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Uniform Estimate for Distributions of the Sum of
i.i.d. Random Variables with Fat Tail:

Infinite variance case

Kenji NAKAHARA

Abstract

In the previous preprint [14], We showed uniform estimates of distributions
of the sum of i.i.d. random variables with finite variance in the threshold case.
In this preprint, we show a uniform estimate without variance condition in the
threshold case.

1 Introduction

Let (Ω,F , P ) be a probability space and Xn, n = 1, 2, . . . , be independent identically

distributed random variables whose probability law is µ. Let F : R → [0, 1] and F̄ :

R → [0, 1] be given by F (x) = µ((−∞, x]) and F̄ (x) = µ((x,∞)), x ∈ R. We assume

the following.

(A1) F̄ (x) is a regularly varying function of index −α for some α ≥ 2, as x → ∞,i.e., if

we let

L(x) = xαF̄ (x) , x ≥ 1,

then L(x) > 0 for any x ≥ 1, and for any a > 0

L(ax)

L(x)
→ 1 , x → ∞.

(A2)
∫ 0

−∞ |x|2+δ0µ(dx) < ∞ for some δ0 ∈ (0, 1) and
∫
R xµ(dx) = 0.

(A3) The probability law µ is absolutely continuous and has a density function ρ : R →
[0,∞) which is right continuous and has a finite total variation.

Let us define Φk : R → R, k = 0, 1, 2, 3 by

Φ0(x) =
1√
2π

∫ ∞

x

exp(−y2

2
)dy, x ∈ R,
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Φ1(x) =
1√
2π

exp(−x2

2
) = − d

dx
Φ0(x),

and

Φk(x) = (−1)k−1 dk−1

dxk−1
Φ1(x), k = 2, 3.

Let tn = sup{t > 0;n
∫ t

−∞ x2µ(dx) > t2}. Then from (A1), (A2) we can see that

P (
n∑

k=1

Xk > tns) → Φ0(s), n → ∞, s ≥ 1.

Let vn =
∫ tn
−∞ x2µ(dx) for n ≥ 1. We also define H : N× R → R by

H(n, s) = Φ0(s) + n

∫ s

−∞
F̄ (tn(s− x))Φ1(x)dx

−
(
v−1/2
n n1/2Φ1(s)

∫ ∞

0

xµ(dx) +
Φ2(s)

2
v−1
n

∫ tn

0

x2µ(dx)

)
.

In this paper, we show the following theorem, which is corresponding to Theorem

2 in the previous preprint.

Theorem 1. Assume (A1) for α = 2, (A2) and (A3). Then for any δ ∈ (0, 1), there is

a C > 0 such that

sup
s∈[1,∞)

|P (
∑n

k=1Xk > tns)

H(n, s)
− 1| ≤ C(nF̄ (tn))

1−δ, n ≥ 1. (1)

In particular,

sup
s∈[1,∞)

|P (
∑n

k=1 Xk > tns)

Φ0(s) + nF̄ (tns)
− 1| → 0, n → ∞.

We also prove the following to obtain Theorem 1.

Theorem 2. Assume (A1) for α = 2, (A2) and (A3). Then for any δ ∈ (0, 1), there is

a C > 0 such that

|P (
n∑

k=1

Xk > tns)−H(n, s)| ≤ C(nF̄ (tn))
2−δ, s ≥ 1.

Theorem 2 is corresponding to Theorem 4 in [14]. Throughout this paper we assume

(A1) for α = 2, (A2) and (A3). Then we see that tn = n1/2v
1/2
n and nF̄ (tn) =

L(tn)

vn
→

0, n → ∞ (see Equation (2)). See section 2 in [14] for the properties of regularly varying

functions needed in this paper.
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2 Estimate for moments and characteristic functions

Let

ηk(t) =

∫ t

−∞
xkµ(dx), t > 0, k = 1, 2,

and

η3(t) =

∫ t

1

x3µ(dx), t > 1.

Then we see that

−η1(t) =

∫ ∞

t

xµ(dx) =

∫ ∞

t

F̄ (x)dx+ tF̄ (t), t > 0,

η3(t) = F̄ (1)− t3F̄ (t) + 3

∫ t

1

x2F̄ (x)dx t > 1.

and η2(t) is slowly varying.

Let tn = sup{t > 0;nη2(t) > t2} and vn = η2(tn) =
∫ 1

−∞ x2µ(dx) − L(tn) + L(1) +

2
∫ tn
1

x−1L(x)dx.

Note that tn = n1/2η2(tn)
1/2 ≥ n1/2η2(0) → ∞, n → ∞.

Let an = nF̄ (tn). Then for any t0 > 0, we see that for t > t0,

1

L(t)

∫ t

1

x−1L(x)dx =

∫ 1

1/t

L(tx)

L(t)

dz

z
≥

∫ 1

1/t0

L(tx)

L(t)

dz

z
→

∫ 1

1/t0

dz

z
= log t0.

Since t0 is arbitrary, we see that

an =
L(tn)

vn
→ 0, n → ∞. (2)

Proposition 1. There is a C > 0 such that

−n
η1(tn)

tn
≤ Can, (3)

n
η3(tn)

t3n
≤ Can. (4)

for any n ≥ 1.

Proof. Similarly to Proposition 8 in [14], we can prove Proposition 1.
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Proposition 2. There is c1 > 0 such that for any integer n,m with n ≥ m and ξ ∈ R
with |ξ| ≥ a−δ

n ,

|φ(t−1
n ξ, µ(tn))|n ≤ (1 +

c1η2(tn|ξ|−1)

mvn
|ξ|2)−m/4.

In particular, there is c2 > 0 such that for any integer n,m with n ≥ m and ξ ∈ R with

|ξ| ∈ (a−δ
n , tn),

|φ(t−1
n ξ, µ(tn))|n ≤ (1 +

c2
m
|ξ|)−m/4.

Proof. Let t > 2. We see that for ξ ∈ (−t−1, t−1),

|φ(ξ, µ(t))|2

= (1− F̄ (t))2
∫
R

∫
R
exp(iξ(x− y))ρ(x)1(−∞,t)(x)ρ(y)1(−∞,t)(y)dxdy

≤ 1−
∫
R

∫
R
(1− cos(ξ(x− y)))ρ(x)1(−t,t)(x)ρ(y)1(−t,t)(y)dxdy

≤ 1− |ξ|2

4

∫
R

∫
R
(x− y)2ρ(x)1(−t,t)(x)ρ(y)1(−t,t)(y)dxdy.

Similarly we have for ξ ∈ R with |ξ| > t−1,

|φ(ξ, µ(t))|2

≤ 1− |ξ|2

4

∫
R

∫
R
(x− y)2ρ(x)1(−|ξ|−1,|ξ|−1)(x)ρ(y)1(−|ξ|−1,|ξ|−1)(y)dxdy.

We can easily see that

η2(t)
−1

∫
R

∫
R
(x− y)2ρ(x)1(−t,t)(x)ρ(y)1(−t,t)(y)dxdy → 2, t → ∞.

Hence we see that there is a c1 > 0 such that for any n ≥ 2 and ξ ∈ R with

|ξ| ≥ a−δ
n ,

|φ(t−1
n ξ, µ(tn))| ≤ (1− c1η2(tn|ξ|−1)

nvn
|ξ|2)1/2 ≤ (1 +

c1η2(tn|ξ|−1)

nvn
|ξ|2)−1/4.

It is easy to check that (1+x/β)β ≥ 1+x for any β ≥ 1 and x ≥ 0. Therefore if n ≥ m,

we have (
1 +

c1η2(tn|ξ|−1)

nvn
|ξ|2

)n/m

≥ 1 +
c1η2(tn|ξ|−1)

mvn
|ξ|2.

Since η2(t) is slowly varying, we see that for ξ ∈ R with tn ≥ |ξ| ≥ a−δ
n ,

η2(tn|ξ|−1)

vn
=

η2(tn|ξ|−1)

η2(tn|ξ|−1|ξ|)
≥ M(1)−1|ξ|−1.

Therefore we have our assertion.
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3 Asymptotic expansion of characteristic functions

Remind that tn = n1/2v
1/2
n and an = nF̄ (tn) = v−1

n L(tn).

In this section, we prove the following Lemma.

Lemma 1. Let

Rn,0(ξ) = exp(
ξ2

2
)φ(n−1/2ξ;µ(tn))

n − (1 + n(φ(n−1/2ξ;µ(tn))− 1) +
ξ2

2
),

Rn,1(ξ) = exp(
ξ2

2
)φ(n−1/2ξ;µ(tn))

n − 1,

Rn,2(ξ) = exp(
ξ2

2
)φ(n−1/2ξ;µ(tn))

n−1 − 1.

Then there is a C > 0 such that

|Rn,0(ξ)| ≤ Ca2−5δ
n |ξ| (5)

and

|Rn,1(ξ)|+ |Rn,2(ξ)| ≤ Ca1−2δ
n |ξ|, (6)

for any n ≥ 8 and ξ ∈ R with |ξ| ≤ a−δ
n .

As a corollary to Lemma 1, we have the following.

Corollary 1. Let

R̃0(n, s) = µ(tn)
∗n((tns,∞))− Φ0(s)−

1

2π

∫
R

e−isξ

iξ

(
n(φ(n−1/2ξ;µ(tn))− 1) +

ξ2

2

)
e−ξ2/2dξ,

R̃1,k(n, s) = µ(tn)
∗(n−k)((tns,∞))− Φ0(s), k = 0, 1,

and

R̃2(n, s) =
1

2π

∫
R

∣∣∣∣φ(n−1/2ξ;µ(tn))
n−1 − e−

ξ2

2

∣∣∣∣ dξ.
Then there is a C > 0 such that for any n ≥ 1 and s ∈ R, we have

|R̃0(n, s)| ≤ Ca2−6δ
n (7)

and

|R̃1,0(n, s)|+ |R̃1,0(n, s)|+ |R̃2(n, s)| ≤ Ca1−4δ
n . (8)
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Proof. From Proposition 7 in [14], we see that

R̃0(n, s)

=
1

2π

∫
R

e−isξ

iξ

(
φ(n−1/2ξ;µ(tn))

n − e−
ξ2

2 −
(
n(φ(n−1/2ξ;µ(tn))− 1) +

ξ2

2

)
e−

ξ2

2

)
dξ

=
1

2π

∫
R

e−isξ

iξ
Rn,0(ξ)e

−ξ2/2dξ.

By Lemma 1, there is a C0 > 0 such that∫
|ξ|≤a−δ

n

|Rn,0(ξ)|
|ξ|

dξ ≤ C0a
2−6δ
n .

It is easy to see that

n|φ(n−1/2ξ;µ(tn))− 1| ≤ nt−1
n |η1(tn)||ξ|
1− F̄ (tn)

+
|ξ|2

2η2(tn)(1− F̄ (tn))
, ξ ∈ R.

From the above inequality and Proposition 6 in [14] and 2, we see that for any m ≥ 2/δ,

there is a C1 > 0 such that for any n ≥ 4m

|φ(n−1/2ξ;µ(tn))|n +
∣∣∣n(φ(n−1/2ξ;µ(tn))− 1) + 1 +

ξ2

2

∣∣∣e− ξ2

2 ≤ C1|ξ|−m, for |ξ| ∈ (a−δ
n , v1/2n a−δ

n )

and

|φ(n−1/2ξ;µ(tn))|n +
∣∣∣n(φ(n−1/2ξ;µ(tn))− 1) + 1 +

ξ2

2

∣∣∣e− ξ2

2 ≤ C1

(
|ξ|
v
1/2
n

)−m

,

for |ξ| ≥ v
1/2
n a−δ

n . Hence we have∫
|ξ|>a−δ

n

|ξ|−1

∣∣∣∣φ(n−1/2ξ;µ(tn))
n − e−

ξ2

2 −
(
n(φ(n−1/2ξ;µ(tn))− 1) +

ξ2

2

)
e−

ξ2

2

∣∣∣∣ dξ
≤ 2C1

∫ v
1/2
n a−δ

n

a−δ
n

|ξ|−m−1v1/2n dξ + 2C1

∫ ∞

v
1/2
n a−δ

n

(
|ξ|
v
1/2
n

)−m−1

dξ

=
4C1

m
amδ
n ≤ 4C1

m
a2n.

Therefore we have Equation (7).

We also see that

R̃1,k(n, s) =
1

2π

∫
R

e−isξ

iξ

(
φ(n−1/2ξ;µ(tn))

n − e−
ξ2

2

)
dξ

=
1

2π

∫
R

e−isξ

iξ
Rn,1+k(ξ)e

−ξ2/2dξ,

R̃2(n, s) =
1

2π

∫
R
|Rn,2(ξ)|e−ξ2/2dξ.

Similarly to Equation (7), we have Equation (8).
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We make some preparations to prove Lemma 1.

Let

R0(n, ξ) = φ(t−1
n ξ, µ(tn))− (1− ξ2

2n
).

First we prove the following.

Proposition 3. There is a constant C > 0 such that for any n ≥ 1, and ξ ∈ R with

|ξ| ≤ a−δ
n ,

|nR0(n, ξ)| ≤ Ca1−2δ
n |ξ|

and

n|φ(n−1/2ξ;µ(tn))− 1| ≤ Ca−δ
n |ξ|.

In particular

sup{|nR0(n, ξ)|; |ξ| ≤ a−δ
n } → 0, n → ∞. (9)

Proof. Similarly to Proposition 9 in [14], we can prove Proposition 3.

Let

R1,k(n, ξ) = (n− k) logφ(t−1
n ξ;µ(tn))− n(φ(n−1/2ξ;µ(tn))− 1), k = 0, 1.

Proposition 4. There is a C > 0 , such that for any ξ ∈ R with |ξ| ≤ a−δ
n ,

|R1,k(n, ξ)| ≤ Cn−1a−3δ
n |ξ|.

In particular

sup{|R1,k(n, ξ)|; |ξ| ≤ a−δ
n } → 0, n → ∞. (10)

Proof. Similarly to Proposition 10 in [14], we can prove Proposition 4.

Let us prove Lemma 1. Note that for k = 0, 1

log(eξ
2/2φ(n−1/2ξ;µ(tn))

n−k) = nR0(n, ξ) +R1,k(n, ξ).

We see that

eξ
2/2φ(n−1/2ξ;µ(tn))

n−k = exp(nR0(n, ξ) +R1,k(n, ξ)).
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Hence we see that

Rn,0(ξ) = eξ
2/2φ(n−1/2ξ;µ(tn))

n − (1 + nR0(n, ξ))

= exp(nR0(n, ξ))− (1 + nR0(n, ξ)) + exp(nR0(n, ξ))(exp(R1,0(n, ξ))− 1)

From Equation (9), we see that there is a C > 0 such that

|Rn,0(ξ)| ≤ C
(
|nR0(n, ξ)|2 + |R1,0(n, ξ)|

)
.

Therefore we have Equation (5) from Proposition 3 and 4. Proof of Equation (6) is

similar to Equation (5).

4 Proof of Theorem 2

Note that

P (
n∑

l=1

Xl > tns) =
n∑

k=0

Ik(n, s),

where

Ik(n, s) = P (
n∑

l=1

Xl > tns,
n∑

l=1

1{Xl>tn} = k), k = 0, 1, . . . , n.

Then we have

Ik(n, s) =

(
n

k

)
P (

n∑
l=1

Xl > tns,Xi > tn, i = 1, . . . , k,Xj ≤ tn, j = k + 1, . . . , n),

for k = 0, 1, . . . , n.

Let F̄n,0(x) = P (X1 > tnx,X1 ≤ tn) = (1 − F̄ (tn))µ(tn)((t
−1
n x,∞)) and F̄n,1(x) =

P (X1 > tnx,X1 > tn). Note that F̄n,0(x) + F̄n,1(x) = F̄ (tnx).

We show estimations on I0(n, s) and I1(n, s). Since the proofs of the estimates are

same as Proposition 11, 12 in [14], we omit the proofs.

Proposition 5. There is a C > 0 such that

|I0(n, s)− (1− n)Φ0(s)−
1

2
Φ2(s)− n

∫
R
F̄n,0(s− x)Φ1(x)dx|

≤ Ca2−5δ
n , n ≥ 1, s ≥ 1.
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Proposition 6. There is a C > 0 such that

|I1(n, s)− n

∫
R
F̄n,1(s− x)Φ1(x)dx| ≤ Ca2−5δ

n , n ≥ 1, s ≥ 1.

Now, let us prove Theorem 2.

From Proposition 5 and 6, we see that there is a C > 0 such that

|I0(n, s) + I1(n, s)− (1− n)Φ0(s)−
1

2
Φ2(s)− n

∫
R
F̄ (tn(s− x))Φ1(x)dx|

≤ Ca2−5δ
n .

Note that ∫
R
F̄ (tn(s− x))Φ1(x)dx− Φ0(s)

=

∫ s

−∞
F̄ (tn(s− x))Φ1(x)dx+

∫ ∞

s

(F̄ (tn(s− x))− 1{x>s})Φ1(x)dx

=

∫ s

−∞
F̄ (tn(s− x))Φ1(x)dx−

∫ ∞

s

F (tn(s− x))Φ1(x)dx

and

n

∫ ∞

s

F ((tn(s− x))Φ1(x)dx = nt−1
n

∫ 0

−∞
F (y)Φ1(s− t−1

n y)dy.

Let R(s, y) = Φ1(s − y) − Φ1(s) − Φ2(s)y, for s > 0 and y ≤ 0 , then we see that

there is a C1 > 0 such that

|R(s, y)| ≤ C1|y|1+δ0 .

Hence we have

n|
∫ ∞

s

F (tn(s− x))Φ1(x)dx−
2∑

k=1

t−k
n Φk(s)

∫ 0

−∞
yk−1F (y)dy|

= nt−1
n |

∫ 0

−∞
R(s, t−1

n y)F (y)dy|

≤ C1n
−δ0/2η2(tn)

−(1+δ0)/2

∫ 0

−∞
y1+δ0F (y)dy

≤ Cn−δ0/2,

where C = C1η2(0)
−(1+δ0)/2

∫ 0

−∞ y1+δ0F (y)dy < ∞.
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Since ∫ 0

−∞
F (y)dy =

∫ 0

−∞
yµ(dy) = −

∫ ∞

0

yµ(dy)

and ∫ 0

−∞
yF (y)dy =

1

2

∫ 0

−∞
y2µ(dy) =

η2(tn)

2
− 1

2

∫ tn

0

y2µ(dy),

we see that

1

2
Φ2(s)− nt−2

n Φ2(s)

∫ 0

−∞
yF (y)dy =

Φ2(s)

2
η2(tn)

−1

∫ tn

0

y2µ(dy).

Therefore we have

|(1− n)Φ0(s) +
1

2
Φ2(s) + n

∫
R
F̄ (tn(s− x))Φ1(x)dx−H(n, s)|

≤ Cn−δ0/2.

We also see that
n∑

k=2

Ik(n, s) ≤
n∑

k=2

n(n− 1)

k(k − 1)

(
n− 2

k − 2

)
F̄ (tn)

k(1− F̄ (tn))
n−k ≤ n(n− 1)

2
F̄ (tn)

2 = a2n.

This completes the proof of Theorem 2.

5 Proof of Theorem 1

Recall that tn = sup{t > 0;nη2(t) > t2} ,vn = η2(tn) and an = L(tn)
vn

. Let vn(t) = η2(tnt)

for t > 0.

Let

F̂n(s) =

∫ s

−∞
F̄ (tn(s− x))Φ1(x)dx,

A(n, s) = nF̂n(s)− v−1/2
n n1/2Φ1(s)

∫ ∞

0

xµ(dx)− v−1
n

2
Φ2(s)

∫ tn

0

x2µ(dx),

= nF̂n(s)− v−1/2
n n1/2Φ1(s)

∫ ∞

0

F̄ (x)dx− v−1
n Φ2(s)

(∫ tn

0

xF̄ (x)dx− L(tn)

2

)
,

H(n, s) = Φ0(s) + A(n, s),

and

H0(n, s) = Φ0(s) + nF̄ (tns).

Similarly to Lemma 2 in [14], we can prove the following.
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Lemma 2.

sup
s∈[1,∞)

∣∣∣∣ H(n, s)

H0(n, s)
− 1

∣∣∣∣ → 0, n → ∞.

We also prove the following.

Lemma 3. For any β > 0 and δ ∈ (0, 1), there is a C > 0 such that we have

sup
s>a−β

n

|P (
∑n

k=1Xk > tns)

H(n, s)
− 1| ≤ Ca1−δ

n .

We make some preparations to prove Lemma 3. Similarly to Proposition 26 in [7],

we can prove the following.

Proposition 7. (1) For any t, s > 0, and n ≥ 2,

P (
n∑

k=2

Xk1{Xk≤tn1/2} > sn
1
2 ) ≤ exp(

3

t2
E[X2

11{X1≤tn1/2}]−
s

t
).

(2) For any s, t > 0, ε ∈ (0, 1) with t < (1− ε)s,

|P (
n∑

k=1

Xk > sn
1
2 )− nP (X1 +

n∑
k=2

Xk1{Xk≤tn1/2} > sn
1
2 ,

n∑
k=2

Xk1{Xk≤tn1/2} ≤ εsn
1
2 )|

≤ 2n(n− 1)F̄ (tn
1
2 )2 + exp(

3

t2
E[X2

11{X1≤tn1/2}]−
s

t
) + nF̄ (tn

1
2 ) exp(

3

t2
E[X2

11{X1≤tn1/2}]−
εs

2t
).

Proof. We prove this proposition briefly. We see that

P (
n∑

k=2

Xk1{Xk≤tn1/2} > sn1/2) ≤ exp(−s

t
)E[exp(

1

tn1/2

n∑
k=2

Xk1{Xk≤tn1/2})]

≤ exp(−s

t
)E[exp(

1

tn1/2
X11{X1≤tn1/2})]

n−1.

It is easy to see that ex ≤ 1 + x+ x2(1 ∨ ex) for any x ∈ R. So we have

E[exp(
1

tn1/2
X11{X1≤tn1/2})] ≤ 1 +

1

tn1/2
E[X11{X1≤tn1/2}] +

1

t2n
E[X2

11{X1≤tn1/2}] exp(1)

≤ 1− 1

tn1/2
E[X11{X1>tn1/2}] +

3

t2n
E[X2

11{X1≤tn1/2}]

≤ 1 +
3

t2n
E[X2

11{X1≤tn1/2}].
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Since log(1 + x) ≤ x for x > 0, we see that

(n− 1) logE[exp(
1

tn1/2
X11{X1≤tn1/2})] ≤

3

t2
E[X2

11{X1≤tn1/2}].

Hence we have the assertion (1).

Note that

P (
n∑

k=1

Xk > sn1/2) =
n∑

m=0

Im,

where

Im = P (
n∑

k=1

Xk > sn1/2,
n∑

k=1

1{Xk>tn1/2} = m), m = 0, 1, . . . , n.

Then we have

Im =

(
n

m

)
P (

n∑
k=1

Xk > sn1/2, Xi > tn1/2, i = 1, . . . ,m, Xj ≤ tn1/2, j = m+ 1, . . . , n),

for m = 0, 1, . . . , n. We can easily see that

n∑
m=2

Im ≤ n(n− 1)

2
F̄ (tn1/2)2. (11)

From (1), we have

I0 ≤ exp(
3

t2
E[X2

11{X1≤tn1/2}]−
s

t
). (12)

Let A1 = {X1 > tn1/2}, A2 = {Xk ≤ tn1/2, k = 2, 3, . . . , n},
B1 = {X1 +

∑n
k=2 Xk1{Xk≤tn1/2} > sn1/2} and B2 = {

∑n
k=2 Xk1{Xk≤tn1/2} ≤ εsn1/2}.

Note that B1 ∩B2 ⊂ A1, since t < (1− ε)s. So we see that

|P (B1 ∩ A1 ∩ A2)− P (B1 ∩B2)|

≤ P (B1 ∩Bc
2 ∩ A1 ∩ A2) + P (B1 ∩B2 ∩ A1 ∩ Ac

2)

≤ P (A1)P (Bc
2) + P (A1)P (Ac

2). (13)

Note that

P (Ac
2) ≤

n∑
k=2

P (Xk > tn1/2) = (n− 1)F̄ (tn1/2).

Also, by the assertion (1) we have

P (Bc
2) ≤ exp(

3

t2
E[X2

11{X1≤tn1/2}]−
εs

2t
).

Since I1 = nP (B1 ∩ A1 ∩ A2), we have the assertion (2) from Equations (11), (12) and

(13). This completes the proof.
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We apply for Proposition 7 with v
1/2
n s, v

1/2
n t. Then we have

P (
n∑

k=2

Xk1{Xk≤tnt} > stn) ≤ 2 exp(
3vn(t)

t2vn
− s

t
) (14)

and

|P (
n∑

k=1

Xk > stn)− nP (X1 +
n∑

k=2

Xk1{Xk≤tnt} > stn,

n∑
k=2

Xk1{Xk≤tnt} ≤ εtns)|

≤ 2n(n− 1)F̄ (tnt)
2 + exp(

3η2(tnt)

t2η2(tn)
− s

t
) + 2nF̄ (tnt) exp(

6η2(tnt)

t2η2(tn)
− εs

2t
). (15)

Since η2(t) is slowly varying, we see that there is a C > 0 such that η2(tnt)/η2(tn) ≤ Ct

for t ≥ 1. So we have

|P (
n∑

k=1

Xk > stn)− nP (X1 +
n∑

k=2

Xk1{Xk≤tnt} > stn,
n∑

k=2

Xk1{Xk≤tnt} ≤ εtns)|

≤ 2n(n− 1)F̄ (tnt)
2 + exp(

3C

t
− s

t
)

+2nF̄ (tnt) exp(
3C

t
− εs

2t
). (16)

Also we prove the following for the proof of Lemma 3.

Proposition 8. For any γ, δ, ε ∈ (0, 1) and β > 0, there is a C > 0 such that

|P (X1 +
n∑

k=2

Xk1{Xk≤sγtn} > stn,
n∑

k=2

Xk1{Xk≤sγtn} ≤ εstn)

−
∫ εs

−∞
F̄ (tn(s− x))Φ1(x)dx|

≤ CF̄ ((1− ε)n1/2s)a1−4δ
n , for s > a−β

n .

Proof. We can prove Proposition 8 similarly to Proposition 20 in [14].
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Now let us prove Lemma 3. Since

H(n, s)− n

∫ εs

−∞
F̄ (tn(s− x))Φ1(x)dx

= Φ0(s)− n

∫ s

εs

F̄ (tn(s− x))Φ1(x)dx

+v−1/2
n n1/2Φ1(s)

∫ ∞

0

xµ(dx) + v−1
n

Φ2(s)

2

∫ tn

0

x2µ(dx)

= Φ0(s)− v−1/2
n n1/2η1((1− ε)tns)Φ1(s) + v−1

n

Φ2(s)

2

∫ tn

(1−ε)tns

x2µ(dx)

−v−1/2
n n1/2(

∫ (1−ε)tns

0

F̄ (z)(Φ1(s− t−1
n z)− Φ1(s)− t−1

n zΦ2(s))dz)

−v−1
n

L((1− ε)tns)

(1− ε)s
Φ1(s)− v−1

n L((1− ε)tns)Φ2(s)

= Φ0(s)− v−1/2
n n1/2η1((1− ε)tns)Φ1(s) + v−1

n

Φ2(s)

2

∫ tn

(1−ε)tns

x2µ(dx)

−v−1/2
n n1/2(

∫ (1−ε)tns

0

F̄ (z)(Φ1(s− t−1
n z)− Φ1(s)− t−1

n zΦ2(s))dz)

−η2((1− ε)stn)

(1− ε)sη2(tn)

L((1− ε)stn)

η2((1− ε)stn)
Φ1(s)−

η2((1− ε)stn)

η2(tn)

L((1− ε)stn)

η2((1− ε)stn)
Φ2(s),

it is easy to see that there is a C1 > 0 such that for s ≥ 1

|H(n, s)− n

∫ εs

−∞
F̄ (tn(s− x))Φ1(x)dx| ≤ C1s

3Φ1(εs).

Combining Equation (13) and Proposition 8, we see that there is a C1, C2 > 0 such that

|P (
n∑

k=1

Xk > stn)− n

∫ εs

−∞
F̄ (tn(s− x))Φ1(x)dx|

≤ 2n(n− 1)F̄ (sγtn)
2 + exp(

3C1

sγ
− s

sγ
) + nF̄ (sγtn) exp(

3C1

sγ
− εs

2sγ
)

+C2nF̄ ((1− ε)tns)a
1−δ
n .

Hence we see that there is a C > 0 such that

sup
s>a−β

n

(nF̄ (tns))
−1|P (

n∑
k=1

Xk > stn)−H(n, s)| ≤ Ca1−δ
n .

Therefore by Lamma 2, we have our assertion.

Now let us prove Theorem 1. From Theorem 2, we see that there is a C1 > 0 such

that

|P (
n∑

k=1

Xk > stn)−H(n, s)| ≤ C1a
2−δ/2
n , s ≥ 1.
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Note that for any ε > 0, there is a C2 > 0 such that nF̄ (tns) ≥ C−1
2 s−3an ≥

C−1
2 a

1+δ/2
n for s ≤ a

−δ/6
n . Hence by Lemma 2, we see that there is a C3 > 0 such that

H(n, s)−1 ≤ C3(nF̄ (tns))
−1 ≤ C2C3a

−1−δ/2
n , s ≤ a−δ/6

n .

So we have

sup
s≤a

−δ/6
n

|P (
∑n

k=1Xk > stn)

H(n, s)
− 1| ≤ C1C2C3a

1−δ
n .

From this inequality and Lemma 3, we have Equation (1). The latter assertion is

obvious from Equation (1) and Lemma 2.
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