone decreasing or strictly monotone increasing functions.

Outside of F the function µk are equal to corresponding constants.

Moreover

µk → ψ0 ◦ Π in L2(∂Ω).

We claim that for all sufficiently large k the harmonic functions ψk such that ψk|∂Ω = µk
have a unique internal critical point which we denote as x̃j. Moreover x̃j → x̃. Our proof is
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by contradiction. Suppose that for large j functions ψj do not have internal critical point or

the sequence converges to some point y ̸= x̃. Indeed for any Ω0 ⊂⊂ Ω

ψk → ψ0 ◦ Π in C2(Ω0).

n the other hand it is known that the number of zeros N of a holomorphic function f(z) in

domain G given by formula

(4.19) N =
1

2πi

∫
∂G

∂zf

f(z)
dz

Solving the system of Cauchy-Riemann equations we construct the the holomorphic function

Φj = φj+iψj. By (??) for all sufficiently small positive δ and all large k 1
2πi

∫
S(x̃,δ)

∂2z (φk+iψk)
∂z(φk+iψk)

dz =

1. This means that the function φk + iψk has the critical point in the ball B(x̃, δ). But this

function can not have more than one critical point. So y = x̃. Proof of the theorem is

complete. �

5. Appendix.

Consider the Cauchy problem for the Cauchy-Riemann equations

L(ϕ, ψ) = (
∂ϕ

∂x1
− ∂ψ

∂x2
,
∂ϕ

∂x2
+
∂ψ

∂x1
) = 0 in Ω, (ϕ, ψ) |Γ0 = (b1(x), b2(x)),(5.1)

(ϕ+ iψ)(x̃) = c0,j.

Here x̂1, . . . x̂N be an arbitrary fixed points in Ω. We consider the pair b1, b2 and complex

numbers C⃗ = (c0,1, c1,1, c2,1, . . . c0,N , c1,N , c2,N) as initial data for (5.1). The following propo-

sition establishes the solvability of (5.1) for a dense set of Cauchy data.

Proposition 5.1. There exists a set O ⊂ C100(Γ0)
2 × C such that for each (b1, b2, C⃗) ∈ O,

(5.1) has at least one solution (ϕ, ψ) ∈ (C100(Ω))2 and O = C100(Γ0)
2 × C.

Consider the Cauchy problem for the Cauchy-Riemann equations

L(ϕ, ψ) = (
∂ϕ

∂x1
− ∂ψ

∂x2
,
∂ϕ

∂x2
+
∂ψ

∂x1
) = 0 in Ω, (ϕ, ψ) |Γ0 = (b(x), 0),(5.2)

∂l

∂zl
(ϕ+ iψ)(x̂j) = c0,j, ∀j ∈ {1, . . . N} and ∀l ∈ {0, . . . , 5}.

Here x̂1, . . . x̂N be an arbitrary fixed points in Ω. We consider the function b and complex

numbers C⃗ = (c0,1, c1,1, c2,1, c3,1, c4,1, c5,1 . . . c0,N , c1,N , c2,N , c3,N , c4,N , c5,N) as initial data for

(5.1). The following proposition establishes the solvability of (5.1) for a dense set of Cauchy

data.

Corollary 5.1. There exists a set O ⊂ C6(Γ0)×C6N such that for each (b, C⃗) ∈ O, problem
(5.2) has at least one solution (ϕ, ψ) ∈ C6(Ω)× C6(Ω) and O = C6(Γ)× C6N .

Now we give the proof of Proposition 2.7.



24 O. IMANUVILOV, G. UHLMANN, AND M. YAMAMOTO

Proof. Let us introduce the space

H =

{
v ∈ H1

0 (Ω)|∆v + q0v ∈ L2(Ω),
∂v

∂ν
|Γ+ = 0

}
with the scalar product

(v1, v2)H =

∫
Ω

e2τφ(∆v1 + q0v1)(∆v2 + q0v2)dx.

By Proposition 2.1 H is a Hilbert space. Consider the linear functional on H : v →
∫
Ω
vfdx+∫

Γ−
g ∂v
∂ν
dσ. By (2.4) this is the continuous linear functional with the norm estimated by a

constant C12(∥feτφ∥L2(Ω)/τ
1
2 + ∥geτφ/

√
|∂νφ|∥L2(Γ−)). Therefore by the Riesz representation

theorem there exists an element v̂ ∈ H so that∫
Ω

vfdx+

∫
Γ−

g
∂v

∂ν
dσ =

∫
Ω

e2τφ(∆v̂ + q0v̂)(∆v + q0v)dx.

Then, as a solution to (2.8), we take the function u = e2τφ(∆v̂ + q0v̂). �
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