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Hybridized Discontinuous Galerkin
Method with Lifting Operator

Issei OIKAWA

Graduate School of Mathematical Sciences, University of Tokyo
3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan

Abstract
In this paper, we propose a new hybridized discontinuous Galerkin method

for the Poisson equation with homogeneous Dirichlet boundary condition. Our
method has the advantage that the stability is better than the previous hybridized
method. We deriveL2 andH1 error estimates of optimal order. Some numerical
results are presented to verify our analysis.

Keywords. discontinuous Galerkin method, hybridized method, error analysis

1 Introduction

The discontinuous Galerkin finite-element methods (DGFEMs) is one of the ac-
tive research fields of numerical analysis in the last decade. They allow us to use
discontinuous approximate functions across the element boundaries and have the
robustness to variation of element geometry. That is, we can utilize many kind of
polynomials as approximate functions on elements and many kind of polyhedral
domains as elements simultaneously. Consequently, DGFEM fits adaptive com-
putations so that mathematical analysis as well as actual applications has been
developed for various problems. For more details, we refer to [2, 3, 4]. However,
the size and band-widths of the resulting matrices can be much larger than those
of the conventional FEM, which is a disadvantage from the viewpoint of compu-
tational cost. To surmount this obstacle, recently new class of DGFEM, which
is called hybridized DGFEMs, is proposed and analyzed by B. Cockburn and his
colleagues; for example, see [9]. Thus, we introduce new unknown functionÛh

on inter-element edges and characterize it as the weak solution of a target PDE.
We then obtain the discrete system forÛh and the size of the system becomes
smaller. On the other hand, it should be kept in mind that DGFEM has another
origin. Some class of nonconforming and hybrid FEM’s, which are called hybrid
displacement method, use discontinuous functions as approximate field functions;
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see for example [5, 6]. In [10] and [11], F. Kikuchi and Y. Ando developed a
variant of the hybrid displacement one, and applied it to plate problems. Their
approach enables one to use conventional element matrices and vectors. It, how-
ever, suffered from numerical instability and was not fully successful. Recently,
the author and his colleagues proposed a new DGFEM that is based on the hy-
brid displacement approach by stabilizing their old method and applied it to linear
elasticity problems in [7]. A key point of our method is to introduce penalty terms
in order to ensure the stability. We, then, carried out theoretical analysis by using
the 2D Poisson equation as a model problem, and gave some concrete finite ele-
ment models with numerical results and observations in [8]. However, an issue
still remains. The stability is guaranteed only when the penalty parameters are
taken from a certain interval, and we know only the existence of such an interval
and do not know concrete information about it.

The purpose of this paper is to propose a new hybridized DGFEM that is stable
for arbitrary penalty parameters. Our strategy is to introduce the lifting operator
and define the penalty term in terms of the lifting operator. In order to state our
idea as clearly as possible, we consider the Poisson equation with homogeneous
Dirichlet condition:

−∆u = f in Ω, u = 0 on∂Ω, (1)

whereΩ is a convex polygonal domain andf ∈ L2(Ω).
This paper is composed of six sections. In Section 2, we introduce the trian-

gulation and finite element spaces, and then describe the lifting operator. Section
3 is devoted to the formulation of our proposed hybridized DGFEM, and mathe-
matical analysis including error estimates is given in Section 4. In Section 5, we
report some results of numerical computations and confirm our theoretical results.
Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Notation

Let Ω ⊂ Rn, for an integern ≥ 2, be a convex polygonal domain. We introduce
a triangulationTh = {K} of Ω in the sense [8], whereh = maxK∈Th

hK andhK

stands for the diameter ofK. That is eachK ∈ Th is anm-polygonal domain,
wherem is an integer and can differ withK. We assume thatm is bounded
from above independently of a family of triangulations{Th}h, and∂K does not
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intersect with itself. LetEh = {e ⊂ ∂K : K ∈ Th} be the set of all edges of
elements, and letΓh =

∪
K∈Th

∂K. We define the so-called broken Sobolev space
for k ≥ 0,

Hk(Th) = {v ∈ L2(Ω) : v|K ∈ Hk(K) ∀K ∈ Th}.

LetL2
0(Γh) = {v̂ ∈ L2(Γh) : v̂|∂Ω = 0 }. We introduce the inner products

(u, v)K =

∫
K

uvdx for K ∈ Th,

⟨û, v̂⟩e =

∫
e

ûv̂ds for e ∈ Eh.

The usualm-th order Sobolev seminorm and norm onK are denoted by|u|m,K

and||u||m,K , respectively. We use finite element spaces:

Uh ⊂ H2(Th), Ûh ⊂ L2
0(Γh).

In addition, we setVh = Uh × Ûh, andV (h) = H2(Th) × L2
0(Γh).

2.2 Lifting operators

We state the definition of the lifting operator which plays a crucial role in our
formulation and analysis. To this end, we fixK ∈ Th ande ⊂ ∂K for the time
being, and set

Uh(K) = {wh|K : wh ∈ Uh, Ûh(e) = {ŵh|e : ŵh ∈ Ûh}.

Then, for anŷv ∈ L2(e), there exists a uniqueuh ∈ Uh(K)n such that

(uh,wh)K = ⟨v̂,wh · nK⟩e, ∀wh ∈ Uh(K)n, (2)

wherenK is the unit outward normal vector to∂K. The lifting operatorLe,K :
L2(e) → Uh(K)n is defined asLe,K(v̂) = uh. Thus,

(Le,K(v̂),wh)K = ⟨v̂,wh · nK⟩e, ∀wh ∈ Uh(K)n. (3)

Furthermore, we defineL∂K =
∑

e⊂∂K Le,K .
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3 New hybridized DG scheme

This section is devoted to the presentation of our proposed hybridized DGFEM.
Before doing so, we convert the Poisson problem (1) into a suitable weak form
(7). A key idea is to introduce unknown functions on inter-element edges. First,
multiplying both the sides of (1) by a test functionv ∈ Uh and integrating over
eachK ∈ Th, we have by the integration by parts∑

K∈Th

[(∇u,∇v)K − ⟨nK · ∇u, v⟩∂K ] = (f, v). (4)

From the continuity of the flux, we have∑
K∈Th

⟨nK · ∇u, v̂⟩ = 0 ∀v̂ ∈ L2
0(Γh). (5)

This, together with (4), implies∑
K∈Th

[(∇u,∇v)K − ⟨nK · ∇u, v − v̂⟩∂K ] = (f, v). (6)

Here we set, foru = (u, û) andv = (v, v̂) ∈ V (h),

ah(u, v) =
∑

K∈Th

(∇u,∇v)K ,

bh(u, v) = −
∑

K∈Th

⟨nK · ∇u, v − v̂⟩∂K .

Then, (6) is rewritten as

ah(u, v) + bh(u, v) = (f, v). (7)

Now we can state our hybridized DGFEM: finduh ∈ Vh such that

BL
h (uh, vh) := ah(uh, vh) + bh(uh, vh) + bh(vh,uh) + jh(uh, vh)

= (f, vh) ∀vh = (vh, v̂h) ∈ Vh. (8)

Here, the third termbh(vh,uh) of BL
h is added in order to symmetrize the

scheme and the penalty termjh(uh, vh) is defined by

jh(u, v) =
∑

K∈Th

(L∂K(u− û),L∂K(v − v̂))K

+
∑

K∈Th

∑
e⊂∂K

∫
e

ηeh
−1
e (u− û)(v − v̂)ds,

with the penalty parametersηe > 0, wherehe is the diameter ofe.
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4 Error estimates

In this section, we give a mathematical analysis of our hybridized DGFEM. To
this end, we introduce

|||v|||2 =
∑

K∈Th

(
||∇v − L∂K(v − v̂)||20,K +

∑
e⊂∂K

ηe

he

||v − v̂||20,e

)
,

|||v|||2h =
∑

K∈Th

(
|v|21,K +

∑
e⊂∂K

ηe

he

||v − v̂||20,e

)
,

whereηe is a positive parameter for eache ∈ Eh.

Theorem 1. The bilinear formBL
h satisfies the following three properties.

(Consistency) Letu ∈ H2(Ω) ∩H1
0 (Ω) be the exact solution. Foru = (u, u|Γh

),
we have

BL
h (u, v) = (f, v) ∀v ∈ V (h).

(Boundedness)
|BL

h (v,w)| ≤ |||v||||||w||| ∀v,w ∈ V (h).

(Coercivity)
BL

h (vh, vh) ≥ |||vh|||2 ∀vh ∈ Vh.

Furthermore, the scheme(8) admits a unique solutionuh ∈ Vh for anyf ∈ L2(Ω)
and{ηe}e.

Proof. The consistency is trivial sinceu − u|Γh
= 0 on Γh. The coercivity is a

direct consequence of the expression

bh(v,w) = −
∑
K

(∇v,L∂K(w − ŵ))K .

Combining this with the Schwarz inequality, we immediately deduce the bound-
edness. Finally, the coercivity implies the uniqueness of (8) and, hence, the system
of linear equations (8) admits a unique solution.

As results of those three properties, we obtain the following a priori error
estimates in terms of||| · |||.
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Theorem 2. Letu = (u, u|Γh
) ∈ V (h) with the exact solutionu ∈ H2(Ω)∩H1

0 (Ω)
of the Poisson problem(1). Suppose that{Th}h satisfies

τ ≤ he

hK

∀K ∈ Th,∀e ⊂ ∂K (9)

with some positive constantτ . Letuh = (uh, ûh) ∈ Vh be the solution of our HDG
scheme(8) for an arbitrary{ηe}e, ηe > 0. Then, we have the error estimates

|||u − uh||| ≤ 2 inf
vh∈Vh

|||u − vh|||. (10)

Proof. Let vh ∈ Vh be arbitrary. By Theorem 1, we have

|||uh − vh|||2 ≤ BL
h (uh − vh,uh − vh) (Coercivity)

= BL
h (u − vh,uh − vh) (Consistency)

≤ |||u − vh||| |||uh − vh|||, (Boundedness)

which implies that

|||uh − vh||| ≤ |||u − vh||| ∀vh ∈ Vh. (11)

Using the triangle inequality, we have

|||u − uh||| ≤ |||u − vh||| + |||uh − vh|||
≤ 2|||u − vh|||.

From the above, it follows that

|||u − uh||| ≤ 2 inf
vh∈Vh

|||u − vh|||, (12)

which implies that the error of the approximate solution is optimal in the norm
||| · |||.

As is stated in [8], we assume that the following approximate properties: for
v ∈ Hk+1(K) there exist positive constantsCe

k,s andC f
k,s such that

inf
vh∈Uh

|v − vh|s,K ≤ Ce
k,sh

k+1−s
K |v|k+1,K , (13)

inf
v̂h∈Ûh

|v − v̂h|s,e ≤ C f
k,sh

k+ 1
2
−s

K |v|k+1,K . (14)

Then we have the error estimates in Theorem 2 are actually of optimal order.
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Theorem 3. Under the assumptions in Theorem 2 and the approximate properties
(13)and(14), we have, ifu ∈ Hk+1(Ω) ∩H1

0 (Ω),

|||u − uh||| ≤ Chk|u|k+1,Ω, (15)

||u− uh||0,Ω ≤ Chk+1|u|k+1,Ω. (16)

In order to prove Theorem 3, we need the following auxiliary result.

Proposition 4. LetK ∈ Th ande ⊂ ∂K. Then we have

||Le,K(v̂)||0,K ≤ C1h
−1/2
e ||v̂||0,e ∀v̂ ∈ L2(e). (17)

Proof. In (3), takingwh = Le,K(v̂) yields

||Le,K(v̂)||20,K = (Le,K(v̂),Le,K(v̂))K

= ⟨v̂,Le,K(v̂)⟩e
≤ ||v̂||0,e||Le,K(v̂)||0,e. (18)

By the trace theorem, there existsC1 such that

||Le,K(v̂)||0,e ≤ C1h
−1/2
e ||Le,K(v̂)||0,K . (19)

HereC1 depends onUh(K) and Ûh(e). Combining (18) with (19), we obtain
(17).

Proof of Theorem 3.As a consequence of Proposition 4, it can be proved that
there exists a constantC2 such that

|||v||| ≤ C2|||v|||h ∀v ∈ V (h). (20)

From (13) and (14), we have

inf
vh∈Vh

|||u − vh|||h ≤ Chk|u|k+1,Ω. (21)

Combining this with (20), we obtain (15). Next, we prove (16). Here we define
ψ ∈ H2(Ω) ∩H1

0 (Ω) as the solution of the adjoint problem

−∆ψ = u− uh in Ω, ψ = 0 on∂Ω. (22)

Letψ = (ψ, ψ|Γh
). Then, sinceBL

h is symmetric, we have

BL
h (v,ψ) = (u− uh, v) ∀v = (v, v̂) ∈ V (h). (23)
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In particular, takingv = u − uh, we have for anyψh ∈ Vh,

||u− uh||20,Ω ≤ BL
h (u − uh,ψ)

= BL
h (u − uh,ψ− ψh)

≤ |||u − uh||||||ψ− ψh|||
≤ C2|||u − uh||||||ψ− ψh|||h.

From (13) and (14), it follows that

|||ψ− ψh|||h ≤ Ch|ψ|2,Ω. (24)

By the regularity of the adjoint problem, we have

|ψ|2,Ω ≤ C||u− uh||0,Ω. (25)

Thus we obtain (16).

Remark 5. In contrast to our previous results of [8], error estimates in Theorem
2 are valid for any positive parametersηe. This is one of the advantages of our
hybridized DGFEM.

5 Numerical results

We now present the numerical results of our method for the following Poisson
equation: {

−∆u = 2π2 sin(πx) sin(πy) in Ω,

u = 0 on∂Ω,
(26)

whereΩ is a unit square. We use uniform rectangular meshes andPk–Pk elements
(k = 1, 2, 3). We computed the approximate solutions for various mesh sizeh =
1/N , see Table 1. We take the unity as the penalty parameters for eache ∈ Eh. We
see from Table 1 that theH1 andL2 convergence rate of the approximate solutions
arehk andhk+1, respectively. Figure1 and Figure2 show the approximate solution
uh andûh in the casek = 1 andN = 8, respectively.

6 Conclusions

We have presented a new hybridized DGFEM by using the lifting operator and
examined the stability for arbitrary penalty parameters. Convergence results of
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optimal order have been proved and confirmed by numerical experiments. As
a model problem, we have considered only the Dirichlet boundary value prob-
lem for the Poisson equation. We are interested in application to other problems,
for example, Neumann boundary value problem, convection-diffusion equations,
Stokes system, and time-dependent problems. They are left here as future study.
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Table 1:L2 andH1 errors.

L2 H1

k N error rate error rate

1 4 3.23E-02 1.96 7.15E-01 1.01

8 8.29E-03 1.96 3.55E-01 1.00

16 2.14E-03 1.99 1.78E-01 1.00

32 5.39E-04 8.90E-02

2 4 4.56E-03 3.18 1.46E-01 2.07

8 5.04E-04 3.05 3.47E-02 2.02

16 6.08E-05 3.01 8.58E-03 2.00

32 7.53E-06 2.14E-03

3 4 4.48E-04 4.21 2.00E-02 3.12

8 2.43E-05 4.07 2.30E-03 3.03

16 1.45E-06 4.02 2.81E-04 3.01

32 8.94E-08 3.49E-05
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Figure 1: The approximate solutionuh in the casek = 1 andN = 8.
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Figure 2: The approximate solution̂uh in the casek = 1 andN = 8.

11


