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ON FATOU-JULIA DECOMPOSITIONS
TARO ASUKE

ABSTRACT. We propose a Fatou-Julia decomposition for holomorphic pseudo-
semigroups. It will be shown that the limit sets of finitely generated Kleinian
groups, the Julia sets of mapping iterations and Julia sets of complex codimension-
one regular foliations can be seen as particular cases of the decomposition. The
decomposition is also applied in order to introduce a Fatou-Julia decomposition
for singular holomorphic foliations. In the well-studied cases, the decomposition
behaves as expected.

INTRODUCTION

Iterations of rational mappings and actions of finitely generated Kleinian groups
are typical dynamical systems @#P*. The notion of the Julia sets [14], [15] and
the limit sets [13] are significant in their study. Sullivan’s dictionary [17] says that
they are in a close correspondence. More generally, the Julia sets are defined also
for actions of semigroups generated by rational map&®h(cf. [9], [18]). These
complex dynamical systems are one-dimensional and on closed manifolds. Trans-
versely holomorphic foliations of complex codimension one yield dynamical sys-
tems of a similar kind. Indeed, the holonomy pseudogroups of such foliations act
on one-dimensional complex manifolds. If foliations are given on closed mani-
folds, then the holonomy pseudogroups have certain compactness called ‘compact
generation’. The notion of the Julia sets is also known for complex codimension-
one transversely holomorphic foliations of closed manifolds [6], [8], [1]. One of the
aims of this article is to give a unified definition of these Julia sets and limit sets. For
this purpose, we will introduce a notion of compactly generated pseudosemigroups
and a Fatou-Julia decomposition for them.

The Julia sets are also defined for entire map<Conin addition, if we con-
sider transversely holomorphic foliations of open manifolds, or the regular parts of
singular holomorphic foliations, then their holonomy pseudogroups are no longer
compactly generated in general. We will introduce a Fatou-Julia decomposition also
for non-compactly generated pseudosemigroups, which coincides with the classical
one if iterations of entire maps dd are considered. The correspondence between
typical dynamical systems and pseudo(semi)groups will be as follows.
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In the first section, we will introduce pseudosemigroups (psg for short), which
have appeared in a slightly different way, e.g. in [11], [12], [21]. In the second
section, a Fatou-Julia decomposition of psg’s and pseudogroups are defined and
some fundamental properties are shown. Although pseudogroups generate psg’s,
decompositions for psg’s and pseudogroups do not coincide in general. In the third
section, compactly generated psg’s are introduced. They are a version of compactly
generated pseudogroups [8]. In the fourth section, Fatou-Julia decompositions of
compactly generated psg’s are discussed. It will be shown that Julia sets of com-
pactly generated pseudogroups as psg’s and the ones as pseudogroups coincide. It
will be also shown that we can find Hermitian metrics adapted to actions of psg’s
on Fatou sets. In the last section, we will study Fatou-Julia decompositions for
one-dimensional singular foliations.

The author expresses gratitude to members of Dosemi, Saturday seminar held at
Tokyo Institute of Technology, for helpful comments.

1. PSEUDOSEMIGROUPS

In order to compare Julia sets for pseudogroups with the Julia sets for mapping
iterations, it is convenient to introduce a generalization of pseudogroups.

Definition 1.1. Let T andSbe topological spaces. lcal continuous map from T
to Sis a continuous map from an open seffahto S. A local continuous map from
T to T is also called a local continuous map ®n If f is a local continuous map
from T to S then thedomainand therangeof f is denoted by dom and rangéd,
respectively. IV is an open subset of dofmthen the restriction of toV is denoted
by f|v. Let f be a local continuous map fromto S.

1) If f isa homeomorphism (resp. diffeomorphism) from diota rangef, then
f is called docal homeomorphisrresp.local diffeomorphism
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2) If T is equipped with a complex structure and ifs holomorphic, therf is
called alocal holomorphic maplf moreoverf is a diffeomorphism, therh
is called docal biholomorphic diffeomorphism

3) Letf be alocal map. Suppose thakiE domf, then there is a neighborhood
U of x such thatf|y is a homeomorphism to the image. Thehnis said
to beétale

4) If f is a ramified covering from dormnto rangef, thenf is called alocal
ramified covering

5) Assume thaf is a local holomorphic map ofi. Theset of singularitieof
f is denoted by Sing, namely, Sing = {ze U | f'(z) = 0}.

6) The germ of a local mappinfjat a pointx € domf is denoted byfy.

Definition 1.2. Let T be a topological space amdbe a family of local continuous
mappings onl. Then, Il is a pseudosemigroufpsg for short) if the following
conditions are satisfied.

1) idy € I', where id- denotes the identity map 0f.

2) If ye I, theny|y € I for any open subsét of domy.

3) If yi, o € I and rangey C domys, theny oy €.

4) LetU be an open subset df andy a local continuous mapping defined on
U. If for eachx € U, there is an open neighborhood, 43y of x such that
ylu, belongs ta™, theny e I.

If in addition I" consists of local homeomorphisms, thens a pseudogroupf I
satisfies 1), 2), 3) and the following conditions.

4’) Let U be an open subset df andy a homeomorphism frord to y(U). If
for eachx € U, there is an open neighborhood, day of x such thaty|y,
belongs td™, thenye I'.

5) Ifyerl,thenyterl.
If I" is either a psg or pseudogroup, then we sekferT

Ix = {%|x € domy}.

By abuse of notation, an element/gfis considered as an element/ofdefined on
a neighborhood af.

The terminology ‘pseudosemigroup’ has appeared in a slightly different way,
e.g.in[12], [21], [11].

Definition 1.3. Let T be a topological space arté a set which consists of local
continuous mappings of. The psggenerated by Gs the smallest psg which
containsG, and denoted byG). If I is a pseudogroup, then we dendggythe psg
generated by . If there is a finite number of elements, shy..., f;, of " such that
= (f1,..., fr), thenl" is said to bdinitely generated

In what follows, then-th iteration of a mappind, if defined, is denoted by",
wheren € Z. If n= 0, thenf®is considered as the identity map.
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Remarkl.4. One of differences between pseudo(semi)groups and (semi)groups is
illustrated as follows. Lef be a rational mapping o8P! andl” the psg generated

by f. LetU =V ={zeC| |z <1+¢c}and¢(z) =1/z Ifwe setUp=Vp = {z€
C|1/(1+¢) < |7l < 1+ ¢} and identifyUp andVp by ¢, then the resulting space is
CPL. LetT be the disjoint union o) andV. Then,I", ¢ and¢ ! generate a psg

I" which acts oriT. LetW be a small open subset 0f such thatf (W) c T and
f2(p(W)) CT. By the condition 4), the mappirgionW U ¢ (W) such thag|w = f
andg|yw) = = f2 belongs to. The psgl” is obtained from™, indeed (I’ T)is
equivalent to(I",CP') (see Definition 1.20). Howeveg cannot be realized as a
single element of althoughw and¢ (W) correspond to the same region R,

Remarkl1.5. Let (I",T) be a pseudogroup. Suppose tbats an open subset of
T and thaty is a mapping defined od. If the restriction ofy to a neighborhood
of x belongs tol" for eachx € U, then it is always true thag € [ysgbuty € I

if and only if y is a homeomorphism. Lel € R\ Q and definey: CP* — CP?
by y(z) = €™ ~107z where we regar@P! = CU{w}. Let[" be the pseudogroup
generated by, namely, the smallest pseudogroup which contginé we setU =
{ze C||z—1] < €}, wheree is a small positive number, thery € . We set
V ={zeC||z—v-1| < €}. We may assume that NV = &, however, for a
suitable choice of, we havey"(V)NU # @. Lety be the mapping frory ITV to
CPlbyy|u = yandy|v = y"L. Theny ¢ I because/ is not a homeomorphism
buty' € MNsg

Definition 1.6. Let (", T) be a psg. IfT is ag-dimensional, possibly non-connected
manifold and ifl consists of holomorphic mappings, th@n, T) is called aholo-
morphic pseudosemigroup on a g-dimensional complex manifold

Definition 1.7. A pseudosemigroup is said to bettaleif I consists oEtale map-
pings. A holomorphic pseudosemigrolipn a one-dimensional complex manifold
is said to beamifiedif I" is generated by local ramified coverings and holomorphic
étale mappings.

Note thatl” consists of open mappingslifis étale or ramified.

Although we are interested in holomorphic pseudosemigroups on complex mani-
folds, we will discuss some more fundamental definitions and properties of psg’s.
Many of them are borrowed from those of pseudogroups which can be found in
[7, 88 1-2].

Definition 1.8. We denote by ;* the subset of which consists of invertible elem-
ents, namely,

r={yer|yter}.
We denote by * the subset of” which consists of locally invertible elements,
namely,

=(yer|yter)={y.



ON FATOU-JULIA DECOMPOSITIONS 5

Note that/;* is a pseudogroup, arfd* is anétale pseudosemigroup.

Definition 1.9. Let (I, T) be a psg. IiX C T, then we set
F(X)={yeT|3IxeX, yerl sty=yX)},
r=x)=Jy ).

yel
A subsetX of T is said to beforward invariantif I (X) = X, backward invariant
if F=1(X). If X is forward and backward invariant, th&nis said to becompletely
invariantor " -invariant

Definition 1.10. A subsetX of T is said to be -connectedf X satisfies the fol-
lowing condition: if X =[], .5 X, is the decomposition oX into its connected
components, then for any,A’ € A, there exists a sequendg=A,A1,..., A, = A’
such that (X, ) "X, 1 # @ holds fori =0,...,r — 1.

Remarkl.11 T is I -connected if and only if \T is connected with the quotient
topology. If X C T, then\X C I'\T is connected ifX is I"-connected. The
converse also holds X is I -invariant, and is not always true everfifis a pseudo-
group. Indeed, leT = T, 11Ty, whereT; = T, = R, and equipl with the natural
topology. Letl be the pseudogroup generatedynyT; — T, given by y(X) = X,
Xy = (—0,0] C Ty, Xp = (0,0) C T, andX = X3 UXp. ThenX is not/ -connected
butr\X =r\T =R.

If (I, T) is the holonomy pseudogroup of a foliation, therconnected compo-
nents offl" -invariant sets correspond to connected components of saturated sets.
The notions of morphisms and equivalences are given as follows.

Definition 1.12. Let (I",T) and(A,S) be psg’s. Amorphism®: I — A is a col-
lection® of local continuous mappings frofhto Swith the following properties.
i) {domg|@ € P} is an open covering oF.
i) If @ € ®, then any restriction of to an open set of dopalso belongs ta.
iii) Let U be an open subset ®fandg a continuous map frotd to S. If for any
x € U, there exists an open neighborhddgof x such thatp|y, € ®, then
Qe
V) If pe ®,yel *andd € A, thendogoyc @,
V) Suppose thay € I' andx € domy. If x € domg andy(x) € dom¢g/, where
@, ¢ € d, then there is an elemedte A such thatp(x) € domd, anddo g =
¢ o yon a neighborhood of.

A morphism from(I", T) to itself is called arendomorphisnof (I, T).

The properties ii) and iii) are sometimes referred as the ‘maximality’.
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Definition 1.13 (cf. Definition 1.9) Let ®: (I, T) — (A,S) be a morphism. If
X C T andY C § then we set

P(X) ={seS|Ixe X, JpcPs.t.s=@(X)},

oY) ={J o H(Y).
PED

Definition 1.14. Let (", T) and(A,S) be psg’s andp a morphism fronT™ to A.

1) @ is called arétale morphisnif ® consists oktale mappings.

2) If I andA are holomorphic psg’s, and # consists of holomorphic map-
pings, thend is said to beholomorphic

3) Suppose that andA are psg’s on complex one-dimensional manifolds. A
holomorphic morphism is said to bamifiedif ¢ € ® andx € domg, then
there exists an open neighborhddgof x such thatp|y, is the restriction of
the composite of ramified coverings and holomorgtale mappings.

In what follows, we will consider only holomorphic morphisms if holomorphic
psg’s are considered.

Definition 1.15. Let (I",T) and(A,S) be pseudogroups. A collectiah of local
homeomorphisms front to Sis anétale morphism of pseudogroupsdf satis-
fies the conditions in Definition 1.12 but ‘a continuous map fidno S in iii) is

replaced by ‘a local homeomorphism froho S.

Definition 1.15 is equivalent to the usual definition of morphisms of pseudo-
groups [7, 1.4].

Definition 1.16. Let { f) },ca be a family of local continuous mappings fromto
S. Suppose thatdomf, }, c is an open covering of and that ify € I', x € domy,

x € domf, andy(x) € domf,, whereA,u € A, then there is & € A such that
fyoy= 0o f) onaneighborhood of. Then, themorphism generated Byf, }

is by definition the smallest morphism which contaifig } <A and denoted by
(fAdren. If every f, is étale (resp. holomorphic, ramified), then t#@le (resp.
holomorphic, ramified) morphism generated{fy } 5 is defined in the same way.

Definition 1.17. Let " andA be pseudogroups and ktbe a morphism (resggtale
morphism) of pseudogroups fromto A. We denote byppsgthe morphism (resgitale
morphism) of psg’s fronfpsgto Apsggenerated byb.

If ® is anétale morphism of pseudogroups, thrtonsists of local homeomor-
phisms butbpsg needs not so.

Definition 1.18. Let (I, T) be a pseudosemigroup. Assume that there is a covering
mapp: T — T which satisfies the followingovering property
1) For eachy € I', there is a unique mappingsuch that dory = p~*(domy)
and thatpo y = yo p holds onp~*(domy).
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2) If yi,yo €T, thenjpoyi = Pro 1.

3) If U is an open subset df, thenidy = idp-1u)-
The psgf generated byy} < together with the morphism generatedibig called
the coveringof I associated wittp. If pis a Galois covering with Galois group
G and the action commutes with, then(I", T) and p are calledGalois covering
with Galois group G If (I, T) is a holomorphic psg, then we always assume that
(f,f) andp are holomorphic. If in additiof/, T) is a holomorphic psg on a one-
dimensional complex manifold, then we allgnto be a ramified covering. In this
case we cal{f 7'?) with the morphism generated lpy/a ramified covering

Note that the morphism generated jpjs anétale or a ramified morphism.

Definition 1.19. If ®1: I — > and®,: [, — 3 are morphisms of pseudosemi-
groups, then theompositeb, o @1 is defined by

Dro®P; = (@o@ | € Py, @ € Py, rangep, C domey).

Definition 1.20. An étale morphisn®: I — A is anequivalencéf there is arétale
morphismW¥: A — I suchthatbo® =T~ and®oW¥Y = A*. Such &¥ is unique so
that it is denoted byp~1. We calld~! theinverse morphisrof ®. An equivalence
from (", T) to itself is calledautomorphism

If ®; and®, are equivalences, theby, o @1 is also an equivalence.

Example 1.21.Let f be an endomorphism @P! andg an automorphism of PL.
Theng naturally induces an equivalence frdif) to (o f o @™ 1).

Remarkl.22 If (I',T) is a psg, then the identity map dngenerates a morphism
which is equal td™ *. In fact,l" * is an automorphism gf”, T). On the other hand,
" is an endomorphism off,T) if and only if T =" *. Indeed, if{ € I, then
applying the condition v) tap = ¢, ¢’ = y = idt, we see that for anx € dom(,
there exists an open neighborhddaf x andd € I" such thatd o { =idy holds. If
we setp = 9, ¢’ = y=idr, then there exists an open neighborh¥bdf {(x) and
0’ €I such tha®’ o d =idy. It follows thatd’ = &' oidy = &' 0 (80 ) = { holds
on a neighborhood of. Therefore € I *.

Lemma 1.23. An étale morphisni is an equivalence if and only if

Y’ = {etale maps from S to T which are locally of the fapm® for somep € d}

is a morphism. Indeed’ = o1,

Proof. Suppose thab is an equivalence and |8t be as in Definition 1.20. 1§y € W
andx € domy, then there is an elemegt € ® such thaty/(x) € domg. Since
®oW =A%, there is an elemerdt € A* such thatpo ¢y = é on a neighborhood of

X. We may assume thagt andd are local homeomorphisms by restriction. Since
@ is a morphism{(d) 1o @ € ®. Therefore, € ¥'. Conversely, ify ¢ W' and
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y € domy/, theny/ = @1 holds on a neighborhood gf whereg € ®. Let € ¥
such thaty € domy. SinceWo ® =T *, we may assume thato ¢ = y for some
y e r*. Hencey’ = ¢~1 =y 1oy holds on a neighborhood gf Since¥ is a
morphism, this implies thap’ € W. It is easy to see th&’ = ! holds if ¥ is a
morphism. O

If we work on pseudogroups, we hade ! = {¢~1|p € ®}. Indeed, arétale

morphism® of pseudogroups is said to be an equivalenciypif!| @ € ®} is an
étale morphism of pseudogroups [7].

2. FATOU-JULIA DECOMPOSITION OF PSEUDOSEMIGROUPS
We pose the following assumption in this section.

Assumption 2.1. (I, T) is a holomorphicétale psg on a g-dimensional complex
manifold. If g= 1, then we allow™ to be ramified.

Note thatl” consists of open mappings under the above assumption.

Definition 2.2. Let (I, T) be a psg. IfT’ C T be a relatively compact subset, then
we denote by7/ the restriction of” to T/, that is

[t ={yerl |domyc T"and rangg C T'}.
We say that an open connected sulidedf T’ has theproperty (WF) orU is a
wF-open sefor short if the following conditions are satisfied:

wF1) IfxeU andny € (I7/)x, then there exists an elemgmif I such that dony =
U andy = nx. We cally anextensiorof ny toU.
wF2) If we set

ry_ {YE |domy =U, andy s an extension of the germ pf

an element of 7, as above
={yer |domy=U andy(U)NT' # o},
then/ VY is a normal family.

We say that an open connected subsetf T’ has theproperty (F) orV is an
F-open setor short if the following conditions are satisfied:

F1) V has the property (wF).

F2) If y e I and dony C V, then rangg is the union of wF-open sets.

Let F*(I7/) be the union of F-open subsets©f andJ*(l7/) the complement of
F*(I7/)inT’. We set
J(H)= U I (),
TeTs
I() =Jo(l),
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where.7 = {T' C T|T'is relatively compagt We callJ(I") the Julia setof I".

The Fatou setof I" is by definition the complement af(I") in T. We call I -
connected componentsBf ") andJ(I" ) Fatou componentandJulia components
respectively. Fatou sets and Julia sets obtained using by the property (wF) instead of
(F) are denoted by adding/, e.g. Fatou sets in this sense are denoted/byl ).

Needless to say that the ‘property (F)’ stands for the ‘property Fatou’. By ‘(WF)’
we mean ‘weak-F’. Note that fl is an F-open set fofl7/,T’) and if y € I/ such
that domy C U, then rangg is the union of F-open sets. To see thisdet 1 such
that dom? C rangey. If we setV = y~1(dom{), thenl o yly € [ and rang€ =
{(y(V)) so that rangé is the union of wF-open sets.

Example 2.3(see also Example 3.6).et f: CP* — CP! be a rational map. If we
denote by(f) the psg generated by thenJ((f)) = J(f), whereJ(f) denotes the
Julia set off in the usual sense. ¢f: C — C is an entire map, then we can regard
as a local holomorphic map defined GR* with domg = C, and(g) as a psg which
acts onCP*. If we denote byd(g) the Julia set ofy in the usual sense, which is a
subset ofC, then we havd((g)) = J(g) U {}.

LetT' € 7. If U is an F-open setift’, thenU is a wF-open set by definition. If
y € I theny(U) is the union of wF-open sets bytU ) itself is not necessarily a
wF-open set.

Example 2.4. Let T = CP! and we defingy,{: CP! — CP! by y(z) = 2, and
{(2) = 2%, wherea > 1 anda ¢ Z. The mapping] is not well-defined orCP?! so
that we regard as local mappings defined on suitable open subsef®bf {0, w0}
and take all branches. Lét be the psg generated lyyand{. Then,F(I") =
CP\ ({0,0} U{|z] = 1}). LetU be a small open disc itP*\ {|z] = 1}. If n

is large enough, thep(U) contains a circle around 0 es. Hence no germ of

at a point iny(U) is the germ of any element éf defined ony(U). However, if

x € y(U), then by choosing a neighborhoodagmall enough, we see that the germ
of any element of  can be extended to an elementaf

Some remarks are in order.

Remark2.5. Let F*(I7/) be the complement &F (/) in T. If we denote byro(I")
the complement adp(I") in T, then we have

Fo(F)= ) F*(F)
T'eT
andF (") is the interior offy(I") (see also Lemma 2.16).

Remark2.6. A related construction for holomorphic correspondences is given in [3].

Remark2.7. Although the difference between the conditions (F) and (wWF) seems
quite large, there are several cases where they are equivalénts enerated by
a pseudogroup, then these conditions are equivalent. They are also equivalent if
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I = (f), wheref is an endomorphism @P* or an entire map oft. We will show
that if ' is compactly generated, then the conditions (F) and (wF) are equivalent
(Proposition 4.5).

Remark2.8. As holomorphic mappings are considered, extensions in wF1) of the
property (WF) are unique. The extensionypis usually denoted by.

Example 2.9.Let Ty, T» andT3 be open unit discs i€ andT = T I To 11 T3. We
denote by; the standard coordinates &n We definey: T1 — T3 by yi(z1) = z'1 and
&t T, — Ta by {i(z) = Z, but dom{; = {|z| < 1/i}, wherei is a positive integer.
Let n: Ty — T, be the identity map, an@ the psg generated b, {j,n}ij>o-
Then,F () = T\ ({0102} UUR o{|z1] = 1/} UU 5{ |22l = 1/i}) andwF(r) =
T\ {02} UUZ{|z| = 1/i}), where @ denotes the origin iff;. Indeed,{ is not
well-defined on a fixed neighborhood of i i is large. Note thal (F(I)) =F(I")
but™ (WF(I)) 2 wk(IM).

Definition 2.10. If (I",T) is a pseudogroup, thé®y(I" ), Jo(I"), F(I") andJ(I") are
defined formally in the same way as in Definition 2.2. Thus obtained Fatou and
Julia sets are denoted Bygo(I" ), Jogo(I), Fpg(l") andJpg(" ), respectively.

Recall thatifl” is a pseudogroup, then the conditions (wF) and (F) are equivalent.
If (I",T) is a pseudogroup, théfg(I") C F(Ipsg). The difference betweefyg(I)
andF (lpsg) occurs in wF1) of Definition 2.2.

Example 2.11(see also Example 4.21)etT = {0< |Z < 1} ¢ C and sey(2) = Z.
Let I be the pseudogroup generatedybgnd its local inverses. Theh(Ipsg) =
Fog(l") = T. On the other hand, I&F be the open unit disc and we regar@s a
local mapping defined oh with domy=T, and let” be the pseudogroup generated
by y and its local inverses. Thé?\(lcpsg) — T\ {0}. On the other han(Epg(f) =g.
Indeed, once an open subkkbf T is fixed, y” is not injective orlJ for largen.

The equalityFpg(I") = F(lpsg) holds if I" is compactly generated. See Propos-
ition 4.11.

Remark2.12 If g > 1, then the Julia sets in Definitions 2.2 and 2.10 are tentative.
We will need the notion of Green functions for a right definition of them, which
we do not discuss in this paper. On the other hand, we can apply Definition 2.2 to
rational mappings fronfP" to CP", and obtain the Fatou set in the usual sense. We
refer to [4] and [20] for dynamics oGP".

In generalfy(") = F(I") does not hold even if is finitely generated.

Example 2.13.LetA= {ze C|1 < |Z] < 2} and define a local mapping on A by

a(2) = Z, if1 <]z <2,
1 Z/2, ifV2<|g <2



ON FATOU-JULIA DECOMPOSITIONS 11

If we setlp = (a), thenJ(lp) = A. We regarda as a local mapping oft. For a
positive integeii, we setT; = C, andT = [[j~; Ti. We definey,{: Ti — Tiy1 by
¥i(z2) = a(z) and(i(z) = 4z Lety and{ be local mappings o such thaty|t. = ¢
and{|t = ¢, respectively. If we sef = (y, (), then we have

Jo(M)NT = D{zecw <|7 <2471,
i=0
J(M)NTi={0}udo(I).

for anyi.

Example 2.14(cf. [1, Example 2.15], see also Theorem 2.1t T, =C, i =
1,2,...,andT = ]_[i°°:1Ti. We defingy : Ti — Tj,1 to be the restriction of the identity
map to{ze C| |z] < 1/i}. Lety be the local diffeomorphism frori to T such
thaty|t, = y. If we denote byl the pseudogroup generated faythenJygo() N

Ti = Urzi{lZ = 1/K} but Jog(I) N'Ti = (Jpgo(I) NTi) U{0}. Note that(l,T) is

not equivalent to the holonomy pseudogroup of the trivial foliation on a foliation
chart. On the other hand, if we s8f=C, S ={zeC| |7 <1/i—1}fori>1
andS=[]~,S, theny is a local diffeomorphism o If we denote byI: the
pseudogroup generated Wtheang(F) =S Indeed,(I:,S) is equivalent to the
holonomy pseudogroup of the trivial foliation on a foliation chart.

The equalityFo(I") = F(I") holds in some important cases. See Theorems 4.1,
5.9 and Corollary 5.8.

Remark2.15 In what follows, we will discuss Fatou and Julia sets of psg’s. How-
ever, the results apply to Fatou and Julia sets of pseudogroups without changes.

The following property is frequently used.

Lemma 2.16.Let (I, T) be a psg, and let{T T, € 7. If Ty C Ty, then F(I7,) D
F*(IT,).

The proof is easy and omitted. Lemma 2.16 implies that it suffices to consider a
sequence T} in 7 such thafl; C Ti,1 and that J? ; T = T when definingdo(I")
andFo(I).

Unlike the classical caseS(I") andJ(I" ) need not be completely invariant.

Example 2.17.Let Ty = T, = CP' =CuU {0} andT =T Ty Letf: T1 —» T1
be such thaff (z2) = v/—1zon C c CP?Y, and let$: T, — Ty be the identity map.
Letg: T, — T, be a rational map such that the classical Julial&g) is the whole
CP!, for example, a Latts map. If we sef” = (f,g,¢), thenF (') = Ty and
J(r) =T,. We havel “Y(F(I")) = T andl ~1(J(I")) = J(I"). On the other hand,
F(F(r)=F)andr (J(r))=T.

Example 2.17 is an example of compactly generated psg’s. See Sections 3 and 4.

In general, we have the following.
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Lemma 2.18. 1) Fy(I") and F(I") are forwardl™ -invariant, and we have { ) =
Nyer (v H(F(M)) U (T \ (domy))).
2) Jo(I) and JI") are backward™ -invariant.
3) Fo(lM), (), F(r)and Xr) arel" *-invariant.

Proof. If U is an F-open set foff7/,T’) and if y € I/ such that dory C U, then
y(U) is the union of F-open sets. Hence we h&ydF*(I7/)) C F*(I7/) for any
T’ € 7. Hencel (Fy(IM)) C Fo(IM). On the other hand, since the local identity maps
belong to, the inclusions are in fact equalities. Siriceonsists of open mappings,
we also have (F(I)) =F(I). If ye I, theny(F (") n(domy)) C F(I"). Hence
F(r)n(domy) c y"X(F(Ir)). Therefore

F(r) = () ((F(r)n(domy))U(T\ (domy)))

yel

c My U(T\ (domy))).
yel
If we sety = idr, theny 1(F(I")) U(T \ (domy)) = F(I") so that the above inclu-
sion is in fact the equality. The part 2) follows from 1). The part 3) is easy. UJ

We have the following.

Theorem 2.19(see also Proposition 4.10)et (I, T) and (A, S) be psg’s.

1) If ®: " — A is either a covering or ramified covering, th@m*(F(4)) c
F(r). If ®isa Galois covering with a finite Galois group, thenl(F(A)) =
F(r).

2) If ®: ' — Ais an equivalence, thed(F (")) =F(4).

Proof. We will show 1), because 2) can be shown by similar argumentsWie¢
an open subset & Then,W is contained irF (A) if and only if W c F*(Ag) for
anyS € ., where.¥ denotes the set of relatively compact subsetS dfote that
the latter condition is equivalentWW NS c F*(Ag) for anyS € ..

Let U be an open subset @~1(F(A)). Assume thatp € ® is defined orlJ
and thatg (U) C F(A). If ¢ € ® andU C domg,, theng(U) C F(A). Indeed,
if xe U, theng = 0o ¢ holds for somed € A on a neighborhood of by v) of
Definition 1.12. Hencep(x) € F(A) by Lemma 2.18.

Letx € @ 1(F(A))NT" and letT/,..., T/ be the connected componentsTdf
SinceT’ is relatively compact, we can find a finite number of elements. . , ¢ of
@ such that{dom@} is an open covering of’ and that eacly is the restriction of
an elementn< of & such that dorm< > domg. Moreover, we may assume that each
(,q< is a local ramified covering with a single singularity, or a local biholomorphic
diffeomorphism. If we se® = Ji_; Uj_1 ¢;(T/ N (domg;)), thenS € .. We may
assume that € domg;. Theng (x) € F(A) NS by the above arguments.

LetU be an open connected neighborhood afhich is contained ifdomey) N
®~1(F(A))NT’. We may assume that if we sét= ¢ (U) thenV is an F-open
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set inF*(Ag). We may further assume thatdfc AV and &(V) Nrangey # 9,
thend(V) C rangep. Letze U andy; € (I1),. If y(2) € domg, then there is
an elemen® € A such thatd o ¢ = @ o y on a neighborhood a. SinceV is an
F-open setd extends to an element df defined orV. Hence(do ), = (@ oY),
As @ is a covering or ramified covering, there exists an elendeot I’ such that
@ol =doq and don =U. If y(z) is not a branching point afi, then{; = y;. If
y(2) is a branching point ofi, then we can find a point which is close enough to
and is not a branching point. We still ha@(o Y)w = (¢@o {)w SO that{y = Y. By
analyticity, we have; = y,. If ¢y is a local biholomorphic diffeomorphism, then for
eachye rv, @(v) oyo cpl‘1 c AV, wherek(y) is determined by as above. Since
the number ofg’s is finite, this implies thar'V is a normal family. Ifq= 1 and
@ is ramified atp € U, thenr Y lu\py is @ normal family. Since elements bt/
are obtained via\V, elements of VY is bounded on a neighborhood pf Hence
Y is a normal family also in this case. Therefttds a wF-open set. Let e I
such that dony C U. If y(x) € domq, then there is an open connected Yébf
domy such thak e U’, y(U’) C domg, and that there is an elemehbf A such that
do@ =@oyholdsonJ’. Sinced(@ (U’)) =aq(y(U’)) C S, d € Ag and@(y(U’))

is the union of F-open sets. Leke y(U’) andn; € (I1/)z. If n(z) € domg, then
there is an element € Ag such that(po @), = (@on)z Since@(y(U’)) is the
union of F-open sets, we may assume by shrinkiighat u is well-defined on
@(y(U") as an element ofA. Moreover (@ (y(U’))) C rangeg by the choice
of V, because we have(@(y(U’))) = u(d(@(U’))) C pod(V). Now sinced
is a (ramified) covering, there is an eleménof I such thatuo @ = @o ¢ with
dom¢ = y(U’). We have(go ), = (o n)z By similar arguments as above,
we can verify that{, = 1, and that™ YY" is a normal family. Hence/(U’) is a
wF-open set so thal is an F-open set. Suppose tldais a Galois covering with
a finite Galois group. Let) c Fo(I") and assume thad|; is @ homeomorphism.
We setU = p(U), wherep is the projection which generat@s Letx € U and
S € .7 such thaix € S. If we setT’ = p~1(S), thenT’ € .7 because is a finite
covering. LeX € U such thaip(X) = x andU’ an F-open set fof, which contains
X. We setl’ = p(U"). If y e U’ andd, € (Ag)y, then there is & < (1/)y such that
(poy)y=(00p)y, wherey € T’ such thaip(y) =y. Then,; extends to an element
of I defined orJ’. If ze U’, then(po y); = (&' o p), holds for som&’ € Ag, where
7 the unique element df’ such thatp(Z) = z. Sincep is a homeomorphism, we
haved’ = poyo p~t on a neighborhood af Hencepoyo p~! belongs taA, and
its domain isJ’. As V" is a normal faminAU’ is also. Henc&)' is a wF-open set
for Ag. Letd € Ag such that dond c U’. We selV = domd andV = p~(V) nu’.
Then, there is an elememte " such thatpo y = d o p becauseb is a covering.
Moreover,y € 7/ by the definition ofT’. As y(\7) is the union of wF-open sets,
o(V) is also the union of wF-open sets. Heltds an F-open set fatg. Therefore
U is the union of F-open sets fdrg, andU C Fy(A). O
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Example 2.20.We definef : CP! — CP! by f(z) = 2. LetI" be the psg generated
by f and its local inverses ofiP*\ {0, 0}, thenF (I") = CP*\ ({0,0} U{|Z| = 1}).
We definef: C — C by f( z) = 2z, and let” the psg onC generated byf and
f~1. ThenF () = C\ {0}. Let p: C — C\ {0} be the exponential map. Then
is a morphism fron(I",C) to (I",CP!), and a covering morphism froifi ,C) to
(r’,C\ {0}), wherel"" denotes the restriction df to C\ {0}. We haveF (') =

F(r)andp X(F(I'")) =C\vV=1IR C F(I).

Example 2.21.1) of Theorem 2.19 does not always hold if we simply assume that
@ is a morphism. Lefly =T, =C andT = T;1IT,. We definey;: T1 — To by

v1(z) = z. Let y» be the restriction ofs to the unit disc inT;. Then, we have
F((y)) =T andF ({y)) =T\ {z€ T1| |7 = 1}. The identity map ofl induces a
morphisma®: ((y2),T) = ((y1), T) but®~*(F({y1)) 2 F((12)).

In the next section, we will introduce the notion of compactly generated psg’s.
Here we present two examples of non-compactly generated psg’s in advance. Fatou-
Julia decompositions of these psg’s are examined under a tentative definition in
[1]. The decompositions are as follows under Definition 2.2. Note that these psg’s
are generated by pseudogroups so that the conditions (wF) and (F) are equivalent.
Results are the same as in [1] but we proceed by correcting typographic errors.

Example 2.22([1, Examples 8.8 and 8.9] et y: C — C be the mapping given
by y(z) = 2z, and(y) the group generated by LetT = (C\ {0})/(y) andS=
{ze C| |7 < 1+ ¢}, wheree is a small positive real number. L& be a subset
of Sdefined by0' = {ze C|1< |z <1+ ¢}, and letn: O’ — T be the mapping
induced by the inclusion o®' into C. We defineé: T — T by &é(2) = 22, and
let I' be the pseudogroup generateddwndn which acts onl; = TIIS. Then
J(Mpsg) = TIIO/, whereO’ denotes the closure @ in S(J(Mpsg) is Written in [1] as
Ty inerror). Although™ andlysgare not compactly generated, we hayglm ) =

Example 2.23([1, Example 8.10]) Let D5, (0) be the open disc of radius-5
€ centered at 0 and I€f = T, 11T, whereT; = T, = Ds,(0). We denote the
natural coordinates af; andT, by zandw, respectively. Lef” be the pseudogroup
generated byp, y1 andys defined as follows. First set

S={zeT|25/(5+¢)< |7 <5+¢€},i=12
and defingp: S — S by y(2) = 25/z Second, let
U ={re¥ TeTyl<r<2 |t| <5},

whered is chosen so small tha4: U; — Ty defined byy (z) = Z is a diffeomor-
phism onto its image. Finally set

Vi={reV et |2<r <4, |t| <3}

and defings: Uy — Vp by y»(2) = 2z. The action of” is essentially org;, andS,
andyp is added in order to be able to consider thas acting onCP?.
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The pseudogroup is not compactly generated. If we set
lh={e& V1<t <4), fork=0,1,...
A ={2/27e/ S)i=0,....2 |9 <2718}, forl =0,1,...,
(the definitions ol andA; are incorrect in [1]) then

J(lpsg) = Jpg() = [1,4]U D kU 0 A
k=0 =1

Adding an irrational rotation té' as a generator, one can obtain a pseudogfeup
such thatl((I)psg) = Jog(l11) = {z€ T1|1 < |z] < 4}. The pseudogroufy, is not
compactly generated, either.

In general, it is almost impossible to tell if a given pointlobelongs td=(I") or
not. As in the classical cases¢ T belongs tal(I") if, for example,
1) there existy € I" such thaty(x) = x and|y/|, > 1 (repelling fixed point),
2) there there existg € I" such thaty(x) = x and|y’/| = 1 buty¥ # id for any
positive integek (parabolic or irrationally indifferent).

The dynamics o (I') is expected to be tame. We will later show thdT = I *,
thenF (I") admits a -invariant Hermitian metric which is locally Lipschitz continu-
ous (Theorem 4.20). I is compactly generated, th&r/" ) admits a semi-invariant
metric which is locally Lipschitz continuous (Proposition 4.19 and Theorem 4.17).

3. COMPACTLY GENERATED PSEUDOSEMIGROUPS
The notion of compactly generated pseudogroups [8] is also valid for pseudogroups.

Definition 3.1. A pseudosemigroufl™, T) is compactly generateifithere is a rela-
tively compact open s@’ in T, and a finite collection of elemen{s, ...,y } of I
of which the domains and the ranges are containdd such that

1) {y,..., %} generate$t,, wherelt is the restriction of” to T/,

2) for eachy, there exists an elemenpt of " such that dory contains the
closure of dony;, ¥|domy = ¥ and thaty; is étale on a neighborhood of
domy; \ domy,

3) the inclusion ofl’ into T induces an equivalence frofp: to I .

(I, T') is called areductionof (I, T).
A reduction of(I",T) is also denoted byr’, T”).

Remark3.2 If I is a compactly generated psg on a one-dimensional complex mani-
fold, thenl” is étale or ramified. In addition, the last condition in 2) is equivalent to
Singy; = Singy;.

Remark3.3. If pseudogroups are considered, then the condition 3) can be replaced
with a much weaker condition that meets every orbit of .
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Lemma 3.4.1f (', T’) is a reduction of I, T), thenl" *x meets Tfor any xe T.

Proof. Let @ be the morphism front/"’,T’) to (I, T) generated by the inclusion,
which is an equivalence. Thé#h= ®~1is an equivalence froffT", T) to (I, T'). If

X € T, then there is an elemegite W defined on a neighborhood wandy (x) € T'.
We may assume that is a diffeomorphism ang/—! € ®. Since® is a morphism,
there are elemenis{ € I such thatyo y—1)x = idy and({ oid)x = (¢~ 1)x. There-
fore &x = (YY)« andy,,-1(x) = Yy-1(x) SO that the restriction ap to a neighborhood
of x belongs ta™ *. O

Lemma 3.5. If I" is a compactly generated pseudogroup, thigyyis a compactly
generated psg.

Proof. Let ("', T’) be areduction of/,T) and suppose th&t' = (y1,...,%). If ye
" and ifx € domy, then there are elemengse '’ anda, 3 € I such thaty = o
y oo holds on a neighborhood &f If { € MNysgandy € dom, then the restriction of
{ to a neighborhood of belongs ta™. Hence{ = 3o’ o a holds for som&’ € I’
anda, B € I". Thisimplies that/ s, T') is equivalent tqlpsg, T) becausé C I3

psg
Sincel,sgis generated by, ..., %, 11, ..., 1, Mpsgis compactly generated.]

Example 3.6.Let f be an endomorphism @P!, whereCP! = CU {e}. If we set
I = (f), then(I",CP?) is a compactly generated psg. Inde&d, CP?) itself is a
reduction. Another reduction can be chosen as followsULet{ze C| |7 < 1+ ¢}
andV ={ze C| |z > 1— €} U{w}, wheree > 0 is a fixed small number. Lét =
(f,idy~v) andT =UIIV. Then(I",T) is equivalent to the psg oBiP! generated
by f. Note that we can embe into C. Let nowU’ ={ze C||z <1+ ¢’} and
V' ={zeC||7 >1-¢€}uU{w}, wheree > ¢ > 0. If we setT’ =U’ITV’ and
["=Tr |y, then(l'’,T’) is areduction of ", T). On the other hand, if is an entire
map onC and if we regardf as a local mapping o8P* with domf = C, then(f)
is not compactly generated.

Example 3.7.Let " be the holonomy pseudogroup of a complex codimension-one
transversely holomorphic foliation of a closed manifold. Thefs a compactly
generated pseudogroup, aidyis a compactly generated pseudosemigroup.

Example 3.8.Evenifl is a compactly generated p$g; needs not be a compactly
generated pseudogroup. Indeed,/Tebe the psg generated Hy. z+— 2. Then
(I ,CPY) is compactly generated b(f <, CP?) is not.

The following properties are fundamental.

Lemma 3.9. Let®: ' — A be a morphism which consists of open mappings. If
(I, T) is compactly generated, thapis also compactly generated. That is, there
is a finite subsef@ } of ® with the following properties
1) For any @ € ® and xe dome, there areq, y € I’ * andd € A* such that
@ = do@oyon aneighborhood of x.
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2) For each i,domaq is relatively compact, and there is an element ® such
thatdom@ C dom@ and@ = @|domg-

Proof. Let (I'', T’) be a reduction of, T). SinceT’ is compact, we can find finite
subsets @} and{fﬁ} of ® such that dong is relatively compactT’  |Jdoma,
domg C domcﬁ and(ﬁ|dom(n =@. Letx e T and suppose thap € @ is defined
on a neighborhood at. Then, there is an elememte ' * such thaty(x) € T/,
and somey is defined on a neighborhood pfx). By taking a restriction, we may
assume thate I';*. Since® is a morphism, there are elemefty’ € A* such that
poy t=0do0@andd o= @oy. As® consists of open mappings,0 6 = idgoy(x)
andd o &’ = idyy), where ig denotes the identity map on a neighborhoog efS.
Henced € A* and@ = d o @ o y on a neighborhood of. 0J

Lemma 3.10. Let (I, T), (A,S) be psg’s and suppose th&t,T) is compactly
generated.

1) If ®: " — A is a covering or ramified covering, thg@,S) is compactly
generated.
2) If (A,S) is equivalent tql",T), then(A, S) is compactly generated.

Proof. First we show 1). Le{"’,T’) be a reduction of/,T). Then,® is com-
pactly generated with a set of generatpgs}ic; as in Lemma 3.9. We may assume
that eachy is a homeomorphism or a ramified covering with a single singularity.
Suppose that’ = (y, ..., %). We may assume that domains and rangeg ©fre
contained in domains af’'s. Then, for each, @j o yi = o o ¢ holds for somej, k
andd € A. If we denote byA’ the collection of elements &f obtained in this way,
thenA’ is a finite set. If we se8 = Ui, @(T' N (dom@)), thenS is relatively
compact andA’, S) is a reduction ofA, S).

The proof of 2) is almost parallel. Leéf"’,T’) be a reduction of",T) and
suppose thaf’ = (y1,...,%). Let ® be an equivalence fromi to A. Then,® is
compactly generated with a set of generafapg as in Lemma 3.9. Leb = {q@ o
yj o g(_l}, where the composition in the right hand side is taken after restrictions
if necessary. Theb is a finite set. We se8 = |J_; @(T’N(domq)). ThenS is
relatively compact. 1D € A, then we may assume that there are elemenig € ®
such thataz_lo do@ €I by taking restrictions. Heno®|y- is an equivalence from
(r', 7 to ((D),S). LetW be the equivalence frofl”’,T’) to (I, T) induced by
the inclusion. Theng o Wo (®|)~ 1 is equal to the morphism frorf(D), S) to
(4,9) induced by the inclusion. O

The next lemma is easy.

Lemma 3.11. Assume thatl",T) is compactly generated and I6T’,T’) be a re-
duction. If T CV C T andV is relatively compact, th€fy,V) is also a reduction
of (I,T).
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4. FATOU SETS OF COMPACTLY GENERATED PSEUDOSEMIGROUPS

We pose the same assumption as Assumption 2.1 in this section.
Let (I",T) be a compactly generated pseudosemigroup(/lGetT’) be a reduc-
tion and®: I — I the equivalence induced by the inclusion.

Theorem4.1.Let(I", T) a compactly generated psg aig, T') a reduction. Then
F(I) = ®(F*(I)) and X)) = ®(J*(1)). In addition, we have tlr) = F(I)
and () =J(IN).

Proof. LetT" € 7. If T C T/, thenF*(I+/)NT"” C F*(I») by Lemma 2.16. If
T” > T/, then® induces an equivalence frofif to T”, which we denote by’
We have®'(F*(l7/)) = F*(lt») by Lemma 2.19. Moreover, since is induced
by the inclusionsF*(I7/) = F*(I7»)NT'. It follows thatFy(IM) N T = F*(I) if
(I, T')is areduction. Therefore, T > T', then we havé&y(MN)NT" =F*(I7r) =
®'(F*(I7+)). On the other handP’ (F*(I7/)) = ®(F*(I+)) N T” by the definition
of @'. Since we can find an increasing sequefnda .7 such thafl = J; T, we
haveRy (") = ®(F*(7/)). By taking the complement, we hadg(l" ) = ®(J*(7/)).
The above arguments show tiffg{/" ) is an open subset af. HenceF (M) = Fy(IN)
andJ(r) = Jo(I). O

Remarkd.2 Theorem 4.1 also holds for compactly generated pseudogroups (cf. [1]).
The proof is essentially the same and omitted.

Remark4.3. If (I, T) is compactly generated and(if’,T’) be a reduction, then
F(r')y=F*(y)andd(r'’) = J* ().

Remarkd4.4. Let (I, T) be apsg. LefD, } < be an open covering df by balls in

CY. If we setD = [ [, A Da, then elements of can be naturally regarded as local
mappings orD if their domains and ranges are containedin The psg(/p,D)

is equivalent to(I", T), indeed, the inclusions db, to T induce an equivalence.
Hence, if we discuss Fatou-Julia decompositions, we may assum@ tisathe
disjoint union of open balls i€9, and that the closure of each balls are also disjoint.
Suppose now that™, T) is compactly generated and Igt’, T’) be a reduction of
(I, T). Then, we can find a finite covering ®f by open ball{ D;}{_ such that for
anyi, there exists & such thaD/ C D, . If we setD’ = [[/_, D}, then(Iy,D’) is
equivalent to ', T'). Hence we may assume that each connected compon@&ht of
is an open ball and its closure is contained in a connected componéntrofvhat
follows, we assumél", T) and(I",T’) are as above unless otherwise mentioned.
Finally note that ifg = 1 and ifU is a wF-open set fofl’, T'), then the familyrV

as in wk2) of Definition 2.2 is always normal by virtue of Montel's theorem.

Proposition 4.5. If " is compactly generated, then wF-open sets are F-open sets.
Therefore wKRI™) = F(I") holds and so on.

Proof. Let (', T') be a reduction of",T), {yi,..., %} a set of generators &t’,
and®: ' — I’ the equivalence which is the inverse of the inclusion. d.ée a
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positive real number such that any germyadt a pointze T’ extends to an element
of I' defined onD,(d). LetV be a wF-open set i’ and lety € '’ such that
domy c V. We setJ =domy. If x € U, then we can find an open sub&Etof U
such thatx € U’ and that the radius of(U’) is less thard/2 for anyy € I'V. Let

y € y(U’) and assume that an elemegtc I/ is given. We denote bf’(k)y the set
of the germs of elements @’ which can be represented as the composite of at most
k generators. Then/ = UI'(K)y. If ny € I''(1)y, namely,ny = (y)y for somei,
theny is well-defined ory(U’) by the choice ofl. Moreover, sincgjoyc 'V, the
radius ofy(y(U’)) is less thard/2. Suppose that ifyy € I’ (k)y, thenny extends
to an element of” andn(y(U’)) is of radius less thad/2. If ny € I''(k+ 1)y,
then we havepy = (y o {)y for somei and{y € I''(k)y. By the assumption, we
may assume that is well-defined ory(U’), and the radius of (y(U’)) is less than
d/2. Again by the choice od,, y; o { extends to an element, séy which is well-
defined ony(U’). SinceBoy e IV, the radius ofd(y(U")) is less thard/2. By
the constructiong, = (yi o {)y = ny. SincelV is a normal family and/ is an open
mapping,[ YY" is also a normal family. TherefongU’) is a wF-open set. Singe
is arbitrary,y(U) is the union of wF-open sets. O

Theorem 4.1 and Proposition 4.5 imply that the definition of Fatou and Julia sets
of compactly generated psg’s (and pseudogroups) can be quite reduced compared
with those of general psg’s. Indeed they be defined without taking infinite number
of intersections and unions, nor taking interiors and closures. Moreover, it suffices
to deal with wF-open sets instead of F-open sets.

Remark4.6. The technique using’(k)y in the proof of Proposition 4.5 is from
[5, Lemme 2.2]. Itis frequently used in what follows.

Fatou sets of compactly generated semigroups have a property similar to those of
finitely generated semigroups acting GR* [9], [18].

Lemma 4.7. Suppose thafl, T) is compactly generated. LeE’, T') be a reduc-
tion of (I, T) and{y,..., %} a set of generators df’. Then

F(r) = H(F(r))u(T"\ (domy))).
i=1

Proof. It suffices to show thaf (1) > N{_y (v X(F(I'"))U(T’\ (domy))) by Lemma 2.18.
Suppose that € N_,(y *(F(r")) U(T’\ (domy))). If x € domy;, then there is an

open neighborhoad; of x such tha; (U;) is an F-open set. We sét=ycgomy Ui

If w €I, wherey € U, theny, = ({ o )y holds for somei and ¢y € ’_v./w)
unlessy, = (idr)y. Since{y ) extends to an element &t defined ony(U), %
extends tdJ. ThereforeU is an F-open set which contaixs HenceF(I'’) O

Nz (W HFF))U(T'\ (domy))). O
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Remark4.8. If ' = (f), wheref is an endomorphism dEP?, then Lemmata 2.18
and 4.7 are reduced to the usual equalii¢st)) = f(F((f))) = f1(F((f))) and
J((F)) = FI((F))) = F~XI((f))). Similarly, if ..., are endomorphisms of
CP1, then donf; = CP! for anyi so that we havé (I ) N_; £-X(F(r")), where
"= (f1,..., ;). Thisis the case studied in [9] and [18].

Example 4.9. Lemma 4.7 fails ifl" is not compactly generated and if we do not
include idr in the set of generators. L& = T, = CP! and definey: T1 — To

by yi(2) =iz, and{: T, —» T, by {(2) = 2. If we setl, = ({,y1,...,\n) andl =
({,w1,-..), thenl, is compactly generated aifidis not. We have(l,) = (UL,1{z€
TillZd =1/ih)ustandI(r) = (U2 1{z€ T1| |4 = 1/i}u{0:}) US', where Q

is the origin inT; and St is the unit circle inT,. It is easy to see thad(},) =
(CYF (M) UT) Ny (v H(F (M) UT2) and(Z ~X(F (7)) UT) N ( H(F(M)U
T) = M\ (Ura{ze Tl |2 = 1/i}) N (T\ $) 2 F ().

1) of Theorem 2.19 holds in a strong form for compactly generated psg’s.

Proposition 4.10. Let (I",T) and (A,S) be psg’s and assume thét,T) is com-
pactly generated. b: I — A is either anétale morphism or a ramified morphism
if g =1, thend1(F(A)) Cc F(IN).

Proof. We proceed as in the proof of Theorem 2.19 but it suffices to deal with wF-
open sets instead of F-open sets by Proposition 4.5(/Lef’) be a reduction of
(F,T)with I'" = (y,...,%). Letdy > 0 such that the germ of any at a point
pin T’ extends to an element 6f defined onDp(dp). We retain other notations
in the proof of Theorem 2.19. L& be an open subset @f—1(F(A)) andW an
open subset df (A) Nrangep;. We assume thal/ is a wF-open set iff “(Ag). By
shrinkingW if necessary, we may assume thaﬁltz AW and if 5(W) Nnrangey #
@, thend(W) C rangeg and the radius otﬁ< ) is less thardp /2. Finally, let
V be a connected open subset@l( ) such that the radius &f is less thardp.
Lety €V and{y € I/. Then,{, € I''(m)y for somem. If m= 1, then is well-
defined orV by the choice ofly. If {(y) € domg, then there is an elemedte A
such that(go {)y = (6o @)y. Note thatd is defined orW as an element ofl.
Sincel (V) C (7[1(5o @ (V)), the radius off (V) is less thary /2. Assume that the
same holds fom, and lety € I''(m+1)y,. We havely = (y o n)y for somei and
n € r'(m). By the assumptiony is well-defined orV and the radius ofy (V) is
less thardp/2. Suppose thaj(y) € domg; andy;(n(y)) € dom@. Then there is an
elementd; € AW such thatp; o n = 610 ¢n. Note that rangéj D0(@m(V)). Onthe
other hand, there is an eleméiitc Ag such tha(@ o yf),(y) = ("0 @) (y)- Then,
yi o n is well-defined orV, and(@ o (yion))y = (8 o@on)y = ((&8'0d1)o@)y.
Sinced’ o 3, is well-defined oW, we haveg o (i on) = (&' o &) o 1. Therefore,
the radius of y; o n)(V) is less thardy/2, and if we set, = & o &;, thend, € AW
andcg o(yon) = &o q. Finally sinceA" is a normal family/™V is also a normal
family. HenceV is a wF-open set fof ' = . O
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Proposition 4.11. If " is a compactly generated pseudogroup, theg(F) =
F(Tpsg) and Jg(I") = I(psg).-

Proof. Let (I'',T) be a reduction of/",T) in the sense of pseudogroups. Then,
(Fpsg T') is @ reduction of(Mpsg T). By Theorem 4.1, it suffices to show that
Jog(l") = J*(Fysg)- LetU be a wF-open subset &f,(') andx e U. If yis
the germ of an element (5[)’39 atx, theny is the germ of an element éf'. Hence

y extends to an element &f defined onJ, and(Isg)¥ = Y. ThereforeU is a
wF-open set fof 5,

Conversely let) C F*(Is,) be a wF-open set in the sense of psg's. Thea
Fog(r'"). Indeed, leys,.. .,y } be a set of generators bf. There is al; > 0 such
that if y is the germ of one of thg'’s at a point, say, in T’, theny is extends to
an element of” defined onDy(2d;). Letx € U andV = Dy(d;). By shrinking
V if necessary, we may assume that_ U and thaty(V) is contained in ball of
radiusd; for anyy € I'p%g. Lety € V andl'’(k)y the set of germs of elements
of '’ which can be represented as the composite of at kg&nerators. Then
Iy = Uk—ol '(K)y.- Lety € I''(K)y. If k=1, theny extends to an element 6t
defined orV. Suppose that germs of elementd éfk), extends to an element bf
defined orV, and lety, an element of '(k+ 1)y. If we decomposeg = (yi o {)y,
where{y € I''(K)y, then{y extends to an element 6f defined orV. Since{ (V) is
contained in a disc of radiuy and{(y) € T/, y o { is well-defined orV. As being
the composite of diffeomorphismg,o { belongs ta™. Sincel™V C (FpsgV, MY is
a normal family. O

Proposition 4.12. Let (I",T) be a compactly generated pseudogroup, and denote
by F/(I") and J(I") its Fatou and Julia sets in the sense[f, respectively. Then
F/(I") = Fpg(l") = F(lpsg) and J(I") = Jog(I") = I(Fpsg)-

Proof. Let (I'',T’) be a reduction of, T) and® be the equivalence froifi™’, T")
to (I, T) induced by the inclusion. The# (") = ®(F3, (7)) andd' (I ) = ®(J54(I77)).
Hence the claim follows from Theorem 4.1 and Proposition 4.11. O

Example 2.3, Proposition 4.11 and [1, Example 8.3] are summarized as follows.

Theorem 4.13.The Julia sets of rational mappings @P2, the limit sets of finitely
generated Kleinian groups acting @P?* and the Julia set of compactly generated
pseudogroups in the sense [dff can be regarded as Julia sets of compactly gen-
erated pseudosemigroups. If we regard entire mapping8 as local mapping on

CP?, then their Julia sets can be regarded as Julia sets of non-compactly generated
pseudosemigroups.

Proof. If " is a finitely generated Kleinian group, thEmgenerates a compactly gen-
erated pseudogroup @@P?. If we denote this pseudogroup Byg, thenJog(T pg)
coincides with the limit set of ([1, Example 8.3]). O
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We refer to [14] and [15] for properties of the Julia sets of mapping iterations, to
[13] for properties of the limit sets of Kleinian groups.

Remark4.14 Even ifI" is a Kleinian group but not finitely generated, we can re-
gard (I',CP?Y) as a pseudogroup or a pseudosemigroup, which are not compactly
generated.

Remark4.15 Let (I, T) be a compactly generated pseudosemigrouf.=f CP?,

then it is natural to assume thatis generated by rational mappings and biholo-
morphic diffeomorphisms defined dBP?. It is well-known that the Julia sets are
infinite set (in fact, perfect) and the limit sets are also infinite unless they consist
of at most 2 points. In view of Theorem 4.13, such a property can be seen as
one of common properties of Julia sets of groups and semigroups actiG§’on

On the other hand, iT # CP?, then there are examples of compactly generated
pseudogroups of which Julia sets are finite but consist of more than 2 points [1, Ex-
amples 8.1 and 8.2].

Dynamics onF(I") is expected to be tame. For example, on the Julia sets of
rational mappings and on the limit sets of finitely generated Kleinian groups, the
["-action is contracting or isometric with respect to the hyperbolic metric except
elementary cases. We can find a volume form which has a similar property. If
g= 1, then we can find a metric.

Let (I, T') be a reduction of",T). We may assume tha = [[{_, T/, where
eachT! is the unit open ball i©9 (see Remark 4.4). Let:, 0< € < 1, be a smooth
non-negative function oR such that

1) ne(t)=1on(—o,1— g,
2) ng is strictly decreasing ofl — ¢, 1],
3) Ne(t) =0o0n([1,+00).

Definition 4.16. Let z = (Z},...,Z") be the standard coordinates @y and set
dz =dz'A---AdZ. We sethi(z) = n:(||z||) and define a Hermitian metrig
on TT' by ho|/ = hi(z)?dz @ dz, where|| - || denotes the standard norm @.
The set of functiongh;} is denoted byh and considered as a function @ We
will represent functions and differential forms @hin the same way. We define a
functionf onT’ by

f(x) = sup [Julh(y(x)),

ye(r")x

where|Jy| denotes the absolute value of the Jacobiap afx. We setg = f2gg
if q=1, w= f2ug if q> 1, wheregy andpig denote the standard Hermitian metric
and volume form orCY, respectively. We denot also bydz® dz

A metric or a volume form as above is said to be lower semicontinuous (resp. lo-
cally Lipschitz continuous) iff is lower semicontinuous (resp. locally Lipschitz
continuous).
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Theorem 4.17(cf. [1, Lemmata 3.8 and 3.9])The metric g and volume form in
Definition 4.16 are lower semicontinuous oh Moreover, g andv are finite and
locally Lipschitz continuous on ().

Proof. The first part is easy. We will show the second part. xetF (") andU
a wF-open set which contaims Thenrl"V is a normal family so that sypru [JW|
and f(x) are finite. By slightly shrinkindJ, we may assume that there exists an
m> 0 such thatJy,| < mholds for anyy € U andy, € I/ because " is a normal
family. We will show the following
Claim. There aree; > 0, d; andc > 0 such that ify € Dy(d1) andh(y(y)) |Jy| >
f(y) — &, theny € I/ induces an element d¢f’ defined onDy(d;), and|Jyw| > ¢
for anyw € Dx(dy).

Let &1 be a positive real number less thé&(x)/2. Then there is a positive real
numberd, such thatf(y) — f(x) > & for |y| < d» by the lower semicontinuity
of f. It follows that f(y) — & > f(x) > @ becausef (x) > 0. Hence, ifly| <

min{d,d,} andh(y(y))|Jy/| > f(y) — &1, thenh(y(y)) > 1 > 0. It follows that
there is a compact subsét of T’ independent of such thah(y(y)) [Jy| > g(y) —
&1 holds only ify(y) € K’. Note that under the same assumptions, we W >

f(y)—& > ( ). sincerVY is a normal family, there is d3 > 0 such thatJyy| >

f(s) holds if |W y| < d3. Let & be a positive real number such thag (&2) C
T/, andd4 a positive real number such that the radiusy@Dy(ds)) is less than
g/2if ye rV. We setd; = min{d,d,d3/2,ds} andc = f(x)/3. If |y < d; and

)) [9%| > a(y) — &1, theny(y) € K'. If we denote again by the extension of,
to an element of Y, theny(Dx(d1)) C Dyy)(&2) C T'. Hencey e I''. If w e Dy(dy),
then|y —w| < d3 so that|/Jyy| > ¢. This completes the proof of Claim. Note that
such ay belongs ta™Y.

Let &3 be any positive real number less thgnand assume thatz € Dy(d;).
Lety € I/ such thah(y(y) \Jyy\ > f(y —83 Thenyze I} so thath(y(z)) |y <
f(2). Hencef(y) — f(2) < |Jyy\ 2)) |Jys| + &3. SincerV is a normal
family and eachh; is Lipschltz contlnuous there is a Lipschitz constarfior ho y
independent ofy, namely, |h(y(y)) —h(y(z))| < L|y— 2 holds independent of
(note that it suffices to assume that edghs locally Lipschitz continuous if we
reduced; if necessary). On the other hand, for eagclwe have

|JVy’ — 9y 1
NNV —<— sup 2|3vw|g'L1(y)9 La(y) ly— 2,
9] =190l = T3 g S 3, S0P, 2R ALy ey 2
onU, where
. ‘ 0%y
L = sup |—(Ww)|, L = su — .
1(V) 1, ng a ]( ) Z(V) 1§i7j7|5)§q 0ZJ§Zk

weDy(dy) weDx(dy)
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Again sincelVY is a normal family, the above inequality implies that there is a
constant’ independent of such thafJy | —|Jy;| < L'y — 2. Therefore,

f(y) = 1(2) — &3 < h(y(y) (|9%| = Pyal) + (h(v(y)) = h(y(2))) Iy
<Lly-z+Lly—2Zm
= (U'+LmP)|ly—2.
Since this estimate is independent of the choicg,af; can be arbitrarily small.
Hencef(y) — f(z) < (L' +Lm?) |ly—2.
By exchanging the role of andz, we havef(z) — f(y) < (L' +LmP) |y — 2 if
y,z € Dy(d1). This completes the proof. O

Note that we need only the compactnesd bin the construction. The fact that
I" is compactly generated is used only to regard the metriE @) as a metric
onF ().

Definition 4.18. Let g; andg, be Hermitian metrics o (I"). If z€ F(I"), then
we denote by(g;), the metric onT,F(I"). Suppose that we hawg = f2dz® dz
andg, = f2dz® dzon a neighborhood & If f1(2) < f,(2), then we write(g;); <
(g2)z- Note that this condition is independent of the choice of charts abolit
(01)z < (92)z holds onF (I" ), then we writeg; < gp. If a andw, are volume forms
onF(I), then we sayy < ay in the same way.

The action of” onF (I") has the following property which we caémi-invariance

Proposition 4.19.1fx € F(I'’) and ify € '’ is defined on a neighborhood of x, then
y'g<gandy'w < w. If ye (I')*, theny*g=g andy*w = w.

Note that ifx e F(I'’), y € I'" andJy = 0, then(y*g)x = O so that there is no
[’-invariant metric (nor volume form) oR (I"’).

Proof. If |Jy| = 0, then(y*g)x = 0. Suppose thatly| # 0. If we setl'y’(x) oy=

{Zoylyi ey} thenl oy C I. Itfollows that

F(y(x) = sup [3¢yx[h({(y(x)))

(€ rv(X)

1
= 3w SUP [Ny h(n(x))
’ | nel" eV

< sup|Jnyx | h(n(x))
’J ‘nel"

1
:mf(x).

Hence(y*g)x < gx and(y*w)x < wx. O
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Theorem 4.20.Let (I, T) be a psg which is not necessarily compactly generated.
Suppose that =TI *. If =1, then there is an invariant Hermitian metric or{F)
which is locally Lipschitz continuous. In general, there is an invariant volume form
on F(I") which is locally Lipschitz continuous.

Note that” = I * holds if and only ifl" is generated by a pseudogroup. Indeed,
[ =(Iy*). See Definition 1.8.

Proof. We show the theorem fag because the proof fao is completely parallel.
By replacing(l", T) by equivalence we may assume tiiat. C. We will construct
a metric onFp(I"). Let {Ti}>, € .7 such thafl; € Ti11 andT = (Ji2;, Ti. We have
Fo(l) = Niz1F*(I7;) by Lemma 2.16. Lehy, wherei > 1, be a smooth function
onT such that

1) hr, is positive onT;.

2) ht =1onT_1.

3) If x,ye T\ Ti_1andifd(x,Ti_1) < d(y,Ti_1) thenhr (x) > hr.(y).

4) hp\1 =0,
whered denotes the distance with respect to the standard Hermitian metfic on
We setF = Fo(I") NTi. Letg, be the metric ofF*(IT,) obtained fromh3dz® dzas
in Definition 4.16. Theng;y is invariant under thét,-action. We have a metrigy
on F1 with the following properties wittk = 1:

1) G is invariant under thé -action.

2) There are a neighborhody of RN Fy(I") in Fy(I") and a locally Lipschitz
continuous/ -invariant metricg, on F,; such that the restriction @ to K
is equal togi (indeed it suffices to defingj, = gk+1]F|£).

We call this condition the condition (M. We extendd) to a metricg; on I, (F;)
by thelT,-action. This is indeed possible. Let I,(F;) and letys, y» € I, such
thatyi (X), y2(X) € F{. If |(Iya)x| # |(Jy2)x|, then we set) = y4o (y;) L. The family
{n"}nez cannot be normal on any neighborhoodkoHence|(Jyi)x| = |[(Jy.)x| SO
that the extension exists.

If we denote byG; the closure of1,(F1) in F3, thenG; C I,(F{). Indeed, let
x € G1 andU an F-open set foft, which containsx. We can find a sequende; }
in Fy and a sequencly } in I, such that{y(x) } converges tx. We may assume
thatyi(x) € U. Letd > 0 such thaDx(d) C F{ if x € F;. We may also assume
thatif y € 'Y, then the radius of(U) < d/4. We regardy; * as an element of Y
and setyi = y; vi(x). As {y(x)} converges tx, {yi} converges tg = y; *(x).
On the other hand, if we denote Byp,q) the Euclidean distance betwepmandq,
thend(yi,y) < d(yi,y1) +d(y,y1) <d/4+d/4 < d. Thereforey € F{ and we have
x=Yi(y) € (). o R

Let f; be the function or; such that; = ﬂzdz® dz, and letf; = f1/(1+ f1).
Then, we can find an extensiay of f, to F3 such thatgs is locally Lipschitz
continuous and & ¢3 < 1 holds. We setjs = ha¢s/(1— ¢3) andg; = Y3dze dz
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Let Gz be the metric orfr; constructed frony; as in Definition 4.16. Sincg;|r, =
01, 9’3|rT3(F1) < @1 and sinced; is I1,-invariant, we hav@s|r, = G1. If we set@, =
03|r,, thengy satisfies the condition (b). By repeating this procedure inductively,
we obtain a Hermitian metric oRy(I") which is I -invariant and locally Lipschitz
continuous. OJ

Example 4.21(see also Example 2.11)Ve definey: CP' — CP! by y(2) = Z.
Then,J(y) = {|7l = 1}. If we set

1 it 2 < 4,
K 2k_1 . __1 _1
24| if2 1 <z <2 %,
1 1
K| 21 jf 2% < |7 < 2% T,

# if |2 > 2,

f(z) =

theng = f2dz® dz gives a Hermitian metric o€P!\ {|z] = 1} which is locally
Lipschitz continuous and semi-invariant under the actiorf pfwherel” = (y).
On the other hand, if we consider the Poirgcanetric on the unit disc, thepis
contracting by the Schwarz lemma. Hence the Poincaetrics on the unit disc
andCP!\ {|Z < 1} give rise to a Hermitian metric o&P\ {|z = 1} which is
of classC® and semi-invariant under the actionfof On the other hand, there is
no I -invariant metric onF(I"). Indeed, Oc F(I") but (y*g)o = 0 for any metric
gonF(I).

Let I~ be the psg generated e (0,0) @Nd its local inverses. Thdﬁ(f )
C\ (StU{0}). An invariant metric orF (") is given bydz® dz/(|z|log|z|)?
{0<|Z] < 1}. We can find or{1 < |z} a metric of the same kind.

on

Remark4.22 If I is a compactly generated pseudogroup, then we can classify
Fatou components. By using the classification, we can always findraariant
metric of clas<C® [1, Theorem 4.21]. See also Theorem 5.9.

Remarkd.23 Let S = S = C and we denote bP;(r) the open disc iff; of radius

r and centered at the origin. Lgt S — S, be the identity map. We sé&t=S,11S
andl" = (y). ThenF(I') =T. We defineT; € .7 by settingT; = D1(i) LID(i).
Then the metric obtained frodil;} is equal to the one induced from the standard
Hermitian metric orCC.

A kind of the converse of Theorem 4.17 holds for compactly generated psg’s. A
metricg on an open subsét of T is said to bebounded from belowf there exists
¢ > 0 such thatgy < g holds onU, whereg is the standard metric ofif.

Proposition 4.24(cf. [1, Lemma 2.6]) Let (I, T) be a compactly generated psg. If
U is forward I -invariant and if U admits a continuous Hermitian metric which is
semi-invariant and bounded from below, therdUF (I).
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Proof. By Proposition 4.5, it suffices to show thdtis contained inwF(I"). Let
(F’,T’) be a reduction of ", T) and suppose thdt’ = (y1,...,%). Then, there
existsd > 0 such that the germ of atx € T’ extends to an element 6f defined
onDy(d), whereDy(d) denotes the-ball centered ax with respect to the standard
metric. Ify € U, then letV = D{(cd/4), whereD§(cd/4) denotes theod/4)-ball
centered ay with respect tay. SinceD{(cd/4) C Dy(d/2), we may assume that
V CcU. LetzeV andy; € '’ (k)z, wherel ' (k), denotes the set of germs of elements
of '’ which can be represented at most the compositickhgeénerators. 1k =1,
theny, extends to an element, sgyof I defined orVV. Moreover, sinceg is semi-
invariant, we havey(V) = y(Dj(cd/4)) C D?/(y)(cd/4) C Dyy)(d/2) C Dy (d).
Assume thay;, € "' (k) extends to an element, sgyof I" defined orV/, andy(V) C
Dy»(d). If yz € I''(k+ 1)z then we have, = (Vi o {), for some(; € ''(k); and
¥. By the assumption{, extends to an element, sgy of I defined onV, and
{(V) C D¢z (d). Asy also extends t®; , (d) becaus€ (z) € T', (y o {); extends
to an element, say, of I" defined oV, and we have) (V) C D, (d) by the same
argument as above. O

If gis not bounded from below, then the conclusion fails. See Example 5.13. If
(I, T) is not compactly generated, then there is also a counterexample.

Example 4.25.Let T = T, = C and letf: Ty — T> be the inclusion of the open
unit disc viewed as a local mapping. Then, the metridoHd T, induced from the
standard metric oft is invariant undexf) butJ((f)) ={ze€ T1| |z = 1}.

5. FATOU-JULIA DECOMPOSITION FOR SINGULAR HOLOMORPHIC FOLIATIONS

For generalities on singular holomorphic foliations we refer to [2] and [19]. Here we
follow the latter. LetM be a connected complex manifold aht¥l the holomorphic
tangent bundle oM. We denote by’ the tangent sheaf &fl. If . is a coherent
sheaf orM, then we set

Sing.’) = {x € M| % is notOw x-free},

where.#; and O x denote the stalks atof . and Oy, respectively. Theank of
- is defined to be the rank of the locally free sh&f\ sing.»), and denoted by
rank.s .

Definition 5.1. The tangent sheaf# of a singular foliation ofM is an integrable
coherent subsheaf afy, that is,.# is a coherent subsheaf 6§, such that

[Fx, Fx| C Fx forxe M\ §(F),
where
S(F) = Sing Ow/.F).
The setS(.%) is called thesingular set of%#. Thedimension of# is defined to be

rank.Z and denoted by din¥. The codimension of# is defined to be dirvl —
rank.# and denoted by codir#r .
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We call.# a singular foliation by abuse of notation.
Remarks.2 S.7) is an analytic set which contains Sigg

Let M be a complex manifold ané a singular foliation oM. Then,.# defines
a non-singular foliation of codimension codi#n on M \ S(.%), which we denote
by .7"€S,

Let M be a complex manifold an& a singular foliation ofM. We choose a
complete transversdl for .79 and letl" be the holonomy pseudogroup .69
with respect tar . Note thatFyg(I") andJpg(l" ) arel -invariant.

Definition 5.3. We set
Fo(.#) = the saturation oF,q0(I") by leaves of# "9,
J(F) = M\ Fo(F),
F (%) = the saturation oFyg(I" ) by leaves of#"9,
IF) =M\F(Z).

If we replaceT by another complete transverddl then the holonomy pseudo-
group with respect td’ is equivalent td”. HenceFy(%#), Jo(F#), F(%) andJ(.F)
are well-defined.

Remark5.4. Note thatF (.#) is the interior ofFy(.%#) andJ(.#) = Jo(.#). Note
also thatS(.%) C Jo(.#) C J(.¥) by the definition. ActuallyJ(.#)\ S(.%) is the
saturation oflog(" ), wherel™ is the holonomy pseudogroup &f.

We can find= (%) andJ(.#) as follows. We denote by andq the real dimension
and complex codimension of "®9, respectively. Let” = {U, } < be a foliation
atlas for.#"¢9 namely,

1) eachU, is homeomorphic t&/y x D,, whereV, is an open subset &P and
D, is an open subset @9, and
2) the connected components of the intersection of leave8'8 with U, is
given byV, x {p}, p€ D,.
We may assum¢U, },cn is a refinement of a foliation atlas, and eadghis rela-
tively compact. In addition, we assume without loss of generality thatBgék an
open ball. We set =[],.,D, and let" be the holonomy pseudogroup with re-
spect tol . We assume without generality thfais countable, and denote the indices
byi. If we setT, = ]_[!‘:1 Dy, thenFpgo(l) =Nkt lfg‘g(l'Tk) (see also Lemma 2.16).
The following is a direct consequence of Theorem 4.20.

Theorem 5.5.1f g = 1, then K.%#) admits a transverse invariant Hermitian metric
which is transversely Lipschitz continuous. In generéPH admits a transverse
invariant volume form which is transversely Lipschitz continuous.

Indeed, ifl" is the holonomy pseudogroup o9 with respect to a complete
transversall, thenT admits al -invariant Hermitian metric which is Lipschitz
continuous. Transverse invariant volume form can be constructed in the same way.



ON FATOU-JULIA DECOMPOSITIONS 29

If M is closed and5(.%) = @, thenl" is compactly generated so that we may
assumé/ ,T) is equivalent tq/T, , Ty) for somek. If moreover.% is of codimension
one, then we have a transversely holomorphic foliation of complex codimension
one, and a Fatou-Julia decomposition of such a foliation is given in [6], [8] and [1].
We denote the Fatou and Julia setsin the sense of [1] b¥r (%) andJi (7)),
respectively. Then by the definitions, we have the following

Proposition 5.6. If M is closed and# is regular, then we haved (%) =F (%) =
Fo(#) and 3oi(F) = I(F) = Jo(.F).

In what follows, we will study holomorphic foliations by curves with isolated
singularities. Let# be such a foliation of a compléx + 1)-dimensional manifold
M and letS(.#) = {pa,..., pr}. The following is well-known.

Lemma 5.7. Let U be an open neighborhood of.prhen, no leaf of#"™%is con-
tained in Y.

Proof. We may assume that; is the unit open ball ifC"*1 and p; is the origin.
Then, it is well-known that there is a holomorphic vector fi&ldn U; such that
SingX = {x € Uj | X(x) = 0} = {0} and thatX is tangent toZ|y,. LetZ(t) be an
integral curve ofX. If we denote by||Z(t)||? the square of distance &f{t) from the
origin with respect to the standard metric, tHgt(t)||* is a subharmonic function.
If moreover{Z(t)} is entirely contained iJ;, then||Z(t)||2 is defined onC and
bounded. HencﬁZ(t)H2 is constant ([16, Corollary 2.3.4]). If we represefias
X = z”“ fi 002. , where(zy,...,zy,1) are the standard coordinates©fit, then we

havey ™l fi(Z(t))Z(t) = 0, whereZ(t) = (Z4(t),...,Zn1(t)). By differentiating

with respect td, we havey 7 fi(Z(t)) fi(Z(t)) = 0. Hencez(t) is identically zero
by the choice oK. O

Let X be a holomorphic vector field 08! and.# the singular foliation asso-
ciated withX. Suppose that Sing consists of Poinc@rtype singularities, and let
SingX = {p1,..., pr}. LetU; be an small round ball g so that# is transversal
to dU;. Then, a foliation is induced on eadkl;, which we denote by#;. Note that
S(.#) = SingX. By removingU;’s from C"** and taking the double, we can obtain
a non-singular transversely holomorphic foliation of a closed manifold. This kind
of examples are studied in [6] when= 1.

Corollary 5.8. 1) If M is closed, then the holonomy pseudogroupZof? is
finitely generated.

2) If moreover for each i, there exists an open neighborhopdflsy homeo-
morphic to a ball such tha#” is transversal todU;, then, the holonomy
pseudogroup of7"®9is compactly generated and B ) = Fy(-#). We have
IF) =AF)US(F) andU_1I(F) C IF)NUi10U;. If M is the
double of M and ifZ is the foliation ofVl obtained fromZ"e9, then \L/) is
the double of 079 N M.
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We do not know any example where the inclusion is strict. On the other hand,
if one of dUj’s is not transversal t¢#, then there is an example wheieZ;) C
J(#)NadUj, wheredU; is transversal to# . See Example 5.11.

Proof. Let U; be an open neighborhood pf, wherei = 1,...,r. LetV be an open
neighborhood oM \ Ui_,U; such thatv N S(.%) = @. SinceV is compact, we
can find an open covering, sa¥, of V by a finite number of foliation charts
for #™9. Suppose that” = {V1,...,Vs} andV, = W x T;, where the leaves of
F'®y, are given by{W x {z}}, z€ Ti. If we setT = [[>_; T, thenT is a com-
plete transversal fo#7"®9 by Lemma 5.7. Therefore the holonomy pseudogroup of
F"0is finitely generated. 17 is transversal t@U;, then it is shown in [10] that
Zauuup\ {p} is biholomorphically diffeomorphic to7 sy, x (0,1]. Therefore the
holonomy pseudogroup of "9 is equivalent to that of7™9;,y,. The last part
follows directly from definitions. O

Theorem 5.9. Suppose thadlimcM =2 and §.%7) = {ps,..., pr}. If for each i,
there exists an open neighborhooddd p homeomorphic to a ball such that either

1) .% is transversal taU;, or

2) 7|y, is linearizable, namely, there is a biholomorphic diffeomorphism from
Ui to an open ball inC? which contains the origin and the leaves®fy, are
given by a linear vector field,

then the holonomy pseudogroup®f®9is finitely generated and we havé.F) =
Fo(#). Moreover,.# 9 admits an invariant transverse Hermitian metric oQ%)
which is transversely of class*C

Proof. If .% is transversal t@U;, then the holonomy pseudogroup.4f©? and that
of 79y, are equivalent by Corollary 5.8.

If 7|y, is linearizable, then we may assuri#dy; is given by a linear vector field
X. For simplicity, we assum8(.% ) = { p} and denot&J; by U. If X is diagonaliz-
able, then we may assume that

17} 0

X=A Zd_z + “Wo"'_w
for some non-zero complex numbérandp. If A /u is not a negative real number,
thenX is transversal t@U so that it suffices to study the case whare- —u. We
may assume that = —p = 1 andU = {(z,w) | |2/°+ |w|? < 2+ &} without loss of
generality, where is a small positive real number. We Jet={(1,w) | |w| <1—¢}
andT, ={(z,1)| |zl < 1—&}. Then, we can choose a finite number number of local
transversalgs,..., T, for ﬁregyM\@, whereU’ = {(zw)| |z + |w|* < 2} so that
if we setT = [[/_; T, thenT is a complete transversal. LEtbe the holonomy
pseudogroup associated wikh If we denote byy the holonomy along the orbits of
X which appears as a mapping framto T, then we have/(w) = zand dony =
{w = 0}. Lety: Ty — T, be the mapping defined bfw) = zwith domy = T;. If
we denote bf the pseudogroup oh generated by andy, thenr” is compactly
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generated. L€eX be the closure of the union 6f-orbits of Oc T; and O Ty, and set
V =T\Z ThenFygo(lN) = Fpg(f) NV. To see this, first we show th&g,(I7/) =
F,g‘g(I:T/) NV if T"C T. In view of Lemmata 2.16 and 3.11, we may assume that
(7, T') is a reduction. Sincéy C I/, we haveFiy(I7/) D Fiy(ft)NV. On
the other hand, ik € Fj4(I7/), thenx € V becausery(I7/) C V. If Ois a wF-
open set which containg thenl (O) C V. If y € (I7/)x, theny(x) € V so that
¥ € (I7/)x. Hencey extends to an elementof I" defined onO. ThusFg, (/) =
Fog(lT7) ﬂv; Then we havéjy(I1/) = Fgg(l'll) U(T\T') = (Fgg(Ir) NV) U (T \
T') = (Fog(F)NT'NV)U(T \ T’) becausd™ is compactly generated. Therefore
Fogo(l") = Fpg(I") NV. HenceFpgo(I) is open andrpg(lm) = Fpgo(l).

If X is non-diagonalizable, then we may assume thas the unit open disc
and that

0 0
X = (Z+£W)d_z+wd_w'

In this case, we replade by U’ = {(zw) € U| |z + |rw|* < 1}, wherer is a
positive real number. If we choosdarge enough, theX is transversal toU’.

By [1, Theorem 4.21], there exists a Hermitian metrichg(I:) invariant under
the action of” and transversely of clag¥’. The metric is also invariant under the
I"-action so that it induces a transverse invariant Hermitian metrie(ch). O

Remark5.10 We made use ofyg(I") in definingF(.%#). The above proof shows

that the same decomposition is obtained under the assumptions of Theorem 5.9 if
we replaceqyg(I) by F(I). IndeedF*(I7/) = Fpgvo(lc) NV = Ry(7) NV holds by
Proposition 4.11.

Example 5.11.Let X be a holomorphic vector field 0B defined by

0 17}
X _Azo"_er“WWv’

whereA andy are non-zero complex numbers afzgw) are the standard coordin-
ates forC?. Let.# be the singular foliation o€ P? induced by the integral curves of
X. IfA=p,thend(.7)=9.%#)={[1:0:0} and a transverse invariant Hermitian
metric onF (.%) is given by
_|wdz— zdw?
(12 + wi*)?’
where for a 1-formw, we denotew @ @ by |w|?.

If A # u, then the codimension &(.%) is greater than one. Léty : z; : 2] be
the homogeneous coordinates 2 and conside€? = {[1:z:w]}. We set

Lo={[0:z:27)] ECPZ},
Ly = {[z: 0:2) € CP?},
Lo ={[z:2: 0] € CP?}.
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ThenS(.#)={[1:0:0,[0:1:0,[0:0: 1}, andJ(.%) is described as follows.
1) If u/A € C\R, thend(.#) = LoUL1ULp. An invariant metric orF (%) is

given by
|uwdz— A zdw?
(1 |w))?
2) If u/A > 1, thend(.#) = LoUL2. An invariant metric orf (.%) is given by
|uwdz— Azdw?
|W|2(1+A/H)
3)If1>pu/A >0, thend(.¥#) =LoULy. An invariant metric onF (%) is
given by
|uwdz— A zdw?
|Z|2(1—HJ/)\)
4) If0 > u/A, thend(F) = L1 UL,. Aninvariant metric ork (.%) is given by
|pwdz— A zdw?
(127 wiPy2

wherea = (A —2u)/(A —u) andf = (2A — u)/(A — ). Note thato > 1,
B>1,a+pB=3andaA +Lu=A+p.

If u/A >0, then.Z is transversal to the unit sphe®in C2. We denote by#’
the induced foliation o1$®. Then,.#’ is transversely Hermitian, namely, it admits
a smooth transverse invariant Hermitian metric. It follows thHa@#') = @. Hence,
if we denote by the inclusion ofS® to CP? via C?, thent ~1(J(.%)) 2 J(F").

Example 5.12.Let X be a holomorphic vector field 062 defined byX = (z+

sw)i +wi, where(z,w) are the standard coordinates. If wedet zi +wi,
Jdz ow Jdz ow

then[X,Y] = 0, andX(z,w) andY (z,w) are linearly independent a@? \ {w = 0}.

If we denote by the foliation of CP? induced byX, thenY induces a holonomy
invariant trivialization of the normal bundle aF™9 on F(.%) = CP?\ (LoULy),
wherelLg andL, are as in Example 5.11. Hence we can find a transverse invariant
Hermitian metric or(.%). SinceX is invariant under homothecies; ™9 induces

a foliation of Hopf manifolds. For example, I&t = (C?\ {0})/a, wherea is a
non-zero complex number amd z) = az If we denote by¥ the induced foliation

of M, thenF (%) = (C?\ {w = 0})/a. SinceY is also invariant undesr, we can

also find a transverse invariant Hermitian metric on the normal bundée of

Example 5.13.Let X be a holomorphic vector field oB® defined by
0 0 7}
X=AMz1— +AZp— + A3zz—
121azl + 222022 + 3230..23,
whereA1, A2 and A3 are non-zero complex numbers. Théhjnduces a singular
foliation of CP® which we denote by”. We setpp=[1:0:0:0, py=[0:1:0:0,
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p2=[0:0:1:Qandpz=[0:0:0:1. If A1 =A2 = A3, then§(.F) =I(¥) ={po},
where we conside€3 = {[1:z1:2:z3]}. If we setwj = zdz — z;dz, }cqj|2
Wj ®w;j and

o2l + [oors] + o)
(|2l + |22+ |zaH)2
theng is a transverse invariant Hermitian metric 8% ). Note thatg is bounded
from below, and induces an invariant volume form.

In that follows, we assume without generality that= 1. Suppose tha,, A3
andA,/A3 do not belong td®R. ThenS(.%) = {po, p1, P2, P3}, and there are unique
real numbersr andf such thatoA, + BA3 = 1. According to Theorem 5.5, there
exist invariant volume forms oR (.%). In fact, if we set

- |/\222d21 — Zld22|2 |/\323d22 — )\2sz 23|2
(221" |2]P)2 223"

theng is a transverse invariant Hermitian metric &P\ (PyU P, U Ps), where
Po={[0:X1:%2:X3]||X1,%X2,X3 € C}, Po={[x0:X1:0:%3]}, Ps={[Xo: X1 : %2: 0] }.
Note that on the plang€]up : 1 : up : ug]}, we have

(A2 — 1)updg + Ugdp > |Asus(Ugd Uz — Updg) — Aplp(UodUg — UsdUp)|
(Juol ®~ ) up| " ugl )2 |UoUUs|?
Let A be the closed triangle formed by Ay andAs. If 1 is contained iy, thena >
0,3 >0and 0< a + 3 < 1. This condition is equivalent to thgtis bounded from
below onCP3\ (PyUP,UPs). Indeed in this case we hat#é.7 ) = CP3\ (RyUPU
P3). If A2 andA3 do not satisfy the condition, théf(.%) = CP3\ (RyUPLUP,UP3),
whereP; = {[Xo: 0 : X2 : x3]}. Even in this case, the above metric is an invariant

metric onCP3\ (P UP, U P3) but not bounded from below. A bounded one on
F (%) is given by

)

2

g:

Aozdz — 2102 | [Aszsdz — 210z | [Asz3d2 — Aozodzsf
(|21]|221)? (|2a]|z31)2 (122 |z3])2

If in addition the convex hull of 1A, andA3 does not contain 0, theff is transver-
sal to the unit spher®. HenceZ induces a transversely holomorphic, non-singular
foliation of . If we denote this foliation byZ’, thenF (#') = F(#)NS and
J(F') = J(F)NS. Since the holonomy pseudogroups®f is compactly gener-
ated, we see that the conclusion of Proposition 4.24 fails if the metric is not bounded
from below.

Instead of exhausting all cases, we will examine the case whefreR andA3 ¢
R. If A2 > 1, thenS(.#) = {po, p1, P2, p3} andJ(.¥#) = BhUP, UPs. An invariant
metric onF (%) is given by

|)\222le — Z]_d22|2 ‘)\3ng22 — Azsz 23‘2
(|22|1+1/A2)2 )

223/
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If A2 =1,thenS(.%) = {[0:x1:%2: 0]} U{po, p3} andI(.#) = {[%0:0:0:x3]} U
PoUPs. Note that{[0 : x1 : X2 : O]} = PyN Ps. An invariant metric orF (%) is given
by
|)\222d21 — Z]_d22|2 |)\323d22 — )\2sz 23|2

(122 + |2[72)2 (1272 + |2 23
If0 < A2 <1, thenS(.%) = {po, P1, P2, P3} andI(F) = RHUPLUPs. If A2 <0, then
S(F) = {po, P1, P2, p3} andJ(F) = PLUR UPs. In these cases, invariant metrics
can be constructed as in the case where 1.

Remark5.14 Note thatlg, Ly andL, are separatrices fof in Example 5.11, and
thatLg is also a separatrix foX in Example 5.12. The proof of Theorem 5.9 and
Example 5.13 also suggests tlat” ) has something to do with separatrices.
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