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1 Introduction

We consider a fractional power of negative Laplacian of the form

H0 = κ−1(−∆)κ/2 (1.1)

defined in H = L2(Rn) for κ ≥ 1. Here

∆ =
n∑

k=1

∂2

∂x2
k

is Laplacian with domain D(∆) = H2(Rn), the Sobolev space of order two. The operator
H0 is considered a selfadjoint operator with domain

D(H0) = {f | f ∈ H, |ξ|κFf = |ξ|κf̂ ∈ L2(Rn)}
∗E-mail address: kitada@ms.u-tokyo.ac.jp



with F denoting the Fourier transformation. It is obvious that H0 is absolutely continuous
on H = L2(Rn). The perturbed Hamiltonian we consider is

H = H0 + V. (1.2)

The potential V = VS(x) + VL(x) is a sum of the real-valued measurable short-range
potential VS(x) and the real-valued long-range potential VL(x) which satisfy the following
assumptions. We use the notation: ∂x = (∂/∂x1 , · · · , ∂/∂xn), ∂α

x = (∂/∂x1)
α1 · · · (∂/∂xn)αn

for a multi-index α = (α1, · · · , αn) with αj ≥ 0 being an integer, |α| = α1 + · · ·+ αn, and
⟨y⟩ = (1 + |y|2)1/2 for y ∈ Rd (d ≥ 1).

Assumption S There exist constants C > 0 and 0 < δ < 1 such that for all x ∈ Rn

|VS(x)| ≤ C⟨x⟩−1−δ. (1.3)

Assumption L Let δ ∈ (0, 1) be the same constant as in Assumption S. For all multi-
indices α there exists a constant Cα > 0 such that for all x ∈ Rn

|∂α
x VL(x)| ≤ Cα⟨x⟩−|α|−δ. (1.4)

Under these assumptions, V defines a bounded operator, so that H is considered a
selfadjoint operator with D(H) = D(H0). A concrete form of H0 which will be useful is
the expression by Fourier transform or by oscillatory integral. Namely for f ∈ D(H0)

H0f(x) = (2π)−n/2

∫
Rn

eixξκ−1|ξ|κf̂(ξ)dξ

= (2π)−n

∫∫
R2n

ei(x−y)ξκ−1|ξ|κf(y)dydξ.

We will use a convention dξ̂ = (2π)−ndξ. Then (1.5) is written as

H0f(x) =

∫∫
R2n

ei(x−y)ξκ−1|ξ|κf(y)dydξ̂.

We denote the symbol of H0 by H0(ξ) = κ−1|ξ|κ.

Example 1.1

i) When κ = 2 we have the usual Schrödinger scattering pair (H0, H) with

H0 = −1

2
∆, H = −1

2
∆ + V.
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ii) When κ = 1 we have a pair (H0, H) of relativistic Hamiltonians such that

H0 =
√
−∆, H =

√
−∆ + V.

The scattering theory for the case κ = 2 is fairly well investigated, while concerning the
relativistic Hamiltonians, it seems that only the work of Wei [9] has dealt with the short-
range perturbations insofar as concerned with the existence and asymptotic completeness
of wave operators. The immediate motivation of the present work was to find a proof of
the asymptotic completeness in the case of long-range perturbations with respect to H0 =√
−∆. In doing so, it is noticed that the more general Hamiltonians H0 = κ−1(−∆)κ/2

are possible to be handled.
Let U0(t) = e−itH0 (t ∈ R) be a unitary group generated by H0.
We mention some basic concepts of micro-local analysis following [4] and [7].
We fix constants a, b with 0 < a < b < ∞ arbitrarily and define a subspace H(a, b) of

H by

H(a, b) = E0([a, b])H, (1.5)

where E0(B) is the spectral measure of the Hamiltonian H0 for Borel sets B ⊂ R.

Let −1 < θ− < θ+ < 1 and let ρ
θ−,θ+

± (τ) ∈ C∞(R) satisfy 0 ≤ ρ
θ−,θ+

± (τ) ≤ 1,

ρ
θ−,θ+

+ (τ) + ρ
θ−,θ+

− (τ) ≡ 1 and

ρ
θ−,θ+

+ (τ) =

{
1 (τ ≥ θ+),
0 (τ ≤ θ−).

Further let χ0(x) ∈ C∞(Rn) with 0 ≤ χ0(x) ≤ 1 satisfy

χ0(x) =

{
1 |x| ≥ 2,
0 |x| ≤ 1.

(1.6)

For an interval ∆ = [a, b] ⊂ R (0 < a < b < ∞) we let γ∆ ∈ C∞
0 ((0,∞)) satisfy

0 ≤ γ∆(ξ) ≤ 1, γ∆(λ) = 1 for λ ∈ ∆ = [a, b], and supp γ∆ ⊂ [a/2, 2b].
For x, ξ ∈ Rn\{0} we set ωx = x/|x| and ωξ = ξ/|ξ|. We then define a real-valued C∞

function p
θ−,θ+

± (x, ξ) by

p
θ−,θ+

± (x, ξ) = ρ
θ−,θ+

± (ωx · ωξ)χ0(x)γ∆(H0(ξ)). (1.7)

We note that for |x| ≥ 2 and a ≤ H0(ξ) = κ−1|ξ|κ ≤ b

p
θ−,θ+

+ (x, ξ) + p
θ−,θ+

− (x, ξ) = 1.

We denote by S = S(Rn) the totality of rapidly decreasing functions on Rn. Then the

pseudodifferential operators P
θ−,θ+

± with symbol functions p
θ−,θ+

± (x, ξ) are defined by

P
θ−,θ+

± f(x) = p
θ−,θ+

± (X,Dx)f(x) = (2π)−n/2

∫
Rn

eixξp
θ−,θ+

± (x, ξ)f̂(ξ)dξ (1.8)
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for f ∈ S, where f̂(ξ) = Ff(ξ) denotes the Fourier transform of f ∈ S as above. Using
oscillatory integral, this is equivalently expressed as follows.

P
θ−,θ+

± f(x) = (2π)−n

∫∫
R2n

ei(x−y)ξp
θ−,θ+

± (x, ξ)f(y)dydξ. (1.9)

The pseudodifferential operators P± = P
θ−,θ+

± with those symbols are extended to bounded

linear operators from H = L2(Rn) into itself. We note that the adjoint operators of P
θ−,θ+

±
are given by

(P
θ−,θ+

± )∗f(x) = (2π)−n

∫∫
R2n

ei(x−y)ξp
θ−,θ+

± (y, ξ)f(y)dydξ (1.10)

for f ∈ S. From the definition of the symbol functions we have a micro-local decomposi-
tion of the identity:

(P
θ−,θ+

+ + P
θ−,θ+

− )f(x) = f(x) (1.11)

for |x| ≥ 2 and f ∈ H(a, b) = E0([a, b])H.

2 Propagation estimates

We prove some estimate corresponding to Lemma 3.3 of [4], Theorem 4.2 in [5] or Theorem
5.7 of [6].

Theorem 2.1 Let 0 < ρ < 1, −1 < θ−−ρ < θ− < θ+ < θ+ +ρ < 1. Let P+ = P
θ+,θ++ρ
+

and P− = P
θ−−ρ,θ−
− be as above. Then we have for any s ≥ 0 and σ ≥ 0

∥⟨x⟩σP−e−itH0P ∗
+⟨x⟩σ∥ ≤ Csσ⟨t⟩−s (t ≥ 0), (2.1)

∥⟨x⟩σP+e−itH0P ∗
−⟨x⟩σ∥ ≤ Csσ⟨t⟩−s (t ≤ 0), (2.2)

where the constant Csσ > 0 is independent of t.

Proof We prove (2.1). The inequality (2.2) is proved similarly. We note that

P−e−itH0P ∗
+f(x) = (2π)−n

∫∫
R2n

ei(xξ−κ−1t|ξ|κ−yξ)p−(x, ξ)p+(y, ξ)f(y)dydξ

for f ∈ S, where p−(x, ξ) = p
θ−−ρ,θ−
− (x, ξ) and p+(y, ξ) = p

θ+,θ++ρ
+ (y, ξ) with −1 < θ−−ρ <

θ− < θ+ < θ+ + ρ < 1. For the sake of convenience, we write p(x, ξ, y) = p−(x, ξ)p+(y, ξ).
Then for (x, ξ, y) ∈ supp p, we have ωx · ωξ ≤ θ−, ωy · ωξ ≥ θ+ and 0 < (2−1κa)1/κ ≤
|ξ| ≤ (2κb)1/κ < ∞. From these follows ωξ · ωx−y ≤ θ+(< 1). If we define the differential
operator L by

L = (1 + |∇ξ(x · ξ − κ−1t|ξ|κ − y · ξ)|2)−1(1 − i∇ξ(x · ξ − κ−1t|ξ|κ − y · ξ) · ∇ξ),
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we have
Lei(x·ξ−κ−1t|ξ|κ−y·ξ) = ei(x·ξ−κ−1t|ξ|κ−y·ξ).

Setting d = (2−1κa)(κ−1)/κ ≤ (2κb)(κ−1)/κ, we have for (x, ξ, y) ∈ supp p and t ≥ 0

|∇ξ(x · ξ − κ−1t|ξ|κ − y · ξ)|2 = |(x − y) − t|ξ|κ−1ωξ|2

= |x − y|2 − 2t|ξ|κ−1ωξ · (x − y) + t2|ξ|2(κ−1)

≥ |x − y|2 − 2θ+t|ξ|κ−1|x − y| + t2|ξ|2(κ−1)

≥ (1 − θ+)(|x − y|2 + t2|ξ|2(κ−1))

≥ (1 − θ+)(|x − y|2 + d2t2)

≥C(1 − θ+)(|x| + dt + |y|)2 (2.3)

for some constant C > 0. By integration by parts we have for an arbitrary integer ℓ ≥ 0

P−e−itH0P ∗
+f = (2π)−n

∫∫
R2n

ei(x·ξ−κ−1t|ξ|κ−y·ξ) (tL)ℓ{p(x, ξ, y)f(y)}dydξ

= (2π)−n

∫∫
R2n

ei(x−y)·ξ[e−κ−1t|ξ|κ(tL)ℓ{p(x, ξ, y)f(y)}]dydξ.

Here tL is the transposed operator of L. From (2.3) we have for any multi-indices α, β, γ

|∂α
x ∂β

ξ ∂γ
y [e−κ−1t|ξ|κ(tL)ℓ{p(x, ξ, y)f(y)}]| ≤ Cαβγ⟨t⟩|β|⟨x⟩−ℓ/3⟨t⟩−ℓ/3⟨y⟩−ℓ/3.

Taking ℓ large enough and Calderón-Vaillancourt theorem conclude the proof of (2.1). ¤

We next prove an estimate corresponding to Theorem 5.6 of [6].

Theorem 2.2 Let P± = P
θ−,θ+

± (−1 < θ− < θ+ < 1) be as above. Then we have for
any s ≥ 0 and s ≥ σ ≥ 0

∥⟨x⟩−se−itH0P ∗
+⟨x⟩σ∥ ≤ Csσ⟨t⟩−s+σ (t ≥ 0), (2.4)

∥⟨x⟩σP−e−itH0⟨x⟩−s∥ ≤ Csσ⟨t⟩−s+σ (t ≥ 0), (2.5)

where the constant Csσ > 0 is independent of t.

Proof We prove (2.5). The inequality (2.4) is proved similarly. It suffices to prove the
case when s ∈ N = {0, 1, 2, . . . }. For f ∈ S, P−e−itH0f is written as follows.

P−e−itH0f = (2π)−n

∫∫
R2n

ei(x−y)·ξp−(x, ξ)(F−1e−iκ−1t|ξ|κFf)(y)dydξ.

Here p−(x, ξ) = p
θ−,θ+

− (x, ξ) = ρ
θ−,θ+

− (ωx · ωξ)χ0(x)γ∆(H0(ξ)) and F−1e−iκ−1t|ξ|κF is ex-
tended to a unitary operator of L2(Rn). Therefore the case s = 0 is obvious by the
definition of p−(x, ξ) and the Calderón-Vaillancourt theorem.

We define

L = (1 + |∇ξ(x · ξ − κ−1t|ξ|κ)|2)−1(1 − i∇ξ(x · ξ − κ−1t|ξ|κ) · ∇ξ).
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Then we have
Lei(x·ξ−κ−1t|ξ|κ) = ei(x·ξ−κ−1t|ξ|κ).

For (x, ξ) ∈ supp p− we have ωx · ωξ ≤ θ+(< 1). Therefore for t ≥ 0

|∇ξ(x · ξ − κ−1t|ξ|κ)|2 = |x − t|ξ|κ−1ωξ|2

= |x|2 − 2t|x||ξ|κ−1ωx · ωξ + t2|ξ|2(κ−1)

≥ 2−1(1 − θ+)(|x| + t|ξ|κ−1)2. (2.6)

Integration by parts yields

P−e−itH0f = (2π)−n/2

∫
Rn

ei(x·ξ−κ−1t|ξ|κ) tL{p−(x, ξ)f̂(ξ)}dξ

= (2π)−n

K∑
k=1

∫∫
R2n

ei(x−y)·ξq1tk(x, ξ)(F−1e−iκ−1t|ξ|κFPk(y)f)(y)dydξ,

where tL is the transposed operator of L, K is an integer, and Pk(y) is a polynomial of y
of degree 1. By virtue of (2.6) the symbol q1tk(x, ξ) on the right-hand side (RHS) satisfies
the following estimate for arbitrary multi-indices α, β.

|(1 + t + |x|){∂α
x ∂β

ξ q1tk(x, ξ)}| ≤ C1αβ,

where C1αβ > 0 is a constant independent of t, x, ξ and 1 ≤ k ≤ K.
Another application of integration by parts gives a symbol q2tk(x, ξ) which satisfies

the following similar estimate.

|(1 + t + |x|)2{∂α
x ∂β

ξ q2tk(x, ξ)}| ≤ C2αβ.

Similarly we obtain for every integer s ∈ N

|(1 + t + |x|)s{∂α
x ∂β

ξ qstk(x, ξ)}| ≤ Csαβ.

These and Calderón-Vaillancourt theorem yield

∥(1 + t + |x|)sP−e−itH0(1 + |x|)−s∥L2→L2 ≤ Cs

for some constant Cs > 0 for each s ∈ N. (1 + t + |x|)s = (1 + t + |x|)s−σ(1 + t + |x|)σ

(s ≥ σ ≥ 0) concludes the proof. ¤

We now prove an estimate corresponding to Theorem 5.5 of [6].

Theorem 2.3 Let q(ξ) ∈ C∞(Rn) satisfy

sup
ξ∈Rn

|∂α
ξ q(ξ)| < ∞ (∀α),

q(ξ) = 0 (|ξ| < d) (∃d > 0).

Then for any s ≥ 0 we have

∥⟨x⟩−sq(Dx)e
−itH0⟨x⟩−s∥ ≤ Cs⟨t⟩−s (t ∈ R), (2.7)

where the constant Cs > 0 is independent of t ∈ R.
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Proof We write for f ∈ S

q(Dx)e
−itH0f(x) = (2π)−n

∫∫
R2n

ei(x−y)ξe−iκ−1t|ξ|κq(ξ)f(y)dydξ. (2.8)

Letting
L = i|∇ξ(−κ−1t|ξ|κ)|−2∇ξ(−κ−1t|ξ|κ) · ∇ξ,

we have
Le−iκ−1t|ξ|κ = e−iκ−1t|ξ|κ .

For ξ ∈ supp q, we have
|ξ| ≥ d(> 0).

Thus integration by parts by using the operator L is possible inside the integral (2.8),
and we get for any integer ℓ ≥ 0

q(Dx)e
−itH0f(x) = (2π)−n

∫∫
R2n

Lℓ(e−iκ−1t|ξ|κ)ei(x−y)ξq(ξ)f(y)dydξ

= (2π)−n

∫∫
R2n

e−iκ−1t|ξ|κ(tL)ℓ(ei(x−y)ξq(ξ))f(y)dydξ. (2.9)

From this and Calderón-Vaillancourt theorem, we obtain

∥⟨x⟩−ℓq(Dx)e
−itH0⟨x⟩−ℓf∥ ≤ Cℓ⟨t⟩−ℓ∥f∥,

which concludes the proof. ¤

3 Phase function

We will treat the problem of the existence and the asymptotic completeness of wave
operators in the framework of two Hilbert spaces by the method we have developed in [4].

In the case of our Hamiltonian H = H0 + V in (1.2), the corresponding propagator is
a unitary group U(t) = e−itH , and the identification operator J between the two Hilbert
spaces is a bounded operator from H = L2(Rn) into itself. The wave operators are defined
as follows. Let W1(t) and W2(t) be defined by

W1(t) = U(−t)JU0(t), W2(t) = U0(−t)J−1U(t),

where U0(t) = exp(−itH0) and U(t) = exp(−itH). Then the wave operators are defined
by

W±
1 f = lim

t→±∞
W1(t)f

for f ∈ H = L2(Rn). The asymptotic completeness means that the range R(W±
1 ) of W±

1

is equal to the continuous spectral subspace Hc of H. This is equivalent to the existence
of the limits

W±
2 f = lim

t→±∞
W2(t)f
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for f ∈ Hc.
The identification operator J is defined as a Fourier integral operator as follows.

Jf(x) = (2π)−n

∫∫
ei(φ(x,ξ)−yξ)f(y)dydξ

= (2π)−n/2

∫
eiφ(x,ξ)f̂(ξ)dξ. (3.1)

Here the phase function φ(x, ξ) is constructed as a solution of an eikonal equation

κ−1|∇xφ(x, ξ)|κ + VL(x) = κ−1|ξ|κ

in the forward and backward regions, in which x ∈ Rn and ξ ∈ Rn are almost parallel and
anti-parallel to each other, respectively.

To construct the phase function φ(x, ξ), we need to consider the classical orbits asso-
ciated with the classical Hamiltonian with κ ≥ 1:

Hρ(t, x, ξ) = κ−1|ξ|κ + Vρ(t, x). (3.2)

Here 0 < ρ < 1 and

Vρ(t, x) = VL(x)χ0(ρx)χ0

(
⟨ log ⟨t⟩⟩

⟨t⟩
x

)
, (3.3)

where χ0(x) is a C∞(Rn) function defined by (1.6). Then Vρ satisfies

|∂α
x Vρ(t, x)| ≤ Cαρδ0⟨t⟩−ℓ⟨x⟩−m (3.4)

for ℓ, m ≥ 0 and 0 < δ0 < δ such that δ0 + ℓ + m < |α| + δ.
The corresponding classical orbit (q, p)(t, s, y, ξ) = (q(t, s, y, ξ), p(t, s, y, ξ)) is deter-

mined by the equation{
q(t, s) = y +

∫ t

s
∇ξHρ(τ, q(τ, s), p(τ, s))dτ = y +

∫ t

s
|p(τ, s)|κ−1ωp(τ,s)dτ,

p(t, s) = ξ −
∫ t

s
∇xHρ(τ, q(τ, s), p(τ, s))dτ = ξ −

∫ t

s
∇xVρ(τ, q(τ, s))dτ,

(3.5)

where ωx = x/|x| for x ∈ Rn. Letting δ0, δ1 > 0 be fixed as 0 < δ0 + δ1 < δ, we have the
following estimates for (q, p)(t, s, y, ξ), which are proved by solving the equation (3.5) by
iteration. For d > 0, we use the notation

Rn
d = {ξ|ξ ∈ Rn, |ξ| ≥ d}.

Proposition 3.1 Let d > 0. Then there are constants ρ > 0 and Cℓ > 0 (ℓ = 0, 1, 2, · · · )
such that for all (y, ξ) ∈ Rn×Rn

d , ±t ≥ ±s ≥ 0 the solutions q, p of (3.5) exist and satisfy

8



for all multi-index α:

|p(s, t, y, ξ) − ξ| + |p(t, s, y, ξ) − ξ| ≤ C0ρ
δ0⟨s⟩−δ1 , (3.6)

|∂α
y [∇yq(s, t, y, ξ) − I]| ≤ C|α|ρ

δ0⟨s⟩−δ1 , (3.7)

|∂α
y [∇yp(s, t, y, ξ)]| ≤ C|α|ρ

δ0⟨s⟩−1−δ1 , (3.8)

|∇ξq(t, s, y, ξ) − (t − s)I| ≤ C0ρ
δ0⟨s⟩−δ1 |t − s|, (3.9)

|∇ξp(t, s, y, ξ) − I| ≤ C0ρ
δ0⟨s⟩−δ1 , (3.10)

|∇yq(t, s, y, ξ) − I| ≤ C0ρ
δ0⟨s⟩−1−δ1 |t − s|, (3.11)

|∇yp(t, s, y, ξ)| ≤ C0ρ
δ0⟨s⟩−1−δ1 , (3.12)

|∂α
ξ [q(t, s, y, ξ) − y − (t − s)|p(t, s, y, ξ)|κ−1ωp(t,s,y,ξ)]|

≤ C|α|ρ
δ0 min(⟨t⟩1−δ1 , |t − s|⟨s⟩−δ1). (3.13)

Further for any α, β satisfying |α + β| ≥ 2, there is a constant Cαβ > 0 such that

|∂α
y ∂β

ξ q(t, s, y, ξ)| ≤ Cαβρδ0 |t − s|⟨s⟩−δ1 , (3.14)

|∂α
y ∂β

ξ p(t, s, y, ξ)| ≤ Cαβρδ0⟨s⟩−δ1 . (3.15)

We remark that the estimate (3.6) automatically holds by (3.4) and (3.5). Then we
can take ρ > 0 so small that |p(s, t, y, ξ)| ≥ c|ξ| > 0 is satisfied with some constant c > 0
since we assume that ξ ∈ Rn

d . So the second term on the RHS of the first equation of
(3.5) is well-defined for (y, ξ) ∈ Rn × Rn

d and the equation (3.5) has the solution.
For the constant C0 > 0 in this proposition, we take ρ > 0 so small that C0ρ

δ0 < 1/2
holds. Then the mapping Tx(y) = x + y − q(s, t, y, ξ) : Rn −→ Rn becomes a contraction.
Therefore there is a unique fixed point y ∈ Rn for every x ∈ Rn such that Tx(y) = y,
whence x = q(s, t, y, ξ). Thus we obtain the following.

Proposition 3.2 Take ρ > 0 so that C0ρ
δ0 < 1/2. Then for ±t ≥ ±s ≥ 0 one can

construct a diffeomorphism of Rn for ξ ∈ Rn
d

x 7→ y(s, t, x, ξ)

such that

q(s, t, y(s, t, x, ξ), ξ) = x. (3.16)

The mapping y(s, t, x, ξ) is C∞ in (x, ξ) ∈ Rn × Rn
d and its derivatives ∂α

x ∂β
ξ y are C1 in

(t, s, x, ξ). Using this diffeomorphism we define for ξ ∈ Rn
d

η(t, s, x, ξ) = p(s, t, y(s, t, x, ξ), ξ). (3.17)

Then η(t, s, x, ξ) is a C∞ mapping from Rn × Rn
d into Rn, and satisfies

p(t, s, x, η(t, s, x, ξ)) = ξ. (3.18)
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They satisfy the relation

y(s, t, x, ξ) = q(t, s, x, η(t, s, x, ξ)) (3.19)

and the estimates for any α, β

|∂α
x ∂β

ξ [∇xy(s, t, x, ξ) − I]| ≤ Cαβρδ0⟨s⟩−δ1 , (3.20)

|∂α
x ∂β

ξ [∇xη(t, s, x, ξ)]| ≤ Cαβρδ0⟨s⟩−1−δ1 , (3.21)

|∂α
ξ [η(t, s, x, ξ) − ξ]| ≤ Cαρδ0⟨s⟩−δ1 , (3.22)

|∂α
ξ [y(s, t, x, ξ) − x − (t − s)|ξ|κ−1ωξ]| ≤ Cαρδ0 min(⟨t⟩1−δ1 , |t − s|⟨s⟩−δ1). (3.23)

Further for any |α + β| ≥ 2

|∂α
x ∂β

ξ η(t, s, x, ξ)| ≤ Cαβρδ0⟨s⟩−δ1 , (3.24)

|∂α
x ∂β

ξ y(s, t, x, ξ)| ≤ Cαβρδ0⟨t − s⟩⟨s⟩−δ1 . (3.25)

Here the constants Cα, Cαβ > 0 are independent of t, s, x, ξ

The following illustration would be helpful to understand the meaning of the diffeo-
morphisms y(s, t, x, ξ) and η(t, s, x, ξ). Let U(t, s) be the map that assigns the point
(q, p)(t, s, x, η) to the initial data (x, η). Then

time s time t x

η(t, s, x, ξ)

 U(t, s)
7−→

 y(s, t, x, ξ)

ξ


We now define ϕ(t, x, ξ) for (x, ξ) ∈ Rn × Rn

d by

ϕ(t, x, ξ) = u(t, x, η(t, 0, x, ξ)),

where

u(t, x, η) = x · η +

∫ t

0

(Hρ − x · ∇xHρ)(τ, q(τ, 0, x, η), p(τ, 0, x, η))dτ.

Then it is shown by a direct calculation that ϕ(t, x, ξ) satisfies the Hamilton-Jacobi equa-
tion {

∂tϕ(t, x, ξ) = κ−1|ξ|κ + Vρ(t,∇ξϕ(t, x, ξ)),
ϕ(0, x, ξ) = x · ξ, (3.26)

and the relation {
∇xϕ(t, x, ξ) = η(t, 0, x, ξ),
∇ξϕ(t, x, ξ) = y(0, t, x, ξ).

(3.27)
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We define for (x, ξ) ∈ Rn × Rn
d

ϕ±(x, ξ) = lim
t→±∞

(ϕ(t, x, ξ) − ϕ(t, 0, ξ)). (3.28)

We will show the existence of the limits below. We set d1 = 2d and for R > 0, d2 > d1 > 0
and σ0 ∈ (−1, 1)

Γ± = Γ±(R, d1, d2, σ0)

= {(x, ξ) ∈ R2n| |x| ≥ R, d1 ≤ |ξ| ≤ d2,± cos(x, ξ) ≥ ±σ0},

where we used a convention cos(x, ξ) = ωx · ωξ = (x · ξ)/(|x||ξ|).

Proposition 3.3 The limits (3.28) exist for all (x, ξ) ∈ Rn×Rn
d and define C∞ functions

of (x, ξ) ∈ Rn × Rn
d . The limit ϕ±(x, ξ) satisfies the eikonal equation: For any d2 >

d1 = 2d > 0 and σ0 ∈ (−1, 1), there is a constant R = Rd1,d2,σ0 > 1 such that for any
(x, ξ) ∈ Γ± = Γ±(R, d1, d2, σ0), the following relation holds:

κ−1|∇xϕ±(x, ξ)|κ + VL(x) = κ−1|ξ|κ. (3.29)

Further for any α, β we have the estimate:

|∂α
x ∂β

ξ (ϕ±(x, ξ) − x · ξ)| ≤ Cαβ|ξ|1−κ⟨x⟩1−|α|−δ, (3.30)

where Cαβ > 0 is independent of (x, ξ) ∈ Γ±.

Proof: We consider ϕ+ only. ϕ− can be treated similarly. We first prove the existence of
the limit (3.28) for t → +∞ and (x, ξ) ∈ Rn × Rn

d . To do so, setting

R(t, x, ξ) = ϕ(t, x, ξ) − ϕ(t, 0, ξ),

we show the existence of the limits

lim
t→∞

∂α
x ∂β

ξ R(t, x, ξ) = lim
t→∞

∫ t

0

∂α
x ∂β

ξ ∂tR(τ, x, ξ)dτ + ∂α
x ∂β

ξ (x · ξ).

By Hamilton-Jacobi equation (3.26),

∂tR(t, x, ξ) = ∂tϕ(t, x, ξ) − ∂tϕ(t, 0, ξ)

= Vρ(t,∇ξϕ(t, x, ξ)) − Vρ(t,∇ξϕ(t, 0, ξ))

= (∇ξϕ(t, x, ξ) −∇ξϕ(t, 0, ξ)) · a(t, x, ξ)

= (y(0, t, x, ξ) − y(0, t, 0, ξ)) · a((t, x, ξ)

=∇ξR(t, x, ξ) · a(t, x, ξ), (3.31)

where

a(t, x, ξ) =

∫ 1

0

(∇xVρ)(t,∇ξϕ(t, 0, ξ) + θ∇ξR(t, x, ξ))dθ, (3.32)

∇ξR(t, x, ξ) = x ·
∫ 1

0

(∇xy)(0, t, θx, ξ)dθ. (3.33)

11



By (3.20), we have for any α, β

|∂α
x ∂β

ξ ∇ξR(t, x, ξ)| ≤ Cαβ⟨x⟩. (3.34)

By (3.23) and (3.27), for |β| ≥ 1

|∂β
ξ ∇ξϕ(t, 0, ξ)| ≤ Cβ|t|(1 + |ξ|κ−1−|β|). (3.35)

Noting

∂β
ξ (f(g(ξ)) =

∑
k≤|β|

∑
β1+···+βk=β,|βj |≥1

ck,{βj}∇k
xf(g(ξ))

k∏
j=1

∂
βj

ξ g(ξ), (3.36)

we have from (3.32), (3.34) and (3.35)

|∂α
x ∂β

ξ a(t, x, ξ)| ≤ Cαβ⟨t⟩−1−δ/2⟨x⟩|α|+|β|
∑
k≤|β|

β1+···+βk=β,|βj |≥1

k∏
j=1

(1 + |ξ|κ−1−|βj |).

(3.37)

Thus by (3.31), (3.34) and (3.37), there exists the limit for any α, β and (x, ξ) ∈ Rn ×Rn
d

lim
t→∞

∂α
x ∂β

ξ R(t, x, ξ) =

∫ ∞

0

∂α
x ∂β

ξ (∇ξR(t, x, ξ) · a(t, x, ξ)) dt + ∂α
x ∂β

ξ (x · ξ).

In particular, ϕ+(x, ξ) = limt→∞ R(t, x, ξ) and η(∞, 0, x, ξ) = limt→∞∇xϕ(t, x, ξ) exist
and are C∞ in (x, ξ) ∈ Rn × Rn

d .
Next we show (3.29). By the arguments above, the following limit exist:

∇xϕ+(x, ξ) = lim
t→∞

∇xϕ(t, x, ξ) = lim
t→∞

η(t, 0, x, ξ)

= lim
t→∞

p(0, t, y(0, t, x, ξ), ξ).

Thus for a sufficiently large |x| (i.e. for |ρx| ≥ 2) we have

κ−1|∇xϕ+(x, ξ)|κ + VL(x) = κ−1 lim
t→∞

|p(0, t, y(0, t, x, ξ), ξ)|κ + Vρ(0, x). (3.38)

Set for 0 ≤ s ≤ t < ∞

ft(s, y, ξ) = κ−1|p(s, t, y, ξ)|κ + Vρ(s, q(s, t, y, ξ)).

Then by (3.5) we have

∂ft

∂s
(s, y, ξ) = |p(s, t, y, ξ)|κ−1ωp(s,t,y,ξ) · ∂sp(s, t, y, ξ)

+(∇xVρ)(s, q(s, t, y, ξ)) · ∂sq(s, t, y, ξ) +
∂Vρ

∂t
(s, q(s, t, y, ξ))

=
∂Vρ

∂t
(s, q(s, t, y, ξ)).
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On the other hand we have from (3.16), (3.17), (3.18) and (3.19)

q(s, t, y(0, t, x, ξ), ξ) = q(s, t, q(t, 0, x, η(t, 0, x, ξ)), ξ)

= q(s, 0, x, η(t, 0, x, ξ)),

p(s, t, y(0, t, x, ξ), ξ) = p(s, t, q(t, 0, x, η(t, 0, x, ξ)), ξ)

= p(s, 0, x, η(t, 0, x, ξ)).

Now using Proposition 3.1, we have for cos(x, ξ) ≥ σ0

|q(s, t, y(0, t, x, ξ), ξ)| = |q(s, 0, x, η(t, 0, x, ξ))|
≥ |x + s|p(s, 0, x, η(t, 0, x, ξ))|κ−1ωp(s,0,x,η(t,0,x,ξ))| − C0ρ

δ0⟨s⟩1−δ1

= |x + s|p(s, t, y(0, t, x, ξ), ξ)|κ−1ωp(s,t,y(0,t,x,ξ),ξ)| − C0ρ
δ0⟨s⟩1−δ1

≥ c(|x| + s|ξ|κ−1) − C0ρ
δ0⟨s⟩1−δ1 − C0ρ

δ0⟨s⟩1−δ1 ,

where c > 0 is a constant independent of s, t, x, ξ. By (x, ξ) ∈ Γ+(R, d1, d2, σ0), we have
d2 ≥ |ξ| ≥ d1, and from the definition (3.3) of Vρ(t, x)

supp
∂Vρ

∂t
(s, x) ⊂ {x|1 ≤ ⟨ log ⟨s⟩⟩|x|/⟨s⟩ ≤ 2}.

Thus there is a constant S = Sd1,d2,σ0 > 1 independent of t such that for any s ∈ [S, t]

∂ft

∂s
(s, y(0, t, x, ξ), ξ) = 0.

For s ∈ [0, S], taking R = RS > 1 large enough, we have for |x| ≥ R and cos(x, ξ) ≥ σ0

∂ft

∂s
(s, y(0, t, x, ξ), ξ) = 0.

Therefore we have shown that for (x, ξ) ∈ Γ+(R, d1, d2, σ0)

ft(s, y(0, t, x, ξ), ξ) = constant for 0 ≤ s ≤ t < ∞.

In particular we have

ft(0, y(0, t, x, ξ), ξ) = ft(t, y(0, t, x, ξ), ξ),

which means

κ−1|p(0, t, y(0, t, x, ξ), ξ)|κ + Vρ(0, x) = κ−1|ξ|κ + Vρ(t, y(0, t, x, ξ)).

Since Vρ(t, y) → 0 uniformly in y ∈ Rn when t → ∞ by (3.4), we have from this and
(3.38)

κ−1|∇xϕ+(x, ξ)|κ + VL(x) = κ−1|ξ|κ for (x, ξ) ∈ Γ+(R, d1, d2, σ0),

if R > 1 is sufficiently large.
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We finally prove the estimates (3.30). We first consider the derivatives with respect
to ξ:

∂β
ξ (ϕ+(x, ξ) − x · ξ) =

∫ ∞

0

∂β
ξ ∂tR(t, x, ξ)dt, (3.39)

where R(t, x, ξ) = ϕ(t, x, ξ) − ϕ(t, 0, ξ) as above. Set

γ(t, x, ξ) = y(0, t, x, ξ) − (x + t|ξ|κ−1ωξ)

for (x, ξ) ∈ Γ+(R, d1, d2, σ0). Then by (3.23) we have for θ ∈ [0, 1]

|∇ξϕ(t, 0, ξ) + θ∇ξR(t, x, ξ)| = |y(0, t, 0, ξ) + θ(y(0, t, x, ξ) − y(0, t, 0, ξ))|
= |t|ξ|κ−1ωξ + γ(t, 0, ξ) + θ(x + γ(t, x, ξ) − γ(t, 0, ξ))|
= |θx + t|ξ|κ−1ωξ + (1 − θ)γ(t, 0, ξ) + θγ(t, x, ξ)|
≥ c0(θ|x| + t|ξ|κ−1) − c1ρ

δ0 min(⟨t⟩1−δ1 , |t|) (3.40)

for some constants c0, c1 > 0 independent of x, ξ, θ and t ≥ 0. Thus there are constants
ρ ∈ (0, d) and T = Td1,d2,σ0 > 0 such that for all t ≥ T and (x, ξ) ∈ Γ+(R, d1, d2, σ0)

⟨∇ξϕ(t, 0, ξ) + θ∇ξR(t, x, ξ)⟩−1 ≤ C⟨θ|x| + t|ξ|κ−1⟩−1.

Therefore a(t, x, ξ) defined by (3.32) satisfies by (3.34)-(3.36)

|∂β
ξ a(t, x, ξ)| ≤ Cβ

∫ 1

0

∑
k≤|β|

β1+···+βk=β,|βj |≥1

⟨θ|x| + t|ξ|κ−1⟩−1−δ−k ×

×
k∏

j=1

⟨θ|x| + t(1 + |ξ|κ−1−|βj |)⟩dθ. (3.41)

Using (3.40), we see that (3.41) holds also for t ∈ [0, T ] if we take ρ > 0 small enough.
Therefore for all (x, ξ) ∈ Γ+(R, d1, d2, σ0) we have from (3.31), (3.34), (3.39) and (3.41)

|∂β
ξ (ϕ+(x, ξ) − x · ξ)|

≤ CT,β,d1,d2⟨x⟩
∑
k≤|β|

ℓ1+···+ℓk=|β|,ℓj≥1

∫ ∞

0

∫ 1

0

⟨θ|x| + t|ξ|κ−1⟩−1−δ−k
k∏

j=1

⟨θ|x| + t(1 + |ξ|κ−1−ℓj)⟩dθdt

≤ CT,β,d1,d2⟨x⟩|ξ|1−κ

∫ 1

0

∫ ∞

0

⟨θ|x| + τ⟩−1−δdτdθ

≤ CT,β,d1,d2⟨x⟩
1−δ|ξ|1−κ.
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We next consider

∇xϕ+(x, ξ) − ξ = lim
t→∞

(∇xϕ(t, x, ξ) − ξ)

= lim
t→∞

(p(0, t, y(0, t, x, ξ), ξ) − ξ)

= lim
t→∞

∫ t

0

(∇xVρ) (τ, q(τ, t, y(0, t, x, ξ), ξ)) dτ

= lim
t→∞

∫ t

0

(∇xVρ) (τ, q(τ, 0, x, η(t, 0, x, ξ))) dτ

=

∫ ∞

0

(∇xVρ) (τ, q(τ, 0, x, η(∞, 0, x, ξ))) dτ.

By (3.6) and (3.13) of Proposition 3.1

|q(τ, 0, x, η(∞, 0, x, ξ))| ≥ |x + τ |p(τ, 0, x, η(∞, 0, x, ξ))|κ−1ωp(τ,0,x,η(∞,0,x,ξ))| − C0ρ
δ0⟨τ⟩1−δ1

≥ |x + τ |p(τ,∞, y(0,∞, x, ξ), ξ)|κ−1ωp(τ,∞,y(0,∞,x,ξ),ξ)| − C0ρ
δ0⟨τ⟩1−δ1

≥ c0(|x| + τ |ξ|κ−1) − C0ρ
δ0⟨τ⟩1−δ1 − C0ρ

δ0⟨τ⟩1−δ1

for some constant c1 > 0 and for all (x, ξ) ∈ Γ+(R, d1, d2, σ0). Thus taking ρ > 0 suffi-
ciently small and R = Rd1,d2,σ0,ρ > 1 sufficiently large, we have for (x, ξ) ∈ Γ+(R, d1, d2, σ0)

|q(τ, 0, x, η(∞, 0, x, ξ))| ≥ c0(|x| + τ |ξ|κ−1)

for some constant c0 > 0. Therefore we obtain

|∇xϕ+(x, ξ) − ξ| ≤ C

∫ ∞

0

⟨|x| + τ |ξ|κ−1⟩−1−δdτ ≤ C|ξ|1−κ⟨x⟩−δ.

For higher derivatives, the proof is similar. For example let us consider

∂ξ∂xϕ+(x, ξ) − I =

∫ ∞

0

∂ξ{(∇xVρ) (τ, q(τ, 0, x, η(∞, 0, x, ξ)))}dτ

=

∫ ∞

0

(∇x∇xVρ) (τ, q(τ, 0, x, η(∞, 0, x, ξ)))∇ξq · ∇ξηdτ,

where we abbreviated q = q(τ, 0, x, η(∞, 0, x, ξ)) and η = η(∞, 0, x, ξ). The RHS is
bounded by a constant times∫ ∞

0

⟨|x| + τ |ξ|κ−1⟩−2−δ⟨τ |ξ|κ−2⟩dτ ≤ cd1,d2 |ξ|1−κ⟨x⟩−δ

for (x, ξ) ∈ Γ+(R, d1, d2, σ0) by (3.9) and (3.22) of Propositions 3.1 and 3.2. Other esti-
mates are proved similarly by using (3.9), (3.14), (3.22) and (3.24). ¤

Now let −1 < σ− < σ+ < 1 and take two functions ψ±(σ) ∈ C∞([−1, 1]) such that

0 ≤ ψ±(σ) ≤ 1,

ψ+(σ) =

{
1, σ+ ≤ σ ≤ 1
0, −1 ≤ σ ≤ σ−

,

ψ−(σ) = 1 − ψ+(σ) =

{
0, σ+ ≤ σ ≤ 1
1, −1 ≤ σ ≤ σ−

,
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and set

χ±(x, ξ) = ψ±(cos(x, ξ)).

We then define the phase function φ(x, ξ) by

φ(x, ξ) = {(ϕ+(x, ξ) − x · ξ)χ+(x, ξ) + (ϕ−(x, ξ) − x · ξ)χ−(x, ξ)}χ0(2ξ/d1)χ0(2x/R) + x · ξ,
(3.42)

where χ0(x) is the function defined by (1.6). The function φ(x, ξ) is a C∞ function of
(x, ξ) ∈ R2n by d1 = 2d.

Noting that χ+(x, ξ) + χ−(x, ξ) ≡ 1 for x ̸= 0, ξ ̸= 0, we have proved the following
theorem.

Theorem 3.4 Let the notations be as above. Then for any d2 > d1 > 0 and −1 < σ− <
σ+ < 1, there is R = Rd1,d2,σ± > 1 such that the following holds:

i) For d2 ≥ |ξ| ≥ d1, |x| ≥ R and cos(x, ξ) ≥ σ+ or cos(x, ξ) ≤ σ−

κ−1|∇xφ(x, ξ)|κ + VL(x) = κ−1|ξ|κ. (3.43)

ii) For any multi-indices α, β there is a constant Cαβ > 0 such that for d2 ≥ |ξ| ≥ d1

and x ∈ Rn

|∂α
x ∂β

ξ (φ(x, ξ) − x · ξ)| ≤ Cαβ⟨x⟩1−δ−|α|⟨ξ⟩1−κ. (3.44)

In particular for |α| ̸= 0, by virtue of (3.42) we have for δ0, δ1 ≥ 0 with δ0 + δ1 = δ

|∂α
x ∂β

ξ (φ(x, ξ) − x · ξ)| ≤ CαβR−δ0⟨x⟩1−δ1−|α|⟨ξ⟩1−κ. (3.45)

iii) Set for f ∈ S

Tf(x) = (HJ − JH0)f(x). (3.46)

Then we have

Tf(x) =

∫∫
ei(φ(x,ξ)−yξ){a(x, ξ) + VS(x)}f(y)dydξ̂. (3.47)

Here

a(x, ξ) = κ−1|∇xφ(x, ξ)|κ + VL(x) − κ−1|ξ|κ + r(x, ξ), (3.48)

where

r(x, ξ) = −i

∫∫
ei(x−y)η∇y ·

(∫ 1

0

|∇̃xφ(x, ξ, y) + θη|κ−2(∇̃xφ(x, ξ, y) + θη)dθ

)
dydη̂,

(3.49)
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and

∇̃xφ(x, ξ, y) =

∫ 1

0

∇xφ(y + θ(x − y), ξ)dθ.

The symbol a(x, ξ) satisfies for d2 ≥ |ξ| ≥ d1, |x| ≥ R and any α, β

|∂α
x ∂β

ξ a(x, ξ)| ≤

{
Cαβ⟨x⟩−1−δ−|α|⟨ξ⟩1−κ, cos(x, ξ) ∈ [−1, σ−] ∪ [σ+, 1],

Cαβ⟨x⟩−δ−|α|, cos(x, ξ) ∈ [σ−, σ+].
(3.50)

We remark that the factor ⟨ξ⟩1−κ in the bounds above is effective just in each region
d1 ≤ |ξ| ≤ d2 and the constant Cαβ depends on d1 and d2.

We recall the definition of J . It is defined for f ∈ S

Jf(x) =

∫∫
ei(φ(x,ξ)−yξ)f(y)dydξ̂.

Since the regions Γ±(R, d1, d2, σ0) of definition for the phase function φ(x, ξ) are enlarged
if we wait enough until late or early time t near +∞ or −∞, they in total cover the whole
region Rn × (Rn \ {0}). Thus J is regarded to have been defined on the whole Hilbert
space H = L2(Rn). When it is thought to be constructed in such a way, this J is known
(Theorem 3.3 in [5]) to have a bounded inverse J−1. Thus we can define W1(t) and W2(t)
as follows:

W1(t) = U(−t)JU0(t), W2(t) = U0(−t)J−1U(t),

where U0(t) = e−itH0 and U(t) = e−itH .
We assume that f ∈ Hc(a, b) = EH([a, b])Hc with 0 < a < b < ∞, where EH(B)

denotes the spectral measure for the Hamiltonian H and Hc is the continuous spectral
subspace for H. As our propagators U(t) and U0(t) are unitary operators, we can consider
the two limits

W±
2 = s- lim

t→±∞
W2(t).

We consider the asymptotic behavior of U(t)f for f ∈ Hc(a, b). Let the pseudodiffer-

ential operators P± = P
θ−,θ+

± (−1 < θ− < θ+ < 1) be defined as in (1.8) or (1.9) with the
same constants 0 < a < b < ∞ as above. We take d1 = (2−1κa)1/κ and d2 = (2κb)1/κ in
Theorem 3.4 and define the phase function φ and the identification operator J accordingly.
Using those, we calculate as follows for t ∈ R.

U(t)P ∗
± = (U(t) − JU0(t)J

−1)P ∗
± + JU0(t)J

−1P ∗
±

= U(t)(I − U(−t)JU0(t)J
−1)P ∗

± + JU0(t)J
−1P ∗

±

=−U(t)

∫ t

0

d

dσ

(
U(−σ)JU0(σ)J−1

)
P ∗
±dσ + JU0(t)J

−1P ∗
±

=−iU(t)K±(t) + JU0(t)J
−1P ∗

±, (3.51)

where

K±(t) =

∫ t

0

U(−σ)(HJ − JH0)U0(σ)J−1P ∗
±dσ. (3.52)

17



We note that we can write for f ∈ S with using the function a(x, ξ) in Theorem 3.4-iii)
(3.48)

(HJ − JH0)f(x) = (2π)−n/2

∫
Rn

eiφ(x,ξ){a(x, ξ) + VS(x)}f̂(ξ)dξ. (3.53)

Therefore, if we take −1 < θ− = σ+ + ρ < θ+ < 1 for some ρ > 0 and the constant
σ+ ∈ (−1, 1) of Theorem 3.4, K+(t) defines a compact operator on H and converges to a
compact operator K+ of H = L2(Rn) in operator norm when t → +∞ by Theorems 2.1
– 2.3, Theorem 3.4 and the factor γ∆(H0(ξ)) in the symbol p±(x, ξ) in (1.7) with some
calculation of Fourier integral and pseudodifferential operators (section 6.3 [6]). Similarly
if we take −1 < θ− < θ+ = σ− − ρ < 1 for some ρ > 0 and the constant σ− ∈ (−1, 1)
of Theorem 3.4, K−(t) converges to a compact operator K− of H = L2(Rn) in operator
norm when t → −∞ by the same reason. Therefore we have proved that for t ∈ R

J−1U(t)P ∗
± = −iJ−1U(t)K±(t) + U0(t)J

−1P ∗
±, (3.54)

where the first term is a compact operator on H. This means that the operator J−1U(t)P ∗
±

behaves like U0(t)J
−1P ∗

± except for a compact operator −iJ−1U(t)K±(t).
Summarizing the arguments up to here we have proved the following theorem.

Theorem 3.5 When t ≥ 0, let −1 < θ− = σ+ + ρ < θ+ < 1 for some ρ > 0 and the
constant σ+ ∈ (−1, 1) of Theorem 3.4, and when t ≤ 0 let −1 < θ− < θ+ = σ− − ρ < 1

for some ρ > 0 and the constant σ− ∈ (−1, 1) of Theorem 3.4, and define P± = P
θ−,θ+

± by
(1.8) or (1.9) with 0 < a = 2κ−1(d1)

κ < b = 2−1κ−1(d2)
κ < ∞. Then for t ∈ R

J−1U(t)P ∗
± = −iJ−1U(t)K±(t) + U0(t)J

−1P ∗
±, (3.55)

where K±(t) in the first term on the right hand side is a compact operator on H and
converges to a compact operator K± on H in operator norm as t → ±∞.

4 Asymptotic behavior of scattering state

Finally we will see an asymptotic behavior of U(t)f when f ∈ H = L2(Rn) is a scattering
state, i.e. when it belongs to Hc(a, b) for 0 < a < b < ∞. As the proof of Lemma 3.4
in [6] holds for the case of our Hamiltonian H in (1.2), we have that Theorem 3.2 of [6]
holds for our case. Namely we have the following.

Lemma 4.1 Let H be a separable Hilbert space, and let H be a selfadjoint operator in
H. We assume that B(t) (t ∈ R) is a continuous family of uniformly bounded operators
with respect to t in uniform operator topology, and that K is a compact operator in H.
Let Pc be the orthogonal projection onto the continuous spectral subspace Hc(⊂ H) of H.
Then we have

lim
T→±∞

∥∥∥∥ 1

T

∫ T

0

B(t)Ke−itHPcdt

∥∥∥∥ = 0. (4.1)
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Proof This is essentially Proposition 5.1 of Enss [3]. For the sake of completeness we
repeat the proof. As the Hilbert space H is separable, the compact operator KPc is
approximated by operators of finite rank in operator norm. Thus we can assume that
KPc is a one dimensional operator KPcf = (f, ϕ)ψ for ϕ ∈ Hc and ψ ∈ H. (Note that
Ke−itHPc = KPce

−itH .) We compute with writing KPc just as K∥∥∥∥ 1

T

∫ T

0

B(t)Ke−itHPcdt

∥∥∥∥2

=

∥∥∥∥ 1

T

∫ T

0

B(t)Ke−itHdt

∥∥∥∥2

=

∥∥∥∥ 1

T

∫ T

0

eitHK∗B(t)∗dt

∥∥∥∥2

= sup
∥f∥=1

∥∥∥∥ 1

T

∫ T

0

eitHK∗B(t)∗fdt

∥∥∥∥2

= sup
∥f∥=1

1

T 2

∫ T

0

∫ T

0

(B(t)∗f, ψ)(ψ,B(s)∗f)(e−i(s−t)Hϕ, ϕ)dsdt

≤C
1

T 2

∫ T

0

∫ T

0

|(e−i(s−t)Hϕ, ϕ)|dsdt

≤C
1

T

∫ T

−T

|(e−itHϕ, ϕ)|dt,

where C = ∥ψ∥2 supt∈R ∥B(t)∥2. By Schwarz inequality, the RHS is bounded by

√
2C

(
1

T

∫ T

−T

|(e−itHϕ, ϕ)|2dt

) 1
2

.

Noting that the function µ(λ) = (EH(λ)ϕ, ϕ) is monotonically increasing and bounded,
we calculate the formula inside the parentheses as follows.

1

T

∫ T

−T

∫
R

∫
R

e−i(λ−λ′)tdµ(λ)dµ(λ′)dt = 2

∫
R

∫
R

sin{(λ − λ′)T}
(λ − λ′)T

dµ(λ)dµ(λ′).

Dividing the integration region Rλ × Rλ′ into |λ − λ′| ≤ ϵ and the other, we obtain a
bound:

2

∫
|λ−λ′|≤ϵ

dµ(λ)dµ(λ′) +
2

ϵT
.

Utilizing the fact that the measure generated by µ(λ) is bounded continuous by ϕ ∈ Hc,
we can show that the first term is arbitrarily small if we take ϵ > 0 small enough. The
second term goes to 0 when letting T → ∞. ¤

From this follows the following.
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Lemma 4.2 For any f ∈ Hc(a, b) (0 < a < b < ∞) with ⟨x⟩2f ∈ H = L2(Rn), there
exists a sequence tk → ±∞ as k → ±∞ such that for any ϕ ∈ C∞

0 (R) and R > 0

∥χ{x∈Rn||x|<R}U(tk)f∥ → 0, (4.2)

∥(ϕ(H) − ϕ(H0))U(tk)f∥ → 0, (4.3)∥∥∥∥(
x

tk
− |Dx|κ−2Dx

)
U(tk)f

∥∥∥∥ → 0 (4.4)

as k → ±∞, where D = Dx = −i∂x and χB denotes the characteristic function of a set
B.

Proof In fact the relation (4.2) is a consequence of Lemma 4.1 and the fact that χ{x∈Rn||x|<R}
EH([a, b]) is a compact operator. The relation (4.3) follows from (4.2). To prove the re-
lation (4.4) we compute∥∥∥(x

t
− |D|κ−2D

)
e−itHf

∥∥∥2

=

(
f, eitH

(x

t
− |D|κ−2D

)2

e−itHf

)
=

1

t2
(f, (eitHx2e−itH − x2)f) − 2

t
(f, eitHAκe

−itHf) + (f, eitH |D|2(κ−1)e−itHf) +
1

t2
(f, x2f),

(4.5)

where we set

Aκ =
1

2
(x · D|D|κ−2 + |D|κ−2D · x).

By direct calculation we have

i[H0, x
2] = i(H0x

2 − x2H0) = 2Aκ.

This gives that the first term on the RHS of (4.5) is equal to

1

t2

∫ t

0

(f, eisHi[H0, x
2]e−isHf)ds =

2

t2

∫ t

0

(f, eisHAκe
−isHf)ds.

Therefore the sum of the first term and the second term on the RHS of (4.5) is equal to

D(t) =
2

t2

(∫ t

0

(f, eisHAκe
−isHf)ds − t(f, eitHAκe

−itHf)

)
=

1

t2

∫ t

0

d(τ 2D)

dτ
(τ)dτ

= − 2

t2

∫ t

0

s(f, eisHi[H,Aκ]e
−isHf)ds.

= − 2

t2

∫ t

0

s(f, eisHi[H0, Aκ]e
−isHf)ds − 2

t2

∫ t

0

s(f, eisHi[V,Aκ]e
−isHf)ds.

(4.6)

We need the following lemma.
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Lemma 4.3 We have
i[H0, Aκ] = |D|2(κ−1).

Proof Using oscillatory integrals, we compute for f ∈ S.

i[H0, Aκ]f(x) =
i

2
κ−1

∫∫
ei(x−y)ξ|ξ|κ

∫∫
ei(y−z)η(y + z) · η|η|κ−2f(z)dzdη̂dydξ̂

− i

2
κ−1

∫∫
e(x+y)ξ(x + y) · ξ|ξ|κ−2

∫∫
ei(y−z)η|η|κf(z)dzdη̂dydξ̂.

Changing the order of integrations, we write this as a sum of the three terms as follows.

i[H0, Aκ]f(x) = I + II + III, (4.7)

where

I =
i

2
κ−1

∫∫
ei(x−z)ξ

∫∫
ei(y−z)(η−ξ)(|ξ|κy · η|η|κ−2 − |ξ|κ−2y · ξ|η|κ)dydη̂f(z)dzdξ̂,

II =
i

2
κ−1

∫∫
ei(x−z)ξ

∫∫
ei(y−z)(η−ξ)|ξ|κz · η|η|κ−2dydη̂f(z)dzdξ̂,

III = − i

2
κ−1

∫∫
ei(x−z)ξ

∫∫
ei(y−z)(η−ξ)|ξ|κ−2x · ξ|η|κdydη̂f(z)dzdξ̂.

By Fourier’s inversion formula, the second and the third terms are equal to

II =
i

2
κ−1

∫∫
ei(x−z)ξz · ξ|ξ|2(κ−1)f(z)dzdξ̂,

III = − i

2
κ−1

∫∫
ei(x−z)ξx · ξ|ξ|2(κ−1)f(z)dzdξ̂.

We have by direct calculation with using integration by parts

II + III =− i

2
κ−1

∫∫
Dξ(e

i(x−z)ξ) · ξ|ξ|2(κ−1)f(z)dzdξ̂

=
1

2
κ−1(n + 2(κ − 1))|D|2(κ−1)f(x). (4.8)

We decompose the first term as follows.

I = M + R,

where

M =
i

2
κ−1

∫∫
ei(x−z)ξ

∫∫
Dη(e

i(y−z)(η−ξ)) · {η|ξ|κ|η|κ−2 − ξ|ξ|κ−2|η|κ}dydη̂f(z)dzdξ̂,

R =
i

2
κ−1

∫∫
ei(x−z)ξ

∫∫
ei(y−z)(η−ξ)(|ξ|κ|η|κ−2η − |ξ|κ−2|η|κξ) · zdydη̂f(z)dzdξ̂.
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The term R obviously vanishes so that we have the following by integration by parts and
some computation.

I = −1

2
κ−1(n − 2)|D|2(κ−1)f(x). (4.9)

Taking the sum of (4.8) and (4.9), we obtain the lemma. ¤

Applying the lemma to (4.6) we obtain from (4.5)∥∥∥(x

t
− |D|κ−2D

)
e−itHf

∥∥∥2

= − 2

t2

∫ t

0

s(f, eisH |D|2(κ−1)e−isHf)ds + (f, eitH |D|2(κ−1)e−itHf)

− 2

t2

∫ t

0

s(f, eisHi[V,Aκ]e
−isHf)ds +

1

t2
(f, x2f) (4.10)

By the assumption on the initial state f , the last term goes to 0 as t → ∞. Further from
the assumptions on potentials and the initial state f we have from Lemma 4.1 that the
third term goes to 0 as t → ∞. To treat the first and second terms, we set

H(t) =
2

t2

∫ t

0

s(f, eisH |D|2(κ−1)e−isHf)ds.

Then the sum of the first and second terms on the RHS of (4.10) is equal to

t

2

dH

dt
(t).

From the definition of the function H(t) and the assumptions κ ≥ 1 and f ∈ Hc(a, b),
we see that H(t) (t > 1) is a real-valued, continuously differentiable, uniformly bounded
function, and that its derivative with respect to t tends to 0 as t → ∞. Then we can
apply Lemma 8.15 of [2] to find a sequence Tk → ∞ as k → ∞ for each positive constant
A > 1 such that

lim
k→∞

1

A

∫ Tk+A

Tk

t
dH

dt
(t)dt = 0.

This together with the above-mentioned properties of the third and fourth terms yields
that there is a sequence tk → ∞ as k → ∞ such that∥∥∥∥(

x

tk
− |D|κ−2D

)
e−itkHf

∥∥∥∥ → 0

as k → ∞. The case t → −∞ is treated similarly. The proof of Lemma 4.2 is complete.
¤

The relation (4.4) in particular implies that the configuration x is proportional to
momentum ±ξ in phase space asymptotically as t → ±∞. As a consequence, the relation

lim
t→±∞

P ∗
∓U(t)f = 0. (4.11)
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holds for f ∈ Hc(a, b) when t tends to ±∞ along the sequence t = tk → ±∞ (k → ±∞)
given above. The relation (4.2) implies that w- limk→±∞ U(tk)f = 0.

Summing up we have the following theorem.

Theorem 4.4 For any f ∈ Hc(a, b) there is a sequence tk → ±∞ as k → ±∞ such that

lim
k→±∞

P ∗
∓U(tk)f = 0, (4.12)

w- lim
k→±∞

U(tk)f = 0, (4.13)

and for any ϕ ∈ C∞
0 (R)

∥(ϕ(H) − ϕ(H0))U(tk)f∥ → 0 (k → ±∞). (4.14)

5 Asymptotic Completeness

We now prove the existence and asymptotic completeness of W±
1 . For this purpose, as

we have stated at the beginning of section 3, it suffices to prove the existence of the two
limits:

W±
1 f = lim

t→±∞
W1(t)f (∀f ∈ H = L2(Rn)),

W±
2 g = lim

t→±∞
W2(t)g (∀g ∈ Hc).

The existence of W±
1 is proved similarly to and more easily than that of the existence of

W±
2 , and the case t → −∞ is treated similarly to the case t → ∞. Therefore we will

consider the existence of the limit

W+
2 f = lim

t→∞
W2(t)f (5.1)

for f ∈ Hc(a, b) and 0 < a < b < ∞. For this purpose we will prove that for f ∈ Hc(a, b)

W2(t + s)f − W2(t)f = U0(−t − s)J−1U(t + s)f − U0(−t)J−1U(t)f

=
{
U0(−t − s)J−1U(s) − U0(−t)J−1

}
U(t)f (5.2)

converges to 0 uniformly in s ≥ 0 as t goes to ∞ along the sequence t = tk → ∞ (k → ∞)
specified in Theorem 4.4. If we have shown this, we have proved the existence of W+

2 . To

prove this we let P± = P
θ−.θ+

± for −1 < θ− = σ+ + ρ < θ+ < 1 for some ρ > 0 and the
constant σ+ ∈ (−1, 1) of Theorem 3.4. Then the state U(t)f is decomposed

U(t)f = d(t) + e(t) + r(t),

where

d(t) = P ∗
+U(t)f, e(t) = P ∗

−U(t)f, r(t) = U(t)f − (P ∗
+ + P ∗

−)U(t)f.
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By (3.55) of Theorem 3.5, we have

J−1U(s)P ∗
+ = −iJ−1U(s)K+(s) + U0(s)J

−1P ∗
+. (5.3)

Thus

U0(−t − s)J−1U(s)d(t) = U0(−t − s)J−1U(s)P ∗
+U(t)f

=−iU0(−t − s)J−1U(s)K+(s)U(t)f + U0(−t)J−1P ∗
+U(t)f.

On the other hand we have

U0(−t)J−1d(t) = U0(−t)J−1P ∗
+U(t)f.

The difference (5.2) is then equal to

W2(t + s)f − W2(t)f

= K̃+(t, s)U(t)f +
{
U0(−t − s)J−1U(s) − U0(−t)J−1

}
(e(t) + r(t)), (5.4)

where

K̃+(t, s) = −iU0(−t − s)J−1U(s)K+(s). (5.5)

By (4.12) of Theorem 4.4

e(tk) → 0 as k → ∞. (5.6)

From the definition of pseudodifferential operators P±, it is easy to see that P± − P ∗
±

are compact operators on H. From this fact and (4.13) in Theorem 4.4 we have

∥r(tk) − {I − (P+ + P−)}U(tk)f∥ → 0 as k → ∞. (5.7)

From f ∈ Hc(a, b) and (4.14) in Theorem 4.4, we have

∥U(tk)f − E0([a, b])U(tk)f∥ → 0 as k → ∞. (5.8)

By (5.7), (5.8), (1.11) and (4.13), we have

∥r(tk)∥ → 0 as k → ∞. (5.9)

From (5.4), (5.6) and (5.9), we have

sup
s≥0

∥∥W2(tk + s)f − W2(tk)f − K̃+(tk, s)U(tk)f
∥∥ → 0 as k → ∞. (5.10)

Here by Theorem 3.5, (5.5) and (4.13), we have

sup
s≥0

∥∥K̃+(tk, s)U(tk)f
∥∥ = sup

s≥0

∥∥J−1U(s)K+(s)U(tk)f
∥∥ → 0 as k → ∞. (5.11)

The relations (5.10) and (5.11) imply that

sup
s≥0

∥W2(tk + s)f − W2(tk)f∥ → 0 as k → ∞. (5.12)

This proves that the inverse wave operator W+
2 exists on Hc, and concludes the proof

of the asymptotic completeness for the scattering problem with Hamiltonians (1.1) and
(1.2). Namely we have proved the following theorem.
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Theorem 5.1 Under Assumptions S and L, we have the existence of the wave operators

W±
1 = s- lim

t→±∞
eitHJe−itH0 (5.13)

on H = L2(Rn) and the asymptotic completeness

R(W±
1 ) = Hc, (5.14)

where Hc is the continuous spectral subspace for H. Moreover W±
1 is an isometry and

intertwines H0 and H. Namely for any Borel set B ⊂ R

EH(B)W±
1 = W±

1 E0(B) (5.15)

holds.

Proof We have already proved the existence of (5.13) and the asymptotic completeness
(5.14). The intertwining property (5.15) is proved in the usual way with using the obvious
relation for s ∈ R

e−isHW±
1 = W±

1 e−isH0 .

We have only to show that W±
1 is an isometry. For this purpose it suffices to see that for

f ∈ H(a, b) = E0([a, b])H with the constants 0 < a < b < ∞ which are assumed in the
definition of each preliminary J

(W±
1 )∗W±

1 f = f. (5.16)

The norm of the difference of both sides is equal to

lim
t→±∞

∥(J∗J − I)e−itH0f∥ = lim
t→±∞

∥(J∗J − I)E0([a, b])e−itH0f∥.

Therefore the desired isometry follows from the fact that (J∗J − I)E0([a, b]) is a compact
operator, which is proved similarly to Lemma 3.7 of [4] with using the estimate (3.44). ¤
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