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1 Introduction

Björk-Christernsen [3] considered the relationship between a family of forwardrate
curves parameterized by finite factors and a dynamical interest rate model free of arbi-
trage, and showed that there are some constraint conditions for a family of forwardrate
curves which comes from a dynamical interest rate model free of arbitrage.
Recently, copula models are widely used to describe a family of default time. But it

is not clear that such copula models are consistent with dynamical credit risk models. In
the present paper, we study the relationship between a family of copula functions param-
eterized by finite dimensional parameters and dynamical default time models. Although
we consider rather restricted dynamical default time models, we show that there are some
constraint conditions for a family of copula functions.
The setup in this paper is the following. Let (Ω,F , P ) be a complete probability

space, W (t) = (W k(t))k=1,...,d, t = 0, be a d-dimensinal standard Wiener process, and
Gt = σ{W (s), s ∈ [0, t]} ∨ N , where N = {B ∈ F ; P (B) = 0 or 1}. Let N = 2,
τi : Ω→ [0,∞), i = 1, . . . , N, be random variables, and let Ft = Gt∨σ{τi∧t, i = 1, . . . , N}.
Let ξi : [0,∞)× Ω→ [0,∞), i = 1, . . . , N, be G-progressively measurable processes.
First, we assume the following conditions.

(SC) (
Y
i∈I
1{τi>t})P (τi > ti, i ∈ I|Ft) = (

Y
i∈I
1{τi>t})E[exp(−

X
i∈I

Z ti

t

ξi(s)ds)|Gt] a.s.

for any I ⊂ {1, . . . , N} and t, ti ∈ [0,∞), i ∈ I with t 5 mini∈I ti.
(PO) For any t = 0,

P (

N\
i=1

{τi > t})|Gt] > 0 a.s.
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We also assume the following technical assumptions.
(A-1) For any T > 0,

NX
i=1

Z T

0

E[ξi(t)
4]dt <∞.

(A-2) For any i = 1, . . . , N,Z ∞
0

ξi(t) =∞ a.s. and

Z b

a

ξi(t) > 0 a.s. for any a, b > 0 with b > a.

(A-3)
NX
i=1

Z ∞
0

(1 + t)2E[ξi(t)
2 exp(−2

Z t

0

ξi(s)ds)]dt <∞.

Let θ : [0,∞)×Ω→ RM be a G-Ito process, i.e., θ is G-progressively measurable, θ(t,ω)
is continuous in t for all ω ∈ Ω, and there are RM -valued G-progressively measurable
processes ηk, k = 1, . . . , d, and b satisfying

P (
dX
k=1

Z T

0

|ηk(t)|2dt+
Z T

0

|b(t)|dt <∞) = 1, for any T > 0,

and

θ(t) = θ(0) +

dX
k=1

Z t

0

ηk(s)dW
k(s) +

Z t

0

b(s)ds. (1)

Let Θ be an open subset inRM andK ∈ C([0, 1]N×Θ; [0, 1]).We assume the following,
moreover.
(A-4) P (θ(t) ∈ Θ̄ for all t = 0) = 1, where Θ̄ is the closure of Θ in RM .
(A-5) the support of probability law of θ(t,ω) under e−tdt⊗P (dω) contains a non-empty
open set in Θ, i.e., there is a non-empty open set U0 in Θ such that for any θ0 ∈ U0 and
ε > 0 Z ∞

0

P (|θ(t)− θ0| < ε) e−tdt > 0.

(CP) K(·, θ) : [0, 1]N → [0, 1] is a copula function for any θ ∈ Θ, and
NY
i=1

1{τi>t}1Θ(θ(t))P (τi > ti, i = 1, . . . , N |Ft)

=
NY
i=1

1{τi>t}1Θ(θ(t))K(P (τ1 > t1|Ft), . . . , (P (τN > tN |Ft), θ(t)) a.s.

for any t, t1, . . . , tN > 0 with t < mini=1,...,N ti.
We call a family ((Ω,F , P ), (W k

t )k=1,...,d, (τi)i=1,...,N , (ξi(t))i=1,...,N , θ(t),Θ,K) satisfy-
ing the above assumptions a dynamical default time copula model, and we call K the
associated family of copula functions to this model.

Definition 1 Let Θ be an open subset in RM . We say that K ∈ C([0, 1]N × Θ; [0, 1]) is
an admissible family of copula functions, if there is a dynamical default time copula model
and K is the associated family of copula functions to the model.
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The purpose of the present paper is to show that there are some analytic constraint
conditions for an admissible family of copula functions. For example we will prove the
following.
Let N,M = 1, Θ be a non-vois open subset in RM . Let C(N)(Θ) denote the subset

of C([0, 1]N × Θ; [0, 1]) consisting of elements K such that K(·, θ) : [0, 1]N → [0, 1] is a
copula function for any θ ∈ Θ, and K|(0,1)N×Θ is a C∞ function.
Let Dn be an increasing sequence of compact subsets in Θ such that

S∞
n Dn = Θ.

Then we can regard C(N)(Θ) as a Polish space with a metric function dis given by
dis(K1,K2)

=
∞X
n=1

2−n ∧ sup{|K1(x, θ)−K2(x, θ)|; x ∈ [0, 1]N , θ ∈ Dn}

+
∞X
n=1

2−n∧(
nX

α1,...,αN+M=0

sup{| ∂α1+···αN+M (K1 −K2)

∂xα11 ∂x
αN
N ∂θ

αN+1
1 ∂θ

αN+M
M

(x, θ); x ∈ [1/4n.1−1/4n]N , θ ∈ Dn}).

Our main result is the following.

Theorem 2 Let N = 3, M = 1, and Θ be a no-void open subset in RM . Then the subset
of C(N)(Θ) whose elements are admissible families of copula functions is a set of the first
category in Baire’s sense.

We also show that a family of Gumbel copula functions of 3 variables is not admissible
by relying on numerical computation in Section 7.

2 Preliminary results

Let ξ : [0,∞)×Ω→ [0,∞) be a G-progressively measurable satisfying the following three
conditions.

(B-1)

Z T

0

E[ξ(t)4]dt <∞ for any T > 0.

(B-2)
R∞
0
ξ(t)dt =∞ a.s., and

R b
a
ξ(t)dt > 0 a.s. for any b > a = 0.

(B-3) E[

Z ∞
0

(1 + t)2ξ(t)2 exp(−2
Z t

0

ξ(r)dr)dt] <∞.
For each s = 0, let {M(t, s); t = 0} is a continuous martingale given by

M(t, s) = E[exp(−
Z s

0

ξ(r)dr)|Gt], t = 0.

Proposition 3 There is f : [0,∞)× [0,∞)× Ω→ (0,∞) satisfying the following.
(1) For any t, s = 0,

f(t, s) = E[exp(−
Z s

t∧s
ξ(r)dr)|Gt] = exp(

Z t∧s

0

ξ(r)dr)M(t, s) a.s.

(2) For any ω ∈ Ω f(·, ∗ : ω) : [0,∞)× [0,∞)→ [0,∞) is continuous.
(3) If s2 > s1 > t, then f(t, s1) > f(t, s2) > 0, ω ∈ Ω.
(4) For any t = 0

f(t; t) = 1, lim
s↑∞

f(t; s) = 0.
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Proof. Note that for 0 5 s1 5 s2

E[ sup
t∈[0,∞)

|M(t, s1)−M(t, s2)|4] 5 4E[|M(s1, s1)−M(s2, s2)|4]

5 4E[|
Z s2

s1

ξ(r)dr|4] 5 4(s2 − s1)3(
Z s2

s1

E[ξ(r)4]dr).

So by Kolmogorov’s continuity theorem and the assumption (B-1), we see that there is
a M̃ : [0,∞) × [0,∞) × Ω → [0,∞) such that M̃(·, ∗,ω) → [0,∞) is continuous and
P (M̃(t, s) =M(t, s)) = 1, t, s = 0. Let

f̃(t, s) = exp(

Z t∧s

0

ξ(r)dr)M̃(t, s) t, s = 0.

Then f̃(t, s) is continuous in (t, s). Let 0 5 s1 < s2. Then

f̃(t, s1)− f̃(t, s2) = exp(
Z t

0

ξ(r)dr)(M̃(t, s1)− M̃(t, s2)), t ∈ [0, s1].

By the assumption (B-2), we have

M̃(s1, s1)− M̃(s1, s2) = exp(−
Z s1

0

ξ(r)dr)E[1− exp(−
Z s2

s1

ξ(r)dr))|Gs1] > 0 a.s.

Let τ0 = inf{t = 0; M̃(t, s1)− M̃(t, s2) = 0} ∧ s1. Then we see that

M̃(τ, s1)− M̃(τ, s2) = E[M̃(s1, s1)− M̃(s1, s2)|Gτ ] > 0, a.s.

So we see that
inf

t∈[0,s1]
(M̃(t, s1)− M̃(t, s2)) > 0 a.s.

So we see that
inf

t∈[0,s1]
(f̃(t, s1)− f̃(t, s2)) > 0 a.s.

for any s1, s2 ∈ Q with s2 > s1 = 0. So there is an Ω1 ∈ F with P (Ω1) = 1 such that
f̃(t, s1,ω) > f̃(t, s2,ω) for any ω ∈ Ω1, s1, s2 ∈ Q with s2 > s1 > 0 and t ∈ [0, s1). Since
f̃(t, s) is continuous in (t, s), we see that f̃(t, s) is non-increasing in s. So we see that
f̃(t, s1,ω) > f̃(t, s2,ω) for any ω ∈ Ω1, t, s1, s2 ∈ [0,∞) with s2 > s1 > t. Similarly we
can show that there is an Ω2 ∈ F with P (Ω2) = 1 such that f̃(t, s,ω) > 0 for any ω ∈ Ω2,
t, s ∈ [0,∞).
We see that

E[ lim
s→∞

f̃(t, s)] 5 lim
s→∞

E[f̃(t, s)] = lim
s→∞

E[exp(−
Z s

t

ξ(r)dr] = 0.

Since lims→∞ f̃(t, s,ω) exists for ω ∈ Ω1, we see that lims→∞ f̃(t, s,ω) = 0 a.s. Also, it
is easy to see f̃(t, t) = 1 a.s. Therefore we can take a good version f of f̃ satisfying the
assertion.

4



Proposition 4 There exist σ̂k : [0,∞] × [0,∞) × Ω → R, k = 1, . . . , d, satisfying the
following.
(1) σ̂k(t, ·,ω) : [0,∞] → R, k = 1, . . . , d, is continuous for any t ∈ [0,∞) and ω ∈ Ω.
Moreover, σ̂k(t, s,ω) = 0, t = s, and lims→∞ σ̂k(t, s,ω) = 0 for any t ∈ [0,∞) and ω ∈ Ω.
(2) σ̂k(·, s) : [0,∞) × Ω → R, k = 1, . . . , N, is G-progressively measurable for any s = 0
and

M(t, s) =M(0, s) +
dX
k=1

Z t

0

σ̂k(r, s)dW
k(r), t = 0, a.s.

for any s > 0.

Proof. For each s = 0, let N(t; s), t ∈ [0,∞) be a continuous martingale given by

N(t; s) = E[ξ(s) exp(−
Z s

0

ξ(r)dr)|Gt].

By Ito’s representation theorem, we see that for any s = 0 there exist G-progressively
measurable processes ck(·, s) : [0,∞)× Ω→ R, k = 1, . . . , d, such that

N(t; s) = N(0; s) +

dX
k=1

Z t

0

ck(r, s)dW
k(r), t = 0.

Since the map from [0,∞) to L2(Ω,F , P ) coresponding s to Nt(s) is measurable, we may
assume that ck : [0,∞)× [0,∞)× Ω→ R is measurable. Note that

N(0; s)2 +

dX
k=1

Z ∞
0

E[ck(r, s)
2]dr

= lim
t→∞

E[N(t; s)2] 5 E[ξ(s)2 exp(−2
Z s

0

ξ(r)dr)].

Therefore by the assumption (B-3), we see that

E[

Z
[0,∞)×[0,∞)

(1 + s)2ck(r, s)
2drds] <∞, k = 1, . . . , d.

Let us define σ̃k : [0,∞)× [0,∞)× Ω→ R, k = 1, . . . , N, by

σ̃k(t; s) =

½ − R s
0
ck(t, u)du, if

R
[0,∞)(1 + u)

2ck(t, u)
2ds <∞,

0, otherwise .

Then we see that σ̃k(·, s) : [0,∞) × Ω → R, is G-progressively measurable for any s = 0
and σ̃k(t, ·) : [0,∞)→ R is continuous. Also, by stochastic Fubini’s theorem, we have

−
Z s

0

N0(u)du+

dX
k=1

Z t

0

σ̃k(r, s)dW
k(r)

= −
Z s

0

N0(u)du−
dX
k=1

Z t

0

(

Z s

0

ck(r, u)du)dW
k(r)
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= −
Z s

0

Nt(u)du = E[exp(−
Z s

0

ξi(u)du)− 1|Gt] =M(t; s)− 1 a.s.

So we see that

M(t; s) =M(0, s) +

dX
k=1

Z t

0

σ̃k(r, s)dW
k(r).

Note that for 0 < s1 < s2 <∞, we have

|σ̃k(t, s1)− σ̃k(t, s2)|2 5 (
Z s2

s1

|ck(t, u)|du)2

5 (
Z s2

s1

(1 + u)−2du)(

Z s2

s1

(1 + u)2ck(t, u)
2du) 5

Z ∞
s1

(1 + u)2ck(t, u)
2du.

So we have

E[

Z
[0,∞)

dt( sup
s1,s2>s

|σ̃k(t, s1)− σ̃k(t, s2)|2)]

5 E[
Z
[0,∞)×[s,∞)

(1 + u)2ck(r, u)
2drdu]→ 0, s→∞.

Therefore we see that

sup
s1,s2>s

|σ̃k(t, s1)− σ̃k(t, s2)|2 → 0, s→∞ dt⊗ P (dω)− a.e.(t,ω).

This implies that σ̃k(t, s) converges as s→∞ for dt⊗ P (dω)− a.e.(t,ω).
Also, we see by (B-2) that

E[

Z ∞
0

( lim
s→∞

σ̃k(t, s)
2)dt] 5 lim

s→∞
E[

Z ∞
0

σ̃k(t, s)
2dt] 5 lim

s→∞
E[exp(−2

Z s

0

ξi(u)du)] = 0.

Thus we see that σ̃k(t, s)→ 0, s→∞ for dt⊗ P (dω)− a.e.(t,ω).
Let σ̂k, k = 1, . . . , d, be given by

σ̂k(t; s) =

½
σ̃k(t; s), if σ̃k(t, s)→ 0, as s→∞,
0, otherwise ,

Then we have our assertion.
By Ito’s formula, we have

f(t; s) = f(0, s) +

Z t∧s

0

ξ(r)f(r; s)dr +

Z t

0

exp(

Z r∧s

0

ξ(u)du)σ̂k(r, s)dW
k(r), t = 0,

for any s = 0. So we have the following as a corollary to Proposition 4.
Corollary 5 There exist σ̃k : [0,∞]× [0,∞)× Ω→ R, k = 1, . . . , d, such that
(1) σ̃k(t, ·,ω) : [0,∞] → R, k = 1, . . . , d, is continuous for any t ∈ [0,∞) and ω ∈ Ω.
Moreover, σ̃k(t, s,ω) = 0, t = s, and lims→∞ σ̃k(t, s,ω) = 0 for any t ∈ [0,∞) and ω ∈ Ω.
(2) σ̃i,k(·, s) : [0,∞)× Ω→ R, k = 1, . . . , N, is G-progressively measurable for any s = 0
and

f(t, s) = f(0, s) +

Z t∧s

0

ξ(r)f(r; s)dr +

dX
k=1

Z t

0

σ̃k(r, s)dW
k(r), t = 0, a.s.

for any s > 0.
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By Proposition 3, we have the following immediately.

Proposition 6 Let T : [0,∞)× (0, 1]× Ω→ [0,∞] be given by

T (t, x) = inf{s = t; f(t, s) < x}, x ∈ (0, 1].

Then T (t, ·,ω) : (0, 1]→ [0,∞) is continuous and strictly decreasing and limx↓0 T (t, x,ω) =
∞ for any t = 0 and ω ∈ Ω.

Now let X : [0,∞)× [0,∞)× (0, 1]× Ω→ (0, 1] be given by

X(t, s;x) = f(t ∨ s, T (s, x)), t, s = 0, x ∈ (0, 1].

Then we see that limx→0X(t, s, x,ω) = 0. So by defining X(t, s, 0) = 0, we can define X :
[0,∞)× [0,∞)× [0, 1]×Ω→ [0, 1] such that X(·, ∗, ∗∗,ω) : [0,∞)× [0,∞)× [0, 1]→ [0, 1]
is continuous for any ω ∈ Ω, X(t, s, ·,ω) : [0, 1]→ [0, 1] is continuous and non-decreasing,
and

f(t ∨ s, r) = X(t, s, f(s, r)), r = s = 0, t = 0.
Then we see that X(t, t, x) = x, and for t = s = r = 0,

X(t, s,X(s, r, x)) = f(t, T (s, f(s, T (r, x))) = f(t, T (r, x) ∨ s) = f(t, T (r, x)) = X(t, r, x).

Let Y (t, s) = inf{x ∈ [0, 1];X(t, s, x) = 1}. Then we see that T (s, x) = t iff x = Y (t, s),
and that Y (t, s) is Gs-measurable.

3 A remark on support

Let (Ω,F , P ) be a probability measure, Θ be a non-empty open set in RM , andM0 be a
Polish space. Also, let ξ : [0,∞)×Ω→ [0,∞), θ : [0,∞)×Ω→ Θ̄, and Y : [0,∞)×Ω→
M0 be measurable processes. Remind that Θ̄ is the closure of Θ in R

M . We assume that
θ(·,ω) → Θ̄ is continuous for all ω ∈ Ω and that P (

R b
a
ξ(t)dt > 0) = 1 for any a, b = 0

with a < b.
Let Ω̃ = [0,∞)×Ω. Let ν0 be a probability measure on [0,∞), given by ν(dt) = e−tdt,

and ν be a probability measure on (Ω̃,B([0,∞))×F) given by ν = ν0⊗P. Then ξ, (resp.
θ, Y ) can be regarded as a [0,∞) (resp. Θ, M0)-valued random variable defined in a
probability space (Ω̃,B([0,∞))×F , ν).
Let μ be a probability law of (ξ, Y, θ) and μθ be a probability law of θ unde ν. Then

μ and μθ be probability measures on [0,∞)×M0 × Θ̄ and Θ̄ respectively. Let Γ and Γθ
be the support of probability measures μ and μθ respectively. Then Γ and Γθ are closed
subsets of [0,∞)×M0× Θ̄ and Θ̄ respectively. Let π : [0,∞)×M0× Θ̄→ Θ̄ ne a natural
projection and let Γ0 = π((0,∞)×M0 ×Θ).
Then we have the following.

Proposition 7 The closure of Γ0 contains Γθ ∩Θ.
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Proof. Let Φ : Ω̃→ [0,∞)×M0 × Θ̄ be given by Φ(t,ω) = (ξ(t,ω), Y (t,ω), θ(t,ω)). Let
A = Φ−1(Γ). Then we have

1 = ν(A) =

Z
Ω

ν0(Aω)P (dω),

where Aω = {t ∈ [0,∞); (t,ω) ∈ A}. Let

B = {ω ∈ Ω; ν0(Aω) = 1,

Z r0

r

ξ(t,ω)dt > 0 for any r.r0 ∈ Q with r < r0 }.

Then we see that P (B) = 1. Let A0 = A ∩ ([0,∞)×B). Then we see that ν(A0) = 1. Let
θ0 ∈ Γθ ∩Θ. Then for any n = 1,

ν({(t,ω) ∈ A0; |θ(t,ω)− θ0| <
1

2n
}) > 0.

Therefore there is a (tn,ωn) ∈ A0 such that |θ(tn,ωn) − θ0| < 1/2n. For any m = 1, we

see that
R tn+1/m
tn

ξ(t,ωn)dt > 0, and so there is a sn,m ∈ (tn, tn + 1/m) ∩ Aωn such that
ξ(sn,m,ωn) > 0. Since θ(t,ωn) is continuous in t, we see that there is a m(n) = 1 such
that |θ(sn,m(n),ωn) − θ(tn,ωn)| < 1/2n. Now let ξn = ξ(sn,m(n),ωn), θn = θ(sn,m(n),ωn),
and yn = Y (sn,m(n),ωn). Then we see that (ξn, yn, θn) ∈ Γ, ξn > 0, and |θn − θ0| < 1/n.
Since Θ is open, θn ∈ Θ for sufficiently large n. So we have our assertion.

4 Fundamental Relations

Let (Ω,F , P, (W k
t )k=1,...,d, (τi)i=1,...,N , (ξi(t))i=1,...,N , θ(t),Θ, K) be a dynamical default time

copula model as in Introduction. We also assume that K|(0,1)N×Θ is C2. We think about
conditions which K must satisfy.
By Proposition 3, we see that there are fi : [0,∞)× [0,∞)×Ω→ (0,∞), i = 1, . . . , N,

such that

fi(t, s) = E[exp(−
Z s

t∧s
ξi(r)dr)|Gt] a.s. t, s = 0,

fi(·, ∗ : ω) : [0,∞)× [0,ω), are continuous for any ω ∈ Ω, fi(t, s1,ω) > fi(t, s2,ω) > 0 for
s2 > s1 > t, ω ∈ Ω, and

f(t; t,ω) = 1, lim
s↑∞

f(t; s,ω) = 0, t = 0, ω ∈ Ω.

Also by Corollary 5, we see that there are σ̃i,k : [0,∞]× [0,∞)×Ω→ R, k = 1, . . . , d,
i = 1, . . . , N, satisfying the following.
(1) σ̃i,k(t, ·,ω) : [0,∞]→ R, k = 1, . . . , d, is continuous for any t ∈ [0,∞) and ω ∈ Ω.
(2) σ̃i,k(t, s,ω) = 0, t = s, and lims→∞ σ̃i,k(t, s,ω) = 0 for any t ∈ [0,∞) and ω ∈ Ω.
(3) σi,k(·, s) : [0,∞)×Ω→ R, k = 1, . . . , N, is G-progressively measurable for any s = 0.
(4) For any s > 0

fi(t, s) = fi(0, s) +

Z t∧s

0

ξi(r)fi(r, s)dr +

dX
k=1

Z t

0

σ̃i,k(r, s)dW
k(r).
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Let Ti : [0,∞)× (0, 1)× Ω→ (0,∞), i = 1, . . . , N, be given by

Ti(t, x) = inf{s = t, fi(t, s) 5 x}, x ∈ [0, 1).

Then by Proposition 6 we see that Ti(t, ·,ω) : (0, 1) → (0,∞) is continuous and strictly
decreasing, limx↓0 Ti(t, x,ω) = ∞ and limx↑1 Ti(t, x,ω) = 0 for any t = 0 and ω ∈ Ω. Let
σi,k : [0,∞)× (0, 1)× Ω→ R, i = 1, . . . , N, k = 1, . . . , d, be given by

σi,k(t, x) = σ̃i,k(t, Ti(t, x)) t = 0, x ∈ (0, 1).

Then we see that
lim
x↓0

σi,k(t, x) = 0, lim
x↑1

σi,k(t, x) = 0.

So we can extend this σi,k as a function σi,k : [0,∞)×[0, 1]×Ω→ R, for which σi,k(t, ·,ω) :
[0, 1]→ R is continuous for any t = 0, ω ∈ Ω, and σi,k(t, 0) = σi,k(t, 1) = 0.
Let ν be a probability measure on (0,∞) × Ω given by ν(dt, dω) = e−tdtP (dω). By

the assumption (SC), we see that

1{τi>t}fi(t; s) = 1{τi>t}P (τi > s|Ft) a.s. s = t, i = 1, . . . , N,

and
NY
i=1

1{τi>t} exp(−
NX
i=1

Z t

0

ξi(r)dr)P (τ1 > s1, . . . , τN > sn|Ft)

=
NY
i=1

1{τi>t}E[exp(−
NX
i=1

Z si

0

ξi(r)dr)|Gt] a.s.

for t ∈ [0,mini=1,...,N si]. So by the assumption (CP) we have
NY
i=1

1{τi>t}1Θ(θ(t)) exp(−
NX
i=1

Z t

0

ξi(r)dr)K(f1(t; s1), . . . , fN(t; sN), θ(t))

=

NY
i=1

1{τi>t}1Θ(θ(t))E[exp(−
NX
i=1

Z si

0

ξi(r)dr)|Gt] a.s.

for t ∈ [0,mini=1,...,N si]. Therefore by the assuption (PO), we have

1Θ(θ(t)) exp(−
NX
i=1

Z t

0

ξi(r)dr)K(f1(t; s1), . . . , fN (t; sN ), θ(t))

= 1Θ(θ(t))E[exp(−
NX
i=1

Z si

0

ξi(r)dr)|Gt] a.s.

for t ∈ [0,mini=1,...,N si].
Now let us take a non-empty open set U in RM such that Ū ⊂ Θ and fix it for a while.

For T = 0, let τUT : Ω→ [0,∞) be given by

τUT = inf{t = T ; θ(t) 6∈ Ū} ∧ (T + 1).
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Then by the assumption (CP), we see that for any s1, . . . , sN = T

1U(θ(T )) exp(−
NX
i=1

Z t∧τ̃

0

ξi(r)dr)K(f1(t∧ τ̃ , s1), . . . , fN (t∧ τ̃ ; sN), θ(t∧ τ̃)), t ∈ [T, T +1],

is a {Gt}t∈[T,T+1]-maringale, where τ̃ = τUT ∧mini=1,...,N si.
Note that θ(t) is an Ito process satisfying Equation (1). Therefore, applying Ito’s

formula and comparing finite total variation process, we have for any s1, . . . , sN = T

1U(θ(T ))1[t,T+1](τ
U
T ∧ min

i=1,...,N
si){−(

NX
i=1

ξi(t))K(f1(t; s1), . . . , fN(t; sN), θ(t))

+

NX
i=1

ξi(t)fi(t; si)
∂K

∂xi
(f1(t; s1), . . . , fN(t; sN), θ(t))

+

MX
j=1

bj(t)
∂K

∂θj
(f1(t; s1), . . . , fN(t; sN), θ(t))

+
1

2

NX
i,i0=1

dX
k=1

σ̃i,k(t; si)σ̃i0,k(t; si0)
∂2K

∂xi∂xi0
(f1(t; s1), . . . , fN (t; sN ), θ(t))

+
1

2

MX
j,j0=1

dX
k=1

ηjk(t)η
j0

k (t)
∂2K

∂θjθj0
(f1(t; s1), . . . , fN(t; sN), θ(t))

+

NX
i=1

MX
j=1

dX
k=1

σ̃i,k(t; si)η
j
k(t)

∂2K

∂xiθj
(f1(t; s1), . . . , fN(t; sN), θ(t))} = 0 (2)

for ν − a.e.(t,ω) ∈ (T, T + 1)× Ω.
Note that the left hand side of Equation (2) is right continuous in s1, . . . , sN . So we

see that there is an BUT ∈ B((T, T + 1))× F such that ν(((T, T + 1)× Ω) \ BUT ) = 0 and
Equation (2) holds for all (t,ω) ∈ BUT and s1, . . . , sN ∈ [T,∞).
Also, substituting si = Ti(t, xi), i = 1, . . . , N, to Equation (2), we see that for all

(t,ω) ∈ BUT
1U(θ(T ))1[t,T+1](τ

U
T ){−(

NX
i=1

ξi(t))K(x1, . . . , xN , θ(t))

+
NX
i=1

ξi(t)xi
∂K

∂xi
(x1, . . . , xN , θ(t)) +

MX
j=1

bj(t)
∂K

∂θj
(x1, . . . , xN , θ(t))

+
1

2

NX
i,i0=1

dX
k=1

σi,k(t; xi)σi0,k(t; xi0)
∂2K

∂xi∂xi0
(x1, . . . , xN , θ(t))

+
1

2

MX
j,j0=1

dX
k=1

ηjk(t)η
j0

k (t)
∂2K

∂θjθj0
(x1, . . . , xN , θ(t))
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+

NX
i=1

MX
j=1

dX
k=1

σi,k(t;xi)η
j
k(t)

∂2K

∂xiθj
(x1, . . . , xN , θ(t))} = 0 (3)

for any x1, . . . , xN ∈ (0, 1).
Let J2 = {(j, j0) ∈ {0, 1, . . . ,M} × {1, . . . ,M}; j 5 j0}. We define linear operators

S
(2)
ii0 , , i, i

0 = 1, . . . , N, i < i0, S(1)ij , i = 1, . . . , N, j = 0, 1, . . . ,M, and S
(0)
jj0 , (j, j

0) ∈ J2, from
C2((0, 1)N ×Θ) to C((0, 1)N ×Θ) by

(S
(2)
ii0 F )(x, θ) =

∂2F

∂xi∂xi0
(x, θ), 1 5 i < i0 5 N,

(S
(1)
i0 F )(x, θ) =

∂2F

(∂xi)2
(x, θ), i = 1, . . . , N,

(S
(1)
ij F )(x, θ) =

∂2F

∂xi∂θj
(x, θ), i = 1, . . . , N, j = 1, . . . ,M,

(S
(0)
jj0F )(x, θ) =

∂2F

∂θj∂θj0
(x, θ), 1 5 j 5 j0 5 N,

(S
(0)
0j0F )(x, θ) =

∂F

∂θj0
(x, θ), 1 5 j0 5 N,

for any F ∈ C2((0, 1)N ×Θ).
Also, let us define a

(2)
ii0 : [0,∞) × [0, 1] × [0, 1] × Ω → R, i, i0 = 1, . . . , N, i < i0, a(1)ij :

[0,∞)× [0, 1]× Ω→ R, i = 1, . . . , N, j = 0, 1, . . . ,M, and a
(0)
jj0 : [0,∞)× [0, 1]× Ω→ R,

(j, j0) ∈ J2, by the following.

a
(2)
ii0 (t, xi, xi0) =

dX
k=1

σi,k(t;xi)σi0,k(t, xi0), 1 5 i < i0 5 N,

a1i0(t, xi) =
1

2

dX
k=1

σi,k(t;xi)
2 i = 1, . . . , N,

a
(1)
ij (t, xi) =

dX
k=1

σ̂i,k(t;xi)ηj,k(t), i = 1, . . . , N, j = 1, . . . ,M,

a
(0)
jj0(t) =

dX
k=1

ηj,k(t)ηj0,k(t), j, j0 = 1, . . . ,M, with j < j0,

a
(0)
jj (t) =

1

2

dX
k=1

ηj,k(t)
2, j = 1, . . . ,M,

and
a
(0)
0j0(t) = bj0(t), j0 = 1, . . . ,M.

Then we have for all (t,ω) ∈ BUT

1U(θ(T ))1[t,T+1](τ
U
T ){

NX
i=1

ξi(t)(xi
∂K

∂xi
(x, θ(t))−K(x, θ(t)))
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+
X

15i<i05N
a
(2)
ii0 (t, xi, xi0)(S

(2)
ii0 K)(x, θ(t)) +

NX
i=1

dX
j=0

a
(1)
ij (t, xi)(S

(1)
ij K)(x, θ(t))

+
X

(j,j0)∈J2

a
(0)
jj0(t)(S

(0)
jj0K)(x, θ(t))} = 0, x1, . . . , xN ∈ (0, 1). (4)

Now let Un, n = 1, 2, . . . , be non-empty open sets in R
M such that the closure of Un

is contained in Θ for each n, and
S∞
n=1 Un = Θ. Since θ(t) is continuous in t, we see that

{(t,ω) ∈ (0,∞)× Ω; θ(t,ω) ∈ Θ}

=
[

T∈Q=0

∞[
n=1

{(t,ω) ∈ (T, T + 1)× Ω; θ(T,ω) ∈ Un, t 5 τUnT (ω)}.

So let

B0 =
[

T∈Q=0

∞[
n=1

(BUnT ∩ {(t,ω) ∈ (T, T + 1)× Ω; θ(T,ω) ∈ Un, t 5 τUnT (ω)})

and B1 = B0 ∪ {(t,ω) ∈ (0,∞)× Ω; θ(t,ω) /∈ Θ}. Then we see that ν(B1) = 1. Also, we
see that for all (t,ω) ∈ B1

1Θ(θ(t)){
NX
i=1

ξi(t)(xi
∂K

∂xi
(x, θ(t))−K(x, θ(t)))

+
X

15i<i05N
a
(2)
ii0 (t, xi, xi0)(S

(2)
ii0 K)(x, θ(t)) +

NX
i=1

dX
j=0

a
(1)
ij (t, xi)(S

(1)
ij K)(x, θ(t))

+
X

(j,j0)∈J2

a
(0)
jj0(t)(S

(0)
jj0K)(x, θ(t))} = 0, x1, . . . , xN ∈ (0, 1). (5)

Let C2 be the set of continuous functions a : [0, 1]× [0, 1] → R with a(0, x) = a(1, x)
= a(1, x) = a(x, 1) = 0, x ∈ [0, 1], and C1 be the set of continuous functions ã : [0, 1]→ R

with a(0) = a(1) = 0. Then we see that a
(2)
ii0 (t, ·, ∗) ∈ C2, 1 5 i < i0 5 N, a

(1)
ij ∈ C1,

i = 1, . . . , N, j = 0, 1, . . . ,M, for ν − a.e. (t,ω).
Also, letM = (C2)N(N−1)/2×(C1)N(1+M)×RJ2. ThenM is a Poilish space. Let Y (t,ω)

= ((a
(2)
ii0 (t, ·, ∗,ω))15i<i05N , (a

(1)
ij (t, ·,ω))i=1,...,N,j=0,1,...,M , (a(0)jj0(t,ω))(j,j0)∈J2). Then we see that

Y (t,ω) ∈M for ν − a.e. (t,ω). Therefore under the probability measure ν on [0,∞)×Ω,
((ξi(t,ω))i=1,...,N , Y (t,ω), θ(t,ω)) is a [0,∞)N ×M× Θ̄-valued ranndom variable. Let Γ
be the support of the probability law of this random variable.
Then we have the following.

Proposition 8 If ((ξi)i=1,...,N , (ã
(2)
ii0 )15i<i05N , (ã

(1)
ij )i=1,...,N,j=0,1,...,M , (ã

(0)
jj0)jj0)(j,j0)∈J2, θ) be-

longs to Γ, and θ ∈ Θ,then
NX
i=1

ξi(xi
∂K

∂xi
(x, θ)−K(x, θ))
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+
X

15i<i05N
ã
(2)
ii0 (xi, xi0)(S

(2)
ii0 K)(x, θ) +

NX
i=1

dX
j=0

ã
(1)
ij (xi)(S

(1)
ij K)(x, θ)

+
X

(j,j0)∈J2

ã
(0)
jj0(S

(0)
jj0K)(x, θ) = 0, for all x = (x1, . . . , xN ) ∈ (0, 1)N

and X
15i<i05N

ã
(2)
ii0 (xi, xi0)zizi0 +

NX
i=1

dX
j=0

ã
(1)
i0 (xi)z

2
i

+

NX
i=1

dX
j=1

ã
(1)
ij (xi)ziyj +

X
(j,j0)∈J2

ã
(0)
jj0yjyj0 = 0

for all x = (x1, . . . , xN ) ∈ (0, 1)N and z1, . . . , zN , y1, . . . , yM ∈ R.

Let Γθ be the support of θ(t,ω) under ν. Let π : [0,∞)N ×M× Θ̄→ Θ̄ be the natural
projection, and let Γ0 = π(Γ∩ ((0,∞)× [0,∞)N−1×M×Θ)). Then Proposition 7 implies
that the closure of Γ0 contains Γθ ∩Θ.
Then we have the following from the previous Proposition.

Lemma 9 Let N = 2, M = 1, Θ be an open set in RM , and K ∈ C([0, 1]N × Θ; [0, 1]).
Assume that K is an admissible family of copula functions and that K|(0,1)N×Θ is C2.
Then there is a subset A of Θ such that the closure of A contains non-void open set in
Θ, and for any θ ∈ A, there are ξ1 > 0, ξi = 0, i = 2, . . . , N, ã(2)ii0 ∈ C1, 1 5 i < i0 5 N,
ã
(1)
ij ∈ C1, i = 1, . . . , N, j = 0, 1, . . . ,M, and ã(0)jj0 ∈ R, (j, j0) ∈ J2, such that

NX
i=1

ξi(xi
∂K

∂xi
(x, θ)−K(x, θ))

+
X

15i<i05N
ã
(2)
ii0 (xi, xi0)(S

(2)
ii0 K)(x, θ) +

NX
i=1

dX
j=0

ã
(1)
ij (xi)(S

(1)
ij K)(x, θ)

+
X

(j,j0)∈J2

ã
(0)
jj0(S

(0)
jj0K)(x, θ) = 0, for all x = (x1, . . . , xN ) ∈ (0, 1)N

and X
15i<i05N

ã
(2)
ii0 (xi, xi0)zizi0 +

NX
i=1

dX
j=0

ã
(1)
i0 (xi)z

2
i

+

NX
i=1

dX
j=1

ã
(1)
ij (xi)ziyj +

X
(j,j0)∈J2

ã
(0)
jj0yjyj0 = 0

for all x = (x1, . . . , xN ) ∈ (0, 1)N and z1, . . . , zN , y1, . . . , yM ∈ R.
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5 Verification

Let N,M = 1, and Θ be an open set in RM . Let n = 1, and ~z = (zik)i=1,...,N,k=1,...,n ∈
(0, 1)nN .

For ~k = (k1, . . . , kN ) ∈ {1, . . . , n}N , and ~z ∈ (0, 1)nN , let Zi(~z;~k) = ziki , i = 1, . . . , N, and
~Z(~z;~k) = (z1k1, . . . , zNkN ) ∈ (0, 1)N .
Let K ∈ C([0, 1]N ×Θ; [0, 1]) be an admissible family of copula functions, and assume

that K|(0,1)N×Θ is C2. Now let A be a subset in Θ as in Lemma 9 Then for any θ ∈ A,
there are ξi, i = 1, . . . , N, ã

(2)
ii0 , 1 5 i < i0 5 N, ã

(1)
ij , i = 1, . . . , N, j = 0, 1, . . . ,M, and

ã
(0)
jj0 , (j, j

0) ∈ J2, be as in Lemma 9. Then we have

NX
i=1

ξi(Zi(~z;~k))
∂K

∂xi
(~Z(~z;~k), θ)−K(~Z(~z;~k), θ))

+
X

15i<i05N
ã
(2)
ii0 (Zi(~z;

~k), Zi0(~z;~k))(S
(2)
ii0 K)(

~Z(~z;~k), θ)+

NX
i=1

dX
j=0

ã
(1)
ij (Zi(~z;

~k))(S
(1)
ij K)(

~Z(~z;~k), θ)

+
X

(j,j0)∈J2

ã
(0)
jj0 (S

(0)
jj0K)(

~Z(~z;~k), θ) = 0.

That is
NX
i=1

ξi(Zi(~z;~k)
∂K

∂xi
(~Z(~z;~k), θ)−K(~Z(~z;~k), θ))

+
nX

p,q=1

X
15i<i05N

ã
(2)
ii0 (zip, zi0q)δp,kiδq,ki0 (S

(2)
ii0 K)(

~Z(~z;~k), θ)

+

nX
p=1

NX
i=1

dX
j=0

ã
(1)
ij (zip)δp,ki(S

(1)
ij K)(

~Z(~z;~k), θ)

+
X

(j,j0)∈J2

ã
(0)
jj0 (S

(0)
jj0K)(

~Z(~z;~k), θ) = 0, ~k ∈ {1, . . . , n}N . (6)

Let
C(2)n = {(i, i0) ∈ {1, 2, . . . , N}2; i < i0} × {1, 2, . . . , n}2

and
C(1)n = {1, 2, . . . , N} × {0, 1, . . . ,M} × {1, 2, . . . , n}.

For any G ∈ C2((0, 1)N × Θ), n = 1, and ~k ∈ {1, . . . , n}N , we define continuous
functions defined in (0, 1)nN×Θ, (M (n)I

i G)(·, ~k), i = 1, . . . , N, (M (n)(2)
ii0pq G)(·, ~k), (i, i0, p, q) ∈

C
(2)
n , (M

(n)(1)
ijp G)(·, ~k), (i, j, p) ∈ C(1)n , (M (n)(0)

jj0 G)(·, ~k), (j, j0) ∈ J2, by

(M
(n)I
i G)(~z, θ, ~k) = Zi(~z,~k)

∂G

∂xi
(~Z(~z;~k), θ)−G(~Z(~z;~k), θ) i = 1, . . . , N,

(M
(n)(2)
ii0pq G)(~z, θ,

~k) = δp,kiδq,ki0 (S
(2)
ii0 G)(

~Z(~z;~k), θ) (i, i0, p, q) ∈ C(2)n ,
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(M
(n)(1)
ijp G)(~z, θ, ~k) = δp,ki(S

(1)
ij G)(

~Z(~z;~k), θ), (i, j, p) ∈ C(1)n ,

(M
(n)(0)
jj0 G)(~z, θ, ~k) = (S

(0)
jj0G)(

~Z(~z;~k), θ), (j, j0) ∈ J2,
for any ~z ∈ (0, 1)nN and θ ∈ Θ.
Let Cn0 = C

(2)
n ∪C(1)n ∪ J2, and Cn = {1, . . . , N}∪Cn0. Note that the cardinal #(Cn0)

of Cn0 is equal to n
2N(N − 1)/2+nN(M +1)+M(M +3)/2, and #(Cn) = N +#(Cn0).

For any G ∈ C2((0, 1)N × Θ), n = 1, and γ ∈ Cn we define a continuous function
( ~M (n)G)γ : (0, 1)

nN ×Θ→ R{1,...,n}N by

( ~M (n)G)γ(~z, θ)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((M

(n)(2)
ii0pq G)(~z, θ,

~k))~k∈{1,...,n}N if γ = (i, i0, p, q) ∈ C(2)n ,
(M

(n)(1)
ijp G)(~z, θ, ~k))~k∈{1,...,n}N if γ = (i, j, p) ∈ C(1)n ,

(M
(n)(0)
jj0 G)(~z, θ, ~k))~k∈{1,...,n}N if γ = (j, j0) ∈ J2,

((M
(n)I
i G))(~z, θ, ~k))~k∈{1,...,n}N if γ = i ∈ {1, . . . , N}.

For any G ∈ C2((0, 1)N × Θ), n = 1, ~z ∈ (0, 1)nN and θ ∈ Θ, let Vn(G,~z, θ) (resp.
Vn0(G,~z, θ)) be the vector subspace of R

{1,...,n}N spaned by {( ~M (n)G)γ(~z, θ); γ ∈ Cn}
(resp. {( ~M (n)G)γ(~z, θ); γ ∈ Cn0}). Also, let N(n)(G,~z, θ) be a vector space in RN given
by

N(n)(G,~z, θ) = {(v1, . . . , vN) ∈ RN ;

nX
i=1

vi( ~M
(n)G)i(~z, θ) ∈ Vn0(G,~z, θ)}.

Then we have N(n)(K,~z, θ) ∩ [0,∞)N 6= {0}, for any θ ∈ A.
Therefore we have the following.

Lemma 10 Let N = 2, M = 1, and Θ be an open subset of RM Let K ∈ C([0, 1]N ×
Θ; [0, 1]). Assume that K is an admissible family of copula functions, and that K|(0,1)N×Θ
is C2. Then there is a subset A of Θ such that the closure of A contains non-void open
set in Θ, and for any θ ∈ A and ~z ∈ (0, 1)nN , N(n)(K,~z, θ) ∩ [0,∞)N 6= {0}.

As a corollary we have the following.

Corollary 11 Let N = 2, M = 1, and Θ be an open subset of RM . Let K ∈ C([0, 1]N ×
Θ; [0, 1]). Assume that K is an admissible family of copula functions, and that K|(0,1)N×Θ
is C2. Then for any n = 1 and ~z ∈ (0, 1)nN , there is a non-void open subset U of Θ such
that

dimVn(K,~z, θ) 5 #(Cn)− 1, θ ∈ U.

Proof. Since dimVn(K,~z, θ) 5 nN , the assertion is obvious in the case that nN 5 #(Cn)−
1. So assume that nN = #(Cn).
Let A be a subset in Θ as in Lemma 10. It is easy to see that for any θ ∈ A

dimVn(K,~z, θ) = dimVn0(K,~z, θ) +N − dimN(n)(G,~z, θ) 5 #(Cn)− 1.
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Let H be the set of injections from Cn to {1, . . . , n}N and let

ϕ(θ) =
X
h∈H

det(( ~M (n)G)γ1(~z, θ, h(γ2)))γ1,γ2∈Cn)
2, θ ∈ Θ.

Then we see ϕ(θ) = 0 for θ ∈ A. Since ϕ : θ → R is continuous, we see that ϕ(θ) = 0 for
θ ∈ Ā. So we see that

dimVn(K,~z, θ) 5 #(Cn)− 1, θ ∈ Ā.

This implies our assertion.

6 Proof of Theorem 2

Now let N = 2, M = 1 and n = 1.We say that h : C(2)n ∪C(1)n → {1, . . . , n}N is a matching
map, if h is injective and satisfying the following.

h((i, i0, p, q))i = p, h((i, i0, p, q))i0 = q for any (i, i0, p, q) ∈ C(2)n ,

and
h((i, j, p))i = p for any (i, j, p) ∈ C(1)n .

Proposition 12 Let N = 3. Assume that there is a matching map h0 : C
(2)
n ∪ C(1)n →

{1, . . . , n}N , and that #(Cn) 5 nN . Let 0 < ci1 < ci2 < . . . < cin < 1, i = 1, . . . , N,
~c = (cik)i=1,...,N,k=1,...,n ∈ (0, 1)nN , and θ0 ∈ RM . Then there is a K ∈ C(N)(RM) such that
dimVn(K,~c, θ0) = #(Cn).

Proof. From the assumption, there is an injective map h : Cn → {1, . . . , n}N such that
the restriction of h to C

(2)
n ∪ C(1)n is equal to h0. Note that ~Z(~c;~k), ~k ∈ {1, . . . , n}N , are

distinct points. Let

ε0 = min{|~Z(~c;~k)− ~Z(~c;~k0)|; ~k,~k0 ∈ {1, . . . , n}N , ~k 6= ~k0},

ε1 = min{ci1; i = 1, . . . , N},∧min{1− cin; i = 1, . . . , N},
and ε = ε0 ∧ ε1. Let ϕ0 ∈ C∞0 (RN ) and ϕ1 ∈ C∞0 (RM) such that ϕ0(x) = 1, |x| < ε/3,
ϕ0(x) = 0, |x| > 2ε/3, and ϕ1(θ) = 1, |θ| < 1.
Let F : RN ×RM × Cn → R be given by the following.

F (x, θ, i) = −ϕ0(x− ~Z(~c;h(i))), i ∈ I,

F (x, θ, (0, j)) = ϕ0(x− ~Z(~c; h((0, j)))(θj − θ0j)ϕ1(θ − θ0), j = 1, . . . ,M,

F (x, θ, (j, j)) =
1

2
ϕ0(x− ~Z(~c;h((j, j)))(θj − θ0j)

2ϕ1(θ − θ0), j = 1, . . . ,M,

F (x, θ, (j, j0)) = ϕ0(x− ~Z(~c;h((j, j0)))(θj − θ0j)(θj0 − θ0j0)ϕ1(θ− θ0), 1 5 j < j0 5M,
F (x, θ, (i, i0, p, q))

= ϕ0(x− ~Z(~c;h((i, i0, p, q)))(xi − ~Z(~c;h((i, i0, p, q))i)(xi0 − ~Z(~c;h((i, i0, p, q))i0),
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(i, i0, p, q) ∈ C(2)n ,

F (x, θ, (i, 0, p)) =
1

2
ϕ0(x− ~Z(~c;h((i, 0, p)))(xi − ~Z(~c;h((i, 0, p))i)2, (i, 0, p) ∈ C(1)n ,

F (x, θ, (i, j, p))

= ϕ0(x− ~Z(~c;h((i, j, p)))(xi− ~Z(~c; h((i, j, p, q))i)(θj−θ0j)ϕ1(θ−θ0), (i, j, p) ∈ C(1)n , j = 1.
Then we see that ( ~M (n)F (·, u))γ(~c, θ0)h(α) = δγα, γ,α ∈ Cn, and that ( ~M (n)F (·, u))γ(~c, θ0)~k =
0, γ ∈ Cn, ~k ∈ {1, . . . , n}N , with ~k 6= h(γ). Now let F0 ∈ C∞0 (RN ×RM) be given by

F0(·, ∗) =
X
γ∈Cn

F (·, ∗, γ).

Then we see that derivatives of F0 of any order are bounded functions defined inR
N×RM ,

det(( ~M (n)F0)γ(~c, θ0, h(α))γ,α∈Cn) = 1,

and F0(x1, . . . , xN , θ) = 0, if xi < ε/3 or xi > 1− (ε/3) for some i = 1, . . . , N.
Let

f0(x, θ) =
∂NF0

∂x1 . . . ∂xN
(x, θ)

Then we have

F0(x, θ) =

Z x1

0

· · ·
Z xN

0

f0(y1, . . . , yN , θ)dy1 . . . dyN .

Let c = sup{|f0(x, θ)|; (x, θ) ∈ RN ×RM} <∞, and let

Gs(x, θ) =

Z x1

0

· · ·
Z xN

0

(1 + sf0(y1, . . . , yN , θ))dy1 . . . dyN

= x1 · · · xN + sF0(x1, . . . , xN .θ)
for s ∈ R, x ∈ [0, 1]N , θ ∈ RM . Then

p(s) = det(( ~M (n)Gs)γ(~c, θ0)h(α))γ,α∈Cn)

is a polynomial in s and
lim
s→∞

s−#(Cn)p(s) = 1.

Therefore there is a s̃ with 0 < s̃ < 1/(2c+ 1) such that

det(( ~M (n)Gs̃)γ(~c, θ0)h(α))γ,α∈Cn) 6= 0.

Note that 1+ s̃h(y1, . . . , yN , θ) > 1/(2c+1). So it is easy to see that Gs̃(· · · , θ) is a copula
function for all θ ∈ RM .
This shows our assertion.

Proposition 13 Let N = 3, M = 1 and n = 1. Suppose that n = M + 3, and n ≡ 1 or
5 mod 6. Then there is a matching map h : C

(2)
n ∪ C(1)n → {1, . . . , n}N .
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Proof. First we prove the following.
Claim. Let p, q, r = 1, . . . , n. If p 6= q and r ≡ 2q − p mod n, then r 6= p, q, p 6≡
2r − q mod n, and q 6≡ 2p− r mod n.
Actually if r = p, we have 2p ≡ 2q mod n, which implies p = q. If r = q, we have

q ≡ p mod n. which implies p = q. If p ≡ 2r − q mod n, then 3p ≡ 3q mod n, which
implies p = q. If q ≡ 2p− r mod n, then 3q ≡ 3p mod n, which implies p = q. Therefore
we have our Claim.
Let us define h : C

(2)
n ∪ C(1)n → {1, . . . , n}N by the following.

h|
C
(2)
n
is given by the following. For p, q = 1, . . . , n, with p 6= q

h(1, 2, p, q) = (p, q, r), h(1, 3, q, p) = (q, r, p) h(2, 3, p, q) = (r, p, q),

where r = 1, . . . , n, with r ≡ 2q − p mod n. For p = 1, . . . , n,

h(1, 2, p, p) = (p, p, r), h(1, 3, p, p) = (p, r, p) h(2, 3, p, p) = (r, p, p),

where r = 1, . . . , n, with r ≡ p− 1 mod n.
h|
C
(1)
n
is given by the following. For p = 1, . . . , n, and j = 0, 1, . . . ,M,

h(1, j, p) = (p, r, r), h(2, j, p) = (r, p, r) h(3, j, p) = (r, r, p),

where r = 1, . . . , n, with r ≡ p+ j + 2 mod n.
By the above Claim, we can easily check h is a matching map.

Proposition 14 Let N = 4, M = 1 and n = 1. Suppose that n = M + 2. Then there is

a matching map h : C
(2)
n ∪ C(1)n → {1, . . . , n}N .

Proof. First take a map R : {i, . . . , n}2 → {1, . . . , n} such that R(p, q) 6= p, q and
R(p, p) ≡ p + 1 mod n. Since n = 3, we can take such a map. Now let us define h :

C
(2)
n ∪ C(1)n → {1, . . . , n}N by the following.
h(i, i0, p, q) = (k1, . . . , kN), (i, i

0, p, q) ∈ C(2)n , where ki = p, ki0 = q, kr = R(p, q),

r 6= i, i0. h(i, j, p) = (k1, . . . , kN ), (i, j, p) ∈ C
(1)
n , where ki = p, kr = 1, . . . , n, with

kr ≡ p+ j + 1 mod n.
Since p+ 2 6≡ p mod n, we can easily check h is a matching map.
Now let us prove Theorem 2.
Let N = 3, M = 1, and Θ is a non-empty open set in R. By Propositions 13 and

14, there are n = 1 and an injective map h : Cn → {1, . . . , n}N for which h|
C
(2)
n ∪C(1)n

is a

matching map. Fix such an n and let us take ~c ∈ RNn such that 0 < ci1 < ci2 < . . . <
cin < 1, i = 1, . . . , N, i = 1, . . . , N. Let D(θ), θ ∈ Θ, be a set given by

D(θ) = {K ∈ C(N)(Θ); dimVn(K,~c, θ0) = #(Cn)}.

Then by Propositions 12, we see that D(θ) 6= for all θ ∈ Θ. Let H be the set of injections
from Cn to {1, . . . , n}N . Let ϕ : C(N)(Θ)→ R be given by

ϕ(K) =
X
h∈H

det(( ~M (n)K)γ1(~z, θ, h(γ2)))γ1,γ2∈Cn)
2.
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Then we see that ϕ : C(N)(Θ)→ R is continuous and D(θ) = {K ∈ C(N)(Θ); ϕ(K) > 0}.
So we see that D(θ) is an open subset C(N)(Θ).
Let G ∈ D(θ). For any K ∈ C(N)(Θ) and s ∈ [0, 1], (1 − s)K + sG0 ∈ C(N)(Θ). Also,

ϕ((1−s)K+sG) is a polynomial in s, and so is not equal to 0 except finite s’s. Therefore
there is a {s`}∞`=1 ⊂ [0, 1] such that s` ↓ 0, `→∞, and (1− s`)K + s`)G) ∈ D(θ), ` = 1.
This observation shows that D(θ) is dense in C(N)(Θ) for all θ ∈ Θ.
Now let {θm}∞m=1 be a dense set in Θ, and let

D =

∞\
m=1

D(θm).

Then by Corollary 11, we see that any element of D is not admissible family of copula
functions. This proves Theorem 2.

7 Remarks

Let N = 3, M = 1, and Θ be an open set in RM . Let K ∈ C(N)(Θ). Assume that n = N.
Let

A(2)

= {(1, 2, p, q); p, q = 1, . . . , n}∪{(1, i, p, q); i0 = 3, . . . , N, p = 1, . . . , n, q = 2, . . . , n}
∪{(i, i0, p, q); 2 5 i < i0 5 N, p, q = 2, . . . , n} ⊂ C(2)n .

Also, let ~kii0pq ∈ R{1,...,n}N , (i, i0, p, q) ∈ C(2)n , be given by

~kii0pq = (1, . . . , 1, p
i
, 1, . . . , 1, q

i0
, 1, . . . , 1).

Then we have the following.

Proposition 15 Let θ0 ∈ Θ, and assume that

∂2K

∂xi∂xi0
(x, θ0) > 0, x ∈ (0, 1)N , 1 5 i < i0 5 N.

Then for any n = N, and ~z ∈ (0, 1)3n,

dimVn0(K,~c, θ0) = #(A(2)) =
N(N − 1)

2
n2 − nN(N − 2) + (N − 1)(N − 2)

2
.

Proof. Remind that

(M
(n)(2)
ii0pq K)(~z, θ0,

~k) = δp,kiδq,ki0
∂2K

∂xi∂xi0
(z1k1, . . . , zNkN , θ0), p, q = 1, . . . , n.

So for (i, i0, p, q), (j, j0, r, `) ∈ A(2), we see that (M (n)(2)
ii0pq K)(~z, θ0,

~kjj0r`) = 0 if i > j, or if

i = j and i0 > j, and that (M (n)(2)
ii0pq K)(~z, θ0,

~kii0r`) = δp,rδq,`cii0pq, for some positive numbers

cii0pq. So we see that {( ~M (n)K)γ(~z, θ0); γ ∈ A(2)} is linearly independent. So we have our
assertion.
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From now on we think of a special case. We assume that K is a family of Archimedian
copula functions, i.e., there are smooth functions ϕ : (0, 1)×Θ→ (0,∞) and ρ : (0,∞)×
Θ→ (0, 1) such that

K(x1, . . . , xN , θ) = ρ(

NX
k=1

ϕ(xk, θ), θ), x1, . . . , xN ∈ (0, 1), θ ∈ Θ.

Then ρ(·, θ) must be the inverse function of ϕ(·, θ).
Then we have the following.

Proposition 16 Let

m0 =
N(N − 1)

2
n2 +N(M + 3−N)n− (N − 1)(2M + 4−N)

2
+
M(M + 3)

2
.

Then we have the following.
(1) dimVn0(K,~z, θ) 5 m0. and dimVn(K,~z, θ) 5 m0 + 1 for any ~z ∈ (0, 1)Nn, and θ ∈ Θ.
(2) Assume that Θ is connected and that ϕ : (0, 1)×Θ→ (0,∞) is real analytic. If there
exists a θ0 ∈ Θ such that dimVn(K,~z, θ0) = m0 + 1, then K is not an admissible family
of copula functions.

Since the proof is rather long, we will give it in the next section.

Now let us think of a family of Gumbel copula functions. Let N = 3, M = 1, and
Θ = (0, 1). Let K ∈ C(3)((0, 1)) be given by

K(x1, x2, x3, θ) = exp(−(
3X
i=1

(− log xi)θ)1/θ), x1, x2, x3 ∈ (0, 1), θ ∈ (0, 1).

Then letting ϕ(x, θ) = (− log x)θ, ρ(y, θ) = exp(−yθ), we see that

K(x1, x2, x3, θ) = ρ(−
3X
i=1

ϕ(xi, θ)), x1, x2, x3 ∈ (0, 1), θ ∈ (0, 1).

Let n = 5. Then we have m0 = 89. So by Proposition 16 we see that if there exist
θ0 ∈ (0, 1) and ~z = (zip)i=1,2,3,p=1,...,5 ∈ (0, 1)15 such that dimVn(K,~z, θ0) = 90, we see that
K is not admissible family of copula functions.
By using numerical computation, we check that dimVn(K,~z, θ0) = 90 for (zi1, . . . , zi5)

= (0.55, 0.65, 0.75, 0.85, 0.95), i = 1, 2, 3, and θ0 = 0.4 or 0.6. Actuary, we compute the

dimension of the vector subspace in R{1,2,3,4,5}3 spanned by e(2)ii0pq(~z, θ0), (i, i
0, p, q) ∈ A(2),

e
(1)
ijp(~z, θ0), (i, j, p) ∈ A(1), e(0)jj0(~z, θ0), (j, j0) ∈ J2, and e0(~z, θ0) given in the next section
by applying Householder transformation for the associated matrix, and we are convinced
that it is 90. As we show in the next section, the dimension of this vector subspace is the
same as dimVn(K,~z, θ0).
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8 Proof of Proposition 16

For ~z ∈ (0, 1)3n, θ ∈ Θ and ~k ∈ {1, . . . , n}3, let

Φ(~z, θ, ~k) =

3X
i=1

ϕ(ziki , θ),

e
(2)
ii0pq(~z, θ,

~k) = δpkiδqki0
∂2ρ

∂y2
(Φ(~z, θ, ~k), θ), (i, i0, p, q) ∈ C(2)n ,

e
(1)
i0p(~z, θ,

~k) = δpki
∂ρ

∂y
(Φ(~z, θ, ~k), θ), (i, 0, p) ∈ C(1)n ,

e
(1)
ijp(~z, θ,

~k) = δpki
∂2ρ

∂θj∂y
(Φ(~z, θ, ~k), θ) (i, j, p) ∈ C(1)n , j = 1,

e
(0)
jj0(~z, θ,

~k) =
∂2ρ

∂θj∂θj0
(Φ(~z, θ, ~k), θ), (j, j0) ∈ J2, j = 1,

e
(0)
0j (~z, θ,

~k) =
∂ρ

∂θj
(Φ(~z, θ, ~k), θ). (0, j) ∈ J2,

and
e0(~z, θ, ~k) = −ρ(Φ(~z, θ, ~k), θ).

Let e
(2)
ii0pq(~z, θ), (i, i

0, p, q) ∈ C(2)n , e(1)ijp(~z, θ), (i, j, p) ∈ C(1)n , e(0)jj0(~z, θ), (j, j0) ∈ J2, and
e0(~z, θ) be elements of R

{1,...,n}3 given by e(2)ii0pq(~z, θ) = (e
(2)
ii0pq(~z, θ,

~k))~k∈{1,...,n}3 etc.

Let A(1) be the subset of C
(1)
n given by

A(1)

= {(1, j, p); j = 0, 1, . . . ,M, p = 1, . . . , n}
∪{(i, j, p); i = 2, . . . , N, j = 0, 1, . . . ,M, p = 2, . . . , n},

and A(2) be the subset of C
(2)
n given in the previous section.

Let U0(~z, θ) be a vector subspace inR
{1,...,n}N spaned by {e(2)ii0pq(~z, θ); (i, i0, p, q) ∈ A(2)},

{e(1)ijp(~z, θ); (i, j, p) ∈ A(1)} and {e(0)jj0(~z, θ); (j, j0) ∈ J2}. Since #(A(2)) + #(A(1)) + #(J2)
= m0, we see that dim U0(~z, θ) 5 m0.
First, we prove the following.

Proposition 17 (1) e
(2)
ii0pq(~z, θ) ∈ U0(~z, θ) for all (i, i0, p, q) ∈ C

(2)
n .

(2) e
(1)
ijp(~z, θ) ∈ U0(~z, θ) for all (i, j, p) ∈ C(1)n .

Proof. Let

ẽ
(2)
1p (~z, θ) =

nX
q=1

e
(2)
12pq(~z, θ) ∈ U0(~z, θ), p = 1, . . . , n,

and

ẽ
(2)
ip (~z, θ) =

nX
q=1

e
(2)
1iqp(~z, θ) ∈ U0(~z, θ), i = 2, . . . , N − 1, p = 2, . . . , n.
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Then we see that

e
(2)
1ip1(~z, θ) = ê

(2)
1p (~z, θ)−

nX
q=2

e
(2)
1ipq(~z, θ) ∈ U0(~z, θ), i = 3, . . . , N, p = 1, . . . , n.

So we see that e
(2)
1ipq(~z, θ) ∈ U0(~z, θ), i = 2, . . . , N, p, q = 1, . . . , n.

Also, we see taht

e
(2)
ii01q(~z, θ) = ê

(2)
i0q (~z, θ)−

nX
p=2

e
(2)
ii0pq(~z, θ) ∈ U0(~z, θ), i = 2, . . . , N, q = 2, . . . , n,

and so

e
(2)
ii011(~z, θ) = ê

(2)
i1 (~z, θ)−

nX
q=2

e
(2)
ii01q(~z, θ) ∈ U0(~z, θ), i = 2, . . . , N.

These show that the assetion (1).
Let

ẽ
(1)
j (~z, θ) =

nX
p=1

e
(1)
1jp(~z, θ) ∈ U0(~z, θ), j = 0, . . . ,M.

Then we see that

e
(1)
ij1(~z, θ) = ê

(1)
i (~z, θ)−

nX
p=2

e
(1)
ijp(~z, θ) ∈ U0(~z, θ), j = 0, . . . ,M.

This proves the assertion (2).
Now note that

(M
(n)(2)
ii0pq K)(~z, θ,

~k) =
∂ϕ

∂x
(zip, θ)

∂ϕ

∂x
(zi0q, θ)e

(2)
ii0pq(~z, θ,

~k), (i, i0, p, q) ∈ C(2)n ,

(M
(n)(1)
i0p K)(~z, θ, ~k) =

∂2ϕ

∂x2
(zip, θ)e

(1)
i0p(~z, θ,

~k) + (
∂ϕ

∂x
(zip, θ))

2ẽ
(2)
ip (~z, θ,

~k)), (i, 0, p) ∈ C(1)n ,

(M
(n)(1)
ijp K)(~z, θ, ~k) =

∂ϕ

∂x
(zip, θ)e

(1)
ijp(~z, θ,

~k)

+
∂ϕ

∂x
(zip, θ)(

nX
q=1

∂ϕ

∂θj
(ziq, θ)e

(2)
iq (~z, θ,

~k)))+
∂2ϕ

∂θj∂x
(zip, θ)e

(1)
i0p(~z, θ,

~k), (i, j, p) ∈ C(1)n , j = 1,

(M
(n)(0)
0j K)(~z, θ, ~k) =

NX
i=1

nX
p=1

∂ϕ

∂θ
(zip, θ)e

(1)
i0p(~z, θ,

~k) + e
(0)
0j (~z, θ,

~k), (0, j) ∈ J2,

(M
(n)(0)
jj0 K)(~z, θ, ~k)

=
X

15i<i05N

nX
p,q=1

(
∂ϕ

∂θj
(zip, θ)

∂ϕ

∂θj0
(zi0q, θ) +

∂ϕ

∂θj
(zip, θ)

∂ϕ

∂θj0
(zi0q, θ))e

(2)
ii0pq(~z, θ,

~k)

+
NX
i=1

nX
p=1

∂ϕj
∂θj

(zip, θ)
∂ϕj0

∂θj0
(zip, θ)ẽ

(2)
ip (~z, θ,

~k)
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+

NX
i=1

nX
p=1

∂ϕ

∂θj
(zip, θ)e

(1)
ij0p(~z, θ,

~k) +
∂ϕ

∂θj0
(zip, θ)e

(1)
ijp(~z, θ,

~k)

+

NX
i=1

nX
p=1

∂2ϕ

∂θj∂θj0
(zip, θ)e

(2)
i0p(~z, θ,

~k) + ejj0(~z, θ, ~k).

Therefore from the assumption, we see that

Vn0(K,~z, θ) ⊂ U0(~z, θ).

So we have the first assertion of Proposition 16 (1).
We remark that if

∂ϕ

∂x
(zip, θ) > 0,

∂2ϕ

(∂x)2
(zip, θ) 6= 0,

for any i = 1, . . . , N and p = 1, . . . , n, then

U0(~z, θ) = Vn0(K,~z, θ).

Now note that

(M
(n)I
i K)(~z, θ, ~k) = e0(~z, θ, ~k) +

nX
p=1

zip
∂ϕ

∂x
(zip, θ)e

(1)
i0p(~z, θ,

~k).

So we have ( ~M (n)K)i(~z, θ) − e0(~z, θ) ∈ Vn0(K,~z, θ), i ∈ I This implies that the second
assertion of Proposition 16 (1).
Now let us prove the assertion (2) of Proposition 16. Suppose that K is an admissible

family of copula functions. Then by Lemma 9, we see that there is a subset A of Θ such
that the closure of A contains a non-void open subset of Θ and for any θ ∈ A there are
ξi = 0, i = 1, . . . , N, such that

P
i∈I ξi > 0 and

P
i∈I ξi(

~M (n)K)i(~z, θ) ∈ Vn0(K,~z, θ).
Then we see that e0(~z, θ) ∈ Vn0(K,~z, θ). This implies that Vn(K,~z, θ) ⊂ U0(~z, θ).
Then by the assertion (1), we see that dimVn(K,~z, θ) 5 m0, θ ∈ A. Let H1 (resp. H2)

be the set of injective maps from {1, . . . ,m0} to Cn (resp. {1, . . . , n}N . ) Now let

f(θ) =
X
h1∈H1

X
h2∈H2

det((( ~M (n)K)h1(r))(~z, θ, h2(`)))r,`=1,...,m0)
2, θ ∈ Θ.

Then we see that f(θ) = 0, θ ∈ A. From the assumption, we see that f : Θ → R is real
analytic. So we see that f(θ) = 0, θ ∈ Ā ∩ Θ. Since Ā ∩ Θ contains a non-void open set
and Θ is connected, we see that f = 0 on Θ. In particular, f(θ0) = 0. But this implies
that dimVn(K,~z, θ0) 5 m0 − 1. This contradicts to the assumption. Therefore K is not
admissible.
This completes the proof of Proposition 16.
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9 Examples of dynamical default time copula models

Let (Ω,F , P ) be a complete probability space, W (t) = (W k(t))k=1,...,d, t = 0, be a d-
dimensinal standard Wiener process. Let N = 2, and Z1, . . . , ZN be a independent
identically distributed random variables whose distributions are uniform distribution on
(0, 1). We assume that σ{Z1, . . . , ZN} and σ{W (t), t = 0} are independent. Let M = 1.
Let σk : R

M → RM , k = 0, 1, . . . , d, be Lipschitz continuous functions and hi : R
M →

(0,∞), i = 1, . . . , N, be continuous functions.
Let Y be the unique solution to the following stochastic differential equation on RM .

dY (t, y) =

dX
k=1

σk(t, Y (t, y))dW
k(t) + σ0(t, Y (t, y))dt,

Y (0, y) = y ∈ RM .

Let y0 ∈ RM . We also assume that

P (

Z ∞
0

hi(Y (t, y0))dt =∞) = 1, i = 1, . . . , N,

and the support of the distribution of Y (t, y0) under e
−t ⊗ P (dω) contains non-empty

open set.
Now let us define random times τ1, . . . , τN by

τi = inf{t > 0; exp(−
Z t

0

hi(Y (s, y0))ds) < Zi}, i = 1, . . . , N.

Then we see that
(
Y
i∈I
1{τi>t})P (τi > ti, i ∈ I|Ft)

= (
Y
i∈I
1{τi>t})E[exp(−

X
i∈I

Z ti

t

hi(Y (s, y0)ds)|Y (t, y0)]

for t, t1, . . . .tN = 0 with t < min{ti; i ∈ I} (c.f. [1],[2],[4]). Let

H(s1, . . . , sN , y) = E[exp(−
NX
i=1

Z si

0

hi(Y (r, y)dr)] s1, . . . , sN = 0, y ∈ RM ,

and

Hi(s, y) = E[exp(−
Z s

0

hi(Y (r, y)dr)]. i = 1, . . . , N, s = 0, y ∈ RM .

Then Hi(·, y) : [0,∞)→ (0, 1], i = 1, . . . , N, is strictly decreasing surjective function. So
the inverse functions H−1i (·, y) : (0, 1] → [0,∞), i = 1, . . . , N, exist. Let K : [0, 1]N ×
RM → [0, 1] be given by

K(x1, . . . , xN , y) =

½
H(H−11 (·, y)(x1), . . . , H−1N (·, y), y), if x1, . . . , xN ∈ (0, 1],

0, if one of x1, . . . , xN = 0.
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Then we have

(
NY
i=1

1{τi>t})P (τi > ti, i = 1, . . . , N |Ft)

= (

NY
i=1

1{τi>t})K(P (τ1 > t1|Ft), . . . , P (τN > tN , Y (t, y0)) a.s.

for any t = 0, and t1, . . . , tN ∈ [t,∞).
So we see that K is an admissible family of copula functions.
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