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Abstract. We show formulae of determining the order of fractional derivative in
time in the fractional diffusion equation by time history at one fixed spatial point.
The proof is based on asymptotics of the solution as t → 0 or t → ∞. The order is

important for evaluating the anomaly of the diffusion in heterogeneous medium.

§1. Introduction.

Recently anomalous diffusion phenomena have attracted great attention, which

show different aspects from the classical diffusion. For example, Adams and Gelhar

[1] pointed that observation data in the saturated zone of an actual aquifer deviate

from simulated results by the classical advection-diffusion equation. An anomalous

diffusion is interpreted as slow diffusion, and is characterized by the long-tailed
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profile in spatial distribution of densities as the time passes. Also see Berkowitz,

Cortis, Dentz and Scher [3].

For the anomalous diffusion, a microscopic model was proposed by the continuous-

time random walk. That is, let x(t), t > 0 be the probability density function of

location of particle at time t, and let us assume that the mean square displacement

grows as

(1.1) < x2(t) >∼ tα,

where α > 0 is a constant (e.g., Metzler and Klafter [7], Sokolov, Klafter and Blu-

men [11]). The case α = 1 corresponds to the classical diffusion, and the transport

phenomenon exhibits sub-diffusion for α < 1, while super-diffusion for α > 1. Thus

the determination of α is needed for suitable simulation of the anomalous diffusion

and there are many column experiments on reactive flow in heterogeneous media

(e.g., Hatano and Hatano [6]). On the other hand, the anomalous diffusion subject

to (1.1) can be described by a macroscopic model (e.g., [7], [11]) which is called the

fractiocal diffusion equation:

(1.2) ∂α
t u(x, t) = µ∆u(x, t) +

d∑
j=1

µj
∂u

∂xj
(x, t), x ∈ Ω,

where Ω ⊂ Rd, µ > 0, µj ∈ R, and we set

∂α
t u(x, t) =

1

Γ(1− α)

∫ t

0

(t− s)−α ∂u

∂s
(x, s)ds

where Γ(1 − α) is the gamma function. Then u(x, t) describes the probability of

finding a particle at location x and time t.

In this paper, we establish formulae of determining 0 < α < 1 by observation

data of solution u to (1.2). Our formulae may give easy way for determining α,

e.g., by experiments in the flow cells or columns.
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§2. Main result.

Consider

(2.1)

Dα
t u(x, t) = (Lu)(x, t) ≡

d∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u(x, t), x ∈ Ω, 0 < t < T,

∂Lu(x, t) + σ(x)u(x, t) = 0, x ∈ ∂Ω, 0 < t < T,

u(x, 0) = a(x), x ∈ Ω.

Here Ω ⊂ Rd is a bounded domain with smooth boundary ∂Ω, ν(x) = (ν1(x), ..., νd(x))

denotes the unit outward normal vector to ∂Ω at x, and aij = aji, 1 ≤ i, j ≤ d are

of C1(Ω), c ∈ C(Ω), c(x) ≤ 0 for x ∈ Ω, σ ∈ C∞(∂Ω), ≥ 0, ̸≡ 0 on ∂Ω, there exists

a constant ν > 0 such that

d∑
i,j=1

aij(x)ξiξj ≥ ν
d∑

j=1

ξ2j , x ∈ Ω, ξ1, ..., ξd ∈ R,

and we set

∂Lv(x) =
d∑

i,j=1

aij(x)
∂v

∂xj
(x)νi(x), x ∈ ∂Ω.

Inverse Problem. Let x0 ∈ Ω be fixed. Determine α ∈ (0, 1) from observation

data

u(x0, t) for small t or large t.

Theorem.

(i) We assume that

(2.2) a ∈ C∞
0 (Ω), La(x0) ̸= 0.

Then

α = lim
t→0

t∂u∂t (x0, t)

u(x0, t)− a(x0)
.

(ii) We assume that

(2.3) a ∈ C∞
0 (Ω), a ≥ 0 or ≤ 0, ̸≡ 0 on Ω.
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Then

α = − lim
t→∞

t∂u∂t (x0, t)

u(x0, t)
.

Remark. (i) gives an identification formula for the order α by data near t = 0,

while (ii) is for data for large t > 0. The condition a ∈ C∞
0 (Ω) means that a = 0

near the boundary ∂Ω and a is infinitely many times differentiable in Ω. For

example we can take a very smooth bell-shaped function as a(x).

As is seen from the proof in section 3, we see the following: for any fixed small

δ > 0, there exists a constant C0 > 0 depending on aij , c, a,Ω, σ, such that∣∣∣∣∣
(
−
T ∂u

∂t (x0, T )

u(x0, T )

)
− α

∣∣∣∣∣ ≤ C0

Tα

for any α ∈ [0, 1 − δ]. This is useful for estimating errors when we approximate α

by setting t = T :

−
T ∂u

∂t (x0, T )

u(x0, T )
.

§3. Proof of Theorem.

Let L2(Ω), Hℓ(Ω), ℓ ∈ N, denote usual Lebesgue space and Sobolev space and let

us set

(a, b) =

∫
Ω

a(x)b(x)dx, ∥a∥ = (a, a)
1
2 .

Let {φn}n∈N be the set of all the eigenfunctions of L with the boundary condition

∂Lu + σu = 0; that is, Lφn = −λnφn, φn ̸= 0, and ∂Lφn(x) + σ(x)φn(x) = 0 for

x ∈ ∂Ω. We number the eigenvalues with multiplicities as

λ1 ≤ λ2 ≤ ....,

and we choose φn such that (φn, φn) = 1 and (φn, φm) = 0 if n ̸= m. Then we can

prove

λn > 0, n ∈ N.
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In fact, λn ≥ 0 can be first proved as follows. Let Lu = −λnu, ∂Lu + σu = 0 and

u ̸≡ 0. Then, multiplying Lu = λnu by u and integrating by parts, and using the

boundary condition, we obtain

− λn∥u∥2 =

∫
Ω

 d∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ cu

udx

=

∫
Ω

−
d∑

i,j=1

aij
∂u

∂xi

∂u

∂xj
+ cu2

 dx

+

∫
∂Ω

(∂Lu)udS

=

∫
Ω

−
d∑

i,j=1

aij
∂u

∂xi

∂u

∂xj
+ cu2

 dx−
∫
∂Ω

σu2dS ≤ 0.

Therefore by u ̸≡ 0, we see that λn ≥ 0. Moreover let Lu0 = 0 in Ω and ∂Lu0 +

σu0 = 0 on ∂Ω. Then by the above equalities, we have

∫
Ω

−
d∑

i,j=1

aij
∂u0

∂xi

∂u0

∂xj
+ cu2

0

 dx−
∫
∂Ω

σu2
0dS = 0,

which implies ∇u0 = 0 in Ω. Hence u0 is a constant function, and
∫
∂Ω

σu2
0dS = 0.

Since σ ̸≡ 0 on ∂Ω, we see that u0 = 0. This means that 0 can not be an eigenvalue.

Thus we have proved λn > 0, n ∈ N.

By a ∈ C∞
0 (Ω), we can see the following:

For any ℓ ∈ N, there exists a constant C(ℓ) > 0 such that

(3.1) |(a, φn)| ≤
C(ℓ)

|λn|ℓ
, n ∈ N

and

(3.2)
∞∑

n=1

−λn(a, φn)φn(x0) = La(x0),
∞∑

n=1

(a, φn)φn(x0) = a(x0).

Moreover Lφn = −λnφn in Ω implies ∥Lmφn∥ = |λn|m, m ∈ N. By the regularity

of elliptic equation (e.g., Gilbarg and Trudinger [5]), we see that there exists a
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constant C1 > 0 such that ∥φn∥H2m(Ω) ≤ C1(∥Lmφn∥ + ∥φn∥). Here ∥φn∥H2m(Ω)

is the norm in H2m(Ω) (e.g., Adams [2]). By the Sobolev embedding theorem (e.g.,

[2]), if m > d
4 , then there exists a constant C2 = C2(m) > 0 such that

max
x∈Ω

|φn(x)| ≤ C2∥φn∥H2m(Ω) ≤ C1C2(|λn|m + 1), n ∈ N.

Hence there exist constants κ > 0 and C3 > 0 such that

(3.3) |φn(x0)| ≤ C3|λn|κ, n ∈ N.

Moreover

(3.4) |λn| ≤ C4n
2
d

(e.g., Courant and Hilbert [4]). Therefore, by (3.1) - (3.3), similarly to Sakamoto

and Yamamoto [10], by the Fourier method, we can prove

(3.5) u(x0, t) =
∞∑

n=1

(a, φn)φ(x0)Eα,1(−λnt
α), 0 < t < T,

where the series is convergent in C[0, T ]. Here the Mittag-Leffler function is defined

as follows:

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + 1)
, α > 0, β > 0, z ∈ C

(e.g., Podlubny [8]). Therefore

∂u

∂t
(x0, t) =

∞∑
n=1

(a, φn)φ(x0)
d

dt
Eα,1(−λnt

α)

=
∞∑

n=1

−λn(a, φn)φ(x0)t
α−1Eα,α(−λnt

α), 0 < t < T(3.6)

(e.g., formula (1.83) on p.22 in [8]). On the other hand,

Eα,α(−λnt
α) =

∞∑
k=0

(−λnt
α)k

Γ((k + 1)α)
=

1

Γ(α)
+ tα

(
Eα,α(−λnt

α)− Γ(α)−1

tα

)
≡ 1

Γ(α)
+ tαrn(t),
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where rn(t) is continuous at t = 0 and limt→0 rn(t) exists. Hence

∂u

∂t
(x0, t) =

( ∞∑
n=1

−λn(a, φn)φ(x0)

)
tα−1

Γ(α)
+

( ∞∑
n=1

−λn(a, φn)φ(x0)rn(t)

)
t2α−1,

and

lim
t→0

t1−α ∂u

∂t
(x0, t) =

1

Γ(α)

( ∞∑
n=1

−λn(a, φn)φ(x0)

)

+ lim
t→0

tα

( ∞∑
n=1

−λn(a, φn)φ(x0)rn(t)

)
.(3.7)

By [8] (formula (1.148) on p.35), we have

|rn(t)| =

∣∣∣∣∣
∞∑
k=1

(−λn)
ktα(k−1)

Γ((k + 1)α)

∣∣∣∣∣ = |λn|

∣∣∣∣∣
∞∑
k=0

(−λnt
α)k

Γ(kα+ 2α)

∣∣∣∣∣
=|λn||Eα,2α(−λnt

α)| ≤ |λn|, t ≥ 0, n ∈ N.

Hence, by (3.1) and (3.3),∣∣∣∣∣
∞∑

n=1

−λn(a, φn)φ(x0)rn(t)

∣∣∣∣∣ ≤
∞∑

n=1

|λn|2|(a, φn)φ(x0)|

≤
∞∑

n=1

|λn|2
C(ℓ)

|λn|ℓ
C3|λn|κ.

By (3.4), we take sufficiently large ℓ ∈ N to have

max
0≤t≤T

∣∣∣∣∣
∞∑

n=1

−λn(a, φn)φ(x0)rn(t)

∣∣∣∣∣ < ∞.

Hence, by using (3.2), equation (3.7) yields

(3.8) lim
t→0

t1−α ∂u

∂t
(x0, t) =

La(x0)

Γ(α)
.

On the other hand, we have

Eα,1(−λnt
α) = 1− λnt

α

Γ(α+ 1)
+ t2α

∞∑
k=2

(−λn)
ktα(k−2)

Γ(αk + 1)

=1− λnt
α

Γ(α+ 1)
+ t2αλ2

nEα,2α+1(−λnt
α).



8 Y. HATANO, J. NAKAGAWA, S. WANG AND M. YAMAMOTO

Therefore, using (3.2), we have

u(x0, t) =

∞∑
n=1

(a, φn)φ(x0) +

∞∑
n=1

−λn(a, φn)φ(x0)

Γ(α+ 1)
tα

+t2α
∞∑

n=1

λ2
nEα,2α+1(−λnt

α)(a, φn)φ(x0) = a(x0) +
La(x0)

Γ(α+ 1)
tα + t2αr̃(t).

Here by (3.1), we see that sup0≤t≤T |r̃(t)| < ∞. Consequently

(3.9) lim
t→0

t−α(u(x0, t)− a(x0)) =
La(x0)

Γ(α+ 1)
.

In terms of (3.8) and (3.9), using La(x0) ̸= 0 and Γ(α+ 1) = αΓ(α), we have

lim
t→0

t∂u∂t (x0, t)

u(x0, t)− a(x0)

=
limt→0 t

1−α ∂u
∂t (x0, t)

limt→0 t−α(u(x0, t)− a(x0))

=

La(x0)
Γ(α)

La(x0)
Γ(α+1)

= α.

Thus we can complete the proof of (i).

Next we will prove (ii). In (3.5) and (3.6), we apply the asymptotic behaviour

of the Mittag-Leffler function at ∞ (e.g., Theorem 1.4 (pp. 33-34) in [8]):

Eα,1(−η) =
η−1

Γ(1− α)
+O

(
1

η2

)

and

Eα,α(−η) = − η−2

Γ(−α)
+O

(
1

η3

)
as η → ∞, η > 0. Therefore

u(x0, t) =
∞∑

n=1

(a, φn)φn(x0)
1

Γ(1− α)λntα

+O

(
1

t2α

) ∞∑
n=1

(a, φn)φn(x0)
1

λ2
n
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and

∂u

∂t
(x0, t) =

∞∑
n=1

(a, φn)φn(x0)
1

Γ(−α)λntα+1

+O

(
1

t2α+1

) ∞∑
n=1

(a, φn)φn(x0)
1

λ2
n

.

Since Lφn = −λnφn in Ω, noting that λn > 0, we see that

∞∑
n=1

(a, φn)φn(x0)

λn
= −(L−1a)(x0),

∞∑
n=1

(a, φn)φn(x0)

λ2
n

= (L−2a)(x0),

we obtain

u(x0, t) =
−(L−1a)(x0)

Γ(1− α)tα
+O

(
1

t2α

)
(L−2a)(x0)

and

∂u

∂t
(x0, t) =

−(L−1a)(x0)

Γ(−α)tα+1
+O

(
1

t2α+1

)
(L−2a)(x0).

Here we can prove

(L−1a)(x0) ̸= 0.

In fact, we set b(x) = L−1a(x), x ∈ Ω. Then Lb(x) = a(x), x ∈ Ω. Without loss of

generality, we may assume that a ≥ 0 on Ω. Then Lb(x) ≥ 0 in Ω. By the strong

maximum principle (e.g., Theorem 4.10 (p.109) in Renardy and Rogers [9]), in view

of c ≤ 0 on Ω, we see that maxx∈Ω b(x) < 0, which means L−1a(x0) ̸= 0.

Therefore

t∂u∂t (x0, t)

u(x0, t)

=

−(L−1a)(x0)
Γ(−α)tα +O

(
1

t2α

)
(L−2a)(x0)

−(L−1a)(x0)
Γ(1−α)tα +O

(
1

t2α

)
(L−2a)(x0)

−→Γ(1− α)

Γ(−α)

as t → ∞. Since Γ(1− α) = −αΓ(−α), the proof of (ii) is completed.
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