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Another Direct Proof of Oka’s Theorem (Oka IX)*

Junjiro NOGUCHI

Abstract

In 1953 K. Oka IX solved in first and in a final form Levi’s problem (Hartogs’
inverse problem) for domains or Riemann domains over C" of arbitrary dimension.
Later on a number of the proofs were given; cf. e.g., Docquier-Grauert’s paper in
1960, R. Narasimhan’s paper in 1961/62, Gunning-Rossi’s book, and Hérmander’s
book (in which the holomorphic separability is pre-assumed in the definition of
Riemann domains and thus the assumption is stronger than the one in the present
paper). Here we will give another direct elementary proof of Oka’s Theorem, relying
only on Grauert’s finiteness theorem by the induction on the dimension and the jets
over Riemann domains; hopefully, the proof is most comprehensive.

1 Introduction.

In 1953 K. Oka [10] IX solved in first and in a final form Levi’s problem (Hartogs’ inverse
problem) for domains or Riemann domains over C" of arbitrary dimension (cf. below for
notation):

Theorem 1.1. (Oka [10] IX, ('43)/°53') Let m : X — C" be a Riemann domain, and
let 6pa(x,0X) denote the boundary distance function with respect to a polydisc PA. If
—log dpa(z,0X) is plurisubharmonic, then X is Stein.

Besides Oka’s original proof there are known a number of the proofs in generalized
forms; e.g., Docquier-Grauert [2], Narasimhan [8], Gunning-Rossi [6], and Hérmander
[7] (in which the holomorphic separability is pre-assumed in the definition of Riemann
domains and thus the assumption is stronger than the one in the present paper).

Here we will give another direct elementary proof of Oka’s Theorem 1.1 by making use
of the followings in an essential way, and it is new in this sense (see the proof of Lemma
3.2).

*Research supported in part by Grant-in-Aid for Scientific Research (B) 23340029.
2010 Matheamtical Subject Classification: Primary 32E40; Scondary 32T05.
Tt is now possible to confirm that Oka IX published in 1953 was written in French from his notes

in Japanese dated 1943. Cf. the introduction of Oka IX, and also Oka VI published in 1942; see
http://www.lib.nara-wu.ac.jp/oka/index_eng.html.




(i) The induction on the dimension n = dim X.
(ii) The jets over X.
(iii) Grauert’s Finiteness Theorem 2.10 over a strongly pseudoconvex domain 2 of a

complex manifold applied not only for the structure sheaf Og, but also for a coherent
ideal sheaf Z C Ogq (cf. Narasimhan [8], Docquier-Grauert [2], Gunning-Rossi [6]).

The others are the vanishing of higher cohomologies of coherent sheaves on polydiscs and
on Stein manifolds, and a sort of e-0 arguments, to say, a content presented in Chap.
2 of Hormander [7] (see, e.g. the proof of Lemma 3.7). Thus, the proof is elementary,
self-contained and hopefully most comprehensive.

To be precise we give the exact definitions of notions we will use.

Definition 1.2. (Stein manifold) A connected complex manifold M with the second
countability axiom is called a Stein manifold if it satisfies the following three conditions.
Here, O(M) denotes the set of all holomorphic functions on M.

(i) (Holomorphic separability) For distinct two points ,y € M there exists an element f €
O(M) such that f(x) # f(y).

(ii) (Holomorphic local coordinates) For an arbitrary point x € M there are n (=
dim M) elements f; € O(M)O 1 < j < n such that (f;)i<j<n gives rise to a
holomorphic local coordinate system in a neighborhood of x.

(iii) (Holomorphic convexity) For a compact subset K € M its holomorphic convex hull

Ky = {z € M;|f(2)] < max|f|, "f € O(M)}

is also compact in M.

N.B. In a number of references the definition of Stein manifolds consists of the above
(iii) and the following K-completeness due to Grauert [3]:

[ such that

(K) “For every point x € M there exist finitely many f; € O(M), j <
S l}.”

1<
all f;(z) =0 and x is isolated in the analytic subset {f; =0;1 < j

In fact, they are equivalent: it is trivial that the present definition 1.2 implies the above
(K), but the converse is not trivial at all (cf. Grauert [55], and Andreotti-Narasimhan [1]
Introduction).

Let X be a complex manifold and let 7 : X — C" be a holomorphic map.

Definition 1.3. (Riemann domain) 7 : X — C" or simply X is called a Riemann
domain if the following properties are satisfied:

(i) X is connected.

(ii) For every point x € X there are neighborhoods U > z in X and V 3 n(z) in C"
such that the restriction 7|y : U — V is biholomorphic.
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N.B. (i) A Riemann domain X is metrizable and hence X satisfies the second count-
ability axiom.

(ii) In the above definition we do not assume the holomorphic separability for a Rie-
mann domain.

A Riemann domain # : X — C" is called a holomorphic extension of a Riemann
domain 7 : X — C" if there is a holomorphic injection ¢ : X — X satisfying

(i) T=7ouy
(ii) every holomorphic function f € O(X) is analytically continued to an element fe

O(X).

A Riemann domain X is called a domain of holomorphy if there exists no holomorphic
extension of X other than X itself.

In this paper X denotes always a Riemann domain. We take a polydisc PA =
PA(0;70) (1o = (ro;)) with center at the origin 0 € C". Then by definition there are
p > 0 and a neighborhood U,(x) 3 x for every x € X such that

U (@) : Up(w) — 7(x) + pPA
is biholomorphic. The supremum of such p > 0
Spalr,0X) = sup{p > 0;7U,(2)} < o0

is called the boundary distance function of X to the relative boundary.

If dpa(x,0X) = oo, then 7 is a holomorphic isomorphism, and thus there is nothing
to discuss more. Henceforth we assume dpa(z,0X) < 0o in what follows.

For a subdomain €2 C X we define similarly
Spa(r,0Q) = sup{p > 0;7U,(x) C Q}.

The boundary distance functions dpa(z,0X) and dpa(z,0f2) are continuous with Lips-
chitz’ condition. For a subset set A C X (resp. A C Q) we set

dpa(A,0X) = mf 5pA(x 0X)
(resp. dpa(A,00Q) = mf dpa(z,00)).

Acknowledgment. During the preparation of this paper the author had a number of
discussions on K. Oka’s works with Professors K. Kazama, H. Yamaguchi, and S. Hamano,
which were very helpful and of pleasure. The author would like to express sincere gratitude
to all of them.

2 Preliminaries.

Here we list up the lemmas and theorems we will use.
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Lemma 2.1. Let 7 : X — C" be a domain of holomorphy, let K € X be a compact
subset, and let f € O(X). If

Sonlz,0X) > |f(z)], =€K,

then R
6PA(I78X)Z|f(x)|7 ZEEK)(.

In particular, taking f to be constant we have
(2.2) opa(K,0X) = dpa(Kx,0X).

The proof is the same as in the case of univalent domains. This lemma implies the
following as well:

Theorem 2.3. If X is a domain of holomorphy, then —logdpa(x,0X) is plurisubhar-
monjic.

Definition 2.4. In general, a complex manifold M is said to be pseudoconvex if M
carries a continuous plurisubharmonic exhaustion function.

The following is not trivial, but elementary due to Oka [10] IX (cf. Nishino [9], p. 350):

Lemma 2.5. If —logdpa(z,0X) is plurisubharmonic (for one fired PA), then X is
pseudoconve.

Theorem 2.6. (Oka’s Fundamental Theorem, I~II, VII) Let PA(0;r) be an arbitrary
polydisc, and let T C O be a coherent sheaf of submodules. Then

HYPA(0;r),7) =0, q>1.

This theorem over polydiscs together with Oka’s Jokiiiko? leads to the following:

Theorem 2.7. (Oka-Cartan) Let M be a Stein manifold, and let S — M be a coherent
sheaf. Then
HY(M,S) =0, qg>1.

Lemma 2.8. (i) Let Q) € Qy € Q3 € X be a series of subdomains. Assume that €3
is Stein. If
dpa (0, 003) > max dpa(z,083),
xedila

then there is an O(Q3)-analytic polyhedron P such that

0, € Pe.

2A direct English translation may be “transformation to the upper space”. It is a method to imbed the
domain under consideration into a higher dimensional polydisc PA, to extend the analytic objects over
PA, and to solve the problem over PA by the simplicity of the space PA. This method was developed
by K. Oka [10] I~IIT and was a very key to solve Cousin Problems I and II.
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(ii) An arbitrary holomorphic function f € O(P) can be approximated uniformly on
compact subsets by elements of O(§23); that is, (P,3) is a Runge pair.

—

Proof (i) The assumption and (2.2) imply that (£21),, € Q,, and hence such P exists.

(ii) By Theorem 2.6 we can apply Oka’s Jokiiko to reduce the domain to a polydisc,
and is proved. q.e.d.

Let 2 € M be a relatively compact domain.

Definition 2.9. € is said to be strongly pseudoconver if there are a neighborhood U(C
M) of the boundary 99 of €, and a real valued C? function ¢ : U — R satisfying the
conditions

(i) {xeU:¢(x)<0}=0nNU,
(ii) i004(x) >0 (x € U).

Theorem 2.10. (Grauert [4], [5]) Let Q € M be a strongly pseudoconvex domain. Let F
be a coherent sheaf defined over a neighborhood of the closure 2. Then we have

dim HY(Q, F) < o0, ¢q>1.

We will use this theorem for the structure sheaf and an ideal sheaf of a closed complex
submanifold. In the first, we apply this for F = O,; to deduce

Theorem 2.11. Let € be as in Theorem 2.10. Then 2 is holomorphically convex.

N.B. The above described was the circumstance just after Grauert [4] (’58), or
Docquier-Grauert [2] (’60) and Narasimhan [8] (’61/°62).

3 A Proof of Oka’s Theorem 1.1.

By Lemma 2.5 it suffices to show the following for the proof.

Theorem 3.1. A pseudoconvex Riemann domain is Stein.

Under the assumption we take a plurisubharmonic exhaustion function ¢ : X — R.
The following lemma is our key.

Lemma 3.2. If Q) € X is a strongly pseudoconvexr domain, then € is Stein.

Proof We use the induction on the dimension n > 1.

(a) n = 1: In this case 2 is an open Riemann surface and hence by Behnke-Stein’s
Theorem it is Stein. For the completeness we show this with the preparation in §2. The
holomorphic convexity is finished by Theorem 2.11. The holomorphic local coordinates
follow just from the definition of Riemann domain. It is remaining to show the holomor-
phic separability.



Take two distinct points a,b € Q. If w(a) # m(b), the proof is done. Suppose that
7(a) = 7w(b). By a translation of C we may assume that m(a) = 7(b) =0 € C. Let Uy 2 a
be a neighborhood such that Uy # b and 7|, : Uy — A(0;9) with § > 0 is biholomorphic.
Put Uy, = Q\ {a}. Then U = {Uy, U;} is an open covering of Q. For each k € N we set

1
’)/k(x):m, I‘ermUl

Then ~;, defines an element of H'(U,Ogq). It is noted that H'(U, Oq) — H'(Q,Og) is
injective. By Theorem 2.10 there is a non-trivial linear relation

h

ch%zo, ¢, € C, Ch7é0.
k=1

Therefore there are elements f; € O(U;),j = 0,1 such that

1
T(2)F’

fi(z) = fo(x) =

Ck x e UyNU.

e

k=1

Thus we obtain a meromorphic function in 2 with a pole only at a,
b
F=fi=fo+ ) c—.
h=fit Yo

From the construction we get

Therefore a and b are separated by an element of O((2).

(b) We assume the assertion holds in dim X = n — 1. Let dim X = n > 2. By the
definition of Riemann domain it is sufficient to prove the holomorphic convexity and the
holomorphic separability; the first is finished by Theorem 2.11, and the latter remains to
be shown.

(1) We take arbitrary distinct points a,b € . As in (a) we may assume that
m(a) = m(b) = 0. Taking a hyperplane L = {z, = 0}, we consider the restriction

mx X' =7n'L — L.

Since L & C"! (biholomorphic), every connected component X” of X’ is (n — 1) dimen-
sional Riemann domain. The restriction ¢|x~ is a continuous plurisubharmonic exhaustion
function. By the induction hypothesis X" is Stein.

(2) Let m{a) C Ox, be the maximal ideal of the local ring Ox:, and let m* denote
the k-th power. Set
m*(a, b) = m*(a)am"(b) C Ox.
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This is a coherent ideal sheaf of Ox-.

Since every connected component of X’ is Stein, Theorem 2.7 implies the existence of
gr € O(X') for each k € N such that
(3.3) gr, =0 (mod mFa, b),),
9k, %0 (mod mk(a, b)a),
gk, =0 (mod m*(a, b)),

where gk, stands for a germ of g, at a.

(3) Weput Q' = QN X' Let Z be the ideal sheaf of the analytic subset X’ C X. By
Oka’s Second Coherence Theorem ([10] VII, VIII) Z is coherent.? Restriction this to
we have a short exact sequence:

0—-7Z— 0Oq— Oy — 0.

This implies the following exact sequence,
(3.4) 0(Q) — OQ) > HY(Q,T).

We write gy, for the restriction of g; to Q' by the same letter. We have that {0(gx) }ren C
H'(Q,7). By Theorem 2.10 H'(£2,Z) is finite dimensional, and thus there is a non-trivial
linear relation

N
Z ckd(gr) =0, ¢ €C, N < 0.

k=ko

We may assume that ¢, # 0. It follows from (3.4) that there is an element f € O(Q)

such that
N
f ‘Q’ = Z CrOk-
k=ko

3 There seems to be a confusion in the historical comprehension of the developement of the “coherence
theorems”. In Oka VII and VIII K. Oka proved three fundamental coherence theorems. Firstly in Oka
VII which was received in 1948 and published in 1950, he proved the coherence of the structure sheaf
Ocn on C™ (Oka’s First Coherence Theorem), and he was writing in two places that in the forthcoming
paper he would deal with the coherence of ideal sheaves of analytic subsets, “idéaux géométriques de
domaines indéterminés’ he termed, and that one would see it to hold without any assumption; see 1)
the last six lines of the paper at p. 27, and 2) the last two lines of p. 7 to the line just before §3 of p. 8.
There he wrote that there are two cases for which the coherence problem are solvable, the first is that
of O¢n dealt with in VII, and the second is that of the ideal sheaf of an analytic subsets (Oka’s Second
Coherence Theorem), of which proof appeared in Oka VIIT in 1951, while H. Cartan’s proof appeared in
1950 in the same volume as Oka VII, to which the theorem is attributed in most references.

For this many refer only to the first point 1), but never to the second point 2) so far by the knowledge
of the present author, where K. Oka was writing more detailed descriptions what should be done for
the Second Coherence Theorem. In VIII he wrote its proof and moreover proved the coherence of
normalizations (Oka’s Third Coherence Theorem). For a convenience we give a complete list of of K.
Oka’s paper at the end of the references, which is not very long but hard to find a complete correct one.
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We use m = (z1,...,2,) as a holomorphic local coordinate system in a sufficiently small
neighborhood of a € Q, 2/ = (z1,...,2,-1). Then we get

(3.5) f(2) =Y engu(2) + h(z) - 2,

k=ko

where h(z) is a holomorphic function in a neighborhood of a. It follows from (3.3) that
there is a partial differentiation of order kg in 2’

ako n—1
aq p—1) E 7 0
821 R aznil

J=1

such that

(3.6) Dgg,(a) # 0,
Dgi(a) =0, k> ko,
Dgr(b) =0, k> k.
The definition of D and (3.5) imply that

N

Df(z) = Z ctDgr(2") + (Dh(2)) - 2.

k=ko
Since z, = 0 at a and b, (3.6) leads to
Df(a) £0, Df(b)=0.
Since Df € O(Q2), the holomorphic separability of {2 was proved. g.e.d.
We set
X.={reX;o(x)<c}, ceR.
For X being Stein it suffices to prove the followings:
Lemma 3.7. (i) X. is Stein for an arbitrary c € R;
(ii) For every pair of ¢ < b, (X., Xp) is a Runge pair.
Proof (i) Let K € X, be a compact subset. We put
n = dpa(K,0X,) (> 0).
We take b > ¢ so that
(3.8) max opa(x,0X,) < 1.

z€dX,

Since ||7(x)||* is strongly plurisubharmonic everywhere and ¢ is plurisubharmonic, there
exists a strongly pseudoconvex domain €2 such that
X, e eEX,.

By Lemma 3.2 €2 is Stein. Therefore conditions (i) and (ii) of Definition 1.2 are satisfied,
and there remains (iii) (holomorphic convexity) to be shown.

8



Claim 3.9. Kx, € X, .
*.*) The application of (2.2) to K € Q yields
Spa(Kq, 0Q) = dpa(K,00) > 1.
On the other hand, from (3.8) it follows that

max dpa(z,0Q) < n.

$68Xc

The above two equations imply
(3.10) Kx, C Kg € X..

(ii) We use the same notation as in (i).

(1) We now know that all X, (¢ € R) are Stein. Therefore, replacing 2 by X} in the
above arguments in (i), we see that

(3.11) Ky, C Ky, € X, € X,.
Claim 3.12. Ky, = Kx,.
") By (3.11) we can take an O(Xj)-analytic polyhedron P such that
Ky, CKx,ePeX,€X,.
If there is a point ¢ € Kx, \ Kx,, then there is some g € O(X,) such that

max |g| < [g(C)]-

By Lemma 2.8 (ii) g can be approximated uniformly on K x, by an element of O(X,).
Hence there is a holomorphic function f € O(X,) such that

max 1] < | £(Q)]

This is absurd.
(2) It follows from Claim 3.12 that

(3.13) Kx. =Ky, ¢< "t<b.

We set R R
E={t>c¢;Kx, = Kx.} C[c,00).
By definition ¢ € E implies [¢,t] C E. The result of (1) shows that E is an open subset
of [¢, 00).
(3) We put a =sup E.

Claim 3.14.  a = ooy i.e., E = [c¢,00).



") Suppose that a < co. From the definition we obtain
KIZKXCZKX” CSvt<a.
Letting ¢t < a sufficiently close to a, we have

5PA<K1,8XQ> > max 5pA(ZE,8Xa).

ZBGaXz

Because X, is Stein,

opa(K1x,,0X,) = 0pa(K1,0X,) > max dpa(x,0X,).

€0 X+t
Thus, K x, € X; follows. One gets
Ky, ¢ Kx, C Kix, € X; € X,.

In the same way as in (1) we see that Kx, = Kx,. Therefore, a € E. Since E is open,
there exists a number o’ € F with a’ > a. This contradicts to the choice of a.

(4) It follows from (2) that for arbitrary ¢ < b and a compact subset K € X,
Kx, = Kx,.

Therefore, Oka’s Joktiko and Theorem 2.6 imply that (X, X;) is a Runge pair.  g¢.e.d.
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