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Abstract

We consider a linear differential operators on P! having unramified
irregular singular points. For this operator, we attach the root lattice
of a Kac-Moody Lie algebra and the certain element in this lattice.
Then we study the Fuler transform for this differential operator and
show that this translation by the Euler transform can be understand
as the Weyl group action on the root lattice. Moreover we show that if
the differential operator is irreducible, then the corresponding element
becomes a root of this root system.

Introduction

For a function f(z), the following integral

R = 5 | =0
is called the Euler transform (or Riemann-Liouville integral) of f(x) for
a, A € C. If we take a function f(z) = (z — a)*¢(z) where a € C\Z( and
¢(z) is a holomorphic function on a neighborhood of x = a and ¢(a) # 0,
then it is known that .
(@) = o fw),
Hence one can consider the Euler transform to be a fractional or complex
powers of the derivation 0 = %. This may allow us to write 0" f(z) =
I72 f(x) formally.
Moreover one can show a generalization of the Leibniz rule,

n

Ppopia) = Y- (}) p0 @0 o(a),

=0
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if p(x) is a polynomial of degree equal to or less than n. Now let us consider
a differential operator with polynomial coefficients,

P(z,0) =) ai(x)d'.
=0

The above Leibniz rule assures that O’™ P(x, )0~ is also the new differ-
ential operator with polynomial coefficients if we choose a suitable m € Z.
Moreover if f(x) satisfies P(x,0)f(x) = 0 and I;*f(x) is well-defined for
some a, A € C, then we can see that

IMMP(x,0)07 M M f () = O™ P(2,0)0 M f ()
=9 MMP(,0) f(x)
= 0.

Hence 0 turns a differential equation with polynomial coefficients P(z,0)u =
0 into a new differential equation with polynomial coefficients Q(x, d)u = 0,
and moreover a solution of Q(z,d)u = 0 is given by a solution of P(z,d)u =
0 if the Riemann-Liouville integral is well-defined. For this reason, it is
improtant to study what diffetential equation can be obtained by the Eu-
ler transform from the known equation or when we can reduce the difficult
equation to an easier one.

Let K be an algebraically closed field of characteristic zero and W (x)
the ring of differential operators with coefficients in K (x), the field of ratio-
nal functions. In [11], T. Oshima gave an algebraic definition of the Euler
transform on W (x) as an analogue of the middle convolution defined by N.
Katz in [8]. The purpose of this paper is to investigate the Euler transform
(or the middle convolution) by the theory of root systems of Kac-Moody Lie
algebras.

In [5], W. Crawley-Boevey clarified the correspondence between Fuch-
sian differential equations and certain representations of quivers (deformed
preprojective algebras). Here we call a differential equation Fuchsian if all
singular points are regular singular points. This suggests that the theory of
representations of quivers can be applied to the theory of differential equa-
tions. In fact, he solved the additive Deligne-Simpson problem of Fuchsian
differential equations by his theory of representation of quivers. The middle
convolution (or the Euler transform) gives the reflection functor of a quiver,
i.e., the Weyl group action of this root system.

In this paper, we deal with differential equations with unramified ir-
regular singular points and consider the correspondence between the Euler
transform and the action of the Weyl group of a Kac-Moody Lie algebra as
a generalization of Crawley-Boevey’s result.

Our result can be roughly explained as follows. Let us take P € W (x)
with unramified irregular singular points. We impose some generic condi-
tions on P (see Section 3 for precise conditions). From local structures



around singular points, we can define a Z-lattice L(P) and an element
m(P) € L(P) which describes multiplicities of local exponents of formal
solutions of Pu = 0. Then the translations of m(P) by the Euler transform
gives a group action on L(P). We write this group by W(P)

Then this W (P)-module L(P) can be seen as a root lattice of a Kac-
Moody Lie algebra. That is to say, there exists the root lattice Q(P) and the
Weyl group W (P) of a symmetric Kac-Moody Lie algebra such that L(P)
is isomorphic to a quotient of W (P)-module Q(P) (see Theorem 3.3).

In [4], P. Boalch considers meromorphic connections which have finitely
many regular singular points and one unramified irregular singular point.
He gives a correspondence between these connections and representations of
quivers as a generalization of the result of Crawley-Boevey. If we restrict
our case to this Boalch’s case, we can obtain the root lattices whose Dynkin
diagrams agree with Boalch’s quivers.

Furthermore, we can define a generalization of the root system in L(P)
as an analogue of the root system of Q(P). Then we show that if P is
irreducible, then m(P) € L(P) is the root of this generalized root system
(see Theorem 3.6).

As a corollary, we can show that the irregular Katz algorithm shown by
D. Arinkin and D. Yamakawa independently ([1], [17]).

Moreover as examples of our correspondence with root system, let us
consider confluent equations of Heun’s differential equations. Then we can

obtain extended Dynkin diagrams of affine Lie algebras, Dil), Agl), Agl),

Agl) and Agl) D Agl). These agree with symmetries of Bécklund transforms
of Painlevé equations which are obtained from these Heun’s equations with
an apparent singular point (see Section 3.4).

1 Local structures

Let K be an algebraically closed field of characteristic zero. Let us write
the ring of polynomials with one variable = by K|[z]. We also write the field
of rational functions (resp. formal Laurent series) by K(z) (resp. K((z))).
These are differential ring and fields, i.e., they have the action of 0 = % in
the usual sense. The Weyl algebra Wz] is the polynomial ring of 9 with
the coefficients in K [x], or equivalently to say, the K-algebra generated by
x and J = % with the relation

[,0] = 20 — 0x = —1.

We also consider the algebra of differential operators W (z) (resp. W((z)))
which is the polynomial ring of 0 with the coefficient field K(x) (resp.
K((2))).

For P € W(x), the degree as the polynomial of 0 is called rank of P and
written by rank P. For example, the rank of P = > ja;(z)d" is n. We



define the degree of P = Y"1 ja;(z)0" € W(x] by
deg P = max =1, n{degx a:(x)}.

We shall give a review of local structures of elements of W (z) around
singular points. The materials of this section are well-known and found in
standard references (for example [9],[10],[13],[16]).

1.1 Singular points, local decompositions and characteristic
exponents

For ¢ € K and a monomial (z — ¢)?0", we introduce the weight
wto((z — ¢)?0°) = a — b.
The weight of P € W ((x — ¢)) is defined as follows,

wt o(P) = min{wt .((z — ¢)'’) | P = Za” xr—c) o).

For f(z) € K((z—c)), we can define the weight wt.(f(x)) by regarding f(z)
as an element in W((x — ¢)).
For an integer k, the k-homogeneous part of P € W((xz — ¢)) is

Py = Z aij(x — ),
i—j=k
if we write P =3, - a;j(z — c)'o7.
Similarly we can define wty, by

Wtoo (220°) = b — a.

Let us consider finitely generated W (x)-modules. We usually deal with
left W (x)-modules and call them W (z)-module simply if there is no confu-
sion. Let M be a finitely generated W (z)-module. Then it is known that
M is a cyclic W (x)-module, that is, there exists P € W (z) such that

M~ Mp =W(z)/W(x)P

as W (x)-modules. Hence we sometimes identify these P and Mp.

Let us consider P = Y"1 a;(x)0' € W(z). We call n the rank of P and
Mp. The set of singular points of P are the set poles of aal((g (i=1,...,n).
We also say that ¢ = oo is a singular point of P, if

P =Y (b))

=0



has singular point at = 0. Suppose that x = ¢(# 00) is a singular point of
P. Let us take the wt .(P)-homogeneous part of P,

Z aij(z —c)'d’.

i—j=wt (P)

Then the characteristic polynomial of P at « = ¢ is defined by

CaP)D)= D aigt(t—1)---(t—j+1).

i—j=wt (P)

If
deggy Ce(P)(t) = rank P,

we say that x = c is a regular singular point of P. If otherwise, we say that
x = ¢ is an irregular singular point of P. For x = oo, we can define regular

and irregular singular points as well as the above if we replace x — ¢ to %

Suppose that x = ¢ is an irregular singular point of P. For the simplicity

1
of notations, we put ¢ = 0. There exists an algebraic extension K ((z4)) of
K((x)) for a positive integer ¢ and we can decompose Mp as the direct sum
of regular singular Wy ((x))-modules. Here W,((z)) is the ring of 0 with

1
coefficients in K ((z7)).
More precisely, there exist P; € W,((x)) and distinct polynomials w; of
1

x ¢ with no constant terms for 1 < ¢ < r such that we have the following.
1. Each P; has x = 0 as a regular singular point.
2. We have the decomposition P = P (¢ —wy) - -+ Pp(¥ —w,) in Wy ((x)).

3. We have the decomposition

T

Wy ((@))/We((@) P = D Wy((2))/Wy((2)) P9 — w;)

i=1
as Wy ((z))-modules.

This decomposition is unique in the following sense. If there is another

1
polynomials v; of ™~ ¢« and P/ € W,((z)) (1 < ¢ < s) which satisfy the above
conditions, then s = r and there exist a permutation o of {1,2,...,r} such
that w; = vs(;) and

Wo((2)/Wa((2)) Pi(9 — wi) = Wo((2))/ W ((2)) Py iy (¥ = vo()

forl1<i<r.
Let us summarize these facts below.



Definition 1.1 (The local decomposition). For P € W (z) with an irreqular
1
singular point x = ¢, there exists the algebraic extension K(((z — c)7)) of

K((x—c)), distinct polynomials w; of (x — c)_% with no constant terms, and
Py e Wy((x —c¢)) for 1 <i <r such that we have the following.

1. Fach P; has © = ¢ as a reqular singular point.

2. We can write P as the least left common multiple of
{P1(¥ —wy),..., P (¥ —w,)}
Namely there exist R; € Wy((z — ¢)) such that
P = R;P;(. —w;) fori=1,...,r.
Here 9. = (x — ¢)0.

3. We can decompose

r

Wy((@ =€)/ W((x — ) P = D Wol(x — 0))/Wy((z — ) Pi(Je — w;)

i=1
as Wy((z — ¢))-modules.

We call the decomposition in 3 the local decomposition of P at x = c. Let
us call Py € Wr((z — ¢)) local factors and w; the exponential factors of P;
for1 <i<r.

The positive integer q is called the index of ramification. In particular
when q = 0, we say that x = c is an unramified irregular singular point. If
otherwise, x = ¢ is called a ramified irreqular singular point.

We define characteristic exponents of P at x = ¢ by characteristic expo-
nents of each local factors.

Definition 1.2 (Characteristic exponents). Let us consider P € W(x)
with an irregular singular point at © = c. Let us take local factors of P,

{P1,...,P.} CW((x —¢)) at x = c. Define
Exp.(Fi) = {A € K| Cc(P)(A) = 0}.

Then the set of characteristic exponents of P at x = c is

Exp, (P) = | Exp,(P.).
=1



1.2 The local decomposition and the Newton polygon

Let us give a review of the Newton polygon of P = Y ja;(2)0'. We
associate the point '
(i, wte(a;i(z)0") e NX Z

for each i-th terms a;(2)0* of P. Then the convex hull of the set

n

A = s, wte(ai(z)) + ) | s,t € Zxo}
=0

is called the Newton polygon of P at x = ¢. We denote it by N.(P).
Let us suppose that P has the local decomposition as in Definition 1.1
and we use the same notations. Let

a1 = (i1, 1), a = (i, 1) (0 <dp <+ <4y
be the set of vertices of N.(P). We denote \; slopes of edges connecting
a; and a;4q for ¢ = 1,...,1 — 1. Then we can see that g\; € Z for all
i=1,...,0—1and

. {rank P, if there exists the local factor P; with w; = 0,
11 =

0 if otherwise,
sl — ip = > rank P, (k=1,...,1—1),
{ildeg  _1 wi=q\p}
Kz 4]
Jj1 = wt(P),
Jrr1 — Gk = e > rank P, (k=1,...,1—1).
{ildeg _1 wi=qly}
K[z 9]

For x = oo, we can also define the Newton polygon N (P). Let us
denote vertices of N (P) by

a’l:(ilajl),"'val:(il,jl) (0§21<<’Ll)
as above and suppose that P has local factors
{P1,....,P.} CWy((z™h))

with exponents wi, ..., w, at infinity. Then we can obtain the following sim-



ilar formulas which show the relationship between No(P) and local factors.

iy = n = rank P,

Ji=mn—deggpy an(z),

Gl — ik = > rank P, (k=1,...,1—1),
{ildeg 1 wi=q'Ar}
Klzd ]
Jrrl — Jk = e > rank P, (k=1,...,1—1).
{ildeg 1 wi=q¢'Ag}
Klzd ]

Let a (€ {1,. }) be the index such that A\, > 1 and Aq—1 < 1. Then we

can see deg P Ja- Hence we have
deg P = deggy) an() + Z As — 1) Z rank P;. (1)
{i|deg 1 wi= g’ A}
Klzd ]
Also we can compute wt o (P) as follows,
Wtoo(P) =j1=n— deg [y an(x Z)\ Z rank P;
s=a  {ildeg 1 wi=q'As}
K[z ]
- (2)
= —deggpy an(z) — Y _(As — 1) > rank P;.
s=a {i|deg 1 wi=q¢'As}
Kz ]

1.3 Spectral types

We introduce the notion of spectral types around singular points. To do
this, we define the spectral type of a matrix first.

Definition 1.3. Let us take A € M(n, K), i.e., A is an n X n matriz with
K-components. Let us take a partition of n,

m = (my,ma,...,my),

e., these m;(# 0) are positive integers satisfying

N
=1
And we take a tuple of elements in K,

A= (A, Ao, .., ) € KV,



Then we say that A has the spectrum
(A, m),
if A satisfies

J
rankH(A—)\V) =n—(my+--+mj)
v=1
forallj=1,...,N.
In this case, we call m the spectral type of A.

Let us take P € W((z)). We can regard Mp = W ((x))/W((z))P as the
K ((x))-vector space of
dim Mp = rank P.

For a basis {u1,...,u,} of Mp as K((z))-vector space, we can write the
action of 0 by the matrix as follows. For w € Mp, there exists a;;(?) €
K ((x)) such that

n

19ul- = Z Qij (ﬁ)u]
j=1

Then we define A(9) = *(ai;(9))1<i<n € M(n, K((x))). Moreover if P has

1<i<n

x = 0 as a regular singular point, there exists a basis such that we can
take A(¥) as the element in M (n, K). Then we can choose the partition
of n, written by m = (mq,...,my) and N-tuple of K, written by A\ =
(AM1,...,AN). And A(9) has the spectrum

(A, m).

This partition m is independent of choices of bases. The X is also
uniquely determined modulo ZV. Hence if we put A = A + Z¥ ¢ KV /7N,
the pair (A, m) is unique for P. We call (A, m) the spectrum of P and m
the spectral type of P at x = 0.

For the other regular singular point = ¢, we can define the spectral
type at each points in the same way.

2 Algebraic transformations and local data

In this section, we introduce some transformations on Wiz|, W(x). We shall
investigate changes of spectra caused by these transformations.



2.1 The addition and the Fourier-Laplace transform

For
gu(z) = pr~t +ag + ajx + aga® + -+,

let us consider the K-algebra automorphism

Jur Wz —c¢)) — W(z-0)
xr—c — T —c
0 — 0 — gulx —c)

Proposition 2.1. Let jy be as above. We consider P € W((x — ¢)) with
a regqular singular point © = c. Suppose that P has the spectrum (A, m) €
KN/ZN x ZN at © = c¢. Then if i is the image of (p,...,p) € KV into
KN 7N, the spectrum of j,(P) is (A + i, m) and

Ce(Ju(P))(t) = Ce(P)(t — p).
Proof. Put n =rank P. Let A(P) € M(n, K) be a matrix such that
dou=AP)u (ueW((x—c))/W((x—rc)P)

for a basis of W((x —¢))/W((x —¢))P as K((x — ¢))-vector space. Then we
show that there exists a basis of W ((x — ¢))/W ((x — ¢))j.(P) such that

v = (A(P) + uL)o (v € W((x = ¢))/W((x — c))ju(P))

where I, is the unit matrix of size n.
We define a new action of W((z — ¢)) on W((x — ¢))/W((x — ¢))P as
follows:

(z—c)ou=j; (z—cu,
dou= j;l(a)u
forue W((z —¢))/W((z —¢))P. Then
Ju: Wz —e)/W((x = )P — W((z—c))/W((x - ¢))ju(P)

gives a W ((z — ¢))-module isomorphism. Let us compute the matrix of
4 t(¥e). Since there exists h € W((z — ¢)) such that wtc(h) > 1 and
i (0e) = U + p+ h, the matrix of j71(9,) = Ve + pu + h is

A(P) + ul, + H(z),

where H(x) = h(z)l,. We can assume that any pair of eigenvalues of
A(P)+ul, do not differ by an integer (see Theorem 5.2.2 in [13] for example).
Then we can find a new basis of W((x — ¢))/W((x — ¢))P and the matrix
of 771(¥,) is

A(P) + pl.

10



Since wtc(gu(x —¢) — p(x —¢)71) > 0, we can see wt o(j, (P)) = wt o(P)
and

Ce(ju(P))(t) = Ce(P)(t — p).
O

Definition 2.2 (The addition). For f(z) € K(x), we define the following
K-algebra automorphism of W (x),

Ad(ef T@dzy. W(z) —  W(x)
x — .
0 +— 00— f(x)
Especially, the following automorphim,
Ad((z—¢)"): W(x) —  W(z)
x — x
R

for c, A € K is called the addition at x — ¢ with the parameter \.

Definition 2.3 (The Fourier-Laplace transform). The Fourier-Laplace trans-
form is the following K-algebra automorphism of W x|,

L: wlz] — Wiz
z +— —0
0 x

We recall how spectra change by the Fourier-Laplace transform. The
following propositions are special cases of results of J. Fang and C. Sabbah

([6],[12]).

Proposition 2.4. Let ¢ € K be an unramified irregular singular point of
P € W{z]. Suppose that P € Wx] has the local factor Q@ € W ((z — c)) with
the exponential factor w(x — c), written by

w(z) = wpr ™" 4+ wp_12 T 4 FwizT! (w #0)

where n > 1. We write the spectrum of Q by (A\,m) € K /ZN x 7N,

Then there exist elements aq,...,ant1 € K and distinct polynomials
91(x), ..., gnt1(x) € K[z| of deg gi(x) = n with no constant terms. For these
a; and g;(x), the Laplace transform L(P) satisfies the following properties.

1. The Laplace transform L(P) has a ramified irreqular singular point at
T = 00.

2. The set of local factors at x = oo of L(P) contains Ry,...,Ry11 €
W(nﬂ)((x_l)) which satisfy the following.

11



e Fach exponential factors of R; fori=1,...,n+1 is

—cx + gz(a:n%rl)
e Fach spectra of R; is

(A + @;, m),
where a; is the image of (ay,...,a;) € KN into KN /7N,
e Fach characteristic polynomials of R; is
Coo(Ri)(t) = Ce(Q)(t — ).

o These gi(x) and «; depend only on w.

Proof. The translation z — x — ¢ corresponds to Ad (e~ “*) :  — 9 + ¢ by
the Laplace transform. Thus it is enough to consider the case ¢ = 0.
Let us define

Py(z,0) = P(z,0 — x tw(x))) € W((z)).

If we write P, = S0V a;(2)("+19)?, then

P= Z ai(z) (2" + z"w(x)))".

N
=0

Let us write 2"w = w(z) = Z?:_ol w;z’. Then the Laplace transform

N
L(P) =) ai(=0)((=0)" ' +@(-0))' € Wla].
i=0
Here we notice that a;(—0) are elements in the ring of formal microlocal
differential operators, Efz] = {3 5, bi(x)0~t | b € K((x)),r € Z}.
Let us define the homomorphism from W ((z71)) to W((x)) as follows,

Tos W((x_l)) — W((z))
T — T
1—

1 «

for a negative integer . Then we need to show that there exist polynomials
gly---s9nt1 and ag, ..., a1 € K such that

who(Ad (ef ~9: @ Ddey, L P) = wto(Py)
and

Co(Ad (ef ~9@ a2y £P)(t) = Co(Py)(t — o).

12



This shows the following. Let us put g;(z™ %) = [ gi(x Ddz, i.e.,
dgi(z™1) = gi(m_l).

Then there exist local factors R; € W11y ((#71))(i = 1,...,n+ 1) of L(P)
with exponential factors g;(x) such that

Coo(Ri)(t) = Co(Q)(t — ).

Then Theorem 1.1 of J. Fang [6] and Theorem 5.1 of C. Sabbah [12] tell us
that these R; have the same spectral types of the local factor of (), namely,
spectra of R; are

(A + @, m).

To compute characteristic polynomials of L(P), we prepare the following
lemma.

Lemma 2.5. For a polynomial f € K|z| of degree n — 1, there exist n + 1
polynomials g;(x) = Ej 19T (i=1,...,n+1) and aq,...,an41 € K
and we have following.

Fori=1,...,n+1 there exist S;(z,0),T;(z,0) € K|x,z~'][0] such that
wto(S;) > 1, Wto(T) > n and we have

Ad (ef —gz‘(:fl)dw)rinila — ng:—nlx + S, (3)
Ad (el Y (<0) e 4 [(-9)) = () O — aqa” + T
(4)

proof of Lemma 2.5. We write f(z) = Z?;Ol ;o' and put
M(QZ7 a) = (_a)nJrlx + f(_a)v

then for a g(z) = >, gix'tt € K],

Ad (ef 9@ Doy M (x,0)

_ (nixn-i—Za_’_g(w))n-i-lx—n—l +f( n+28+g< ))

n+1

Here g(z) = n}rlx"“(g(afl)) = Y7, gz € K[z]. Since wto(z"29) =

n+ 1 and wto(g) = 1, if we put

Ni(z,9) = ( 2" 20 + §(x))" — g(z)’

n+1
fori=1,...,n— 1, then wty(N;) = n + i. We also put

Ny(z,0) = (——

—y 1xn+23 + g(x))n-l-lx—n—l o x—n—l(g(w))n-i—l_

13



Then wto(NV,,) = n. By these, we can write

n—1 n—1
M(2,0) = No+ Y filNi + fo+ 27" H(g(2)" ™ + > fi(glx))'.
i=1 -
Let us put (§(z))! = Z xj fori=1,...,n+ 1. Then we can see
that GE Q- (g1)* and Ggﬁk are polynomlals of g1,...,gpfork=1,...,n—1.

Moreover for each k =1,...,n —1, Gl(ﬁk
of gy, is the powers of g;.

Then if we choose g; (i = 1,...,n) so that they satisfy the following
equations:

is linear on g, and the coefficient

G+ fo=0
GtV 1 pet = o

GO, + G+ + 1,69 =0 (<0 - 1)

then the wtg of
n—1
fo+ 27" Hgla)" T + Z fi(g(x))’

becomes less than or equal to n. Hence the wtg of
Ad (ef ~9@Ddey. M (2, 0)

is n.

Let us notice that the first equation (§,)"*! + fo = 0 has n + 1 solutions
on K. Then if we fix a solution §,, remaining g,_1,..., g1 are inductively
determined by the other equations.

The homogeneous component of weight n of Ad (e/ =9 dz)p_ . M (2, 0)
is the sum of the weight n homogeneous element of N, 11(x,d)z" ! and that
of fo+g(x) o= 1—1—2] ] ! G(x)7. Hence there exists o € K and the weight

n homogeneous component of Ad (e/ ~9&"dz)y_ M is
(§n)"2" 0 — az™.
This tells us that
Ad (ef ~9@ Dy M (2,0) = (g0) 2O — ax™ + M (z,0)

where wtoM'(z,0) > n + 1.
The other equation can be obtained similarly.

14



Let us take polynomials g; for £ = 1,...,n + 1 which are obtained by
this Lemma if we put f = w. Then we have

N
Ad (e Ty L(P) =Y ay(M (w, 0)) (M5 (, 9))
1=0

where M and M} are (3) and (4) in Lemma 2.5 respectively. Then we see
wto(Ade(—gx(x™1))r_pn_1LP) = wto(Ps) and

Co(Ad (ef ~9+@ D) £P)(t) = Co(Py)(t — o).

9k,n )71.

r_
Here o), = (357

O

Proposition 2.6. Let x = oo be an unramified irregular singular point of
P € Wlx]. Suppose that P € W(z] has the local factor Q € W ((x™1)) with

the exponential factor
W= wpx" + wp_12" ..+ wiz (wy #0)

where n > 2. We write the spectrum of Q by (A, m) € K /ZN x 7N,

Then there exist elements aq,...,an—1 € K and distinct polynomials
91(x), ..., gn—1(x) € K[z]| of deg gi(z) = n with no constant terms. For these
a; and g;(z), the Laplace transform L(P) satisfies the following properties.

1. The Laplace transform L(P) has a ramified irreqular singular point at
x = 00.

2. The set of local factors at x = oo of L(P) contains Ry,...,R,—1 €
W(n,l)((affl)) which satisfy the following.

e Fach exponents of R; fori=1,...,n—1 is
1
gi(xn—l)‘
e Fach spectra of R; is
()\ + &, m)v
where &; is the image of (ay, ..., a;) € KN into KN /7N,

e Fach characteristic polynomials of R; is
Coo(Ri)(t) = Ce(Q)(t — ).
e These gi(x) and o; depend only on w.

This proposition can be shown by the same argument as in Proposition
2.4. Also we notice that inversion formulas of these propositions can be
obtained as well.
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2.2 The primitive component

Let us take P € W{z]. Then there exist integers r, N, and polynomials p;(t)
such that we can write
N

P=3"(e—pi0e) (pr(t) #0)

i=r

for ¢ € K. Here we notice that the first term p,(¢) is the characteristic
polynomial of P at = = ¢, i.e.,

Lemma 2.7. Let us consider
N .
P=> (z—c)'p(de) € W] (pr(x) #0)

as above.
For a positive integer s, we have that (v — ¢)™*P is still in W(x] if and
only if r — s > 0 or the following equations are satisfied for m = s —r,

pr(o) = pr(l) == pr(m - 1) =0,
pr41(0) = pry1(1) = - = pr1(m — 2) = 0, 6)
p’r—i—m—l(o) =0.

Here we put p;(t) =0 for j > N.

Proof. We consider only the case ¢ = 0. If equations (6) are satisfied, we
have

2, (0) = 2" — 1) - (9 —m 4+ 1)prpi(9)
— xr+i$m7iam7iﬁr+i(ﬁ) — mr+m8m7iﬁr+i(0)
for i =0,1,...,m — 1 where p,1; € K[z]. Thus we have z~ "+ P ¢ W|z].
Conversely, let us suppose that z7°P € Wz]. We can write 2 *P =

Zz‘]\io 2 "™p,;(9). Since weights of z'""p,, (1) are i — m, they are linear
combinations of x*9%T™~% (o, > 0) for i = 0,...,m. Recalling that

0T =9 —1)--- (0 —a+1)0™"
fori=0,1,...,m, we can write
2Py (0) = Prgs(0)0™
= 0™ pppi(9 — m + 1)
=27"MYW — 1) (9 —m + i+ Dprri(9 — m + 1)

fori=0,1,...,m. Here p,+1 € K|z]. Thus we have equations (6). O

16



Definition 2.8 (The primitive component). We say that P = ;" ; a;(x)0" €
Wlz] is primitive if

1. gedgp{ai(z) |i=0,...,n} =1,
2. the highest term ay(x) is monic.

For P € W(z), there exist f(x) € K(x) and the primitive element P €
W x|, and then we can decompose P as

P = f()P,

uniquely.
We denote this primitive element by Prim(P) and call this the primitive
component of P.

Proposition 2.9 (Cf. Tsai [15]). Let us consider P € W{z| which has

singular points ci,...,¢p € K and no other singular points in K. At each
x=c¢ (i=1,...,p), we write
N; )
P=>3(x—c)pl (0.,
J=ri

by integers r;, N;, and polynomials pg.i) (t) (pﬁ? (t) #0). Let us suppose that

there exist positive integers m; fori=1,...,p such that
p(0) =pl(1) = -+ = p{(m; — 1) =0,
P 0) = (1) = =pl (mi - 2) =0,

(7)

(

Here we put pji) (t) =0 for j > N;. Moreover we assume that characteristic

polynomials Ce, (P)(t) = pg) (t) have no integer root > m; for i =1,...,p.

Then if P is irreducible in W (x), i.e., P generates the maximal left ideal
of W (x), then the primitive component Prim (P) of P generates the mazimal
ideal of Wx].

Proof. This is a direct consequence of Corollary 5.5 in [15]. O

Proposition 2.10 (Oshima [11]). Let us take P = Y0 (z — ¢)'p;(¥.) €
Wx] (pr(t) # 0) as above. Also we take my,...,ms € Zsg and Ai,...,\s €
K which satisfy

Ai =X ¢ Z—A{0} (i # j).

17



Let us suppose that the characteristic polynomial C.(P)(t) = pr(t) is decom-

posed as follows,
s m;—1

pr®)=CJ] I (t— i +4)

i=1 j=0

for a constant C. Then the following are equivalent.
1. We have equations

pr(N) =prNi+1)=---=p(Ni+m; —1) =0,
pr—l—l()\i) = pr-i—l()\i + 1) == pr-‘rl()‘i +m; — 2) =0,

pr—i—mi—l()\i) =0.
foralli=1,...,s.
2. There exists the local factor Pj,. of P at x = ¢ such that

Cc(PloC)(t) = CC(P)(t)

and the spectrum is

(M, Xs), (ma, ..., my))
where 5\j is the image of \j into K /7.
Proof. This follows from Proposition 6.14 in [11]. O

Definition 2.11 (The spectral data). Let us take mq,...,ms € Zso and
AL, ...y As € K which satisfy

Xi— XN ¢ Z (i# 7).
We say P € W (z) has the spectral data
{()\17"'7)‘5);(mlv"'ams)}v

at x = ¢, if P € W(z) has a regular singular point at x = ¢ and satisfies the
following,

1.

for a constant C,

2. the spectrum is

(M, Xs), (M, ... ,my))
where Xj is the image of \j into K/7Z.

18



Lemma 2.12. Let P € W{z| be a primitive element, i.e., Prim (P) = P.
We assume that © = ¢ € K is an unramified singular point of P and P has
the local factor Pj,. with the spectral data

{(O,)\l,...,)\l);(mo,ml,...,ml)} (8)

at x = c¢. Then Q = Prim (Ad(z=*)P) has the local factor with the spectral
data
{(=A1,0, A0 = A1,y A = Aa)s (o, ma, - g ) }

at x = c.
In particular, if P has the local factor Py, at x = ¢ with the exponential
factor wi,. = 0 and the spectral data (8), then

deg @ — deg P = mgo — my.

Proof. The first assertion follows from Proposition 2.1. We may assume
c=0. Let us write P = Y"1 pi(2)d", @ = Y qi(x)d". Then there exists
r(z) € K[z] satisfying 7(0) # 0 such that p,(z) = zMr(z) and g,(z) =
zNr(z) for some N, M € Z-g. On the other hand, let us note that both
of Newton polygons of P and () have the same shapes. Moreover Lemma
2.7 tells us that No(Q) can be obtained by moving Ny(P) to the vertical
direction mg —mi. Thus N — M = my — m;. From the equation (1), there
are s,s € Z and

deg P = degpn(x) + s,
deg Q = deg gn () + 5.

/

By the definition of s and &', they are invariant by Ad(z=1), ie., s = s
Hence

deg Q — deg P = deg gn(x) — degpp(z) = N — M = mgy — mj.
O
2.3 The Fourier-Laplace transform of rank 1 irregular singu-
lar point at infinity

Proposition 2.13. Let us take a primitive element P € W{z|. If P has the
local factor with the exponential factor O and the spectral data

{(0,\1,...,\); (mg,mq,...,my)}
at x = c, then Q = L(P) has the local factor Q.. € W ((x™1)) with the

exponential factor —cx and the spectral data

{()\1—1,...,)\1—1);(m1,...,ml)}

at x = o0.
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Proof. It is enough to consider the case ¢ = 0. Let us write P = Zfir 2ip;i ().
Lemma 2.7 and Proposition 2.10 tell that wto(P) = r = —myp and

2T i () = 27T (0 — mg A+ i+ 1)Pomg i (D)

_ x—mg—i—zmmo—zamo—i-z —

P—mo+i (19)

= " P i (),

fori =0,...mg—1. Here p;(t) are polynomials. Since wto(P) = wtoo(L(P)),
we can see

N
L(P)= > a 'pi(—9+1).
i=—myg
Then the proposition follows from Proposition 2.10. O

Similarly we have the following.

Proposition 2.14. Let us take P € W{z]. Suppose that P has the local
factor at infinity with the exponential factor cx and the spectral data

{( A1y N (may.coymy) }
for \i € K\Z (i =1,...,1). Moreover we assume that
Wtoo (Ad(e™“)P) = —mg < 0.

Then L(P) has the local factor with the exponential factor 0 and the spectral
data
{(07)\1 =+ 17" '7Al + 1)’ (moamlv"‘ 7ml)}

at x = c.

Proof. This follows from the same argument as in Proposition 2.13. O

2.4 The Euler transform

From results shown in the previous sections, we shall compute explicit
changes of spectra caused by the Euler transform.

Definition 2.15 (The Euler transform, see [11]). The Euler transform of
P € W(x) with the parameter X is defined by

E(\)P = L oPrimo Ad (z*) o L7 o Prim(P) € W z].

Remark 2.16. This definition is an analogue of the following classical de-
scription of Euler transform:

#0) = i [ o —aptae= [ [Ty aevay
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Remark 2.17 (A comparison with the Katz middle convolution). Although
we only deal with differential operators with polynomial coefficients, this can
be seen as a special case of P-module setting which is investigated by N.
Katz for the Fuchsian case ([8]) and D. Arinkin for the irreqular singular
case ([1]). In the Z-module case, the middle convolution plays the same role
as the Fuler transform in this paper. Let us see the relationship between our
Euler transform and the middle convolution by Katz. We follow Arinkin’s
paper [1] for the definition of the middle convolution.

Let us take P € W (x) with singular points ci,...,c, € K and ¢y = 0.
As we see in Proposition 2.9, the result of Tsai (see [15]) tells us that if P
is trreducible in W(x) and satisfies the conditions in this proposition, then
Prim (P) generates the mazimal ideal in Wz]. Thus we can see that

W (z)/W ()P — Wz]/W [z]Prim (P)

gives an analogue of the minimal extension (Deligne-Goresky-Macpherson
extension) in the P-module setting. We also notice that tensoring a 1-
dimensional local system corresponds to Ad(x*) for some p € K in our
setting. Hence under the suitable assumptions, we can say that our Euler
transform agrees with the middle convolution.

Theorem 2.18. Let us consider P € W (x) which satisfies the following.
1. All singular points ¢y = 00, c1,...,¢p € K are unramified.

2. Atthesec; (i =0,...,p), let us write local factors of P by P 1,..., Py, €
W((x — ¢;)). Exponential factors of P, j are written by w;j which are
polynomials of x%cz with no constant terms.

For this P € W(x), we assume the following.

1. For each ¢; € K (i = 1,...,p), the exponential w;; = 0 and the
corresponding local factor P;1 has the spectral data

{(0,X%, ... 7)‘21-); (mé,m’i, . ,m}cl)}

For ¢y, we assume wo1 = 0 and if the exponential factor degc(,) wo,; <
1 then the corresponding local factor Py j has the spectral data

{Aj; my}
where each components of \; is not an integer. Especially we write
M=% 0N, my=(mi,....m))

for the local factor Py 1 with the exponential factor wo1 = 0.
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2. Fori=1,...,p, we assume

N+ XN ¢Z (G=1,... k).

Under these conditions, we have the following facts for E(1—\))P. Let
us put =1 — N\ for the simplicity.

(i) The rank of E(u)P is
rank E(p)P = rank P+ d

where
ko
d = deg Prim(P) — Zm? —m?.
j=1
(ii) Ate; (i =0,...,p), let us write local factors of E(u)P by Py, ... 7151’ -
and corresponding exponential factors by w; 1, ..., W, i.- Then

and
Wi j = Wi j (i=0,....p,7=1,...,0L).

Moreover forc; (i =1,...,p), each local factors ]5” (j=2,...,1;) has
the characteristic polynomial

Ce; (P j)(t) = Ce(Pij)(t + piy)
where
pij = (Wte, (wij) +1)(1 = A})

and has the spectrum

(AP ), m(P;5)) = (MP;5) — pij, m(P5))

where (MN(P;;), m(P;;)) € K*ii /7Fii x ZFii (k; ; € Z~o) is the spec-

trum of P; ;. In particular, the local factors P;y for eachi=1,...,p
has the spectral data

On the other hand, for co each local factors POJ (j =2,...,1ly) has the
characteristic polynomial

Ceo(Poj)(t) = Ce(Poj)(t + po )

where
p0,j = (Wheo(wo ;) — 1)(1 = A7)
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and has the spectrum
(A(po,j% m(po,j)) = (A(Po,;) — po,j, m(Fo,)).-

In particular, the local factor ]-:’0,1 has the spectral data

{(L+ A+ gy A+ ) (md +dom, .. mi )}

Proof. We know that £~!(Prim (P)) has the spectral data
{(0,AY = 1,... )AL, — L;(No,mY, ..., mp )}

at © = 0, where Ny = deg Prim (P) —Zfozl m? by Proposition 2.14. We note

that £71(P) is a primitive element. Indeed if there exist f(z)(# 0) € K|x]
and R € Wz] such that

£ (Prim (P)) = f(2)R,
then P can be divided
f(=0)=C(0—a1)- (0 — ay)

for some constants C, ayq, ..., a; € K. However this means that P has local
factors with exponential factors ajz (degg(y @z < 1) and characteristic
polynomials of these local factors have integer roots. This contradicts the
assumption.

Hence @, = Prim o Ad(z#) o £L7! o Prim (P) has the spectral data

{(,LL,O, 7)\%0 U 1)7 (NOam(l)a-- . amgo)}

and

deg Q, = deg L7H(P) + Ny — m!
= rank P + Ny — m!

by Lemma 2.12. Thus
rank E(u) P = deg Q,, = rank P + Ny — m).

This shows (i). Also we see that E(u)P has the local factor with the spectral
data
{(+ LA+ oo A+ ) (Noym3, .. ymi )}
at x = 0.
By Proposition 2.4, Proposition 2.6, and these inversion formula, we
see that E(u)P has local factors ]-:’” (1=0,...,p,j =2,...,k;) as in the
statement.
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Similarly, for finite singular points ¢; (i = 1,...,p) we can see that there
exist integers N§ and E(u)P has local factors with spectral data

{0, X — g, . .. 7)‘?41- — u); (Ng,mb, ... ,m}cz)}
By Proposition 2.14 we can see that
mh = —wteo(Ad (e“) L7 (Prim (P))), N} = —Wtoo(Ad (€7)Q,).

If we write £ (Prim (P)) = S>N  ai(z)dN and Q,, = S-N bi(x)d", then by
the equation (2) we have

mp = degy an(z) +1
N(Z) = degK[x] bN(.’L') + t/

for some integers t,t'. Recalling that @) is obtained by applying Ad (z*) to
L7Y(Prim (P)) and the above t is invariant by Ad(z#), we see that

t=t.
Thus

Nt —mly = deg gy On (2) — deggy) an(z) = deg Q) — deg L7 (Prim P)
= NO — m(lJ

O]

3 The Euler transform and the Weyl group action
of a Kac-Moody root system

In the previous section, we compute the Euler transform explicitly. At
first glance, this computation is very complicated, hence we would like to
understand this in more sophisticated way.

We shall investigate the relationship between the Euler transform and
the action of the Weyl group of a Kac-Moody Lie algebra. Also we show
the correspondence between differential operators and elements of the root
lattice of the Kac-Moody Lie algebra. Moreover we define an analogue of the
root system of this Kac-Moody root system and show that if a differential
operator is irreducible, then corresponding element becomes a root of our
generalized root system.
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3.1 The working hypothesis

In the remaining of this paper, we keep the following assumptions. We
consider the P € W (x) which satisfies following assumptions.

1. Singular points of P are ¢y = 00, cy,...,c, € K. All these are unram-
ified singular points.

2. Let us write the set of local factors of P at = ¢; by {P;1,..., Py, }-
Then there exist positive integers m; ; s and A; j s € Kfori =0,...,p, j =
1,...,k;, s=1,...,l;; such that local factors P;; have spectral data

{ig1s 5 X, )i (Mg, yma g, )}
respectively.

We write each exponential factors of F; ; by w; ; respectively.

Furthermore we shall discuss in a generic setting, that is, we regard above
Ai j,s as independent indeterminants which satisfy only one relation, so-called
Fuchs relation ([3],2]). Let us write K(\) the field generated by these A; ;¢
fori =0,...,p, 5 =1,...,k;, s =1,...,l;; and fix an algebraic closure A
of K(X). We denote Wy [x] and Wy (x) rings of differential operators with
coefficients in A[z] and A(x) respectively.

Let us define the subset

Un(P)

of Wy (x) whose elements satisfy the following.

1. Singular points of Q € Up(P) are ¢y = 00,¢1,...,¢, € K. All these
are unramified singular points.

2. Let us write the set of local factors of Q at z = ¢; by {Qi1,...,Qix, }-

Then there exist positive integers mg’j,s and )\;7]-75 c€Afori=0,...,p, j=
1,...,k;, s=1,...,1;; such that local factors @); ; have spectral data
TN s A )5 (mi s miga, )Y

respectively.
Here we allow that m; ; . = 0 and @Q; ;s = 0 for some (7, j,s). Let us
write
P ki
)‘(Q> = H H()‘;,j,lﬁ SRR /\g,j,li,j%
i=0 j=1
P ki
m(Q) = [ [T(mijn. - mi ).
i=0 j=1
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3. Exponential factors of Q; ; are w; ; which are same exponential factors
of local factors P; ; of P.

Here we note that k;,l;; (i =1,...,p, j =1,...,k;) used in the above are
same one used for P. We define the product of indices

P

T(P)=[{G0) [i=1,... K},

i=0
3.2 The lattice transformations induced from the Euler trans-

form

Definition 3.1 (The twisted Euler transform). Let us consider Q € Ux(P)
whose spectral data are

{(A(Q)’L,j,s)7 (m(Q)’L,j,S)} (Z - 07 R 2 ] = ]-a ey kiv s = ]-a DI ll,j)
atc;. Then fort = (to,...,tp) € T(P), we define the twisted Euler transform
E(t)Q by

H)Q = HAd we; HAd (z — c;)N@rin)

o B(1—MQst) [TAd((z — ;) @) HAd —w;
=1

where

=Y M@t

i=0
Theorem 3.2. Fort € T(P), we have E(t)P € Ux(P). If we write the
spectral data of Q¢ = E(t)P by

{()‘(Qt)z,j,s)a (m(Qt)i,j,s)} (2 = 07 2 .7 = 17 cee 7ki7 s = 17 cee 7li,j)

at each c;, then we have

m(Qt)ij,1 = mij1 + d(t) if (i,7) = t,
m(Q¢)ij,s = Mijs otheruwise,
where
p k; lij
ZZW‘LCZ (wij —wy) +1) Zmus
i=1 j=1 s=1
lo;

+Z(Wtc0(wo,J wry) — 1) Zmo,Js me

Jj=
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Also we have that fori=1,...,p, 5 =1,... ki, s=1,...,1;;,

Nijs ifti=(1,7) and s =1,
MN@b)ijs =1, " . \ ) )

Nijs — (Whe, (Wi j — wy,) +1)(1 — A(Pst)) if otherwise,

and fori=0,j=1,...,ko, s=1,...,lo ,

Qo Ato,1 +2(1 = AM(P; 1)) if to=1(0,7) and s =1,
0 Xoj,s — (Wheo (wo j — wy,) — 1) (1 — A(P5t))  if otherwise.

Proof. First we note that if we write P = Y"1 | a,(2)9", then we may assume

an(z) has zeros only at x = c1,..., ¢p.
For t € T(P), Let us consider P; = [[]_y Ad(e™%)P and write P, =
Prim (P;) = 1 bi(2)d". Then

P ki
deg [y bn(z ZZ (Wte, (wij —wy,) + 1) mes

=1 j=1

from the Newton polygon at each x = cy,...,c,. Thus for
P
= [TAd(@ = e) P [T Ad(e™) P,
i=1 j
if we write P} = Prim (P}) = 3.7, ¢u ()07, then

deg () cn (@) = degpfy) bn( Z Mi; 1

by Lemma 2.12. Hence we have

lto

/
degPt — E mtms —mt(),l

s=1

p ki

Z (wte, ( Wi — +1 me,

J=1j=
ko lo,j

+Z (Wteo (wo,j — wyy) — 1 Zmoh,s tht
J=1

by the equation (1).
Thus this follows from Theorem 2.18. O
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Let us define the following Z-lattice from P,

P ki
L(P) = {H H a; 5 |ai7j = (ai’jjl, . ,am”li’j) (= ZliJ7

i=0 j=1
ki log ki lpj
d > agje=-= p,j,s -
j=1s=1 j=1s=1

We define the rank of a = [[?_, H?i:l(amJ, oy a41,5) € L(P) by

ki liyj

rank (a) = Z Z Qi j s
j=1s=1
for any i =0,...,p.
We can see that m(P) = [[V_, H?i:ﬂmi,j,lv ey, o) € L(P). As we
show in Theorem 3.2, if we put Q; = E(t) P, then we can also see that

p ki

m(Q:) = H H(m(Qt)i,j,l, ey Qi) € L(P).

i=0 j=1

Thus E(t) define transformations of L(P) for t € T(P) as follows. For
t = (to,...,tp) € T(P), we define Z-endomorphism of L(P) by

o(t): L(P) — L(P)
k; k; ~ ~
a= [T IIjo (@i, saigu,) — Tl 15 (@i i)
where
Qi j1 = ai g1+ d(a;t) if (4,7) = ti,
Ajjs = Qi js otherwise,
and
p kK lij
d(a;t) = Y (whe,(wij —we,) + 1)) i
i=1 j=1 s=1
ko lo, P
+ Z(Wtco (wO,j - wto) - 1) Z ag,j,s — Z at; 1-
j=1 s=1 i=0
Forig=0,...,p,50=1,...,kiy, s0 =1,..., 1 j, — 1, we also define permu-

tations on L(P),

o (io, jo, S0) : L) —  L(P)
Gig,jo,s0 T Gig,jo,s0+15
Qig,jo,s0+1 7 Qig,jo,s0>
Gijs > aijs if (i,7,5) # (io, Jo, So)-
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Let us define the group W (P) generated by these o(t), o (i, j, s), i.e.,

W(P) =
(o(t),0(i,j,s) |t€T(P),i=0,....p,j=1,..., ki, s=1,...,l;; — 1).

Thus we could define Z-linear action of W (P) on L(P).
Similarly we define the space of local exponents R(P) by

And we extend the translation which we see in Theorem 3.2 to this R(P) as
follows. For t = (to,...,t,) € T(P), we define transformations o(t) of R(P)
by

o(t): R(P) — R(P)
ki ki 7
0 Hj:l vij +— Iz Hj:l Vi,j
where
Do — Vij.s if t; = (2,]) and s = 1,
e Vijs — (Wte, (wij —wy;) +1)(1 —v(t)) if otherwise,

and for 7 = 0,

e 21— w(t)) if to = (0,7) and s =1,
KOs 10,5,s — (Wteo (woj — wy,) —1)(1 —v(t))  if otherwise,

where
P

v(t) = Z Vi1

=0
Also we define permutations o (ig, jo, So) on R(P) as it is defined on L(P).

3.3 The Euler transform and the Weyl group action on a
root lattice

In the previous section, we consider the W (P)-module L(P) from the trans-
lations caused by the Euler transform. We shall see that there exists a
Kac-Moody root system with the Weyl group W (P) and the root lattice
Q(P). Then L(P) can be seen as a quotient W (P)-module of Q(P).

We retain the notations of the previous section. We define the root
system induced from the lattice L(P) as follows. The root lattice Q(P) is
the Z-lattice with the basis

C={c|teT(P)}
N{c(i,3,8) |i=0,...,p,j=1,...,kj,s=1,...,l;; —1}.
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Namely,

= ZZC.

ceC
We define the following symmetric bilinear form ( , ) on Q(P),

p

(e, cp) = — Z(Wtci (wi; — wyy) + 1) = Wheo (wy, —wy ) +1
i=1

+#{i|t;=t,i=0,...,p},
o -1 ift;=(4,j) and s =1
(e, eli, g, 8)) = {O if otherwise
2 if(i,7,8) = (I, 5,5
(c(i,j,8),c(i',j',s")y =< =1 if (i,5) = (¢,7') and |s — &'| = 1.
0 if otherwise

)

For ¢ € C, the reflections with respect to ¢ is defined by
(c0)
{c,c)

for a € Q(P). Then the Weyl group W (P) is the group generated by these
reflections o for all ¢ € C.

o) =a—2

Theorem 3.3. Let us define the Z-module homomorphism

o: Q(P) — L(P)

as follows. For

D ki
Z atct-l_zz Oé’Lj, Z]a )EQ(P))
teT (P) =0 j=1 s=1
the image ®(a) = [[4_, Hj;1(ai,j,1a gy ) s

a;j1 = Z ar — ali, g, 1),

{teT(P)[ti=(i.5)}
a;js =i, j,s — 1) —a(i, j,s) for2 <s <.
Here we put (i, j,l; j) = 0. Then we have the following.
1. The map ® is surjective.
2. This ® is injective if and only if at most one k; in {ko, ..., kp} satisfies
ki > 1,
that is to say, we have
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3. The Weyl group action on Q(P) corresponds to actions of W (P) on
L(P). Namely, we have

O (o) = o(t)P(a),
D(0c(ijs) = o(is j,s)2(a),
for all o € Q(P).
4. For a € L(P), if we define
idxa = (&7 1(a), d7(a)),
then it is well-defined.
5. The Weyl group W (P) acts on R(P) as follows,
Ot =0 (t),
Oc(i,j,s) b = o(i, j,s)u

for € R(P).
Proof. We have

ki l.,.

i,j
S S as= Y ari=0.....p)
j=1 s=1 teT(P)
for ®(a) = [[%_; H?izl(ai,jJ?"‘7a’i7j7li,j) which are images of @ € Q(P).

Hence @ is well-defined.

We write 7; = {(i,7) | j = 1,...,ki} for i = 0,...,p. Then T(P) =
[1%_, 7;. Let us choose an element 7 = (79,...,7,) € T(P). Then we see
that images of

{c(i,j,s) fori=0,....p,j=1....kys=1...li;—1,
cs for t € {7-} U Ufzo(('ﬁ\{’rz}) X HZ#]{TJ}))

generate Lp. Hence & is surjective.
Let us show 2. Ranks of free Z-modules Q(P) and L(P) are

2 p ki
ranky 0qQ(P) = H ki + Z Z(li,j - 1),
i=0 i=0 j=1
p ks
rankz moaL(P) = Y Y lij — p.
i=0 j—1

Hence

P P
ranky 10q@Q(P) — ranky, oq L(P) = H ki — Z ki + p.
=0 =0
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Here we notice that

p p
H&-—kapzo.
=0 =0

Indeed g(ko, ..., kp) = [T o ki — D_%_o ki is the increasing function of each
k; for i =0,...,p, since
0 (k kp) =[]k —1=0
akzg Oa'-'ap_"j =~ U.
JFi
Thus,

g(ko,...,kp) >g(1,...,1) = —p.

If we assume that there exists at least two k;, and k;, satisfying k;, > 2
and k;, > 2, then

glkoy ... kp) >4—(2+2+(p—1)=—-p+ 1

Hence
ranky 0q@Q(P) — ranky oq L(P) > 1.

This shows @ is not injective. On the contrary, if all k; are k; = 1 except
only one k;,, then

g(ko, ..., kp) = ki, — kiy — p.

Hence
ranky mod @ (P) = ranky moq L(P).

Then since we know @ is surjective, hence @ is injective.
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Let us show 3. We have

P ki Lij
d(@(a);t) =D Y (Whe (wij — wy,) +1) ) s
=1 j=1 s=1
ko lo,j P
- z:(vvtc0 (woj —wiy) — 1) Z ao,j,s Z at; 1
j=1 s=1 =0
p oo
= Z (r+1) Z Qy
=1 r=0 {t'eT (P)|wte, (wt;—wti):r}
00
+) (r=1) > Qg
r=0 {t"eT(P)|wte, (wtg —wty)=T}
p p
- Z Z oy + Z Z a(i, s, 1)
=0 {t'"eT (P)|t}=t;} 1=0 s€T;
p

= Z at’(Z(WtCi (wt; - wti) + 1) + wte, (wt6 - wto) -1
veT(P)  i=1

—#{i|ti=t;,i=0,...,p})

+) ) a(i,s 1)

=0 s€T;

= — (¢, ).

Hence we have
O(o.,a) = o(t)P(a).

And the equations
(I)(Ud(i,s,j)a> = U(i7 s,j)tb(a)

are similarly obtained.

Let us show 4. If o € Ker @, then d(®(«);t) = 0. Thus (¢, a) = 0 for all
t € T(P). And similarly we have (c(i,7,s),a) =0 foralli =0,...,p,j =
1,..., ki, s=1,...,l; ; — 1. Thus we have that if & € Ker ®, then (8,a) =0
for all 5 € Q(P).

Finally we show 5. We need to see that the W(P) action on R(P)
defined as above is well-defined. Namely, if for ¢, € C reflections o, ou
satisfy Coxeter relations

2

c —

(0e0e)™%) = id

2 .
o, =0 =1id,

33



in W(P) for some positive integer m(c, c’) (sometimes it is 0o), then we have

Oop = o= i, (9)
(O-CO-C,)m(Cvc/)M = M (10)
for all 4 € R(P). The involutive relations (9) are directly follows from the

definition. We check the relations (10).
Let us take t,t' € T(P) (t # t') and compute (o(¢t)o(t))™ on R(P). For

v = f:() H‘I;LI(VZ'JJ-’ trt Vivjvli,j) € R(P)’ we can see
p ki
(o) (t)y = v =TT T )
i=0 j=1
becomes as follows. For i = 1,...,p, we have the following.
o If t; = t;
Vij1 for t; = t; = (i, 7),
m
Vijes = =t

for the other (i, j, s).

— (wt(w;; —w,) +1) Y p™
u=1

o If t; £ 1,

(Vij1 — (Whe, (wr, —wy) + 1) 0ty pW () for t; = (4, ),
Vija — (Whe, (wy —wy,) +1) X0, pl(t) - for t = (i, ),
(m)

v = L e = (Whe (wi g — wy) +1) Y p™(t)

0,55
u=1 ..
m for the other (i, j, s).

= (wt(wij —wy) +1) Y u
u=1

Also y(m) are as follows.

0,7,
o Ifty = t6,
( .
V0,41 + 20000 (™ (8) + pM(#))) for tg =t = (0, 4),
m
(m) V05,5 — (Wheo (wo,5 — wt’ —1) Z M u)
VO,j,s = u=1

for the other (0, 7, s).

m
— (wt(wo J — W) Z H
u=1
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L Ifto;’ét/,

0,51 + 2 Z ) (t)
u=1
— (Wheo (wig — wyy) = 1) > (¥
V0,51 + 2 Z b ()

Vi = v for t) = (0,.7),
— (Whey (g, — w1y) — 1) S u@(1)

for to = (07.7)7

NE

Il
i

u

p ()

NE

10,5, — (Wheo (wo,; — wy ) — 1)
1

2
Il

for the other (0, j, s).

m
— (wtluog — wip) = 1) S
u=1

Here p(®(t) and p("(#') are defined as follows.

p
! t) =1- lethl,
=0
p (t) = —p V() + BEpl (),
p
p () =1=> w1+ EpM(1),

=0
p(t) = —=p =D (") + But (),

where
P
Z we, (w, wt/) + 1) + wheo (wey — wtg) -1
—#{z\t =t i=0,...,p}.

Hence we have

m=2 if E=0,
" " =3 ifE=1
W) () = @Y =0for 4 ’

2 i =) ) =0for N ey
m=6 if E=3,

and if £ >4, then Y™ u™(¢) and -7, 4™ (#') never become zero (see
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Proposition 3.13 in [7]). This shows that

m=2 if E=0,
m=3 if F=1,
(a(t)o(t'))™ :id|R(p) forim=4 if E=2,
m=6 if £E=23,
m=o0 if B> 4.

Similarly the direct computation shows that

m=3 ift;=(i,j) and s =1,

m = 2 if otherwise,

(O’(t)O'(i,j, 8))m = 1d’R(P) for {

and

m=3 if (i,j) = (7.5) and |s — /| = 1,

m = 2 if otherwise.

(0(i,j,8)o(i’,j',s")™ = id| g(p) for {
O

3.4 Examples : affine Weyl group symmetries of Heun equa-
tions.

Let us see some examples of Theorem 3.3. As examples, we consider the
Heun differential equation and its confluent equations (see [14] for instance).

(1) The Heun differential operator.
The Heun differential operator is the differential operator of the form

P=x(x—1)(z—1t)0*+ {c(z —1)(z —t) + do(x — t)
+(a+b+1—c—d)z(z—1)}0+ (abxz — N).

This has regular singular points at x = 0,1,¢, 00 and at these singular
points, it has the following spectral data,

(0, ¢ (1,1)} atxz =0,

( )a(lal)} at x =1,
(Oc+d—a—b) (L,1)} atx=t,
(@,b): (L1} at @ = o

{
{
{
{

By Theorem 3.3, we can define the root lattice Q(P) with the following
extended Dynkin diagram.
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C2

c1 €
c3
C4
Here this diagram is drawn by the following rule. If ¢; and ¢; in the basis
of Q(P) satisfy (c;, c;) = —m(4, j), then corresponding vertices ¢; and c; are

connected by m(i,j) edges. We can see
<ClaCO> :_17 <ClacQ> =0

from this diagram for example.
This diagram is that of the affine DS) type root system. For

4

m(P) = [](1.1),

=0

we can associate the element in Q(P),

This is a imaginary root of Q(P).

We can see that §(P) = ®~}(m(P)) is invariant by the action of W (P).
Namely, twisted Euler transforms F(t) and permutations (4, j, s) preserves
the spectral type of P. On the other hand, characteristic exponents are
changed by FE(t) and permutations. As we see in Theorem 3.3, the Weyl
group W(P) acts on the space of characteristic exponents R(P) as well.
Thus we can conclude that characteristic exponents of the Heun differential
operator has affine Dil) Weyl group symmetry generated by twisted Euler
transform and permutations.

(2) The confluent Heun differential operator.
Let us consider the confluent operators of Heun operator. The confluent
Heun differential operator is

P¢=x(x — 1) + {—ta(x — 1) + c(x — 1) + dz}0 + (—taz + \).

This has regular singular points at x = 0,1 and irregular singular point at
x = oo. The spectral data are

{(0,1—-1¢);(1,1)} ata=0,
{(0,1—d);(1,1)} atax=1,
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for regular singular points and

{(a); (1)} with the exponential factor w; = 0,
{(c+d—a);(1)} with the exponential factor wy = tz,

for the irregular singular point £ = co. Then the corresponding root system
has the following extended Dynkin diagram.
cr C2

This corresponds to the affine Afll) root system. And we have

4
§(P°) =3 (m(P9)) = a.
=1

This §(P€) is imaginary root of Q(P°) and W (P¢)-invariant. Hence as well

as the Heun differential operator, we can conclude that the characteristic

exponents of confluent Heun differential operator has affine Az(ll) Weyl group

symmetry generated by twisted Euler transforms and permutations.

(3) The biconfluent Heun differential equation.
Let us consider the biconfluent Heun differential equation,

P% = 202 + (—2% —tz + )0 + (—az + ).
This has regular singular point at x = 0 with the spectral data,
{(O’ 1- C), (]-a 1)}7
and irregular singular point at x = co with the spectral data,

{(a); (1)} with the exponential factor w; = 0,
{(c+1—-a);(1)} with we =z+t.

The corresponding diagram and the element in Q(P%) are as follows,
C3

3

§(P") =& M (m(P"*) => ¢

i=1

Hence this is the affine Agl) root system and §(P%) is a imaginary root
of this root system. As well as the above examples, we can see that P’ has
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the affine Agl) Weyl group symmetry generated by twisted Euler transforms
and permutations.

(4) The triconfluent Heun differential equation.
The triconfluent Heun differential equation is

P = 9% 4 (=22 — )0 + (—azx + \).

As well as the above examples, we can see that P has affine Agl) Weyl
group symmetry generated by twisted Euler transforms.
Indeed the spectral data are

{(a); (1)} with the exponential factor w; = 0,
{(2—a); (1)} with wy = 2® +1¢
at the irregular singular point £ = co. And we can see that
J(P*) = @~ (m(P*)) = c1 + e
is a imaginary root of the root system with the extended Dynkin diagram,
1 C2
O=0 -

(5) The doubly confluent Heun differential operator.
The doubly confluent Heun differential operator is

Plg? = 92 4 (—a® + cx + 1) + (—ax + \).
This has the Agl) @ Agl) Weyl group symmetry. The spectral data are
{(0); (1)} with the exponential factor W = 0,
(2= exW} withwf) = =,
at x =0 and

{(a); (1)} with the exponential factor w® = 0,
{(c—a);(1)} withws® ==z

at = co. Then the corresponding diagram is

C1 C2 C3 Cq4
O=0 @ O==0 >
and

4
§(P*) =& ' (m(P™) => ci+a(cr + e — c3 — ca) (a € Z).

=1
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Here we notice that (c¢; 4+ ca — c3 — c4) € Ker ®. We can see that §(P%) is
W (P9)-invariant. Hence we can conclude that P9 has Weyl group W (P4%)
symmetry.

Let us give comments about the relationship with Painlevé equations.
As is known, if we put an apparent singular point to each these operators
and consider the isomonodromic deformation, then we can obtain Painlevé
equations, namely, Py from the Heun operator, Py from the confluent
Heun operator, Py from the biconfluent Heun operator, Pr;; from the dou-
bly confluent Heun operator, and P;; from the triconfluent Heun operator
respectively.

It is known that these Painlevé equations have following affine Weyl
group symmetries generated by birational transformations.

Pyr | Py | Prv | Prr Prrr
DY [ AV [ 4P ] AP [ (A0 4D

Our Weyl groups recover these Painlevé symmetries.

3.5 The irreducibility and the ®-root system

We shall define an analogue of the root system in L(P), called ®-roots and
show that if P is irreducible, then m(P) becomes a ®-root.

Proposition 3.4. Let us suppose that P is irreducible in Wa(x). Ifrank P >
1, then E(t)P are irreducible and rank E(t)P > 1 for t € T(P). Moreover
if we put

Qu-1=FE(ty—1)0o E(ty—2)o...0 E(t;)P

and assume that rank Q, > 1 forr =1,...,u — 1, then E(t,)Qu—1 is irre-
ducible and rank E(t,)Qu—1 > 1 forty,... t, € T(P).

Proof. We denote

p
P =JJAd((z — ;) t) [ Ad(—e") P.
=1 3

Proposition 2.9 implies that Prim (P) generates the maximal ideal of W [z].
Thus £~ 'Prim (P) also generates the maximal ideal of Wy [z]. If

L7 'Prim (P) ¢ Alz],

then £~ 'Prim (P) generates the maximal ideal in W (x) as well.

Suppose that £~ 'Prim (P) = f(z) € Alz]. Then Prim (P) = f(-0).
Since P is irreducible in W (), we have deg ) f() = 1. This contradicts
rank P > 1. Hence £~ 'Prim (P) is irreducible in W (z).

Moreover since Ad(wl_’\(P ;t)) does not change the irreducibility, we have

Ad(z' AP LPrim (P) is irreducible in W (). Then Proposition 2.9 tells
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that Prim Ad(z' 7)) £~ Prim (P) generates the maximal ideal in W [z].
Thus if E(1—-\(P;t))P ¢ Alz], then E(1—\(P;t))P is irreducible in W ().
Suppose that E(1 — A\(P;t))P = g(x) € A[z]. Then
Prim Ad(z' ) £7Prim (P) = ¢().

Hence g(z) = ax + b for some a,b € A from the irreducibility. Thus there
exists f(x) € Afz] such that

Ad(z' AP 71 Prim (P) = f(z)(azd + bz — 1 4+ A(P;t)).
Hence
Prim P = f(—9)(—axd — b0 — 1 + A(P;t)).

This is the contradiction since rank P > 1 and P is irreducible in Wy ().
The second assertion follows from the same argument. O

We shall define ®-root system of L(P) which is an analogue of the root
system of Q(P). For this purpose, we recall roots of Q(P) first. The set of

real roots is
A = | W (P)e
ceC

i.e., the union of W(P)-orbit of ¢ € C. To define imaginary roots, let us
consider the set

Y<0 fi 11 ceC,
F={aeQ(P)" =Y Zsoc| =00 ol cog {0},
ceC

Here we say supp(a) is connected if o = ) . acc satisfies the following. If

I ={ceC|a.# 0} is decomposed by a disjoint union I = I II Iy such

that we have (c1,c2) =0 for all ¢; € I} and ¢3 € I, then I1 = () or I = ().
We define the set of imaginary roots by

Ay, = W(P)FU—(W(P)F).
And we define the set of roots by
A=A UAj.

Let us define ®-roots as an analogue of A. We consider the following

subset of L(P),
U wW(P

teT (P

i.e., the union of W (P)-orbit of @(ct). We call this the set of ®-real roots.
We also consider the subset

o _ H H @i§,12005,92 20 51, 5> d(&;t) >0
B {a € L ﬁ Z {0} ’ for all i=0,...,p, j=1,...,k; ,t€T (P) }‘
=0 j5=1
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Then let us define the set of ®-imaginary roots by
A =W(P)F®U—(W(P)F?).

We call
A = A2 UAY

1m

the set of ®-roots and
p ki l
[ [ i,
av st [T 112
i=0 j=1

the set of ®-positive roots. Elements in A® and A®* are called ®-roots and
d-positive roots respectively.

The following proposition assures that A® can be seen as a natural gen-
eralization of the root system A.

Proposition 3.5. If ® is injective, then
1A% c A.

Proof. Tt is clear that ®~1(A®) C AL. Hence we need to check ®~(F®)
F. To show this, it suffices to see that supp(®~!(a)) are connected for all
a € F®. Let us suppose the contrary, i.e., there exists o = Y ecc Qe €
®~1(F?) such that supp(a) is not connected. Since ® is injective, there
exists ig € {0,...,p} and we have

T(P) :7;0

and all k; are k; = 1 except k;, by Theorem 3.3. Hence for any t € T(P)
and i € {0,...,p}\{i0}, we have

(c,c(i,1,1)) = —1.
This shows that a,; 1,1y = 0 for all i € {0,...,p}\{70}. And since
Qe(i1,1) = Q,1,2) =00 s

we have a,; 1) = 0 for i € {0,...,pf\{io} and s =1,... ;1.
Next we show that for any t,¢' € T(a) = {t € T(P) | o, # 0}, we have

Whe,, (wt;O —wy ) =1
Suppose that we can show this. Then we have

<Ct, Ct/> = 0
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for t,t' € T(a) (t #1t'). And for t € T (), we have
<Oé,Ct> > Oa

since ae, 2 et 1)- This is the contradiction.
Let us show the above claim. If there exist ¢,#' € T («) such that

Whe, (wt;O — wtio) > 2.

Then
<ct’7 Ct> 7é 0.

Let us take t” € T («) satisfying
Wtcio (wt;/o — wtio) =1.
Then (c¢pr, ¢;) = 0. However we have
Whe,, (wpr —wy ) > 2,
0 %0

thus (cpr,cpy) # 0. This contradicts the assumption that supp(«) is not
connected.
O]

The following theorem shows that the irreducible condition for the dif-
ferential operator P relate to the root condition of m(P) € L(P).

Theorem 3.6. If P is irreducible in W (x), then we have the following.
1. We have that m(P) € L(P) is the element in A®*.
2. If idxm(P) > 0, then idxm(P) = 2.

3. We have
A?  ifid P)=2
m(P) c re Zfl Xm( ) )
A2 ifidxm(P) <0.

Proof. Proposition 3.4 tells that if
~ P ki l
W(P)m(P) ¢ L*(P) = L(P)u ] T[] 2%,
i=0j=1
then there exist (), ... ¢t € T(P) such that
rank E(t") o0 E¢M)P = 1.

Thus for Q, = E(t()o--- o E(tMW)P, there exist w € W(P) and t € T(P)
such that
wm(Qy) = P(cyp).
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Hence we have

m(P) € A?

re

and
idxm(P) = 2.

Next we assume R
W(P)m(P) C L+(P).

First we show that idxm(F) < 0. To do this, we suppose the contrary, i.e.,
idxm(P) > 0. Let us take an element b € W(P)m(P) which has the least
rank in W(P)m(P) and

bij1>bijo>...bij foralli=0,....p,j=1,... k. (11)
Since idxb > 0, we can show that there exist ¢ € T(P) such that
rank o(t)b < rank b.
Indeed, since (®~1(b), ®~!(b)) > 0, there exist ¢ € C such that
(@ (b),c) > 0.

The condition (11) implies ¢ € {¢; | t € T(P)}. This shows the above claim.
However this contradicts the choice of b. Hence idxm(P) < 0.
Next we show m(P) € A? . Let us take one of the least rank element
b € W (P)m(P) which satisfies the condition (11) as above.
Since (®~!(b),® (b)) < 0, we have (®?~!(b),c) <0 for all ¢ € C. This
shows that
be F®.

Hence we have
m(P) € A

m*

O]

In the theory of the middle convolution, the Katz algorithm is one of the
most important results. This shows that if an irreducible Fuchsian differ-
ential operator or a local system is rigid, i.e., uniquely determined by local
structures around their singular points, then this operator or local system
can be reduced to rank 1 element by finite iteration of the middle convolu-
tions and the additions. This rigidity condition is estimated by the certain
number, so-called the index of rigidity. Namely, one can show that a Fuch-
sian differential operator or local system are rigid if and only if their index
of rigidity is 2.

A generalization of this theorem for non-Fuchsian differential operators
is obtained by D. Arinkin and D. Yamakawa independently (see [1] and
[17]). We can show an analogue of their results as a immediate consequence
of Theorem 3.6.
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Corollary 3.7 (Cf. Arinkin and Yamakawa [1],[17]). Suppose that P is
irreducible in Wy (z). There exist t() ... t") € T(P) such that

rank E(t) o0 BE(tM)P =1,

if and only if

idxm(P) = 2.

Proof. For any t € T(P), we have

rank ®(¢;) = 1.

Hence this follows from Theorem 3.6 and the definition of A® immediately.

O]
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